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Abstract

In this paper, collocated and distributed space-time blockcodes (DSTBCs) which admit multi-group

maximum likelihood (ML) decoding are studied. First the collocated case is considered and the problem of

constructing space-time block codes (STBCs) which optimally tradeoff rate and ML decoding complexity

is posed. Recently, sufficient conditions for multi-group ML decodability have been provided in the

literature and codes meeting these sufficient conditions were called Clifford Unitary Weight (CUW)

STBCs. An algebraic framework based on extended Clifford algebras is proposed to study CUW STBCs

and using this framework, the optimal tradeoff between rateand ML decoding complexity of CUW STBCs

is obtained for few specific cases. Code constructions meeting this tradeoff optimally are also provided.

The paper then focuses on multi-group ML decodable DSTBCs for application in synchronous wireless

relay networks and three constructions of four-group ML decodable DSTBCs are provided. Finally, the

OFDM based Alamouti space-time coded scheme proposed by Li-Xia for a 2 relay asynchronous relay

network is extended to a more general transmission scheme that can achieve full asynchronous cooperative

diversity for arbitrary number of relays. It is then shown how differential encoding at the source can

be combined with the proposed transmission scheme to arriveat a new transmission scheme that can

achieve full cooperative diversity in asynchronous wireless relay networks with no channel information

and also no timing error knowledge at the destination node. Four-group decodable DSTBCs applicable

in the proposed OFDM based transmission scheme are also given.

This work was supported partly by the DRDO-IISc program on Advanced Research in Mathematical Engineering, and partly

by the Council of Scientific & Industrial Research (CSIR, India) Research Grant (22(0365)/04/EMR-II). The material in this

paper was presented in part at the IEEE Information Theory Workshop, Chengdu, October 22-26, 2006 [49], [50], in part at

the IEEE Wireless Communications and Networking Conference, Hong Kong, March 11-15, 2007 [48], in part at the IEEE

International Symposium on Information Theory, Nice, June24-29, 2007 [51], [52] and also in part at the IEEE International

Conference on Communications 2008 [53], Beijing, May 2008.The authors are with the Department of Electrical Communication

Engineering, Indian Institute of Science, Bangalore-560012, India. Email:{susinder,bsrajan}@ece.iisc.ernet.in.

October 30, 2018 DRAFT

http://arxiv.org/abs/0712.2384v2


2

Index Terms

Asynchronous communication, Clifford algebra, cooperative diversity, decoding complexity,

distributed space time codes, OFDM, space-time codes.

I. INTRODUCTION

Space-Time coding for Multiple Input Multiple Output (MIMO) systems has seen a lot of progress in

the last decade. Starting from orthogonal designs [1], [2],[3] and quasi orthogonal designs [4], [5], [6],

[7], [8], several space-time block code (STBC) constructions have been proposed in the literature including

the recently proposed space-time block codes from divisionalgebras [9], crossed product algebras [10],

co-ordinate interleaved orthogonal designs [11] and Clifford algebras [12], [13], [14], [15]. Several aspects

of space-time block codes (STBCs) have been studied in the literature. In the high SNR regime, two main

aspects which dictate the error performance are diversity gain and coding gain. Of these two aspects,

diversity gain has been well studied and presently many highrate, full diversity STBC constructions are

available in the literature. An important class of such codes is the ones from division algebras [9]. Coding

gain has remained an open problem not only for MIMO channels but also for Single Input Single Output

channels and the AWGN channel. Later few more aspects such asthe information lossless property [16]

and the diversity-multiplexing gain tradeoff [17], [18] were introduced. Explicit STBCs satisfying these

additional requirements were also obtained from division algebras [19], [20], [21]. However, there are still

other important issues that need to be addressed. One such important issue is the Maximum Likelihood

(ML) decoding complexity of STBCs. The lattice decoder or sphere decoder [22], [23] is known to be

an efficient ML decoder. However, the complexity of a sphere decoder [24], [25] is also prohibitively

large for high rate STBCs such as those from division algebras. For example, decoding a4 × 4 STBC

from cyclic division algebras is equivalent to decoding a32 dimensional real lattice and performing a

simulation to obtain an error performance curve can easily take several weeks. Thus it is not practically

feasible to implement ML decoding for the ‘good’ performingcodes in the literature. It is well known

[6], [7], [11] that STBCs obtained from orthogonal designs (ODs) using QAM constellation admit single

real symbol decoding and give full diversity. But for4 Tx antennas, an OD which provides a transmission

rate of1 complex symbol per channel use does not exist [1], [2], [3]. However, it was shown in [6], [7],

[11], [12] that a single complex symbol decodable (2 real symbol decodable) full diversity STBC for

4 transmit antennas can be constructed. Later in [8], [13], [14], [15], the general framework of multi-

symbol decodable or multi-group decodable STBCs was introduced to improve the transmission rate.

Multi-symbol or multi-group decodable STBCs admit ML decoding to be done separately for groups of
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symbols rather than all the symbols together thus reducing the ML decoding complexity. The class of

STBCs from ODs correspond to the case of one real symbol per group. Thus it is clear that there is

a tradeoff involving rate, ML decoding complexity and number of transmit antennas for full diversity

STBCs. In the first part of this paper, measures of rate and ML decoding complexity are given and

the problem of optimally trading off rate for ML decoding complexity within the framework of multi-

group decodable STBCs is formally posed. A partial solutionto this general problem is provided by

characterizing this tradeoff for a certain specific class ofSTBCs called as Clifford Unitary Weight (CUW)

STBCs [12], [13], [14], [15]. An algebraic framework based on extended Clifford algebras is introduced to

study CUW STBCs. This framework is used to obtain the optimalrate-ML decoding complexity tradeoff

and also to construct CUW STBCs meeting this tradeoff optimally. Recently in [29], [30], [31], a2× 2

high rate, information lossless STBC with low ML decoding complexity and non-vanishing determinants

has been discussed. This2 × 2 STBC is not a multi-group decodable STBC and such STBCs are not

considered in this paper.

The second part of the paper focuses on constructing distributed space-time block codes (DSTBCs) with

low ML decoding complexity for the Jing-Hassibi protocol [33]. Distributed space-time coding [32], [33]

is a coding technique for exploiting cooperative diversityin wireless relay networks wherein each relay is

made to transmit a column of a space-time code thereby imitating a multiple antenna system. There are

mainly two types of processing at the relay nodes that are widely discussed in the literature: (1) amplify

and forward and (2) decode and forward. Throughout this paper, we focus only on amplify and forward

based protocols for three reasons: (1) relay nodes are not required to decode and re-encode, (2) relay

nodes do not require the channel knowledge for processing (this feature can permit a possible extension

of the protocol to a completely non-coherent strategy) and (3) simpler processing at the relay nodes.

In [33], Jing and Hassibi have proposed an amplify and forward based two phase transmission protocol

for achieving cooperative diversity in wireless relay networks. This protocol essentially employs STBCs

satisfying certain additional conditions to take care of the distributed nature. We call such codes satisfying

certain additional conditions as DSTBCs to distinguish them from collocated STBCs. Analogous to the

case of collocated STBCs, for large number of relays, the ML decoding complexity of DSTBCs becomes

too prohibitive at the destination and thus is an important issue that needs to be addressed. Most of the

previous works on DSTBCs [34], [35], [36] fail to address this issue. In [37], full diversity, two-group

ML decodable DSTBCs were constructed using division algebras. In [38], quasi-orthogonal STBCs were

proposed for use as DSTBCs for the specific case of4 relays. In the second part of this paper, using

the algebraic framework of extended Clifford algebras introduced in the first part, three new classes of
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four-group decodable full diversity DSTBCs for any number of relays are constructed.

The Jing-Hassibi protocol assumes that there is perfect symbol synchronization amongst the relay nodes

and that the signals transmitted from the relays arrive at the same time at the destination. But achieving

symbol synchronization among the geographically distributed relay nodes is a challenging and difficult

task in practice. Several works in the literature [39], [40], [41], [42], [43], [44], [45], [46] have recognized

this as a major bottleneck and have proposed many coding and transmission techniques to mitigate the

effects of symbol asynchronism. Most of the works based on amplify and forward propose methods to

achieve full cooperative diversity in asynchronous wireless relay networks, but however fail to address

the ML decoding complexity issues. In [39], a OFDM based Alamouti transmission scheme is proposed

to combat the effects of symbol asynchronism. The Li-Xia transmission scheme is particularly interesting

because of its associated simplicity and low decoding complexity. In this scheme, OFDM is implemented

at the source node and time reversal/conjugation is performed at the relay nodes on the received OFDM

symbols from the source node. The received signals at the destination after OFDM demodulation are

shown to have the Alamouti STBC structure and hence single symbol maximum likelihood (ML) decoding

can be performed. However, the Alamouti code is applicable only for the case of two relay nodes and

for larger number of relays, the authors of [39] propose to cluster the relay nodes and employ Alamouti

code in each cluster. But this clustering technique provides diversity order of only two and fails to exploit

the diversity available in the network. Motivated by the results of [39], in the third part of this paper

it is shown that the DSTBCs proposed in this paper can be used along with OFDM to achieve full

asynchronous cooperative diversity for any number of relays along with low ML decoding complexity.

Finally it is shown how differential encoding at the source node can be combined with the proposed

OFDM based transmission scheme to arrive at a new transmission scheme that provides full cooperative

diversity in asynchronous relay networks with no channel information and also no timing error knowledge

at any of the nodes.

The main contributions of this paper can be summarized as follows:

• A new measure of rate of an STBC is defined and the problem of optimal tradeoff between rate and

ML decoding complexity within the framework of multi-groupML decodable STBCs is posed. An

algebraic framework based on extended Clifford algebras isintroduced for studying CUW STBCs.

Using this algebraic framework and tools from representation theory of groups, the optimal tradeoff

between rate and ML decoding complexity of CUW STBCs is characterized for certain specific

cases.

• Constructions of CUW STBCs meeting this optimal tradeoff for the specific cases are also provided.
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The ABBA construction first proposed in [5] is shown to be a certain specific matrix representation

of extended Clifford algebras and hence they fall under the class of CUW STBCs. The contributions

on multi-group ML decodable collocated STBCs are describedin Section II.

• The Jing-Hassibi protocol [33] is generalized to allow non-unitary matrices at the relays. The neces-

sary and sufficient conditions needed for DSTBCs to be multi-group ML decodable are identified and

three new classes of four group ML decodable DSTBCs which achieve full cooperative diversity

for any number of relays are also provided. To the knowledge of the authors, these are the first

known DSTBCs that achieve the least possible ML decoding complexity compared to all other

DSTBC constructions, having the same transmission rate in complex symbols per channel use in

the literature. This contribution is detailed in Section III.

• The OFDM based Alamouti transmission scheme for2 relays in [39] is extended to a more general

transmission scheme that can achieve full asynchronous cooperative diversity for any number of

relays. Sufficient conditions for a DSTBC to be compatible with the requirements of this OFDM

based transmission scheme are provided and the four-group decodable DSTBCs in this paper are

shown to satisfy these sufficient conditions.

• It is shown how differential encoding at the source node can be combined with the proposed OFDM

based transmission scheme to arrive at a new transmission scheme that provides full cooperative

diversity in asynchronous relay networks with no channel information and also no timing error

knowledge at any of the nodes. All the results based on OFDM for asynchronous relay networks

comprise Section IV.

A. Notation

Vectors and matrices are denoted by lowercase bold letters and uppercase bold letters respectively.Im,

0m denote anm×m identity matrix andm×m all zero matrix respectively.I and0 are used to denote an

identity matrix and an all zero matrix respectively having an appropriate size depending on the context.

For a setA, the cardinality ofA is denoted by|A|. A null set is denoted byφ. For a matrix,(.)T , (.)∗ and

(.)H denote transposition, conjugation and conjugate transpose operations respectively. For a complex

matrix X, the matricesXI andXQ denote the matrices obtained by taking the real and imaginary parts

of X respectively. IfB is a module over a base ringR, thenEndRB denotes the set of allR linear

maps fromB to B. For setsA1 andA2, the Cartesian product ofA1 andA2 is denoted byA1 × A2.

For groupsG1 andG2, the direct product ofG1 andG2 is denoted byG1 ×G2. For vector spacesV1

andV2, the tensor product ofV1 andV2 is denoted byV1 ⊗ V2. For a vector spaceV , GL(V ) is used
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to denote the set of invertible linear maps fromV to V .

II. M ULTI -GROUP ML D ECODABLE COLLOCATED STBCS

In this section, multi-group ML decodable collocated STBCsare discussed. In Subsection II-A, a

relation between STBCs and linear space-time designs is given and using this relation, measures of

rate and ML decoding complexity of STBCs are defined. In Subsection II-B, linear space-time designs

are classified based upon the classification done in [12] for single complex symbol decodable codes.

An algebraic framework based on extended Clifford algebrasis introduced to study a class of linear

space-time designs called Clifford unitary weight designs. Using this algebraic framework, the optimal

tradeoff between rate and ML decoding complexity of STBCs from Clifford unitary weight designs is

characterized under some conditions in Subsection II-C.

A. STBCs and Linear Space-Time Designs

In this subsection, a connection between STBCs and linear space-time designs is established. Using

this relation, measures of rate and ML decoding complexity of a STBC are then defined.

Definition 1: A STBC C of sizeT ×NT is a finite set ofT ×NT complex matrices.

Let NT denote the number of transmit antennas,NR denote the number of receive antennas andT

denote the number of channel uses consumed for transmittinga space-time codeword. Then the rate of

transmission in bits per channel use (bpcu) of a STBC as in Definition 1 is given bylog2 |C |
T

bpcu. In this

paper, we use a different measure of rate which is motivated by basic concepts of dimension in linear

algebra. This measure is also indicative of the coding gain of the STBC and several examples of STBCs

in the literature are discussed to illustrate the significance of the new measure of rate introduced in this

paper.

Note that the set of allT ×NT complex matrices is a vector space over the field of real numbers R

and has a dimension of2TNT overR. Consider the subspace〈C 〉 spanned by the codewords, i.e., the

elements ofC . Let K denote the dimension of〈C 〉 over R and letAi, i = 1, . . . ,K ∈ C
T×NT be a

basis for〈C 〉. Then every element ofC can be expressed as
∑K

i=1 xiAi for somexi, i = 1, . . . ,K ∈ R.

If we think of thexi’s as real variables andS(s =
[

x1 x2 . . . xK

]T

) =
∑K

i=1 xiAi as a matrix

whose entries are complex linear functions of the real variables, then the STBCC can be expressed as

C = {S(s)|s ∈ A } (1)

for some finite subsetA ⊂ R
K .
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Definition 2: A linear space-time design (LSTD)S(
[

x1 x2 . . . xK

]T

) of sizeT ×NT in real

variablesx1, x2, . . . , xK is a T ×NT matrix which can be expressed as
∑K

i=1 xiAi for some

Ai, i = 1, 2, . . . ,K ∈ C
T×NT which are linearly independent over the field of real numbers.

The notion of linear independence of weight matrices of a LSTD over R has not been stressed or

mentioned explicitly in most previous works though it has been implicitly assumed.

Notice that (1) specifies a way to describe STBCs using linearspace-time designs (LSTDs) and also

explicitly provides a method to encode STBCs. From an encoding perspective, the real variables can be

thought of as modulating the matricesAi, i = 1, . . . ,K. Hence we call the matricesAi, i = 1, . . . ,K

as basis matrices or modulation matrices or weight matrices. The vector of real variabless takes values

from A ⊂ R
K . We call A as the signal set. The connection between STBCs and LSTDs is pictorially

depicted in Fig. 1.

C

〈C 〉 = 〈A1, . . . ,AK〉

CT×NT

Fig. 1. STBCs and linear space-time designs

Remark 1:Note that for a given STBCC the set of basis matricesAi, i = 1, . . . ,K along with the

associated signal setA is not unique, i.e., there may exist another set of basis matrices with some other

associated signal set that results in the same STBCC . Note also that it is not necessary that the basis

matrices have to be codewords. We shall see in the sequel thatthe choice of basis matrices and signal set

controls the encoding as well as decoding complexity. However, it is important to note thatK is unique

to the STBCC .
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Thus a STBC can be thought of as a subset of a subspace of dimension K. Thus designing a STBC

can be done in two steps: First choose a subspace of dimensionK (choose a LSTD) and then choose a

subset of required cardinality (choose the signal setA ) within the chosen subspace.

1) Measure of Rate:

In this paper, we use the following definition of rate of a STBC.

Definition 3: Rate of a STBCC = dimension(〈C 〉)
T

= K
T

dimensions per channel use.

Note that the unit of rate of a STBC according to Definition 3 isdimensions per channel use (dpcu).

Since there areK real variables which modulateK modulation matrices, we can view it as though we

are sendingK real symbols (one on each dimension) inT channel uses. Alternatively, we can pair two

real variables at a time and view it asK2 complex symbols being transmitted inT channel uses. We

would like to mention that most of the previous works on STBCsfollow the convention of measuring

rate in complex symbols per channel use which in our case isK
2T complex symbols per channel use and

is simply proportional to rate as per Definition 3. Though theterminology of basis matrices and rate

have been used previously in the literature (for example see[26]), to the knowledge of the authors, rate

of a STBC has not been defined explicitly and clearly as in Definition 3 although many works in the

literature may be measuring rate in a similar way. Note that if linear independence of basis matrices is

not retained and if rate were to be measured by simply counting the number of complex variables in the

LSTD, then one can claim to have any arbitrary rate of transmission which can be quite deceptive at

times. The notion of linear independence makes things clearand avoids such confusions. Definition 3 is

particularly useful because it essentially allows to definerate of a LSTD, hence allowing us to separate

the study of LSTDs from STBCs. Also, we argue that rate as per Definition 3 is a first order indicative of

coding gain and hence is a parameter which has to be maximized. Intuitively, the higher the dimension,

the more efficiently we can pack codewords in it optimizing some criteria. One of the criteria of interest

is to maximize the coding gain which is given byminC1,C2∈C det
(
(C1 −C2)

H(C1 −C2)
)
.

Recall that even in the case of classical linear error correcting codes over finite fields, rate was defined

as the ratio of the dimension of the subspace spanned by the codewords to the number of channel uses.

In the case of classical linear error correcting codes, the code itself is a subspace whereas in the case

of STBCs, the code is a subset of a subspace. The following examples of existing STBCs reinforce the

statement that rate as per Definition 3 is a first order indicative of coding gain.

Example 2.1:Let us consider the Alamouti code [27] and the Golden code [28] which are given by:


x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2



 and
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(x1 + ix2)α+ (x3 + ix4)αθ (x5 + ix6)α+ (x7 + ix8)αθ

i((x5 + ix6)ᾱ+ (x7 + ix8)ᾱθ̄) (x1 + ix2)ᾱ+ (x3 + ix4)ᾱθ̄



 respectively where,θ = 1+
√
5

2 , θ̄ =

1−
√
5

2 , α = 1 + i(1 − θ) and ᾱ = 1 + i(1 − θ̄). In both cases, the real variables are allowed to take

values independently from a finite subset ofZ. It can be checked that there are4 basis matrices for the

Alamouti code and8 basis matrices for the Golden code. Thus the rate of Alamouticode and Golden

code are2 dpcu and4 dpcu respectively and it is well known [28] that the Golden code outperforms the

Alamouti code when they are both compared with the same transmission rate in bpcu.

Example 2.2:Let us consider the4× 4 OD and the4× 4 quasi orthogonal design. They are given by:









x1 + ix2 −x3 + ix4 −x5 + ix6 0

x3 + ix4 x1 − ix2 0 −x5 + ix6

x5 + ix6 0 x1 − ix2 x3 − ix4

0 x5 + ix6 −x3 − ix4 x1 + ix2











and











x1 + ix2 −x3 + ix4 x5 + ix6 −x7 + ix8

x3 + ix4 x1 − ix2 x7 + ix8 x5 − ix6

x5 + ix6 −x7 + ix8 x1 + ix2 −x3 + ix4

x7 + ix8 x5 − ix6 x3 + ix4 x1 − ix2











respectively. Their respective rates can be verified to

be 3
2 dpcu and2 dpcu respectively. STBCs from quasi orthogonal designs areknown to outperform

STBCs from ODs [4], [5] for the same transmission rate in bpcu.

The above examples show that given two STBCs having the same number of codewords, the one having

higher rate as per Definition 3 outperforms the other in most cases, thus providing a good motivation for

Definition 3.

2) Measure of ML decoding complexity:

Towards defining a measure for ML decoding complexity, let usfirst define a measure of encoding

complexity. If we use (1) for encoding a STBC using LSTDs, we see that in general one needs to choose

an element fromA and then substitute for the real variablesx1, x2, . . . , xK in the LSTD. This method

of encoding clearly requires a lookup table (memory) with|A | entries. However, if the signal setA

is a Cartesian product ofg smaller signal sets in dimensionK
g

, then the complexity can be reduced.

To be precise, ifA = A1 × A2 × · · · × Ag where eachAi ⊂ R
K

g with cardinality |A |
1

g , then the

STBC C itself decomposes as a sum ofg different STBCs, which is shown below. LetK = gλ. Then
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by appropriately reordering/relabeling the real variables we can assume without loss of generality1 that

S(s) =
∑K

i=1 xiAi = S1(s1) + S2(s2) + · · · + Sg(sg) where,Si(si) =
∑iλ

j=(i−1)λ+1 xjAj and

si =
[

x(i−1)λ+1 x(i−1)λ+2 . . . xiλ

]T

. Hence the STBC decomposes asC =
∑g

i=1 Ci where,

C1 = {S1(s1)|s1 ∈ A1}
C2 = {S2(s2)|s2 ∈ A2}

...

Cg = {Sg(sg)|sg ∈ Ag}

Definition 4: [54] A STBC C =
{
S(s)|s ∈ A ⊂ R

K
}

is said tog-group encodable orK
g

real symbol

encodable (orK2g complex symbol decodable) ifA = A1 × A2 × · · · × Ag where eachAi ⊂ R
K

g with

cardinality |A |
1

g .

The encoding of ag-group encodable STBC is pictorially shown in Fig. 2. Thus the encoding com-

plexity of g-group encodable STBCs isg(|C |
1

g ). Note that in addition ifA1 = A2 = · · · = Ag then the

memory required for encoding is also minimized.

S
er

ia
l/P

ar
al

le
l

Bits

Bits–> s1

Bits–> s2

S1(s1) =
∑λ

i=1 xiAi

S2(s2) =
∑2λ

i=λ+1 xiAi

Sg(sg) =
∑K

i=(g−1)λ+1 xiAiBits–> sg

S(s) =
∑g

i=1 Si(si)

Fig. 2. Encoding for ag-group encodable STBC

Example 2.3:Consider the example of the Golden code which was discussed in Example 2.1. As per

Definition 4, the Golden code is8-group encodable or single real symbol encodable.

Thus we have seen how ag-group encodable STBCC decomposes into a sum ofg STBCs

Ci, i = 1, . . . , g and thus admits independent encoding of theCi’s. A natural question that follows is:

Under what conditions does ag-group encodable STBCC admit independent decoding of the constituent

Ci’s? Towards that end, let us look at the ML decoding metric. Let X be the transmitted codeword of

1Here we have assumed that the firstλ real variables belong to first group and the secondλ real variables belong to the

second group and the lastλ real variables belong to theg-th group. In general, the partitioning of real variables into g-groups

can be quite arbitrary.
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sizeT ×NT , H be theNT ×NR channel matrix andY be the received matrix of sizeT ×NR. Then,

the ML decoder is given by

X̂ = arg min
X∈C

‖ Y −XH ‖2F . (2)

For ag-group encodable STBCC , X =
∑g

i=1Xi for someXi ∈ Ci. It can be shown [11], [12], [13]

that if the basis matricesAi, i = 1, . . . ,K satisfy the condition

Ai
HAj +Aj

HAi = 0 whenever Ai ∈ 〈Ck〉,Aj ∈ 〈Cl〉, k 6= l (3)

then the ML decoder decomposes as

X̂ =

g
∑

i=1

arg min
Xi∈Ci

‖ Y −XiH ‖2F . (4)

In other words, the component STBCsCi’s can then be decoded independently. It can also be shown

[11], [12], [13] that (3) is a necessary condition for this tohappen.

Remark 2:Note that the subspaces〈Ci〉, i = 1, . . . ,K intersect trivially, i.e.,〈Ck〉 ∩ 〈Cl〉 = 0. Thus

〈C 〉 = 〈C1〉 ⊕ 〈C2〉⊕ · · · ⊕ 〈Cg〉. If the condition in (3) is satisfied for the basis matrices, then it implies

that AHB + BHA = 0,∀ A ∈ 〈Ck〉,B ∈ 〈Cl〉, k 6= l. In other words, this becomes a property of the

two subspaces〈Ck〉 and 〈Cl〉.
Definition 5: [54] A STBC C =

{
S(s)|s ∈ A ⊂ R

K
}

is said tog-group decodable orK
g

real symbol

decodable (orK2g complex symbol decodable) ifC is g-group encodable and if the associated basis

matrices satisfy (3).

Example 2.4:All STBCs obtained from ODs are single real symbol decodableif every real variable

in the OD takes values independently from a PAM (Pulse Amplitude Modulation) signal set. As an

example, consider the Alamouti code that was previously discussed in Example 2.1. The associated basis

matrices areA1 =




1 0

0 1



, A2 =




i 0

0 −i



, A3 =




0 −1

1 0



 andA4 =




0 i

i 0



. It can be

checked that they satisfy the condition in (3) forg = 4. In this case,S1(s1) = x1A1, S2(s2) = x2A2,

S3(s3) = x3A3 andS4(s4) = x4A4. Hence the Alamouti code is single real symbol decodable.

The ML decoding for ag-group decodable code is illustrated pictorially in Fig. 3.It is clear that

the decoding complexity is reduced forg-group decodable STBCs from|C | computations tog|C |
1

g

computations. Further, we know that the sphere decoder [22], [23] is an efficient ML decoder if vector

s takes values from a lattice constellation. Moreover, it hasbeen shown [24], [25] that the average
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+

X̂1 = argminX1∈C1 ‖ Y −X1H ‖2F

Y
X̂2 = argminX2∈C2 ‖ Y −X2H ‖2F

X̂g = argminXg∈Cg
‖ Y −XgH ‖2F

X̂

Fig. 3. ML decoding for ag-group ML decodable STBC

complexity of a sphere decoder depends on the dimension of the equivalent lattice [23] and more or less

independent of the size of the code. Thus, we can take the dimension of the corresponding equivalent

lattice as a measure of the sphere decoder complexity. For a general STBC, this dimension is equal to

K whereas forg-group ML decodable STBCs, it isK
g
= λ. Thus the expected as well as the worst case

ML decoding complexity is lesser forg-group ML decodable STBCs.

3) Full diversity:

Apart from rate and ML decoding complexity, yet another important aspect of STBCs is the diversity

gain. Diversity gain is a measure of the slope of the error probability versus the SNR when plotted on

a log-log scale and this is given byNR(minC1,C2∈C rank(C1 −C2)). Thus full diversity ofNRNT is

achieved by a STBC if the coding gain is not equal to zero.

4) Problem statement of optimal Rate-ML decoding complexity tradeoff:

Having surveyed three important aspects of rate, ML decoding complexity and diversity for a STBC,

we can now pose the problem of rate-ML decoding complexity tradeoff. This problem can be formally

stated in two equivalent ways which are listed down as given below.

1) Givenλ, T andNt what is the maximum rate of any full diversity STBC?

2) Giveng, T andNt what is the maximum rate of any full diversity STBC?

If λ = 1 and NT = T , then the solution is precisely the STBCs from square orthogonal designs

constructed in [2], [3] for which the maximum rate is⌈log2 NT ⌉+1
2⌈log2 NT ⌉−1 dpcu. In this paper, the maximum rate

of a certain class of full diversity square STBCs from Clifford unitary weight designs is characterized

for λ = 2a.

The following example illustrates that full diversity and encoding/decoding complexity are related

indirectly.

Example 2.5:Consider the4 × 4 co-ordinate interleaved orthogonal design (CIOD) [11] given by
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S =











x1 + ix2 −x3 + ix4 0 0

x3 + ix4 x1 − ix2 0 0

0 0 x5 + ix6 −x7 + ix8

0 0 x7 + ix8 x5 − ix6











. The weight matrices of the above LSTD satisfy

Ai
HAj +AH

j Ai = 0, ∀ i 6= j. Let the notation∆ stand for the codeword difference matrix. Note that

det
(
∆SH∆S

)
=
(
∑4

i=1 ∆x2i

)2 (∑8
i=5 ∆x2i

)2
, which will equal to zero for some pair of codeword

matrices if all the8 real variables are allowed to take values independently. Hence, it is not possible to

obtain a full diversity single real symbol decodable STBC from the above LSTD. However, by entangling

two real variables, as for example{x1, x5}, {x2, x6}, {x3, x7}, {x4, x8} and then allowing them to take

values from a rotated QAM constellation (rotating a QAM constellation entangles the variables), a full

diversity, single complex symbol ML decodable STBC can be obtained [11]. The resulting STBC will

be4-group ML decodable or2-real symbol ML decodable and its associated four constituent STBCs are

given byS1(s1) = x1A1 + x5A5, S2(s2) = x2A2 + x6A6, S3(s3) = x3A3 + x7A7 andS4(s4) =

x4A4 + x8A8.

Example 2.5 shows that the requirement of full diversity cansometimes demand an increase in the

encoding complexity and hence the decoding complexity evenif the associated weight matrices satisfy

condition (3) forλ = 1. Thus, it is clear that full diversity and encoding/decoding complexity are inter-

related and there exists a tradeoff between the two.

B. Clifford Unitary Weight Designs and extended Clifford algebras

First, let us classify square LSTDs (as done in [12] for single complex symbol decodable codes).

LSTDs can be broadly classified as unitary weight designs (UWDs) and non unitary weight designs

(NUWDs). A UWD is one for which all the weight matrices are unitary and NUWDs are defined as

those which are not UWDs. Clifford unitary weight designs (CUWDs) are a proper subclass of UWDs

whose weight matrices satisfy certain sufficient conditions for g-group ML decodability. To state those

sufficient conditions, let us list down the weight matrices of a CUWD in the form of an array as shown

in Table I.

For simplicity, the grouping is assumed to be as follows: Allthe weight matrices in one column belong

to one group. The weight matrices of CUWDs satisfy the following sufficient conditions forg-group ML

decodability.

1) A1 = I.

2) The unitary matrices in the first row exceptA1 should form a Hurwitz-Radon family [1], [2], [3].
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TABLE I

STRUCTURE OFCUWDS

A1 Aλ+1 . . . A(g−1)λ+1

A2 Aλ+2 . . . A(g−1)λ+2

...
...

. . .
...

Aλ A2λ . . . AK

In other words, all the matrices in the first row exceptA1 should square to−I and should pair-wise

anti-commute among themselves.

3) The unitary matrices in the first column should square toI and should commute with all the

matrices in the first row and first column.

4) The unitary matrix in thei-th row and thej-th column is equal to±AiA(j−1)λ+1.

It can be checked that the above four conditions together imply that the necessary and sufficient

condition forg-group ML decodability in (3) is satisfied and hence any CUWD is g-group ML decodable.

Note that whenλ = 1, CUWDs become ODs [1], [2], [3]. Similarly the co-ordinate interleaved orthogonal

designs proposed in [11] are a proper subclass of NUWDs. The single complex symbol ML decodable

STBCs in [6] are also CUWDs [12]. Fig. 4 pictorially shows thebroad classification of LSTDs.

1) Full diversity lattice constellations for Clifford Unitary Weight designs:

An important advantage of CUWDs is that full diversity STBCscan be obtained from them without

increasing the encoding/decoding complexity contrary to the case of CIODs (see Example 2.5) wherein

real variables from different groups have to be entangled for full diversity. Moreover, explicit lattice

constellations that optimize the coding gain can be obtained for CUWDs, thus admitting the use of a

lattice/sphere decoder. In [12], [13], [14], [15], few constructions of CUWDs are available and the aspect

of full diversity has been addressed in detail. In this paper, we only provide a brief outline of the basic

idea (described below) and illustrate the procedure with anexample. Later in the proof of Theorem 6,

we also provide a new construction of CUWDs.

For a CUWD, det
(
∆S(s)H∆S(s)

)
= det

(∑g
i ∆Si(si)

H∆Si(si)
)
. If det

(
∆Si(si)

H∆Si(si)
)

>

0,∀i = 1, . . . , g then, we have

det
(
∆S(s)H∆S(s)

)
≥

g
∑

i=1

det
(
∆Si(si)

H∆Si(si)
)
.
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ODs

CUWDs
CIODs

UWDsNUWDs

Fig. 4. Classification of LSTDs

Thus it is sufficient to construct full diversity lattice constellations independently for each of the con-

stituent LSTDs, i.e.,Si(si)’s and this will ensureg-group ML decodability. Note that

Si(si) = A(i−1)λ+1

(
x(i−1)λ+1I+ x(i−1)λ+2A2 + · · · + xiλAλ

)
= A(i−1)λ+1S1(s1) which implies

det
(
∆Si(si)

H∆Si(si)
)
= det

(
∆S1(s1)

H∆S1(s1)
)
. Hence without loss of generality, we can consider

the construction of full diversity lattice constellationsfor the LSTD S1(s1) since the same lattice

constellation will ensure full diversity for the remainingconstituent LSTDsSi(si), i = 2, . . . , g. We

haveS1(s1) =
∑λ

i=1 xiAi. Note that the matricesAi, i = 1, . . . , λ are unitary, square toI and pairwise

commute among themselves. Hence they are simultaneously diagonalizable by some unitary matrixU

to result in diagonal unitary matricesD1,D2, . . . ,Dλ. All these diagonal matrices will continue to be

linearly independent overR and since all of them square toI, the diagonal entries ofDi, i = 1, . . . , λ

are±1 andD1 = I. Thus the LSTDUS1(s1)U
H =

∑λ
i=1 xiDi becomes a diagonal matrix for which it

is easy to compute the determinant and also find the lattice constellation that will provide full diversity.

This procedure is illustrated in the following example.

Example 2.6:Consider a CUWD forNT = 8, λ = 4, g = 4 and K = λg = 16 given by

October 30, 2018 DRAFT



16

S(s) =
∑16

i=1 Ai where,A1 = I8, A2 =











02 I2 02 02

I2 02 02 02

02 02 02 I2

02 02 I2 02











, A3 =











02 02 I2 02

02 02 02 I2

I2 02 02 02

02 I2 02 02











,

A4 = A2A3, A5 =























0 i 0 0 0 0 0 0

i 0 0 0 0 0 0 0

0 0 0 i 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 0 0 i 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 0 0 i

0 0 0 0 0 0 i 0























, A9 =























0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0























,

A13 =























i 0 0 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 −i 0 0 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 −i 0 0

0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 −i























andA4i+j = A4i+1Aj, i = 1, 2, 3, j = 1, . . . , 4.

It can be checked that the above listed basis matrices satisfy all the requirements of a CUWD for

λ = 4, g = 4. For the purpose of finding full diversity lattice constellations, it is enough to construct

full diversity signal sets for the LSTDS1(s1) =
∑4

i=1Ai. Since the matricesAi, i = 1, . . . , 4 mutually

commute among themselves and square toI8, they can be simultaneously diagonalized by a unitary

matrix U =























1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1























which in this case turns out to be the8 × 8
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Hadamard matrix. DefiningDi = UAiU
H , i = 1, . . . , 4, we getD1 = I8,

D2 = diag
{[

1 1 −1 −1 1 1 −1 −1
]}

, D3 = diag
{[

1 1 1 1 −1 −1 −1 −1
]}

andD4 = diag
{[

1 1 −1 −1 −1 −1 1 1
]}

. Thus we have

det(∆S1) = (∆q1)
2(∆q2)

2(∆q3)
2(∆q4)

2

where,
[

∆q1 ∆q2 ∆q3 ∆q4

]T

= P
[

∆x1 ∆x2 ∆x3 ∆x4

]T

andP =











1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1











.

Thus full diversity will be achieved if∆qi 6= 0, ∀ i = 1, . . . , 4. This can be guaranteed by letting

s1 =
[

x1 x2 x3 x4

]T

take values fromP−1GZ4 where,G is the generator matrix of a lattice

designed to maximize the product distance [47], [59].

2) Extended Clifford Algebras:

Towards constructing and studying CUWDs an algebraic framework of extended Clifford algebras is

first established. Using this algebraic framework, the optimal tradeoff between rate and ML decoding

complexity of CUWDs is obtained in Subsection II-C. Furthermore, algebraic descriptions for the ABBA

construction [5] and the tensor product based constructionin [14] are provided using extended Clifford

algebras.

First observe that in order to construct CUWDs it is sufficient to construct the weight matrices in the

first row and first column (as discussed in Subsection II-B andTable I). Our methodology to construct

the weight matrices in the first row and first column would be tofabricate an algebra in such a way

that it contains elements satisfying the algebraic relations we need. Once we construct such an algebra,

we then obtain the required CUWD by taking an appropriate matrix representation of the constructed

algebra. Recall that an algebra over a field is simply a ring aswell as a vector space with the addition

operation being compatible to both the ring and the vector space structures. Let us recall certain basic

definitions from algebra which will be useful in the sequel.

Definition 6: A nonempty setB equipped with two binary operations called addition and multiplication

denoted by+ and . is called a ring denoted by(B,+, .) if

1) (B,+) is a Abelian group

2) (B, .) is a monoid with multiplicative identity1

3) x.(y + z) = x.y + x.z, ∀ x, y, z ∈ B
4) (x+ y).z = x.z + y.z, ∀ x, y, z ∈ B

October 30, 2018 DRAFT



18

Definition 7: A nonempty setA equipped with two binary operations called addition and multiplication

denoted by+ and . is called a right module algebra over a ringB if

1) (A,+, .) is a ring

2) There is a map(x, α) → xα of A×B into A satisfying the following for allα, β ∈ B andx, y ∈ A.

(x+ y)α = xα+ yα

x(α+ β) = xα+ xβ

x(αβ) = (xα)β

x1 = x

(5)

Note that in the standard mathematical literature (for example [64]), algebra is usually defined over

a field. Since our definition differs from the definition in [64], we have given the name ‘right module

algebra’ in order to distinguish it from the concept of algebra over a field.

Definition 8: [2] The Clifford algebra, denoted byCliffn is the algebra overR generated byn

objectsγk, k = 1, . . . , n which are anti-commuting (γkγj = −γjγk, ∀k 6= j) and squaring to−1

(γ2k = −1 ∀k = 1, . . . , n).

A natural basis forCliffn seen as a vector space overR is

Bn = {1}
⋃

{γi|i = 1, . . . , n}
n⋃

m=2

{
m∏

i=1

γki
|1 ≤ ki ≤ ki+1 ≤ n

}

. (6)

The number of basis elements is|Bn| = 2n.

Example 2.7:Cliff0 is nothing but the set of real numbersR, Cliff1 is the set of complex numbers

C andCliff2 is the Hamiltonian Quaternions denoted byH.

The reason we are interested in Clifford algebras is that thedefining algebraic relations of the generators

of a Clifford algebra resemble the algebraic relations which the matrices in the first row of a CUWD need

to satisfy. Hence we can obtain the matrices in the first row bytaking unitary matrix representations of

the generators of a Clifford algebra. To obtain the matricesin the first column, we use a similar strategy.

We introduce few new symbols in the Clifford algebra and define them to square to1, commute with the

generators of the Clifford algebra and also commute among themselves. In other words, after introducing

new symbols, multiplication in the algebra is appropriately defined in order to create a bigger algebra

which contains Clifford algebra as a sub-algebra. Hence by taking a unitary matrix representation of

these specific elements of the algebra, we get the weight matrices of the required CUWD. We give the

name ’extended Clifford algebras’ to the so constructed algebras:

Definition 9: Let L = 2a, a ∈ N. An extended Clifford algebra denoted byAL
n is the associative

algebra overR generated byn + a objectsγk, k = 1, . . . , n and δi, i = 1, . . . , a which satisfy the
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following relations:

• γ2k = −1, ∀ k = 1, . . . , n

• γkγj = −γjγk, ∀ k 6= j

• δ2k = 1, ∀k = 1, . . . , a

• δkδj = δjδk, ∀ 1 ≤ k, j ≤ a

• δkγj = γjδk, ∀ 1 ≤ k ≤ a, 1 ≤ j ≤ n

From the above definition, it is clear thatCliffn (or A1
n) is a sub-algebra ofAL

n . Let Bn be the natural

R basis for this sub-algebraCliffn. Then a naturalR basis forAL
n is given by

B
L
n = Bn ∪ {Bnδi|i = 1, . . . , a}

a⋃

m=2

Bn

{
m∏

i=1

δki
|1 ≤ ki ≤ ki+1 ≤ a

}

. (7)

Thus the dimension ofAL
n seen as a vector space overR is 2n+a.

The algebraAL
n overR can also be viewed as a right module algebra over the base ringCliffn. We

will use this fact later in subsection II-C.

Example 2.8:Let us taken = 2, a = 1. HenceL = 2. Then

A
2
2 = {a1 + γ1a2 + δ1a3 + δ1γ1a4|a1, a2, a3, a4 ∈ R} .

Addition in the algebra is defined to be component wise and multiplication is completely described

by defining the multiplication between any two basis elements. The multiplication table can be easily

generated using the defining algebraic relations of the generators and is given as follows.

1 γ1 δ1 δ1γ1

1 1 γ1 δ1 δ1γ1

γ1 γ1 −1 δ1γ1 −δ1

δ1 δ1 δ1γ1 1 γ1

δ1γ1 δ1γ1 −δ1 γ1 −1

One can check from the multiplication table that the multiplication is indeed associative. Note thatA
2
1

can also be viewed as a vector space overC by viewing the symbolγ1 as the complex numberi =
√
−1.

Then, we haveA2
1 = {z1 + δ1z2|z1, z2 ∈ C} where,z1 = a1 + γ1a2 andz2 = a3 + γ1a4.

From the defining relations of the generators of the extendedClifford Algebra, it can be observed that

the symbols1, γ1, γ2, . . . , γn satisfy relations similar to that satisfied by the weight matrices that we

need in the first row (squaring to−1 and anticommuting). Similarly, the symbolsδk, k = 1, . . . , a, and
⋃a

m=2

∏m
i=1 δki

for 1 ≤ ki ≤ ki+1 ≤ a satisfy relations similar to that satisfied by the weight matrices

that we need in the first column (squaring to1 and commuting with all other elements). Thus, for the
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case ofλ = 2a, when the weight matrices of any CUWD are listed down in the array form as shown in

Table I, the matrices in the first row will simply be matrix representations of the symbols1, γ1, γ2, . . . ,

γn of an extended Clifford Algebra. Similarly, the matrices inthe first column are nothing but matrix

representation of the symbolsδk, k = 1, . . . , a, and
⋃a

m=2

∏m
i=1 δki

for 1 ≤ ki ≤ ki+1 ≤ a of an extended

Clifford Algebra.

C. Optimal Rate-ML decoding complexity tradeoff of Clifford Unitary Weight codes

The maximum rate problem of CUWDs can be formally stated in many equivalent ways. Some of

them are listed as follows.

1) Givenλ andNt what is the maximum rate?

2) Giveng andNt what is the maximum rate?

3) Giveng andλ what is the minimum value ofNT?

For λ = 2, the solution to the first question is reported in [12]. In this subsection, the solution to

question number 3) forλ = 2a, a ∈ N is provided. Using the algebraic framework of extended Clifford

algebras introduced in the previous subsection, the maximum rate problem can be restated in algebraic

terms as follows.

What is the minimum matrix sizeNT in which the algebraAλ
(g−1) has a non-trivial matrix represen-

tation?

This problem appears to be difficult to solve directly. Hence, we take an alternate approach which is

similar to the approach in [2] wherein matrix representations of Clifford algebras were obtained using

matrix representations of the Clifford group. First, we finda finite group with respect to multiplication

in the algebraAλ
(g−1) such that it contains the elements of the naturalR-basis ofAλ

(g−1) denoted by

Bλ
(g−1). Then, we find a suitable representation of this finite group such that it can be extended to a

representation of the algebra.

Proposition 3: The set of elementsG = Bλ
(g−1) ∪

{

−b|b ∈ Bλ
(g−1)

}

is a finite group with respect to

multiplication inA
λ
(g−1). Further, the groupG is a direct product of its subgroupsGγ andGδ, where

Gγ = B(g−1) ∪
{
−b|b ∈ B(g−1)

}
,

Gδ = Gδ1 ×Gδ2 × · · · ×Gδa

(8)

andGdeltai
= {1, δi} , i = 1, . . . , a.

Proof: The multiplication inG is associative and the unit is1. The inverse of the element±∏m
i=1 γki

is ±(−1)⌈
m

2
⌉∏m

i=1 γki
. The inverse of the element

∏m
i=1 δki

is itself. Similarly, it is easy to find the inverse
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of the other elements. The setGγ is nothing but the well known Clifford group [2]. The setGδi is the

cyclic group of order two (denoted byC2) with generatorδi. The setGδ is a group since it is thea times

direct product ofC2. The groupG is a direct product ofGγ andGδ because:

1) Eachs ∈ G can be written uniquely in the forms = s1s2 with s1 ∈ Gγ ands2 ∈ Gδ .

2) For all s1 ∈ Gγ ands2 ∈ Gδ, we haves1s2 = s2s1.

Thus the problem is simplified to finding the matrix representations of this finite groupG. Towards

that end, we quickly recall some basic concepts in linear representation of finite groups. We refer the

readers to [65] for a formal introduction.

Definition 10: [65] Let G be a finite group with identity element1 and letV be a finite dimensional

vector space overC. A linear representation ofG in V is a group homomorphismρ from G into the

groupGL(V ). The dimension ofV is called the degree of the representation.

Few basic results in representation theory are as listed below.

[R1 ]: Irreducible representations are representations with no invariant subspaces.

[R2 ]: Every representation is a direct sum of irreducible representations. They are equivalent to block-

diagonal representations, with irreducible representation matrices on the block diagonal.

[R3 ]: Two representationsR andR′ of G are equivalent, if there exists a similarity transformU so

that

R′(x) = U−1R(x)U, ∀ x ∈ G

[R4 ]: Unitary representations are representations in terms of unitary matrices

[R5 ]: Every representation is equivalent to a unitary representation

Theorem 4: [65] All the irreducible representations of an Abelian group have degree1.

Lemma 1: [65] Let ρ1 : G1 → GL(V1) andρ2 : G2 → GL(V2) be linear representations of groups

G1 andG2 in vector spacesV1 andV2 respectively. Thenρ1 ⊗ ρ2 is a linear representation ofG1 ×G2

into V1 ⊗ V2.

Theorem 5: [65]

1) If ρ1 andρ2 are irreducible, thenρ1 ⊗ ρ2 is an irreducible representation ofG1 ×G2.

2) Each irreducible representation ofG1 × G2 is equivalent to a representationρ1 ⊗ ρ2, whereρi is

an irreducible representation ofGi, i = 1, 2.

Now, having introduced the necessary tools, the problem is to find unitary matrix representations of the

finite groupG. Before we proceed, note that whenG is interpreted as a finite group, the representation
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of −1 does not necessarily have anything to do with−1 times identity matrix and similarly for a generic

−b, b ∈ Bλ
(g−1). Such a representationρ, whereρ(−1) 6= −ρ(1) is said to be a degenerate representation.

Degenerate representations are not representations of thealgebraAλ
(g−1). Thus we are interested in the

smallest degree non-degenerate unitary representationρ of the finite groupG such that the representation

matrices of the required elements ofG are linearly independent overR. The following lemma will help

to prove the linear independence of complex matrices overR.

Lemma 2:A set of complex matricesAi, i = 1, . . . ,K ∈ C
T×NT are linearly independent overR if

Tr(Ai
HAj +Aj

HAi) = 0, ∀ i 6= j.

Proof: The linear map fromCT×NT ×C
T×NT 7→ R given by 1

2Tr(A
HB+BHA) for A,B ∈ C

T×NT

is an inner product. The statement of the lemma then follows.

Theorem 6: The maximum rate of a CUWD forλ = 2a, a ∈ N and arbitraryg is equal to g

2⌊
(g−1)

2
⌋

dpcu.

Proof: Proof is by induction ona. The proof proceeds to find the smallest degree non-degenerate

unitary representationρ of G such that the following condition is satisfied.

ρ(x) 6= ±ρ(y), ∀ x 6= y ∈ G (9)

The above condition is required, since otherwise, the representation matrices will be linearly dependent

over R. However, even if the above condition is satisfied, linear independence is still not guaranteed.

Therefore, we can only obtain an upper bound on the rate but weshall see that a representation meeting

the upper bound actually provides us with linear independence as well.

For a = 0, CUWDs become ODs and the maximum rate for square ODs is well known [2] and the

theorem holds true. Fora = 1, λ = 2 and the groupG = Gγ ×Gδ1 whereGδ1 = {1, δ1}. Since we are

interested in the smallest degree representation ofG, let us first study the irreducible representations of

G. From Theorem 5, all irreducible representations ofG are obtained as a tensor product of irreducible

representations ofGγ andGδ1 . All irreducible representations ofGγ have been studied in [2]. There are

2 non-degenerate irreducible representations ofGγ in dimension2⌊
g−1

2
⌋. The representation matrices of

the (g − 1) generators ofGγ are given as follows [2]:
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R(γ2k) = I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

⊗σ1⊗ σ3 ⊗ · · · ⊗ σ3
︸ ︷︷ ︸

, k = 1, 2, . . . , (K − 1)

K − 1− k k − 1

R(γ2k) = I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

⊗σ2⊗ σ3 ⊗ · · · ⊗ σ3
︸ ︷︷ ︸

, k = 1, 2, . . . , (K − 1)

K − 1− k k − 1

R(γ1) = ±i σ3 ⊗ · · · ⊗ σ3
︸ ︷︷ ︸

K − 1

where,σ1 =




0 1

−1 0



, σ2 =




0 i

i 0



, σ3 = iσ1σ2 =




1 0

0 −1



 andK =







g
2 if g is even

g+1
2 if g is odd

.

The notationR(.) is used to denote the representation matrix. Also note thatTr(σi) = 0, i = 1, 2, 3.

Since the two non-degenerate representations are in the same dimension, without loss of generality,

let us consider one of them and denote it byρ0. By Theorem 4, all the irreducible representations of

Gδ1 are in dimension1 since the groupGδ1 is Abelian. Recall thatGδ1 is nothing but the cyclic group

C2 of order two. Apart from the trivial representation (all elements are mapped to1), the only other

irreducible representation of the order two cyclic groupGδ1 is given by:R(1) = 1, R(δ1) = −1. Note that

(−1)2 = 1 and hence−1 is the generator. Thus we get two non-degenerate irreducible representations

of G in dimension2⌊
g−1

2
⌋ denoted byR1 andR2 respectively and they are given by:

1) R1(γi) = ρ0(γi), i = 1, . . . , (g − 1), R1(δ1) = Im, R1(δ1γi) = ρ0(γi), i = 1, . . . , (g − 1)

2) R2(γi) = ρ0(γi), i = 1, . . . , (g − 1), R2(δ1) = −Im, R2(δ1γi) = −ρ0(γi), i = 1, . . . , (g − 1)

where,m = 2⌊
g−1

2
⌋. But both the non-degenerate irreducible representationsof G fail to satisfy condition

(9). Thus we seek non-degenerate reducible representations of G that satisfy (9). From property [R2],

we have that reducible representations can be easily obtained by placing irreducible representations as

blocks on the diagonal. If degenerate irreducible representations are placed as blocks on the diagonal then

it is easy to check that the resulting representation will also be degenerate. Thus only non-degenerate

irreducible representations can be placed as blocks on the diagonal to construct non-degenerate reducible

representations ofG. It then follows that the smallest degree non-degenerate representationρ1 satisfying

(9) for a = 1 is 2(2⌊
g−1

2
⌋) and the corresponding basis matrices we need are explicitlygiven as follows:

A1 = I2m, A2i+1 =




ρ0(γi) 0

0 ρ0(γi)



 , i = 1, 2, . . . , (g − 1), A2 =




Im 0

0 −Im



.

Now using the identityTr(A ⊗ B) = Tr(A) × Tr(B), it can be easily checked that the above basis

matrices are trace orthogonal, i.e.,Tr(AH
i Aj +AH

j Ai) = 0, ∀ i 6= j and hence by Lemma 2 they are
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linearly independent overR. Thus the theorem is true fora = 1. Now let us assume that the theorem is

true for a = n− 1 and prove the theorem fora = n.

For the case ofa = n, note that the correspondingG can be expressed asG = Gn−1 ×Gδn where,

Gn−1 = Gγ ×Gδ1 ×Gδ2 × · · · ×Gδn−1
andGδi = {1, δi} , i = 1, . . . , n. Once again invoking Theorem

5, we have that the irreducible representations ofG are a tensor product of irreducible representations

of Gn−1 and Gδn . Now using Theorem 4, the non-degenerate irreducible representations ofG are in

dimension2⌊
(g−1)

2
⌋. Since they do not satisfy (9), we look for non-degenerate reducible representations

whose degree has to be a multiple of2⌊
g−1

2
⌋. By induction hypothesis, the smallest degree non-degenerate

representation which results in linearly independent basis matrices fora = n − 1 is 2n−1(2⌊
g−1

2
⌋). Let

it be denoted byρn−1. Since the representationρn−1 is also a representation ofGn−1, using analogous

arguments as made fora = 1 it follows that the smallest degree non-degenerate representation ρn

satisfying (9) fora = n is in dimension2n(2⌊
(g−1)

2
⌋) and the corresponding basis matrices are given by:

A1 =




ρn−1(1) 0

0 ρn−1(1)



, A2ni+1 =




ρn−1(γi) 0

0 ρn−1(γi)



 , i = 1, . . . , (g − 1),

Ai =




ρn−1(δi−1) 0

0 ρn−1(δi−1)



 , i = 2, . . . , (n − 1), An =




ρn−1(1) 0

0 −ρn−1(1)



.

Once again it can be shown that the above basis matrices are linearly independent overR by using

Lemma 2.

Theorem 6 essentially answers the question: For a CUWD, given g andλ, a power of two, what is

the minimum matrix sizeNT that it can have? The answer to this question is given byλ
(

2⌈
g−1

2
⌉
)

. The

following example highlights the fact that the maximum rateexpression of a CUWD given in Theorem

6 does not depend onλ.

Example 2.9:For g = 4, let us study CUWDs for two casesλ = 1 andλ = 2.

Case 1:λ = 1, g = 4

The minimum possible dimension in which a CUWD with these parameters exists is given by Theorem

6 which is equal to2. The corresponding CUWD is nothing but the well known Alamouti LSTD.

Case 2:λ = 2, g = 4

The minimum possible dimension in which a CUWD withλ = 2, g = 4 exists as per Theorem 6 is4
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and the corresponding CUWD is given by:










x1 + x2 + i(x3 + x4) −x5 − x6 + i(x7 + x8) 0 0

x5 + x6 + i(x7 + x8) x1 + x2 − i(x3 + x4) 0 0

0 0 x1 − x2 + i(x3 − x4) −x5 + x6 + i(x7 − x8)

0 0 x5 − x6 + i(x7 − x8) x1 − x2 − i(x3 − x4)











where, the grouping of real variables are{x1, x2}, {x3, x4}, {x5, x6} and {x7, x8}. Note that whenλ

increases from one to two, the minimum dimension in whichK = λg matrices with required properties

exist, also increases. In fact, Theorem 6 explicitly tells that NT increases linearly withλ. This makes

the rate, which isλg
NT

independent ofλ.

1) Algebraic description for ABBA construction:

As stated in Section III (also see Example 2.8), the algebraA
L
n overR can also be viewed as a finitely

generated right module algebra overCliffn. A general elementx of the algebraAL
n can be written as

follows:

x = c1 + δ1c2 + · · ·+ δaca+1 + δ1δ2ca+2 + · · · + (

a∏

i=1

δi)cL (10)

whereci, i = 1, . . . , L ∈ Cliffn. There is a natural embedding ofAL
n into EndCliffn(A

L
n) given by

left multiplication as shown below:

φ : AL
n 7→ EndCliffn(A

L
n),

φ(x) = Lx : y 7→ xy.
(11)

It is easy to check that the mapLx is Cliffn linear and the mapφ is a ring homomorphism. Also, it

can be proved that the mapφ is injective as follows.

Let φ(x1) = Lx1
andφ(x2) = Lx2

. If φ(x1) = φ(x2), then

Lx1
(y) = Lx2

(y) ∀ y

x1y = x2y ∀ y

(x1 − x2)y = 0 ∀ y

which impliesx1−x2 = 0 or equivalentlyx1 = x2. Hence, we can represent the algebraA
L
n by matrices

with entries from Clifford algebra. However, we are only interested in matrix representations with entries

from the complex field. But this can be easily obtained by simply replacing each Clifford algebra element

by its matrix representation overC. This is possible because the matrix representation ofCliffn overC

is well known and is explicitly given in [2]. The resulting weight matrices are guaranteed to be linearly

independent sinceφ is injective. We now illustrate this construction with an example.
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Example 2.10:ConsiderA2a

n for a = 2. Thusλ = 4 , g = n+1 andK = 4(n+1). A general element

x ∈ A
4
n can be expressed as follows.

x = c1 + δ1c2 + δ2c3 + δ1δ2c4

where,ci, i = 1, . . . , 4 ∈ Cliffn. Let us obtain a matrix representation overCliffn for the mapLx. We

have,

Lx(1) = c1 + δ1c2 + δ2c3 + δ1δ2c4

Lx(δ1) = (c1 + δ1c2 + δ2c3 + δ1δ2c4)δ1

= δ1c1 + c2 + δ1δ2c3 + δ2c4

Lx(δ2) = (c1 + δ1c2 + δ2c3 + δ1δ2c4)δ2

= δ2c1 + δ1δ2c2 + c3 + δ1c4

Lx(δ1δ2) = (c1 + δ1c2 + δ2c3 + δ1δ2c4)δ1δ2

= δ1δ2c1 + δ2c2 + δ1c3 + c4.

(12)

The mapLx can be represented by the matrix










c1 c2 c3 c4

c2 c1 c4 c3

c3 c4 c1 c2

c4 c3 c2 c1











(13)

where,c1, c2, c3, c4 ∈ Cliffn. In order to get a matrix representation overC, we simply replace each

ci, i = 1, . . . , 4 by their matrix representations overC. However, we are interested only in a4-group ML

decodable LSTD which can be obtained by using the matrix representation of the specific elements1,

γi, i = 1, . . . , n, δ1, δ1γi, i = 1, . . . , n, δ2, δ2γi, i = 1, . . . , n, δ1δ2, δ1δ2γi, i = 1, . . . , n as weight

matrices. This is done by restricting the representation ofthe algebra to the subspace overR spanned by

the required elements of the algebra. In other words, we substitute zero for the coefficients corresponding

to the terms not required (terms involving product of Clifford algebra generators likeγ1γ2 are omitted).

To be precise, eachci ∈ Cliffn is restricted to be of the form:

ci = x(i−1)(n+1)+1 +
n∑

j=2

x(i−1)(n+1)+jγj

for somexi ∈ R, i = 1, . . . ,K by forcing the coefficients of the remaining terms as zero. Interms of

the corresponding matrix representation, this is equivalent to simply replacingci, i = 1, . . . , 4 by ODs in

(13). Therefore, the above method results in a4-real symbol ML decodable CUW STBC with maximal

rate. It turns out that the above construction is precisely the ABBA construction proposed by Tirkkonen

et al in [5].

DRAFT October 30, 2018



27

As a consequence of this result, it follows that the4 transmit antenna LSTD based on ABBA construc-

tion given by











x1 + ix2 −x3 + ix4 x5 + ix6 −x7 + ix8

x3 + ix4 x1 − ix2 x7 + ix8 x5 − ix6

x5 + ix6 −x7 + ix8 x1 + ix2 −x3 + ix4

x7 + ix8 x5 − ix6 x3 + ix4 x1 − ix2











has to be2-real symbol ML decodable.

Though the same LSTD was proposed earlier in [5], the authorsof [5] chose the following pairing of

real variables in a group which essentially resulted in a4-real symbol ML decodable STBC.

1) First group{x1, x2}
2) Second group{x3, x4}
3) Third group{x5, x6}
4) Fourth group{x7, x8}.

However, if we form the following partition of real variables, we can obtain a single complex symbol

ML decodable STBC.

1) First group{x1, x5}
2) Second group{x2, x6}
3) Third group{x3, x7}
4) Fourth group{x4, x8}.

Thus we see that the ML decoding complexity of STBCs obtainedfrom linear designs can vary

dramatically depending on the choice of multidimensional signal setA .

2) Algebraic description for Tensor product construction:

In [13], a construction of CUW STBCs based on tensor productswas provided without giving any

reasoning for the mathematical source of such a construction. With the algebraic background that we

have now developed, the tensor product construction in [13]can be easily explained. Since the group

G is a direct product ofGγ andGδ , from Lemma 1, a representation ofG can be obtained as a tensor

product of a representation ofGγ and that ofGδ. Unitary matrix representations ofGγ are available

in [2]. The unitary matrices representingGδ should commute and also square toI. Such matrices are

simultaneously diagonalizable and their eigen values are equal to±1 (squaring toI). So a simple method

to constructλ-real symbol decodable STBCs would be to takeλ linearly independent diagonal matrices

of sizeλ× λ having±1 as entries and then tensor them with representation matrices of the generators

of Gγ . The construction suggested in [13] is precisely based on this principle. One advantage of the

construction in [14] is that it provides CUWDs for all even number of transmit antennas.
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3) On the maximal rate of non-CUW STBCs:

It is important to note that Theorem 6 provides the optimal rate-ML decoding complexity tradeoff only

within the class of CUW STBCs. The rate of a generalg-group ML decodable STBC can in fact be more

that of a CUWD. An example of a such a LSTD is the recently foundhigh rate quasi-orthogonal STBC

in [58]. This LSTD for 4 transmit antennas which was found by an exhaustive computersearch has a

rate of2.5 dpcu and is2-group ML decodable. This solitary example for4 transmit antennas shows that

there is a lot of room for further work in the direction of increasing transmission rate ofg-group ML

decodable STBCs.

III. M ULTI -GROUP ML DECODABLE DISTRIBUTED STBCS

In this section, multi-group ML decodable distributed space time block codes (DSTBCs) are discussed.

In Subsection III-A, we present a generalization of the distributed space-time coding strategy proposed in

[33] and derive a code design criteria for full diversity. InSubsection III-B, the necessary and sufficient

conditions for multi-group ML decoding of DSTBCs are provided. Three new classes of four group

decodable DSTBCs are constructed in Subsection III-C.

A. Distributed Space-Time Coding

Consider a network consisting of a source node, a destination node andR relay nodes which aid

the source in communicating information to the destination. All the nodes are assumed to be equipped

only with a single antenna and are half duplex constrained, i.e., a node cannot transmit and receive

simultaneously in the same frequency. The wireless channels between the terminals are assumed to quasi-

static and flat fading. The channel fading gains from the source to thei-th relay,fi and from thei-th

relay to the destinationgi are all assumed to be independent and identically distributed complex Gaussian

random variables with zero mean and unit variance. Symbol synchronization and carrier frequency

synchronization are assumed among all the nodes. Moreover the destination is assumed to have perfect

knowledge of all the channel fading gains.

Every transmission cycle from the source to the destinationcomprises of two phases-broadcast phase

and cooperation phase. In the broadcast phase, the source transmits aT (T ≥ R) length vector
√
π1Pz

which the relays receive. Here,P denotes the total average power spent by all the relays and the source.

The fraction of total powerP spent by the source is denoted byπ1. The vectorz satisfiesE[zHz] = T

and represents the information that the source intends to communicate. The received vector at thej-

th relay node is then given byrj =
√
π1Pfjz + vj, where vj ∼ CN (0, IT ). During the cooperation
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phase, all the relay nodes are scheduled to transmit together. The relays are allowed to only linearly

process the received vectorrj or its conjugaterj∗. To be precise, thej-th relay node is equipped with

a T × T matrix Bj (called relay matrix) satisfying‖ Bj ‖2F= T and it transmitstj =
√

π2P
π1P+1Bjrj or

tj =
√

π2P
π1P+1Bjrj

∗. Here,π2 denotes the fraction of total powerP spent by a relay. Without loss of

generality, we may assume that the firstM relays linearly processrj and the remainingR −M relays

linearly processrj∗. If the quasi-static duration of the channel is much greaterthan2T time slots, then

the received vector at the destination is given by

y =

R∑

j=1

gjtj +w =

√

π1π2P 2

π1P + 1
Xh+ n (14)

where,

X =
[

B1z . . . BMz BM+1z
∗ . . . BRz

∗
]

(15)

h =
[

f1g1 f2g2 . . . fMgM f∗
M+1gM+1 . . . f∗

RgR

]T

, (16)

n =

√

π2P

π1P + 1





M∑

j=1

gjBjvj +
R∑

j=M+1

gjBjvj
∗



+ w, (17)

andw ∼ CN (0, IT ) represents the additive noise at the destination. The powerallocation factorsπ1 and

π2 must satisfyπ1PT + Rπ2PT = P (2T ). Throughout this paper, we chooseπ1 = 1 andπ2 = 1
R

as

suggested in [33]. LetΓ denote the covariance matrix ofn. We have,

Γ = E[nnH ] = IT +
π2P

π1P + 1
(

R∑

i=1

|gi|2BiBi
H). (18)

The vectorz transmitted by the source is taken from a finite subset ofC
T which then defines a

collection of matrices when substituted for inX as given in (15). This finite set of matrices is called

a DSTBC since each column of a codeword matrix is transmittedby geographically distributed relay

nodes. The destination node performs ML decoding as follows:

X̂ = arg min
X∈C

‖ Γ− 1

2 (y −
√

π1π2P 2

π1P + 1
Xh) ‖2F . (19)

Observe that if the entries ofz are treated as complex variables, then the DSTBCC can be viewed

as being obtained from certain special LSTDs having the formof (15). Note that such LSTDs have the

property that any column has linear functions of either onlythe complex variables or only their conjugates

respectively. We refer to LSTDs with this property as ‘conjugate LSTDs’. The following theorem provides

sufficient conditions under which the DSTBCC achieves full cooperative diversity equal toR under ML

decoding.
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Theorem 7: Assume thatT ≥ R, π1 = 1 andπ2 = 1
R

. If BiBi
H is a diagonal matrix∀ i = 1, . . . , R

and if ∆X = Xi −Xj has full rank for all pairs of distinct codewordsXi,Xj ∈ C , then the DSTBCC

achieves full cooperative diversity equal toR under ML decoding.

Proof: Let Xi be the transmitted codeword,Xj be some other codeword and let∆X = Xi −Xj.

We have,

P(y|Xi) =
e
−(y−

r

π1π2P2

π1P+1
Xh)HΓ−1(y−

r

π1π2P2

π1P+1
Xh)

πT |Γ| .

On applying the Chernoff bound, we can upper bound the pairwise error probability (PEP) that a ML

decoder decodes wrongly toXj as follows:

PEP ≤
E

{fi} {gi}
e
− π1π2P2

4(π1P+1)
hH(∆X)HΓ−1(∆X)h

. (20)

SinceBiBi
H is a diagonal matrix∀i = 1, . . . , R, let µ denote the maximum of the diagonal entries

of BiB
H
i over all i = 1, . . . , R. Let D =

(

1 + µπ2PR
π1P+1

∑R
i=1 |gi|2

)

IT. Now by replacingΓ by D, we

can further upper bound the PEP expression in (20) since thisis essentially equivalent to assuming more

noise variance at the destination than what is actually present and hence results in an upper bound. Thus,

we have

PEP ≤
E

{fi} {gi}
e
− π1π2P2

4(π1P+1)
hH(∆X)HD−1(∆X)h

.

On integrating over thefi’s as done in Appendix I of [33], we get

PEP ≤
E

{gi}
|IR +

π1π2P
2

4(π1P + 1)
(∆X)HD−1(∆X)diag

{
|g1|2, |g2|2, . . . , |gR|2

}
|−1.

For the power allocationπ1 = 1, π2 = 1
R

and for largeP , we can approximate the above expression

as follows:

PEP .
E

{gi}
|IR +

P

4(R + µ
∑R

i=1 |gi|2)
(∆X)H(∆X)diag

{
|g1|2, |g2|2, . . . , |gR|2

}
|−1. (21)

Now proceeding as in Appendix II of [33], it can be shown that the above expectation can be further

upper bounded to result in:
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PEP .

(

c|(∆X)H(∆X)| 1

R

4R

)−R

P
−R

“

1− log log P

log P

”

where,c is some constant independent ofP . This completes the proof.

Theorem 7 generalizes the results of [33] (wherein only unitary relay matrices were permitted) to allow

row orthogonal relay matrices (BiBi
H is a diagonal matrix). Note that the transmission protocol assumed

in this paper does not involve communication using the direct link between the source and the destination.

An even more general transmission protocol called as ‘GNAF protocol’ which employs the direct link

and also allows a general form of linear processing at the relays along with unequal duration of broadcast

phase and cooperation phase is discussed in [49]. Note that if the direct link is also employed, then a

maximum diversity ofR+1 can be achieved [49]. However, for the purposes of this paper, the results of

Theorem 7 are sufficient. We shall see in the sequel that relaxing Bi to row orthogonal matrices paves

the way to obtain DSTBCs with low ML decoding complexity. Hence, for constructing DSTBCs we

need conjugate LSTDs whose relay matrices have orthogonal rows. This is one of the major differences

between collocated STBCs and DSTBCs.

B. Conditions for Multi-group ML decoding of DSTBCs

The ML decoding complexity of DSTBCs becomes an important issue especially whenR is large. This

provides a good motivation to study multi-group decodable DSTBCs. The following theorem provides

necessary and sufficient conditions for multi-group ML decoding of DSTBCs.

Theorem 8: A DSTBCC is g-group decodable if and only if the following two conditionsare satisfied.

1) C is g-group encodable

2) The associated basic matricesAi, i = 1, . . . ,K of C satisfy:

AH
i Γ−1Aj +AH

j Γ−1Ai = 0 (22)

wheneverAi andAj belong to different groups.

Proof: Let ỹ = Γ− 1

2y. Then from (19), the ML decoding metric is given by

‖ ỹ −
√

π1π2P 2

π1P+1 (Γ
− 1

2X)h ‖2F . Compared to the collocated case, the difference here is theterm involving

Γ− 1

2 . The effect of pre-multiplication byΓ− 1

2 can be captured by consideringΓ− 1

2X as a LSTD whose

basis matrices are given byΓ− 1

2Ai, i = 1, . . . ,K. Now applying the conditions forg-group ML decoding

of collocated STBCs, we get the condition forg-group ML decoding of DSTBCs to be that: (1)C should

be g-group encodable and (2) wheneverAi andAj belong to different groups, they should satisfy

(Γ− 1

2Ai)
H(Γ− 1

2Aj) + (Γ− 1

2Aj)
H(Γ− 1

2Ai) = 0
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which, on simplification gives (22).

Note from (18) that if all the relay matrices are restricted to be unitary as in [33], thenΓ becomes a

scaled identity matrix which in turn makes the condition in (22) coincide with that for collocated STBCs.

To summarize, ag-group ML decodable collocated STBC qualifies to become ag-group ML decodable

DSTBC if it satisfies the below three conditions.

1) The associated LSTDX =
∑K

i=1 xiAi is a conjugate LSTD.

2) The associated relay matrices are row orthogonal, i.e.,BiBi
H is a diagonal matrix.

3) Equation (21) is satisfied by the associated basis matrices Ai, i = 1, . . . ,K.

Example 3.1:Consider the4 × 4 single real symbol ML decodable (6-group ML decodable ) STBC

from 4× 4 orthogonal design given by











z1 −z∗2 −z∗3 0

z2 z∗1 0 −z∗3

z3 0 z∗1 −z2

0 z3 z∗2 z1











. Note that it is not a conjugate LSTD

and hence does not qualify as a DSTBC.

Example 3.1 demonstrates that though orthogonal designs and hence single real symbol ML decodable

collocated STBCs are well known in the literature, the transition to distributed case is not straightforward.

Thus it is clear that it is more difficult and challenging to construct multi-group ML decodable DSTBCs

compared to multi-group ML decodable collocated STBCs.

C. Four group decodable DSTBCs from Precoded CIODs

Towards constructing four-group decodable DSTBCs, consider the following example.

Example 3.2:Consider the4× 4 CIOD [11] shown below

XCIOD =
√
2











z1 −z∗2 0 0

z2 z∗1 0 0

0 0 z3 −z∗4

0 0 z4 z∗3











where,z1 = x1 + ix2, z2 = x3 + ix4, z3 = x5 + ix6 and z4 = x7 + ix8 are complex variables. It is

clear thatXCIOD is a conjugate LSTD. We shall now see howXCIOD is actually a4-group decodable

DSTBC. Let the number of relaysR = 4. In the broadcast phase let the source transmit the vector
√
π1P

[

z1 z2 z3 z4

]T

, where the information symbols{x1, x5}, {x2, x6}, {x3, x7}, {x4, x8} are
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each taken from a rotated QAM constellation as given below



xi

xi+4



 =




cos θ − sin θ

sin θ cos θ








yiI

yiQ



 , i = 1, . . . , 4

where,




yiI

yiQ



 , i = 1, . . . 4, take values from a QAM constellation andθ is an appropriately chosen

rotation angle [11] so that the resulting DSTBC satisfies therank criterion for full diversity according to

Theorem 7. ForXCIOD, the value ofM = 2 and the corresponding4 relay matrices are:

B1 =











√
2 0 0 0

0
√
2 0 0

0 0 0 0

0 0 0 0











,B2 =











0 −
√
2 0 0

√
2 0 0 0

0 0 0 0

0 0 0 0











B3 =











0 0 0 0

0 0 0 0

0 0
√
2 0

0 0 0
√
2











,B4 =











0 0 0 0

0 0 0 0

0 0 0 −
√
2

0 0
√
2 0











.

The corresponding matrixΓ is given by

Γ = I4 +
π2P

π1P + 1




2
(
|g1|2 + |g2|2

)
I2 0

0 2
(
|g3|2 + |g4|2

)
I2



 .

The weight matrices forXCIOD are given as follows:

A1 =
√
2











1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0











,A2 =
√
2











i 0 0 0

0 −i 0 0

0 0 0 0

0 0 0 0











,A3 =
√
2











0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0











,

A4 =
√
2











0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0











,A5 =
√
2











0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1











,A6 =
√
2











0 0 0 0

0 0 0 0

0 0 i 0

0 0 0 −i











,

A7 =
√
2











0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0











,A8 =
√
2











0 0 0 0

0 0 0 0

0 0 0 i

0 0 i 0











.
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It is easy to check that all the weight matrices are row orthogonal and they satisfy (22) forλ = 1.

This is because of the special block diagonal structure ofXCIOD with each block being a replica of

the Alamouti LSTD. The resulting DSTBC will achieve full cooperative diversity and is4-group ML

decodable or equivalently one complex symbol ML decodable.

We now generalize the LSTDXCIOD given in Example 3.2 for any number of relays having the

special feature of4-group decodability. We call these LSTDs as ‘Precoded CIODs’ (PCIODs).

Construction of Precoded CIOD for even number of relays:

GivenR an even number, theR×R PCIODXPCIOD for R relays is given by (23).

XCIOD = diag

8

<

:

2

4

x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2

3

5 , . . . ,

2

4

xk + jxk+1 −xk+2 + jxk+3

xk+2 + jxk+3 xk − jxk+1

3

5 , . . . ,

2

4

x2R−3 + ix2R−2 −x2R−1 + ix2R

x2R−1 + ix2R x2R−3 − ix2R−2

3

5

9

=

;

(23)

There are totally2R real variablesx1, x2, . . . , x2R in the conjugate LSTDXPCIOD. The following

expression shows thatXPCIOD is not fully diverse for arbitrary signal sets.

|(∆XPCIOD)
H(∆XPCIOD)| =

(
4∑

i=1

∆x2i

)2

. . .

(
k+3∑

i=k

∆x2i

)2

. . .

(
2R∑

i=2R−3

∆x2i

)2

However, constellation precoding can be done to achieve full diversity. Precoding is to be done in the

following manner. The2R real variables are first partitioned into 4 groups as follows:

• First group:
{
x1+4k|k = 0, 1, . . . , 2R−4

4

}

• Second group:
{
x2+4k|k = 0, 1, . . . , 2R−3

4

}

• Third group:
{
x3+4k|k = 0, 1, . . . , 2R−2

4

}

• Fourth group:
{
x4+4k|k = 0, 1, . . . , 2R−1

4

}
.

There areR2 real variables in each group. Now letXi, i = 1, . . . , 4 denote the LSTDs corresponding to

only the real variables in thei-th group respectively. NowXPCIOD =
∑4

i=1Xi. Also it can be checked

that

(∆XPCIOD)
H(∆XPCIOD) =

4∑

i=1

∆XH
i ∆Xi.

Supposing the constituent STBCs corresponding to LSTDsXi, i = 1, . . . , 4 are fully diverse, then

|(∆Xi)
H(∆Xi)| ≥ 0 ∀ i = 1, . . . , 4 and on application of Corollary 4.3.3 in [63], we get

|(∆XPCIOD)
H(∆XPCIOD)| ≥ min

i=1,...,4

{
|(∆XH

i )(∆Xi)|
}
.

Thus we see that if the constituent STBCs are fully diverse, then the resulting STBC from PCIOD

will also be fully diverse. Note that|(∆Xi)
H(∆Xi)| = (

∏R

2
−1

j=0 ∆xi+4j)
2 which is nothing but the
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product distance. Hence, if we let theR2 real variables in a group to take values from a rotatedZ
R

2

lattice constellation which is designed to maximize the minimum product distance then full diversity is

guaranteed. Algebraic number theory provides effective means to construct rotatedZn lattices with large

minimum product distance [47], [59] for anyn ∈ N and the corresponding lattice generator matrices can

be explicitly obtained from [59] for dimensions upto30. Due to the block diagonal nature ofXPCIOD

with replicas of Alamouti designs on the blocks, the resulting DSTBC will be a full diversity4-group

decodable DSTBC. The following example illustrates the construction procedure forR = 6.

Example 3.3:The PCIOD for6 relays is as shown below:

diag










x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2



 ,




x5 + ix6 −x7 + ix8

x7 + ix8 x5 − ix6



 ,




x9 + ix10 −x11 + ix12

x10 + ix11 x9 − ix10











where,








xi

xi+4

xi+8







= G








yi

yi+4

yi+8







, i = 1, . . . , 4

and the vectors








yi

yi+4

yi+8







, i = 1, 2, 3, 4 take values from a subset ofZ3. The3×3 lattice generator matrix

G can be taken from [59]. At the destination, the ML decoding ofthe real variables{xi, xi+4, xi+8} has

to be done jointly for eachi = 1, 2, 3, 4 separately. Thus the resulting DSTBC is4-group decodable or

3-real symbol decodable.

Construction of Precoded CIOD for odd number of relays:

If R is odd, then construct a PCIOD forR + 1 relays and drop the last column to get a(R + 1) × R

LSTD. For example, a single complex symbol decodable code for 3 relays can be obtained from Example

3.2 by dropping the last column. This is shown in the following example.

Example 3.4:










x1 + ix2 x3 + ix4 0

−x3 + ix4 x1 − ix2 0

0 0 x5 + ix6

0 0 −x7 + ix8
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1) Encoding complexity at the relays for PCIODs:

By observing the structure of the relay matrices of PCIOD onecan see that it has zeros everywhere except

for a single non-zero2× 2 sub-matrix which is a scaled version of either identity matrix or




0 −1

1 0



.

Thus having received two complex numbers, say




a+ ib

c+ id



, a relay should be capable of generating

and transmitting one of the following:




a+ ib

c+ id



 or




−a+ ib

c− id



 both of which require significantly

less complexity as compared to multiplying the received vector by an arbitrary complex matrix.

2) Resistance to relay node failures:

Note that any two columns of the PCIOD are orthogonal. This leads to the property that even if any

column of the design is dropped, it continues to satisfy the full rank condition. This property is important

since even if certain relay nodes fail, which is equivalent to dropping few columns of the LSTD, the

residual diversity benefits are still guaranteed and that too with no additional increase in ML decoding

complexity.

Thus we have a constructed a class of4-group decodable DSTBCs for any number of relays having

the following salient features:

1) Transmission rate of the source is0.5 complex symbols per channel use

2) Full diversity

3) Four group ML decodable

4) Low encoding complexity at the relays

5) Resistance to relay node failures

D. Four group decodable DSTBCs from extended Clifford algebras

In the previous subsection, a class of4-group decodable DSTBCs was constructed for arbitrary number

of relays from PCIODs. Amidst many advantages, PCIODs do have a drawback that the power distribution

among the relays is not uniform across time slots which is dueto the large number of zeros in the LSTD.

This leads to a large peak to average power ratio (PAPR) problem at the relays which is undesirable

since it demands the use of larger power amplifiers at the relays. Moreover since the relay matrices

of PCIODs are not unitary, this forces the destination to perform additional processing to make the

noise covariance matrix a scaled identity matrix, i.e., pre-multiplying the received vector byΓ− 1

2 . Above

all, the construction of PCIODs was not obtained from a systematic algebraic procedure targeting the
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requirements for4-group decodable DSTBCs. Hence it is natural to ask whether there exists a systematic

algebraic construction of4-group decodable DSTBCs with unitary relay matrices and uniform power

distribution across the relays and in time.

In this subsection, using the algebraic framework of extended Clifford algebras introduced in Subsection

II-B, two new classes of4-group decodable DSTBCs with unitary relay matrices as wellas unitary weight

matrices for power of two number of relays are constructed.

As discussed in Subsection II-B, to construct4-group decodable DSTBCs, we need4 matrices (in-

cluding identity matrix) in the first row (as shown in Table I). One way to obtain such matrices is to take

the matrix representation ofAL
3 for L = 2a, a ∈ N. The matrix representation of the symbols1, γ1, γ2, γ3

respectively can be used to fill up the first row. Interestingly there is yet another way of obtaining such

matrices. Let us look atAL
2 for L = 2a, a ∈ N. The symbolsγ1 andγ2 square to−1 and anti-commute.

However, note that

(γ2γ1)
2 = −1

(γ2γ1)γ1 = −γ1(γ2γ1)

(γ2γ1)γ2 = −γ2(γ2γ1)

. (24)

Thus the symbolγ2γ1 also squares to−1 and anti-commutes with the symbolsγ1 andγ2. Thus we can

fill up the first row with the matrix representations of the symbols 1, γ1, γ2, γ2γ1 respectively. Thus we

can get two classes of4-group decodable DSTBCs, one fromAL
3 and the other fromAL

2 if the problem

of conjugate linearity property and unitary relay matricesare also taken care.

1) Matrix Representation:

There are several ways to obtain a matrix representation of an algebra. We need to take an appropriate

matrix representation such that the following conditions are met.

1) The symbols1, γ1, γ2, . . . , γn, δk, for k = 1, . . . , a, and
⋃a

m=2

∏m
i=1 δki

for 1 ≤ ki ≤ ki+1 ≤ a

should be represented by unitary matrices.

2) The resulting LSTD should be a conjugate LSTD.

3) All the relay matrices should be unitary.

Such matrices are naturally provided by the left regular representation of the associative algebraA
L
n .

Left regular representation is an easy way to obtain the matrix representation for any finite dimensional

associative algebra [64]. Such techniques have been previously used in [9], [10] to obtain the matrix

representation of division algebras and crossed product algebras. The first requirement of unitary matrix

representation is met because the natural basis elements ofA
L
n overR together with their negatives form
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a finite group under multiplication (see Proposition 3). This fact in conjunction with the properties of

left regular representation guarantee a unitary matrix representation for the required symbols. We shall

prove the other properties after illustrating the construction procedure for both the codes fromAL
2 and

A
L
3 .

2) DSTBCs fromAL
2 :

We first viewA
L
2 as a vector space overC by thinking ofγ1 as the complex numberi =

√
−1. A natural

C basis forAL
2 is given by

BL
n = {1, γ2} ∪ {{1, γ2} δi|i = 1, . . . , a}

a⋃

m=2

{1, γ2}
{

m∏

i=1

δki
|1 ≤ ki ≤ ki+1 ≤ a

}

. (25)

Thus the dimension ofAL
2 seen as a vector space overC is 2n+a−1. We have a natural map fromAL

2 to

EndC(A
L
2 ) given by left multiplication [9], [10], [64] as shown below.

φ : AL
2 7→ EndC(A

L
2 )

φ(x) = Lx : y 7→ xy
(26)

Since the mapLx is C linear, we can write down a matrix representation ofLx with respect to the

naturalC basisBL
n . Thus we obtain a LSTD satisfying the requirements of (3) forg = 4.

Example 3.5:Let us begin with the simplest case ofR = 21 relays. Letn = 2. Then equating

n+a−1 = 1, we geta = 0 and henceL = 1. But the algebraA1
2 is same asCliff(2) which is nothing

but the Hamiltonian QuaternionsH. It is well known [9] that the left regular matrix representation of H

yields the popular Alamouti design. Thus we see that our algebraic code construction which was driven

by the need for low ML decoding complexity naturally leads tothe Alamouti design.

Example 3.6:Suppose we want a LSTD forR = 8 = 23 relays. Letn = 2. Then we needn+a−1 = 3.

Thusa = 2 andL = 4. A general element of the algebraA4
2 looks like

x = z1 + δ1z2 + δ2z3 + δ1δ2z4 + γ2z5 + δ1γ2z6 + δ2γ2z7 + δ1δ2γ2z8

where,zi ∈ C,∀i = 1, . . . , 8. We shall now find the matrix representation ofLx by finding out the image

of the basisB4
2 under the mapLx which is shown below.
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Lx(1) = z1 + δ1z2 + δ2z3 + δ1δ2z4 + γ2z5 + δ1γ2z6 + δ2γ2z7 + δ1δ2γ2z8

Lx(δ1) = δ1z1 + z2 + δ1δ2z3 + δ2z4 + δ1γ2z5 + γ2z6 + δ1δ2γ2z7 + δ2γ2z8

Lx(δ2) = δ2z1 + δ1δ2z2 + z3 + δ1z4 + δ2γ2z5 + δ1δ2γ2z6 + γ2z7 + δ1γ2z8

Lx(δ1δ2) = δ2δ2z1 + δ2z2 + δ1z3 + z4 + δ1δ2γ2z5 + δ2γ2z6 + δ1γ2z7 + γ2z8

Lx(γ2) = (z1 + δ1z2 + δ2z3 + δ1δ2z4 + γ2z5 + δ1γ2z6 + δ2γ2z7 + δ1δ2γ2z8) γ2

= γ2z
∗
1 + δ1γ2z

∗
2 + δ2γ2z

∗
3 + δ1δ2γ2z

∗
4 − z∗5 − δ1z

∗
6 − δ2z

∗
7 − δ1δ2z

∗
8

Lx(δ1γ2) = δ1γ2z
∗
1 + γ2z

∗
2 + δ1δ2γ2z

∗
3 + δ2γ2z

∗
4 − δ1z

∗
5 − z∗6 − δ1δ2z

∗
7 − δ2z

∗
8

Lx(δ2γ2) = δ2γ2z
∗
1 + δ1δ2γ2z

∗
2 + γ2z

∗
3 + δ1γ2z

∗
4 − δ2z

∗
5 − δ2z

∗
6 − z∗7 − δ1z

∗
8

Lx(δ1δ2γ2) = δ1δ2γ2z
∗
1 + δ2γ2z

∗
2 + δ1γ2z

∗
3 + γ2z

∗
4 − δ1δ2z

∗
5 − δ2z

∗
6 − δ1z

∗
7 − z∗8

(27)

The matrix representation ofLx is thus given by:

[Lx] =























z1 z2 z3 z4 −z∗5 −z∗6 −z∗7 −z∗8

z2 z1 z4 z3 −z∗6 −z∗5 −z∗8 −z∗7

z3 z4 z1 z2 −z∗7 −z∗8 −z∗5 −z∗6

z4 z3 z2 z1 −z∗8 −z∗7 −z∗6 −z∗5

z5 z6 z7 z8 z∗1 z∗2 z∗3 z∗4

z6 z5 z8 z7 z∗2 z∗1 z∗4 z∗3

z7 z8 z5 z6 z∗3 z∗4 z∗1 z∗2

z8 z7 z6 z5 z∗4 z∗3 z∗2 z∗1























. (28)

Also, we have that

x = z1I + γ1z1Q + δ1z2I + δ1γ1z2Q + δ2z3I + δ2γ1z3Q + δ1δ2z4I + δ1δ2γ1z4Q + γ2z5I

+γ2γ1z5Q + δ1γ2z6I + δ1γ2γ1z6Q + δ2γ2z7I + δ2γ2γ1z7Q + δ1δ2γ2z8I + δ1δ2γ2γ1z8Q.
(29)

Since the mapφ is a ring homomorphism, we have

Lx = φ(1)z1Iφ(1) + φ(γ1)z1Q + φ(δ1)z2I + φ(δ1γ1)z2Q + φ(δ2)z3I + φ(δ2γ1)z3Q

+φ(δ1δ2)z4I + φ(δ1δ2γ1)z4Q + φ(γ2)z5I + φ(γ2γ1)z5Q + φ(δ1γ2)z6I + φ(δ1γ2γ1)z6Q

+φ(δ2γ2)z7I + φ(δ2γ2γ1)z7Q

+φ(δ1δ2γ2)z8I + φ(δ1δ2γ2γ1)z8Q.

(30)

The equation (30) explicitly gives the design[Lx] in terms of its weight matrices. Because of our

algebraic construction, the weight matrices can be partitioned into four groups such that (3) is satisfied.

The four groups are

1) {φ(1), φ(δ1), φ(δ2), φ(δ1δ2)}

October 30, 2018 DRAFT



40

2) {φ(γ1), φ(δ1γ1), φ(δ2γ1), φ(δ1δ2γ1)}
3) {φ(γ2), φ(δ1γ2), φ(δ2γ2), φ(δ1δ2γ2)}
4) {φ(γ2γ1), φ(δ1γ2γ1), φ(δ2γ2γ1), φ(δ1δ2γ2γ1)}

respectively. Expressing the real variables of the resulting design and their corresponding weight matrices

in the form of a tabular column as shown in Table I, we get

φ(1) φ(γ1) φ(γ2) φ(γ2γ1)

z1I z1Q z5I z5Q

φ(δ1) φ(δ1)φ(γ1) φ(δ1)φ(γ2) φ(δ1)φ(γ2γ1)

z2I z2Q z6I z6Q

φ(δ2) φ(δ2)φ(γ1) φ(δ2)φ(γ2) φ(δ2)φ(γ2γ1)

z3I z3Q z7I z7Q

φ(δ1δ2) φ(δ1δ2)φ(γ1) φ(δ1δ2)φ(γ2) φ(δ1δ2)φ(γ2γ1)

z4I z4Q z8I z8Q

In general forR = 2m relays we can take the left regular representation ofA
2m−1

2 to obtain a4-group

decodable LSTD. These LSTDs were first obtained using a non-algebraic iterative construction procedure

in [51]. The algebraic framework presented in this paper provides an interesting algebraic description for

codes in [51].

Remark 9:Note that in general to representLx as a matrix one could have chosen any basis for

A
L
2 instead of the natural basisBL

2 . However, only the natural basis will lead to a design with the low

decoding complexity requirements, although a different basis will also give a representation of the same

algebra. This shows that although two designs can be algebraically isomorphic, the choice of basis is

crucial and only certain basis admit low decoding complexity. Further, even changing the ordering of

the natural basis can result in designs which apparently look very different. But this is same as simply

applying a permutation to the rows and columns.

3) DSTBCs fromAL
3 :

We use a slightly different approach to obtain codes fromA
L
3 . Let us first consider the algebra,A

1
3 which

is nothing butCliff3. A general element ofCliff3 looks like

x = â1 + γ1â2 + γ2â3 + γ3â4 + γ1γ2â5 + γ2γ3â6 + γ1γ3â7 + γ1γ2γ3â8 (31)

for someâi ∈ R, i = 1, . . . , 8. Note that we have used the naturalR basis ofCliff3 to represent an

element ofCliff3. The elementγ1γ2γ3 satisfies the following properties.
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(γ1γ2γ3)
2 = 1

(γ1)(γ1γ2γ3) = (γ1γ2γ3)(γ1)

(γ2)(γ1γ2γ3) = (γ1γ2γ3)(γ2)

(γ3)(γ1γ2γ3) = (γ1γ2γ3)(γ3)

(32)

Thus the elementγ1γ2γ3 squares to1 and commutes with all the generators ofCliff3. Hence the matrix

representation of the elementγ1γ2γ3 can be used as a candidate to fill up the first column. Since we

have now filled up two matrices (including identity matrix) in the first column, it should be possible to

get a2-real symbol decodable STBC using matrix representation ofCliff3. From Subsection II-B, we

know that the remaining weight matrices are simply the product of matrices in the first row and those

in the first column. We have,

(γ1)(γ1γ2γ3) = −γ2γ3, (γ2)(γ1γ2γ3) = γ1γ3 and (γ3)(γ1γ2γ3) = −γ1γ2. (33)

It so turns out that the elements of{1, γ1, γ2, γ3,−γ1γ2,−γ2γ3, γ1γ3, γ1γ2γ3} also form a basis for

Cliff3 overR. Thus a general element ofCliff3 can be expressed as

x = a1 + γ1a2 + γ2a3 + γ3a4 + (−γ1γ2)a5 + (−γ2γ3)a6 + (γ1γ3)a7 + γ1γ2γ3a8 (34)

for someai ∈ R, i = 1, . . . , 8. By thinking of the elementγ1 as the complex numberi =
√
−1, we can

view Cliff3 as a vector space overC. To be precise,

x = (a1 + γ1a2) + γ2(a3 + γ1a5) + γ3(a4 − γ1a7) + γ2γ3(−a6 + γ1a8)

= z1 + γ2z2 + γ3z3 + γ2γ3z4

(35)

where,zi ∈ C, i = 1, . . . , 4 and are given byz1 = (a1 + γ1a2), z2 = (a3 + γ1a5), z3 = (a4 − γ1a7) and

z4 = (−a6 + γ1a8).

Now using left regular representation as in the case of codesfrom A
L
2 , we get

Lx(1) = z1 + γ2z2 + γ3z3 + γ2γ3z4

Lx(γ2) = γ2z
∗
1 − z∗2 − γ2γ3z

∗
3 + γ3z

∗
4

Lx(γ3) = γ3z
∗
1 + γ2γ3z

∗
2 − z∗3 − γ2z

∗
4

Lx(γ2γ3) = γ2γ3z1 + γ22γ3z2 + γ3γ2γ3z3 − z4

= γ2γ3z1 − γ3z2 + γ2z3 − z4

(36)

Hence we obtain the following LSTD[Lx]
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[Lx] =











z1 −z∗2 −z∗3 −z4

z2 z∗1 −z∗4 z3

z3 z∗4 z∗1 −z2

z4 −z∗3 z∗2 z1











(37)

By construction, the weight matrices and the real variablesof the LSTD [Lx] can be partitioned into

four groups for decoding purposes which is illustrated in the following table.

φ(1) φ(γ1) φ(γ2) φ(γ3)

z1I z1Q z2I z3I

φ(γ1γ2γ3) φ(−γ2γ3) φ(γ1γ3) φ(−γ1γ2)

z4Q z4I z3Q z2Q

In general, forR = 2m relays we can take the left regular representation ofA
2m−2

3 .

Example 3.7:Suppose we want a design forR = 8 = 23 relays. Then, we havem = 3. Consider the

algebraA2
3. A typical elementx can be expressed as

x = z1 + γ2z2 + γ3z3 + γ2γ3z4 + δ1z5 + δ1γ2z6δ1γ3z7 + δ1γ2γ3z8

where,z1 = (z1I + γ1z1Q), z2 = (z2I + γ1z2Q), z3 = (z3I − γ1z3Q), z4 = (−z4I + γ1z4Q), z5 =

(z5I+γ1z5Q), z6 = (z6I+γ1z6Q), z7 = (z7I−γ1z7Q), z8 = (−z8I+γ1z8Q) andziI , ziQ ∈ R, i = 1, . . . , 8.

Using left regular representation, we get the following LSTD






















z1 −z∗2 −z∗3 −z4 z5 −z∗6 −z∗7 −z8

z2 z∗1 −z∗4 z3 z6 z∗5 −z∗8 z7

z3 z∗4 z∗1 −z2 z7 z∗8 z∗5 −z6

z4 −z∗3 z∗2 z1 z8 −z∗7 z∗6 z5

z5 −z∗6 −z∗7 −z8 z1 −z∗2 −z∗3 −z4

z6 z∗5 −z∗8 z7 z2 z∗1 −z∗4 z3

z7 z∗8 z∗5 −z6 z3 z∗4 z∗1 −z2

z8 −z∗7 z∗6 z5 z4 −z∗3 z∗2 z1























. (38)

The corresponding4 groups of real variables are{z1I , z4Q, z5I , z8Q}, {z1Q, z4I , z5Q, z8I},

{z2I , z3Q, z6I , z7Q} and{z3I , z2Q, z7I , z6Q} respectively.

4) Features of DSTBCs from extended Clifford algebras:Note that both the LSTDs fromAL
2 andAL

3

are conjugate linear. This is by virtue of the properties of left regular representation. While taking the
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left regular matrix representation, recall that we viewed the algebra as a vector space overC by thinking

of the elementγ1 as the analogue of the complex numberi =
√
−1. Any column of the design was then

obtained as the image of a few elements of the natural basis ofthe algebra under the mapLx. All the

elements of the natural basis ofA
L
n have the property that they either commute withγ1 or anti-commute

with γ1. When we find the image of a basis element sayα under the mapLx, recall that we moved

α past a complex numberzi. If α commutes withγ1, then it leaves the complex number intact. Ifα

anti-commutes withγ1, then it inflicts conjugation while moving past the complex number. This property

leads to conjugate LSTDs. This fact can be clearly observed in for instance (27). Moreover it can be

easily observed that all the relay matrices of the resultingdesigns are unitary. This is because the number

of complex variables in the design is equal to the size of the matrix and by virtue of the left regular

representation any complex variable appears only once in any column and also they appear in different

positions in every column. Full diversity is guaranteed forboth these classes of LSTDs because they are

CUWDs and full diversity aspects for general CUWDs have beendiscussed in Subsection II-B.1. Also

note that both these constructions meet the optimal rate-MLdecoding complexity as stated in Theorem

6 for g = 4. The constructed DSTBCs can be easily described and they have a very nice structure which

is due to the algebraic approach.

IV. OFDM BASED DISTRIBUTED SPACE TIME CODING FORASYNCHRONOUSRELAY NETWORKS

In this section, we consider symbol asynchronism among the relays and propose an OFDM based

transmission scheme that can achieve full cooperative diversity in asynchronous relay networks. This

transmission scheme is a generalization of the Li-Xia transmission scheme in [39]. We briefly review the

Li-Xia [39] transmission scheme in Subsection IV-A and in Subsection IV-B, we describe the proposed

transmission scheme and also provide code constructions based on the four group decodable DSTBCs

constructed in the previous section. Finally, in Subsection IV-C, it is shown how differential encoding at

the source node can be combined with the proposed transmission scheme in Subsection IV-B to arrive

at a transmission scheme for non-coherent asynchronous relay networks.

An asynchronous wireless relay network is depicted in Fig. 5. The overall relative timing error of

the signals arrived at the destination node from thei-th relay node is denoted byτi. Without loss of

generality, it is assumed thatτ1 = 0, τi+1 ≥ τi, i = 1, . . . , R − 1. The relay nodes are assumed to have

perfect carrier synchronization. The destination node is assumed to have the knowledge of all the channel

fading gainsfi, gi, i = 1, . . . , R and the relative timing errorsτi, i = 1, . . . , R. All the other assumptions

are same as that made for the synchronous wireless relay network case.
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Fig. 5. Asynchronous wireless relay network

In this OFDM based transmission scheme, the transmission ofinformation from the source node to

the destination node takes place in two phases. In the first phase, the source broadcasts the information

to the relay nodes using OFDM. The relay nodes receive the faded and noise corrupted OFDM symbols,

process them and transmit them to the destination.

A. Li-Xia transmission scheme[39]

The source takes2N complex symbolszi,j , 0 ≤ i ≤ N − 1, j = 1, 2 and forms two blocks of data

denoted byaj =
[

z0,j z1,j . . . zN−1,j

]T

, j = 1, 2. The first blocka1 is modulated byN -point

Inverse Discrete Fourier Transform (IDFT) anda2 is modulated byN -point Discrete Fourier Transform

(DFT). Then a cyclic prefix (CP) of lengthlcp is added to each block, wherelcp is not less than the

maximum of the overall relative timing errors of the signalsarrived at the destination node from the relay

nodes. The resulting two OFDM symbols denoted byā1 and ā2 consisting ofLs = N + lcp complex

numbers are broadcasted to the two relays using a fractionπ1 of the total average powerP consumed

by the source and the relay nodes together.

If the channel fade gainsfi, gi, i = 1, . . . , R are assumed to be constant for4 OFDM symbol intervals,

the received signals at thei-th relay during thej-th OFDM symbol duration is given by

ri,j = fiāj + v̄i,j

where,v̄i,j is the additive white Gaussian noise (AWGN) at thei-th relay node during thej-th OFDM

symbol duration. The two relay nodes then process and transmit the resulting signals as shown in Table

II using a fractionπ2 of the total powerP . The notationζ(.) denotes the time reversal operation, i.e.,

ζ(r(n)) , r(Ls − n).

The destination removes the CP for the first OFDM symbol and implements the following for the

second OFDM symbol:
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TABLE II

ALAMOUTI CODE BASED TRANSMISSION SCHEME

OFDM Symbol U1 U2

1
q

π2P

π1P+1
r1,1 −

q

π2P

π1P+1
r2,2

∗

2
q

π2P

π1P+1
ζ(r1,2)

q

π2P

π1P+1
ζ(r2,1

∗)

1) Remove the CP to get aN -point vector

2) Shift the lastlcp samples of theN -point vector as the firstlcp samples.

DFT is then applied on the resulting two vectors. Sincelcp ≥ τ2, the orthogonality between the

sub carriers is still maintained. The delay in the time domain then translates to a corresponding phase

change ofe−
i2πk

N in the k-th sub carrier. Letdτ2 denote
[

1 e−
i2πτ2

N . . . e−
i2πτ2(N−1)

N

]T

. Then the

received signals for two consecutive OFDM blocks after CP removal and DFT transformation denoted

by y1 =
[

y0,1 y1,1 . . . yN−1,1

]T

andy2 =
[

y0,2 y1,2 . . . yN−1,2

]T

can be expressed as:

y1 =
√

π1π2P 2

π1P+1 (DFT(IDFT(a1))f1g1 +DFT(−(DFT(a2))
∗) ◦ dτ2f∗

2 g2)

+
√

π2P
π1P+1(v1,1g1 − v2,2

∗ ◦ dτ2g2) +w1

y2 =
√

π1π2P 2

π1P+1 (DFT(ζ(DFT(a2)))f1g1 +DFT(ζ((IDFT(a1))
∗)) ◦ dτ2f∗

2 g2)

+
√

π2P
π1P+1(v1,2g1 + v2,1

∗ ◦ dτ2g2) +w2

where,◦ denotes Hadamard product,wi = (wk,i), i = 1, 2 is the AWGN at the destination andvi,j

denotes the DFT of̄vi,j. Now using the identities

(DFT(x))∗ = IDFT(x∗)

(IDFT(x))∗ = DFT(x∗)

DFT(ζ(DFT(x))) = x

(39)

we get the Alamouti code form in each sub carrierk, 0 ≤ k ≤ N − 1 as shown below:




yk,1

yk,2



 =
√

π1π2P 2

π1P+1




zk,1 −z∗k,2

zk,2 z∗k,1








f1g1

e−
i2πkτ2

N f∗
2 g2





+
√

π2P
π1P+1




v1,1(k)g1 − v2,2

∗(k)e−
i2πkτ2

N g2

v1,2(k)g1 + v2,1
∗(k)e−

i2πkτ2
N g2



+




wk,1

wk,2



 .
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With the power allocationπ1 = 1, π2 = 1
R

and because of the Alamouti code form, diversity order of

two can be achieved along with symbol-by-symbol ML decoding.

B. Proposed Transmission Scheme

In this section, we extend the Li-Xia transmission scheme toa general transmission scheme that can

achieve full asynchronous cooperative diversity for arbitrary number of relays. This nontrivial extension is

based on analyzing the sufficient conditions required on thestructure of STBCs which admit application

in the Li-Xia transmission scheme.

1) Transmission by the source node:

The source takesRN complex symbolszi,j , 0 ≤ i ≤ N − 1, j = 1, 2, . . . , R, and formsR blocks of

data denoted byaj =
[

z0,j z1,j . . . zN−1,j

]T

, j = 1, 2, . . . , R. Of theseR blocks,M of them are

modulated byN -point IDFT and the remainingR−M blocks are modulated byN -point DFT. Without

loss of generality, let us assume that the firstM blocks are modulated byN -point IDFT. Then a CP of

length lcp is added to each block, wherelcp is not less than the maximum of the overall relative timing

errors of the signals arrived at the destination node from all the relay nodes. The resultingR OFDM

symbols denoted bȳa1, ā2, . . . , āR each consisting ofLs = N + lcp complex numbers are broadcasted

to theR relays using a fractionπ1 of the total average powerP .

2) Processing at the relay nodes:

If the channel fade gains are assumed to be constant for2R OFDM symbol intervals, the received signals

at thei-th relay during thej-th OFDM symbol duration is given by

ri,j = fiāj + v̄i,j

where,v̄i,j is the AWGN at thei-th relay node during thej-th OFDM symbol duration. The relay nodes

process and transmit the received noisy signals as shown in Table III using a fractionπ2 of total power

P . Note from Table III that time reversal is done during the last R −M OFDM symbol durations. We

would like to emphasize that in general time reversal could be implemented in anyR −M of the total

R OFDM symbol durations. Now,ti,j ∈ {0,±ri,j, j = 1, . . . , R} with the constraint that thei-th relay

should not be allowed to transmit the following:

{±ri,j
∗, j = 1, . . . ,M} ∪ {±ζ(ri,j), j = 1, . . . ,M}

∪ {±ri,j, j = M + 1, . . . , R} ∪ {±ζ(ri,j
∗), j = M + 1, . . . , R} .
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TABLE III

PROPOSED TRANSMISSION SCHEME

OFDM Symbol U1 . . . UM UM+1 . . . UR

1 t1,1 . . . tM,1 tM+1,1
∗ . . . tR,1

∗

...
...

...
...

...
...

...

M t1,M . . . tM,M tM+1,M
∗ . . . tR,M

∗

M + 1 ζ(t1,M+1) . . . ζ(tM,M+1) ζ(tM+1,M+1
∗) . . . ζ(tR,M+1

∗)

...
...

...
...

...
...

...

R ζ(t1,R) . . . ζ(tM,R) ζ(tM,R
∗) . . . ζ(tR,R

∗)

Remark 10:If the i-th relay is permitted to transmit elements belonging to theabove set, then after

CP removal and DFT transformation at the destination node, we would end up with the following vectors

corresponding to each of the four subsets in the above set respectively:

±DFT((IDFT(aj))
∗) = ±DFT(DFT(aj

∗)), j = 1, . . . ,M

±DFT(ζ(IDFT(aj))), j = 1, . . . ,M

±DFT(DFT(aj)), j = M + 1, . . . , R

±DFT(ζ((DFT(aj))
∗)), j = M + 1, . . . , R

from any of which it is not possible to recover any of±aj,±aj
∗, j = 1, 2, . . . , R. However, if the

destination node is allowed to apply DFT to some of the received OFDM symbols and IDFT to the

remaining OFDM symbols, then possibly the above restrictions can be removed, which is a scope for

further work.

3) Decoding at the destination:

The destination removes the CP for the firstM OFDM symbols and implements the following for the

remaining OFDM symbols:

1) Remove the CP to get aN -point vector

2) Shift the lastlcp samples of theN -point vector as the firstlcp samples.

DFT is then applied on the resultingR vectors. Let the received signals forR consecutive OFDM

blocks after CP removal and DFT transformation be denoted by

yj =
[

y0,j y1,j . . . yN−1,j

]T

, j = 1, 2, . . . , R. Letwi = (wk,i), i = 1, . . . , R represent the AWGN

at the destination node and letvi,j denote the DFT of̄vi,j. Let
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zk =
[

zk,1 zk,2 . . . zk,R

]T

, k = 0, 1, . . . , N − 1.

Now using (39), we get in each sub carrierk, 0 ≤ k ≤ N − 1:

yk =
[

yk,1 yk,2 . . . yk,R

]T

=

√

π1π2P 2

π1P + 1
Xkhk + nk (40)

where,

Xk =
[

B1zk . . . BMzk BM+1zk
∗ . . .BRzk

∗
]

(41)

for some square real matricesBi, i = 1, . . . , R having the property that any row ofBi has only one

nonzero entry. Ifuτik = e−
i2πkτi

N , then

hk =
[

f1g1 uτ2k f2g2 . . . uτMk fMgM u
τM+1

k f∗
M+1gM+1 . . . uτRk f∗

RgR

]T

(42)

is the equivalent channel matrix for thek-th sub carrier. The equivalent noise vectornk is given by:

nk =
√

π2P
π1P+1











β1
∑R

i=1 sgn(ti,1)v̂i,1(k)giu
τi
k

β2
∑R

i=1 sgn(ti,2)v̂i,2(k)giu
τi
k

...

βR
∑R

i=1 sgn(ti,R)v̂i,R(k)giu
τi
k











+











wk,1

wk,2

. . .

wk,R











where,sgn(ti,j) =







1 if ti,j ∈ {ri,j, j = 1, . . . , R}
−1 if ti,j ∈ {−ri,j, j = 1, . . . , R}
0 if ti,j = 0

and

v̂i,m =







±vi,j if i ≤ M and ti,m = ±ri,j

±vi,j
∗ if i > M and ti,m = ±ri,j

. The βi’s are simply scaling factors to account for the

correct noise variance due to some zeros in the transmission.

ML decoding ofXk can be done from (40) by choosing that codeword which minimizes‖ Ω− 1

2 (yk−
Xkhk) ‖2F , whereΩ is the covariance matrix ofnk. Essentially, the proposed transmission scheme

implements a space time code having a special structure in each sub carrier.

4) Full diversity four group decodable DSTBCs:

In this subsection, we analyze the structure of the STBC required for implementing in the proposed

transmission scheme. Then we observe that the DSTBCs constructed in Section III have this structure

and hence are applicable in this setting as well. Note from (41) that the conjugate linearity property is

required. But conjugate linearity alone is not enough for a space time code to qualify for implementation

in the proposed transmission scheme. Note from Table III that time reversal is implemented for certain
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OFDM symbol durations by all the relay nodes. In other words if one relay node implements time reversal

during a particular OFDM symbol duration, then all the otherrelay nodes should necessarily implement

time reversal during that OFDM symbol duration. Observe that this is a property connected with the row

structure of a space time code. We now provide a set of sufficient conditions that are required on the row

structure of conjugate linear space time codes. First let uspartition the complex symbols appearing in the

i-th row into two sets- one setPi containing those complex symbols which appear without conjugation

and another setP c
i which contains those complex symbols which appear with conjugation in thei-th

row. Any conjugate linear STBC satisfying the following sufficient conditions can be implemented in the

proposed OFDM based transmission scheme described in the previous subsection.

Pi ∩ P c
i = φ, ∀ i = 1, . . . , R

|Pi| = |P c
i |, ∀ i = 1, . . . , R

Pi ∩ Pj ∈ {φ, Pi, Pj} , ∀ i 6= j.

(43)

To understand what happens if the above condition is not met,let us see an example of a conjugate

linear STBC which cannot be employed in the proposed transmission scheme.

Example 4.1:Consider the conjugate linear STBC given by










zk,1 zk,2 −z∗k,3 −z∗k,4

zk,2 zk,3 −z∗k,4 −z∗k,1

zk,3 zk,4 z∗k,1 z∗k,2

zk,4 zk,1 z∗k,2 z∗k,3











for which P1 = P c
3 = {zk,1, zk,2}, P c

1 = P3 = {zk,3, zk,4}, P2 = P c
4 = {zk,2, zk,3}, P c

2 = P4 =

{zk,4, zk,1}. It can be checked that there is no assignment of time reversal OFDM symbol durations

together with an appropriate choice ofM and relay node processing such that the above conjugate linear

STBC form is obtained in every sub carrier at the destinationnode. This is because the conditions in

(43) are not met by this conjugate linear STBC.

For the case of the Alamouti code,P1 = P c
2 = {zk,1}, P2 = P c

1 = {zk,2} and hence it satisfies the

conditions in (43).

It is easy to observe that the four group ML decodable DSTBCs constructed in Section III satisfy all

the required conditions as stated in (43) and are thus suitable for application in the proposed transmission

scheme. This is illustrated using the following two examples.

Example 4.2:Let us considerR = 4 and the DSTBC from extended Clifford algebraA2
2 for this case

October 30, 2018 DRAFT



50

has the following structure










zk,1 zk,2 −z∗k,3 −z∗k,4

zk,2 zk,1 −z∗k,4 −z∗k,3

zk,3 zk,4 z∗k,1 z∗k,2

zk,4 zk,3 z∗k,2 z∗k,1











for which M = 2, P1 = P2 = P c
3 = P c

4 = {zk,1, zk,2} andP3 = P4 = P c
1 = P c

2 = {zk,3, zk,4}. To arrive

at the above structure in every sub carrier, encoding and processing at the relays are done as follows:

ā1 = IDFT(a1), ā2 = IDFT(a2), ā3 = DFT(a3) and ā4 = DFT(a4).

TABLE IV

TRANSMISSION SCHEME FOR4 RELAYS

OFDM U1 U2 U3 U4

Symbol

1 r1,1 r2,2 −r3,3
∗ −r4,4

∗

2 r1,2 r2,1 −r3,4
∗ −r4,3

∗

3 ζ(r1,3) ζ(r2,4) ζ(r3,1
∗) ζ(r4,2

∗)

4 ζ(r1,4) ζ(r2,3) −ζ(r3,2
∗) −ζ(r4,1

∗)

As discussed in Section III, this DSTBC is single complex symbol decodable and achieves full diversity

for appropriately chosen signals sets .

Example 4.3:Let us takeR = 5, for which the DSTBC is obtained by taking a DSTBC from PCIOD

for 6 relays and dropping one column. It is given by
















zk,1 −z∗k,2 0 0 0

zk,2 z∗k,1 0 0 0

0 0 zk,3 −z∗k,4 0

0 0 zk,4 z∗k,3 0

0 0 0 0 zk5

0 0 0 0 zk,6

















for which P1 = P c
2 = {zk,1}, P2 = P c

1 = {zk,2}, P3 = P c
4 = {zk,3}, P4 = P c

3 = {zk,4}, P5 = {zk,5},

P6 = {zk,6} and P c
5 = P c

6 = φ. At the source, we choosēa1 = IDFT(a1), ā2 = DFT(a2), ā3 =

IDFT(a3), ā4 = DFT(a4), ā5 = IDFT(a5) and ā6 = DFT(a6). The 5 relays process the received

OFDM symbols as shown in Table V.

This code is3 real symbol decodable and achieves full diversity for appropriately chosen signal sets.
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TABLE V

TRANSMISSION SCHEME FOR5 RELAYS

OFDM U1 U2 U3 U4 U5

Symbol

1 r1,1 −r2,2
∗

0 −0 0

2 ζ(r1,2) ζ(r2,1
∗) −0 −0 0

3 0 0 r3,3 −r4,4
∗

0

4 0 0 −ζ(r3,2) ζ(r4,1
∗) 0

5 0 0 0 0 r5,5

6 0 0 0 0 −ζ(r5,6)

Example 4.3 illustrates how the proposed transmission scheme can be employed for odd number

of relays as well. Note that the ML decoding complexity of theproposed codes for asynchronous

relay networks is significantly less compared to all other distributed space time codes for asynchronous

cooperative diversity known in the literature.

Note that the full diversity,2-group ML decodable DSTBCs in [37] and the full diversity,1-group ML

decodable DSTBCs in [35], [34] also satisfy the conditions in (43) and are applicable in the proposed

OFDM based transmission scheme.

C. Transmission Scheme for Noncoherent Asynchronous RelayNetworks

In this subsection, it is shown how differential encoding can be combined with the proposed transmis-

sion scheme described in Subsection IV-B and the distributed differential space time codes for noncoherent

synchronous relay networks in [54] are proposed for application in this setting.

For the transmission scheme described in Subsection IV-B, at the end of one transmission frame, we

have in thek-th sub carrieryk =
√

π1π2P 2

π1P+1Xkhk + nk. Note that the channel matrixhk depends on

fi, gi, τi, i = 1, . . . , R. Thus the destination node needs to have the knowledge of allthese values in order

to perform ML decoding.

Now using differential encoding ideas which were proposed in [55], [56], [57] for non-coherent com-

munication in synchronous relay networks, we propose to combine them with the proposed asynchronous

transmission scheme. Supposing the channel remains approximately constant for two transmission frames,

then differential encoding can be done at the source node in each sub carrier0 ≤ k ≤ N − 1 as follows:

a0k =
[ √

R 0 . . . 0
]T

, atk =
1

bt − 1
Cta

t−1
k ,Ct ∈ C
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where,aik denotes the vector of complex symbols transmitted by the source during thei-th transmission

frame andC is the codebook used by the source which consists of scaled unitary matricesCHCt = b2t I

such thatE[b2t ] = 1. If CBi = BiC, i = 1, . . . ,M andCBi = BiC
∗, i = M + 1, . . . , R for all C ∈ C ,

then we can write

yt
k =

1

bt−1
Cty

t−1
k + (nt

k − 1

bt − 1
Ctn

t−1
k ) (44)

from which Ct can be decoded aŝCt = argminCt∈C ‖ yt
k − 1

bt−1
Cty

t−1
k ‖2F in each sub carrier0 ≤

k ≤ N − 1.

Note that this decoder does not require the knowledge offi, gi, τi, i = 1, . . . R at the destination

although this transmission strategy assumes the knowledgeof the maximum of theτ ’s since it is needed

to decide the length of CP. It turns out that the four group decodable distributed differential space time

codes constructed in [54] for synchronous relay networks with power of two number of relays meet all

the requirements for use in the proposed transmission scheme as well. Let us see an example to illustrate

this fact.

Example 4.4:Let R = 4. The codebook at the source is given by

C =







√
1
4











z1 z2 −z∗3 −z∗4

z2 z1 −z∗4 −z∗3

z3 z4 z∗1 z∗2

z4 z3 z∗2 z∗1

















where {z1I , z2I} , {z1Q, z2Q} , {z3I , z4I} , {z3Q, z4Q} ∈ S and

S =











1√
3

0



 ,




− 1√

3

0



 ,




0
√

5
3



 ,




0

−
√

5
3










. Differential encoding is done at the source node

for each sub carrier0 ≤ k ≤ N − 1 as follows:

a0k =
[ √

R 0 . . . 0
]T

, atk =
1

bt − 1
Cta

t−1
k

,Ct ∈ C .

Once we getatk, k = 0, . . . , N − 1 from the above equation, theN length vectorszi, i = 1, . . . , R can

be obtained. Then IDFT/DFT is applied on these vectors and broadcasted to the relay nodes as shown

below: ā1 = IDFT(a1), ā2 = IDFT(a2), ā3 = DFT(a3) and ā4 = DFT(a4). The relay nodes process

the received OFDM symbols as given below:

DRAFT October 30, 2018



53

OFDM U1 U2 U3 U4

Symbol

1 r1,1 r2,2 −r3,3
∗ −r4,4

∗

2 r1,2 r2,1 −r3,4
∗ −r4,3

∗

3 ζ(r1,3) ζ(r2,4) ζ(r3,1
∗) ζ(r4,2

∗)

4 ζ(r1,4) ζ(r2,3) −ζ(r3,2
∗) −ζ(r4,1

∗)

for which M = 2, B1 = I4, B2 =











0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0











, B3 =











0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0











and

B4 =











0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0











. It has been proved in [54] thatCBi = BiC, i = 1, 2 and

CBi = BiC
∗, i = 3, 4 for all C ∈ C . At the destination node, decoding for{z1I , z2I}, {z1Q, z2Q},

{z3I , z4I} and{z3Q, z4Q} can be done separately in every sub carrier due to the four group decodable

structure ofC .

V. SIMULATION RESULTS

In this section, we study the error performance of the DSTBCsproposed in this paper using simulations.

We consider both the synchronous case and the asynchronous case.

For the synchronous case, we compare the performance of the newly proposed DSTBCs from extended

Clifford algebras and PCIODs with the DSTBCs from field extensions [34], [35] for a4 relay network.

The PCIOD taken for simulations is given by











z1 −z∗2 0 0

z2 z∗1 0 0

0 0 z3 −z∗4

0 0 z4 z∗3











where,{z1I , z3I}, {z1Q, z3Q},

{z2I , z4I}, {z2Q, z4Q} are allowed to take values from QAM constellation rotated by31.718◦. The DSTBC

from extended Clifford algebras (ECA) is obtained fromA2
2 and is given by











z1 z2 −z∗3 −z∗4

z2 z1 −z∗4 −z∗3

z3 z4 z∗1 z∗2

z4 z3 z∗2 z∗1
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Fig. 6. Performance comparison of DSTBCs from PCIOD, ECA andfield extension

where,{z1I , z2I}, {z1Q, z2Q}, {z3I , z3Q}, {z4I , z4Q} are allowed to take values from QAM constellation

rotated by166.71◦. The DSTBC from field extensions [34], [35] is given by











z1 iz4 iz3 iz2

z2 z1 iz4 iz3

z3 z2 z1 iz4

z4 z3 z2 z1











wherezi, i = 1, 2, 3, 4 are allowed to take values from regular QAM constellation.

Fig.6 shows the codeword error rate performance of the proposed DSTBCs (4 relays) in comparison

to those from field extensions [34], [35] for transmission rates of 1 bit per channel use (bpcu) and2

bpcu. We observe that the error performance of the proposed codes are very similar to the1-group

ML decodable DSTBC from field extensions [34], [35]. Thus theproposed codes enjoy a good error

performance along with reduced ML decoding complexity.

For the asynchronous case, we takeR = 4, N = 64 and the length of CP as16. The delayτi at

each relay is chosen randomly between0 to 15 with uniform distribution. Two cases are considered

for simulation: (i) with channel knowledge at the destination and (ii) without channel knowledge at any

node. When channel knowledge is available at the destination, the processing at relay nodes is done as
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Fig. 7. Error performance for an asynchronous4 relay network with and without channel knowledge

described in Example 4.2 and166.71◦ rotated QPSK is used as the signal set. Coherent detection is

done at the destination in every sub carrier. For the case of no channel knowledge, differential encoding

is done at the source as described in Example 4.4 and a modifiedsignal set (as explained in [54] for

scaled unitary codewords) is employed. Also, differentialdetection is done at the destination in every

sub carrier. Simulations are done for transmission rates (neglecting rate loss due to CP) of1 bpcu and2

bpcu in both the cases.

The error performance curves for both the cases are shown in Fig. 7. It can be observed that the error

performance for the no channel knowledge case performs approximately 5 dB worse and8 dB worse

compared to that with channel knowledge for transmission rates of1 bpcu and2 bpcu respectively. This

is partly due to the differential transmission/reception technique (which increases the effective noise seen

by destination) and also in part, because of the change in signal set from rotated QAM to some other

signal set [54] for scaled unitary codeword matrices. The change in signal set for the sake of scaled

unitary codeword matrices results in a reduction of the coding gain.
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VI. D ISCUSSION

In this paper, the problem of optimal rate-ML decoding complexity within the framework of multi-group

decodable STBCs was posed. Then an algebraic framework for studying CUW STBCs was introduced

using which the optimal rate-ML decoding complexity tradeoff of CUW STBCs was obtained and several

optimal code constructions were also provided. Then the paper focused on constructing multi-group

decodable DSTBCs and three new classes of four group decodable DSTBCs were constructed. The

OFDM based transmission scheme in [39] was extended to a moregeneral transmission scheme for

arbitrary number of relays that can achieve full cooperative diversity in the presence of timing errors

at the relay nodes. It was then pointed out that the four groupdecodable DSTBCs constructed in this

paper can be applied in the proposed transmission scheme forany number of relay nodes. A drawback

of the proposed transmission scheme is that it requires a large coherence interval spanning over multiple

OFDM symbol durations. Moreover there is a rate loss due to the use of CP, however this loss can

be made negligible by choosing a large enoughN . Finally, it was shown how differential encoding

at the source node can be combined with this OFDM based transmission strategy to arrive at a new

transmission strategy than can achieve full cooperative diversity in asynchronous relay networks with

no channel knowledge as well as no timing error knowledge. The distributed differential STBCs in [54]

were then proposed for application in this setting for powerof two number of relays.

Some of the interesting directions for further work are as listed below:

1) The CUW STBCs are based on sufficient conditions forg-group ML decodability. An algebraic

framework forg-group ML decodable STBCs based on the necessary and sufficient conditions and

the optimal rate-ML decoding complexity tradeoff of general g-group ML decodable STBCs is an

important open problem.

2) How to constructg-group decodable DSTBCs forg 6= 4? In particular, constructing single symbol

decodable DSTBCs for the synchronous as well as asynchronous cases is worth investigating. Some

initial results in this direction have been reported in [60], [61].

3) In the results pertaining to asynchronous relay networks, we have assumed that there are no

frequency offsets at the relay nodes. Extending this work toasynchronous relay networks with

frequency offsets is an interesting direction for further work. This problem has been addressed in

[62] for the case of two relay nodes.

4) In this work, we have constructed DSTBCs with low ML decoding complexity mainly for the two

phase amplify and forward based transmission protocols [33], [36], [49]. Constructing low ML
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decoding complexity codes for the other cooperative diversity protocols in the literature is also an

interesting problem.
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