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Capacity with energy constraint in coherent state
channel

Masahito Hayashi

Abstract

We consider two kind of energy constraints when the outpatess a coherent state. One is a constraint on the total ynerg
during a fixed period; the other is a constraint on the totargy for a single code. The first setting can be easily dedh by
using the conventional capacity formula. The second getquires the general capacity formula for a classicahtyua channel.

Index Terms
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I. INTRODUCTION

Recently, the demand for high speed optical communicatias leen steadily increasing. Optical communication is a
communication technology sending information via trarténg photons through optical fibers. Optical communicatiequires
energy because photons have energy, which increases iorpoopto the average photon number. For reasons of economy,
the average photon number is restricted to a fixed value.

In conventional information theory, including quantumdrrhation theory, it has been usual to deal with the capawitich
is the maximum transmission rate with an energy constrainthis formulation, the average photon number per singlsgu
is restricted. That is, the total average photon numberdsvall to increase in proportion to the number of pulses imglsi
code. However, in real optical communication, the totalrage photon number over a fixed period, rather than the agerag
photon number per pulse, should be restricted to a fixed value

Since coherent light is normally used for optical commutiieg it is natural to assume that only coherent states aaiadle
for the signal states. The attenuation channel is oftemasadias the quantum communication channel. In this case,utipeito
state of the coherent input state is also a coherent stateceieve only treat the case where the output state is a cdheren
state.

In the present paper, with respect to the first setting, theusmtof transmitted information when the total average phot
numberE during the fixed period is fixed and the numb€rof pulses during the fixed period is increasing can be changed

As for the second setting, the amount of transmitted infdionas treated when the total average photon numbdor a
single code is fixed and the numbar of pulses for a single code is increasing. In this framewdtrk, relation between the
amount of transmitted information and the average errobaipdity in the asymptotic setting is discussed. Since #striction
for a single pulse depends on the numBenf pulses, we cannot apply the conventional capacity foanfioi the stationary
memoryless channel. In order to resolve this problem, wédyapp asymptotic general capacity formula for a classgqantum
channel, which was invented by Hayashi-Nagaoka[5] as tlamtgun version of Verdl-Han[4]'s general capacity formufa
this formula, the quantum information spectrum plays amrmsal role.

In the third formulation, we evaluate the average error phility based only on the average photon num@eof coherent
light and the amountV of transmission information in the non-asymptotic settihg this discussion, Holevo’s covariant
measurement plays an essential role. We derive a geneatibrebetween the average photon number and the average erro
probability in a general framework. Some results in the sdceetting are recovered from this non-asymptotic formula.
Therefore, we discuss the required average photon numbeeliable communication based on coherent light from saver
viewpoints.

The remainder of the present paper is set out as follows. dtiosdll, we deal with the first setting, i.e., the amount of
transmitted information when the total average photon remibduring the fixed period is fixed and the numigérof pulses
during the fixed period is increasing. In section Ill, we ddes the second and third settings, i.e., Theokém 1 is pteddin
the second setting) and Theor€in 2 (in the third setting) ésqmted as the main results. In secfioh IV, we revisit thesigen
capacity formula for a classical-quantum channel for theosd setting and derive a useful general formula for the odsn
the output states are pure. This general formula is provehdmppendix. In sectionV, a proof of Theorémh 1 is given based
on the discussion in sectidn]IV. In sectibnl VI, a proof of Tten[2 is given based on group representation theory. In the
appendix, an important theorem stated in sedfidn IV is mlove
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Il. PHOTON NUMBER CONSTRAINT FOR A FIXED PERIOD

In this paper, we treat th&/-fold tensor product systeri®" of the Boson-Fock spack, which is spanned by the number

states|0), [1),...,|n),.... Coherent light with the complex amplitudeis given as|a) := e -l S 31|n>

n=0

In coding theory, the classical input symbols are callediirgdphabets, and in our setting, they equal the complexeplan
C. Then, the classical-quantum channel discussed here & gi¢ a map fronC to the set of density operators ok
of the forma +— |a)(a|. The N-fold memoryless extension is given as a map frG# to the set of density matrices
on the N-th tensor product systerii®". That is, this extension maps the input sequedice (ay,...,ay) to the state
|&><&| = |CY17 N ,O(N><041, ce ,O(N|.

Sending the messagd, ..., My} requires an encoder and a decoder. The encoder is given ap @ mdrom the set
of messageq1,..., My} to the set of alphabet§”, and the decoder is given by a POVMY = {V;V}M¥ . The triplet
Oy = (My,pn, YY) is called a code. Its performance is evaluated by the vélug| := My and the average error

probability, given by

clon] = o Z@N —Y)len )

The codedy := (My, pon, YY) is required to satisfy the average photon number constraint

(on(i)|Nlpn(i)) < NE for Vi 1)
where the number operatd¥ is given asy_, ..y +...4+ny)ni,...,ny)(n,...,ny|. This condition is equivalent
to the condition

N
lal2 =" Jaif? < NE
1=0

whered = oy (i).
Then, the channel capacity with the average photon numbesteint [1) is given by

e[®n] — 0 }

def Lol d
C(E) = sup {hm inf —
{<I>N}]ovo:1 N — o0 N

The capacityC(E) is calculated as[1]

C(E)= max H(p)=(E+1)log(E+1)—FElogkFE,
TrpN=F
where H(p) = — Tr plog p.
Hence, when the number of pluses during a fixed period isictsdrto X' and the average photon number per second is
limited by E, the bound of the possible amount of transmitted infornmatsogiven as

E E E E E
KO(E) = K((E +1) 1og(E +1)— )74 log E)
When the conditionk is fixed, this limit is a finite value. However, if the numbaér is sufficiently large, this value has the
following asymptotic expansion:
2

E E
KC(K) FElogK+ E—ElogE + — 7 K

which implies that we can increase the number of sendingblyitisicreasing the numbek of sending pulses per second with
the fixed average photon number constraint.

This type of phenomenon does not occur in the classical Gauskannel. When the channel noise is specified as a Gaussian
distribution with variancéd/, and the average photon number constraint is given as thditmmthat the input intensity per
signal is E/, then the capacity is

1 E
(F, = —log(l+ —=).
CelE,V) i= 5 log(1 + 7))
Hence,
E E E E? 1
KO V) = K3 loa(l+ 370) = o0 — o e
E E
KC(+,V) < —.
C(K V) 2V

Thus, even though the numb&r of pulses per second increases, the capacity is Iimiteﬁ;to



One might consider that this comparison is inappropriatabse the coherent state case is noiseless and only hasaditten
whereas the classical Gaussian case does include noisevilguhe variance in the estimation of the state farfijly) («||« €
C} behaves a@(%) asymptotically whenV copies of the unknown state are prepared. This behaviorciceis with the
estimation of the unknown expectation parameter of thesimak Gaussian distribution with fixed variance. The former
uncertainty is caused by quantum non-commutativity, aredldter uncertainty is caused by classical noise. Usubtyh
cases have a similar asymptotic behavior, as happens \atibtistal state inference. However, for the situation hére cases
have different asymptotic behaviors. Thus, the differesiseussed here can be regarded as a special phenomenorcesthe
of the capacity of the photon number constraint for a fixedogker

IIl. PHOTON NUMBER CONSTRAINT FOR A SINGLE CODE

In this section, we consider the relation between the trissaom amount and the average photon number from another
viewpoint. First, we consider the transmission amount wientotal average photon number is restricted to the valu®ur
condition [1) is replaced by

(on(i)|Npn (i) < E for ¥i. 2

Since the number of transmitted bits is of ordeg N, we define the capacity with respect to the logarithmic oxdigh error
probability e as

def .. dog|Pn| | limy e e[®PN] <€
Ci(e, F) = s | f———— .
e B) @;l;gol{mo gV | @ holds

Theorem 1: The capacityC(e, E) is as follows:

m

_gE"
C(EE)—bup mZe Eﬁge 3)

To prove this result, we cannot apply the conventlonal f meI’ a memoryless channel. So, we prepare an information
spectrum method in SectignllV, and present a proof in Seffion

In the above theorem, we consider the transmission rategarithmic order with the condition for the average photon
number and number of pulses in the asymptotic setting. Irfdt@wing, we consider the transmission size under the ayer
photon number constraint without any constraint on the remolb pulses in either the non-asymptotic setting or the gggtic
setting. In this framework, we can use any number of pulsemformation transmission, assuming the average photombeu
constraint. The following theorem holds.

Theorem 2: When any statép(:)) of a code® satisfies[(R), the inequality

2
€[¢]21—(é\/1+(|¢|— E+(1_i)m) @

||

holds.
Now, we denote the right hand side &f (4) whigny| = e by ¢(E, R). When R goes to infinity, we obtain its asymptotic
expansion, which depends on the behavioof R:
e F+ 2\/1 —e B (BHR)/2 (1 —2¢7F)e™f if E-R— —c
1+ 2¢4 A(1+eA))e*E<e*E if E—R— A
*2E+R<<eE if E—R— .

e(E,R) =

IH/\

When the average photon numb@ns fixed and the information siz& is sufficiently large, the error probability is greater
than e~ F. Thus, the reliable transmission of a large amount of inftiam requires a high average photon number. This
evaluation does not depend on the number of pulses. In othetsyin order to keep the error probability smaller thamve
need the average photon number to be at ledstz p . This observation coincides with that of Theorgim 1. Corslgrsvhen
the average photon numbér is large relative to the information transmission sizethe obtained lower bound of the error
probability rapidly approaches zero. That is, this loweurd does not yield the crucial bound for the error probaphilit this
case, in order to evaluate the error probability more pedgisve need to take account of the number of pulses.

IV. INFORMATION SPECTRUMAPPROACH TO APURE STATES CHANNEL

For a proof of Theoremi]1l, we cannot apply the conventionabhciép formula for the stationary memoryless channel.
Instead we employ the asymptotic general capacity formadagéneral sequences of a classical-quantum channel byshiaya
Nagaoka[5]. In the general capacity formula, we focus onseguence of Hilbert spacd${(")}, sets of alphabetsXV)},



and classical-quantum channd¥ := {W (M)}, where the channdl’ (") maps an alphabet ¢ X(™) to the density operator
W) on H). For any sequencéuy } satisfying the conditiomy — co, we define the capacity
e .. .log|® )
C(e|W) © sup {hmlnf log|®x| lim e[®y] < e} ,
N T N—o00 an N—o00
where®y expresses a code for the classical-quantum chaifié). For any sequence of probability distributioR$™) on
X we define the information spectrum quantity

I(e|P,W) :=sup {b

lim sup/ Tr WI(N){WJEN) — eaNbWI(DJ(VJ\a) < O}P(N)(d:c) < e} ,
X ()

N —oc0

where the projectiod X > 0} is defined aszml20 E; when the spectral decomposition &f is given as)_, z; E;, and

Wi .= W™ P(da).
X (N)

Then, we obtain the following formula:
C(|W) = sup I(c|P, W), (5)
P

whereP is a sequencéP ™)} of distributions. This formula can be obtained by combiriftgorem 6 of Verdu-Han [4] and
Lemmas 3 and 4 of Hayashi-Nagaokal[5], as is mentioned in Ren@and 11 in Hayashi-Nagaoka[5].

When W) is a pure state for al: € X(™), the quantityl(¢|P, W) can be characterized by the information spectrum
quantity, Wp := {WI(DN)}. For a sequence of density operatprs= {p¥)}, we defineH , (¢|p) by

— -1
H, (e|p) := sup {b lim sup Tr p™) {—1ogp(N) < b} < 6}.
b an

N —oc0

Then, whenv ™ is a pure state for alt € X(™), the following theorem holds.

Theorem 3: Assume thaiWéN) is a pure state for alt € X(N). Then, the relation
H . (e|lWp) = I(e|P,W) (6)

holds for any real number < e < 1.
The proof of this result will be given in the Appendix.
Combining [5) and[{6), we obtain

CelW) = St;pﬁ+(€|WP)- @)

Further, the quantity?  (¢|p) satisfies the convexity requirement as follows.
Theorem 4: For any two sequencgs; := {p(-N)} (=1,2) and0 <t < 1, we define the sequencesg := {tpgN) +(1-
)pQN)} Whenp( ) is unitarily equivalent tq)gN), then
H (e|ps) = H(e|p1). (8)
Proof: In order to apply the majorization theory for eigenvalues, @enote thg-th eigenvalue of the matriX’ by \;(X),
listing the eigenvalues in decreasing order. Using Thedterhl of Bhatia [8], we obtain

k
Z;/\j( Z tplN)—i-X;/\ (1 —t)p™)y Z/\
J= J

Ead

which implies [8). [ |
V. APPLICATION OF THE INFORMATION SPECTRUM APPROACH
We apply the formulal{7) to our problem. Then, we obtain
Ci(e, E) = supﬁ+(e|0'p),
whereay = log N, a;(m = [on |@)(@| PN (d@), and the support oP™ is {a € CV|||@||> < E}. Theoren# guarantees
that

Ci(e,E)= sup H,(clop), (9)
PE'PM“,



where the sequence of distributio®,,, := {P(N)

muv

} is defined as
PN .= {PM)|P) and this sequence is invariant under any actiot/6£™)}.
For any distributionP™) € P{™) | there exists a distributio®™) on [0, vE] such that
PM(da) = PN (dr)un (d9),

whered = rQ) and u is the invariant measure on thé — 1-dimensional sphere. In the following, we prove that

m B En
log og\(fg,) <c}> Ze EF (10)
n=0 ’

o wy , —1
R T pe g

whenc is not an integer aneh is the maximum integer less thanThe equality holds when the distributid®™¥) is the delta
measure o{VE}. Thus,suppep, Hy(clop) =sup,,{m| > e ELL < ¢} Combining with [9), we obtair({3).
Next, we prove[(I0). The staie (Z)V) can be written as

o0

53]\([1)“ / Z N+n 1) e Lo P (dr) = Z AT v,

N-1 n=0
where the projectiofil,, v and the eigenvalug are defined all, v := > |17=, |7) (7i] @andA} := (Jjova e*TzT;—!"P(N) (dr))w.
Since the eigenvalue is evaluated by
ez [ et T (e T )
N7 (0.VE] n! Nn 0.VE] n! (NJF”*l) ’

{lo—glN log 0—%3,) <c} <3 10, n. Hence, the probabilitylr ag\(lg,){lo‘glN log o—%z,) < ¢} is evaluated by

N —
Tro ((]2]) Tog 1oga (N) <c} < Z/ — (N)(dr‘) (11)

where the integem is the maximum integer less than Now, we treat the opposite inequality wherns not an integer and
N > ePle (12)

by consideringn + 1 cases: namely the cas@¥), (1),...,(m).
Case (0): Assume that the inequality

oY 1
- PW)(dr))——— > N7 € 13
P00 gy 2 .

holds for alln < m. Then, forn < m,

R R
Ne = ¢ - ")) TNFr=y
Ne = Jove Qi)
which implies thathgN log AN < ¢. Thus, the equality of (11) holds.

Case ) (n = 1,...,m): Assume that the inequality_(1.3) does not hold for the iateg Note that the inequality (13)
always holds fom = 0 for sufficiently largeN. Sincez — 2™ is a convex function, the averageé, := f[o Nk 2PN (dr)
satisfies

2 \n r2n PN (dp r2n n
~s{7y) L slove 1 / e PO (dr)) N"e
[0,VE]

T, S i, S NI, <
nl (11 ol n! (1+2) n! Qi)

e

becauseV™(1 + )" > (Vi) That s,

1
n—1 narn—c B
The eigenvalue corresponding to the vedtar...,0) is f[O VE € 2P(N) (dr), which is larger thare~"~ becauser — e~?

is convex. Since the conditioh ([12) guarantees that > e F > NC, we obtalnlo‘lN log \})Y < e. Thus,

3 < Ln(N) = (eEn!(l +

1Og0-§3(N) < C} > e Ln(N)'

P(N){



Since the right hand side df {l11) is less thign

Z/o i P(N)(dr) Trag\(]])v) 107;\[10g053(m <cl<l-—e —La(N)
Considering all cased), (1), ... ( ), we obtain
Z/O . = P(N)(dr) Tro\hd, IO;V logo\ha, < ¢} < max 11— e—Ln(V),
which goes ta). Therefore,
liminfTrag\Q,){ -1 10g0‘§3(N) <c¢)= hmmf/ Z —r? P(N) (dr) > i _EE"7
N =00 log N N—oo Jio,vE) S ~ nl

where equality holds whe®(®) is the delta measure op/E}. Therefore, we obtairi (10).

VI. GROUPCOVARIANT APPROACH
First, we consider the case when the statg)) is given as|f;) := ,/p|0) + /T — pli) wherep = e=¥, M = |®| and
|0),|1),...,|M) are orthogonal to each other. We focus on the permutationpgfa, whose representatiovi is given as

Vo)) = 19(@),  Ve(10)) = [0)

for any g € Sy;. Any one-dimensional subspace kf :=< |0), |S) > is an irreducible space, whet§) := \/_ ZJ 0ld)-
The remaining irreducible spadé; is the orthogonal space @,. We now define the statés’) and|i’) as

AN 1 — 1
8 i= e (VB0 + VT =P = 15))
N VM .

) = i) = = 15))

Note that|S’) belongs tok;, and|i’) belongs toK.. Then, the statéf;) can be written as

P+ A= p)/MIS") + /(1 = p) i

Thus, all statesf;) belong to the spacks @ K., where’; is the one-dimensional space spanned$)y. Since the average

correct probabilityﬁ ij\il<f1-|Yi|fi> is invariant with respect to the action of the permutatioougr:

M M

1 1

i > (filYilfi) = i > FilVyYyr @ Vil fi), Vg € Sar,
j=1 j=1

we can apply Holevo[7]'s group covariant measurement the®hus, our optimization problem can be restricted to an
optimization problem among the POV}, of the following form:

Y = |ug)(ujl,

|vj> and|v;) is a unit vector inkC,. For this restriction, the maximum value of;|Y;|f;) is

where|u;) = \/_|S )+
li'y, a the maximum value is

realized whenjv;) =

(7% p+u—mmm+¢u—mM%11%%i>,

which is equal to(ﬁ 1+(M—-1)p+(1- %)ﬂ)g. Therefore, we obtairi{4).

Next, we prove the general case. The staig)) has the form /p|eg)++/1 — ple;). However, the vectori), e1), . . ., [ear)
are not necessarily orthogonal to each other. Define the FRr@pE from the system spanned Hyf1),...,|fa)} to the
system spanned bffeo), e1),. .., |eas)} as follows. Here|f;) is the vector defined above. First, we operate with the unitar
operatotU: U|f;) = |¢(7)) ® |h;), where the stateih;) are an orthogonal basis on the additional systémNext, we execute
a partial trace with respect to the additional syst€m Then, the TP-CP mag is defined as

E(p) := Trx, UpUT.
Thus, any POVM{Y;} satisfies
(eDIYsle()) = (flET(Y))If:)-
Since{£7(Y;)} satisfies the condition for POVM on the system spanned|fy), ..., |fu)}, we obtain the inequalityr{4).



VIl. DISCUSSION

The present paper discusses the relations between thegaygitaton number constraint, the amount of transmitted inde
tion, and the average error probability. While the secoritingeis based on an asymptotic framework, the analysis dlaiu
information is not sufficient in this setting and an inforinatspectrum approach is required.

As is shown in the second and third settings, the average probability is greater thaa—* when the total average photon
number isE and the amount of transmitted information is sufficientlygl In particular, Theorem 1 guarantees that the
minimum error probabilite =7 is realized when the amount of the transmitted informat#othe logarithm of the number of
transmitted pulses. Indeed, such a code can be construstidl@vs. For an arbitrary integeVN, we define a cod@ with
the set of messagdd, ..., N} as follows. The encodey is given as

(D) ()] = [0)(0]*~ @ |a)(al) @ [0)(0]*"~Y,
where|a|? = E. The decode{Y;} is as follows.
Yi = [0)(0]%0" Y @ (1 = [0)(0]) @ [0) (0= 7.
Then, the error probability is

1= {p(@)Yilp(i)) =1 —e".

The above code is realizable with current technology. Thisstruction suggests that increasing the number of pulsddsy
guantum advantages over a classical Gaussian channelvEiQutes not so easy to increase the number of pulses for d fixe
period in optical communication. Development of a physgaieme to increase the number of pulses is required. Erglori
such a scheme remains a topic for future study.

ACKNOWLEDGEMENT

This research was partially supported by a Grant-in-AidSaentific Research in the Priority Area ‘Deepening and Bsjan
of Statistical Mechanical Informatics (DEX-SMI)’, No. 189014 and a MEXT Grant-in-Aid for Young Scientists (A) No.
20686026. The author thanks Professor Satoshi Ishizakatinesting discussions.

APPENDIX
First, we prove the inequality

I(e|P,W) > H,(c|Wp). (14)

For this purpose, we apply the discussion of Theorem 1 in bleaddayashi[6] to the hypothesis testiM@(N) x P (dz)
VS WI(DJ(VN)) x P\N)(dz) on the composite system between the quantum sy$téM and the classical systedi(™). In this
case, the sequence of sets of projecti{){le(N) - eO‘N“WI(DJ(\Q) < 0}}.exan v Yields the best test. Choose an arbitrary real

numberb, satisfying

by > I(e|P,W). (15)
Thus, when any sequence of sets of projecti{)hASEN)}meX(N)}N satisfies the condition
-1
lim inf — log / Tr Wi, AN PO (da) > by, (16)
N—oco an X (N)

then

1imsup/ Te WM (T — AP (d) > e
XN

N —oc0

Define the projections

By = {I —e'W() > 0}

and

Byna = e By Wi By if By #0
o | if Bb,N =0.



Then, the quantity? , (¢/Wp) can be expressed as follows.

H(|Wp) := sup {b
b

= sup{b
b

= sup{b
b

Since By v,» C By v, all eigenvalues oBb,N,IWI(j(\Q)B@N@ are less tham—on?b, Since By v, IS @ rank-one projection or

zero matrix,Bb,N,wWS(VN))Bb,N@ < e~avb Y| which implies that

limsup Tr Wie, (I — By, n) < e}

N —oc0

lim sup Te[W N (I — By n)]P(dx) < e}
N—oo JXIN)

lim sup Te[W NI — By )| P(dz) < e} )
N—oco X ()

Tt By Wiy = T By v oWy, Byv. < €7,
Thus, By, v, satisfies the conditio_(16). Therefore,
lim sup Te[W NI — By, n.2)]P(dz) > €,

N—=oo Jx ()

which implies thathy > H, (¢|]Wp). Sinceb, is an arbitrary real number satisfying {15), the relatiof) (folds.
Next, we prove the opposite inequality

I(e|P,W) > H (| Wp). 17)
Let 6 be an arbitrary real number satisfying tliat- 0. Define the vectof¢y ) by

|¢N ><¢N | _ {Wm(N) _ eaN(bJré)Wl(DJ(V]\Z) > O} if {Wm(N) _ eaN(bJré)Wl(DJ(V]\Z) < O} # 0
T T WI(N) if {Wm(N) _ eaN(b+5)ngf?713) < 0} —0.
Then,
<¢N,m|e“N(b+‘5)W1(j(\2)|¢N@) <1.
That is,

a N —a
(DNl W o) < e a0,

Thus, the relatio{e®~*W i), — I > 0} < e*x*W ), yields the result that

(Onal(I = Bow)lona) = (dnal{e™WER, — 1> 0} on,) < e
Since By, n is a projection,

and

[én,2)(PN,z] — Bo,N[dN,z) (BN 2| Bo,n 1 < 2\/<¢N,m|(1 — Byn)|on) <272
Thus,
L= Te W) = eox O < 0y = e WY o 0) (9.l < oW By wldn.o) (.ol Bo +e0°
<TrWN B, n + e =1 - Te WV (I — By ) + e 29,

Therefore,

1imsup/ Te WD W) — eax G+ - < 0y P (dzr) > limsup/ Te WN(I = By n) PN (dz),
X ((N) X (N)

N —oc0 N —oc0

which implies thatl (¢|P, W) — § < H (¢|/Wp). Sinceé is an arbitrary positive real number, we obtdin](17).
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