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Abstract—A centralized wireless system is considered that is
serving a fixed set of users with time varying channel capacities.
An opportunistic scheduling rule in this context selects a user
(or users) to serve based on the current channel state and user
queues. Unless the user traffic is symmetric and/or the underlying
capacity region a polymatroid, little is known concerning how
performance optimal schedulers should tradeoff maximizing cur-
rent service rate (being opportunistic) versus balancing unequal
queues (enhancing user-diversity to enable future high service
rate opportunities). By contrast with currently proposed oppor-
tunistic schedulers, e.g., MaxWeight and Exp Rule, a radial sum-
rate monotonic (RSM) scheduler de-emphasizes queue-balancing
in favor of greedily maximizing the system service rate as
the queue-lengths are scaled up linearly. In this paper it is
shown that an RSM opportunistic scheduler, p-Log Rule, is
not only throughput-optimal, but also maximizes the asymptotic
exponential decay rate of the sum-queue distribution for a two-
queue system. The result complements existing optimality results
for opportunistic scheduling and point to RSM schedulers as
a good design choice given the need for robustness in wireless
systems with both heterogeneity and high degree of uncertainty.

Index Terms—Large deviations, multiuser opportunistic
scheduling, queues sharing time-varying server, scheduling unre-
lated parallel machines.

I. INTRODUCTION

We consider a wireless node shared by two users, where
each user’s data arrives to a queue at the node as a random
process and each user’s channel, in terms of data rate that it
can support, varies randomly over time. If the channel state
is available, a policy can schedule users so as to exploit
favorable channels, e.g., schedule the user which currently
has the highest rate – this is referred to as opportunistic
scheduling (see, e.g., [1], [2]). More generally, a scheduler
can be permitted to allocate rates to the users from a compact
polytope, where the polytope depends on the channel state.

An opportunistic or channel-aware scheduler, however, may
not be stable, i.e., keep the user queues bounded, unless it is
chosen carefully, e.g., using prior knowledge of the arrival
and channel process. Except in some degenerate cases, in
order to ensure stability for all possibly stabilizable arrival
processes, an opportunistic scheduler must be both channel-
and queue-aware, and must tradeoff maximizing the current
service rate (scheduling the queue seeing the highest rate) with
balancing unequal queues (scheduling the longest queue).
Note that by balancing queues, one can increase the likelihood
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of more non-empty queues in the future and, therefore, can
potentially achieve higher service rates in the future. Moreover,
the performance of any scheduler, in terms of Quality-of-
Service (QoS) measures like mean delay or probability of
queue overflow, depends on how this tradeoff is made.

Much work to date has focused on engineering queue-
and-channel-aware schedulers that are throughput-optimal, i.e.,
schedulers that can achieve stability without any knowledge
of arrival or channel statistics, if stability is at all feasible.
Examples are MaxWeight [3], Exponential (Exp) rule [4],
and Log rule [5]. In fact, necessary and sufficient conditions
for MaxWeight-type schedulers to be throughput-optimal have
been shown in [6], [7].

Stability, however, is a weak form of optimality. In view
of various QoS goals, it is of interest to study schedulers that
are delay-optimal, e.g., schedulers that minimize the overall
average delay (per data unit) seen by users, or ones which
minimize the probability that either the sum-queue or the
longest queue overflows a large buffer. These schedulers are
harder to characterize for channels/servers1with time-varying
capacity, but some results are available that we briefly discuss
next.

In [8] and [9] the Longest-Connected-Queue (LCQ) and
Longest-Queue-Highest-Possible-Rate (LQHPR) scheduling
policies are introduced. Strong results are shown for these
policies; they stochastically minimize the max- and sum-
queue processes, and thus also the tails of max- and sum-
queue distributions and mean delay. However, in addition to
assuming certain symmetry conditions on arrival and channel
statistics, [8] is limited to on-off channel capacities where
only a single queue can be scheduled per time slot, and
[9] assumes that the scheduler can allocate service rates
from the information theoretic polymatroid multiuser capacity
region associated with the current channel state. In both cases,
the above-mentioned tradeoff between queue balancing and
service rate maximization is absent. Indeed in [8], all policies
that pick a connected queue result in the same service rate,
whereas, in the case of [9], all policies that pick a service
vector from the maximal points of the current capacity region,
i.e., points on the max-sum-rate face, result in the same total
service rate. Thus one can achieve the queue balancing goal,
without compromising the total service rate. Not surprisingly,
in both cases the optimal policy turns out to be greedy, in that it
allocates as much service rate as possible to the longest/longer
queues.

1The terms channel and server, and sometimes the terms user and queue,
are used interchangeably through this section.
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A related server allocation problem is studied in [10]. The
paper considers minimizing the mean delay in a two queue
system where each queue has a dedicated server and a third
server can be dynamically shared between them. As a result,
the two queues can be allocated service rates from a polyma-
troid capacity region, thus the objective of queue balancing
can again be achieved without compromising the total service
rate. However, without the underlying symmetry assumptions
of [8] and [9], and using a dynamic programming approach,
only the existence of a monotone increasing switching curve
on the state space of queue process is shown; note that the
switching curve under LCQ and LQHPR policies lies along
the line where both queues are equal. For a system with
a general compact, convex, and coordinate convex capacity
region and any finite number of queues, [11] gives a large
deviations principle (LDP) for transient queue process under
MaxWeight scheduler. This LDP can be used to compute,
e.g, the asymptotic probability of sum-queue or max-queue
overflow, as well as the corresponding likely modes of over-
flow. Although the capacity region is not changing over time,
the region is such that a scheduler must tradeoff maximizing
total service rate with balancing unequal queues. Therefore
this result is insightful in relating the modes overflow to the
tradeoff made by the MaxWeight scheduler. A more recent
work [12] gives many sources large deviations for MaxWeight
scheduler for a similar capacity region.

Finally, relaxing the symmetry assumptions of [8] and [9],
the works in [13]–[15] consider the asymptotic probability of
max-queue overflow. The server capacity in [13], though time-
varying, is identical for all users at any given time, thus the
need to tradeoff queue-balancing versus service rate maximiza-
tion is again absent. In fact, the sum-queue process in [13] is
identical for all work conserving schedulers. However [14]
and [15] consider a server with asynchronously time-varying
capacity across users. [14] studies the asymptotic probability
of max-queue overflow under MaxWeight scheduler and shows
that for a given system, as the exponent of queue length in the
MaxWeight scheduler, α, becomes large, the asymptotic prob-
ability of max-queue overflow under MaxWeight approaches
the minimum achievable under any other scheduler. A stronger
result is shown in [15], that is, the Exp rule scheduler in
fact minimizes the steady state asymptotic probability of max-
queue overflow. Indeed the models in [14] and [15] accurately
capture a wireless channel shared by heterogenous users,
and exhibit the tradeoff between queue-balancing and service
rate maximization. Existence of this tradeoff also implies
that, unlike the LCQ and LQHPR policies, the asymptotic
optimality of Exp rule does not translate to minimizing the
asymptotic probability of sum-queue overflow or the mean
delay. In order to minimize the asymptotic probability of max-
queue overflow, the desired2 mode of overflow is one where
all queues (more precisely, the set of overflowing queues
which then exclusively share the server,) grow at the same
rate and overflow at the same time. This constrains the system
throughput, while, of course, keeping the queue lengths equal

across users.
Contributions: In this paper we address the problem of

minimizing the asymptotic probability of sum-queue overflow.
First, we give a tight lower bound on this probability under
any scheduler. By contrast with the desired mode overflow to
minimize the asymptotic probability of max-queue overflow,
we will see that in order to minimize the asymptotic proba-
bility of sum-queue overflow, the desired mode of overflow is
one where the system throughput is the highest possible and
queues may build up at different rates. Second, we show that a
radial sum-rate monotone scheduler (see [5] or Section III for
definition of radial sum-rate monotonicity), called the pseudo-
Log rule, minimizes the asymptotic probability of sum-queue
overflow. Although our focus is on overflows of the sum-queue
instead of overflows of the max-queue as in [15], the general
technique of proof in [15] lends itself well to our problem
and we rely heavily on the results developed therein. Other
desirable features of radial sum-rate monotone schedulers have
been explained in [5], which include,
(a) reducing mean delay;
(b) graceful degradation of service in terms of fraction of

users that can meet their Quality-of-Service requirements
during transient overloads;

(c) robustness to uncertainty in traffic and channel statistics.
The rest of the paper is organized as follows. The system

model is described in Section II. Queue-and-channel aware
schedulers of interest, namely, MaxWeight, Exp rule, and
Log rule, and the property of radial sum-rate monotonicity
are reviewed in Section III, followed by the introduction of
pseudo-Log scheduling rule in Section IV. The main result
of the paper is summarized in Section V. Some preliminary
discussion and relevant large deviation principles follow in
Section VI. The proofs for the lower and the upper bounds
stated in the main result of the paper are given in Section VII
and VIII respectively. After defining local fluid sample paths
and developing essential results (summarized in Table I) in
Section IX, the optimality of the p-Log rule, i.e., the last part
of main result is proved in Section X. Immediate extensions
of the main result to some other interesting system models are
presented in the concluding Section XI.

II. SYSTEM MODEL

We consider the problem of dynamically allocating a time-
varying server to two queues. Each Queue i ∈ I = {1, 2} is
fed by an independent arrival process (Ai(t), t = 0, 1, · · · )
that is i.i.d. over t and where Ai(t) ∈ Z+ denotes the number
of packets arriving in time slot [t, t + 1). We assume that
the arrivals are bounded, i.e., Ai(·) ≤ C for some finite
C > 0. Let A(t) = (Ai(t), i ∈ I), and vector λ = E[A(0)]
denote the mean arrivals to the queues. We use bold face, e.g.,
(A(t), t = 0, 1, · · · ), to denote the random process and plain
font, e.g., (A(t), t = 0, 1, . . .), to denote a realization of the
process.

2By the “desired” mode of max-queue overflow we mean the mode which
gives the lower bound on the asymptotic probability of max-queue overflow
under any scheduler, as given in [15]; the likely mode of max-queue overflow
under the Exp rule is indeed the desired one.
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A server with randomly varying service rates is available
to the two queues and modeled as follows. The server has a
time-varying state that is modeled by an i.i.d. random process
(m(t), t = 0, 1, · · · ), where m(t) ∈M = {1, 2, · · · ,M} for
some finite M > 0 denotes the state of the server over [t, t+1),
and is drawn from distribution π = (π1, · · · , πM ) > 0. Asso-
ciated with each server state m ∈ M is a vector µm ∈ Z2

+.
When in state m over a time slot, the server can either serve
at most µm1 packets from Queue 1, or at most µm2 packets
from Queue 2. The scheduling problem is thus to allocate the
server to one of the queues for each time slot such that a given
optimality criterion is met. This will be formally described
later.

At any integer time t, Q(t) =
(
Qi(t), i ∈ I

)
∈ Z2

+

is a random vector, where Qi(t) denotes the number of
packets in the ith queue at the end of time slot [t − 1, t).
Let St denote a system sample path up to time t, i.e.,
St ≡

((
m(τ), Q(τ), A(τ − 1)

)
, τ ≤ t

)
and St denote the

space of all feasible realizations St. Let i∗t : St → I denote the
queue scheduled to receive service during time slot [t, t+ 1),
i.e., we assume that the system sample path St is available for
making the scheduling decision for time slot [t, t + 1). The
evolution of the queue process under the scheduling decision
i∗t (St) is given by,

Qi(t+ 1) =
(
Qi(t)− µm(t)

i 11{i∗t (St)=i}
)+

+Ai(t) .

The sequence of functions (i∗t (·), t = 0, 1, . . .) is called
a scheduler or scheduling policy. It is easy to see that
under a static state-feedback scheduler, i.e., one where
i∗t (St) = i∗

(
Q(t),m(t)

)
, the process (Q(t), t = 0, 1, . . .)

forms a discrete time Markov chain on Z2
+.

In the sequel, we will extend the domain of all discrete
time processes and functions to continuous time: a function
originally defined on integer times has the same value at any
real t that it takes at btc. All such processes and functions lie
in the space of real-valued right continuous functions with left
limits, denoted by D. We assume that D is endowed with the
topology of uniform convergence over compact sets (u.o.c),
and the k-times product space Dk with the product topology.
Lastly, let (Ω,F , P ) be a probability space that is large enough
to define all the random processes in this paper.

For a given weight vector b = (b1, b2) > 0, we are
interested in finding a scheduler which, informally speaking,
minimizes the tail of the distribution of weighted sum-queue∑
i∈I biQi(·). We will show that under a static state-feedback

scheduler, namely the p-Log rule described in Section IV, the
asymptotic probability of weighted sum-queue overflow in the
steady state, i.e.,

lim sup
n→∞

1

n
logP

(∑
i∈I

biQi(0) ≥ n

)
,

is minimized (see Theorem 1 for a formal statement.) The p-
Log rule depends only on weight vector b and does not require
any knowledge of arrival or server-state distributions.

Capacity region

For each server state m ∈ M, let V m ∈ R2
+ denote

the convex hull of vertices (0, 0), (0, µm2 ), and (µm1 , 0).
Then, conditional on the server being in state m, the average
service jointly offered to the two queues under any scheduling
rule (such that the average exists) lies in the triangle V m.
Define the capacity region Vπ as the set of average service
vectors offered to the two queues under all possible scheduling
rules, then Vπ is a convex polyhedron given by the weighted
Minkowski sum of regions V m, i.e.,

Vπ = π1V
1 ⊕ · · · ⊕ πMVM ,

=

{ ∑
m∈M

πmv(m) : v(m) ∈ V m, m ∈M

}
. (1)

See Fig. 1-a for a graphical illustration of capacity region: the
server has M = 6 states with some distribution π and vectors
µm in set {(1, 4), (3, 4), (1, 1), (4, 3), (4, 1), (1, 0)}.

Let {r1, · · · , rM ′} for some M ′ ≤M be the set of strictly
positive and finite slopes of the outer normal vectors to the
facets of capacity region Vπ . The slopes are indexed such that
0 < r1 < r2 < . . . < rM ′ < ∞. Also, let r0 = 0 and
rM ′+1 = ∞. For example, see Fig. 1-a for a depiction of a
capacity region with M ′ = 5 facets with outer normal slopes
in (0,∞). Finally, let V̂π = {v̂1, · · · , v̂M ′+1} denote the set
of maximal vertices of the capacity region Vπ . The vertices
in set V̂π are indexed such that v̂11 > v̂21 > . . . > v̂M

′+1
1 , i.e.,

the vertex v̂m lies at the intersection of the facets with outer
normal slopes rm−1 and rm; e.g., see vertex v̂2 in Fig. 1-a.

We assume that there exists a v ∈ Vπ such that λ < v,
which is a sufficient condition for stabilizability of the queues
[3]. If the above condition is met, then there exists at least one
static state feedback scheduler under which the Markov chain
(Q(t), t = 0, 1, . . .) is ergodic.

Remark 1: Since we assumed that the server can be al-
located to at most one queue per time slot, the region V m

is obtained by taking the convex hull of service vectors
in the set {(0, 0), (µm1 , 0), (0, µm2 )}. However, we can relax
this assumption and allow the server to be shared between
the two queues during a time slot. That is, we can asso-
ciate with each server state m a set of km service vectors{(
µm1 (1), µm2 (1)

)
, · · · ,

(
µm1 (km), µm2 (km)

)}
, and allow the

server to operate at any one of these service vectors. In this
more general case, each region V m will be an arbitrary convex
polyhedron obtained by taking the convex hull of all feasible
service vectors associated with server state m. For example,
V m can be information theoretic polymatroids as in [9]. The
optimality results presented in this paper will still hold with
such a relaxation; see Section XI for some details.

III. THROUGHPUT-OPTIMAL SCHEDULERS AND RADIAL
SUM-RATE MONOTONICITY

The throughput-optimal schedulers MaxWeight, Exp rule,
and Log rule mentioned in the introduction are all static
state-feedback. We formally define them next. Let the vector
fields hmw(·), hexp(·) and hlog(·) on R2

+ be given as follows:
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for all x ∈ R2
+,

hmw(x) = (bix
α
i , i ∈ I) ,

hexp(x) =

(
bi exp

(
aixi

c+ (0.5(a1x1 + a2x2))η

)
, i ∈ I

)
,

hlog(x) = (bi log (1 + aixi) , i ∈ I) ,

for any fixed positive bi’s, ai’s, α, c, and
0 < η < 1. Then, when the system is in state
(Q(t),m(t)) = (Q,m) ∈ Z2

+ ×M, the MaxWeight
scheduler serves a queue i∗mw given by,

i∗mw(Q,m) ∈ arg max
i∈I

hmwi (Q)µmi , (2)

augmented with any fixed tie-breaking rule. The Exp rule i∗exp
and the Log rule i∗log are defined similarly by substituting hexp

and hlog respectively in place of hmw. Indeed numerous vector
field based throughput-optimal schedulers can be engineered
so as to respond differently to the disparity among the users’
queue lengths, i.e., make different tradeoffs between service
rate maximization and queue balancing. For reference see,
e.g., [7], which gives necessary and sufficient conditions for a
vector field based scheduler to be throughput-optimal.

We refer to a scheduler as radial sum-rate monotone if,
as the queues scale up linearly, the scheduling rule allocates
the server in a manner that de-emphasizes queue-balancing in
favor of greedily maximizing the current service rate. More
formally, let v(Q) ∈ Vπ be the vector of average service
offered to the queues under a static state-feedback scheduler
i∗, conditional on queue state being Q, i.e.,

v(Q) =
(
E[µm

i 11{i∗(Q,m)=i}], i ∈ I
)
, (3)

where expectation is with respect to (random) m drawn from
distribution π.

Definition 1: A scheduling policy i∗ is radial sum-rate
monotone with respect to weight vector b > 0 if for any Q and
scalar θ such that θQ ∈ Zn+, the weighted sum of expected
offered service, 〈b, v(θQ)〉, is an increasing function of θ, and

lim
θ→∞

〈b, v(θQ)〉 = max
y

(
〈b, y〉 |y ∈ Vπ and yi = 0 if Qi = 0

)
.

Let vmw(Q) denote the expected service vector under the
MaxWeight scheduler, i.e., the vector obtained by substituting
i∗mw for i∗ in (3); similarly, let vexp(Q) and vlog(Q) denote
the expected service vectors under the Exp and Log rule
respectively. Also, fix a weight vector b > 0. Next, under
schedulers Maxweight, Exp rule, and Log rule respectively,
we will identify the sets Smw0 ,Sexp0 , and Slog0 given approxi-
mately3 by,

S(·)0 ≈
{
Q ∈ Z2

+ : v(·)(Q) ∈ arg max
y∈Vπ

〈y, b〉
}
,

in words, the set of queue states such that the expected service
vector v(·)(Q) has the maximum weighted sum with respect
to weight vector b. For example, for the capacity region shown
in Fig. 1-a and weight vector b = (1, 1), Fig. 1-b–d illustrates

3Under the formal definition of set S(·)0 given later, the queue states on the
boundary of set

{
Q ∈ Z2

+ : v(·)(Q) ∈ argmaxy∈Vπ 〈y, b〉
}

may or may
not lie in S(·)0 .

the sets Smw0 ,Sexp0 , and Slog0 . The set Smw0 is a cone, the set
Sexp0 a cylinder with gradually increasing diameter, and the
set Slog0 resembles a French horn. The set Slog0 is such that
for any Q > 0, we have θQ ∈ Slog0 for all θ large enough,
indicating that the Log rule is radial sum-rate monotone. The
MaxWeight and Exp rule are not radial sum-rate monotone. In
fact, Exp rule is the ‘opposite’ of radial sum-rate monotone in
that, for any Q such that a1Q1 6= a2Q2, we have θQ /∈ Sexp0

for all θ large enough. A formal description of the sets S(·)0

is as follows.
The vector h(·)(Q) can be shown to be an outer normal

vector to the capacity region Vπ at point v(·)(Q) for each
scheduler (·) ∈ {mw, exp, log}, i.e.,

v(·)(Q) ∈ arg max
y∈Vπ

〈
y, h(·)(Q)

〉
, (4)

See, e.g., Lemma 2.1 of [16]. Recall the set of outer normal
slopes {r0, r1, · · · , rM ′ , rM ′+1}, and let rk be the largest
slope strictly less than b2/b1 (i.e. the slope of vector b)
and rl the smallest slope strictly greater than b2/b1; thus if
rk+1 6= b2/b1 then l = k + 1, otherwise l = k + 2. For
example, in Fig. 1-a, for weight vector b = (1, 1), we have
k = 2 and l = 4. For each scheduler (·) ∈ {mw, exp, log} we
define the set,

S(·)0 =

{
x ∈ R2

+ : rk <
h
(·)
2 (x)

h
(·)
1 (x)

< rl

}
.

Then, by (4), for any Q ∈ S(·)0 ∩ Z2
+, we must have

v(·)(Q) ∈ arg maxy∈Vπ 〈y, b〉. Each region S(·)0 is bounded by
switching curves given by,{
x ∈ R2

+ :
h
(·)
2 (x)

h
(·)
1 (x)

= rk

}
and

{
x ∈ R2

+ :
h
(·)
2 (x)

h
(·)
1 (x)

= rl

}
.

For any queue state Q lying on these switching curves, the
argmax in (4) is not unique and whether v(·)(Q) lies in the set
arg maxy∈Vπ 〈y, b〉 depends on the tie breaking rule associated
with (2). For each m ∈ {1, · · · , k, l+ 1, · · · ,M ′+ 1}, we can
also define a set,

S(·)m =

{
x ∈ R2

+ : rm−1 <
h
(·)
2 (x)

h
(·)
1 (x)

< rm

}
.

Then, again by (4), for any Q ∈ S(·)m ∩ Z2
+, we

must have v(·)(Q) = v̂m. That is, each set S(·)m
for m ∈ {1, · · · , k, l + 1, · · · ,M ′ + 1} is associated with a
unique vertex. The switching curve between any two regions
S(·)m and S(·)m+1 for m ∈ {1, · · · , k−1, l+1, · · · ,M ′} is given
by, {

x ∈ R2
+ :

h
(·)
2 (x)

h
(·)
1 (x)

= rm

}
,

and as before, for any queue state Q lying on this switching
curve, the argmax in (4) is not unique and whether it lies in
set S(·)m or S(·)m+1 depends on the tie breaking rule associated
with (2). Fig. 1-b–d also show the switching curves and sets
S(·)m under MaxWeight, Exp rule, and Log rule. In fact, for
MaxWeight and Log rule, the switching curves can be given
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Fig. 1. (a) The capacity region for µm ∈ {(1, 4), (3, 4), (1, 1), (4, 3), (4, 1), (1, 0)}, depicting Minkowski addition, outer-normal vectors and maximal
vertices; the resulting switching curves under (b) MaxWeight, (c) Exp rule, (d) Log rule, for weight vector b = (1, 1).

in closed form, e.g., for Log rule, the switching curves are
given by,

a2x2 = (1 + a1x1)
b1
b2
r − 1 ,

for r ∈ {r1, · · · , rM ′}.

IV. THE PSEUDO-LOG SCHEDULING RULE

In this section we introduce a static state-feedback and radial
sum-rate monotone scheduler, denoted the pseudo-Log (p-Log)
rule. We subsequently show in Theorem 1 that the p-Log rule
minimizes the asymptotic probability of weighted sum-queue
overflow for any weight vector b. The p-Log rule takes weight
vector b as a parameter but does not require any knowledge
of arrival or server-state distributions.

We will define the p-Log scheduling rule through a vector
field h = (h1, h2) on R2

+. For any x ∈ [0, 1)2, let h(x) = 0.
For any x ∈ R2

+ \ [0, 1)2,

if x1 ≥ x2, then let
{
h1(x) = b1

√
x1,

h2(x) = b2 min(x2,
√
x1);

if x1 < x2, then let
{
h1(x) = b1 min(x1,

√
x2),

h2(x) = b2
√
x2.

(5)

The p-Log rule is given as follows: when the queues are in
state Q ∈ Z2

+ and the server in state m ∈M, then the server
is allocated to queue i∗pLog(Q,m) given by,

i∗pLog(Q,m) ∈ arg max
i∈I

hi(Q)µmi , (6)

where, in the case of a tie, if Q1 ≥ Q2 the server is allocated
to Queue 1, otherwise to Queue 2.

Note that it is only the slope, h2(Q)
h1(Q) , of the vector h(Q)

that determines the scheduling decision, and so, for example,
when Q1 ≥ Q2, Q1 6= 0, the slope is given by,

h2(Q)

h1(Q)
=
b2
b1

min

(
1,

Q2√
Q1

)
.

Switching curves under the p-Log rule

Let vpLog(Q) denote the vector of average service offered to
the queues under p-Log rule, conditional on queue state being
Q, i.e., the vector obtain by substituting i∗pLog for i∗ in (3).
Recall the set of outer normal slopes {r0, r1, · · · , rM ′ , rM ′+1}
and, in particular, the slopes rk and rl from this set as defined
in Section III. Similar to the sets S(·)0 for (·) ∈ {mw, exp, log},
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Fig. 2. The switching curves under the p-Log rule for the capacity region
depicted in Fig. 1-a and weight vector b = (1, 1).

we define the set S0 for p-Log rule as,

S0 =

{
x ∈ R2

+ : rk <
h2(x)

h1(x)
< rl

}
,

=

{
x ∈ R2

+ :
b1
b2
rk
√
x1 < x2 <

(
b1
b2
rl x1

)2
}

.

Similar to the region Slog0 , the region S0 too is shaped
like a French horn, see Fig. 2 for an illustration. For any
Q ∈ S0 ∩ Z2

+, we have vpLog(Q) ∈ arg maxy∈Vπ 〈y, b〉.
Therefore, we will refer to the region S0 as the weighted-max-
sum rate region (with respect to weight vector b). Moreover,
for any Q > 0, we have θQ ∈ S0 for all θ large enough, thus
indicating that p-Log rule is radial sum-rate monotone. Also,
for each m ∈ {1, · · · , k, l + 1, · · · ,M ′ + 1}, we define a set
Sm as,

Sm =

{
x ∈ R2

+ : rm−1 <
h2(x)

h1(x)
< rm

}
.

Then for any Q ∈ Sm ∩ Z2
+, we have vpLog(Q) = v̂m. All

switching curves in the half plane {x1 ≥ x2} are given by,

x2 =
b1
b2
r
√
x1 ,

for r ∈ {r0, · · · , rk} and x1 ≥ 1. Similarly, all switching
curves in the half plane x2 > x1 are given by,

x1 =
b2
b1
r−1
√
x2 ,

for r ∈ {rl, · · · , rM ′+1} and x2 ≥ 1. We will refer to the
collection of switching curves and regions Sm as a partition of
R2

+ (or the queue state space Z2
+) under the p-Log rule. It will

be useful to note that this partition, as well as the partitions
under MaxWeight, Exp rule, and Log rule, depend only on
the set of vectors {µ1, · · · , µM} associated with the M server
states and not on the distribution π = (π1, · · · , πM ) > 0 over
these states.

V. MAIN RESULT

The following three-part theorem summarizes the main
results of this paper. It includes a lower bound on the tail of

the weighted sum-queue overflow probability, an upper bound
on the same, and the optimality of the p-Log rule. The first
part is proved in Section VII, the second in Section VIII (and
Appendix), while the last in Sections IX and X.

Theorem 1: For the system model detailed in Section II,
the following hold.
(i) Given a weight vector b = (bi : bi > 0, i ∈ I), there
exists finite T0 > 0 such that for any t > T0 and under any
scheduling rule starting in any initial state Q(0), we have the
following lower bound,

lim inf
n→∞

1

n
logP

(∑
i∈I

biQi(nt) ≥ n

)
≥ −J∗ ,

where J∗ is defined in Section VII.
(ii) For a stabilizable system, under p-Log scheduling rule the
process (Q(t), t = 0, 1, . . .) forms an ergodic Markov chain,
and we have the following upper bound for a random vector
Q drawn from the stationary distribution of the Markov chain,

lim sup
n→∞

1

n
logP

(∑
i∈I

biQi ≥ n
)
≤ −J∗∗ ,

where J∗∗ is defined in Section VIII.
(iii) The p-Log rule maximizes the asymptotic exponential
decay rate of the weighted sum-queue distribution, i.e.,

J∗∗ = J∗ .

Remark 2: Since a scheduler can, in principle, be non-
stationary, the lower bound in (i) is expressed in a more general
form than the upper bound in (ii) which is specific to a static
state-feedback scheduler, namely the p-Log rule. For stationary
schedulers under which the process (Q(t), t = 0, 1, . . .) forms
an ergodic Markov chain, the lower bound in (i) also implies
the same lower bound under the steady state distribution of the
Markov chain. This is because the lower bound will hold if
the initial state Q(0) were random and drawn from the steady
state distribution.

VI. FLUID-SCALED PROCESSES AND LARGE DEVIATION
PRINCIPLES

In this section, we define sequences of fluid-scaled processes
and functions, and a Large Deviation Principle [17] on those
sequences, which is used in proving Theorem 1. Define the cu-
mulative arrivals process F =

(
F (t) = (Fi(t), i ∈ I), t ≥ 0

)
obtained from the process (A(t), t ≥ 0) as,

Fi(t) =

bt−1c∑
k=0

Ai(k) ,

and cumulative time the channel is in each state
G =

(
G(t) = (Gm(t), m ∈M), t ≥ 0

)
obtained from

the process (m(t), t ≥ 0) as,

Gm(t) =

bt−1c∑
k=0

11{m(k)=m} .

The triplet (Q,F,G), where Q = (Q(t), t ≥ 0) is the queue
sample path (under a fixed scheduling rule) corresponding
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to the sample paths (F,G) and initial state Q(0), denotes a
realization of the system (Q,F ,G). For each n = 0, 1, . . .,
let (Q(n),F (n),G(n)) denote an independent and identically
distributed system . We define a corresponding sequence of
fluid-scaled processes, denoted by (q(n),f (n), g(n)), as,

q(n) =
(
q(n)(t), t ≥ 0

)
=

(
1

n
Q(n)(nt), t ≥ 0

)
,

with f (n) and g(n) similarly defined.
The arrival and service processes are i.i.d. and bounded and,

therefore, satisfy large deviation principles [17]. In particular,
for each i ∈ I , define for any scalar λi ≥ 0 the rate function
Li(·) for the sequence f (n)

i (1) as,

Li(λi) = sup
θ≥0

(
θλi − logE

[
eθAi(1)

] )
,

where Li(·) = ∞ over (−∞, 0) and (C,∞). Also, for any
vector λ ∈ R2

+, let,

L(f)(λ) =
∑
i∈I

Li(λi) .

For any probability distribution γ = (γm, m ∈M), we define
the relative entropy L(g)(·) of γ with respect to distribution π
as,

L(g)(γ) =
∑
m∈M

γm log
γm
πm

.

where L(g)(·) = ∞ everywhere outside the standard simplex
in RM+ . Now consider any functions (f, g) ∈ D2+M . If (f, g)
are absolutely continuous, then they are differentiable a.e. and
we let (f ′(t), g′(t)) = d

dt (f(t), g(t)). For any t > 0, if
(f(0), g(0)) = 0 and (f, g) are absolutely continuous on the
interval [0, t], then let,

Jt(f, g) =

∫ t

0

L(f)

(
f ′(s)

)
+ L(g)

(
g′(s)

)
ds ,

otherwise Jt(f, g) =∞. The functional Jt(f, g) is referred to
as the cost of the trajectories (f, g) over the time interval [0, t].
The following is a form of Borovkov/Mogulskii’s theorem
[17].

Proposition 1: For any fixed T > 0, consider
a sequence in n of the fluid-scaled processes
(f (n), g(n)) =

(
(f (n)(t), g(n)(t)), t ∈ [0, T ]

)
, then for

any measurable B ⊆ D2+M , we have that,

− inf
(f,g)

{
JT (f, g)|(f, g) ∈ B◦

}
≤ lim inf

n→∞

1

n
logP

(
(f (n), g(n)) ∈ B

)
≤ lim sup

n→∞

1

n
logP

(
(f (n), g(n)) ∈ B

)
≤ − inf

(f,g)

{
JT (f, g)|(f, g) ∈ B

}
,

where, B◦ and B denote the interior and closure of set B
respectively.

Let u(n) = dnα e for some fixed α ∈ (0, 0.5). For
any function d ∈ D2+M , let Und denote the piece-wise
linear function obtained by linear interpolation over samples(
d(ku(n)n ), k = 0, 1, . . .

)
. The following upper bound is

Stolyar’s refinement of Mogulskii’s theorem and was first
introduced in [15].

Proposition 2: For any fixed T > 0, consider
a sequence in n of the fluid-scaled processes
(f (n), g(n)) =

(
(f (n)(t), g(n)(t)), t ∈ [0, T ]

)
. Suppose,

for each n there is a fixed measurable B(n) ⊆ D2+M , that is
a subset of the set of feasible realizations of (f (n), g(n)) in
[0, T ]. Then,

lim sup
n→∞

1

n
logP

(
(f (n), g(n)) ∈ B(n)

)
(7)

≤ − lim inf
n→∞

inf
(f,g)

{
JT (n)Un(f, g)|(f, g) ∈ B(n)

}
,

where T (n) = u(n)
n b

nT
u(n)c.

Note that by contrast with Proposition 1, {B(n)} in Propo-
sition 2 corresponds to a sequence of sets of scaled feasible
trajectories, and the bound on the right side is an infimum
over the cost of sampled and linearly interpolated scaled tra-
jectories. Thus this proposition provides a refinement allowing,
for example, the consideration of large deviations for sets
{B(n)} which can distinguish among the trajectories in the set
{f (k) ∈ D2 : f (k) converges u.o.c. to a Lipschitz f}. That is
to say, even if all the fluid scaled trajectories in a set converge
to the same limiting trajectory, the events B(n) can be defined
to include only a subset of these trajectories.

Also introduced in [15] is a notion of generalized fluid
sample path (GFSP) which naturally appears when applying
the bound in Proposition 2; we describe this next. Consider
a sequence of realizations (q(n), f (n), g(n)) n = 1, 2, . . . such
that along some subsequence (still denoted by {n}), we have
u.o.c convergence

(q(n), f (n), g(n))→ (q, f, g)

to some Lipschitz continuous functions (q, f, g), and u.o.c
convergence

J
(n)

=
(
J
(n)

t , t ≥ 0
)
,

=
(
Jt(n)Un(f (n), g(n)), t ≥ 0

)
→ J =

(
J t, t ≥ 0

)
to some non-negative increasing Lipschitz continuous function
J . Then the following construct is called a GFSP,

ψ =
[(
q(n), f (n), g(n)

)
, J

(n)
, n = 0, 1, · · · ; (q, f, g); J

]
and the function J is referred to as the refined cost function of
the GFSP. Since this construct contains not only the limiting
trajectory (q, f, g) but also the sequence converging to it, the
construct is useful when one needs to zoom in and study
the limiting trajectories (q, f, g) at a finer-than-fluid scaling.
Moreover, we will see that for the events B(n) of interest in
this paper, the bound in Proposition 2 reduces to an infimum
over the refined cost of a well-defined set of GFSPs.

VII. LOWER BOUND ON OVERFLOW PROBABILITY UNDER
ANY SCHEDULING RULE

For any distribution γ on the set M of server states, let
Vγ denote the corresponding capacity region, see (1). Let
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Fig. 3. For weights bi = 1, the optimal capacity vector v∗(λ(2), π) is
unique, whereas, vector v∗(λ(1), π) is any point on the annotated part of
max-sum-rate face of region Vπ .

b = (b1, b2) > 0 be the given weight vector. For any vector
λ ∈ R2

+, let v∗(λ, γ) denote a service vector such that,

v∗(λ, γ) ∈ arg max
v
{〈b, v〉 : v ≤ λ, v ∈ Vγ} , (8)

where, if the argmax is not unique, then v∗(λ, γ) can be set
to any maximizer. For example, see Fig. 3 depicting v∗(λ, π)
for weight vector b = (1, 1) and two hypothetical vectors λ(1)

and λ(2) lying outside capacity region Vγ . The interpretation
is as follows: if the arrival process were to exhibit an empirical
mean of λ and the server state were to exhibit an empirical
distribution γ, then serving the queues according to the service
vector v∗(λ, γ) minimizes the rate of weighted-sum-queue
build-up, i.e., 〈b, λ− v∗(λ, γ)〉.

Finally, we define the minimum cost (per unit increase of
the weighted-sum-queue) J∗ as,

J∗ = min
γ,λ

L(g)(γ) + L(f)(λ)

〈b, λ− v∗(λ, γ)〉
, (9)

A. Proof of Theorem 1-(i)

Let (λ∗, γ∗) be a point that achieves the minimum in
(9), and let T0 =

〈
b, λ∗ − v∗(λ∗, γ∗)

〉−1
. We will show

that regardless of the scheduling rule, all realizations (f, g)
sufficiently close to (λ∗t, γ∗t) over the interval [0, T0]– and
thus having cost JT0

(f, g) close to J∗– lead to an overflow at
time T0.

Let ||.|| denote the L∞ norm. For any ε > 0, define a set
of trajectories over the interval [0, T0],

Bε =
{

(f, g) ∈ D2+M : (f, g) is absolutely continuous;
∀t ∈ [0, T0],

||L(f)(f
′(t))− L(f)(λ

∗)|| ≤ ε

2T0
;

||L(g)(g
′(t))− L(g)(γ

∗)|| ≤ ε

2T0
;

∀u ∈ Vg′(t), inf
v∈Vγ∗

||u− v|| ≤ ε

5T0
; and (10)

||λ∗ − 1

T0
f(T0)|| ≤ ε

5T0

}
(11)

The set Bε is measurable, compact, and the cost for any
(f, g) ∈ Bε satisfies ||JT0(f, g) − J∗|| ≤ ε. Next, we will
show that any sequence of realizations (q(n), f (n), g(n)), such

that q(n)(0) = 0 and (f (n), g(n)) converge uniformly in [0, T0]

to some (f, g) ∈ Bε, must have
∑
i∈I biq

(n)
i (T0) > 1− 2ε for

all sufficiently large n. Therefore,

lim inf
n→∞

1

n
logP

(∑
i∈I

biq
(n)
i (T0) > 1− 2ε

)

≥ lim inf
n→∞

1

n
logP

(
(f (n), g(n)) ∈ Bε

)
≥ − J∗ ,

where the rightmost inequality follows from the Mogulskii’s
theorem (Proposition 1).

Let λ(n) = 1
T0
f (n)(T0), and u(n) denote the average service

vector seen by the queues; that is to say, u(n)i T0 is equal to the
number of packets served from the ith queue over the interval
[0, T0]. By (11) in the definition of Bε, for all n sufficiently
large,

λ∗ −
(

ε

4T0
,
ε

4T0

)
(i)

≤ λ(n)
(ii)

≤ λ∗ +

(
ε

4T0
,
ε

4T0

)
, (12)

and by (10) there exists a v ∈ Vγ∗ such that

v −
(

ε

4T0
,
ε

4T0

)
(i)

≤ u(n)
(ii)

≤ v +

(
ε

4T0
,
ε

4T0

)
. (13)

We must also have u(n) ≤ λ(n), since the total service cannot
exceed the total arrivals. This, along with inequalities (12-
ii) and (13-i), implies v ≤ λ∗ +

(
ε

2T0
, ε
2T0

)
. Without loss of

generality, we assume that the weight vector b is normalized
to have

∑
i∈I bi = 2. Then using (13-ii), we get,〈

b, u(n)
〉
≤ 〈b, v〉+

ε

2T0
,

≤ max

(
〈b, y〉 : y ∈ Vγ∗ , y ≤ λ∗ +

(
ε

2T0
,
ε

2T0

))
+

ε

2T0
,

≤ 〈b, v∗(λ∗, γ∗)〉+
ε

T0
.

(14)
Finally, using (12-i) and (14), we have that,〈

b, q(n)(T0)
〉

=
(〈
b, λ(n)

〉
−
〈
b, u(n)

〉)
T0 ,

>
(
〈b, λ∗〉 − 〈b, v∗(λ∗, γ∗)〉

)
T0 − 2ε ,

= 1− 2ε .

In order to obtain an overflow at any time after T0 while
still incurring a cost close to J∗, the trajectory (λ∗t, γ∗t) can
be prepended with the zero-cost trajectory for an appropriate
amount of time.

VIII. UPPER BOUND ON OVERFLOW PROBABILITY UNDER
THE P-LOG RULE

Recall the notion of a GFSP and its refined cost function
from Section VI. Let J∗∗ denote the lowest refined cost of a
GFSP that, under p-Log rule, raises

∑
i∈I biqi(t) to 1 from

the initial state q(0) = 0, i.e.,

J∗∗ = inf
t≥0

J∗∗,t , (15)
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where,

J∗∗,t = inf
ψ

{
J t|ψ : q(0) = 0,

∑
i∈I

biqi(t) ≥ 1

}
.

The following is a restatement of Theorem 1-(ii) in terms of
a sequence of fluid scaled queues.

Theorem 2: For each n = 1, 2, . . ., consider the system
under the p-Log scheduling rule in a stationary regime, then,
the corresponding sequence of fluid-scaled processes is such
that,

lim sup
n→∞

1

n
logP

(∑
i∈I

biq
(n)
i (0) ≥ 1

)
≤ −J∗∗ .

Remark 3: This is the equivalent of Theorem 8.4 of [15],
and its proof (given in the Appendix) follows the same
framework and uses classical Wentzel-Freidlin constructions
[18]. The theorem establishes two things: firstly, that the upper
bound on the probability of overflow when starting with empty
queues, given by Stolyar’s refinement of Mogulskii’s upper
bound, indeed reduces to inf over the cost of GFSPs of
interest; and secondly, that a GFSP with the cheapest limiting
trajectories (f, g) that can raise the sum queue

∑
i∈I biqi to 1,

starting with empty queues, indeed has a cost arbitrarily close
to the cost of the cheapest trajectory starting in the stationary
regime. See Appendix for a proof.

It is clear that J∗∗ ≤ J∗ (since −J∗ was lower bound under
any scheduling rule.) To prove the optimality of p-Log rule,
we need show J∗∗ = J∗. In the following section, we develop
the results needed to show this; these intermediate steps are
summarized in Table I.

IX. LOCAL FLUID SAMPLE PATH

Let us first motivate the need for defining LFSP (local fluid
sample path.) For each n, define the set S(n)m as the “fluid”
scaled version of set Sm of the state space partition associated
with the p-Log rule, i.e.,

S(n)m =
{
x ∈ R2

+ : nx ∈ Sm
}
.

Then for the nth system, the scheduling decision at time t

depends on which set S(n)m , m ∈ {0, . . . , k, l+1, . . . ,M ′+1}
(or the corresponding switching curve) the fluid scaled queue
q(n)(t) lies in. As n → ∞, the characteristic function of
set S(n)0 converges pointwise to the characteristic function
of S(∞)

0 = {x ∈ R2
+ : x > 0}; while all other scaled

sets from the partition collapse to one of the axes. Note
that this is true for the partition under any radial sum-rate
monotone scheduling rule. Now consider a Lipschitz contin-
uous limiting trajectory (q, f, g) for the fluid scaled process
(q(n), f (n), g(n)). One can show that,

if q(t) ∈ S(∞)
0 , then

d

dt
〈b, q(t)〉 = 〈b, f ′(t)〉− max

v∈Vg′(t)
〈b, v〉 ,

but if q(t) hits an axis, we lose information about service rates
of the queues. Hence, we define a LFSP using a finer-than-
fluid scaling such that the sets of the partition do not collapse
and we are able to state the proper derivative of the limiting
queue trajectory.

Consider a GFSP over some interval [0, T ] and fix any
τ ∈ (0, T ) such that q(τ) 6= 0. Any sequence τ (n) → τ
has a subsequence along which q(n)(τ (n)) → q(τ). Set

σn =

√
q
(n)
∗ (τ (n))

/√
n, where, q(n)∗ (·) = maxi∈I q

(n)
i (·). To

obtain a local fluid sample path, we will magnify in both space
and time the fluid scaled trajectories (q(n), f (n), g(n)) by a
factor of σ−1n , i.e., an order O(

√
n) term. More formally,

for any fixed S > 0, the following re-scaled functions
(and their limits mentioned subsequently) over the interval[
τ (n), τ (n) + σnS

]
, parameterized by s ∈ [0, S], are called

the local fluid sample paths4: for all i ∈ I and m ∈M,

�q
(n)
i (s) =

1

σn

(
q
(n)
i

(
τ (n) + σns

)
− q(n)i

(
τ (n)

))
,

�q̂
(n)
i (s) =

1

σn
q
(n)
i

(
τ (n) + σns

)
,

�d
(n)(s) = �q̂

(n)
1 (s)− �q̂(n)2 (s) ,

�f
(n)
i (s) =

1

σn

(
f
(n)
i

(
τ (n) + σns

)
− f (n)i

(
τ (n)

))
,

�g
(n)
m (s) =

1

σn

(
g(n)m

(
τ (n) + σns

)
− g(n)m

(
τ (n)

))
.

Then along some subsequence in n,
• the functions

(
�q

(n), �f
(n), �g

(n)
)

converge uni-
formly over [0, S] to Lipschitz continuous functions(
�q, �f, �g

)
;

• for each i ∈ I , the function �q̂
(n)
i either converges

uniformly over [0, S] to a finite Lipschitz continuous
function �q̂i, or is identically equal to ∞;

• the function �d(n) converges uniformly over [0, S] to a
finite Lipschitz continuous function �d, or is identically
equal to +∞ or −∞.

We will refer to the point
(
q(τ), f(τ), g(τ)

)
as the GFSP

source point of the above defined LFSP. Since q(τ) 6= 0, it
must be that �q̂i(·) = ∞ for at least one i ∈ I . Note that
the local fluid queue, �q, is merely a re-centered version of
�q̂, i.e., �q̂(s) = �q(s) + �q̂(0), and is always finite by virtue
of this re-centering. Moreover, the trajectory �q dwells in the
set {x ∈ R2|x ≥ −�q̂(0)}, which is at least a half-plane.
Lastly, we have the following relation between the cost of
LFSP over [0, S] and the refined cost sequence of GFSP over
[τ (n), τ (n) + σnS] (see (9.4) of [15]),

JS(�f, �g)− J0(�f, �g) ≤ lim inf
n→∞

1

σn

(
J
(n)

τ(n)+σnS
− J (n)

τ(n)

)
.

(16)

A. Scheduling over time scales of LFSP

By (6) the scheduling decision in the interval
[τ (n), τ (n) + σnS] depends on the slope,

h2
(
Q
(
nτ (n) + nσns

))
h1
(
Q
(
nτ (n) + nσns

)) ,
and the sign of �d(n)(s), recall the tie-breaking rule mentioned
in the description of p-Log rule in Section IV.

4The definitions of �f
(n)
i (·) and �g

(n)
m (·) are the same as in [15], whereas,

�q
(n)
i (·) are scaled as in [15] but centered differently.
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Description Stated in Relies on
Under the usual fluid scaling of the queue state space, some sets of the partition collapse (or merge),
resulting in loss of information concerning the service rate seen by the queue (e.g., when the queue
lies in any of the collapsed sets.) Therefore, the fluid-scaled state space is locally magnified enough
to recover the merged sets of the partition; these magnified or finer-than-fluid-scaled trajectories are
called Local Fluid Sample Paths (LFSP).

Section IX,
Lemma 1.

Technique first
introduced in [4]

Although the vector field h(·) associated with the p-Log rule is not a gradient field, it appears as a
gradient field on the state space of finer-than-fluid-scaled queue. A (globally) Lipschitz continuous
Lyapunov function is then constructed on this state space. Moreover, under the p-Log scheduling
rule, the Lyapunov function is shown to have a strictly negative drift for all LFSP trajectories having
low cost per unit time.

Lemma 2 Lemma 1

The strictly negative drift of a Lipschitz continuous Lyapunov function translates into a stronger
implication: for all LFSP trajectories with low average cost per unit time over a given time interval,
the decrease in the Lyapunov function of the finer-than-fluid-scaled queue must be proportional to
the length of the interval. Moreover, a sufficient decrease in the Lyapunov function also implies at
least a proportional decrease in the weighted-sum-queue.

Lemma 3 Lemma 2

The above result is used to show that any fluid-scaled trajectory (GFSP) of interest can be
magnified to obtain a finer-than-fluid-scaled trajectory (LFSP) such that the cost (per unit increase in
weighted sum-queue) of the fluid-scaled trajectory and that of the finer-than-fluid-scaled trajectory
are arbitrarily close.

Lemma 4
Lemma 3 and us-
ing technique of
Section 11 of [15]

Under the p-Log rule, no LFSP exists whose cost per unit increase in weighted-sum-queue is strictly
less than J∗, therefore, the least possible cost under p-Log rule, i.e. J∗∗, must be equal to J∗ – the
upper bound on the cost under any scheduler.

Section 10 Lemma 4

TABLE I
INTERMEDIATE STEPS TOWARDS PROVING THEOREM 1-(III).

Without loss of generality suppose q1(τ) ≥ q2(τ) (and
recall that we had q(τ) 6= 0.) Then by (5), for n large enough,
we have that,

h2
(
Q
(
nτ (n) + nσns

))
h1
(
Q
(
nτ (n) + nσns

))
=

b2
b1

min

1,
Q2

(
nτ (n) + nσns

)√
Q1

(
nτ (n) + nσns

)
 ,

=
b2
b1

min

1,
�q̂

(n)
2 (s)

√
q
(n)
1 (τ (n))√

q
(n)
1 (τ (n) + σns)

 .

Then, as n→∞, the above converges to,

b2
b1

min
(
1, �q2(s) + �q̂2(0)

)
,

where the convergence is uniform on [0, S]. Let us de-
fine a vector field �h over the state space of �q, i.e.,
{x ∈ R2|x ≥ −�q̂(0)}, as follows:

�h1(x) = b1 ,

�h2(x) = b2 min (1, x2 + �q̂2(0)) .
(17)

That is, we can restate the above convergence as,

h2
(
Q
(
nτ (n) + nσns

))
h1
(
Q
(
nτ (n) + nσns

)) → �h2(�q(s))

�h1(�q(s))

uniformly on [0, S]. Hence, the switching curves on the space
of �q are given by,{

(x1, x2) ∈R2 :
�h2(x)

�h1(x)
= rm

}
=

{
(x1, x2) ∈ R2 : x2 = −�q̂2(0) +

b1
b2
rm

}
for m ∈ {0, · · · , k}, and are now parallel to x1 axis (i.e., the
axis of �q1(s), see Fig. 4)5. For each m ∈ {1, · · · , k}, define

Fig. 4. Partitions and switching curves on space of local fluid queue �q.

the set �Sm by appropriately re-scaling the set Sm, i.e.,

�Sm =

{
(x1, x2) ∈ R2 : rm−1 <

�h2(x)

�h1(x)
< rm

}
,

=
{

(x1, x2) ∈ R2 :

− �q̂2(0) +
b1
b2
rm−1 < x2 < −�q̂2(0) +

b1
b2
rm

}
,

(18)
and define,

�S0 =

{
(x1, x2) ∈ R2 : rk <

�h2(x)

�h1(x)

}
,

=

{
(x1, x2) ∈ R2 : − �q̂2(0) +

b1
b2
rk < x2

}
.

(19)

See Fig. 4 for a graphical illustration of sets �S0, . . . , �Sk.
The service rate µ(s) allocated to the local fluid queue �q(s) at
time s, depends on which re-scaled set �Sm (or the associated
switching curve) the local fluid queue �q(s) lies in. More

5Recall that we have assumed, without loss of generality, that q1(τ) ≥
q2(τ); had we assumed otherwise, we would have found that the switching
curves on the space of �q, i.e., {x ∈ R2|x ≥ −�q̂(0)} are parallel to the x2
axis (i.e., the axis of �q2(s)). In the sequel, we continue to assume that at
the GFSP source point, we have q1(τ) ≥ q2(τ), and therefore, �h is given
by (17).
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formally, the following lemma relates the service rate µ(s)
to the vector field �h(�q(s)), and can be derived without
much effort from the results shown for the Exponential rule
scheduler in [4]6.

Lemma 1: For any LFSP, the following derivatives exist
a.e. in [0, S] and are finite:

λ(s) =
d

ds
�f(s) ,

γ(s) =
d

ds
�g(s) ,

d

ds
�q(s) = λ(s)− µ(s) ,

for some,

µ(s) ∈ arg max
v∈Vγ(s)

〈�h(�q(s)), v〉 . (20)

Remark 4: Note that if �q2(s) ≥ −�q̂2(0) + 1, then
�h(�q(s)) = b, and the argmax in (20) may not be unique.
However, µ(s) can still be uniquely identified as long as
�d(s) 6= 0. That is, if �d(s) > 0, then µ(s) is such that µ1(s)
is the largest possible among all points achieving max in (20);
similarly, if �d(s) < 0, then µ(s) is such that µ2(s) is the
largest. The argmax in (20) may again be non-unique if �q(s)
lies on a switching curve, i.e., �q2(s) = −�q̂2(0) + b1

b2
rm for

some m ∈ {0, 1, · · · , rk}, however, in this case µ(s) can not
be uniquely identified using only the components of LFSP, nor
will we need to uniquely identify µ(s).

We will also need the following two crucial lemmas that
show for the p-Log rule what Lemmas 9.2 and 9.3 of [15]
show for the Exponential rule. The following two lemmas also
implicitly prove the throughput-optimality of p-Log rule, see
Appendix for details.

Lemma 2: There exist fixed constants ε1 > 0 and δ1 > 0,
and a Lipschitz continuous Lyapunov function H (constructed
in the proof below) such that for any regular point s ∈ [0, S],
if

d

ds
Js(�f, �g) ≤ ε1 , then

d

ds
H
(
�q(s)

)
≤ −δ1 .

Proof If d
dsJs(�f, �g) is small, then λ(s) must be close to

the mean arrival rate λ̄, and γ(s) close to the server state
distribution π. Since the capacity region Vγ is continuous
in the distribution γ (see (1)), there exist vectors λ∗ < v∗

such that uniformly on all sufficiently small values of ε1, we
have λ(s) < λ∗, and v∗ lies in the interior of Vγ(s). Let
δ1 = mini∈I(v

∗
i − λ∗i ). By Lemma 1, we have,〈

�h
(
�q(s)

)
, µ(s)

〉
= arg max

v∈Vγ(s)

〈
�h
(
�q(s)

)
, v
〉
,

>
〈
�h
(
�q(s)

)
, v∗

〉
. (21)

Note that since �hi(x) is a function only of xi, the vector
field �h is in fact a gradient field associated with a (con-
tinuously differentiable) function7 H , i.e., ∇H = �ĥ on
{x ∈ R2|x ≥ −�q̂(0)}. Moreover, since �hi(·) is increasing,
positive, and bounded, therefore, the function H(·) is convex,

6Specifically, Proposition 1 and results leading from (34) to (35) of [4]
relate the service rate seen by the local fluid queue under Exponential rule
scheduler to the vector field defining the scheduler.

increasing in each direction, and Lipschitz continuous. Then
we have,

d

ds
H
(
�q(s)

)
=

〈
�h
(
�q(s)

)
, �q
′(s)

〉
,

=
〈
�h
(
�q(s)

)
, λ(s)− µ(s)

〉
,

≤
〈
�h
(
�q(s)

)
, λ∗ − v∗

〉
,

≤ −δ1 ,

where the first inequality follows from (21) and the second
from the definition of δ1.

Lemma 3: There exist fixed constants ε2 > 0 and
δ̂2 > δ2 > 0 such that, if

JS(�f, �g)− J0(�f, �g) ≤ ε2S ,

then,
H
(
�q(S)

)
−H

(
�q(0)

)
≤ −δ̂2S ,

which further implies that uniformly for all large S, we have
the following bound on the change in the weighted sum queue,

〈b, �q(S)− �q(0)〉 ≤ −δ2S.

Proof Noting that H
(
�q(s)

)
(as a function of s) is

Lipschitz continuous with some Lipschitz constant de-
noted by c, the proof of first statement is identical to
that of Lemma 9.3 of [15]: pick a positive ε2 < ε1,
let B1 = {s ∈ [0, S] : d

dsJs(�f, �g) ≥ ε1} and B2 = S \B1.
Then the Lebesgue measures of B1 and B2 satisfy,
ν(B1) ≤ ε2

ε1
S and ν(B2) ≥ (1− ε2

ε1
)S. Finally,

H
(
�q(S)

)
−H

(
�q(0)

)
=

∫
B1

d

ds
H
(
�q(s)

)
+

∫
B2

d

ds
H
(
�q(s)

)
,

≤ c
ε2
ε1
S − δ1(1− ε2

ε1
)S ,

= − S
(
δ1 −

ε2
ε1

(c+ δ1)
)
.

Fix any positive δ̂2 < δ1, then a sufficiently small ε2 can be
chosen to prove the first statement.

To prove the last statement, we proceed as follows. Without
loss of generality suppose that the GFSP source point of the
LFSP being considered satisfies q1(τ) ≥ q2(τ), and therefore,
�h is given by (17). That is, ∇1H(·) ≡ �h1(·) = b1 and
∇2H(·) ≡ �h2(·) ≤ b2. Then for any x ≥ y ≥ �q̂(0), we
have the upper bound

H(x)−H(y) ≤ 〈b, x− y〉 . (22)

If y2 ≥ −�q̂2(0) + 1 (see Fig. 4), then for all z ≥ y, we have
�h(z) = b and therefore,

H(x)−H(y) = 〈b, x− y〉 . (23)

If −�q̂2(0) ≤ y2 < −�q̂2(0)+1, then we have the lower bound

H(x)−H(y)

=

∫ x1

y1

∇1H(z1, y2) dz1 +

∫ x2

y2

∇2H(x1, z2) dz2 ,

7General conditions for a vector field to form a gradient field can be found
in, e.g., [19] (pp. 944-945). In our case, H(x) is simply additive separable,
i.e., H(x) ≡ H1(x1)+H2(x2).
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≥ b1(x1 − y1) +

∫ x2

−�q̂2(0)+1

b2 dz2 ,

= b1(x1 − y1) +

∫ x2

y2

b2 dz2 −
∫ −�q̂2(0)+1

y2

b2 dz2 ,

≥ 〈b, x− y〉 − b2 . (24)

Combining (22–24), we have the following bounds for any
x ≥ y ≥ �q̂(0),

〈b, x− y〉 − (b1 + b2) ≤ H(x)−H(y) ≤ 〈b, x− y〉 .

Using this we get,

−δ̂2S ≥ H
(
�q(S)

)
−H

(
�q(0)

)
,

≥ 〈b, �q(S)− �q(0)〉 − (b1 + b2)

⇒ −δ̂2S
(

1− b1 + b2
S

)
≥ 〈b, �q(S)− �q(0)〉 .

Now one can take S large enough to obtain a δ2.
Next, using Lemma 3 above and identical to the result in

Section 11 of [15], we show that any GFSP that raises the
weighted sum queue to unity contains a LFSP with cost close
to that of the GFSP. Subsequently, we will use this lemma on
a GFSP of cost close to J∗∗ (see (15)) in order to obtain a
LFSP with cost close to J∗∗.

Lemma 4: Suppose a GFSP ψ is given that satisfies
q(0) = 0, 〈b, q(T )〉 = 1 for some T > 0 and has a cost
JT < ∞. Then, for an arbitrarily small ε > 0, an LFSP(
�q, �q̂, �d, �f, �g

)
over an arbitrarily large interval [0, S]

can be constructed from the elements of ψ, such that,

〈b, �q(S)− �q(0)〉 ≥ θS , (25)

for some θ > 0 (independent of ε), and cost (per unit increase
in weighted sum queue) of this LFSP is bounded above by
JT + ε, i.e.,

JS(�f, �g)− J0(�f, �g)

〈b, �q(S)− �q(0)〉
≤ JT + ε . (26)

Proof Components of the given GFSP ψ satisfy,(
JT − J0

)
〈b, q(T )− q(0)〉

= JT . (27)

For any 0 < ξ1 < ξ2 < 1, define
time t1 = max(t : 〈b, q(t)〉 = ξ1) and time
t2 = min(t > t1 : 〈b, q(t)〉 = ξ2). Then for any ε > 0,
there must exist 0 < ξ1 < ξ2 < 1 such that,

J t2 − J t1
〈b, q(t2)− q(t1)〉

< JT +
ε

2
, (28)

or (27) cannot hold (Dirichlet’s box principle). Fix an S > 0
large enough as required by Lemma 3. Then there exists a
sequence {τ (n)} within [t1, t2] such that,〈

b, q(n)(τ (n) + σnS)− q(n)(τ (n))
〉

> 0 ,

J
(n)

(τ(n)+σnS)
− J (n)

τ(n)〈
b, q(n)(τ (n) + σnS)− q(n)(τ (n))

〉 < JT + ε ,

where, as before, σn =

√
q
(n)
∗ (τ (n))

/√
n; such a sequence

must exist, otherwise (28) cannot hold (another application of
Dirichlet’s box principle, and consequence of the convergence

of J
(n)

and q(n)). The above two inequalities can be re-written
as, 〈

b, �q
(n)(S)− �q(n)(0)

〉
> 0 , (29)

σ−1n
(
J
(n)

(τ(n)+σnS)
− J (n)

τ(n)

)〈
b, �q(n)(S)− �q(n)(0)

〉 < JT + ε . (30)

We also have that q(·) 6= 0 over interval [t1, t2]. Now we
can pick a subsequence in n along which τ (n) → τ ∈ [t1, t2]
and

(
�q

(n), �q̂
(n), �d

(n), �f
(n), �g

(n)
)

converge to(
�q, �q̂, �d, �f, �g

)
, as described in Section IX, thus ob-

taining a LFSP (with
(
q(τ), f(τ), g(τ)

)
being its GFSP source

point.) From (29) we also have that 〈b, �q(S)− �q(0)〉 ≥ 0.
Then by Lemma 3, we get,

JS(�f, �g)− J0(�f, �g) > ε2S ,

which, alongside (30) and (16), further implies that for some
θ > 0,

〈b, �q(S)− �q(0)〉 ≥ θS ,

and finally,

JS(�f, �g)− J0(�f, �g)

〈b, �q(S)〉 − 〈b, �q(0)〉
≤ JT + ε .

X. PROOF OF THEOREM 1-(III): OPTIMALITY OF THE
P-LOG RULE

Recall that to prove optimality of p-Log rule (Theorem 1-
(iii)), we need show J∗∗ ≥ J∗. We will do this by showing that
assuming J∗∗ < J∗ leads to a contradiction with the definition
of J∗.

Suppose J∗∗ < J∗, then by definition of J∗∗ in (15), there
exists a GFSP ψ satisfying q(0) = 0, 〈b, q(T )〉 = 1 for some
finite T > 0, and having a cost JT < J∗. Then by Lemma 4,
from the components of GFSP ψ, we can construct an LFSP(
�q, �q̂, �d, �f, �g

)
satisfying (25) and (26) for an arbitrarily

large S and an ε small enough so that J∗∗∗ ≡ JT + ε < J∗.
Since �q̂i(·) = ∞ for at least one i ∈ I , without loss of

generality suppose �q̂1(·) = ∞, thus all switching curves
on the space of �q are parallel to �q1 axis. Recall that the
lower boundary of the set �S0 is given by the switching curve
x2 = −�q̂2(0) + b1

b2
rk (see Fig. 4). Let S1 and S2 respectively

be the first and the last time in [0, S] such that the trajectory
�q2(s) ≤ −�q̂2(0) + b1

b2
rk, with S1 = S2 = S if �q2(s)

never hits [−�q̂2(0),−�q̂2(0) + b1
b2
rk]. Note that the trajectory

of �q(s) lies in �S0 in (0, S1) and (S2, S). Then one of
the following must be true over the interval [0, S1] (similarly
[S2, S]):

(a) 〈b, �q(0)〉 < 〈b, �q(S1)〉 and the cost per unit increase in
weighted-sum-queue over the interval [0, S1] is less than
J∗∗∗, i.e.

JS1(�f, �g)− J0(�f, �g)

〈b, �q(S1)− �q(0)〉
≤ J∗∗∗ .
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(b) 〈b, �q(0)〉 < 〈b, �q(S1)〉 and the cost per unit increase in
sum-queue over the interval [0, S1] is strictly greater than
J∗∗∗, i.e.

JS1(�f, �g)− J0(�f, �g)

〈b, �q(S1)− �q(0)〉
> J∗∗∗ .

(c) 〈b, �q(0)〉 ≥ 〈b, �q(S1)〉.
If (a) is true for either one of the intervals (suppose its true

for [0, S1],) we proceed as follows: define vectors γ̂, λ̂, and µ̂
as the average server state distribution, arrival rate, and service
rate respectively over [0, S1], i.e.,(

λ̂, γ̂, µ̂
)

=
1

S1

∫ S1

0

(
f ′(s), g′(s), µ(s)

)
ds.

By Lemma 1 and the fact that (�q(s) : 0 < s < S1) lies in �S0,
we have µ(s) ∈ arg maxv∈Vγ(s) 〈b, v〉. This and the linearity
of µ(s) in γ(s) (see (1)) implies µ̂ ∈ arg maxv∈Vγ̂ 〈b, v〉.
Then,

〈b, �q(S1)− q(0)〉 =
〈
b, λ̂− µ̂

〉
S1 ,

≤
〈
b, λ̂− v∗(λ̂, γ̂)

〉
S1 , (31)

where v∗(λ̂, γ̂) is as defined in (8). Finally,

J∗ > J∗∗∗ ≥ JS1
(�f, �g)− J0(�f, �g)

〈b, �q(S1)− �q(0)〉
,

≥

(
L(f)(λ̂) + L(g)(γ̂)

)
S1

〈b, �q(S1)− �q(0)〉
,

≥
L(f)(λ̂) + L(g)(γ̂)〈
b, λ̂− v∗(λ̂, γ̂)

〉 ,

where the first inequality follows from the assumption that
(a) is true, the second from convexity of rate functions, and
the last one from (31). However, by the definition of J∗ in
(9), the right side of last inequality cannot be less than J∗,
giving the contradiction we needed; therefore, we must have
J∗ = J∗∗.

Now, if (a) is not true for both intervals [0, S1] and [S2, S],
then we proceed as follows. Recall that our LFSP satisfies (25)
and (26), i.e.,

〈b, �q(S)− �q(0)〉 ≥ θS > 0 , (32)

and,

J∗∗∗ ≥
JS(�f, �g)− J0(�f, �g)

〈b, �q(S)− �q(0)〉
,

=
JS1

(�f, �g)− J0(�f, �g)

〈b, �q(S1)− �q(0)〉
× 〈b, �q(S1)− �q(0)〉
〈b, �q(S)− �q(0)〉

+

JS2
(�f, �g)− JS1

(�f, �g)

〈b, �q(S2)− �q(S1)〉
× 〈b, �q(S2)− �q(S1)〉
〈b, �q(S)− �q(0)〉

+

JS(�f, �g)− JS2
(�f, �g)

〈b, �q(S)− �q(S2)〉
× 〈b, �q(S)− �q(S2)〉
〈b, �q(S)− �q(0)〉

.

(33)

Fig. 5. Illustration of original trajectory (�q(s), s ∈ [S1, S2]) and the
extension

(
�q(s), s ∈ [S2, S′2]

)
in order to obtain �q2(S′2) = �q2(S1).

Therefore, if (a) is not true for both intervals [0, S1] and [S2, S]
(equivalently, (b) and/or (c) are true over these intervals), then
for (33) to hold, we must have,

J∗∗∗ ≥
JS2

(�f, �g)− JS1
(�f, �g)

〈b, �q(S2)− �q(S1)〉
, (34)

and, for some fixed θ1 > 0,

〈b, �q(S2)− �q(S1)〉 ≥ θ1 〈b, �q(S)− �q(0)〉 .

The above, along with (32) gives,

〈b, �q(S2)− �q(S1)〉 ≥ θ1θS . (35)

Moreover, since 〈b, �q(·)〉 is Lipschitz, for some fixed θ2 > 0,

S2 − S1 ≥ θ2 〈b, �q(S2)− �q(S1)〉 ≥ θ2θ1θS .

This, along with (35) and Lemma 3, imply,

JS2
(�f, �g)− JS1

(�f, �g) ≥ ε2 (S2 − S1) ,

≥ ε2θ2θ1θS . (36)

Subsequently, we will use (35) and (36) to make the quantities
on the left side of these inequalities as large as needed by
choosing a large S.

Consider the trajectory (�q(s), s ∈ [S1, S2]) which is an
element of the LFSP

(
�q, �q̂, �d, �f, �g

)
over [S1, S2].

For some S′2 ≥ S2, we can append to this LFSP an
extension over the time interval [S2, S

′
2] so as to obtain

�q2(S′2) = �q2(S1) (see Fig. 5). Moreover, since the terminal
values �q2(S1) and �q2(S2), lie within the bounded interval
[−�q̂2(0),−�q̂2(0) + b1

b2
rk], therefore the extension LFSP can

be constructed such that it has a bounded cost, i.e.,

JS′2(�f, �g)− JS2(�f, �g) ≤ ∆ , (37)

and a bounded increase in weighted-sum-queue, i.e.,

|〈b, �q(S′2)− �q(S2)〉| ≤ ∆ , (38)

for some large fixed ∆ < ∞ which is independent of any
components of the LFSP over [0, S], (e.g. the value of S or
the terminal values �q2(S1) and �q2(S2).) Finally, the constant
S can be chosen large enough such that, by (35) and (38), we
have,

〈b, �q(S′2)− �q(S1)〉 > 0 ,



14

and by (34)–(38), for some small ε4 > 0 that satisfies
J∗∗∗ + ε4 < J∗, we have,

JS′2(�f, �g)− JS1
(�f, �g)

〈b, �q(S′2)〉 − 〈b, �q(S1)〉
≤ J∗∗∗ + ε4 < J∗ . (39)

Set c0 = −�q̂2(0) and for each m ∈ {1, · · · , k}, choose
a cm ∈

(
−�q̂2(s) + b1

b2
rm−1,−�q̂2(s) + b1

b2
rm

)
such that

the counting measure of set {s ∈ [0, S′2] : �q(s) = cm}
is finite; such {cm} exist since �q is Lipschitz.
Lastly, choose a ck+1 < ∞ large enough such that
maxs∈[S1,S′2] �q2(s) < ck+1. For each m ∈ {1, · · · , k + 1},
define a set Cm = {s ∈ [S1, S

′
2] : �q2(s) ∈ [cm−1, cm]}. We

make the following three observations which will be used in
the sequel: for each m ∈ {1, · · · , k + 1},

(i) the trajectory (�q2(s), s ∈ [S1, S
′
2]) intersects with end

points of interval [cm−1, cm] only finitely many times,
therefore, the corresponding set Cm can be written as a
union of finitely many intervals;

(ii) if set Cm is non-empty, then

�q2( min
s∈Cm

s) = �q2( max
s∈Cm

s);

(iii) the trajectory (�q(s), s ∈ Cm) can intersect with at most
one switching curve x2 = −�q̂2(s) + b1

b2
rm−1, or equiv-

alently, with at most two adjacent regions �S(·), (e.g.,
for m = k + 1 the above trajectory can intersect with
adjacent regions �Sk and �S0).

Then using (i) and (ii) above, for all sets Cm, we must have,∫
Cm

�q
′
2(s) ds = 0 . (40)

Moreover, there exists a set Cm such that,∫
Cm

〈b, �q′(s)〉 ds > 0 ,

and, ∫
Cm

(
L(f)

(
�f
′(s)
)

+ L(g)

(
�g
′(s)
))

ds∫
Cm
〈b, �q′(s)〉 ds

< J∗ ,

otherwise (39) will not hold. With a set Cm for which the
above two hold, let,(

λ̂, γ̂, µ̂
)

=
1

ν(Cm)

∫
Cm

(
�f
′(s), �g

′(s), µ(s)
)
ds .

By (iii) above, (18–20), and the fact that �d(s) > 0 in
[S1, S

′
2], the service vector µ̂ is a convex combination of

at most two adjacent vertices of capacity region Vγ̂ and
lies on the facet with outer normal slope rm−1. That is,
µ̂ is necessarily a maximal element of Vγ̂ . This, together
with the fact that λ̂2 = µ̂2 which follows from (40), gives
µ̂ = arg minv∈Vγ̂

〈
b, (λ̂− v)+

〉
= v∗(λ̂, γ̂), and then,∫

Cm

〈b, �q′(s)〉 ds =
〈
b, λ̂− v∗(λ̂, γ̂)

〉
ν(Cm) .

Finally,

J∗ >

∫
Cm

(
L(f)

(
�f
′(s)
)

+ L(g)

(
�g
′(s)
))

ds∫
Cm
〈b, �q′(s)〉 ds

,

≥
L(f)(λ̂) + L(g)(γ̂)〈
b, λ̂− v∗(λ̂, γ̂)

〉 .

By the definition of J∗, the right side of last inequality cannot
be less than J∗, giving the required contradiction; hence we
conclude that J∗ = J∗∗.

XI. CONCLUSION AND EXTENSIONS

In order to minimize the asymptotic probability of weighted-
sum-queue overflow, the desirable mode of overflow is one
where queues may build up at different rates, however, the
total weighted service rate seen by the queues is the highest
possible, (service rate subject to being not more than the arrival
rate.) The p-Log scheduling rule minimizes the asymptotic
probability of weighted-sum-queue overflow and exhibits such
a mode of overflow. This property of p-Log rule is related to
the collapse under fluid scaling of all but one set of the state
space partition to either of the axes; the set that does not
collapse is the horn-shaped weighted-max-sum-rate set. This
collapse under fluid scaling is typical of the partition under
any radial sum-rate monotone scheduler. However, the scaling
or magnifying factor required to obtain a useful LFSP, and
the shape of the sets of partition on the local fluid state space
will vary for different radial sum-rate monotone schedulers.
In this regard, p-Log rule yields an easily tractable partition
of the local fluid space where all switching curves are parallel
to one of the axes.

Recently in [26], the authors have reported a promising
framework to relate the gradient field associated with a
MaxWeight-type scheduler to the modes of overflow and large
deviations of the appropriately scaled queue process. They are
able to show that the Log rule indeed minimizes the asymptotic
probability of sum-queue overflow; the framework, however,
does not cover the p-Log or Exp rule since the vector field
associated with either of these schedulers is not a gradient
field. In this regard, Lemmas 2 and 3 of this paper suggest that
it may be possible in some cases to locally replace the vector
field with a gradient field and thus obtain a suitable Lyapunov
function, and relate the negative drift of this Lyapunov function
to that of the quantity of interest (weighted sum-queue in our
case).

The following extensions of the main results of the paper
as well as the system model are possible without much effort.

First, the lower bound (i.e., Theorem 1-i and its proof) goes
through without any changes for any fixed number of queues
(instead of only two) sharing the time-varying server.

Second, the main result (Theorem 1) is also applicable to
the following different and simpler system model. Instead of
a single server with time-varying state m(t) ∈ {1, 2, . . . ,M}
having distribution π, suppose there are M distinct servers
with fixed but asymmetric capacities across the two queues;
such servers are typically called parallel “unrelated” machines
(see, e.g., [27]). More specifically, the mth server, if allocated
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to the ith ∈ I queue, can serve πiµ
m
i ∈ Z+ packets from

the queue. The total service offered to a queue is taken to
be the sum of service offered by each server assigned to that
queue. Then the scheduling problem is to dynamically assign
the servers to the queues based on the queue state. When queue
is in state Q, the p-Log scheduler in this context allocates the
mth server to the queue i∗pLog(Q,m) as given by (6). This
system model is simpler in that the only random process now
driving the system are the arrivals, but is also different from
the original model in that there are multiple parallel servers
with each server having asymmetric capacities across the two
queues.

Third, the main result also goes through if the capacity
regions V m are permitted to be arbitrary convex polyhedra
instead of just triangles obtained as a convex hull of service
vectors (0, 0), (µm1 , 0), and (0, µm2 ). That is, in a more general
model, in any server state m, the server can be permitted to
operate at any one of the km service vectors from the set,{(

µm1 (1), µm2 (1)
)
, · · · ,

(
µm1 (km), µm2 (km)

)}
.

The region V m then will be the convex hull of the km
vertices associated with state m. The only change needed is
to generalize the definition of p-Log rule as follows. When
the system is in state (Q,m), operate the server at a service
vector µ∗pLog(Q,m) ∈ V m given by,

µ∗pLog(Q,m) ∈ arg max
y∈Vm

〈y, h(Q)〉 ,

where, in the case of a tie, if Q1 ≥ Q2, then µ ∗pLog (Q,m)
maps to the maximizer with the largest capacity for Queue 1,
otherwise µ∗pLog(Q,m) maps to the maximizer with the largest
capacity for Queue 2. This generalization affects the fluid and
local fluid sample paths through (20) in Lemma 1, which can
be shown to hold exactly as in [20], [21].

Besides the above extensions, we will conclude by stat-
ing one more interesting application of the p-Log scheduler.
A throughput-optimal scheduler can also be used to offer
minimum and maximum average service rate guarantees to
infinitely backlogged queues, referred to as tasks, sharing a
time-varying server/wireless channel [22], [23]. This is done
by using virtual token queues that are fed by deterministic
arrivals at a constant rate λi, and making scheduling decisions
to serve tasks based on the virtual token queues (augmented
with a scheduling rule to use when all token queues are
empty). If rates λi are feasible (i.e., vector λ lies in the interior
of capacity region Vπ associated with the time-varying server),
then under any throughput-optimal scheduler, each task i will
be offered an average service rate vi ≥ λi (such that v ∈ Vπ).
However, if rates λi are not feasible, then main result of this
paper implies that the average service rate vector v has the
following interesting and desirable property under p-Log rule:
〈b, v〉 is maximized subject to vi ≤ λi. That is, p-Log rule
splits the tasks in two sets, for one set of tasks vi = λi,
whereas for the other vi < λi, and the sets are chosen such
that the total weighted service rate 〈b, v〉 is maximized.

APPENDIX

We begin by developing the necessary results need for the
proof of Theorem 2. The corresponding proof in [15] has some

parts– lemmas and theorems– that are not specific to the Exp
rule; these mostly go through by interpreting q∗(t) (which is
the notation for max-queue in [15]) as weighted-sum-queue∑
i∈I biqi(t), while other lemmas and theorems require more

work specific to the p-Log rule. We proceed by stating the
following two theorems whose proofs are short and identical to
those of Theorem 8.5 and Theorem 8.6 in [15] by interpreting
q∗(t) as

∑
i∈I biqi(t).

Theorem 3: (See Theorem 8.5 of [15]) For any fixed T ≥ 0
and 0 ≤ c < 1, let us denote

J∗∗,≤T,c = inf
ψ

{
J t|ψ :

∑
i∈I

biqi(0) ≤ c and∑
i∈I

biqi(t) ≥ 1 for some t ≤ T
}
.

Then, we have,

lim sup
n→∞

1

n
log sup∑

i∈I biq
(n)
i (0)≤c

P
(

sup
t∈[0,T ]

∑
i∈I

biq
(n)
i (t) > 1

)
≤ −J∗∗,≤T,c ,

and as c→ 0,

J∗∗,≤T,c ↗ J∗∗,≤T,0 = inf
t≤T

J∗∗,t . (41)

Theorem 4: (See Theorem 8.6 of [15]) For any fixed
C∗ > δ > 0, and T > 0, let us denote

K(C∗, δ, T ) = inf
ψ

{
JT |ψ :

∑
i∈I

biqi(0) ≤ C∗ and∑
i∈I

biqi(t) ≥ δ for all t ∈ [0, T ]
}
.

Then, we have,

lim sup
n→∞

1

n
log sup∑

i∈I biq
(n)
i (0)≤C∗

P
(

inf
t∈[0,T ]

∑
i∈I

biq
(n)
i (t) ≥ δ

)
≤ −K(C∗, δ, T ) .

Theorem 5: (See Theorem 8.7 of [15]) For any C∗ > 0,
there exists ∆1 > 0 such that for all sufficiently large T and
all δ ∈ (0, C∗), we have K(C∗, δ, T ) ≥ ∆1T .
Proof It is clear that K(C∗, δ, T ) is increasing in δ. We will
show that there exists an ε5 > 0 and δ5 > 0 such that for any
GFSP satisfying 〈b, q(·)〉 > 0 over [0, T ],

if JT − J0 ≤ ε5T, then 〈b, q(T )− q(0)〉 ≤ −δ5T , (42)

hence for all T > C∗/δ5 and all δ ∈ (0, C∗), we must have
K(C∗, δ, T ) > ε5T , thus the desired result.

Fix S large enough as required by Lemma 3 and
recall ε2 and δ2 therein. For each n, define sequence
{τ (n)l , l = 0, 1, ..., l∗} in interval [0, T ] such that τ (n)0 = 0,
and,

τ
(n)
l+1 = τ

(n)
l + σn(τ

(n)
l )S ,

where σn(·) =

√
q
(n)
∗ (·)

/√
n, and l∗ is the largest integer (that

depends on n) such that τ (n)l∗ ≤ T . Let B(n)
2 be the union of
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intervals [τ
(n)
l , τ

(n)
l+1] over which the refined cost is strictly less

than ε2σn(τ
(n)
l )S, i.e.,

B
(n)
2 =

{
∪ [τ

(n)
l , τ

(n)
l+1] : J

(n)

τ
(n)
l+1

− J (n)

τ
(n)
l

< ε2σn(τ
(n)
l )S

}
,

and B
(n)
1 = [0, T ] \ B(n)

2 . Now pick a positive ε5 < ε2/2.
From this point on, we assume n large enough. The Lebesgue
measures of B

(n)
1 and B

(n)
2 satisfy ν(B

(n)
1 ) ≤ 2ε5

ε2
T

and ν(B
(n)
2 ) ≥ (1 − 2ε5

ε2
)T . Moreover, over any interval

[τ
(n)
l , τ

(n)
l+1] ⊆ B(n)

2 , we must have,〈
b, q(n)(τ

(n)
l+1)− q(n)(τ (n)l )

〉
≤ −δ2

2
σn(τ

(n)
l )S .

otherwise we could construct a LFSP contradicting Lemma 3
by choosing a subsequence in n along which the above in-
equality does not hold and τ (n)l converges to some τ ∈ [0, T ].
Then we have the following bound on the total increment of〈
b, q(n)(·)

〉
over B(n)

2 ,∑
[τ

(n)
l ,τ

(n)
l+1]⊆B

(n)
2

〈
b, q(n)(τ

(n)
l+1)−q(n)(τ (n)l )

〉
≤ −δ2

2
(1− 2ε5

ε2
)T .

Also, because we have assumed bounded arrivals, there is a
finite c1 > 0 such that the total increment of

〈
b, q(n)(·)

〉
over

[0, T ] \B(n)
2 satisfies,〈

b, q(n)(T )− q(n)(τl∗)
〉

+∑
[τ

(n)
l ,τ

(n)
l+1]⊆B

(n)
1

〈
b, q(n)(τ

(n)
l+1)− q(n)(τ (n)l )

〉
≤ c1

2ε5
ε2
T .

Finally, summing the above two inequalities and taking limit,
we get,

〈b, q(T )− q(0)〉 ≤ lim sup
n→∞

〈
b, q(n)(T )− q(n)(0)

〉
,

≤ −T
(δ2

2
− ε5
ε2

(δ2 + 2c1)
)
.

Now we can fix a positive δ5 < δ2/2 and choose ε5 > 0 small
enough to satisfy (42), completing the proof.

Remark 5: While the reader may conclude the throughput-
optimality of the p-Log rule from Lemma 2 alone, neverthe-
less, the throughput-optimality explicitly bears out as a corol-
lary of the above theorem. Specifically, (42) shows that for any
zero cost limiting trajectories (f, g, q)– i.e.

(
f (n), g(n), q(n)

)
converge u.o.c to (f, g, q) with probability 1– with initial
condition 〈b, q(0)〉 = 1, we have 〈b, q(T )〉 = 0 for all
T > 1

δ5
. That is, for any deterministic initial state satisfying

〈b, q(n)(0)〉 ≤ 1, we have 〈b, q(n)(T )〉 → 0 with probability
1. Convergence with probability 1, along with the bound
〈b, q(n)(T ) − q(n)(0)〉 < C(b1 + b2)(T + 1) (recall the
assumption of bounded arrivals), implies convergence in the
mean too, and therefore,

lim sup
n→∞

sup∑
i∈I biq

(n)
i (0)≤1

E

[ ∑
i∈I

biq
(n)
i (T )

]
= 0. (43)

By [24] (or see Theorem 4.1 of [4],) this proves the
throughput-optimality of p-Log rule.

Fix a time T > 0 and constants C∗ > δ > 0. Just as (43)
was obtained from (42), the following too can be shown. For
all large n, uniformly on 〈b, q(n)(0)〉 ≤ C∗, if 〈b, q(n)(·)〉 > δ
over [t, t+ T ], then,

sup
〈b,q(n)(0)〉≤C∗

E
[〈
b, q(n)(t+ T )

〉
−
〈
b, q(n)(t)

〉]
≤ −δ5

2
T .

The above along with Dynkin’s formula (see Theorem 19.1.2
of [25]) implies the following result.

Lemma 5: Let constants C∗ > δ > 0 be fixed. Consider
the stopping time,

β(n) = inf
{
t ≥ 0 :

〈
b, q(n)(t)

〉
≤ δ
}
.

Then, for all sufficiently large n, uniformly on the initial states
with

〈
b, q(n)(0)

〉
≤ C∗, we have,

E[ β(n) ] ≤ ∆2C
∗ ,

for some finite ∆2 > 0.

Proof of Theorem 2: Now we can proceed with the proof
of Theorem 2. Consider the scaled (random) process q(n).
For any fixed constants C∗ > 1 > ε∗ > ε > δ > 0, define the
following stopping times,

α(n) = inf
{
t > 0 :

〈
b, q(n)(t)

〉
≥ 1
}
,

β(n) = inf
{
t > 0 :

〈
b, q(n)(t)

〉
≤ δ
}
,

η(n) = inf
{
t > β(n) :

〈
b, q(n)(t)

〉
≥ ε
}
.

Let p(n) denote the stationary distribution of process q(n)(t),
p
(n)
x its distribution conditional on q(n)(0) = x, and Ex

expectation under p(n)x . Then, for any arbitrary T > 0, it is
easy to show (see (8.15) [15]) the following upper bound on
the probability of overflow,

p(n)
(∑
i∈I

biq
(n)
i > 1

)
≤

supy:〈b,y〉≤C∗ Ey
[
β(n)

]
infz:〈b,z〉≥εEz

[
η(n)

] ×
sup

x:〈b,x〉≤ε∗

(
p(n)x

(
β(n) ≥ T

)
+ p(n)x

(
α(n) ≤ T

))
.

(44)
Now, by uniform upper bound in Lemma 5, we
have lim supn→∞ supy:〈b,y〉≤C∗ Ey

[
β(n)

]
≤ ∆2C

∗;
and by bounded arrivals, we have the lower bound
lim infn→∞ infz:〈b,z〉≥εEz

[
η(n)

]
> 0. Therefore, the

terms that are going to decide the limit,

lim sup
n→∞

1

n
log p(n)

(∑
i∈I

biq
(n)
i > 1

)
,

are p(n)x

(
β(n) ≥ T

)
and p(n)x

(
α(n) ≤ T

)
.

By Theorem 5, we can choose T large enough such that
K(ε∗, δ, T ) ≥ K(C∗, δ, T ) ≥ J∗∗. Then by Theorem 4,

lim sup
n→∞

1

n
log sup

x:〈b,x〉≤ε∗
p(n)x

(
β(n) ≥ T

)
≤ −K(C∗, δ, T ) ≤ − J∗∗ .
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By (41) and the definition of J∗∗ in (15), for any ε6 > 0, we
can choose an even larger a T (if required) and an ε∗ > 0 small
enough such that J∗∗,≤T,ε∗ > J∗∗ − ε6. Then by Theorem 3,

lim sup
n→∞

1

n
log sup

x:〈b,x〉≤ε∗
p(n)x

(
α(n) ≤ T

)
≤ − J∗∗,≤T,ε∗ < − (J∗∗ − ε6) .

Since we can choose ε6 arbitrarily small (and subsequently fix
constants 1 > ε∗ > ε > δ > 0), substituting the above two
bounds in (44) completes the proof.
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