
ar
X

iv
:0

91
0.

15
11

v1
  [

cs
.IT

]  
8 

O
ct

 2
00

9
1

Cooperation with an Untrusted Relay: A

Secrecy Perspective

Xiang He Aylin Yener

xxh119@psu.edu yener@ee.psu.edu

Wireless Communications and Networking Laboratory

The Pennsylvania State University, University Park, PA 16802

IEEE Trans. on Information Theory, in review: submitted October 2008; revised October 2009.

Abstract

We consider the communication scenario where a source-destination pair wishes to keep the in-

formation secret from a relay node despite wanting to enlistits help. For this scenario, an interesting

question is whether the relay node should be deployed at all.That is, whether cooperation with an

untrusted relay node can ever be beneficial. We first provide an achievable secrecy rate for the general

untrusted relay channel, and proceed to investigate this question for two types of relay networks with

orthogonal components. For the first model, there is an orthogonal link from the source to the relay.

For the second model, there is an orthogonal link from the relay to the destination. For the first model,

we find the equivocation capacity region and show that answeris negative. In contrast, for the second

model, we find that the answer is positive. Specifically, we show by means of the achievable secrecy

rate based on compress-and-forward, that, by asking the untrusted relay node to relay information, we

can achieve a higher secrecy rate than just treating the relay as an eavesdropper. For a special class of

the second model, where the relay is not interfering itself,we derive an upper bound for the secrecy

rate using an argument whose net effect is to separate the eavesdropper from the relay. The merit of

the new upper bound is demonstrated on two channels that belong to this special class. The Gaussian

case of the second model mentioned above benefits from this approach in that the new upper bound

improves the previously known bounds. For the Cover-Kim deterministic relay channel, the new upper

bound finds the secrecy capacity when the source-destination link is not worse than the source-relay

link, by matching with achievable rate we present.
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I. INTRODUCTION

A fundamental approach to information security is founded in information theory where the

limits of reliable communication can be determined while keeping the information secret from

eavesdropping node(s). This notion of secrecy was first proposed by Shannon [1]. In his work,

Shannon assumed that the eavesdropper has perfect access tothe signal transmitted from the

source to the destination and determined that the rate of keymust equal to the rate of data to

ensure “perfect secrecy”, i.e., in order for the data not to be leaked to the eavesdropper even if

the eavesdropper has unlimited computational power. Wyner, in [2], pointed out that Shannon’s

assumption is pessimistic, as more often than not, the eavesdropper only has a noisy copy of

the signal transmitted from the source and building a usefulsecure communication system per

Shannon’s notion is possible [2], [3].

Recent work in this area aims to find the secrecy capacity or capacity region for a variety of

communication scenarios and channel models. A set of modelsfollows the classical model of

Wyner’s wiretap channel [2], where an external eavesdropper is present in addition to legitimate

parties. This line of work includes the multiple input multiple output (MIMO) wiretap channel

[4]–[6], the wiretap channel with a cooperative jammer [7],the multiple access wiretap channel

[8]–[11], the MIMO broadcast channel with multiple legitimate receivers and an external eaves-

dropper [12], the two-way wiretap channel [10], the relay channel with an external eavesdropper

[13]. In these models, where the information leaked to the eavesdropper is a loss to the legitimate

communication system, it was observed that legitimate parties could aid in enhancing secrecy

by introducing intentional interference to the eavesdropper via cooperative jamming [7], [10],

[14]. Another set of models deals with a more symmetric scenario, where each receiver of an

intended message is also modeled as an eavesdropper for the remaining unintended messages in

the system. This setting has been considered for the multiple access [15], broadcast [16], [17],

and interference channels [18], [19]. In these models, one communication pair, in the interest of

protecting its own information, may end up helping the otherpair [19].

The focus of this work, while on cooperative communications, differs from the above models

in that, it deals with a communication network whose nodes have different levels of security

clearance. Examples like this exist in real life. In a government intelligence network or the

network of a financial institution, not every node in the network is supposed to have the same
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level of access to information, despite operating with agreed protocols and serving as relay

nodes in the network. The question is whether theseuntrustednodes should still participate in

this cooperative communication network, or if they pose a “problem” when secret messages are

to be transmitted, and hence, their cooperation should not be enlisted. The basic issue addressed

here therefore, different from the previous models that aimto solve the co-existence problem of

several communication pairs, is to resolve the conflict within one system.

This paper focuses on the most basic model in this category inorder to assess the effect

of secrecy requirements upon cooperative communications.We consider the three node relay

network, where the relay has a lower security clearance thanthe destination and is therefore

untrusted. Reference [20], the first work that studied this model, shows that the secrecy capacity

of this system is zero if the relay channel is degraded. The secrecy capacity equals that of the

wiretap channel if the channel is reversely degraded, whichmeans that the relay-to-destination

communication is useless in this case as well [21]. In Section IV of this paper, we present

yet another negative result: the relay node is again uselessin a class of relay networks with

orthogonal components [22], dubbed Model1 in the sequel. In each of these references, the

model turns out to be equivalent to the models of the first two categories, where the relay node

is merely an eavesdropper, rather than a cooperating partner.

In light of these results, one might be tempted to take a pessimistic view, and wonder whether

there exists any situation where the cooperation of the untrusted relay might enable a higher

secrecy rate than simply treating it as an eavesdropper. Interestingly, we find in this paper that

the answer to this question is yes. This is shown for a class ofrelay networks with orthogonal

components where the relay to destination link is orthogonal to that from the source [23], dubbed

Model 2 in the sequel. Specifically, we observe that by performing compress-and-forward, the

relay node can help increase an otherwise zero secrecy rate without having any idea what it is

relaying.

Once an achievable secrecy rate with the untrusted relay being useful is found, an upper bound

on the secrecy rate is needed to assess how close the achievable strategy is to the optimum. There

are two previously known upper bounds. Reference [13] provided an upper bound for the relay

channel with an external eavesdropper. By assuming that this external eavesdropper receives the

signals received and transmitted by the relay, we observe the model in [13] can be specialized

into the model considered in this work and hence the bound in [13] can be readily applied. Alas,
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this bound is not computable for the Gaussian case. A computable bound was provided for the

Gaussian relay channel with a co-located eavesdropper in [21]. Alas, this bound does not depend

on the condition of the relay-to-destination channel. Moreover, the noise correlation of the links

may render the bound to be arbitrarily loose. In this work, weaim to derive an upper bound

that improves the bound in [21] in these two aspects, and accomplish this goal for a class of

untrusted relay channels.

More specifically, the upper bound on the secrecy rate is derived for a special class of Model2,

where the relay is not interfering itself. The derivation ofthe upper bound entails the introduction

of a second eavesdropper. Although in general, introducinga second eavesdropper can decrease

the secrecy capacity, we prove that for the special class of channels question, doing so does not

alter the secrecy capacity. The upper bound is then derived by removing the first eavesdropper

at the relay and introducing correlation between the outputseen by the second eavesdropper and

other outputs of the channel, which tightens the upper boundas in other Sato-type bounds; see

[5] for example.

The merit of the new upper bound is demonstrated in two cases:First, for the Gaussian case

of Model 2, we show that the new bound improves the previously known bounds. Second, for

the Gaussian Cover-Kim deterministic relay channel introduced in [24], we show that the upper

bound matches the achievable rate using compress-and-forward when the signal to noise ratio

of the source-destination link is not worse than that of the source-relay link, thus, establishing

the secrecy capacity.

The remainder of the paper is organized as follows: Section II describes the general relay

network with a co-located eavesdropper, and an achievable equivocation region for this channel

using the compress-and-forward relaying. In section III, the two special cases of the general

model, i.e., Model1 and Model2 are described. Section IV presents the equivocation capacity

region for Model1. Section V specializes the achievable region found in Section II to Model2.

Section VI identifies a special class of Model2, for which introducing a second eavesdropper

properly will not decrease the secrecy capacity, and derives an upper bound for its secrecy rate.

The upper bound is then specialized to the Gaussian case of Model2. Section VII investigates the

secrecy capacity of Gaussian Cover-Kim deterministic relay channel. We note that to facilitate a

better flow throughout the manuscript, more involved proofsare presented in appendices whereas

shorter ones are kept in the main text.
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Fig. 1. Relay Channel with a Co-located Eavesdropper: S: Source Node, R/E: Relay Node with a Co-located Eavesdropper,

D: Destination Node.

Throughout this paper, the following notation is used:∀k, εk denotes a variable that goes to 0

whenn goes to∞. C(x) = 1
2
log2(1+x). Xn denotes a vector of lengthn, whereasXi denotes

the ith element of the vector.X]i[ denotes the set{Xj , 1 ≤ j < i or i < j ≤ n}. X i
1 denotes the

set{Xj, 1 ≤ j ≤ i}; the set is empty ifi < 1. ⌊a⌋ denotes the largest integer less than or equal

to a. The short handW (a, ..., b) stands for the set{W (a),W (a+1), ...,W (b)}. The short hand

W a stands for the set{W (1),W (2), ...,W (a)}.

II. A CHIEVABLE SECRECY RATE FOR THE GENERAL RELAY CHANNEL WITH CO-LOCATED

EAVESDROPPER

The relay channel with a co-located eavesdropper was first considered in [20] and is shown in

Figure 1. It is a memoryless three-node relay channel [25], whose description isp(Y, Yr|X,Xr).

X,Xr are the channel inputs from the source and the relay respectively, and Y, Yr are the

channel outputs observed by the destination and the relay respectively. We assume that there is

an eavesdropper at the relay node who has access to everything that the relay node knows. The

source wishes to send messageW to the destination overn channel uses, while keeping it secret

from the eavesdropper.

Without loss of generality, the relaying function for theith channel use can be defined as

Xr,i = gi
(

X i−1
r , Y i−1

r , A
)

(1)

whereA is a random variable which models any stochastic mapping employed by the relay

node. Hence, without loss of generality, we can restrictgi to be a deterministic function.

The information available to the eavesdropper regarding the secret messageW is {Xn
r , Y

n
r , A}.
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Fig. 2. Example: Relay’s transmitted signalX
n
r can provide more information aboutW

Thus, the equivocation rate is computed as

Re = lim
n→∞

1

n
H (W |Xn

r , Y
n
r , A) (2)

Note that sinceW−{Xn
r , Y

n
r }−A is a Markov chain, we haveH (W |Xn

r Y
n
r A) = H (W |Xn

r Y
n
r ).

Hence the equivocation rate can be instead defined as

Re = lim
n→∞

1

n
H (W |Xn

r , Y
n
r ) (3)

.

Remark 1: In generalH(W |Y n
r ) > H(W |Xn

r , Y
n
r ). To see an example, consider the channel

model in Figure 2. Let⊕ denote the binary addition. The channel has binary input. The

destination receives signals from two orthogonal links:YR andYD, and that we have

YD = X (4)

YR = Xr ⊕ Z (5)

whereZ represents the i.i.d. binary noise.

It follows in this setting that,H(W |Xn
r , Y

n
r ) = 0. This is because the relay can always

subtract the interference caused byXn
r on its received signal and hence obtainsXn. However,

H(W |Y n
r ) = H(W ) if Xn

r is chosen to be an i.i.d. binary sequences, each component of

which takes the value1 with probability 1
2
. Thus, in this case, we clearly haveH(W |Y n

r ) >

H(W |Xn
r Y

n
r ).

We should note however that,H(W |Y n
r ) = H(W |Xn

r , Y
n
r ) if the relaying scheme is determin-

istic:Xr,i = gi(X
i−1
r , Y i−1

r ). Also, note that, clearly, any outer bound derived for the equivocation

H(W |Y n
r ) is an outer bound forH(W |Xn

r , Y
n
r ).
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With this preparation, the equivocation rate region can be defined as follows: Let the message

decoded by the destination bêW . The equivocation rate region is composed of all rate pairs

(R1, Re) such that:

R1 = lim
n→∞

1

n
log2 |W |

Re = lim
n→∞

1

n
H (W |Xn

r , Y
n
r )

s.t. lim
n→∞

1

n
Pr
(

W 6= Ŵ
)

= 0

Here |W | is the cardinality of the message setW . Note that when block Markov coding

scheme [25] is used, the message is transmitted via successive blocks. In this case,W denotes

the messages transmitted over all blocks.n should be the total number of channel uses of these

blocks. The definition ofXn
r , Y

n
r should be adjusted accordingly.

Next, we derive an achievable equivocation region based on compress-and-forward. Compress-

and-forward scheme was proposed in [25] and has been used forthe relay network with an

external eavesdropper in [13], [26]. In our case, as we will see, the fact that the relay and

the eavesdropper being co-located brings additional advantage to allow for a higher degree of

compression to be achieved at the relay as compared to the setting in [13].

Theorem 1:For a relay network described asp(Y, Yr|X,Xr), with X, Xr being the input

from the source and the relay respectively, andYr,Y being the signals received by the relay and

the destination respectively, the following region of ratepairs (R1, Re) is achievable.

⋃











Re ≤ R1 < I
(

X ; Y Ŷr|Xr

)

0 ≤ Re < [I
(

X ; Y Ŷr|Xr

)

− I (X ; Yr|Xr)]
+











(6)

where

I(Xr; Y ) > I(Ŷr; Yr|Y Xr) (7)

and the union is taken over:

p(X)p(Xr)p(Y, Yr|X,Xr)p(Ŷr|Yr, Xr) (8)

Proof: See Appendix A.
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Remark 2:Compared with the coding scheme presented in [13], the difference is that we

have Wyner-Ziv coding. Without Wyner-Ziv coding, the constraint (7) in the Theorem would be

I(Xr; Y ) > I(Ŷr; Yr|Xr) (9)

which is identical to that in [13, Theorem 4 (12)]. In [13], the eavesdropper is external to the

relay node, and hence only has a noisy copy ofXn
r (k). In this case, the equivocation over

multiple blocks would not necessarily be the sum of equivocation over each block. Reference

[13] worked around this problem by using a compress-and-forward scheme without Wyner-Ziv

coding. The equivocation over multiple blocks was then lower bounded by proving that given

the signal received by the eavesdropper and the secret message, the external eavesdropper would

be able to determine the signals transmitted by the source and the relay via backward decoding

[13, Appendix D (53)-(55)].

In contrast to that in [13], fortunately, in our model, the eavesdropper has perfect knowledge

of Xn
r (k). This enables us to compute the equivocation ofN blocks from the equivocation of

each block. See (137)-(139) in Appendix A. Hence, the Wyner-Ziv coding is used in our setting

without difficulty.

Remark 3:Theorem 1 will be useful in Section V in finding an achievable rate for one of

the models (Model2) that we will describe in the next section.

Remark 4:We can prefix the channel inputX with U and apply Theorem 1 to the channel

p(Y, Yr|U,Xr). The equivocation region then becomes:

⋃











Re ≤ R1 < I
(

U ; Y Ŷr|Xr

)

0 ≤ Re < [I
(

U ; Y Ŷr|Xr

)

− I (U ; Yr|Xr)]
+











(10)

for which (7) must be fulfilled, and the union is taken over:

p(U,X)p(Xr)p(Y, Yr|X,Xr)p(Ŷr|Yr, Xr) (11)

Clearly, this may potentially enlarge the achievable region given by Theorem 1.

Having examined the general relay channel with a co-locatedeavesdropper, we next consider

two special cases of it for which stronger results can be derived.
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Fig. 3. Relay Channel with Orthogonal Components Model1: Orthogonal Source to Relay Link

III. T WO SPECIAL CASES OF THEGENERAL MODEL: RELAY NETWORKS WITH

ORTHOGONAL COMPONENTS

The two models of the relay network with orthogonal components are depicted in Figures 3

and 4 respectively. Figure 3 shows Model1. In this model, the relay and the source communicate

with the destination via a multiple access channel, with itsinput beingXD, Xr and output being

Y . The source and the relay communicate via a channel orthogonal to the channel used by the

source and the relay to transmit to the destination. The input and the output of this channel are

denoted byXR andYr respectively. Thus, the overall channel description is:

p (Y, Yr|XR, XD, Xr) = p (Y |XD, Xr) p (Yr|XR, Xr) (12)

The capacity of this network without secrecy constraints was found in [22].

The Gaussian case of Model1 is defined as [22]:

Yr = aXR + Z1, Y = bXr +XD + Z (13)

whereZ1 andZ are independent zero mean real Gaussian random variables each with variance

N . a and b are channel gains. The transmit power constraints on the source and the relay are

given by:

1

n

n
∑

i=1

(

E[X2
R,i] + E[X2

D,i]
)

≤ P,
1

n

n
∑

i=1

E[X2
r,i] ≤ γP (14)

Figure 4 shows Model2. In Model 2, the source communicates with the relay and the

destination via a broadcast channel, and the relay communicates with the destination via a

separate (orthogonal) link. Thus, the channel is describedby:

p (YD, YR, Yr|X,Xr) = p(YD|X)p(Yr|X,Xr, YD)p (YR|Xr) (15)
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Yr
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Fig. 4. Relay Channel with Orthogonal Components Model2: Orthogonal Relay to Destination Link

When there are no secrecy constraints, the Gaussian case of Model 2 was considered in [23].

The capacity of this channel remains an open problem except for some special cases given in

[23].

The class of channels for which we will be able to derive an upper bound on the secrecy rate,

is described by:

p(YD, YR, Yr|X,Xr) = p(YD|X)p(Yr|X, YD)p(YR|Xr) (16)

Observe that such a channel is a special case of (15) sinceXr is dropped from the condition

term of Yr in (15).

We will discuss two channels that fall into the class defined by (16): (i) the Gaussian case of

Model 2, (ii) the Gaussian Cover-Kim deterministic relay channel [24].

The Gaussian case of Model2 is defined as:

YD = X + ZD Yr = aX + Zr

YR = bXr + ZR

(17)

whereZD, Zr, ZR are independent zero-mean Gaussian random variables with unit variance.a

and b are channel gains. The transmit power of the source and the relay are constrained by:

1

n

n
∑

i=1

E[X2
r,i] ≤ Pr,

1

n

n
∑

i=1

E[X2
i ] ≤ P (18)

The Gaussian Cover-Kim deterministic relay channel is depicted in Figure 5. The received

signals at the destination and at the relay are given by:

YD = X + Z, Yr = αX − Z (19)

whereα is the channel gain andZ is a zero mean Gaussian random variable with unit variance.

Notice that the random variables representing the noise components have a correlationρ = −1.
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Fig. 5. The Gaussian Cover-Kim Deterministic Relay channel

Between the relay and the destination, there is a separate noiseless link with rateR0. The

destination receives side information from the relay via this link in addition to YD which it

receives from the source. The transmission power of the source is constrained to be:

1

n

n
∑

i=1

E[X2
i ] ≤ P (20)

In the following sections, we first derive the equivocation capacity region of Model1. We

then derive the achievable equivocation region for Model2 using the results from Section II.

Finally, we derive the upper bound for the secrecy rate for the class of Model2 defined in (16)

and specialize it to the Gaussian case and the Cover-Kim channel.

IV. EQUIVOCATION CAPACITY REGION FORMODEL 1

Theorem 2:The equivocation capacity region of Model1 is given by

⋃

p(Xr)
p(XD |Xr)
p(XR|Xr)



























(R1, Re) :

0 ≤ R1 < min
{

I (XD, Xr; Y ) , I (XR; Yr|Xr) + I (XD; Y |Xr)

}

0 ≤ Re < min{I (XD; Y |Xr) , R1}



























(21)

Proof: See Appendix B.

Remark 5:Theorem 2 is proved by specializing the results from [21]. The achievable scheme

is based on partial-decode-and-forward. This entails thatthe relay decodes the information

transmitted viaXR. The scheme is outlined next for the sake of completeness:
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Denote the codebook used by the relay and the source asCr and{CR, CD} respectively. The

codeword inCr is denoted byXn
r . The codeword in{CR, CD} is denoted by{Xn

D, X
n
R}, which

are to be transmitted viaXD andXR respectively.

The codebooks are generated as follows:2nmin{I(Xr ;Y ),I(XR;Yr|Xr)} codewords are sampled in an

i.i.d. fashion fromp(Xr) to formCr. For eachXn
r in Cr, 2nI(XD ;Y |Xr) codewords are sampled in an

i.i.d. fashion fromp(XD|Xr) and are included inCD. For eachXn
r in Cr, 2nmin{I(Xr ;Y ),I(XR;Yr|Xr)}

codewords are sampled in an i.i.d. fashion fromp(XR|Xr) and are included inCR.

The transmission is divided intoN blocks, each composed ofn channel uses. The messages

transmitted by the source during thekth block is denoted by{WD(k),WR(k)}. WD(k) corre-

sponds to the secret part of the message. The cardinality of{WD(k)} is smaller than2nI(XD;Y |Xr).

The cardinality of{WR(k)} is smaller than2nmin{I(Xr ;Y ),I(XR;Yr|Xr)}. The signals received and

transmitted by the relay during thekth block are denoted byY n
r (k) and Xn

r (k) respectively.

The relay decodesWR(k) from Y n
r (k) usingXn

r (k) as the side information.Xn
r (k) is chosen

by the relay based onWR(k − 1), which the relay decodes fromY n
r (k − 1). The source node

knowsWR(k−1), and hence knowsXn
r (k) before thekth block starts. It locates the part of the

codebookCR which is generated according toXn
r (k) and transmits the messageWR(k) using this

part of the codebook. The source also locates the part of the codebookCD which is generated

according toXn
r (k) and transmits the messageWD(k) using this part of the codebook. The

destination can successfully decodeWR(k − 1) from Y n(k), which determinesXn
r (k), due to

the fact that the cardinality of{WR(k)} is smaller than2nI(Xr ;Y ). Then it locates the part of the

codebook inCD that is generated according toXn
r (k) and use it to decodeWD(k) from Y n(k).

This is possible due to the fact that the cardinality of{WD(k)} is smaller than2nI(XD;Y |Xr).

Remark 6:By letting Re = R1 in (21), we obtain the secrecy capacity of the network given

by (22).

S = max
p(Xr)p(XD|Xr)

I (Y ;XD|Xr) (22)

= max
p(XD|Xr=xr)

I (Y ;XD|Xr = xr) (23)

It is readily seen that in this case the relay to destination link is not useful. Additionally, when

Re < R1, from the coding scheme outlined in Remark 5, the secret information,WD(k), is

only mapped to signal transmitted viaXD, which means the secret information does not pass

through the relay node at all. These two observations combined lead to the conclusion that the
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relay-to-destination link is indeednot usefulin improving the secrecy rate of the system, and

that the untrusted relay should not be deployed at all.

A direct extension of the above result can be readily made to the Gaussian channel.1

Corollary 1: For the Gaussian relay network described above, the equivocation region is given

by (24).

⋃

0≤v,ρ≤1















R1 < min
{

C
(

(v+b2γ+2bρ
√
vγ)P

N

)

, C
(

a2(1−v)P
N

)

+ C
(

v(1−ρ2)P
N

) }

0 ≤ Re < C
(

v(1−ρ2)P
N

)

Re ≤ R1















(24)

Proof: The proof is the same as in reference [22, Section III]. The three terms:I(XD, Xr; Y ),

I(XR; Yr|Xr), I(XD; Y |Xr) are maximized simultaneously whenXr, XD, XR are chosen to be

zero mean and jointly Gaussian with the following parameters: V ar[Xr] = γP, V ar[XR] =

(1− v)P, V ar[XD] = vP, E[XrXD] = ρP
√
vγ, E[XRXD] = 0.

V. AN ACHIEVABLE REGION FORMODEL 2

In this section, we present the achievable equivocation rate region for Model2.

Theorem 3:For Model2 defined by (15), an achievable equivocation rate region is given by:

⋃











Re ≤ R1 < I
(

X ; YDŶr|XrYR

)

0 ≤ Re < [I
(

X ; YDŶr|XrYR

)

− I (X ; Yr|Xr)]
+











(25)

where

I(Xr; YR) > I(Ŷr; Yr|YDYRXr) (26)

and the union is taken over:

p(X)p(Xr)p(YD|X)p(Yr|X,Xr, YD)p(YR|Xr)p(Ŷr|Yr, Xr) (27)

Proof: We use Theorem 1. In particular, region (25) follows from (6)by letting Y =

{YD, YR} and using the following two Markov chains (28) and (29). (29)follows from the fact

that {Xr, YR} is independent fromYD as shown by (27).

X −Xr − YR (28)

1Proofs follow by replacing entropy with differential entropy whenever necessary.
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Xr − YR − YD (29)

It then follows from (28) and (29) thatI(Xr; YRYD) = I(Xr; YR) and

I(X ; YRYDŶr|Xr) = I(X ; YDŶr|XrYR) (30)

Next, we apply Theorem 3 to the Gaussian case, which is definedby (17).

Corollary 2: For the Gaussian relay network with orthogonal components defined by (17),

the following rate region is achievable.

⋃

0≤p≤P















(Re, R1) : 0 ≤ Re ≤ R1 < C
(

p+ a2p

1+σ2
Q

)

Re < C
(

p+ a2p

1+σ2
Q

)

− C (a2p)















(31)

where

σ2
Q =

(a2 + 1) p+ 1

b2Pr (p+ 1)
(32)

Proof: Region (31) follows from lettingX ∼ N (0, p), Xr ∼ N (0, Pr), Ŷr = Yr+ZQ, ZQ ∼
N (0, σ2

Q), andZQ is independent from all the other variables. Substituting the distribution of

X,Xr, Ŷr, Yr, YD, YR into (26), we find that we need

σ2
Q >

(a2 + 1) p+ 1

b2Pr (p+ 1)
(33)

It is clear from (31) that to make the region as large as possible, σ2
Q should be as small as

possible, and (32) ensures this.

Remark 7:Supposea > 1. Without the channel between relay and destination, we havea

wiretap channel where the eavesdropper has a better channel. Hence, the secrecy capacity is

zero [27]. We also know that a non-zero secrecy rate cannot beachieved with decode-and-

forward. However, if the relay to destination gain,b, is large enough, a non-zero secrecy rate

can be achieved with compress-and-forward, as can be seen from (31). This is an example

where the relay-to-destination link helps to achieve a non-zero secrecy rate when the relay and

the eavesdropper are co-located. Thus, the untrusted relayis useful and should be cooperated

with.
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Yr = aX + Zr

XS D

YD = X + ZD

YR = bβ(aX + Zr) + ZR

E

Fig. 6. The Equivalent Wiretap Channel of Model 2 using Amplify-and-forward Relaying

Remark 8:The scheme we present here differs from the noise forwardingscheme of [13]

where the relay transmits noise that is independent from itsreceived signal. By contrast, in this

work, the signal transmitted by the relay is computed from its received signal.

Remark 9:The amplify and forward scheme can also be used at the relay. Letp be the average

transmission power of the source node. Then, in this case, the signal transmitted by the relay at

the ith channel use is given by

Xr,i = βYr,i−1, where β =

√
Pr√

a2p + 1
(34)

Note that in (34), we forceXr,i to depend on the signal received in the previous channel use

Yr,i−1 in order to preserve the causality of the relay function as defined in (1). However, because

the channel between the relay and the destination is orthogonal to the one between the source

and the destination, the fact that the signals received viaYR is delayed by one channel use

compared to those received viaYD does not make any difference to the destination. Therefore,

it is safe to writeXr = βYr and omit the subscripti.

The relay network is therefore equivalent to a Gaussian wiretap channel as shown in Figure 6.

The achievable secrecy rate is computed from[I(X ; YRYD) − I(X ; Yr)]
+ [3] for a Gaussian

distribution forX: X ∼ N (0, p) and when maximized overp, the secrecy rate is given by:

Re < max
0≤p≤P

1

2

[

log (1 + (1 + ξ) p)− log
(

1 + a2p
)]+

(35)

where forβ defined in (34),ξ is given by

ξ =
a2β2b2

1 + β2b2
(36)
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Fig. 7. Effect of Source Power Control

Observe that amplify-and-forward can also achieve a non-zero secrecy rate given a large enough

b. However, comparing it to (31), we find that the secrecy rate given by amplify-and-forward is

strictly smaller than the secrecy rate achievable by compress-and-forward.

Remark 10:When there are no secrecy constraints, for compress-and-forward/amplify-and-

forward, the source should always transmit at maximum power. However, when there are secrecy

constraints, for compress-and-forward/amplify-and-forward, the source may not transmit at max-

imum power. This can be shown as follows.

We first look at the case where there are no secrecy constraints. The rate for compress-and-

forward follows from the maximum possible value ofR1 in Corollary 2, which is

R1 = max
0≤p≤P1

C

(

p+
a2p

1 + σ2
Q

)

(37)

whereσ2
Q is given by (32). Recall thatp is the average transmission power of the source node.

Hence we only need to show that

C

(

p+
a2p

1 + σ2
Q

)

(38)

is a monotonic function ofp which is proved in Appendix C. Hence to maximizeR1 we should

choosep = P1.
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The rate for amplify-and-forward is derived by ignoring theeavesdropper in Figure 6. The

achievable rate isI(X ; YRYD), which, using the Gaussian input distribution forX, equals

max
0≤p≤P1

1

2
log (1 + (1 + ξ) p) (39)

whereξ is given by (36). To prove that (39) is maximized atp = P1, it is sufficient to prove

that ξp is a monotonically increasing function ofp, which can be shown by rewritingξp as:

a2p

1 + 1
β2b2

=
a2p

1 + a2p+1
Prb2

=
a2

1+ 1

Prb2

p
+ a2

Prb2

(40)

When there are secrecy constraints, the secrecy rate is not necessarily maximized atp = P1.

This can be observed in particular whenb (the relay to destination link gain) is small. In this

case, for compress-and-forward, as shown in (32), the quantization noiseσ2
Q will increase more

rapidly with source powerp. Similarly, for amplify-and-forward, theξ in (36) will decrease more

rapidly with source powerp. This, along with the negative term−C(a2p) present in (31) (35),

may offset the benefits of having a larger source powerp. This phenomenon is demonstrated

numerically in Figure 7, where the source-to-relay channelgain a = 1.2. Both compress-and-

forward and amplify-and-forward can achieve a larger secrecy rate when power control is used

at the source. Moreover, compared to compress-and-forward, amplify-and-forward benefits more

from judicious power allocation at the source.

VI. UPPERBOUND FOR THESECRECY RATE OF A SPECIAL CLASS OF MODEL 2

A. The Enhanced Channel

In this section, we describe the general methodology that weuse to derive the upper bound.

Our upper bound involves introducing a second eavesdropper. The focus of this section is to

investigate the sufficient condition such that doing so willnot decrease the secrecy capacity of

the channel. In Section VI-B, this will be useful in finding the upper bound for the secrecy rate

for a class of channels conforming to Model2.

We focus on the case there is no feedback from the relay’s output Xr to its inputYr, which

means the conditional probability distribution of the channel should have the following form:

p(Yr|X)p(Y |X,Xr, Yr) (41)

Note that due to the absence of feedback, we drop the termXr from the conditioning ofYr.

The reason that we choose this distribution to study will be clear shortly.
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Fig. 8. The Relay-Eavesdropper Separation Argument

Deriving the outer bound entails a “relay-eavesdropper separation” argument. In other words,

the net effect of this argument is to change the eavesdropperthat is co-located with relay node,

to an eavesdropper that is external to the relay node. Illustrated in Figure 8, this means:

1) We add a second eavesdropper to the relay network, who seesa channel that is statistically

equivalent to the channel seen by the relay node. Let the signal received by this second

eavesdropper beYe. That is, we have:

p(Yr|X,Xr) = p(Ye|X,Xr) (42)

2) We remove the first eavesdropper.

The reader, at this point, rightfully should question the validity of step 1). This is because,

as mentioned earlier, introducing a second eavesdropper, can decreasesecrecy rate in general,

even if the second eavesdropper observes a statistically equivalent channel as in (42). This is

because the second eavesdropper may be able tohear the transmission signalXr of the first

eavesdropper, and these two eavesdroppers can potentiallycooperate. An example is provided

in Appendix D to demonstrate this phenomenon.
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We next show that, for the channel model in (41), introducinga second eavesdropper, if done

with care, will not alter the secrecy capacity of the system.In particular, let the received signal

of the “second” eavesdropperYe be defined as follows:

p(Yr|X)p(Y, Ye|X,Xr, Yr) (43)

s.t. p(Ye|X,Xr) = p(Ye|X) = p(Yr|X) (44)

Note that the second equality in (44) is (42) specialized for(41). We reiterate that though aYe

conforming to these conditions may not exist for any arbitrary relay network, for the Gaussian

relay network models we are interested in, such aYe can be found, as will be seen in the sequel

(See (86), (110), (113)).

For this choice ofYe, we have the following theorem:

Theorem 4:For the relay channel defined by (41), (43)-(44) are sufficient for the secrecy

capacity of the channel after introducing the second eavesdropper to remain identical to the

secrecy capacity of the original channel.

Proof: Due to the addition of the second eavesdropper, we know that the secrecy capacity

of the new channel≤ the secrecy capacity of the original channel. Therefore, weonly need to

show that the secrecy capacity of the new channel≥ the secrecy capacity of the original channel.

We useq to denote any distribution related to the new channel, andp for any distribution

related to the original channel. Suppose the new channel uses the exact same coding scheme and

the same message set{W} as the original channel. Then we can make the following statements:

1) SupposeW can be reliably received by the destination at a rate ofRe in the original

channel. Then it must be reliably received by the receiver atthe same rate in the new

channel as well, because these two channels share the same coding scheme and the same

channel statistics.

2) The transmitted messageW is still secret from the first eavesdropper co-located with the

relay, since we are using the exact same coding scheme of the original channel.

3) We next show thatH(W |Y n
e ) of the new channel equalsH(W |Y n

r ) of the original channel.

To do that, it is sufficient to prove thatq(Y n
e |W ) of the new channel equalsp(Y n

r |W ) of

the original channel, as we show next:2

2 It is understood in the case of continuous random variable, the sum should be replaced by integral. In fact, both of them

can be expressed as integral by defining the measure properly.
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First we state two Markov chains, which are proved in Appendix E.

Yr,i −Xi −X]i[Y
i−1
r,1

Ye,i −Xi −X]i[Y
i−1
e,1

(45)

We have:

q (Y n
e |W )

=
∑

Xn

q (Y n
e |Xn) q (Xn|W ) (46)

=
∑

Xn

n
∏

i=1

q
(

Ye,i|Xn, Y i−1
e,1

)

q (Xn|W ) (47)

(a)
=
∑

Xn

n
∏

i=1

q (Ye,i|Xi) q (X
n|W ) (48)

(b)
=
∑

Xn

n
∏

i=1

p (Yr,i|Xi) p (X
n|W ) (49)

(c)
=
∑

Xn

n
∏

i=1

p
(

Yr,i|Xn, Y i−1
r,1

)

p (Xn|W ) (50)

=
∑

Xn

p (Y n
r |Xn) p (Xn|W ) (51)

=p (Y n
r |W ) (52)

Here step(a) follows from the Markov chainYe,i −Xi −X]i[Y
i−1
e,1 . Step(b) follows from

the fact that these two channels share the same coding scheme, p(Xn|W ) = q(Xn|W ),

and the constraint we placed on the marginal distributionq(Ye|X) = p(Yr|X). Step(c)

follows the Markov chainYr,i −Xi −X]i[Y
i−1
r,1 .

The fact that introducing an eavesdropper does not reduce the secrecy capacity can then be seen

from the following relationship:

lim
n→∞

1

n
I (W ; Y n

r X
n
r ) ≥ lim

n→∞
1

n
I (W ; Y n

r ) = lim
n→∞

1

n
I (W ; Y n

e ) ≥ 0 (53)

If lim
n→∞

1
n
I (W ; Y n

r X
n
r ) = 0, then 1

n
I (W ; Y n

e ) = 0. Therefore, for a given coding scheme, if

W is kept secret from the eavesdropper at the relay, it is also kept secret from the newly

introduced eavesdropper. Hence any secrecy rate achievable in the original channel is achievable

after introducing the second eavesdropper. This means the secrecy capacity remains the same.
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Theorem 4 shows that if the relay is not self-interfering, adding an eavesdropper as described in

step 1 will not incur any loss in secrecy rate. This, along will step 2, will result in an “enhanced”

channel whose secrecy rate is an upper bound to that of the original channel.

Remark 11:Actually, for the channel model in (41), we have

H(W |Y n
r , X

n
r ) = H(W |Y n

r ) (54)

This means the secrecy capacity of the channel model in can becomputed vialimn→∞
1
n
H(W |Y n

r )

instead. This is proved in Appendix F.

Remark 12:Note that the conditional probability distribution of the relay channelp(Y, Yr|X,Xr)

is left intact. The benefit of the separation argument is that we have freedom in choosingYe, as

long as it conforms to (43) and (44). ChoosingYe properly allows us to tighten the bound.

B. Upper Bound for a Special Class of Model2

We next use the result we derived in Section VI-A to upper bound the secrecy rate of a class

of relay channels. This class, as we mentioned earlier, is given by (16), which can be specialized

from (41). Equation (43) becomes:

p(YD, YR, Yr, Ye|X,Xr) = p(YD|X)p(Yr|X, YD)p(YR|Xr)p(Ye|X, YD, Yr) (55)

p(Yr|X) = p(Ye|X) (56)

Definition 1: DefineP as the set of joint probability distribution functions ofYD, YR, Yr, Ye, X,Xr

such that (55) and (56) are fulfilled.

With this definition, we have the following theorem:

Theorem 5:For the relay channel defined in (16), where the relay is the eavesdropper, the

secrecy rateRe is upper bounded by

max
p(X,Xr)

min











I (X ; YD|Yr)

I (Xr; YR) + min
P

I (X ; YD|Ye)











(57)

Proof: The first term can be obtained by specializing the result from[21]. Reference [21,

version 7,(13)] claims for a general relayp(Y, Yr|X,Xr), the secrecy rate is upper bounded by

Re ≤ I(X ; Y |Yr, Xr) (58)
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Specializing it to our channel, which means replacingY with YD, YR, we have

I (X ; YD, YR|Yr, Xr) (59)

≤I (X ; YR|Yr, Xr) + I (X ; YD|Yr, Xr, YR) (60)

From (55),X − {Yr, Xr} − YR is a Markov chain. Hence (60) equals:

I (X ; YD|Yr, Xr, YR) (61)

=h (YD|Yr, Xr, YR)− h (YD|Yr, Xr, X, YR) (62)

≤h (YD|Yr)− h (YD|Yr, Xr, X, YR) (63)

From (55),YD − {X, Yr} − {Xr, YR} is a Markov chain. Hence (63) equals

h (YD|Yr)− h (YD|X, Yr) = I (X ; YD|Yr) (64)

Hence we have proved the first term.

Next, we proceed to bound the second term:

H (W |Y n
e )

(a)

≤I (W ; Y n
DY

n
R |Y n

e ) + nε1 (65)

=I (W ; Y n
D |Y n

e ) + I (W ; Y n
R |Y n

e Y
n
D) + nε1 (66)

≤I (WXn; Y n
D |Y n

e ) + I (WXn
r ; Y

n
R |Y n

e Y
n
D) + nε1 (67)

=I (Xn; Y n
D |Y n

e ) + I (WXn
r ; Y

n
R |Y n

e Y
n
D) + nε1 (68)

=I (Xn; Y n
D |Y n

e ) + h (Y n
R |Y n

e Y
n
D)−

n
∑

i=1

h
(

YR,i|Y n
e Y

n
DX

n
r Y

i−1
R,1 W

)

+ nε1 (69)

(b)
=I (Xn; Y n

D |Y n
e ) + h (Y n

R |Y n
e Y

n
D)−

n
∑

i=1

h (YR,i|Xr,i) + nε1 (70)

≤I (Xn; Y n
D |Y n

e ) +
n
∑

i=1

(h (YR,i)− h (YR,i|Xr,i)) + nε1 (71)

=h (Y n
D |Y n

e )−
n
∑

i=1

h
(

YD,i|Y n
e X

nY i−1
D,1

)

+
n
∑

i=1

I (Xr,i; YR,i) + nε1 (72)

(c)
=h (Y n

D |Y n
e )−

n
∑

i=1

h (YD,i|Ye,iXi) +
n
∑

i=1

I (Xr,i; YR,i) + nε1 (73)

≤
n
∑

i=1

I (Xi; YD,i|Ye,i) +
n
∑

i=1

I (Xr,i; YR,i) + nε1 (74)
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=nI (X ; YD|Ye, Q) + I (Xr; YR|Q) + nε1 (75)

=nh (YD|Ye, Q)− nh (YD|Ye, X) + nh (YR|Q)− nh (YR|Xr) + nε1 (76)

≤nh (YD|Ye)− nh (YD|Ye, X) + nh (YR)− nh (YR|Xr) + nε1 (77)

=nI (X ; YD|Ye) + nI (Xr; YR) + nε1 (78)

Here step(a) follows from Fano’s inequality. Step(b) follows from the relay destination link

being orthogonal to the rest part of the channel. Step(c) follows from the fact that the relay is

not interfering the second eavesdropper. Therefore given{Ye,i, Xi}, the signals{Ye,j, j > i} do

not provide further information aboutYD,i.

Remark 13:Another upper bound that can be obtained is

I (X ; YDYr|Ye) (79)

which is proved in Appendix G, and it can be further tightenedby choosingYe. However, as

shown below this upper bound does not improve the first term in(57).

I (X ; YDYr|Ye)

=I (X ; YDYrYe)− I (X ; Ye) (80)

(b)
=I (X ; YDYrYe)− I (X ; Yr) (81)

≥I (X ; YDYr)− I (X ; Yr) (82)

=I (X ; YD|Yr) (83)

Step(b) follows from p(Yr|X) = p(Ye|X).

C. The Gaussian Case of Model2

Using Theorem 5, we now evaluate the upper bound for the Gaussian channel.

Corollary 3: For the Gaussian case of Model2, which has independent noise components,

the upper bound on secrecy rate is:

min
{

C(b2P ) + [C(P )− C(a2P )]+, C
(

P

1 + a2P

)}

(84)

Proof: First we notice that (57) is upper bounded by:

min















max
p(X,Xr)

I (X ; YD|Yr)

max
p(Xr)

I (Xr; YR) + min
P

max
p(X,Xr)

I (X ; YD|Ye)















(85)
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Fig. 9. Secrecy Rate of the Gaussian Orthogonal Relay Channel

Sincep(Ye|X) = p(Yr|X), we define a Gaussian random variableNe such that

Ye = aX +Ne (86)

Then the setP can be re-parametrized with the correlation betweenNe, Nr and the correlation

betweenNe, ND. For a given correlation, it is known thatI(X ; YD|Ye) and I(X ; YrYD|Ye) are

both maximized with Gaussian distribution [5, Appendix II]. The first term in (85) then becomes
1
2
log2

(

1 + P
1+a2P

)

. To obtain the second term inside the minimum, we chooseNe/a
2 = ND+N ′,

with N ′, ND being independent ifa < 1, otherwise we chooseND = Ne/a
2 +N ′, with N ′, Ne

being independent, whereN ′ is a zero mean Gaussian random variable with appropriate variance.

In Figure 9, we compare the upper bound with the achievable rates for the Gaussian case

of Model 2. We fix the source-to-relay channel gaina = 1, and vary the relay-to-destination

channel gainb. As b → ∞, we observe that the upper bound becomes tight. Asb → 0, the upper

bound decreases. This improvement is due to the first term in Corollary 3.
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VII. T HE COVER-K IM DETERMINISTIC RELAY CHANNEL

In this section, we investigate the Cover-Kim deterministic relay channel of [24], [28] whose

capacity is established therein. The channel was defined in Figure 5 in Section III.

For the achievable secrecy rate, we have the next theorem.

Theorem 6:For the Gaussian Cover-Kim deterministic channel, the following secrecy rate is

achievable:

[

R0 + C (P )− C
(

α2P
)]+

(87)

Proof: Let C be a random code book with2⌊n[R0+C(P )−C(α2P)]
+⌋2⌊nC(α

2P)⌋ codewords

sampled from an i.i.d. Gaussian distribution with zero meanand varianceP . These codewords

are randomly partitioned into2⌊n[R0+C(P )−C(α2P)]
+⌋ bins of equal size. The bin index of the

transmitted codeword is determined by the messageW . The actual transmitted codeword is then

selected randomly from this bin according to a uniform distribution. The relay uses either hash-

and-forward or compress-and-forward as described in [24].Let E[Pe|C] be the average error

probability over the codebook ensemble{C} that the destination could not correctly determine

Xn, henceW , from Y n
D and side information provided by the relay. It was proved in [24] that

limn→∞E[Pe|C] = 0.

Since each bin is a Gaussian codebook by itself whose rate is below the AWGN channel

capacity between the source and the relay, the relay node candetermineXn givenW andY n
r

with high probability using jointly typical decoding. Therefore, from Fano’s inequality, we have

H (Xn|WY n
r C) ≤ nε1. Thus:

H (W |Y n
r C) =H (XnW |Y n

r C)−H (Xn|WY n
r C) (88)

≥H (XnW |Y n
r C)− nε1 (89)

=H (Xn|Y n
r C) +H (W |XnY n

r C)− nε1 (90)

=H (Xn|Y n
r C)− nε1 (91)

=H (Xn|C)− I (Xn; Y n
r |C)− nε1 (92)

≥H (Xn|C)− I (Xn; Y n
r )− nε1 (93)

≥H (Xn|C)−
n
∑

i=1

I (Xi; Yr,i)− nε1 (94)
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Since each code word is selected with equal probability, we have

lim
n→∞

1

n
H (Xn|C) = C(P ) +R0 (95)

Also, I (Xi; Yr,i) = C(α2P ). Substituting this and (95) into (94), dividing it byn and taking

the limit n → ∞, we have (87), which equalslimn→∞
1
n
H(W |C). Thereforelimn→∞E[Pe|C] +

1
n
I(W ; Y n

r |C) = 0. Since both terms inside the limit are non-negative, this proves the existence

of at least one codebook with a rate of[R0 + C (P )− C (α2P )]
+ such that both terms are

arbitrarily small. Hence we have proved the theorem.

Theorem 7:The secrecy rate of the Gaussian Cover-Kim deterministic channel is upper bounded

by

R0 +
[

C (P )− C
(

α2P
)]+

(96)

Proof: We use Theorem 4 to separate the eavesdropper and the relay. Let Ye be the signal

received by the eavesdropper such that (55) and (56) are met.Then, we have:

H (W |Y n
e )

(a)

≤I (W ; Y n
DX

n
R|Y n

e ) + nε1 (97)

=I (W ; Y n
D |Y n

e ) + I (W ;Xn
R|Y n

e Y
n
D) + nε1 (98)

≤I (W ; Y n
D |Y n

e ) +H (Xn
R) + nε1 (99)

≤I (WXn; Y n
D |Y n

e ) +H (Xn
R) + nε1 (100)

=I (Xn; Y n
D |Y n

e ) +H (Xn
R) + nε1 (101)

=h (Y n
D |Y n

e )−
n
∑

i=1

h
(

YD,i|Y n
e X

nY i−1
D,1

)

+H (Xn
R) + nε1 (102)

(b)
=h (Y n

D |Y n
e )−

n
∑

i=1

h (YD,i|Ye,iXi) +H (Xn
R) + nε1 (103)

≤
n
∑

i=1

I (Xi; YD,i|Ye,i) +H (Xn
R) + nε1 (104)

=nI (X ; YD|Ye, Q) +H (Xn
R) + nε1 (105)

=nh (YD|Ye, Q)− nh (YD|Ye, X) +H (Xn
R) + nε1 (106)

≤nh (YD|Ye)− nh (YD|Ye, X) +H (Xn
R) + nε1 (107)

=nI (X ; YD|Ye) +H (Xn
R) + nε1 (108)
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≤nI (X ; YD|Ye) + nR0 + nε2 (109)

Step (a) follows from Fano’s inequality. Step(b) follows from the fact that the relay is not

interfering with, i.e., heard by the (second) eavesdropper. Therefore, given{Ye,i, Xi}, signals

{Ye,j, j > i} will not provide more information aboutYD,i.

The bound is further tightened by choosingYe properly.

1) If α ≥ 1, then

Ye = αX + Z (110)

YD = X +
Z

α
+ Z ′ (111)

Yr = X − Z

α
− Z ′ (112)

Z ′ is a zero mean Gaussian random variable with variance|1− 1
α2 |, andZ ′ is independent

from Z.

2) If α ≤ 1, then

Ye = X + Z + Z ′ (113)

Z ′ is a zero mean Gaussian random variable with variance|1− 1
α2 |, andZ ′ is independent

from Z.

Substituting these choices ofYe into (109), we get (96).

Remark 14:Inspecting (87) and (96), we see that the upper bound and the achievable rate

coincide whenα ≤ 1. Hence, forα ≤ 1, i.e, when the source to destination link is not worse

than the source to the relay link, the secrecy capacity is achieved by compress-and-forward.

Remark 15:The secrecy capacity can exceed the direct link capacity ifR0 > C(P ). This is

a benefit of the correlation of the noises corrupting the links from the source. If the noises are

independent, the secrecy capacity cannot exceedC(P ), as proved next:

Observation 1:If the relay channel has the property:

p (YR, YD, Yr|X,Xr) = p (YR|Xr) p (Yr|X) p (YD|X) (114)

ThenRe ≤ I (X ; YD)



28

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1/α2

R
e(b

its
/c

hn
 u

se
)

Upper bound

Achievable rate

Fig. 10. Secrecy rate for the Gaussian Cover-Kim Deterministic Relay channel

Proof: From (57), we have

Re ≤ I (X ; YD|Xr) (115)

= h (YD|Xr)− h (YD|Xr, X) (116)

= h (YD|Yr)− h (YD|X) (117)

≤ I (X ; YD) (118)

where in (117) we use the Markov chainYD −X − Yr.

We conclude this section by presenting Figure 10 which showsthe upper bound and the

achievable rate forR0 = 0.5 bits/channel use andP = 1. As expected, the two meet forα ≤ 1,

yielding the secrecy capacity.

VIII. C ONCLUSION

In this paper, we have considered the relay channel with an untrusted relay that is treated

as an eavesdropper. In particular, we focused on two relay channel models with orthogonal

components. For the first model, we have found the capacity-equivocation region and proved
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that the relay-destination link does not help in increasingsecrecy rate, and therefore the untrusted

relay should not be deployed if perfect secrecy is desired. In contrast, for the second model, we

have found an achievable secrecy rate which calls relay’s cooperation and improves the secrecy

rate as compared to treating it simply as an eavesdropping node. Thus, we conclude that, for this

model, the untrusted relay may help the source and the destination to communicate despite being

subjected to the secrecy constraint, and that cooperation with the untrusted relay is beneficial.

We have provided a channel transformation that separates the relay and the eavesdropper to

upper bound the secrecy rate for a special class of untrustedrelay channels. We have found this

approach to be useful in upper bounding the secrecy rate for two cases: For the Gaussian relay

channel with an orthogonal relay-destination link, this new approach yields a computable bound

that tightens previously known bounds. For the Gaussian Cover-Kim deterministic relay channel,

we have shown that this approach finds the secrecy capacity when the source-destination link is

not worse than the source-relay link.

Since the first example demonstrating the potential benefit of cooperating with an untrusted

relay [29], there has been recent growing interest in communication models with untrusted relays.

Notable recent developments include work on the multiple access channel with generalized

feedback [30] and relay broadcast channel [31], [32], where, in addition to the secret message

considered in this work, the untrusted relay node has its ownsecret message. The role of untrusted

relay is examined in bi-directional communication in [33],[34], where the relay node in a two-

way relay network is untrusted. A case for the communicationscenario with multiple untrusted

relay nodes is recently presented in [35], [36], where the source and the destination can only

communicate via a chain of untrusted relay nodes. All these works, like this paper we are about

to conclude, speaks to the merit of cooperative communication even with untrusted partners, and

that cooperation and secrecy can go hand in hand.

APPENDIX A

PROOF OFTHEOREM 1

The achievable scheme of Theorem 1 is a combination of stochastic encoding at the source

node and compress-and-forward at the relay node. The compress-and-forward relaying scheme

is the same one described in [25]. The achievable scheme involves N blocks of channel uses.

Each block is composed ofn channel uses.
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A. Codebook Generation

1) The Codebook of the Source Node:The source uses a codebook composed of i.i.d.

sequences sampled from the distributionp(X). Each codeword hasn components. In order

to confuse the relay/eavesdropper, the codebook is furtherpartitioned randomly to bins. Suppose

there are2nC bins. Each bin contains2nB codewords.B is chosen such that:

nB = ⌊nI(X ; Yr|Xr)⌋ (119)

The reason behind this choice will be clear shortly. Each codeword is hence indexed by the

label{b, c}, wherec is the bin index andb indexes the codeword within the bin. The rate of the

codebook is given by

lim
n→∞

1

n
log2 |Xn| = lim

n→∞
B + C = I (X ; Yr|Xr) + lim

n→∞
C (120)

2) The Codebook of the Relay [25]:

i) The signal transmitted by the relay is from a codebook composed of i.i.d. sequences

sampled from the distributionp(Xr). Each codeword hasn components and is denoted by

Xn
r (d). The codebook has2nD codewords.

ii) For eachd, we generate2nE codewords, each withn components, denoted bŷYr(e|d).
The ith component of the codeword is drawn fromp(Ŷr|Xr = Xn

r,i(d)) in an i.i.d. fashion.

iii) For eachd, we randomly bin the labele into 2nD bins and label each bin with ad according

to uniform distribution. This random binning is used for Wyner-Ziv coding.

We useC to denote the random codebooks generated for the source and the relay.

B. Stochastic Encoder at the Source Node

The codeword transmitted as thekth block is indexed by labelbk, ck, where ck is the bin

index andbk indexes the codeword within the bin. LetW (k) be the message transmitted at the

kth block. Recall thatR1 is the rate of the messageW (k). HenceR1 = log2 |W (k)|/n. The

messages are mapped to the codewords as follows.

i) If R1 > C, ck is the bin index determined byW (k). The codewords in binck are partitioned

into 2n(R1−C) subsets. The subset is chosen according to the unmapped partof W (k). Then

bk is selected from this chosen subset according to a uniform distribution.
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ii) If R1 ≤ C, ck is still determined byW (k). bk is randomly chosen from groupck according

to a uniform distribution.

For this mapping, we observe that the cardinality ofck is 2nmin{R1,C}.

Only N−1 messagesW (1)...W (N−1) are transmitted overN blocks. During the last block,

the relay and the source agrees that the source will send message1.

C. Compress-and-forward at the relay [25]

During thekth block, the relay node first compressesY n
r (k) to Ŷ n

r (ek|dk). Ŷ n
r is indexed by

two labels:ek anddk. dk is chosen to be the label that corresponds toXn
r (k). Hence a different

set of Ŷ n
r , of size2nE, is used for compression depending on the value ofXn

r (k). The labelek

is chosen to be the first element in the following set:

{

e : Ŷ n
r (e|dk) , Y n

r (k) , Xn
r (k) are jointly typical

}

(121)

If the set is empty,ek = 1. The size of the codebook̂Y n
r (e|dk) should be sufficiently large for

the set to be nonempty, which requiresE > I(Ŷr; Yr|Xr) [25].

Labelek is transmitted during thek+1st block. At this time the destination has receivedY n(k),

and can decodeXn
r (k). Since{Y n(k), Xn

r (k)} provide side information to the destination about

ek, ek can be compressed further before transmission. This is donevia Wyner-Ziv coding. Recall

that the set{e, d = dk} is randomly binned. The size of each bin should be chosen suchthat the

destination can decodeek, and hence determinêY n
r (k) from this bin from the side information

{Y n(k), Xn
r (k)}. This requiresI(Ŷr; Y |Xr) > E −D. Only the bin index is transmitted. Recall

that each bin is labeled withd. Hence this determinesdk+1, which determinesXn
r (k + 1).

Remark 16:One important aspect of this coding scheme is that the signals transmitted by

the relay during different blocks{Xn
r (k), k = 1...N − 1} are correlated. This is because, as

described in the coding scheme at the relay, eachXn
r (k) is determined fromŶ n

r (ek−1|dk−1),

which is shown in (121) to be related toXn
r (k−1). Because of the self interference at the relay,

the signals received by the relay during different blocks{Y n
r (k), k = 1...N − 1} are correlated

as well. However,Y n
r (k) is correlated with pastY n

r (p), p < k only throughXn
r (k). This property

will be useful in bounding the equivocation rate.
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D. Decoder at the Destination

Recall that the short handW (a, ..., b) stands for the set{W (a),W (a + 1), ...,W (b)}. The

short handW a stands for the set{W (1),W (2), ...,W (a)}.

The destination first decodesXn(N−1). The decoding at thekth block happens as: It first

decodesXn
r (k) from Y n(k). For this, we requireD < I(Xr; Y ). It then determinesdk from

Xn
r (k), which determines the bin that containsek−1. It next determinesek−1 by finding the label

e in this bin such that̂Y n
r (e|dk−1) is joint typical with{Y n(k−1), Xn

r (k−1)}. This determines

Ŷ n
r (ek−1|dk−1). Finally Xn(k−1) is decoded fromY n(k−1), Ŷ n

r (k−1), Xn
r (k−1). For details,

the reader is referred to [25, Theorem 6].

Let the decoding result bêXn(N−1). According to error probability analysis in [25], if the rate

of the codebook of the source meets the condition:

lim
n→∞

1

n
log2 |Xn| < I(X ; Ŷr, Y |Xr) (122)

and the following condition is fulfilled:

I(Xr; Y ) > I(Ŷr; Yr|Y Xr) (123)

then

lim
n→∞

E[Pr(X̂n(N−1) 6= Xn(N−1)|C)] = 0 (124)

The expectation is taken over the random codebookC.

Combining (122) and (120), we have:

I(X ; Yr|Xr) + lim
n→∞

C < I(X ; Ŷr, Y |Xr) (125)

The destination then computeŝWN−1 from X̂n(N−1), since the former is a deterministic

function of the latter. The average probability of decodingerror for W n(N−1) is hence upper

bounded by the average probability of decoding error ofXn(N−1). Therefore equation (124)

implies:

lim
n→∞

E[Pr(ŴN−1 6= WN−1|C)] = 0 (126)
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E. Equivocation Computation

Let cN−1 denote{c1, c2, ..., cN−1}. The computation of the equivocation rate starts from the

following expression:

H(cN−1|Y nN
r , XnN

r , C) (127)

=H(cN−1|Y n(N−1)
r , XnN

r , C) (128)

=H(cN−1|Y n(N−1)
r , Xn(N−1)

r , C) (129)

Here, the first equality follows from the fact that conditioned onXn
r (N), the signalsY n

r (N) are

independent fromY n(N−1)
r , Xn(N−1)

r , cN−1. The second equality is because, as described in the

relaying scheme above,Xn
r (N) is a deterministic function ofY n

r (N − 1) andXn
r (N − 1).

To simplify the notation, we omit theC from the conditioning term in the derivation below

and only mention it when necessary.

Equation (129) can be reformulated as:

H
(

cN−1|Y (N−1)n
r , X(N−1)n

r

)

(130)

=−H
(

X(N−1)n|cN−1, Y (N−1)n
r , X(N−1)n

r

)

+H
(

cN−1|X(N−1)n, Y (N−1)n
r , X(N−1)n

r

)

+H
(

X(N−1)n|Y (N−1)n
r , X(N−1)n

r

)

(131)

=−H
(

X(N−1)n|cN−1, Y (N−1)n
r , X(N−1)n

r

)

+H
(

X(N−1)n|Y (N−1)n
r , X(N−1)n

r

)

(132)

=−H
(

X(N−1)n|cN−1, Y (N−1)n
r , X(N−1)n

r

)

+H
(

X(N−1)n
)

− I
(

X(N−1)n; Y (N−1)n
r , X(N−1)n

r

)

(133)

From the description of the stochastic encoder at the sourcenode, we observe that each block

Xn(i), i = 1, ..., N − 1 is independent from each other. Hence the second term in (133) can be

expressed as:

H
(

X(N−1)n
)

=
N−1
∑

i=1

H(Xn(i)) (134)

From the codebook used by the source node, we observe that

H(Xn(i)) = n(B +min{C,R1}) (135)

Therefore

H
(

X(N−1)n
)

= (N − 1)n(B +min{C,R1}) (136)
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The first term in (133) can be upper bounded as:

H
(

X(N−1)n|cN−1, Y (N−1)n
r , X(N−1)n

r

)

(137)

=
N−1
∑

i=1

H
(

Xn(i)|X(i−1)n, cN−1, Y (N−1)n
r , X(N−1)n

r

)

(138)

≤
N−1
∑

i=1

H (Xn(i)|ci, Y n
r (i), X

n
r (i)) (139)

Recall thatXn(i) is determined by two indexes:bi andci. The labelci is already on the condition

term. To determinebi, we notice from (119) that:

B ≤ I(X ; Yr|Xr) (140)

With this constraint, for a given codebookC, which is on the condition term implicitly, the

eavesdropper can estimatebi from the following set:

{b : Xn(b, ci), Y
n
r (i), X

n
r (i) are jointly typical} (141)

This set should contain onlybk with probability close to 1. From Fano’s inequality, we have

H (Xn(i)|ci, Y n
r (i), X

n
r (i)) ≤ nε1, whereε1 > 0 and limn→∞ ε1 = 0. Therefore from (137)-

(139), we have:

H
(

X(N−1)n|cN−1, Y (N−1)n
r , X(N−1)n

r

)

< (N − 1)nε1 (142)

The third term in (133) can be upper bounded as follows:

I
(

X(N−1)n; Y (N−1)n
r , X(N−1)n

r

)

(143)

=
N−1
∑

i=1

I
(

X(N−1)n; Y n
r (i) , Xn

r (i) |Y (i−1)n
r , X(i−1)n

r

)

(144)

=
N−1
∑

i=1

I
(

X(N−1)n; Y n
r (i) |Y (i−1)n

r , X(i−1)n
r , Xn

r (i)
)

+ I
(

X(N−1)n;Xn
r (i) |Y (i−1)n

r , X(i−1)n
r

)

(145)

For compress-and-forward relaying, as explained in the previous section,Xn
r (i) is a deterministic

function of Y (i−1)n
r , X(i−1)n

r . Hence the second term in (145) is zero. (145) therefore equals:
N−1
∑

i=1

I
(

X(N−1)n; Y n
r (i) |Y (i−1)n

r , X(i−1)n
r , Xn

r (i)
)

(146)

≤
N−1
∑

i=1

h (Y n
r (i) |Xn

r (i))− h
(

Y n
r (i) |Y (i−1)n

r , X(i−1)n
r , Xn

r (i) , X(N−1)n
)

(147)
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From the coding scheme described in Section A-C, we observeY n
r (i) depends on{Y (i−1)n

r ,

X(i−1)n
r , Xn(1, ..., i− 1), Xn(i+ 1, ...n)} only throughXn

r (i), X
n(i). Hence

Y n
r (i)− {Xn

r (i) , Xn (i)} − {Y (i−1)n
r , X(i−1)n

r , Xn (1, ..., i− 1) , Xn (i+ 1, ..., n)} (148)

is a Markov chain. Therefore (147) equals:

N−1
∑

i=1

h (Y n
r (i) |Xn

r (i))− h (Y n
r (i) |Xn

r (i) , Xn (i)) (149)

=
N−1
∑

i=1

I (Xn (i) ; Y n
r (i) |Xn

r (i)) (150)

≤(N − 1)(nI(X ; Yr|Xr) + nε2) (151)

where whereε2 > 0 and limn→∞ ε2 = 0. Equation (151) follows from the fact the channel is

memoryless and the codebook is composed of i.i.d. sequences.

Applying (142), (136) and (151) to (133), we have

H(cN−1|Y nN
r , XnN

r , C) (152)

≥(N − 1)n(B +min{C,R1})− (N − 1)nε1 − (N − 1)(nI(X ; Yr|Xr) + nε2) (153)

≥(N − 1)n(min{C,R1})− (N − 1)n(ε1 + ε2) (154)

=H(cN−1|C)− (N − 1)n(ε1 + ε2) (155)

Equation (154) follows from (140). (155) is becauseck in each block is chosen independently

of other blocks,ck is chosen according to a uniform distribution from a set witha cardinality

of 2nmin{C,R1}.

From (152)-(155), we have:

lim
n→∞

1

n
I(cN−1; Y nN

r , XnN
r |C) = 0 (156)

Combining it with (126) we have

lim
n→∞

E[Pr(ŴN−1 6= WN−1|C)] + 1

n
I(cN−1; Y nN

r , XnN
r |C) = 0 (157)

Therefore, there must exists a codebookC∗ such that

lim
n→∞

E[Pr(ŴN−1 6= WN−1|C∗)] +
1

n
I(cN−1; Y nN

r , XnN
r |C∗) = 0 (158)
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Since each term on the left side of (158) are nonnegative, it follows that with this codebook:

lim
n→∞

E[Pr(ŴN−1 6= WN−1|C∗)] = 0 (159)

lim
n→∞

1

n
I(cN−1; Y nN

r , XnN
r |C∗) = 0 (160)

For the simplicity of notation, we omitC∗ from the conditioning term. It is understood that all

the derivations below are conditioned onC∗.

SincecN−1 is a deterministic function ofWN−1, we have

H(WN−1|Y nN
r , XnN

r , C)

=H(cN−1,WN−1|Y nN
r , XnN

r , C) (161)

≥H(cN−1|Y nN
r , XnN

r , C) (162)

≥(N − 1)n(min{C,R1})− (N − 1)n(ε1 + ε2) (163)

Hence,

Re = lim
N→∞

lim
n→∞

1

nN
H
(

WN−1|Y nN
r , XnN

r

)

(164)

≥ min
{

lim
n→∞C,R1

}

(165)

The achievable region can then be discussed for two cases:

i) R1 ≤ limn→∞C

ii) R1 > limn→∞C

WhenR1 ≤ limn→∞C, the region(R1, Re) is given by:

0 ≤ Re ≤ R1

0 ≤ R1 ≤ lim
n→∞C

(166)

wherelimn→∞C meets the following condition from (125):

0 ≤ lim
n→∞

C < [I
(

X ; Y, Ŷr|Xr

)

− I(X ; Yr|Xr)]
+ (167)

subject to the constraintI(Xr; Y ) > I(Ŷr; Yr|Y Xr). WhenR1 > limn→∞C, the region(R1, Re)

is given by:

0 ≤ Re ≤ lim
n→∞

C

lim
n→∞C < R1 ≤ lim

n→∞C + I(X ; Yr|Xr)
(168)
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Finally, the union of these two regions (166) and (168) becomes the region given below:

Re ≤ R1 < I
(

X ; Y, Ŷr|Xr

)

0 ≤ Re < [I
(

X ; Y, Ŷr|Xr

)

− I (X ; Yr|Xr)]
+

(169)

with the constraintI(Xr; Y ) > I(Ŷr; Yr|Y Xr).

APPENDIX B

PROOF OFTHEOREM 2

The converse forR1 is given in [22] using the cut set bound. The converse forRe can be

derived by specializing the upper bound in [21], which is stated in (58) asI(X ; Y |Xr, Yr). For

our model, this can be upper bounded as:

I (X ; Y |Yr, Xr) = I (XR, XD; Y |Yr, Xr) (170)

= h (Y |Yr, Xr)− h (Y |Yr, Xr, XR, XD) (171)

From (12),Y −XD, Xr − Yr, XR is a Markov chain. Hence (171) equals:

h (Y |Yr, Xr)− h (Y |Xr, XD) (172)

≤ h (Y |Xr)− h (Y |Xr, XD) (173)

= I (XD; Y |Xr) (174)

Hence we have proved the converse forRe.

The achievability of (21) also follows from the partial decode-and-forward scheme presented

in reference [21, Theorem 1].

Theorem 8: [21, Theorem 1] The following region is achievable:

⋃

p(U,X,Xr)
p(Yr ,Y |X,Xr)























R1 < I (X ; Y |U,Xr) + min{I (U ; Yr|Xr) , I (U,Xr; Y )}
Re < [I (X ; Y |U,Xr)− I (X ; Yr|U,Xr)]

+

0 ≤ Re ≤ R1























(175)

In (175), we letX = {XD, XR}, U = XR, and restrict the union to be over the probability

distributions of the formp(Xr)p(XD|Xr)p(XR|Xr), and we obtain:

I (X ; Y |U,Xr)− I (X ; Yr|U,Xr) (176)

=I (XRXD; Y |XRXr)− I (XRXD; Yr|XRXr) (177)

=I (XD; Y |XRXr)− I (XD; Yr|XRXr) (178)
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=H (Y |XRXr)−H (Y |XDXRXr)− I (XD; Yr|XRXr) (179)

(a)
=H (Y |Xr)−H (Y |XDXr)− I (XD; Yr|XRXr) (180)

=I (XD; Y |Xr)− I (XD; Yr|XRXr) (181)

(b)
=I (XD; Y |Xr) (182)

where step(a) follows from XR − Xr − Y being a Markov chain [22] andXR − XrXD − Y

being a Markov chain. Step(b) follows from XD − XRXr − Yr being a Markov chain [22].

Moreover, the bound onR1 can be expressed as:

I (X ; Y |U,Xr) + min{I (U ; Yr|Xr) , I (U,Xr; Y )} (183)

=min
{

I (UXXr; Y ) , I (U ; Yr|Xr) + I (X ; Y |U,Xr)

}

(184)

(c)
=min

{

I (XXr; Y ) , I (U ; Yr|Xr) + I (X ; Y |U,Xr)

}

(185)

where step(c) follows from U −XXr − Y being a Markov chain.

Note that (185) is the same as [22, (2)], therefore from the same argument therein, we obtain:

min
{

I (XXr; Y ) , I (U ; Yr|Xr) + I (X ; Y |U,Xr)

}

(186)

=min
{

I (XD, Xr; Y ) , I (XR; Yr|Xr) + I (XD; Y |Xr)

}

(187)

By substituting (187) and (182) into (175), we find that the rate pair in (21) is achievable.

Remark 17:It is shown in [21, Lemma 3] that the achievable rate region (175) is convex.

Therefore the rate region (21) is also convex.

APPENDIX C

PROOF THAT (38) IS A MONOTONIC INCREASING FUNCTION OF THE SOURCE POWER

It suffices to show that the argument ofC( ), which isp+ a2p

1+σ2
Q

, is a monotonically increasing

function of p. The expression ofσ2
Q is given by (32). Thus we have:

p+
a2p

1 + σ2
Q

= p

(

(1 + a2) (b2Pr + 1) (p+ 1)− a2

(b2Pr + a2 + 1) (p+ 1)− a2

)

(188)

Sincep+ a2p

1+σ2
Q

is always positive, we can prove its monotonicity inp by showingln(p+ a2p

1+σ2
Q

)

is monotonically increasing inp. From (188), it is given by

ln p+ ln
((

1 + a2
) (

b2Pr + 1
)

(p+ 1)− a2
)

− ln
((

b2Pr + a2 + 1
)

(p + 1)− a2
)

(189)
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Let A ∆
= (1 + a2) (b2Pr + 1). LetB ∆

= (b2Pr + a2 + 1). Then the derivative of (189) with respect

to p is given by

1

p
+

a2
(

1
A
− 1

B

)

(

p+ 1− a2

A

) (

p+ 1− a2

B

) =

(

p+ 1− a2

A

) (

p+ 1− a2

B

)

+ a2
(

1
A
− 1

B

)

p

p
(

p+ 1− a2

A

) (

p+ 1− a2

B

) (190)

Note thatA,B > a2. Hence the denominator of (190) is positive. Therefore we only need to

show that the numerator of (190) is positive. The numerator of (190) equals

(p+ 1)2 − a2
(

1

A
+

1

B

)

(p+ 1) +
a4

AB
+ a2

(

1

A
− 1

B

)

p (191)

= (p+ 1)2 − 2a2

B
p+

a4

AB
− a2

(

1

A
+

1

B

)

(192)

=

(

p + 1− a2

B

)2

− a4

B

(

1

B
− 1

A

)

+ a2
(

1

B
− 1

A

)

(193)

=

(

p + 1− a2

B

)2

+ a2
(

1− a2

B

)

(

1

B
− 1

A

)

(194)

SinceA > B > a2, a2/B < 1, (194) is positive. Therefore the derivative ofln(p + a2p

1+σ2
Q

) with

respect top is positive. This means (38) is a monotonic increasing function of p.

APPENDIX D

AN EXAMPLE WHERE INTRODUCING A SECOND EAVESDROPPERDECREASESSECRECY

CAPACITY

Consider a special case of Model2 defined by

Yr = X +N YD = X −N (195)

YR = Xr (196)

This is a Gaussian relay channel with orthogonal componentswith reversely correlated noise.

N is a zero mean Gaussian random variable with unit variance. Hence its probability density

function is symmetric around the origin:p(−N) = p(N).

We first observe that since the orthogonal link between the relay and the destination is

noiseless, the optimal relaying scheme in this case is choosing Xr,i = Yr,i−1. This can be proved

as follows: First we recognize, for this channel, givenY n
r , the signalsXn

r do not provide more

information to the eavesdropper. This is because the relay is not interfering itself and hence as

shown in Remark 11, the secrecy capacity can be computed fromlimn→∞
1
n
H(W |Y n

r ) instead,
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i.e., Xn
r can be dropped from the conditioning term. Therefore for anygiven relay scheme, we

can always useXr,i = Yr,i−1 to give the destination the signals received by the relay, and ask the

destination to to compute theXn
r generated from the original relaying scheme instead. It canbe

verified that in this way the secrecy constraint is fulfilled andW can still be transmitted reliably.

Therefore, the secrecy rate achievable by any given relay scheme is achievable viaXr,i = Yr,i−1,

which must be the optimal relaying scheme.

Hence the destination essentially receives(Yr,i−1, YD,i) at theith channel use and the eaves-

dropper receivesYr. The channel is therefore equivalent to a1× 2 MIMO wiretap channel [4].

Note that the destination can remove the noiseNi completely by simply computingYr,i + YD,i.

The eavesdropper, on the other hand, observes an AWGN link with finite capacity. Hence the

secrecy capacity of this channel is easily seen to be∞.

Now, we construct a second relay channel. The channel is the same as the previous one except

that the received signal at the relay becomes:

{Yr, Xr} = {X +N,Xr} (197)

That is to say that the relay receives an additional copy of its transmitted signal. This should

not benefit the relay/eavesdropper at all. So the secrecy capacity is still ∞ .

Now, we construct a third relay channel from the second relaychannel, by adding one more

eavesdropper to the model. Let the signal received by this second eavesdropper be:

Ye = {X −N,Xr} (198)

It follows that p(Ye|X,Xr) = p(X −N,Xr|X,Xr) = p(−N) = p(N) = p(Yr|X,Xr). Hence,

the new eavesdropper observes the same marginal distribution as the eavesdropper located at

the relay node. However, this eavesdropper receives exactly the same signal received by the

destination. Therefore the secrecy capacity of the new system is reduced to 0.
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APPENDIX E

PROOF THAT (45) AS A MARKOV CHAIN

Recall thatA is shown in (1) as the local randomness generated at the relay. Using chain rule,

we have

p (Y n
r , Y

n
e , X

n, Xn
r , A)

= p (Xn, A)
n
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A, Y i−1
e,1 , Xn

)

p
(

Ye,i, Yr,i|Y i−1
e,1 , Y i−1

r,1 , X i
r,1, X

n, A
)

(199)

From (1), we observe that

Xr,i − {Y i−1
r,1 , X i−1

r,1 , A} − {Y i−1
e,1 , Xn} (200)

is a Markov chain. Since the channel is memoryless, and the relay function (1) has to be causal,

we observe

{Ye,i, Yr,i} − {Xr,i, Xi} − {Y i−1
e,1 , Y i−1

r,1 , X i−1
r,1 , X]i[, A} (201)

is also a Markov chain. Applying these two Markov chains to (199), we have:

p (Y n
r , Y

n
e , X

n, Xn
r , A) = p (Xn, A)

n
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Ye,i, Yr,i|Xr,i, Xi) (202)

We next integrate outY n
r and Xn

r from both side of (202). This can be done in a recursive

fashion as we show next. First we integrate overYr,n on both side of (202). This gives us:

p
(

Y n−1
r , Y n

e , X
n, Xn

r , A
)

=p (Xn, A)
n−1
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Ye,i, Yr,i|Xr,i, Xi)

p
(

Xr,n|Y n−1
r,1 , Xn−1

r,1 , A
)

p (Ye,n|Xr,n, Xn) (203)

From (43), we havep(Ye,n|Xr,n, Xn) = p(Ye,n|Xn). Applying it to (203) yields:

p
(

Y n−1
r , Y n

e , X
n, Xn

r , A
)

=p (Xn, A)
n−1
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Ye,i, Yr,i|Xr,i, Xi)

p
(

Xr,n|Y n−1
r,1 , Xn−1

r,1 , A
)

p (Ye,n|Xn) (204)
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We next integrate overXr,n on both side of (204), which yields:

p
(

Y n−1
r,1 , Y n

e , X
n, Xn−1

r,1 , A
)

=p (Xn, A) p (Ye,n|Xn)
n−1
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Ye,i, Yr,i|Xr,i, Xi) (205)

Repeating the process in (203)-(205) forn− 1, n− 2, ..., 1, we have

p (Y n
e , X

n, A) = p (Xn, A)
n
∏

i=1

p (Ye,i|Xi) (206)

Integrating overA on both sides of (206), we have

p (Y n
e , X

n) = p (Xn)
n
∏

i=1

p (Ye,i|Xi) (207)

Integrating overY n
e,j+1 on both sides of (207), we have

p
(

Y j
e,1, X

n
)

= p (Xn)
j
∏

i=1

p (Ye,i|Xi) (208)

Integrating overYe,j on both sides of (208), we have

p
(

Y j−1
e,1 , Xn

)

= p (Xn)
j−1
∏

i=1

p (Ye,i|Xi) (209)

Dividing each side of (208) by the corresponding side of (209), we have

p
(

Ye,j|Y j−1
e,1 , Xn

)

= p (Ye,j|Xj) (210)

Hence we have shown thatYe,j −Xj −X]j[Y
j−1
e,1 is a Markov chain.

We next prove thatYr,j −Xj −X]j[Y
j−1
r,1 is a Markov chain. Again, we start with (202) and

integrate outY n
e andXn

r from both side of it in a recursive fashion. First we integrate overYe,n

on both side of (202) and obtain

p
(

Y n
r , Y

n−1
e,1 , Xn, Xn

r , A
)

=p (Xn, A)
n−1
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Ye,i, Yr,i|Xr,i, Xi)

p
(

Xr,n|Y n−1
r,1 , Xn−1

r,1 , A
)

p (Yr,n|Xr,n, Xn) (211)

Then from (43) we observe thatp (Yr,n|Xr,n, Xn) = p (Yr,n|Xn). Hence (211) becomes:

p
(

Y n
r , Y

n−1
e,1 , Xn, Xn

r , A
)

=p (Xn, A)
n−1
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Ye,i, Yr,i|Xr,i, Xi)

p
(

Xr,n|Y n−1
r,1 , Xn−1

r,1 , A
)

p (Yr,n|Xn) (212)
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We next integrate overXr,n on both side of (212), which yields:

p
(

Y n
r , Y

n−1
e,1 , Xn, Xn−1

r , A
)

=p (Xn, A) p (Yr,n|Xn)
n−1
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Ye,i, Yr,i|Xr,i, Xi) (213)

Repeating the process in (211)-(213) forn− 1, n− 2, ..., 1, we have

p (Y n
r , X

n, A) = p (Xn, A)
n
∏

i=1

p (Yr,i|Xi) (214)

Integrating overA on both sides of (214), we have

p (Y n
r , X

n) = p (Xn)
n
∏

i=1

p (Yr,i|Xi) (215)

Integrating overY n
r,j+1 on both sides of (215), we have

p
(

Y j
r,1, X

n
)

= p (Xn)
j
∏

i=1

p (Yr,i|Xi) (216)

Integrating overYr,j on both sides of (216), we have

p
(

Y j−1
r,1 , Xn

)

= p (Xn)
j−1
∏

i=1

p (Yr,i|Xi) (217)

Dividing each side of (216) by the corresponding side of (217), we have

p
(

Yr,j|Y j−1
r,1 , Xn

)

= p (Yr,j|Xj) (218)

Hence we have shown thatYr,j −Xj −X]j[Y
j−1
r,1 is a Markov chain.

APPENDIX F

PROOF THATH(W |Y n
r X

n
r ) = H(W |Y n

r ) FOR THE MODEL STATED IN (41)

We begin with

H(W |Y n
r , X

n
r ) = H(W |Y n

r , X
n
r , A) = H(W |Y n

r , A) (219)

where the last equality follows from the fact thatXn
r is a deterministic function of{Y n

r , A}.

Hence we only need to proveH(W |Y n
r , A) = H(W |Y n

r ) for the channel model defined in (41).

This can be done as follows:
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First we factorizep (Y n
r , X

n, Xn
r , A,W ) using a similar procedure seen in (199)-(202):

p (Y n
r , X

n, Xn
r , A,W ) (220)

=p (W,A,Xn) p (Y n
r , X

n
r |Xn, A,W ) (221)

=p (W,A,Xn)
n
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Yr,i|Xr,i, Xi) (222)

where in (222) we use the Markov chain stated in (200) and (201).

From (41), we havep (Yr,i|Xr,i, Xi) = p (Yr,i|Xi). Hence we have

p (Y n
r , X

n, Xn
r , A,W )

=p (W,A,Xn)
n
∏

i=1

p
(

Xr,i|Y i−1
r,1 , X i−1

r,1 , A
)

p (Yr,i|Xi)
(223)

We next integrate outXn
r from both sides of (223) using the procedure shown in Appendix E,

which yields:

p (Y n
r , X

n, A,W ) = p (W,Xn, A)
n
∏

i=1

p (Yr,i|Xi) (224)

We next use the fact thatYr,i −Xi −X]i[Y
i−1
r,1 is a Markov chain, as stated in (45) and proved

in Appendix E, from which we have

p (Y n
r , X

n, A,W ) = p (W,Xn, A)
n
∏

i=1

p
(

Yr,i|Xn, Y i−1
r,1

)

(225)

SinceW is a deterministic function ofXn, we have

p (Y n
r , X

n, A,W ) = p (W,Xn, A)
n
∏

i=1

p
(

Yr,i|Xn, Y i−1
r,1 ,W

)

(226)

= p (W,Xn, A) p (Y n
r |Xn,W ) (227)

SinceA is independent fromW,Xn, (226)-(227) can be written as

p (Y n
r , X

n, A,W ) = p (W,Xn, Y n
r ) p (A) (228)

From it, we can write:

p (Y n
r , A) = p (Y n

r ) p (A) (229)

and

p (Y n
r , A,W ) = p (W,Y n

r ) p (A) (230)
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From (229) and (230), we have

p (W |Y n
r , A) = p (W |Y n

r ) (231)

HenceH(W |Y n
r , A) = H(W |Y n

r ).

APPENDIX G

PROOF THAT (79) IS AN UPPERBOUND

We begin with

H (W ) =H (W |Y n
e ) + I (W ; Y n

e ) (232)

Due to the secrecy constraint, we havelimn→∞
1
n
I(W ; Y n

e ) = 0. Due to the fact thatW can be

decoded fromY n
D , Y

n
R reliably, we have, from Fano’s inequality,limn→∞

1
n
H (W |Y n

DY
n
R ) = 0.

Hence there existsε > 0 such that

I (W ; Y n
e ) < nε/2 (233)

H (W |Y n
DY

n
R ) < nε/2 (234)

lim
n→∞ ε = 0 (235)

For thisε, we find (232) is upper bounded by

H (W |Y n
e ) + nε/2 (236)

≤H (W |Y n
e )−H (W |Y n

DY
n
R ) + nε (237)

≤H (W |Y n
e )−H (W |Y n

DY
n
RX

n
r ) + nε (238)

≤I (W ; Y n
D , Y

n
R , X

n
r |Y n

e ) + nε (239)

≤I (W,Xn; Y n
D , Y

n
R , X

n
r |Y n

e ) + nε (240)

=I (Xn; Y n
D , Y

n
R , X

n
r |Y n

e ) + nε (241)

=I (Xn; Y n
D , X

n
r |Y n

e ) + I (Xn; Y n
R |Y n

e , Y
n
D , X

n
r ) + nε (242)

=I (Xn; Y n
D , X

n
r |Y n

e ) +
n
∑

i=1

I
(

Xn; YR,i|Y n
e , Y

n
D , X

n
r , Y

i−1
R,1

)

+ nε (243)
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From (55), we observeYR,i−{Y n
e , Y

n
D , X

n
r , Y

i−1
R,1 }−Xn is a Markov chain. Hence (243) equals:

I (Xn; Y n
D , X

n
r |Y n

e ) + nε (244)

≤I (Xn; Y n
D , Y

n
r , X

n
r |Y n

e ) + nε (245)

=I (Xn; Y n
D , Y

n
r |Y n

e ) + I (Xn;Xn
r |Y n

D , Y
n
r , Y

n
e ) + nε (246)

=I (Xn; Y n
D , Y

n
r |Y n

e ) +
n
∑

i=1

I
(

Xn;Xr,i|X i−1
r,1 , Y n

D , Y
n
r , Y

n
e

)

+ nε (247)

The term inside the sum in (247) can be bounded as

I
(

Xn;Xr,i|X i−1
r,1 , Y n

D , Y
n
r , Y

n
e

)

(248)

≤I
(

Xn;A,X i
r,1|Y n

D , Y
n
r , Y

n
e

)

(249)

≤I (Xn;A|Y n
D , Y

n
r , Y

n
e ) + I

(

Xn;X i
r,1|Y n

D , Y
n
r , Y

n
e , A

)

(250)

=I (Xn;A|Y n
D , Y

n
r , Y

n
e ) (251)

whereA is the local randomness at the relay. (251) is due to the fact thatX i
r,1 is a deterministic

function of {Y n
r , A}.

From (55), we have

p (Xn, Xn
r , A, Y

n
D , Y

n
r , Y

n
e ) = p (Xn) p (A)

n
∏

i=1

p (YD,i, Yr,i, Ye,i|Xi) p
(

Xr,i|X i−1
r,1 , Y i−1

r,1 , A
)

(252)

from which we have

p (Xn, Y n
D , Y

n
r , Y

n
e , A) = p (Xn) p (A)

n
∏

i=1

p (YD,i, Yr,i, Ye,i|Xi) (253)

Hence {Y n
D , Y

n
r , Y

n
e , X

n} are all independent fromA. Therefore (251) equals0. (247) thus

becomes:

I (Xn; Y n
D , Y

n
r |Y n

e ) + nε (254)

=
n
∑

i=1

h
(

YD,iYr,i|Y i−1
D,1 Y

i−1
r,1 Y n

e

)

−
n
∑

i=1

h
(

YD,iYr,i|Y i−1
D,1 Y

i−1
r,1 Y n

e X
n
)

+ nε (255)

≤
n
∑

i=1

h (YD,iYr,i|Ye,i)−
n
∑

i=1

h
(

YD,iYr,i|Y i−1
D,1 Y

i−1
r,1 Y n

e X
n
)

+ nε (256)

From (55) and the fact that the channel is memoryless and the relay function is causal, we

observe that

{YD,i, Yr,i} − {Ye,i, Xi} − {Y i−1
D,1 , Y

i−1
r,1 , Ye,]i[, X]i[} (257)
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is a Markov chain. Hence (256) equals:
n
∑

i=1

h (YD,iYr,i|Ye,i)−
n
∑

i=1

h (YD,iYr,i|Ye,iXi) + nε (258)

=
n
∑

i=1

I (Xi; YD,iYr,i|Ye,i) + nε (259)

Define Q as a random variable that is uniformly distributed over{1, 2, ..., n}. Define X =

XQ, YD = YD,Q, Yr = Yr,Q, Ye = Ye,Q. Then (259) equals:

nI (X ; YDYr|YeQ) + nε (260)

=n (h (YDYr|YeQ)− h (YDYr|YeXQ)) + nε (261)

≤n (h (YDYr|Ye)− h (YDYr|YeXQ)) + nε (262)

Since{YD, Yr} − {Ye, X} −Q is a Markov chain, (262) equals:

n (h (YDYr|Ye)− h (YDYr|YeX)) + nε (263)

=nI (X ; YDYr|Ye) + nε (264)

Dividing both sides byn and lettingn → ∞, we have the upper bound in (79).
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