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Abstract

In this paper, collocated and distributed space-time btmdes (DSTBCs) which admit multi-group
maximum likelihood (ML) decoding are studied. First thelooated case is considered and the problem of
constructing space-time block codes (STBCs) which optimieddeoff rate and ML decoding complexity
is posed. Recently, sufficient conditions for multi-group. Mecodability have been provided in the
literature and codes meeting these sufficient conditionsevealled Clifford Unitary Weight (CUW)
STBCs. An algebraic framework based on extended Cliffogelatas is proposed to study CUW STBCs
and using this framework, the optimal tradeoff betweenaatML decoding complexity of CUW STBCs
is obtained for few specific cases. Code constructions mgpéhis tradeoff optimally are also provided.
The paper then focuses on multi-group ML decodable DSTBCsyplication in synchronous wireless
relay networks and three constructions of four-group MLadiedble DSTBCs are provided. Finally, the
OFDM based Alamouti space-time coded scheme proposed byalier a 2 relay asynchronous relay
network is extended to a more general transmission scheaheah achieve full asynchronous cooperative
diversity for arbitrary number of relays. It is then shownnhdifferential encoding at the source can
be combined with the proposed transmission scheme to aatigenew transmission scheme that can
achieve full cooperative diversity in asynchronous wiseleelay networks with no channel information
and also no timing error knowledge at the destination noder-group decodable DSTBCs applicable

in the proposed OFDM based transmission scheme are also. give
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. INTRODUCTION

Space-Time coding for Multiple Input Multiple Output (MIMGsystems has seen a lot of progress in
the last decade. Starting from orthogonal designs [1],[B]and quasi orthogonal designs [4], [5], [6],
[71, [8], several space-time block code (STBC) construwtibave been proposed in the literature including
the recently proposed space-time block codes from diviaigebras [9], crossed product algebras [10],
co-ordinate interleaved orthogonal designs [11] and @fliffalgebras [12], [13], [14], [15]. Several aspects
of space-time block codes (STBCs) have been studied intdratiure. In the high SNR regime, two main
aspects which dictate the error performance are diversity gnd coding gain. Of these two aspects,
diversity gain has been well studied and presently many taggn full diversity STBC constructions are
available in the literature. An important class of such codahe ones from division algebras [9]. Coding
gain has remained an open problem not only for MIMO channaéislso for Single Input Single Output
channels and the AWGN channel. Later few more aspects suttteasformation lossless property [16]
and the diversity-multiplexing gain tradeoff [17], [18] veeintroduced. Explicit STBCs satisfying these
additional requirements were also obtained from divisigelaras [19], [20], [21]. However, there are still
other important issues that need to be addressed. One spoitémt issue is the Maximum Likelihood
(ML) decoding complexity of STBCs. The lattice decoder oheyg decoder [22], [23] is known to be
an efficient ML decoder. However, the complexity of a sphezeadler [24], [25] is also prohibitively
large for high rate STBCs such as those from division algelfar example, decoding4ax 4 STBC
from cyclic division algebras is equivalent to decoding2adimensional real lattice and performing a
simulation to obtain an error performance curve can easlg several weeks. Thus it is not practically
feasible to implement ML decoding for the ‘good’ performingdes in the literature. It is well known
[6], [7], [11] that STBCs obtained from orthogonal desig@&) using QAM constellation admit single
real symbol decoding and give full diversity. But f6iTx antennas, an OD which provides a transmission
rate of 1 complex symbol per channel use does not exist [1], [2], [3}wiver, it was shown in [6], [7],
[11], [12] that a single complex symbol decodab®eréal symbol decodable) full diversity STBC for
4 transmit antennas can be constructed. Later in [8], [13],[I15], the general framework of multi-
symbol decodable or multi-group decodable STBCs was inged to improve the transmission rate.

Multi-symbol or multi-group decodable STBCs admit ML deoaglto be done separately for groups of

DRAFT October 30, 2018



symbols rather than all the symbols together thus redudiegML decoding complexity. The class of
STBCs from ODs correspond to the case of one real symbol mripgfThus it is clear that there is
a tradeoff involving rate, ML decoding complexity and numioé transmit antennas for full diversity
STBCs. In the first part of this paper, measures of rate and Mtoding complexity are given and
the problem of optimally trading off rate for ML decoding cplaxity within the framework of multi-
group decodable STBCs is formally posed. A partial solutiorthis general problem is provided by
characterizing this tradeoff for a certain specific clasS©BCs called as Clifford Unitary Weight (CUW)
STBCs [12], [13], [14], [15]. An algebraic framework basatdextended Clifford algebras is introduced to
study CUW STBCs. This framework is used to obtain the optiratd-ML decoding complexity tradeoff
and also to construct CUW STBCs meeting this tradeoff ogtimRecently in [29], [30], [31], a2 x 2
high rate, information lossless STBC with low ML decodingrmaexity and non-vanishing determinants
has been discussed. Thisx 2 STBC is not a multi-group decodable STBC and such STBCs are no
considered in this paper.

The second part of the paper focuses on constructing diggdispace-time block codes (DSTBCs) with
low ML decoding complexity for the Jing-Hassibi protocoB]3Distributed space-time coding [32], [33]
is a coding technique for exploiting cooperative divergityvireless relay networks wherein each relay is
made to transmit a column of a space-time code thereby ingtat multiple antenna system. There are
mainly two types of processing at the relay nodes that arelwidiscussed in the literature: (1) amplify
and forward and (2) decode and forward. Throughout this paye focus only on amplify and forward
based protocols for three reasons: (1) relay nodes are gatred to decode and re-encode, (2) relay
nodes do not require the channel knowledge for procesding f@gature can permit a possible extension
of the protocol to a completely non-coherent strategy) &@8)ds{mpler processing at the relay nodes.
In [33], Jing and Hassibi have proposed an amplify and folw@ased two phase transmission protocol
for achieving cooperative diversity in wireless relay natks. This protocol essentially employs STBCs
satisfying certain additional conditions to take care @f distributed nature. We call such codes satisfying
certain additional conditions as DSTBCs to distinguishmtfieom collocated STBCs. Analogous to the
case of collocated STBCs, for large number of relays, the Mtoding complexity of DSTBCs becomes
too prohibitive at the destination and thus is an importaati¢ that needs to be addressed. Most of the
previous works on DSTBCs [34], [35], [36] fail to addressstigsue. In [37], full diversity, two-group
ML decodable DSTBCs were constructed using division algebin [38], quasi-orthogonal STBCs were
proposed for use as DSTBCs for the specific casé oflays. In the second part of this paper, using

the algebraic framework of extended Clifford algebrasadtrced in the first part, three new classes of
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four-group decodable full diversity DSTBCs for any humbérelays are constructed.

The Jing-Hassibi protocol assumes that there is perfecbhelaynchronization amongst the relay nodes
and that the signals transmitted from the relays arrive etstime time at the destination. But achieving
symbol synchronization among the geographically disteuelay nodes is a challenging and difficult
task in practice. Several works in the literature [39], [4@]L], [42], [43], [44], [45], [46] have recognized
this as a major bottleneck and have proposed many codingransgntission techniques to mitigate the
effects of symbol asynchronism. Most of the works based opligmand forward propose methods to
achieve full cooperative diversity in asynchronous wissleelay networks, but however fail to address
the ML decoding complexity issues. In [39], a OFDM based Adaintransmission scheme is proposed
to combat the effects of symbol asynchronism. The Li-Xiasraission scheme is particularly interesting
because of its associated simplicity and low decoding cerifyl In this scheme, OFDM is implemented
at the source node and time reversal/conjugation is peddrat the relay nodes on the received OFDM
symbols from the source node. The received signals at thendesn after OFDM demodulation are
shown to have the Alamouti STBC structure and hence singidbeymaximum likelihood (ML) decoding
can be performed. However, the Alamouti code is applicably @r the case of two relay nodes and
for larger number of relays, the authors of [39] propose tster the relay nodes and employ Alamouti
code in each cluster. But this clustering technique pravitieersity order of only two and fails to exploit
the diversity available in the network. Motivated by theules of [39], in the third part of this paper
it is shown that the DSTBCs proposed in this paper can be uked) avith OFDM to achieve full
asynchronous cooperative diversity for any number of selpng with low ML decoding complexity.

Finally it is shown how differential encoding at the soura&le can be combined with the proposed
OFDM based transmission scheme to arrive at a new trangmissheme that provides full cooperative
diversity in asynchronous relay networks with no channfgrimation and also no timing error knowledge
at any of the nodes.

The main contributions of this paper can be summarized #awel

« A new measure of rate of an STBC is defined and the problem ahaptradeoff between rate and

ML decoding complexity within the framework of multi-grolL decodable STBCs is posed. An
algebraic framework based on extended Clifford algebrastisduced for studying CUW STBCs.
Using this algebraic framework and tools from represeomatieory of groups, the optimal tradeoff
between rate and ML decoding complexity of CUW STBCs is ctigrized for certain specific
cases.

« Constructions of CUW STBCs meeting this optimal tradeofftfee specific cases are also provided.
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The ABBA construction first proposed in [5] is shown to be aaierspecific matrix representation
of extended Clifford algebras and hence they fall under tagscof CUW STBCs. The contributions
on multi-group ML decodable collocated STBCs are describeSection 1.

« The Jing-Hassibi protocol [33] is generalized to allow nomtary matrices at the relays. The neces-
sary and sufficient conditions needed for DSTBCs to be nguttitp ML decodable are identified and
three new classes of four group ML decodable DSTBCs whicheaehull cooperative diversity
for any number of relays are also provided. To the knowledgthe authors, these are the first
known DSTBCs that achieve the least possible ML decodingptexity compared to all other
DSTBC constructions, having the same transmission rateimptex symbols per channel use in
the literature. This contribution is detailed in Sectioh I

« The OFDM based Alamouti transmission schemeZaelays in [39] is extended to a more general
transmission scheme that can achieve full asynchronougecative diversity for any number of
relays. Sufficient conditions for a DSTBC to be compatibléhwthe requirements of this OFDM
based transmission scheme are provided and the four-grecpddble DSTBCs in this paper are
shown to satisfy these sufficient conditions.

« It is shown how differential encoding at the source node @odmbined with the proposed OFDM
based transmission scheme to arrive at a new transmissimmscthat provides full cooperative
diversity in asynchronous relay networks with no channébrimation and also no timing error
knowledge at any of the nodes. All the results based on OFDiVagynchronous relay networks

comprise Sectioh V.

A. Notation

Vectors and matrices are denoted by lowercase bold lettersippercase bold letters respectivély,
0,, denote ann x m identity matrix andn x m all zero matrix respectiveljl. and0 are used to denote an
identity matrix and an all zero matrix respectively havingappropriate size depending on the context.
For a setA, the cardinality of4 is denoted by A|. A null set is denoted by. For a matrix,(.)”, (.)* and
() denote transposition, conjugation and conjugate tramspperations respectively. For a complex
matrix X, the matricesXy and Xq denote the matrices obtained by taking the real and imagiparts
of X respectively. IfB is a module over a base rinB, then Endr B denotes the set of alk linear
maps fromB to B. For setsA; and A,, the Cartesian product od; and A, is denoted byA; x A,.
For groupsG: and G, the direct product of7; and G5 is denoted byG; x G,. For vector space¥;
and V4, the tensor product of; andV; is denoted by/; ® V,. For a vector spac®, GL(V) is used
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to denote the set of invertible linear maps frdmto V.

Il. MULTI-GROUPML DECODABLE COLLOCATED STBCs

In this section, multi-group ML decodable collocated STB&s discussed. In Subsectibn 1I-A, a
relation between STBCs and linear space-time designs sngand using this relation, measures of
rate and ML decoding complexity of STBCs are defined. In Sciime[l[-B], linear space-time designs
are classified based upon the classification done in [12] ifagles complex symbol decodable codes.
An algebraic framework based on extended Clifford algelisamtroduced to study a class of linear
space-time designs called Clifford unitary weight desiddsing this algebraic framework, the optimal
tradeoff between rate and ML decoding complexity of STBQenfrClifford unitary weight designs is

characterized under some conditions in Subsectiod II-C.

A. STBCs and Linear Space-Time Designs

In this subsection, a connection between STBCs and lineasesime designs is established. Using
this relation, measures of rate and ML decoding complexitg &TBC are then defined.

Definition 1: A STBC ¥ of sizeT' x Nr is a finite set ofl’ x Ny complex matrices.

Let Nr denote the number of transmit antennas; denote the number of receive antennas @hd
denote the number of channel uses consumed for transmittsgace-time codeword. Then the rate of
transmission in bits per channel use (bpcu) of a STBC as imiiefi[l is given byk’g2—T‘(‘ﬂ bpcu. In this
paper, we use a different measure of rate which is motivayebddsic concepts of dimension in linear
algebra. This measure is also indicative of the coding ghthe STBC and several examples of STBCs
in the literature are discussed to illustrate the signifieaof the new measure of rate introduced in this
paper.

Note that the set of all’ x Ny complex matrices is a vector space over the field of real nusiiRe
and has a dimension &' Ny over R. Consider the subspac&’) spanned by the codewords, i.e., the
elements of¢. Let K denote the dimension af¢’) overR and letA;,i = 1,...,K € C"*Nt be a
basis for(%’). Then every element of can be expressed {s}fil z;A; for somez;,i=1,..., K € R.

If we think of the z;’s as real variables anfi(s = [ 1 To ... Tg ]T) = Efil z; A; as a matrix

whose entries are complex linear functions of the real b then the STB@ can be expressed as
¢ = {S(s)ls € o} )
for some finite subsety ¢ R¥.
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Definition 2: A linear space-time design (LSTDY(| z; 2o ... zx ]T) of sizeT x Np in real
variableszy, z,...,zx is aT x Np matrix which can be expressed Efil x;A; for some
A;,i=1,2,..., K € CT*Nr which are linearly independent over the field of real numbers

The notion of linear independence of weight matrices of a DSWer R has not been stressed or
mentioned explicitly in most previous works though it haghémplicitly assumed.

Notice that[(1) specifies a way to describe STBCs using lispace-time designs (LSTDs) and also
explicitly provides a method to encode STBCs. From an emgpgerspective, the real variables can be
thought of as modulating the matrices;,7 = 1,..., K. Hence we call the matriced;,i = 1,..., K
as basis matrices or modulation matrices or weight matritlee vector of real variables takes values
from &7 ¢ RX. We call & as the signal set. The connection between STBCs and LSTDstdially
depicted in Fig[L.

Fig. 1. STBCs and linear space-time designs

Remark 1:Note that for a given STB&  the set of basis matriceA;,i = 1,..., K along with the
associated signal set is not unique, i.e., there may exist another set of basisiceatwith some other
associated signal set that results in the same STB@lote also that it is not necessary that the basis
matrices have to be codewords. We shall see in the sequehthahoice of basis matrices and signal set
controls the encoding as well as decoding complexity. H@met is important to note thak™ is unique
to the STBC%.
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Thus a STBC can be thought of as a subset of a subspace of dimekis Thus designing a STBC
can be done in two steps: First choose a subspace of dimeAsi@hoose a LSTD) and then choose a
subset of required cardinality (choose the signal#g@twithin the chosen subspace.

1) Measure of Rate:

In this paper, we use the following definition of rate of a STBC

Definition 3: Rate of a STBC# = dimension({?)) _ K dimensions per channel use.

Note that the unit of rate of a STBC according to Definitidn lisiensions per channel use (dpcu).
Since there aré( real variables which modulat® modulation matrices, we can view it as though we
are sendingk real symbols (one on each dimension)linchannel uses. Alternatively, we can pair two
real variables at a time and view it s{§ complex symbols being transmitted i channel uses. We
would like to mention that most of the previous works on STB@fow the convention of measuring
rate in complex symbols per channel use which in our cag’é isomplex symbols per channel use and
is simply proportional to rate as per Definitibh 3. Though teeminology of basis matrices and rate
have been used previously in the literature (for example[2@R, to the knowledge of the authors, rate
of a STBC has not been defined explicitly and clearly as in Mt&fim[3 although many works in the
literature may be measuring rate in a similar way. Note théihéar independence of basis matrices is
not retained and if rate were to be measured by simply cogittia number of complex variables in the
LSTD, then one can claim to have any arbitrary rate of trassimn which can be quite deceptive at
times. The notion of linear independence makes things eerdravoids such confusions. Definitioh 3 is
particularly useful because it essentially allows to defate of a LSTD, hence allowing us to separate
the study of LSTDs from STBCs. Also, we argue that rate as mdinidion[3 is a first order indicative of
coding gain and hence is a parameter which has to be maximiziedtively, the higher the dimension,
the more efficiently we can pack codewords in it optimizingneccriteria. One of the criteria of interest
is to maximize the coding gain which is given byinc, c,ev det ((C1 — C2)(Cq — C2)).

Recall that even in the case of classical linear error cingcodes over finite fields, rate was defined
as the ratio of the dimension of the subspace spanned by ttewvoods to the number of channel uses.
In the case of classical linear error correcting codes, taedtself is a subspace whereas in the case
of STBCs, the code is a subset of a subspace. The followinmgies of existing STBCs reinforce the
statement that rate as per Definitidn 3 is a first order indieaif coding gain.

Example 2.1:Let us consider the Alamouti code [27] and the Golden codé¢\@#8ch are given by:
T +ixy —x3 + 1Ty

and
T3+ 1Ty X1 — 1T
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(1 + ize) + (23 + ixg) 0l x5 +ixe)a + (27 + txg)l ) _
1 Fizg)a+ (23 + iz4) (x5 +izg)a + (27 + ixs) respectively where§ = 115§ —

x5 +ixg)a + (z7 +izg)al) (x1 +ize)a + (w3 +ixs)ad
V5 = 1 + i(1 —0) anda = 1 +i(1 — ). In both cases, the real variables are allowed to take

values independently from a finite subsetZflt can be checked that there atédasis matrices for the
Alamouti code and® basis matrices for the Golden code. Thus the rate of Alanmde and Golden
code are2 dpcu and4 dpcu respectively and it is well known [28] that the Goldenle@utperforms the

Alamouti code when they are both compared with the samertrizsgn rate in bpcu.

~ Example 2.2:Let us consider thé x 4 OD and thet x 4 quasi orthogonal design. They are given by:

T1 +itxy —x3+1ixr4 —x5+ 1T 0
T3+ 1rx4 T1 — X9 0 —x5 + 1Tg
and
T5 + 126 0 T — ix2 T3 — 124
0 Ts +1rg —X3 —1Tg4 X1+ 1To

T+ 1Ty —T3+1iT4 T+ iTg —x7+ 1T

x3+ixy T —iT2 Ty +IiT§  Ts — iTg . . . .
respectively. Their respective rates can be verified to

Ts +1rxg —x7+1irg T+ ixro —x3+1x4

T7 +1rg Ts—1Tg T3+ 1Ty T1 — 1To
be% dpcu and2 dpcu respectively. STBCs from quasi orthogonal designskamvn to outperform

STBCs from ODs [4], [5] for the same transmission rate in bpcu

The above examples show that given two STBCs having the sambear of codewords, the one having
higher rate as per Definitidd 3 outperforms the other in mases, thus providing a good motivation for

Definition [3.

2) Measure of ML decoding complexity:
Towards defining a measure for ML decoding complexity, letfitst define a measure of encoding
complexity. If we use[(1) for encoding a STBC using LSTDs, we that in general one needs to choose
an element fronx” and then substitute for the real variables zs, ..., zx in the LSTD. This method
of encoding clearly requires a lookup table (memory) with| entries. However, if the signal sef
is a Cartesian product qf smaller signal sets in dimensiog, then the complexity can be reduced.
To be precise, ifo/ = o x o5 x --- x o/, where each#, C R with cardinality \dﬁ, then the
STBC % itself decomposes as a sum gidifferent STBCs, which is shown below. L& = gA. Then

October 30, 2018 DRAFT



10

by appropriately reordering/relabeling the real variabde can assume without loss of genereHitmat
S(s) = 3.1, iA; = S1(s1) + Sa(s2) + - - + Sg(sg) Where,Si(s;) = Y2 1), 7;A; and

T
Si = | T4l T(-Drse .- Tix ] . Hence the STBC decomposes®@s= ) 7_, %; where,

¢ = {Si(s1)|s1 € 1}
¢ = {Sa(s2)[s2 € %A}

%y = {Sg(sg)lsg € 4}

Definition 4: [54] A STBC % = {S(s)]s € C RK} is said tog-group encodable o% real symbol
encodable (or% complex symbol decodable) i/ = o} x 4% x --- x o/, where eache; C R with
cardinality |.<7 |7 .

The encoding of a-group encodable STBC is pictorially shown in Hig. 2. Thus #ncoding com-
plexity of g-group encodable STBCs ;tf_{|(£|§). Note that in addition ifey = o/ = --- = 7, then the

memory required for encoding is also minimized.

Bse s Sy LA H i
_> Sa(sz) = Zfi/\ﬂ TiAj o

. . S(s) =327 Silsi) |°
s 5 il

. K
—1Bits— sz |—={Sg(sg) = Lil (e B>

Bits

Serial/Parallel

Fig. 2. Encoding for g-group encodable STBC

Example 2.3:Consider the example of the Golden code which was discussBdampld 2.11. As per
Definition[4, the Golden code &-group encodable or single real symbol encodable.

Thus we have seen howgagroup encodable STB@ decomposes into a sum gfSTBCs
%;,i = 1,...,g and thus admits independent encoding of #}&. A natural question that follows is:
Under what conditions doesgagroup encodable STB@ admit independent decoding of the constituent

%;'s? Towards that end, let us look at the ML decoding metrid. Xebe the transmitted codeword of

'Here we have assumed that the fiksteal variables belong to first group and the secénckal variables belong to the
second group and the lastreal variables belong to theth group. In general, the partitioning of real variabletin-groups

can be quite arbitrary.
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sizeT x Nr, H be the Ny x Nr channel matrix andy” be the received matrix of siZE x Ngr. Then,

the ML decoder is given by

X = in||Y—-XH|>%. 2
arg min I % 2)

For ag-group encodable STBZ’, X = Y 7_, X; for someX; € %;. It can be shown [11], [12], [13]

that if the basis matriced;,i = 1,..., K satisfy the condition

AT A5+ A7 A = 0 whenever A; € (63),A; € (4), k #1 (3)

then the ML decoder decomposes as

g
. _ o
X—;arg)g?el% Y — XH || . 4)

In other words, the component STB@$'s can then be decoded independently. It can also be shown
[11], [12], [13] that [3) is a necessary condition for thishtappen.

Remark 2:Note that the subspacés’;),i = 1,..., K intersect trivially, i.e.,(%%) N (%) = 0. Thus
(€) = (€1) @ (62) ®--- & (6,). If the condition in [B) is satisfied for the basis matricdwrt it implies
that AYB + B7A = 0,V A € (%},),B € (%)), k # I. In other words, this becomes a property of the
two subspace$s;.) and (%;).

Definition 5: [54] A STBC % = {S(s)]s € C RK} is said tog-group decodable o{g real symbol
decodable (or% complex symbol decodable) # is g-group encodable and if the associated basis
matrices satisfy( (3).

Example 2.4:All STBCs obtained from ODs are single real symbol decod#bévery real variable
in the OD takes values independently from a PAM (Pulse Amgét Modulation) signal set. As an

example, consider the Alamouti code that was previouslgudised in Example 2.1. The associated basis

. 1 0 1 0 0 -1 /)
matrices areA; = , Ag = , Ag = and Ay = . It can be
0 1 0 —i 1 0 1 0

checked that they satisfy the condition [0 (3) fpe= 4. In this caseSi(s1) = x1A1, S2(s2) = z2A2,

S3(s3) = x3As andS4(s4) = z4A4. Hence the Alamouti code is single real symbol decodable.
The ML decoding for ag-group decodable code is illustrated pictorially in Hig.I8is clear that

the decoding complexity is reduced fgrgroup decodable STBCs fron®’| computations tOg|(£|§

computations. Further, we know that the sphere decoder [22] is an efficient ML decoder if vector

s takes values from a lattice constellation. Moreover, it bagn shown [24], [25] that the average
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1 —X; = argminx, eq, | Y — X H ||%

. % —[X, = argminx, e, | Y — XoH || T A
. . X

0[] 7

—|X = argminx,eq, | Y — XH ||%

Fig. 3. ML decoding for ay-group ML decodable STBC

complexity of a sphere decoder depends on the dimensioreadhivalent lattice [23] and more or less
independent of the size of the code. Thus, we can take thengdiore of the corresponding equivalent
lattice as a measure of the sphere decoder complexity. Fenargl STBC, this dimension is equal to
K whereas forg-group ML decodable STBCs, it i% = A. Thus the expected as well as the worst case
ML decoding complexity is lesser far-group ML decodable STBCs.

3) Full diversity:
Apart from rate and ML decoding complexity, yet another imigot aspect of STBCs is the diversity
gain. Diversity gain is a measure of the slope of the errob@bdity versus the SNR when plotted on
a log-log scale and this is given byz(minc, c,e¢ rank(Cy — Cz)). Thus full diversity of Np N7 is
achieved by a STBC if the coding gain is not equal to zero.

4) Problem statement of optimal Rate-ML decoding complarddeoff:
Having surveyed three important aspects of rate, ML de@pdomplexity and diversity for a STBC,
we can now pose the problem of rate-ML decoding complexagenff. This problem can be formally

stated in two equivalent ways which are listed down as givelnvia

1) Given )\, T and NV; what is the maximum rate of any full diversity STBC?

2) Giveng, T and N; what is the maximum rate of any full diversity STBC?

If A =1 and Ny = T, then the solution is precisely the STBCs from square oxdhay designs
constructed in [2], [3] for which the maximum rate@ﬁ%ﬂﬂ dpcu. In this paper, the maximum rate
of a certain class of full diversity square STBCs from Cliffaunitary weight designs is characterized
for A =2,

The following example illustrates that full diversity antdiomding/decoding complexity are related
indirectly.

Example 2.5:Consider the4 x 4 co-ordinate interleaved orthogonal design (CIOD) [11]egivby
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Tl +1xy —x3+ 1Ty 0 0
T3 +1r4 X1 — 1T 0 0 i . .
S = . The weight matrices of the above LSTD satisfy
0 0 T5 + ixg —x7 +iTg
0 0 T7 +1rg  T5 — ikg

AiHAj + AJHAi =0, Vi # j. Let the notationA stand for the codeword difference matrix. Note that
det (ASTAS) = (Zf‘zl Am?)z <Z§Z5 Am?)z, which will equal to zero for some pair of codeword
matrices if all thes real variables are allowed to take values independentlyckleit is not possible to
obtain a full diversity single real symbol decodable STB@nirthe above LSTD. However, by entangling
two real variables, as for example:1, x5}, {z2, 26}, {3, 27}, {4, 28} and then allowing them to take
values from a rotated QAM constellation (rotating a QAM detiation entangles the variables), a full
diversity, single complex symbol ML decodable STBC can b&ioled [11]. The resulting STBC will
be 4-group ML decodable o2-real symbol ML decodable and its associated four constit6dBCs are
given by S1(s1) = 1A1 + x5A5, Sa(s2) = 2As + 16A6, S3(s3) = r3A3 + v7A7 and Sy(s4) =
r4A4 + r53As%.

Example[2.b shows that the requirement of full diversity sametimes demand an increase in the
encoding complexity and hence the decoding complexity évére associated weight matrices satisfy
condition [3) for\ = 1. Thus, it is clear that full diversity and encoding/decag@omplexity are inter-

related and there exists a tradeoff between the two.

B. Clifford Unitary Weight Designs and extended Clifforgjetbras

First, let us classify square LSTDs (as done in [12] for ssngbmplex symbol decodable codes).
LSTDs can be broadly classified as unitary weight designs QdyVand non unitary weight designs
(NUWDs). A UWD is one for which all the weight matrices are tamy and NUWDs are defined as
those which are not UWDs. Clifford unitary weight designdJ{@Ds) are a proper subclass of UWDs
whose weight matrices satisfy certain sufficient condgidor g-group ML decodability. To state those
sufficient conditions, let us list down the weight matricdsacCUWD in the form of an array as shown
in Table[].

For simplicity, the grouping is assumed to be as follows:tA# weight matrices in one column belong
to one group. The weight matrices of CUWDs satisfy the follaysufficient conditions fop-group ML
decodability.

1) A; =1

2) The unitary matrices in the first row excef should form a Hurwitz-Radon family [1], [2], [3].
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TABLE |

STRUCTURE OFCUWDs

A4 A)\+1 A(g—l)A+1
A A)\+2 A(gfl)A+2
Ay | Az ... Ak

In other words, all the matrices in the first row excépt should square te-T and should pair-wise
anti-commute among themselves.

3) The unitary matrices in the first column should squard tand should commute with all the
matrices in the first row and first column.

4) The unitary matrix in the-th row and thej-th column is equal tabA;A (;_1)x41-

It can be checked that the above four conditions togethetyirtipat the necessary and sufficient
condition forg-group ML decodability in[(B) is satisfied and hence any CUVEDQ-group ML decodable.
Note that whem = 1, CUWDs become ODs [1], [2], [3]. Similarly the co-ordinatddrleaved orthogonal
designs proposed in [11] are a proper subclass of NUWDs. fggescomplex symbol ML decodable
STBCs in [6] are also CUWDs [12]. Figl 4 pictorially shows thead classification of LSTDs.

1) Full diversity lattice constellations for Clifford Urity Weight designs:

An important advantage of CUWDs is that full diversity STB€an be obtained from them without
increasing the encoding/decoding complexity contraryht® ¢ase of CIODs (see Example]2.5) wherein
real variables from different groups have to be entangledfdtd diversity. Moreover, explicit lattice
constellations that optimize the coding gain can be obthfioe CUWDs, thus admitting the use of a
lattice/sphere decoder. In [12], [13], [14], [15], few ctmstions of CUWDs are available and the aspect
of full diversity has been addressed in detail. In this paper only provide a brief outline of the basic
idea (described below) and illustrate the procedure witlexeample. Later in the proof of Theorem 6,
we also provide a new construction of CUWDs.

For a CUWD, det (AS(s)?AS(s)) = det (37 ASi(s;)? ASi(si)). If det (ASi(s;)? AS;(si)) >

0,Vi=1,...,¢9 then, we have

det (AS(s)”AS(s)) > Zg: det (AS;(si) " AS;(si)) -
i=1
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NUWDs UWDs

CUWDs

Fig. 4. Classification of LSTDs

Thus it is sufficient to construct full diversity lattice cstellations independently for each of the con-
stituent LSTDs, i.e.S;(s;)’s and this will ensureg-group ML decodability. Note that

Si(si) = A1)t (-l + 22 A + - + 2iaAy) = A_1)r1151(s1) which implies

det (AS;i(s;)? AS;(si)) = det (AS1(s1)” AS1(s1)). Hence without loss of generality, we can consider
the construction of full diversity lattice constellatiofisr the LSTD S;(s1) since the same lattice
constellation will ensure full diversity for the remainirgpnstituent LSTDsS;(s;), i = 2,...,9. We
haveSq(s1) = 2?21 z;A;. Note that the matriced;, i = 1,..., A are unitary, square tband pairwise
commute among themselves. Hence they are simultaneousipmtlizable by some unitary matrix

to result in diagonal unitary matricd9,, D+, ..., D). All these diagonal matrices will continue to be
linearly independent oveR and since all of them square 19 the diagonal entries dD;, i =1,..., A
are£1 andD; = I. Thus the LSTDUS; (s;) U = Ele z;D; becomes a diagonal matrix for which it
is easy to compute the determinant and also find the lattinstethation that will provide full diversity.

This procedure is illustrated in the following example.

Example 2.6:Consider a CUWD forNy = 8, A = 4, g = 4 and K = \g = 16 given by
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[0, I, 02 05 | [0, 05 I 05 |
S(s) = 219, A; where,A; = Ig, Ay = T2 02 02 0} 0 ] 02 0202 12
02 0y 0p I I, 0, 0, 0,
(02 02 I, 0 (02 T, 02 0 |
[0 00000 0] 001 00 00 00|
i 0000000 10 00 00 00
000 i 0000 00 01 00 00
Ay AL, A |00 00000 0010 00 00
00000400 00 00 01 00
0000000 00 00 -10 00
0000000 i 00 00 00 01
(000000 i 0] 00 00 00 -1 0
(i 00 00 00 O]
00 00 00 0
0 04i 00 00 0
Ags = 000 0000 andAgiy; = AgAy, i=1,2,3, j=1,...,4.
0 00 04 00 0
0 00 00 - 0 0
0 00 00 0 i 0
(0 00 00 00 —i|

It can be checked that the above listed basis matrices ysailsthe requirements of a CUWD for
A =4, g = 4. For the purpose of finding full diversity lattice constéthas, it is enough to construct
full diversity signal sets for the LST3(s1) = Z?‘Zl A;. Since the matriced;, i = 1,...,4 mutually

commute among themselves and squardgothey can be simultaneously diagonalized by a unitary
1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1

matrix U = which in this case turns out to be ti¥ex 8

1
1
1
1
1
1
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Hadamard matrix. Definin@d; = UA; UY, i =1,...,4, we getD; = I,
Dz:diag{[l 1 -1 -1 11 -1 —1]}.D3:diag{[1 111 -1 -1 -1 —1”
andD4:diag{[1 1 -1 -1 -1 -1 1 1]}.Thuswe have

det(AS1) = (Ag1)2(Age)*(Ags)2(Aga)?

1 1 1 1
T T 1 -1 1 -1
Where,|: Aql Aqg AQ3 AQ4] :P[A(ﬂl Axg Awg Aw4 andP =
1 1 -1 -1
1 -1 -1 1

Thus full diversity will be achieved ifAg; # 0, V i = 1,...,4. This can be guaranteed by lefting
S1 = [ Tl Ty T3 X4 }T take values fromP~1GZ* where, G is the generator matrix of a lattice
designed to maximize the product distance [47], [59].

2) Extended Clifford Algebras:

Towards constructing and studying CUWDs an algebraic freonle of extended Clifford algebras is
first established. Using this algebraic framework, the rogptitradeoff between rate and ML decoding
complexity of CUWDs is obtained in Subsection lI-C. Furthere, algebraic descriptions for the ABBA
construction [5] and the tensor product based construatigfi4] are provided using extended Clifford
algebras.

First observe that in order to construct CUWDs it is suffitienconstruct the weight matrices in the
first row and first column (as discussed in Subsedtionl II-B &able[]). Our methodology to construct
the weight matrices in the first row and first column would bdabricate an algebra in such a way
that it contains elements satisfying the algebraic refative need. Once we construct such an algebra,
we then obtain the required CUWD by taking an appropriaterimagpresentation of the constructed
algebra. Recall that an algebra over a field is simply a ringvels as a vector space with the addition
operation being compatible to both the ring and the vectacsstructures. Let us recall certain basic
definitions from algebra which will be useful in the sequel.

Definition 6: A nonempty seB equipped with two binary operations called addition andtipligation
denoted by+ and. is called a ring denoted b3, +, .) if

1) (B,+) is a Abelian group

2) (B,.) is a monoid with multiplicative identity

3) z.(y+2)=zy+xz Vryzelb

4) (z+y)z=zz+4+y.z Vr,yzebB
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Definition 7: A nonempty setd equipped with two binary operations called addition andtiplidation
denoted by+ and. is called a right module algebra over a rifggif
1) (A,+,.) is aring
2) There is a mapz, o) — xa of A x B into A satisfying the following for alky, 5 € B andz,y € A.
(x +y)a =za+ yo
z(a+ f) =za+zf
z(af) = (za)B

rl==x
Note that in the standard mathematical literature (for epanfi64]), algebra is usually defined over

(5)

a field. Since our definition differs from the definition in [64ve have given the name ‘right module
algebra’ in order to distinguish it from the concept of algebver a field.

Definition 8: [2] The Clifford algebra, denoted by'lif f,, is the algebra oveR generated byn
objectsy,, k£ = 1,...,n which are anti-commuting~y; = —v;v., Vk # j) and squaring to-1
(2 =-1Vk=1,...,n).

A natural basis foiClif f,, seen as a vector space oweris

B = {1} J{li=1,....,n} { ’ykillgkigki+1§n}. (6)
=1

m=2
The number of basis elements|i®,,| = 2".

Example 2.7:Clif f, is nothing but the set of real numbeks Clif f; is the set of complex nhumbers
C andClif f5 is the Hamiltonian Quaternions denoted Hy

The reason we are interested in Clifford algebras is thadéfi@ing algebraic relations of the generators
of a Clifford algebra resemble the algebraic relations Wwhite matrices in the first row of a CUWD need
to satisfy. Hence we can obtain the matrices in the first rovtalyng unitary matrix representations of
the generators of a Clifford algebra. To obtain the matringbe first column, we use a similar strategy.
We introduce few new symbols in the Clifford algebra and defimeem to square tb, commute with the
generators of the Clifford algebra and also commute amosigselves. In other words, after introducing
new symbols, multiplication in the algebra is appropriatééfined in order to create a bigger algebra
which contains Clifford algebra as a sub-algebra. Hencealiing a unitary matrix representation of
these specific elements of the algebra, we get the weighiaasitof the required CUWD. We give the
name 'extended Clifford algebras’ to the so constructeelaigs:

Definition 9: Let L = 2% a € N. An extended Clifford algebra denoted Wy~ is the associative

mn

algebra ovelR generated by + a objects~y,, £ = 1,...,n andd;, i = 1,...,a which satisfy the
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following relations:
o ’yg:—l, Vk=1,...,n

« WY =YYk VEF]
« 2=1,Vk=1,...,a
. 5k5j:5j5k7 Vlgk,jﬁa

0wY; =Vi0k, V1<k<a,1<j<n

From the above definition, it is clear th@fif f, (or Al) is a sub-algebra of”. Let %, be the natural
R basis for this sub-algebr@lif f,,. Then a naturaR basis forA% is given by

m=2 =1

Thus the dimension oAZ seen as a vector space oRlis 2",

The algebraAZ overR can also be viewed as a right module algebra over the baseCtiiy,,. We
will use this fact later in subsectidn I[+C.

Example 2.8:Let us taken = 2, a = 1. HenceL = 2. Then

A% = {a1 + 7109 + o1as + 5171a4\a1,a2,a3,a4 € R}.

Addition in the algebra is defined to be component wise andiptichtion is completely described
by defining the multiplication between any two basis elermemte multiplication table can be easily

generated using the defining algebraic relations of the rgéors and is given as follows.

1 7 o0 | Im

1 1 7 0 | Iim

7 m | =1 | v | —01

o op |0 | 1 7

| dm | =0 | m | —1
One can check from the multiplication table that the muittition is indeed associative. Note thied

can also be viewed as a vector space dvday viewing the symbot; as the complex numbér= /—1.
Then, we have\? = {21 + 6122|21, 22 € C} where,z; = a3 + y1a2 and z = a3 + vy1a4.

From the defining relations of the generators of the exter@ldfibrd Algebra, it can be observed that
the symbolsl, v1, 7, ..., v, Satisfy relations similar to that satisfied by the weight ncat that we
need in the first row (squaring tel and anticommuting). Similarly, the symbaig, £ =1,...,q, and
Ur o Tt 6k, for 1 < k; < ki1 < a satisfy relations similar to that satisfied by the weight nicat

that we need in the first column (squaring ttaand commuting with all other elements). Thus, for the
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case ofA = 2%, when the weight matrices of any CUWD are listed down in thrayaform as shown in
Tablell, the matrices in the first row will simply be matrix repentations of the symbols 1, 7o, ...,
v, of an extended Clifford Algebra. Similarly, the matricestire first column are nothing but matrix
representation of the symbalg, k = 1,...,qa, andlJ;, _, [ ]2, ok, for 1 < k; < k;41 < a of an extended

Clifford Algebra.

C. Optimal Rate-ML decoding complexity tradeoff of Cliffddnitary Weight codes

The maximum rate problem of CUWDs can be formally stated imynaquivalent ways. Some of

them are listed as follows.

1) Given\ and N; what is the maximum rate?
2) Giveng and N; what is the maximum rate?

3) Giveng and A\ what is the minimum value oNp?

For A = 2, the solution to the first question is reported in [12]. Instlsiubsection, the solution to
question numbdr]3) foh = 2%, a € N is provided. Using the algebraic framework of extendedf@iif
algebras introduced in the previous subsection, the maximaie problem can be restated in algebraic
terms as follows.

What is the minimum matrix siz&€r in which the aIgebraA(Ag_l) has a non-trivial matrix represen-
tation?

This problem appears to be difficult to solve directly. Henge take an alternate approach which is
similar to the approach in [2] wherein matrix representadiof Clifford algebras were obtained using
matrix representations of the Clifford group. First, we fdinite group with respect to multiplication
in the algebraA(Ag_l) such that it contains the elements of the natiRapasis ofA(Ag_l) denoted by
%(Ag_l). Then, we find a suitable representation of this finite grouphsthat it can be extended to a
representation of the algebra.

Proposition 3: The set of element& = ,@?g_l) U {—b\b € %?g_l)} is a finite group with respect to
multiplication in A(Ag_l). Further, the grou- is a direct product of its subgrougs, andG;, where

Gy = BgnUi-bbe By},

Gs = Gs

(8)

X Gs, x -+ x Gg,

andeelmi = {1,(2} s 1= 1, o, Q.
Proof: The multiplication inG is associative and the unit is The inverse of the elemest[ [\, vy,

is +(—1)!5 1T, 45, The inverse of the elemeff.”, o, is itself. Similarly, it is easy to find the inverse
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of the other elements. The s6t, is nothing but the well known Clifford group [2]. The s€;, is the
cyclic group of order two (denoted hky,) with generatow;. The setG; is a group since it is the times

direct product ofC. The groupG is a direct product of>, andG;s because:

1) Eachs € G can be written uniquely in the form= s;s, with s; € G, ands; € G.
2) For alls; € G, andsy € G5, we haves sy = s51.
[

Thus the problem is simplified to finding the matrix repreas@ons of this finite grougs. Towards
that end, we quickly recall some basic concepts in linearaggmtation of finite groups. We refer the
readers to [65] for a formal introduction.

Definition 10: [65] Let G be a finite group with identity elementand letV be a finite dimensional
vector space ove€. A linear representation off in V' is a group homomorphism from G into the
groupGL(V'). The dimension of/ is called the degree of the representation.

Few basic results in representation theory are as listemirbel

[R1 ]: Irreducible representations are representationls nd invariant subspaces.

[R2 ]: Every representation is a direct sum of irreducibleresentations. They are equivalent to block-
diagonal representations, with irreducible represesmatnatrices on the block diagonal.

[R3 ]: Two representation® and R’ of G are equivalent, if there exists a similarity transfotmso

that
R(z)=U'R(z)U, Vz € G

[R4 ]: Unitary representations are representations in $esfmunitary matrices

[R5 ]: Every representation is equivalent to a unitary reprgation

Theorem 4: [65] All the irreducible representations of an Abelian goduave degreé.

Lemma 1:[65] Let p; : G — GL(V;1) andp, : G2 — GL(V3) be linear representations of groups
G andG> in vector space¥; andV; respectively. Them; ® ps is a linear representation @¢f; x Go
into V] ® Va.

Theorem 5: [65]

1) If p; andp, are irreducible, them; ® p, is an irreducible representation 6f; x Ga.

2) Each irreducible representation Gf, x G2 is equivalent to a representatipn ® ps, wherep; is
an irreducible representation 6f;, i = 1, 2.

Now, having introduced the necessary tools, the problem it unitary matrix representations of the

finite groupG. Before we proceed, note that whéhis interpreted as a finite group, the representation
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of —1 does not necessarily have anything to do withtimes identity matrix and similarly for a generic
—b,b € 93?9_1). Such a representatign wherep(—1) # —p(1) is said to be a degenerate representation.
Degenerate representations are not representations aﬂgtabraA(Ag_l). Thus we are interested in the
smallest degree non-degenerate unitary representatibithe finite groupG such that the representation
matrices of the required elements @fare linearly independent ov@&. The following lemma will help

to prove the linear independence of complex matrices &er

Lemma 2:A set of complex matriced;,i = 1,..., K € CT*"r are linearly independent ové if
Tr(ATA; + ATA;) =0, Vi # .
Proof: The linear map fronC? >Nt x CT*Nr s R given by Tr(A#B+B* A) for A,B € CT*Nr

is an inner product. The statement of the lemma then follows. [ |

Theorem 6: The maximum rate of a CUWD fok = 2%, a € N and arbitraryg is equal toﬁ
272

dpcu.

Proof: Proof is by induction oru. The proof proceeds to find the smallest degree non-degenera

unitary representatiop of G such that the following condition is satisfied.

plx) # £ply), Ve #yeG (©)

The above condition is required, since otherwise, the sspr@tion matrices will be linearly dependent
over R. However, even if the above condition is satisfied, lineatejpendence is still not guaranteed.
Therefore, we can only obtain an upper bound on the rate bugthat see that a representation meeting

the upper bound actually provides us with linear independers well.

For a = 0, CUWDs become ODs and the maximum rate for square ODs is welivk [2] and the
theorem holds true. Far = 1, A = 2 and the groupi = G, x G55, whereG;, = {1,4:}. Since we are
interested in the smallest degree representatiofd,det us first study the irreducible representations of
G. From Theoreni]5, all irreducible representationssoére obtained as a tensor product of irreducible
representations af’, andGs,. All irreducible representations @f, have been studied in [2]. There are
2 non-degenerate irreducible representation&ofin dimension2l5" ). The representation matrices of

the (¢ — 1) generators oty are given as follows [2]:
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Riyor) = L@ 0I,001® 03®---®o0s, k=1,2,...,(K—1)
| S ——

K—1-—k k—1
Riva) = IL® - @I3®02® 03®---Qos, k=1,2,...,(K—1)
N——— N—— ———
K—-1—k k—1
R(’}/l) = $io3®--- Qo3
N————
K—1
0 1 0 1 0 2 if g is even
where, o1 = , 09 = , 03 = i0109 = and K = .
10 i 0 0 -1 L if g is odd

The notationR(.) is used to denote the representation matrix. Also noteThat;) =0, i =1,2,3.

Since the two non-degenerate representations are in the danension, without loss of generality,
let us consider one of them and denote it gy By Theorent#, all the irreducible representations of
Gs, are in dimensiorl since the grougs, is Abelian. Recall thats;, is nothing but the cyclic group
Cy of order two. Apart from the trivial representation (all mlents are mapped tb), the only other
irreducible representation of the order two cyclic gra@eyp is given by:R(1) = 1, R(6;) = —1. Note that
(—1)2 =1 and hence-1 is the generator. Thus we get two non-degenerate irreducdgresentations

of G in dimension2l =) denoted byR; and R, respectively and they are given by:

1) Ri(vi) =po(vi),i=1,...,(9 —1), Ri(61) = Im, R1(01%:) = po(vi),i =1,...,(g — 1)
2) Ra(vi) = po(vi)yi=1,...,(g — 1), R2(61) = —Im, R2(017%:) = —po(vi),i=1,...,(¢g — 1)

g—

where,m = 215 ). But both the non-degenerate irreducible representatbnisfail to satisfy condition

(@). Thus we seek non-degenerate reducible represergatiof that satisfy [P). From property [R2],
we have that reducible representations can be easily @otdig placing irreducible representations as
blocks on the diagonal. If degenerate irreducible reprasiens are placed as blocks on the diagonal then
it is easy to check that the resulting representation widbabe degenerate. Thus only non-degenerate
irreducible representations can be placed as blocks onigigemkl to construct non-degenerate reducible
representations af. It then follows that the smallest degree non-degenergiesentatiorp; satisfying

@) fora=1is 2(2L%J) and the corresponding basis matrices we need are expligithn as follows:

po(vi) O . I 0
Ay =Ty, Agiyg = ' i=1,2...,(g—1),As= | "

0 pO(’Yi) 0 _Im
Now using the identityTr(A @ B) = Tr(A) x Tr(B), it can be easily checked that the above basis

matrices are trace orthogonal, i.85(AHXA; + AfAi) =0, Vi # j and hence by Lemnid 2 they are
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linearly independent oveR. Thus the theorem is true far= 1. Now let us assume that the theorem is

true fora = n — 1 and prove the theorem far = n.

For the case ofi = n, note that the corresponding can be expressed &= G,_; x Gs, wWhere,
Gn—l = G/\/ X G(S] X G52 X oo X G(Sn,

B, we have that the irreducible representationgzoére a tensor product of irreducible representations

andGs, = {1,0;},i=1,...,n. Once again invoking Theorem

1

of G,,—1 and Gs,. Now using Theoreml4, the non-degenerate irreducible septations ofG are in

(g—1)

dimension2l™z".. Since they do not satisfy](9), we look for non-degeneratiicible representations

whose degree has to be a muItipIeQé?E_]J. By induction hypothesis, the smallest degree non-degémer
representation which results in linearly independentsasatrices fora = n — 1 is 2”‘1(2V_§1J). Let
it be denoted by,,_;. Since the representatign,_; is also a representation 6f,,_;, using analogous

arguments as made far = 1 it follows that the smallest degree non-degenerate reptasen p,,

=1
2

satisfying [9) fora = n is in dimensior12’””(2L J) and the corresponding basis matrices are given by:

prn—1(1) 0 pr—1(7:) 0 .
A1: |A2"i+1: 71217"'7(9_1)1
0 pn_l(l) 0 Pn—l(%)
n— 5i— 0 n— 1 0
A= " 1(0i-1) =2 (n—1), A =" 1)
0 prn—1(0i—1) 0 —pn-1(1)

Once again it can be shown that the above basis matricesnaa&lii independent oveék by using

Lemmal2. ]

Theoren b essentially answers the question: For a CUWDngjvand A\, a power of two, what is
the minimum matrix sizéVy that it can have? The answer to this question is given @(%1)_ The
following example highlights the fact that the maximum retgression of a CUWD given in Theorem

does not depend oh.

Example 2.9:For g = 4, let us study CUWDs for two cases= 1 and \ = 2.
Case 1l =1,9g=4
The minimum possible dimension in which a CUWD with theseapasters exists is given by Theorem
6 which is equal t@. The corresponding CUWD is nothing but the well known AlamidusTD.
Case2)2=2,9g=4

The minimum possible dimension in which a CUWD with= 2, g = 4 exists as per Theorem 6 is
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and the corresponding CUWD is given by:

[ x1+xo +i(xs +x4) —x5 — 26+ i(T7 + T8) 0 0 ]
x5+ a6 +i(rr +xg)  x1+ w0 — (T3 + X4) 0 0
0 0 =1 —xzo+i(xs —x4) —w5+ 26+ i(x7 — 28)

I 0 0 x5 —m¢+i(ry —axg) a1 — 9 —i(x3 — 24) |

where, the grouping of real variables afe;, z2}, {3, 24}, {x5, 26} and {z7, xg}. Note that whem
increases from one to two, the minimum dimension in whi€¢h= A\g matrices with required properties
exist, also increases. In fact, Theoreim 6 explicitly tetlattN; increases linearly with\. This makes
the rate, which is}v—j independent of.

1) Algebraic description for ABBA construction:
As stated in Section lIl (also see Example] 2.8), the algéjraover R can also be viewed as a finitely
generated right module algebra ow@tif f,. A general element of the algebraA’ can be written as
follows:

a

x=c1+01c2+ + GaCat1 + 0102¢ara + -+ + ([ [ 6i)er (10)
i=1

wherec;,i = 1,...,L € Clif f,. There is a natural embedding af* into Endcy;sys, (AL) given by
left multiplication as shown below:
¢ : AL Endeigr, (AL), 1)
¢(x) =Ly 1y — xy.
It is easy to check that the mdp, is Clif f,, linear and the mapg is a ring homomorphism. Also, it
can be proved that the mapis injective as follows.

Let ¢(z1) = Ly, and¢(zz) = Lq,. If ¢(21) = ¢(z2), then

Ly(y) = La(y)Vy
Ty = Xy Vy
(xt1 —m)y = 0Vy

which impliesz; — x5, = 0 or equivalentlyr; = z,. Hence, we can represent the algebfaby matrices
with entries from Clifford algebra. However, we are onlyeirésted in matrix representations with entries
from the complex field. But this can be easily obtained by $ymgplacing each Clifford algebra element
by its matrix representation ovér. This is possible because the matrix representatiafilof f,, overC

is well known and is explicitly given in [2]. The resulting vghit matrices are guaranteed to be linearly

independent sinceé is injective. We now illustrate this construction with anaexple.
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Example 2.10:ConsiderA?2’ for a = 2. ThusA =4, g =n+1andK = 4(n+1). A general element

x € A} can be expressed as follows.

T =c1 + 01c2 + dac3 + 0162¢4

where,c;,i = 1,...,4 € Clif f,. Let us obtain a matrix representation ovél f f,, for the mapL.. We
have,

L,(1) = ¢+ 012+ dacs + d102¢4

Ly(01) = (c1 4 01c2 + d2c3 + 0102¢4)01

= 01c1 + 2 + 0102¢3 + dacy
L:(83) = (c1+ 81co + dacs + 6102¢4)02 (12)
= d2c1 + 0102¢2 + €3 + d1c4
L,(0102) = (c1+ 012 + d2¢3 + d162¢4)0102

= 0102c1 + doco + 0103 + 4.
The mapL, can be represented by the matrix

1 €2 €3 4

C2 C1 C4 C3
(13)
C3 C4 C1 Co

| ¢4 C3 C2 |
where, ¢y, ca,c3,¢4 € Clif f,,. In order to get a matrix representation ov&rwe simply replace each
ci,i =1,...,4 by their matrix representations ov€r However, we are interested only irdegroup ML
decodable LSTD which can be obtained by using the matrixesaprtation of the specific elemerits
Vi, 1 =1,...,n, 01, 01, = 1,...,m, 62, 0oy, © = 1,...,n, 5102, 01027y, © = 1,...,n as weight
matrices. This is done by restricting the representatioth@falgebra to the subspace ofespanned by
the required elements of the algebra. In other words, wetisutteszero for the coefficients corresponding
to the terms not required (terms involving product of Cliffcalgebra generators likg v, are omitted).
To be precise, each € Clif f,, is restricted to be of the form:

Ci = T(;—1)(n+1)+1 T Z T(i—1)(n+1)+57V4
j=2

for somez; € R, i = 1,..., K by forcing the coefficients of the remaining terms as zeraehms of
the corresponding matrix representation, this is equitale simply replacing;,i = 1,...,4 by ODs in
(13). Therefore, the above method results ig-@al symbol ML decodable CUW STBC with maximal
rate. It turns out that the above construction is precisedy ABBA construction proposed by Tirkkonen

et al in [5].
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As a consequence of this result, it follows that thieansmit antenna LSTD based on ABBA construc-
T, +1xy —x3+iry x5+ irg —T7+1x8
i ) T3 + 124 T — 1Ty X7+ 1Tg T5 — 1%¢
tion given by has to be2-real symbol ML decodable.
Ts+1xg —x7+irg X1 +1iTo —T3+1x4

T7 +ixg T5 —1Tg T3+ 14 T — 129
Though the same LSTD was proposed earlier in [5], the ‘authb{§] chose the following pairing of

real variables in a group which essentially resulted itr@al symbol ML decodable STBC.

1) First group{zi,z2}
2) Second groudxs, x4}
3) Third group{zs, zs}
4) Fourth group{z7,zs}.

However, if we form the following partition of real varialsiewe can obtain a single complex symbol

ML decodable STBC.

1) First group{z1, x5}
2) Second groudzs, g}
3) Third group{zs, z7}
4) Fourth group{z4, zs}.

Thus we see that the ML decoding complexity of STBCs obtaiffech linear designs can vary

dramatically depending on the choice of multidimensionghal sets’.

2) Algebraic description for Tensor product construction:
In [13], a construction of CUW STBCs based on tensor produas provided without giving any
reasoning for the mathematical source of such a construcidéth the algebraic background that we
have now developed, the tensor product construction in 88| be easily explained. Since the group
G is a direct product of5, andG;, from Lemmall, a representation 6f can be obtained as a tensor
product of a representation @&f, and that ofGs. Unitary matrix representations @, are available
in [2]. The unitary matrices representiigs should commute and also squaretoSuch matrices are
simultaneously diagonalizable and their eigen values qualdo+1 (squaring tal). So a simple method
to construct\-real symbol decodable STBCs would be to takinearly independent diagonal matrices
of size A x A having+1 as entries and then tensor them with representation matotéhe generators
of G,. The construction suggested in [13] is precisely based @ngtinciple. One advantage of the

construction in [14] is that it provides CUWDs for all evenmiper of transmit antennas.
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3) On the maximal rate of non-CUW STBCs:
It is important to note that Theoreh 6 provides the optimé-dL decoding complexity tradeoff only
within the class of CUW STBCs. The rate of a genegrglroup ML decodable STBC can in fact be more
that of a CUWD. An example of a such a LSTD is the recently fobigh rate quasi-orthogonal STBC
in [58]. This LSTD for 4 transmit antennas which was found by an exhaustive competich has a
rate of2.5 dpcu and i2-group ML decodable. This solitary example fbtransmit antennas shows that
there is a lot of room for further work in the direction of irasing transmission rate gfgroup ML
decodable STBCs.

I[1l. MULTI-GROUPML DECODABLE DISTRIBUTED STBCs

In this section, multi-group ML decodable distributed sptime block codes (DSTBCs) are discussed.
In Subsectiof IlI-A, we present a generalization of theritigted space-time coding strategy proposed in
[33] and derive a code design criteria for full diversity. $ubsectiof IlI-B, the necessary and sufficient
conditions for multi-group ML decoding of DSTBCs are pro#ili Three new classes of four group
decodable DSTBCs are constructed in Subsectionllll-C.

A. Distributed Space-Time Coding

Consider a network consisting of a source node, a destmaitmle andR relay nodes which aid
the source in communicating information to the destinatiih the nodes are assumed to be equipped
only with a single antenna and are half duplex constraingd, & node cannot transmit and receive
simultaneously in the same frequency. The wireless charrslveen the terminals are assumed to quasi-
static and flat fading. The channel fading gains from the @uo thei-th relay, f; and from thei-th
relay to the destination; are all assumed to be independent and identically diseibabmplex Gaussian
random variables with zero mean and unit variance. Symbnthaynization and carrier frequency
synchronization are assumed among all the nodes. Morebgeddstination is assumed to have perfect
knowledge of all the channel fading gains.

Every transmission cycle from the source to the destinatmmprises of two phases-broadcast phase
and cooperation phase. In the broadcast phase, the soansenits a'(7' > R) length vectory/m; Pz
which the relays receive. Her®, denotes the total average power spent by all the relays ansiilrce.
The fraction of total powel spent by the source is denoted by. The vectorz satisfiesE[z/ z] = T
and represents the information that the source intends nonumicate. The received vector at thie

th relay node is then given by; = /7 Pfjz + vj, where v; ~ CN(0,Ir). During the cooperation
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phase, all the relay nodes are scheduled to transmit tagéthe relays are allowed to only linearly

process the received vectey or its conjugater;*. To be precise, thg-th relay node is equipped with

aT x T matrix B; (called relay matrix) satisfying B; ||%= T" and it transmitst; = %Bjrj or
t; = ﬂf]gilBjrj*. Here,m, denotes the fraction of total powd? spent by a relay. Without loss of

generality, we may assume that the fifgt relays linearly process; and the remaining? — M relays
linearly process;*. If the quasi-static duration of the channel is much grettan 27" time slots, then

the received vector at the destination is given by

R
B ' | mmaP?
y—;gjtﬁw— —pXh+n (14)
where,
X = [ Biz ... Bmz Bmii1z® ... Bgrzt } (15)
T
h = [ figr fag2 oo fmanm firo9mer oo fROR ] ; (16)
—5 M R
2 .
D= NP D 9Bivit Y, 9By | +w, (17)
! =1 J=M+1

andw ~ CN (0, I7) represents the additive noise at the destination. The pali@ration factorsr; and
o must satisfyr; PT + RmoPT = P(2T). Throughout this paper, we choose = 1 andmy = % as

suggested in [33]. Lel’ denote the covariance matrix af We have,

7T2P
mP+1

R
I = E[non’!] = Ip + O lgil”BiBi™). (18)
=1

The vectorz transmitted by the source is taken from a finite subseC6fwhich then defines a
collection of matrices when substituted for X as given in[(Ib). This finite set of matrices is called
a DSTBC since each column of a codeword matrix is transmitedyeographically distributed relay
nodes. The destination node performs ML decoding as follows

7T17T2P2
mP+1

X = arg min | T3 (y ~ Xh) |7 . (19)
Observe that if the entries of are treated as complex variables, then the DSTBCan be viewed
as being obtained from certain special LSTDs having the fofrL5). Note that such LSTDs have the
property that any column has linear functions of either ahycomplex variables or only their conjugates
respectively. We refer to LSTDs with this property as ‘c@gte LSTDs'. The following theorem provides

sufficient conditions under which the DSTB& achieves full cooperative diversity equal ®ounder ML

decoding.
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Theorem 7: Assume thafl’ > R, m = 1 andr, = +. If B;B;” is a diagonal matrix/ i = 1,..., R
and if AX = X; — Xj has full rank for all pairs of distinct codewords;, X; € ¢, then the DSTBC¢’
achieves full cooperative diversity equal ®bunder ML decoding.

Proof: Let X; be the transmitted codeworX; be some other codeword and laiX = X; — X;.

We have,

my o P2 _ 1 e P2
e—(y—\/ﬁXh)HF 'y—y/ P Xh)

P(y’XI) = 7TT|F|

On applying the Chernoff bound, we can upper bound the psérwiror probability (PEP) that a ML

decoder decodes wrongly X; as follows:

E 7r17r2P2 H Hp—1
PEP < 6_4(71']P+1)h (AX)7T (AX)h. (20)
{fi} {9i}
SinceB;B;' is a diagonal matrix/i = 1,..., R, let u denote the maximum of the diagonal entries

of BB overalli =1,...,R. LetD = (1 + ‘;:r;}ff f;l \g,-P) It. Now by replacingl’ by D, we
can further upper bound the PEP expressioil_ih (20) sincestieissentially equivalent to assuming more
noise variance at the destination than what is actuallygmtesnd hence results in an upper bound. Thus,

we have

T T 2
PEP < E e 4(i1129i1>hH(AX)HD71(AX)h'

{fit {ai}

On integrating over thg;'s as done in Appendix | of [33], we get

w1 P?

E
PEP < Ig + — 2
= | Rt imP+ )

o) (AX)IDH(AX)diag {|g1]% 921, - -+ lgr[*} [
i

For the power allocatiomr; = 1, mo = % and for largeP, we can approximate the above expression

as follows:

B P
PEP < g + —
{9:} AR+ pdl lgil?)

Now proceeding as in Appendix Il of [33], it can be shown the Bbove expectation can be further

(AX)T(AX)diag {|g1[% |g21?, - - -, lgr[*} | (21)

upper bounded to result in:
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1\ —R
H R log log P
PEP < <c\<AX>4 éAX)y ) (1)

where,c is some constant independent®f This completes the proof. |
TheoreniV generalizes the results of [33] (wherein onlyaupitelay matrices were permitted) to allow
row orthogonal relay matrice8(B;" is a diagonal matrix). Note that the transmission protossLianed
in this paper does not involve communication using the diiek between the source and the destination.
An even more general transmission protocol called as ‘GNAdtgeol’ which employs the direct link
and also allows a general form of linear processing at treysedlong with unequal duration of broadcast
phase and cooperation phase is discussed in [49]. Notefttiad direct link is also employed, then a
maximum diversity ofR + 1 can be achieved [49]. However, for the purposes of this pdpemresults of
TheoreniV are sufficient. We shall see in the sequel thatingld3; to row orthogonal matrices paves
the way to obtain DSTBCs with low ML decoding complexity. Hen for constructing DSTBCs we
need conjugate LSTDs whose relay matrices have orthogonal. This is one of the major differences
between collocated STBCs and DSTBCs.

B. Conditions for Multi-group ML decoding of DSTBCs

The ML decoding complexity of DSTBCs becomes an importasuesespecially wher is large. This
provides a good motivation to study multi-group decodab&TBCs. The following theorem provides
necessary and sufficient conditions for multi-group ML diéing of DSTBCs.

Theorem 8: ADSTBC ¥ is g-group decodable if and only if the following two conditioas satisfied.

1) € is g-group encodable

2) The associated basic matricAs,i = 1,..., K of & satisfy:

AT A + AT A =0 (22)

wheneverA; and A; belong to different groups.

Proof: Let§ = I'"zy. Then from [I9), the ML decoding metric is given by

|y — ’;11}2512 (I":X)h |%.. Compared to the collocated case, the difference here ietheinvolving
I':. The effect of pre-multiplication bI“é can be captured by considerimg‘éx as a LSTD whose
basis matrices are given H‘y‘%Ai,z' =1,..., K. Now applying the conditions faj-group ML decoding
of collocated STBCs, we get the condition fpgroup ML decoding of DSTBCs to be that: (%) should

be g-group encodable and (2) wheneuwky and A; belong to different groups, they should satisfy
(T2 A)" (D72 Ay) + (D72 A" (D72 A) = 0
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which, on simplification gived (22). [
Note from [18) that if all the relay matrices are restrictedbe unitary as in [33], thei® becomes a
scaled identity matrix which in turn makes the conditionZ2) coincide with that for collocated STBCs.

To summarize, g-group ML decodable collocated STBC qualifies to becongegaoup ML decodable

DSTBC if it satisfies the below three conditions.

1) The associated LSTIX = Zfil x;A; is a conjugate LSTD.
2) The associated relay matrices are row orthogonal BgB;'’ is a diagonal matrix.

3) Equation (21) is satisfied by the associated basis matAgei =1,..., K.

Example 3.1:Consider thed x 4 single real symbol ML decodable (6-group ML decodable ) STBC

21—z —2a 0
. . 2 2 0 —z3 . .
from 4 x 4 orthogonal design given by . Note that it is not a conjugate LSTD
z3 0 2] —2z
0 =z 2z =

and hence does not qualify as a DSTBC.

Example[3.1l demonstrates that though orthogonal desighdi@nce single real symbol ML decodable
collocated STBCs are well known in the literature, the titems to distributed case is not straightforward.
Thus it is clear that it is more difficult and challenging tanstruct multi-group ML decodable DSTBCs

compared to multi-group ML decodable collocated STBCs.

C. Four group decodable DSTBCs from Precoded CIODs

Towards constructing four-group decodable DSTBCs, camdige following example.

Example 3.2:Consider thet x 4 CIOD [11] shown below

z1 —z5 0 0

z zf 0 0
Xcrop = V2 !

0 0 =23 —2

0 0 =z =2

where,z; = x1 + ix9, 29 = x3 + ix4, 23 = x5 + ixg and z4 = z7 + ixg are complex variables. It is
clear thatX;op is a conjugate LSTD. We shall now see h®y:;op is actually a4-group decodable
DSTBC. Let the number of relay® = 4. In the broadcast phase let the source transmit the vector

T
VTP | 21 29 23 24 ] , Where the information symbol§ey, x5}, {2, z6}, {23, 27}, {z4, 28} are
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each taken from a rotated QAM constellation as given below

x; _ cosf —sinf Yil 1.4
Tita sinf cos6 YiQ
where, vit ,i = 1,...4, take values from a QAM constellation amdis an appropriately chosen
YiQ

rotation angle [11] so that the resulting DSTBC satisfiesr#irek criterion for full diversity according to

TheorenilV. FoiX;0p, the value ofM = 2 and the corresponding relay matrices are:

V2 0 0 0 0 —vV2 00
0 2 00 2 0 0 0
B1: \/_ 7B2: \/_
0 0 00 0 0 0 0
0 0 00 0 0 00
00 O 0 00 O 0
00 O 0 00 O 0
B3: 7B4:
00 V2 0 00 0 —Vv2
00 0 V2 00 V2 0
The corresponding matrik is given by
2 (|g1]? + |g2?) I 0
r—1,+ o P (|91| |92|) 2
mP+1 0 2 (Igsl? + l9a]?) I
The weight matrices foK;0p are given as follows:
_1000_ _z 000_ _0 —100_
01 00 0 — 0 O 1 0 00
-‘Alz\/5 7A2:\/§ 7A3:\/§ )
0 00O 0 0 0O 0 0 00
0 0 0O 0 0 00 0 0 0O
0 ¢ 0 O 00 0O 0 00 O
i 00 0 0 00O 000 O
A4_\/§ 7A5:\/§ 7A6_\/§ ;
0 0 0O 0010 0 0 ¢« O
0 0 0O 00 0 1 0 0 0 —
000 O 0000
0 00 O 0 00O
A7 =2 JAg =2
00 0 -1 0 0 0 ¢
001 O 0 0 ¢ 0
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It is easy to check that all the weight matrices are row ortimad and they satisfy (22) fok = 1.
This is because of the special block diagonal structur&efop with each block being a replica of
the Alamouti LSTD. The resulting DSTBC will achieve full qoerative diversity and ig-group ML
decodable or equivalently one complex symbol ML decodable.

We now generalize the LSTX;0p given in Exampld_3]2 for any number of relays having the
special feature ofl-group decodability. We call these LSTDs as ‘Precoded CIGREIODS).
Construction of Precoded CIOD for even number of relays:

Given R an even number, th& x R PCIOD X pcrop for R relays is given by[(23).

x — di { I: 1 +iry  —w3 + iz } l: Ty + JTp41 —Tg42 + ITE43 } [ ToR—3 T 1T2R—2 —T2R—1 + 1T2R }}
crop = diag ) ) yeves i ) RN ) )
x3 + 1Ty T —1T2 Tpyo + JTE43 Tl — JTk41 Tor—1 t i1T2R T2R—3 — 1T2R—2
23)
There are totally2R real variablesry, xs, ..., zor in the conjugate LSTDX pcrop. The following

expression shows th& pc;op is not fully diverse for arbitrary signal sets.

4 2 k+3 2 2R 2
(AX perop) (AX perop)| = <Zm§> ...(Zm?) < > Am?)
i=k

i=1 i=2R—3
However, constellation precoding can be done to achievedfursity. Precoding is to be done in the

following manner. Th&R real variables are first partitioned into 4 groups as foltows

First group:{w1+4k\k =0,1,..., %}

Second group{za 4|k =0,1,..., 283}

Third group: {3 4k |k =0,1,..., 282}

Fourth grOUD:{x4+4k!k =0,1,..., 2R4_1 }

There are§ real variables in each group. Now [&;,7 = 1,...,4 denote the LSTDs corresponding to
only the real variables in theth group respectively. NoiX porop = Zle X;. Also it can be checked

that

4
(AX pcrop)® (AX perop) = Z AXHAX;.
i=1
Supposing the constituent STBCs corresponding to LSKDs: = 1,...,4 are fully diverse, then

(AX)H(AX;)| >0V i=1,...,4 and on application of Corollary 4.3.3 in [63], we get

[(AX perop) (AXperop)| = _min {[(AX)(AX)[} -

Thus we see that if the constituent STBCs are fully diversentthe resulting STBC from PCIOD
will also be fully diverse. Note that(AX,)" (AX;)| = (Hfz_o1 Aw;y45)* which is nothing but the
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product distance. Hence, if we let th@ real variables in a group to take values from a rotaed
lattice constellation which is designed to maximize theimum product distance then full diversity is
guaranteed. Algebraic number theory provides effectivamado construct rotateéd™ lattices with large
minimum product distance [47], [59] for any € N and the corresponding lattice generator matrices can
be explicitly obtained from [59] for dimensions up$6. Due to the block diagonal nature X pcrop

with replicas of Alamouti designs on the blocks, the resgitDSTBC will be a full diversity4-group
decodable DSTBC. The following example illustrates thestarction procedure foR = 6.

Example 3.3:The PCIOD for6 relays is as shown below:

. T1 +ixe —x3+1T4 Ts5 4+ ixg —x7 +1Tg Tg + X190 —X11 + X192
diag ) )
T3 +1r4e X1 — T T7 +1rg X5 — ikg 10 + 1211 Tg — 1210
where,
Z; Yi
Tiga | =9 | Yiza |s1=1,...,4
Ti48 Yi+8
Yi

and the vectors 4,,, | ,i=1,2,3,4 take values from a subset BP. The3 x 3 lattice generator matrix

Yi+8
G can be taken from [59]. At the destination, the ML decodingh®f real variable§z;, x; 4, z; 18} has

to be done jointly for eachh = 1,2, 3,4 separately. Thus the resulting DSTBC4igyroup decodable or
3-real symbol decodable.
Construction of Precoded CIOD for odd number of relays:
If R is odd, then construct a PCIOD fdt + 1 relays and drop the last column to gef@+ 1) x R
LSTD. For example, a single complex symbol decodable codg felays can be obtained from Example
[3.2 by dropping the last column. This is shown in the follogviexample.

Example 3.4:

r1+irey x3+ixrgy O
—x3+1ixry 1 —tx2 O

0 0 rs + i(EG

0 0 —x7 + 178
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1) Encoding complexity at the relays for PCIODs:

By observing the structure of the relay matrices of PCIOD care see that it has zeros everywhere except
-1

1 0

for a single non-zer@ x 2 sub-matrix which is a scaled version of either identity rixabr

a+ b
Thus having received two complex numbers, say , a relay should be capable of generating
c+id
. . a—+1b —a +ib . L
and transmitting one of the following or both of which require significantly
c+id c—id
less complexity as compared to multiplying the receivedarelby an arbitrary complex matrix.

2) Resistance to relay node failures:
Note that any two columns of the PCIOD are orthogonal. Thigl$¢eto the property that even if any
column of the design is dropped, it continues to satisfy thlerdnk condition. This property is important
since even if certain relay nodes fail, which is equivalendtopping few columns of the LSTD, the
residual diversity benefits are still guaranteed and thatwiith no additional increase in ML decoding
complexity.

Thus we have a constructed a classtajroup decodable DSTBCs for any number of relays having

the following salient features:

1) Transmission rate of the source(i$ complex symbols per channel use
2) Full diversity

3) Four group ML decodable

4) Low encoding complexity at the relays

5) Resistance to relay node failures

D. Four group decodable DSTBCs from extended Clifford alggb

In the previous subsection, a classiejroup decodable DSTBCs was constructed for arbitrary rrmb
of relays from PCIODs. Amidst many advantages, PCIODs de laadrawback that the power distribution
among the relays is not uniform across time slots which istdube large number of zeros in the LSTD.
This leads to a large peak to average power ratio (PAPR) @molzlt the relays which is undesirable
since it demands the use of larger power amplifiers at theyselsloreover since the relay matrices
of PCIODs are not unitary, this forces the destination tofgger additional processing to make the
noise covariance matrix a scaled identity matrix, i.e.;qugtiplying the received vector by‘%. Above

all, the construction of PCIODs was not obtained from a syaté& algebraic procedure targeting the
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requirements fod-group decodable DSTBCs. Hence it is natural to ask whelteetexists a systematic
algebraic construction of-group decodable DSTBCs with unitary relay matrices andoami power
distribution across the relays and in time.

In this subsection, using the algebraic framework of exéeldlifford algebras introduced in Subsection
[I-B] two new classes of-group decodable DSTBCs with unitary relay matrices as alinitary weight
matrices for power of two number of relays are constructed.

As discussed in Subsectién TI-B, to constrdegroup decodable DSTBCs, we neédnatrices (in-
cluding identity matrix) in the first row (as shown in Table Qne way to obtain such matrices is to take
the matrix representation @f} for L = 2% a € N. The matrix representation of the symbolsy, v2, 73
respectively can be used to fill up the first row. Interestirihlere is yet another way of obtaining such
matrices. Let us look a\Z for L = 2%, a € N. The symbolsy; and+s square to—1 and anti-commute.

However, note that

(on)? = -1
(ey)m = —mlemn) - (24)
(271)v2 = —v2(72m1)

Thus the symbol,~y; also squares te-1 and anti-commutes with the symbe}s and~,. Thus we can
fill up the first row with the matrix representations of the 01 1,1, v2, 271 respectively. Thus we
can get two classes dfgroup decodable DSTBCs, one frafrf and the other fromAZ if the problem
of conjugate linearity property and unitary relay matriege also taken care.

1) Matrix Representation:

There are several ways to obtain a matrix representatiom @igebra. We need to take an appropriate
matrix representation such that the following conditions met.

1) The symbolsl, v1, 72, ..., ¥, 0k, for k =1,...,a, and{J;, _, [, 0k, for 1 < k; < kiy1 <a

should be represented by unitary matrices.

2) The resulting LSTD should be a conjugate LSTD.

3) All the relay matrices should be unitary.

Such matrices are naturally provided by the left regularesgntation of the associative algebyA.
Left regular representation is an easy way to obtain theixnapresentation for any finite dimensional
associative algebra [64]. Such techniques have been psdyiased in [9], [10] to obtain the matrix
representation of division algebras and crossed prodgebeads. The first requirement of unitary matrix

representation is met because the natural basis elemeats oferR together with their negatives form
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a finite group under multiplication (see Propositldn 3).sTfact in conjunction with the properties of
left regular representation guarantee a unitary matrixesgntation for the required symbols. We shall
prove the other properties after illustrating the constencprocedure for both the codes froAdy and
AL,

2) DSTBCs fromAL:
We first view A% as a vector space ovér by thinking ofy; as the complex numbeér= \/—1. A natural

C basis forAZ is given by

By ={1,52} U {12} dili =1,....a} | {1, 72} {H%U < ki < kig1 < a} - (25)
m=2 =1

Thus the dimension ofil seen as a vector space ogis 2"+~ We have a natural map fros} to

Endc(AL) given by left multiplication [9], [10], [64] as shown below.

¢ : AL s Ende(AD) 26)

P(x) =Ly y— ay

Since the map_, is C linear, we can write down a matrix representation/qf with respect to the
naturalC basisB%. Thus we obtain a LSTD satisfying the requirementsLof (3)der 4.

Example 3.5:Let us begin with the simplest case & = 2' relays. Letn = 2. Then equating
n+a—1=1, we geta = 0 and hence. = 1. But the algebra\} is same a€’lif f(2) which is nothing
but the Hamiltonian Quaterniori. It is well known [9] that the left regular matrix represeia of H
yields the popular Alamouti design. Thus we see that ourbaifge code construction which was driven
by the need for low ML decoding complexity naturally leadstte Alamouti design.

Example 3.6:Suppose we want a LSTD fdt = 8 = 23 relays. Letn = 2. Then we need+a—1 = 3.
Thusa =2 and L = 4. A general element of the algebsg looks like

x = 21 + 0122 + 0223 + 010224 + Y225 + 017226 + 027227 + 01027228

where,z; € C,Vi = 1,...,8. We shall now find the matrix representationof by finding out the image

of the basisB; under the mag.,, which is shown below.
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Ly(1) = 21+ 6122 + baz3 + 010224 + Y225 + 617226 + 027227 + 01027228

Ly(61) = 0121 + 22 + 610223 + 224 + 017225 + Y226 + 01027227 + 27228

Ly(02) = 0221 + 610222 + 23 + 0124 + 027225 + 01027226 + Y227 + 017228

Ly(6102) = 020221 + 0220 + 0123 + 24 + 01027225 + 027226 + 017227 + Y228
Ly(v2) = (21 + 0122 + 0223 + 810224 + 7225 + 017226 + 027227 + 61027228) V2 (27)

= Y22 + 017225 + 027225 + 0102722 — 25 — 6125 — 0227 — 010225

Ly(0172) = O1722] + 7223 + 01027225 + 02722] — 0125 — 2§ — 010227 — 022§

Ly(0272) = O2v22] + 01027225 + 223 + 01722) — 0225 — 022§ — 25 — 0123
L, (010272) = 0102722 + 027225 + 017225 + Y22) — 010228 — do2f — 0125 — 2§

The matrix representation df, is thus given by:

21 &y 23 24— —R —X7 —2g
22 Zl 24 23 _26 _25 _28 _27
23 24 k1 R2 T2y T2y TRy —Zg
zZ4 Z3 z9 Z21 _Z8 _Z7 _Z6 _Z5
[La] = : (28)
25 26 27 28 2 % &z
26 25 28 27 25 2] k7 23

Zr 28 25 Zg 23 I 2y 25

28 x7 Ze Zs  Zy X3 2 2]
Also, we have that

r = 211 +7121Q + 01221 + 0171220 + 02231 + S2v123Q + 0162241 + 01027124 + V2251 29)
+Y27125Q + 0172261 + 01727126Q + 0272271 + 0272V127Q + 0102772281 + 0102727128¢ -

Since the map is a ring homomorphism, we have

Ly = ¢(1)z2119(1) + ¢(m1)21Q + #(01)221 + #(0171) 220 + ¢(02) 231 + ¢(0271) 230
+¢(0102)zar + #(616271) 210 + B(V2) 251 + d(271) 250 + B(6172) 261 + H(617271) %60 (30)
+¢(0272) 271 + P(d27271) 270
+¢(0102772) 281 + P(61027271) 28 -
The equation[(30) explicitly gives the desigh,] in terms of its weight matrices. Because of our
algebraic construction, the weight matrices can be pamgiil into four groups such thad (3) is satisfied.

The four groups are

1) {o(1),#(d1), (d2), p(0102)}
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2) {#d(m), ¢(6171), ¢(d271), #(616271)}
3) {¢(12), #(6172), (0272), ¢(10272) }
4) {p(v271), ¢(017271), #(d27271), P(61027271) }

respectively. Expressing the real variables of the rasyliiesign and their corresponding weight matrices

in the form of a tabular column as shown in Takble I, we get

o(1) é(m) P(72) P(v271)

211 21Q Z51 25Q
9(61) | o(61)d(n) | 9(61)o(r2) | é(d1)o(vem)

Zo1 22Q Z61 26Q
P(02) | #(62)o(n1) | #(02)d(v2) | 9(2)d(v2m1)

231 23Q Z11 27Q
$(6162) | ¢(6162)0(11) | P(d102)(72) | P(d102)P(7271)

zZ4] Z4Q Z81 28Q

In general forR = 2™ relays we can take the left regular representatior:\@"f1 to obtain a4-group
decodable LSTD. These LSTDs were first obtained using a tg@beaic iterative construction procedure
in [51]. The algebraic framework presented in this papevigles an interesting algebraic description for
codes in [51].

Remark 9:Note that in general to represeht, as a matrix one could have chosen any basis for
AL instead of the natural basi3). However, only the natural basis will lead to a design wita tbow
decoding complexity requirements, although a differersidavill also give a representation of the same
algebra. This shows that although two designs can be aligaliyaisomorphic, the choice of basis is
crucial and only certain basis admit low decoding compiexXfurther, even changing the ordering of
the natural basis can result in designs which apparently \@oy different. But this is same as simply
applying a permutation to the rows and columns.

3) DSTBCs fromAZ:

We use a slightly different approach to obtain codes fasfn Let us first consider the algebra} which
is nothing butClif f3. A general element of’lif f5 looks like

T = a1+ a2+ 9203 + 304 + V17205 + V2386 + V177307 + V1727308 (31)

for somea; € R,i = 1,...,8. Note that we have used the natuRalbasis ofClif f3 to represent an

element ofClif f3. The elementy;v,~; satisfies the following properties.
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n)? = 1

(
(v)(y2v3) = (ner)(n) (32)
(2)(n72y3) = (m273)(r2)
(v3)(m2v3) = (117273)(73)

Thus the element;y2y3 squares td and commutes with all the generators(@f: f f3. Hence the matrix
representation of the elementy,y3 can be used as a candidate to fill up the first column. Since we
have now filled up two matrices (including identity matrix) the first column, it should be possible to
get a2-real symbol decodable STBC using matrix representatio@'lef fs. From Subsection II-B, we
know that the remaining weight matrices are simply the pobaid matrices in the first row and those

in the first column. We have,

(1) (n273) = =273, (12)(7172793) = Y13 @and (v3)(117273) = —7172- (33)

It so turns out that the elements &f, v1,v2, 73, — 7172, —V273, 7173, 117273+ also form a basis for

Clif f3 overR. Thus a general element 6fiif f3 can be expressed as

r = a1+ 7102 + 7203 + 304 + (—7172)as + (—y2v3)as + (y173)ar + y17273a8 (34)

for somea; € R,i =1,...,8. By thinking of the element; as the complex numbér= /—1, we can

view Clif f3 as a vector space ovél. To be precise,

z = (a1 +ma2) + v2(as + mas) + v3(as — y1a7) + y273(—ae + 71as) (35)
= 21+ Y222 + Y323 + V27324
where,z; € C,i =1,...,4 and are given by, = (a1 + y1a2), 22 = (a3 + 110a5), 23 = (a4 — y107) and
z4 = (—ag + 7108).
Now using left regular representation as in the case of cides A%, we get

Ly(1) = 21+ 7222 + 7323 + 72732

Ly(v2) = 721 — 25 — 727323 +132)
Ly(y3) = v32] + 727325 — 25 — 22) (36)

Lo(vavs) = 72v321 + 737322 + V37273723 — 24

= 727321 — V322 + V223 — 24

Hence we obtain the following LSTIL, ]
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21—z —2y —2
* *
Z2 Zl - Z4 23
[Lz] (37)
23 2y A —x
24 —23 25 21

By construction, the weight matrices and the real variabfethe LSTD [L,] can be partitioned into

four groups for decoding purposes which is illustrated ia thllowing table.

o(1) o(m) o(72) o(73)
211 21Q 220I 231
o(rr273) | o(=1273) | ¢(n1y3) | A(=1172)
24Q zZ41 23Q 22Q

In general, forR = 2™ relays we can take the left regular representatiom@?*z.
Example 3.7:Suppose we want a design f& = 8 = 23 relays. Then, we have: = 3. Consider the

algebraA2. A typical elementz can be expressed as
T = 21+ Y2z2 + Y323 + V27324 + 0125 + 017226017327 + 01727328

wherez; = (zi1 + 7121Q), 22 = (221 + M122Q), 23 = (231 — 1123Q), 24 = (—2a1r + M24Q), 25 =
(zs1+m25Q), 26 = (261 +7126Q), 27 = (271 —11271Q), 28 = (—281+7128¢) @NAzi1, zi9 € R, i = 1,...,8.
Using left regular representation, we get the following ID5T

The corresponding groups of real variables a1y, z4Q, 251, 280}, {210, 241, 25Q, 281 },

{2’2], 23Q, %61, Z7Q} and {2’3], 22Q, 2171, ZGQ} respectively.
4) Features of DSTBCs from extended Clifford algebriiste that both the LSTDs fromZ and AL

21 —2y —23 —24 5 —Zg —4p —2
Zog 2 —z] 23 % x5 —zy a1
z3 zy 2 —xm 2 2§ % —Z
24 —23 25 21 2~ 2 zs5 (38)
25— —R7 —28 X —Zy —Zy —Z4
26  zE —23 & Z 2 —zp 23
27 25 25 —2 23 I 2] —22
| 28 —27 2 25 24 —23 25 z1 |

are conjugate linear. This is by virtue of the propertiesedt tegular representation. While taking the

DRAFT

October 30, 2018



43

left regular matrix representation, recall that we viewieel algebra as a vector space o@eby thinking

of the elementy; as the analogue of the complex numbef /—1. Any column of the design was then
obtained as the image of a few elements of the natural badisechlgebra under the map,. All the
elements of the natural basis &f; have the property that they either commute wijthor anti-commute
with ~1. When we find the image of a basis element saynder the mapl,, recall that we moved

« past a complex numbey;. If o commutes withry;, then it leaves the complex number intact.olf
anti-commutes withy;, then it inflicts conjugation while moving past the complexnber. This property
leads to conjugate LSTDs. This fact can be clearly obsermeftri instance[(27). Moreover it can be
easily observed that all the relay matrices of the resulfiegigns are unitary. This is because the number
of complex variables in the design is equal to the size of tlatrimmnand by virtue of the left regular
representation any complex variable appears only onceyrcalumn and also they appear in different
positions in every column. Full diversity is guaranteedlioth these classes of LSTDs because they are
CUWDs and full diversity aspects for general CUWDs have bdisnussed in Subsection 1I-B.1. Also
note that both these constructions meet the optimal ratedeitoding complexity as stated in Theorem
for ¢ = 4. The constructed DSTBCs can be easily described and theyaaery nice structure which

is due to the algebraic approach.

IV. OFDM BASED DISTRIBUTED SPACE TIME CODING FORASYNCHRONOUSRELAY NETWORKS

In this section, we consider symbol asynchronism among ¢teeys and propose an OFDM based
transmission scheme that can achieve full cooperativergityein asynchronous relay networks. This
transmission scheme is a generalization of the Li-Xia trdasion scheme in [39]. We briefly review the
Li-Xia [39] transmission scheme in Subsectlon IV-A and inbSectio IV-B, we describe the proposed
transmission scheme and also provide code constructicsedban the four group decodable DSTBCs
constructed in the previous section. Finally, in SubsadBaCl it is shown how differential encoding at
the source node can be combined with the proposed transmissheme in Subsection T\V-B to arrive
at a transmission scheme for non-coherent asynchronaas mekworks.

An asynchronous wireless relay network is depicted in EigTte overall relative timing error of
the signals arrived at the destination node from #ik relay node is denoted by. Without loss of
generality, it is assumed that =0, 7,41 > 75,4 = 1,..., R — 1. The relay nodes are assumed to have
perfect carrier synchronization. The destination nhodesgimed to have the knowledge of all the channel
fading gainsf;, g;,7 = 1,..., R and the relative timing errors,7 = 1, ..., R. All the other assumptions

are same as that made for the synchronous wireless relapretase.
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Fig. 5. Asynchronous wireless relay network

In this OFDM based transmission scheme, the transmissianfafmation from the source node to
the destination node takes place in two phases. In the fiesdgylthe source broadcasts the information
to the relay nodes using OFDM. The relay nodes receive thedfatd noise corrupted OFDM symbols,

process them and transmit them to the destination.

A. Li-Xia transmission scheme[39]

The source take8N complex symbols; ;, 0 <i < N — 1,5 = 1,2 and forms two blocks of data
denoted bya; = | 20; z1; ... 2y_1j T,j = 1,2. The first blocka; is modulated byN-point
Inverse Discrete Fourier Transform (IDFT) aag is modulated byN-point Discrete Fourier Transform
(DFT). Then a cyclic prefix (CP) of length,, is added to each block, whefg, is not less than the
maximum of the overall relative timing errors of the signatgved at the destination node from the relay
nodes. The resulting two OFDM symbols denotedagyand ap consisting ofL; = N + [, complex
numbers are broadcasted to the two relays using a fraatioof the total average poweP consumed
by the source and the relay nodes together.

If the channel fade gaing, g;,7 = 1, ..., R are assumed to be constant floOFDM symbol intervals,

the received signals at theth relay during thej-th OFDM symbol duration is given by
rij = fié_lj + ‘_’id

where,v; ; is the additive white Gaussian noise (AWGN) at thth relay node during thg-th OFDM
symbol duration. The two relay nodes then process and triatisenresulting signals as shown in Table
[Musing a fractionm, of the total powerP. The notation((.) denotes the time reversal operation, i.e.,
¢(r(n)) £ r(Ly — n).

The destination removes the CP for the first OFDM symbol anpléments the following for the

second OFDM symbol:
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TABLE Il

ALAMOUTI CODE BASED TRANSMISSION SCHEME

OFDM Symbol Ui Uz
o P o P *
1 \/‘rr1]23+1r1’1 _\/n1123+1r2’2
2 \/MMTILC(HB) \/%C(rzﬁl*)

1) Remove the CP to get &-point vector

2) Shift the lastl., samples of theV-point vector as the first,, samples.

DFT is then applied on the resulting two vectors. Sirdge > 7, the orthogonality between the
sub carriers is still maintained. The delay in the time domnthen translates to a corresponding phase
T
] . Then the

received signals for two consecutive OFDM blocks after Ciraeal and DFT transformation denoted

i27m7o i277o (N —1)

change ofe= "% in the k-th sub carrier. Letl™ denote{ 1 e~ ... e N

T T
by YI — |: y071 y171 yN—l,l ] and Y2 = |: yO,Z y172 yN—l,Z ] can be expressed as.

yi= /2B (DFT(IDFT(a1)) fig1 + DFT(—(DFT(az))*) o d™ f3g2)
/B (V191 — Va2t 0 d ) + wy
y2 = /25 (DFT(((DFT(az)))fig1 + DFT(C((IDFT(a1))*)) o d™ f5g5)

T2

P
wFr1(Vi201 + V21" 0d™g2) + wa

_|_

where, o denotes Hadamard produet; = (wy;),7 = 1,2 is the AWGN at the destination and ;

denotes the DFT of;; ;. Now using the identities

(DFT(x))* = IDFT(x*)
(IDFT(x))* = DFT(x*) (39)
DFT(¢(DFT(x))) = x

we get the Alamouti code form in each sub caried < k < N — 1 as shown below:

*
Ykl | [mmapr | PR T %o fio1
- m P+l _i2mhkTy
Yk,2 Zh2 Zga e~ f3g2
_ 127kt
—— | Via(k)gr — va2 (k)em v g2 W1
+ T P+1 * _i27kTo +
viz2(k)gr +va21*(k)e” v g9 W2
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With the power allocationr; = 1, mp = }% and because of the Alamouti code form, diversity order of

two can be achieved along with symbol-by-symbol ML decoding

B. Proposed Transmission Scheme

In this section, we extend the Li-Xia transmission schema tgeneral transmission scheme that can
achieve full asynchronous cooperative diversity for aapjt number of relays. This nontrivial extension is
based on analyzing the sufficient conditions required orsthecture of STBCs which admit application
in the Li-Xia transmission scheme.

1) Transmission by the source node:

The source take®/N complex symbols; ;, 0 <i < N — 1,5 = 1,2,..., R, and formsR blocks of
data denoted by; = [ Wi G e AN-Lg ]T ,j=1,2,..., R. Of theseR blocks, M of them are
modulated byN-point IDFT and the remainingg — M blocks are modulated bi¥-point DFT. Without
loss of generality, let us assume that the fivétblocks are modulated bj¥-point IDFT. Then a CP of
lengthl., is added to each block, whetg, is not less than the maximum of the overall relative timing
errors of the signals arrived at the destination node frohihal relay nodes. The resulting OFDM
symbols denoted b#,,az,...,ar each consisting oL, = N + [, complex numbers are broadcasted
to the R relays using a fractiom; of the total average powep.

2) Processing at the relay nodes:

If the channel fade gains are assumed to be constagif@@FDM symbol intervals, the received signals

at thei-th relay during thej-th OFDM symbol duration is given by
rij = fié_lj + ‘_’id

where,v; ; is the AWGN at thei-th relay node during thg¢-th OFDM symbol duration. The relay nodes
process and transmit the received noisy signals as showable[l using a fractionr, of total power
P. Note from Tabléll that time reversal is done during thet IRBs— M OFDM symbol durations. We
would like to emphasize that in general time reversal coddrbplemented in anyk — M of the total
R OFDM symbol durations. Nowt; ; € {0, £r;j,7 = 1,..., R} with the constraint that théth relay

should not be allowed to transmit the following:

{:]:I‘i’j*,j = 1,...,M}U{:]:C(I‘i’j),j = 1,...,M}
U{:l:I‘iJ,j:M—Fl,...,R}U{ﬂ:C(I‘iJ*),j:M+1,...,R}.
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TABLE 1l

PROPOSED TRANSMISSION SCHEME

OFDM Symbol U1 - U]V[ U]u+1 - UR
1 t171 tM,l tM+171* tR,l*
M tim . tm,m tMm1,m” e trMm”
M +1 Ctim+1) | oo | Ctmmr) | C(bmrimtr™) | oo | C(BRMA1T)
R C(tir) | --- | Cltmr) C(tm,r") co | C(trRT)

Remark 10:If the i-th relay is permitted to transmit elements belonging to dbeve set, then after
CP removal and DFT transformation at the destination no@éewauld end up with the following vectors

corresponding to each of the four subsets in the above getctsely:

+DFT((IDFT(aj))*) = +DFT(DFT(a;*)), j=1,..., M
+DFT(((IDFT(a)))), j=1,...,M

+DFT(DFT(a;)), j =M +1,.... R
+DFT((((DFT(a;))*), j=M +1,...,R

from any of which it is not possible to recover any #h;, +a;*,7 = 1,2,..., R. However, if the
destination node is allowed to apply DFT to some of the reski@FDM symbols and IDFT to the
remaining OFDM symbols, then possibly the above restmctioan be removed, which is a scope for
further work.

3) Decoding at the destination:
The destination removes the CP for the filgt OFDM symbols and implements the following for the

remaining OFDM symbols:

1) Remove the CP to get &-point vector

2) Shift the lastl., samples of theV-point vector as the first,, samples.

DFT is then applied on the resulting vectors. Let the received signals fé& consecutive OFDM
blocks after CP removal and DFT transformation be denoted by
T
Yi=| v, Yij --- Yn-1; | J=12,... R Letw;= (wg,i),i=1,..., R represent the AWGN

at the destination node and tef; denote the DFT of; ;. Let
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T
Zx = | Zk1 Rk2 .- Zlc,R] ,k=0,1,...,N — 1.

Now using [(39), we get in each sub carrieil0 < k < N — 1:

T 7T17T2P2
Yk = [ Yk Yk2 oo YkR } =1/ mxkhk + ny (40)

Xk = |: Blzk BMZk BM+1Zk* ...BRZk>’< :| (41)

where,

for some square real matricd®;,i = 1,..., R having the property that any row d; has only one

i2mkT,

nonzero entry. Ifu;’ = e~~~ , then

T
hk:[ﬁgl upt fags oo up fargn wpt fra9mar - UZRfﬁgR} (42)

is the equivalent channel matrix for tiieth sub carrier. The equivalent noise vectqyr is given by:

B sgn(tia)Via(k)giuy Wi 1
R Y, i
_ 7o P Ba 32ty sgn(ti2)Vi2(k)givy W2
Nk =/ mPsl _ +
| Br Y sgn(tir)Vir(K)giuy | | wir |

1 if 35 € {rij,j =1,..., R}
where,sgn(tij) = ¢ —1 if t;; € {-ri;,7=1,...,R} and
0 if t;;=0
Vim = tvigif i < M and tim = £rig . The g;’s are simply scaling factors to account for the
£vi;*if i > M and t; ;, = £y
correct noise variance due to some zeros in the transmission
ML decoding of Xy can be done froni_(40) by choosing that codeword which mirém|i]z§2‘§(yk —
Xxhy) [|%, whereQ is the covariance matrix ofy. Essentially, the proposed transmission scheme
implements a space time code having a special structurecim g2 carrier.
4) Full diversity four group decodable DSTBCs:
In this subsection, we analyze the structure of the STBCireduor implementing in the proposed
transmission scheme. Then we observe that the DSTBCs wootextrin Sectiom Il have this structure
and hence are applicable in this setting as well. Note fiiofi) {Aat the conjugate linearity property is
required. But conjugate linearity alone is not enough fopace time code to qualify for implementation

in the proposed transmission scheme. Note from Table It tihge reversal is implemented for certain
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OFDM symbol durations by all the relay nodes. In other wofdse relay node implements time reversal
during a particular OFDM symbol duration, then all the otheday nodes should necessarily implement
time reversal during that OFDM symbol duration. Observé thig is a property connected with the row
structure of a space time code. We now provide a set of sufficienditions that are required on the row
structure of conjugate linear space time codes. First Igtamstion the complex symbols appearing in the
i-th row into two sets- one sd®, containing those complex symbols which appear without wgetjon

and another seP which contains those complex symbols which appear with ugmatjon in thei-th

row. Any conjugate linear STBC satisfying the following ciEnt conditions can be implemented in the

proposed OFDM based transmission scheme described in ¢h@®ps subsection.

PNP=¢, Vi=1,...,R
|P|=|Pf|,Vi=1,...,R (43)

To understand what happens if the above condition is not leetis see an example of a conjugate
linear STBC which cannot be employed in the proposed trassion scheme.

Example 4.1:Consider the conjugate linear STBC given by

k1 Zk,2 _Z;;,?, —zZA
k2 Zk3 _22,4 _Zz,l

k3 kA Rl Zk2

kA k1 Rp9 2k,3

for which Py = P§ = {21,212}, Pf = P3 = {213,264}, P» = P{ = {22,253}, P§ = Py =
{zk4,2x1}. It can be checked that there is no assignment of time rdv@BBM symbol durations
together with an appropriate choice &f and relay node processing such that the above conjugate line
STBC form is obtained in every sub carrier at the destinatiode. This is because the conditions in
(43) are not met by this conjugate linear STBC.

For the case of the Alamouti cod®; = Py = {21}, P» = P{ = {#;2} and hence it satisfies the
conditions in [(4B).

It is easy to observe that the four group ML decodable DSTB@ssittucted in Section Il satisfy all
the required conditions as stated[inl(43) and are thus $eifabapplication in the proposed transmission
scheme. This is illustrated using the following two exarsple

Example 4.2:Let us conside? = 4 and the DSTBC from extended Clifford algeli3 for this case
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has the following structure

for which M =2, Py = P = P§ = P{ = {21,212} and P3 = Py = P = P5 = {23, 2;4}. TO arrive

at the above structure in every sub carrier, encoding andepging at the relays are done as follows:

2k,1
2k,2

Zk,3

Zk,4

*
k2 T3 TRk
Z z 25

k,1 k.4 k,3
%k, z;;,l z;;,2
Zk,3 Zz,z Zz,l

a; = IDFT(al), ag = IDFT(az), ag = DFT(ag) anday = DFT(a4)

TABLE IV

TRANSMISSION SCHEME FORL RELAYS

OFDM Uy Uz Us U
Symbol
1 ria ra2 —1‘3,3* —1‘4,4*
2 ri12 ra1 —1‘3,4* —1‘4,3*
3 C(ris) | C(rz.a) | C(rsa”) | ((raz2”)
4 C(r14) | C(rzs) | —C(rs2") | —C(ras”)

As discussed in Sectign]ll, this DSTBC is single complex bgirdecodable and achieves full diversity
for appropriately chosen signals sets .
Example 4.3:Let us takeR = 5, for which the DSTBC is obtained by taking a DSTBC from PCIOD

for 6 relays and dropping one column. It is given by

Ze1 —Zpo 0 0 0

Zh2 21 0 0 0

0 0 23 —z;;A 0

0 0 2k 4 2273 0

0 0 0 0 oz
00 0 0 oz

for which P, = P§ = {231}, Py = P{ = {22}, Ps = P§ = {23}, Po = P§ = {214}, Ps = {215},
Ps = {z16} and P§ = P§ = ¢. At the source, we choose, = IDFT(ay), az = DFT(ag), ag =
IDFT(a3), a4 = DFT(a4), a5 = IDFT(a5) andag = DFT(ag). The 5 relays process the received
OFDM symbols as shown in Tablg V.

This code is3 real symbol decodable and achieves full diversity for appately chosen signal sets.
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TABLE V

TRANSMISSION SCHEME FORS RELAYS

OFDM Uy Us Us Us Us
Symbol

1 T1,1 —r22" 0 -0 0

2 C(r1,2) | C((rza") -0 -0 0

3 0 0 r's,3 —Tra4” 0

4 0 0 —((r3;2) | ((ran”) 0

5 0 0 0 0 I's.s

6 0 0 0 0 —((rs.6)

Example[4.B illustrates how the proposed transmissionrsehean be employed for odd number
of relays as well. Note that the ML decoding complexity of theposed codes for asynchronous
relay networks is significantly less compared to all othetriiuted space time codes for asynchronous
cooperative diversity known in the literature.

Note that the full diversity2-group ML decodable DSTBCs in [37] and the full diversitygroup ML
decodable DSTBCs in [35], [34] also satisfy the conditiong43) and are applicable in the proposed

OFDM based transmission scheme.

C. Transmission Scheme for Noncoherent Asynchronous Rietayorks

In this subsection, it is shown how differential encoding t® combined with the proposed transmis-
sion scheme described in Subseclion IV-B and the distribdifferential space time codes for noncoherent
synchronous relay networks in [54] are proposed for apgdinan this setting.

For the transmission scheme described in Subselctiod I\-Byeaend of one transmission frame, we

have in thek-th sub carriery, = frl]’;;fkahk + ng. Note that the channel matri, depends on
fi»gi, T, =1,..., R. Thus the destination node needs to have the knowledge tifesslé values in order

to perform ML decoding.

Now using differential encoding ideas which were proposefbb], [56], [57] for non-coherent com-
munication in synchronous relay networks, we propose tobioeithem with the proposed asynchronous
transmission scheme. Supposing the channel remains apyrteky constant for two transmission frames,

then differential encoding can be done at the source nodadh sub carriep < k < N — 1 as follows:
0 T t t—1
ak:|:\/R O 0] 7ak:—ctak 7Ct€<€
t
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where,al denotes the vector of complex symbols transmitted by thecsoduring thei-th transmission
frame and? is the codebook used by the source which consists of scaleahymatricesC” Cy = b1
such thatE[p?] = 1. If CB; = B;C,i=1,...,M andCB; = B;C*,i =M +1,...,Rfor all C € &,

then we can write

1 _ 1 -
i =7 Cuyic ' + (i — 5—Cemy) (44)

from which C; can be decoded &8 = arg ming,c¢ || yt — bt - Ceyy ' ||% in each sub carried <
k<N -1.

Note that this decoder does not require the knowledgd;of;, 7;,¢ = 1,... R at the destination
although this transmission strategy assumes the knowleftie2 maximum of the’s since it is needed
to decide the length of CP. It turns out that the four groupodable distributed differential space time
codes constructed in [54] for synchronous relay networks wower of two number of relays meet all
the requirements for use in the proposed transmission sehsmwvell. Let us see an example to illustrate

this fact.

Example 4.4:Let R = 4. The codebook at the source is given by

21w —zy —2
T 22 a1 -z —z

€ = 1 where {217, 221}, {210, 220} , {231, 241} , {30, 240} € S and

23 24 zf 25

2] )
- = 0 0 . : o
S = \f f \/7 ; . Differential encoding is done at the source node
for each sub carried < k< N —1 as foIIows:
0 T t -1
ak:[\/ﬁ 0 ... O} ,ak:mcta ,C€C.

Once we getat, k = 0,..., N — 1 from the above equation, th¥ length vectorsz;,i = 1,..., R can

be obtained. Then IDFT/DFT is applied on these vectors anddwasted to the relay nodes as shown
below:a; = IDFT(a;), ag = IDFT(az), a3 = DFT(a3) anday, = DFT(a4). The relay nodes process

the received OFDM symbols as given below:
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for which M =2, By =14, By =

By

= o o O

o = O O

OFDM Uy U, Us Uy
Symbol
1 ri ra 2 —r3 3" —Tr44"
2 ri2 raq —r34" —Try43"
3 |¢(r1g) | Clrza) | Clraa™) | C(raz2”)
4 1 ((r1a) | Clrzs) | —C(ra2”) | —C(ran’)
(010 0 (00 -1 0
1 0 0O By — 0 0 0 —1
00 01 10 0 0
_0 010 _0 1 0 0

and

. It has been proved in [54] th&&B; = B;C,7 = 1,2 and

53

CB; = B;C*,i = 3,4 for all C € ¥. At the destination node, decoding fdr1s, 22:}, {210,220}

{z3r1,zar} and {z3g, z4¢} can be done separately in every sub carrier due to the fowpgdecodable

structure of%.

V. SIMULATION RESULTS

In this section, we study the error performance of the DSTBI©posed in this paper using simulations.

We consider both the synchronous case and the asynchroases c

For the synchronous case, we compare the performance oétlg proposed DSTBCs from extended

Clifford algebras and PCIODs with the DSTBCs from field esiens [34], [35] for a4 relay network.

The PCIOD taken for simulations is given by

21
Z
0
0

—z5 0
27 0
0 z3

024

0
0

z3

where, {zi1, zar}, {210,230}

{zar, zar}, {220, 240 } are allowed to take values from QAM constellation rota_te($h3718°. The DSTBC

from extended Clifford algebras (ECA) is obtained fra® and is given by
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10° @

< —>— CIOD, rate=1 bpcu
‘@; —©O— ECA, rate=1 bpcu
—— Field extension, rate=1 bpcu
N\ — % — CIOD, rate=2 bpcu
"é\ — © — ECA, rate=2 bpcu
— v — Field extension, rate=2 bpcu

107

-2

-3

Codeword error rate

107k

i

Il 1 I} ¥ il
0 5 10 15 20 25 30 35 40 45 50
Total average power spent by source and relays, P (dB)

Fig. 6. Performance comparison of DSTBCs from PCIOD, ECA figld extension

where,{z11, zor}, {z10, 220}, {231, 230}, {241, 24 } are allowed to take values from QAM constellation
Z1 iZ4 iZg iZQ
Z9 21 iZ4 iZ3

rotated by166.71°. The DSTBC from field extensions [34], [35] is given hy
zZ3 22 Z1 iZ4

24 23 w2
wherez;, i = 1,2, 3,4 are allowed to take values from regular QAM constellation.

Figl@ shows the codeword error rate performance of the p@p®STBCs4 relays) in comparison
to those from field extensions [34], [35] for transmissiotesaof 1 bit per channel use (bpcu) ard
bpcu. We observe that the error performance of the propoeddscare very similar to thé-group
ML decodable DSTBC from field extensions [34], [35]. Thus #wposed codes enjoy a good error
performance along with reduced ML decoding complexity.

For the asynchronous case, we take= 4, N = 64 and the length of CP a$6. The delayr; at
each relay is chosen randomly betwegrno 15 with uniform distribution. Two cases are considered
for simulation: (i) with channel knowledge at the destiaatand (ii) without channel knowledge at any

node. When channel knowledge is available at the destmatiie processing at relay nodes is done as
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100C O = 5 = O T T

~ ~ Noncoherent
~0 < —&— asynchronous,
< '8 rate=1 bpcu
107tk N Y. Noncoherent
Q N —B- - asynchronous,
N Y rate=2 bpcu
A\ Coherent
1072 L . \ } —6— asynchronous,
\ rate=1 bpcu
O] p
N : Coherent
\ o —O— - asynchronous,

- : \ =
10k ) \ rate=2 bpcu

Codeword error rate
e

-4

10 : \ ! i

5 ) . \

10‘G i i i
0 10 20 30 40 50 60

Total average power spent by source and relays, P (dB)

Fig. 7. Error performance for an asynchroneliselay network with and without channel knowledge

described in Example_4.2 and6.71° rotated QPSK is used as the signal set. Coherent detection is
done at the destination in every sub carrier. For the cas® @hannel knowledge, differential encoding

is done at the source as described in Exariple 4.4 and a modifiadl set (as explained in [54] for
scaled unitary codewords) is employed. Also, differentiatection is done at the destination in every
sub carrier. Simulations are done for transmission rateglécting rate loss due to CP) bfbpcu and2

bpcu in both the cases.

The error performance curves for both the cases are showigifYiFIit can be observed that the error
performance for the no channel knowledge case performsoajppately 5 dB worse and® dB worse
compared to that with channel knowledge for transmissidesraf1 bpcu and2 bpcu respectively. This
is partly due to the differential transmission/receptieannique (which increases the effective noise seen
by destination) and also in part, because of the change imakgpt from rotated QAM to some other
signal set [54] for scaled unitary codeword matrices. Thange in signal set for the sake of scaled

unitary codeword matrices results in a reduction of the mgdjain.
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VI. DISCUSSION

In this paper, the problem of optimal rate-ML decoding coewfily within the framework of multi-group
decodable STBCs was posed. Then an algebraic frameworkudyisg CUW STBCs was introduced
using which the optimal rate-ML decoding complexity traffed CUW STBCs was obtained and several
optimal code constructions were also provided. Then thesp&gcused on constructing multi-group
decodable DSTBCs and three new classes of four group deleo@3IBCs were constructed. The
OFDM based transmission scheme in [39] was extended to a gemeral transmission scheme for
arbitrary number of relays that can achieve full coopeeativersity in the presence of timing errors
at the relay nodes. It was then pointed out that the four gaegodable DSTBCs constructed in this
paper can be applied in the proposed transmission schenayonumber of relay nodes. A drawback
of the proposed transmission scheme is that it requiresya lewherence interval spanning over multiple
OFDM symbol durations. Moreover there is a rate loss due toube of CP, however this loss can
be made negligible by choosing a large enough Finally, it was shown how differential encoding
at the source node can be combined with this OFDM based tiasigm strategy to arrive at a new
transmission strategy than can achieve full cooperativersity in asynchronous relay networks with
no channel knowledge as well as no timing error knowledge. distributed differential STBCs in [54]

were then proposed for application in this setting for poafetwo number of relays.

Some of the interesting directions for further work are agetl below:

1) The CUW STBCs are based on sufficient conditionsgaroup ML decodability. An algebraic
framework forg-group ML decodable STBCs based on the necessary and sufffi@aditions and
the optimal rate-ML decoding complexity tradeoff of generayroup ML decodable STBCs is an
important open problem.

2) How to construcy-group decodable DSTBCs fgr=# 4? In particular, constructing single symbol
decodable DSTBCs for the synchronous as well as asynchsarames is worth investigating. Some
initial results in this direction have been reported in [gB]L].

3) In the results pertaining to asynchronous relay netwowks have assumed that there are no
frequency offsets at the relay nodes. Extending this worlaggnchronous relay networks with
frequency offsets is an interesting direction for furthearkv This problem has been addressed in
[62] for the case of two relay nodes.

4) In this work, we have constructed DSTBCs with low ML decwdcomplexity mainly for the two

phase amplify and forward based transmission protocol§ [38], [49]. Constructing low ML
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decoding complexity codes for the other cooperative dityepgotocols in the literature is also an

interesting problem.
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