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Abstract

We consider the communication scenario where a sourc@dgsh pair wishes to keep the in-
formation secret from a relay node despite wanting to eitbshelp. For this scenario, an interesting
question is whether the relay node should be deployed aflh#t is, whether cooperation with an
untrusted relay node can ever be beneficial. We first prouidachievable secrecy rate for the general
untrusted relay channel, and proceed to investigate théstann for two types of relay networks with
orthogonal components. For the first model, there is an gahal link from the source to the relay.
For the second model, there is an orthogonal link from thayréd the destination. For the first model,
we find the equivocation capacity region and show that angsveegative. In contrast, for the second
model, we find that the answer is positive. Specifically, wevsliby means of the achievable secrecy
rate based on compress-and-forward, that, by asking thested relay node to relay information, we
can achieve a higher secrecy rate than just treating thg aslaan eavesdropper. For a special class of
the second model, where the relay is not interfering itsg#, derive an upper bound for the secrecy
rate using an argument whose net effect is to separate tlesdr@pper from the relay. The merit of
the new upper bound is demonstrated on two channels thatdpébothis special class. The Gaussian
case of the second model mentioned above benefits from tpimagh in that the new upper bound
improves the previously known bounds. For the Cover-Kineduatnistic relay channel, the new upper
bound finds the secrecy capacity when the source-destinkitik is not worse than the source-relay

link, by matching with achievable rate we present.
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I. INTRODUCTION

A fundamental approach to information security is foundedniformation theory where the
limits of reliable communication can be determined whilepiag the information secret from
eavesdropping node(s). This notion of secrecy was firstqaeg by Shannon [1]. In his work,
Shannon assumed that the eavesdropper has perfect acabgsdignal transmitted from the
source to the destination and determined that the rate ofrkest equal to the rate of data to
ensure “perfect secrecy”, i.e., in order for the data notdddaked to the eavesdropper even if
the eavesdropper has unlimited computational power. WyngPR], pointed out that Shannon’s
assumption is pessimistic, as more often than not, the daygser only has a noisy copy of
the signal transmitted from the source and building a ussfolire communication system per
Shannon’s notion is possible [2], [3].

Recent work in this area aims to find the secrecy capacity paaty region for a variety of
communication scenarios and channel models. A set of mdditsvs the classical model of
Wyner’s wiretap channel [2], where an external eavesdnojgperesent in addition to legitimate
parties. This line of work includes the multiple input mpla output (MIMO) wiretap channel
[4]-[6], the wiretap channel with a cooperative jammer fAg multiple access wiretap channel
[8]-[11], the MIMO broadcast channel with multiple legitite receivers and an external eaves-
dropper [12], the two-way wiretap channel [10], the relagmhel with an external eavesdropper
[13]. In these models, where the information leaked to thvesdropper is a loss to the legitimate
communication system, it was observed that legitimateiggtould aid in enhancing secrecy
by introducing intentional interference to the eavesdewvpga cooperative jamming [7], [10],
[14]. Another set of models deals with a more symmetric scenavhere each receiver of an
intended message is also modeled as an eavesdropper fentaening unintended messages in
the system. This setting has been considered for the neiltiptess [15], broadcast [16], [17],
and interference channels [18], [19]. In these models, @mencunication pair, in the interest of
protecting its own information, may end up helping the otpair [19].

The focus of this work, while on cooperative communicatjatiffers from the above models
in that, it deals with a communication network whose nodege hdifferent levels of security
clearance. Examples like this exist in real life. In a goweent intelligence network or the

network of a financial institution, not every node in the natkvis supposed to have the same



level of access to information, despite operating with edr@rotocols and serving as relay
nodes in the network. The question is whether thestustednodes should still participate in
this cooperative communication network, or if they pose @bBem” when secret messages are
to be transmitted, and hence, their cooperation should @e@ntisted. The basic issue addressed
here therefore, different from the previous models that @irsolve the co-existence problem of
several communication pairs, is to resolve the conflict withne system.

This paper focuses on the most basic model in this categorder to assess the effect
of secrecy requirements upon cooperative communicatidfesconsider the three node relay
network, where the relay has a lower security clearance thardestination and is therefore
untrusted. Reference [20], the first work that studied thegleh, shows that the secrecy capacity
of this system is zero if the relay channel is degraded. Tlheesg capacity equals that of the
wiretap channel if the channel is reversely degraded, whielans that the relay-to-destination
communication is useless in this case as well [21]. In Sedlid of this paper, we present
yet another negative result: the relay node is again usabeasclass of relay networks with
orthogonal components [22], dubbed Modein the sequel. In each of these references, the
model turns out to be equivalent to the models of the first tategories, where the relay node
is merely an eavesdropper, rather than a cooperating partne

In light of these results, one might be tempted to take a pestc view, and wonder whether
there exists any situation where the cooperation of theustdd relay might enable a higher
secrecy rate than simply treating it as an eavesdropperestingly, we find in this paper that
the answer to this question is yes. This is shown for a clagelay networks with orthogonal
components where the relay to destination link is orthofjtm#énat from the source [23], dubbed
Model 2 in the sequel. Specifically, we observe that by performingmess-and-forward, the
relay node can help increase an otherwise zero secrecy ittewvhaving any idea what it is
relaying.

Once an achievable secrecy rate with the untrusted relag husieful is found, an upper bound
on the secrecy rate is needed to assess how close the adhistvategy is to the optimum. There
are two previously known upper bounds. Reference [13] piexvian upper bound for the relay
channel with an external eavesdropper. By assuming thaettiernal eavesdropper receives the
signals received and transmitted by the relay, we obsewenibdel in [13] can be specialized

into the model considered in this work and hence the bound3hdan be readily applied. Alas,



this bound is not computable for the Gaussian case. A corbjguteound was provided for the

Gaussian relay channel with a co-located eavesdroppef jnA2as, this bound does not depend
on the condition of the relay-to-destination channel. Moeg, the noise correlation of the links
may render the bound to be arbitrarily loose. In this work, aum to derive an upper bound
that improves the bound in [21] in these two aspects, andnaglish this goal for a class of

untrusted relay channels.

More specifically, the upper bound on the secrecy rate ivel@ifior a special class of Modg)
where the relay is not interfering itself. The derivatiorttoé upper bound entails the introduction
of a second eavesdropper. Although in general, introduaisgcond eavesdropper can decrease
the secrecy capacity, we prove that for the special classafiels question, doing so does not
alter the secrecy capacity. The upper bound is then deriyeginoving the first eavesdropper
at the relay and introducing correlation between the ouspeh by the second eavesdropper and
other outputs of the channel, which tightens the upper b@amih other Sato-type bounds; see
[5] for example.

The merit of the new upper bound is demonstrated in two cd3est; for the Gaussian case
of Model 2, we show that the new bound improves the previously knowmbtsuSecond, for
the Gaussian Cover-Kim deterministic relay channel inicedl in [24], we show that the upper
bound matches the achievable rate using compress-andsffibmhen the signal to noise ratio
of the source-destination link is not worse than that of tberse-relay link, thus, establishing
the secrecy capacity.

The remainder of the paper is organized as follows: Sedfiaescribes the general relay
network with a co-located eavesdropper, and an achievapigacation region for this channel
using the compress-and-forward relaying. In secfioh He two special cases of the general
model, i.e., Modell and Model2 are described. Sectidn IV presents the equivocation cgpaci
region for Modell. Sectior 'Y specializes the achievable region found in 8effl to Model 2.
Section[V] identifies a special class of Modglfor which introducing a second eavesdropper
properly will not decrease the secrecy capacity, and de@eupper bound for its secrecy rate.
The upper bound is then specialized to the Gaussian case @élRlaSectior V] investigates the
secrecy capacity of Gaussian Cover-Kim deterministicyrelaannel. We note that to facilitate a
better flow throughout the manuscript, more involved pr@séspresented in appendices whereas

shorter ones are kept in the main text.
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Fig. 1. Relay Channel with a Co-located Eavesdropper: Src@oNode, R/E: Relay Node with a Co-located Eavesdropper,

D: Destination Node.

Throughout this paper, the following notation is use#l; ¢, denotes a variable that goes to 0
whenn goes toco. C(z) = 1log,(1+4z). X" denotes a vector of length, whereasX; denotes
the ith element of the vectoi};; denotes the setX;,1 < j <i or i < j < n}. X denotes the
set{X;,1 <j <i}; the setis empty if < 1. |a| denotes the largest integer less than or equal
to a. The short handV (q, ..., b) stands for the sefiV(a), W(a+ 1), ..., W(b)}. The short hand

We stands for the sefWW (1), W (2),..., W(a)}.

[I. ACHIEVABLE SECRECY RATE FOR THE GENERAL RELAY CHANNEL WITH CO-LOCATED

EAVESDROPPER

The relay channel with a co-located eavesdropper was firgidered in [20] and is shown in
Figure[d. It is a memoryless three-node relay channel [2Bhse description is(Y, Y, | X, X,.).
X, X, are the channel inputs from the source and the relay respbgtand Y, Y, are the
channel outputs observed by the destination and the retpectively. We assume that there is
an eavesdropper at the relay node who has access to evgrfthinthe relay node knows. The
source wishes to send messagjeto the destination ovet channel uses, while keeping it secret
from the eavesdropper.

Without loss of generality, the relaying function for tité channel use can be defined as
Xr’,i =4 (qu;_lv )/;j_lv A) (l)

where A is a random variable which models any stochastic mappinglamg by the relay
node. Hence, without loss of generality, we can resyidb be a deterministic function.

The information available to the eavesdropper regardiegétret messag€ is { X, V", A}.



Fig. 2. Example: Relay’s transmitted sign&l" can provide more information abolit’

Thus, the equivocation rate is computed as

1
R, = lim ~H (W|XI, Y, A) 7

n—oo n,
Note that sincéV —{ X" Y} — A is a Markov chain, we hav® (W|X"Y"A) = H (W|X"Y").

Hence the equivocation rate can be instead defined as

1
R, = lim ~H (W[X],Y}") 3

n—oo n,

Remark 1:In generalH (W|Y,*) > H(W|X",Y.,"). To see an example, consider the channel
model in Figure[R. Letd denote the binary addition. The channel has binary inpue Th

destination receives signals from two orthogonal linKg:and Yy, and that we have
Yp=X (4)
YR = Xr ©® A (5)

where Z represents the i.i.d. binary noise.

It follows in this setting that,H (W |X",Y,”) = 0. This is because the relay can always
subtract the interference caused Ky on its received signal and hence obtaiki8. However,
HWIY™ = H(W) if X is chosen to be an i.i.d. binary sequences, each component of
which takes the valué with probability 7. Thus, in this case, we clearly havé(IW|Y;") >
H(WI|X"Y™). [

We should note however thatl (W |Y,") = H(W|X,Y,") if the relaying scheme is determin-
istic: X,.; = ¢;(X71 Y71, Also, note that, clearly, any outer bound derived for theiemration
H(W|Y™) is an outer bound fof (W|X", Y.").



With this preparation, the equivocation rate region candfendd as follows: Let the message
decoded by the destination B&. The equivocation rate region is composed of all rate pairs
(R, R.) such that:

1
Ry = lim —log, |W/|

n—oo n,

1
R, = lim —H (W|X", V")

n—oo n,
s.t. Jggo%h (W#£W)=0

Here || is the cardinality of the message g&t. Note that when block Markov coding
scheme [25] is used, the message is transmitted via sueedssicks. In this casé}) denotes
the messages transmitted over all blockshould be the total number of channel uses of these
blocks. The definition ofX”, Y™ should be adjusted accordingly.

Next, we derive an achievable equivocation region basedompoess-and-forward. Compress-
and-forward scheme was proposed in [25] and has been usdtidarelay network with an
external eavesdropper in [13], [26]. In our case, as we va#,she fact that the relay and
the eavesdropper being co-located brings additional ddganto allow for a higher degree of
compression to be achieved at the relay as compared to tiregsiet [13].

Theorem 1:For a relay network described agY’, Y,| X, X,), with X, X, being the input
from the source and the relay respectively, &hd” being the signals received by the relay and

the destination respectively, the following region of ratérs (R;, R.) is achievable.

R. <R < I(X;YY[X,)
U ! (6)
0< R < [I(X;YY]X,) - I(X;Y,]X,)]*

where
I(X;Y) > I(Y,; Y[V X,) (7)
and the union is taken over:

p(X)p(X,)p(Y, Y, | X, X, )p(Y,|Y;, X,) (8)

Proof: See Appendix_A. u



Remark 2:Compared with the coding scheme presented in [13], therdiifee is that we
have Wyner-Ziv coding. Without Wyner-Ziv coding, the camastt (7) in the Theorem would be

[(X,;Y) > 1(Y,; V[ X,) 9)

which is identical to that in [13, Theorem 4 (12)]. In [13]etleavesdropper is external to the
relay node, and hence only has a noisy copyXif(k). In this case, the equivocation over
multiple blocks would not necessarily be the sum of equitiooaover each block. Reference
[13] worked around this problem by using a compress-anddall scheme without Wyner-Ziv

coding. The equivocation over multiple blocks was then loeunded by proving that given

the signal received by the eavesdropper and the secret gegsta external eavesdropper would
be able to determine the signals transmitted by the sourddrenrelay via backward decoding
[13, Appendix D (53)-(55)].

In contrast to that in [13], fortunately, in our model, thevesdropper has perfect knowledge
of X(k). This enables us to compute the equivocatiomoblocks from the equivocation of
each block. See_(187)-(1139) in Appendix A. Hence, the Wpiereoding is used in our setting
without difficulty. [

Remark 3: Theorem[]L will be useful in Sectidn]V in finding an achievakd¢éerfor one of
the models (Mode®) that we will describe in the next section.

Remark 4:We can prefix the channel inp with U and apply Theorerfil1 to the channel

p(Y,Y,.|U, X,). The equivocation region then becomes:
R. <R < I(U;YY,|X,
U ( . ) (10)
0< R, < [I(U;YYV]X,) = I(U; Y] X))

for which (@) must be fulfilled, and the union is taken over:
p(U, X)p(X,)p(Y, Y| X, X, )p(Ye Yy, X) (11)

Clearly, this may potentially enlarge the achievable ragioven by Theorenh] 1.
Having examined the general relay channel with a co-locatsgsdropper, we next consider

two special cases of it for which stronger results can bevddri



Fig. 3. Relay Channel with Orthogonal Components MadeDrthogonal Source to Relay Link

[Il. Two SPECIAL CASES OF THEGENERAL MODEL: RELAY NETWORKS WITH

ORTHOGONAL COMPONENTS

The two models of the relay network with orthogonal compaseme depicted in Figurés 3
and4 respectively. Figufé 3 shows Modeln this model, the relay and the source communicate
with the destination via a multiple access channel, withnjpait beingXp, X, and output being
Y. The source and the relay communicate via a channel ortladgorihe channel used by the
source and the relay to transmit to the destination. Thetiapd the output of this channel are

denoted byX; andY, respectively. Thus, the overall channel description is:
p (Y, Y| Xg, Xp, X;) = p(Y|Xp, X,) p (Y| X, X,) (12)

The capacity of this network without secrecy constraints Yaaund in [22].

The Gaussian case of Modelis defined as [22]:
Y,=aXrp+ 2, Y=bX,+Xp+Z (13)

where Z; and Z are independent zero mean real Gaussian random varialuleswth variance
N. a andb are channel gains. The transmit power constraints on thecs@and the relay are
given by:

1& 1&

~> (BIXR]+ BIXp]) <P, ~ 3 E[X] <AP (14)

i=1 i=1
Figure[4 shows ModebR. In Model 2, the source communicates with the relay and the

destination via a broadcast channel, and the relay commi@sionvith the destination via a

separate (orthogonal) link. Thus, the channel is descrilyed

p(Yp, Vi, Y[ X, X;) = p(Yp| X)p(Y,| X, X;., YD )p (Y| X) (15)
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Fig. 4. Relay Channel with Orthogonal Components MazleDrthogonal Relay to Destination Link

When there are no secrecy constraints, the Gaussian cased#l Mwas considered in [23].
The capacity of this channel remains an open problem exceptdme special cases given in
[23].

The class of channels for which we will be able to derive anenfmund on the secrecy rate,

is described by:
p(Yp, Yr, Y, X, X;) = p(Yp| X)p(Y:| X, YD )p(YR|X;) (16)

Observe that such a channel is a special casé_of (15) sinds dropped from the condition
term of Y, in (I5).

We will discuss two channels that fall into the class defingdd®): (i) the Gaussian case of
Model 2, (ii) the Gaussian Cover-Kim deterministic relay chanril][

The Gaussian case of Modglis defined as:

Yo=X+Zp Y, =aX+ Z,
(17)
Yr=0X, + Zp
where Zp, Z,, Zr are independent zero-mean Gaussian random variables wiitivariance.a

andb are channel gains. The transmit power of the source and lag aee constrained by:
1 & 1&
~Y> BIXMI< P, —) EIX} <P (18)
N =1 7 =

The Gaussian Cover-Kim deterministic relay channel is atedi in Figure_b. The received

signals at the destination and at the relay are given by:
Yp=X+Z2Z Y,=aX—-Z (19)

whereq is the channel gain and is a zero mean Gaussian random variable with unit variance.

Notice that the random variables representing the noisgpoaents have a correlatign= —1.
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noiseless
l Y, X, link
ec Relay |:: — X,
Ry

Fig. 5. The Gaussian Cover-Kim Deterministic Relay channel

Between the relay and the destination, there is a separaseless link with rateR,. The
destination receives side information from the relay vies fink in addition to Y, which it

receives from the source. The transmission power of theceasrconstrained to be:
1 n
~Y E[X7| <P (20)
=

In the following sections, we first derive the equivocatiapacity region of Modell. We
then derive the achievable equivocation region for Mazlelsing the results from Sectidn Il.
Finally, we derive the upper bound for the secrecy rate ferdlass of ModeP defined in [(16)

and specialize it to the Gaussian case and the Cover-Kimnehan

V. EQUIVOCATION CAPACITY REGION FORMODEL 1

Theorem 2:The equivocation capacity region of Modelis given by

(Rl, Re) .
U 0< R < min{ I(Xp, X, Y), I (Xg; Y, X,) + I (Xp;Y|X,) } (21)
(X,)
X0 | 0< R, <min{l (Xp:Y|X,), R}
p(Xr|Xr)
Proof: See AppendixB. [

Remark 5: Theoreni 2 is proved by specializing the results from [21]e Bhievable scheme
is based on partial-decode-and-forward. This entails thatrelay decodes the information

transmitted viaX . The scheme is outlined next for the sake of completeness:
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Denote the codebook used by the relay and the sourck asd {Cr,Cp} respectively. The
codeword inC, is denoted byX". The codeword in{Cr,Cp} is denoted by X}, X1}, which
are to be transmitted viX'p, and X respectively.

The codebooks are generated as follogygn{/(X-Y).[(XzY- X)) codewords are sampled in an
i.i.d. fashion fromp(X,.) to formC,.. For eachX™ in C,,, 2™ (X»:¥1X+) codewords are sampled in an
i.i.d. fashion fromp(Xp|X,) and are included iGp. For eachX” in C,, 2nmint! (Xei¥), [ (Xrs¥r[Xo)}
codewords are sampled in an i.i.d. fashion frp(X | X, ) and are included €.

The transmission is divided int& blocks, each composed afchannel uses. The messages
transmitted by the source during tlkh block is denoted bWy (k), Wgr(k)}. Wp(k) corre-
sponds to the secret part of the message. The cardinalfty/gf( %)} is smaller tharp™!(Xp:¥1Xr),
The cardinality of{IWWz(k)} is smaller tharp®in{/(X-Y).I(XeYr X0} The signals received and
transmitted by the relay during thieth block are denoted by,"(k) and X'(k) respectively.
The relay decode$Vz(k) from Y"(k) using X (k) as the side informationX (k) is chosen
by the relay based oi/z(k — 1), which the relay decodes froi"(k — 1). The source node
knowsWg(k — 1), and hence knowX " (k) before thekth block starts. It locates the part of the
codeboolCr which is generated according 17 (k) and transmits the messalé; (k) using this
part of the codebook. The source also locates the part ofddebwokC, which is generated
according to X" (k) and transmits the messa@g, (k) using this part of the codebook. The
destination can successfully decodé;(k — 1) from Y™ (k), which determinesX(k), due to
the fact that the cardinality ofi¥z(k)} is smaller thar2™(X+¥), Then it locates the part of the
codebook inCp, that is generated according (k) and use it to decod®&/p (k) from Y (k).
This is possible due to the fact that the cardinality{&f,,(k)} is smaller tharp"! (XY 1X-) 7]

Remark 6:By letting R. = R; in (21), we obtain the secrecy capacity of the network given

by (22).

S = a 1(Y; Xp|X, 22
o nax (Y; XplX,) (22)
— 1(Y:; XplX, =z, 23

e (Y; Xp| ) (23)

It is readily seen that in this case the relay to destinatiok is not useful. Additionally, when
R. < R, from the coding scheme outlined in Rematk 5, the secretrimdtion, Wy (k), is
only mapped to signal transmitted vi§,, which means the secret information does not pass

through the relay node at all. These two observations coedbiead to the conclusion that the
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relay-to-destination link is indeedot usefulin improving the secrecy rate of the system, and
that the untrusted relay should not be deployed atall.
A direct extension of the above result can be readily madédéoGaussian channg.

Corollary 1: For the Gaussian relay network described above, the eqtieocregion is given

by (24).

Ry < mm{ oY (CL=t= T WY EEETARYG (v(l_]\,[ﬁ)P) }

(24)
0<v,p<1 0 S Re <C (W) Re S Rl

Proof: The proof is the same as in reference [22, Section Il1]. Theghermsi(Xp, X,;Y),
I(Xg; Y, |X,), I(Xp;Y|X,) are maximized simultaneously wheqy., X, X are chosen to be
zero mean and jointly Gaussian with the following parangetéiar|X,] = vP,Var|Xg] =
(1 =v)P,Var(Xp| = vP, E[X,Xp] = pP,/vy, E[XpXp] = 0. [ ]

V. AN ACHIEVABLE REGION FORMODEL 2

In this section, we present the achievable equivocaticn region for ModeR.

Theorem 3:For Model2 defined by[(1b), an achievable equivocation rate regionvsrgby:

U Re < Ry < I(X;YpY,|X,Yg) 25)
0< Re< [I(X;YpY,]X, V) — I (X; Y[ X))
where
[(X,; YR) > IV, Y, |YpYRX,) (26)
and the union is taken over:
p(X)p(X)p(Yp| X)p(Y,| X, X, Yp)p(Ya X, )p(Yo|Y, X.) (27)

Proof: We use Theoreril1. In particular, regidnl(25) follows from 8) letting Y =
{Yp,Yxr} and using the following two Markov chains (28) ahnd](29).] (&®)ows from the fact
that { X, Yz} is independent fronY, as shown by[(27).

X - X, - Yz (28)

Proofs follow by replacing entropy with differential enpyowhenever necessary.
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X, - Yr—Yp (29)
It then follows from [(28) and[(29) that(X,; YzYp) = I(X,;Yr) and

[(X:YRYDY,|X,) = I(X;YpY,| X, YR) (30)

Next, we apply Theorerl 3 to the Gaussian case, which is defipdd).
Corollary 2: For the Gaussian relay network with orthogonal componegfsed by [(1V),

the following rate region is achievable.

(Re, Ry) : 0§R6§R1<C<p—|— a2p2)

, (31)
0<p<P R.<C (p + 1%%) — C (a’p)
where
2
s (@®+1)p+1
9 = bzpr (p + 1) (32)

Proof: Region [[31) follows from lettingX ~ A/ (0, p), X, ~ N (0, P,), Y, = Y, +Zg, Zg ~
N(0,03), and Zg, is independent from all the other variables. Substituting distribution of
X, X,,Y,,Y,,Yp, Yr into (Z8), we find that we need

(a*>+1)p+1
0h > mm
VP (p+1)

It is clear from [31) that to make the region as large as ptfssdal§2 should be as small as

(33)

possible, and (32) ensures this. [ |

Remark 7:Supposex > 1. Without the channel between relay and destination, we laave
wiretap channel where the eavesdropper has a better chateete, the secrecy capacity is
zero [27]. We also know that a non-zero secrecy rate cannaicbe&eved with decode-and-
forward. However, if the relay to destination gafn,is large enough, a non-zero secrecy rate
can be achieved with compress-and-forward, as can be sean (B1). This is an example
where the relay-to-destination link helps to achieve a nem- secrecy rate when the relay and
the eavesdropper are co-located. Thus, the untrusted ielaseful and should be cooperated
with. [J
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Yr = bﬁ(aX+ZT) + Zgr
Yop=X+2p

Fig. 6. The Equivalent Wiretap Channel of Model 2 using Arfypind-forward Relaying

Remark 8:The scheme we present here differs from the noise forwardaigeme of [13]
where the relay transmits noise that is independent frometsived signal. By contrast, in this
work, the signal transmitted by the relay is computed frosnréceived signal.)

Remark 9: The amplify and forward scheme can also be used at the redhy. lhe the average
transmission power of the source node. Then, in this casesitmal transmitted by the relay at

the ith channel use is given by

VP
Va1 1

Note that in [(34), we forceX,; to depend on the signal received in the previous channel use

Xpi = 5Ym—1a where = (34)

Y,.;—1 in order to preserve the causality of the relay function d&dd in (1). However, because
the channel between the relay and the destination is ortradgo the one between the source
and the destination, the fact that the signals receivedYyias delayed by one channel use
compared to those received ig does not make any difference to the destination. Therefore,
it is safe to writeX,, = gY,. and omit the subscript

The relay network is therefore equivalent to a Gaussiantaprehannel as shown in Figure 6.
The achievable secrecy rate is computed frgiX; YzYp) — I(X;Y,)]" [3] for a Gaussian

distribution for X: X ~ A/(0, p) and when maximized over, the secrecy rate is given by:
1 9 \1+
R, <02?3XP§ [log(1+(1+§)p) —log (1+a p)} (35)

where for defined in [(34)¢ is given by
a252b2

Ly %)

&=



16

Amplify and Forward
(Maximum Power)

0.1p

Amplify and Forward
(Power Control)

Re(bit/chn use)

Compress and Forward

0.05F (Power Control)

Compress and Forward
(Maximum Power)

. "l 1 1
0 0.5 1 15 2 25 3
b (relay to destination link gain)

Fig. 7. Effect of Source Power Control

Observe that amplify-and-forward can also achieve a noo-gecrecy rate given a large enough
b. However, comparing it td_(31), we find that the secrecy ratergby amplify-and-forward is
strictly smaller than the secrecy rate achievable by cosgpamd-forward.]

Remark 10:When there are no secrecy constraints, for compress-ana@ufd/amplify-and-
forward, the source should always transmit at maximum polewever, when there are secrecy
constraints, for compress-and-forward/amplify-andsiand, the source may not transmit at max-
imum power. This can be shown as follows.

We first look at the case where there are no secrecy constrdiheé rate for compress-and-

forward follows from the maximum possible value Bf in Corollary[2, which is

a2p
= e, © (o 0 ) @)

Whereo—g2 is given by [32). Recall that is the average transmission power of the source node.

Hence we only need to show that

a’p
C<p+1+022> (38)

is @ monotonic function op which is proved in AppendikIC. Hence to maximizg we should

choosep = P;.
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The rate for amplify-and-forward is derived by ignoring teavesdropper in Figufd 6. The

achievable rate i$(X; YzYp), which, using the Gaussian input distribution &, equals

max 1log (1+1+¢&p) (39)

0<p<Pr 2
where¢ is given by [36). To prove that (89) is maximizedjat= P, it is sufficient to prove

that {p is a monotonically increasing function pf which can be shown by rewritingp as:

ap  ad’p a? 40
[ S e R (40)

When there are secrecy constraints, the secrecy rate isecessarily maximized at= P;.
This can be observed in particular wherfthe relay to destination link gain) is small. In this
case, for compress-and-forward, as showr in (32), the tpadiain noiseo—g2 will increase more
rapidly with source powep. Similarly, for amplify-and-forward, the in ([36) will decrease more
rapidly with source powep. This, along with the negative termC'(a?p) present in[(31)(35),
may offset the benefits of having a larger source powerhis phenomenon is demonstrated
numerically in Figurd_]7, where the source-to-relay chargah « = 1.2. Both compress-and-
forward and amplify-and-forward can achieve a larger sgcrate when power control is used
at the source. Moreover, compared to compress-and-fonaanglify-and-forward benefits more

from judicious power allocation at the source.

VI. UPPERBOUND FOR THESECRECY RATE OF A SPECIAL CLASS OF MODEL 2
A. The Enhanced Channel

In this section, we describe the general methodology thatseeto derive the upper bound.
Our upper bound involves introducing a second eavesdrofper focus of this section is to
investigate the sufficient condition such that doing so wit decrease the secrecy capacity of
the channel. In Sectidn_VIiB, this will be useful in findingethupper bound for the secrecy rate
for a class of channels conforming to Model

We focus on the case there is no feedback from the relay’subuip to its inputY,, which

means the conditional probability distribution of the chahshould have the following form:
p(Y [ X)p(Y|X, X, Y)) (41)

Note that due to the absence of feedback, we drop the f&rnfrom the conditioning ofY;.

The reason that we choose this distribution to study will learcshortly.
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Fig. 8. The Relay-Eavesdropper Separation Argument

Deriving the outer bound entails a “relay-eavesdroppeaisgion” argument. In other words,
the net effect of this argument is to change the eavesdrdppeis co-located with relay node,

to an eavesdropper that is external to the relay node. filtest in Figuré18, this means:

1) We add a second eavesdropper to the relay network, whasgemnel that is statistically
equivalent to the channel seen by the relay node. Let theakigeeived by this second

eavesdropper b¥,. That is, we have:
(Y[ X, X;) = p(Ye| X, X;) (42)

2) We remove the first eavesdropper.

The reader, at this point, rightfully should question théidity of step 1). This is because,
as mentioned earlier, introducing a second eavesdrop@eifiecreasesecrecy rate in general,
even if the second eavesdropper observes a statisticaliyadgnt channel as if_(#2). This is
because the second eavesdropper may be alihedothe transmission signaX, of the first
eavesdropper, and these two eavesdroppers can potertalherate. An example is provided

in Appendix[D to demonstrate this phenomenon.
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We next show that, for the channel model(inl(41), introdu@rgecond eavesdropper, if done
with care, will not alter the secrecy capacity of the systamparticular, let the received signal

of the “second” eavesdroppéf be defined as follows:
p(Y | X)p(Y, Ye| X, X, Y7) (43)
s.b. p(YelX, X;) = p(Ye|X) = p(Y,|X) (44)

Note that the second equality in_{44) [sX42) specialized@d}). We reiterate that though¥a
conforming to these conditions may not exist for any arbjtr@lay network, for the Gaussian
relay network models we are interested in, sud @an be found, as will be seen in the sequel
(See [(86), [(110)[(113)).

For this choice ofY,, we have the following theorem:

Theorem 4:For the relay channel defined bl {41]), [(48){(44) are sufficfen the secrecy
capacity of the channel after introducing the second eawppér to remain identical to the
secrecy capacity of the original channel.

Proof: Due to the addition of the second eavesdropper, we know ligasécrecy capacity
of the new channek the secrecy capacity of the original channel. Thereforepnlg need to
show that the secrecy capacity of the new channéie secrecy capacity of the original channel.

We useq to denote any distribution related to the new channel, aridr any distribution
related to the original channel. Suppose the new channslthseexact same coding scheme and
the same message 4ét'} as the original channel. Then we can make the following states:

1) SupposelV can be reliably received by the destination at a rateRpfin the original
channel. Then it must be reliably received by the receivethatsame rate in the new
channel as well, because these two channels share the sding soheme and the same
channel statistics.

2) The transmitted messagdg is still secret from the first eavesdropper co-located wlih t
relay, since we are using the exact same coding scheme ofitlirab channel.

3) We next show that/ (W |Y.*) of the new channel equal$ (17 ]Y") of the original channel.
To do that, it is sufficient to prove tha{(Y*|IW') of the new channel equajgY,"|IV) of

the original channel, as we show next:

2 |t is understood in the case of continuous random variabke,sum should be replaced by integral. In fact, both of them

can be expressed as integral by defining the measure properly



20

First we state two Markov chains, which are proved in Appriidi

Y.i—Xi— X]z'[Yri,Il

(45)
Yoi—Xi— XYy
We have:

q (Y,'[W)

=> g (Y| X™) q(X"[W) (46)
X7L

=Zﬁq(n,i|X",Y;11) (X"[W) (47)
@S [T g (Veal X2 g (X71W) (48)
Xn =1

DS T (Yol %) p (X7 W) (49)
X" =1

5 [T (Yol X7, Y50 (X7W) (50)
Xn =1

=Y p(YV[X")p(X"|W) (51)
X7L

=p (Y,"|W) (52)

Here step(a) follows from the Markov chairt,; — X; — X);Y.;". Step(b) follows from
the fact that these two channels share the same coding schem&l) = ¢(X"|W),
and the constraint we placed on the marginal distributiori| X) = p(Y,|X). Step(c)
follows the Markov chainy;; — X; — X3;Y,;'7".

The fact that introducing an eavesdropper does not redicseitrecy capacity can then be seen

from the following relationship:

1 1 1
lim —7 (W;Y'X") > lim —I (W;Y") = lim —I (W;Y)") >0 (53)

n—oo n, n—oo n, n—o0 n,

If lim -7 (W;Y"X]) = 0, then 11 (W;Y") = 0. Therefore, for a given coding scheme, if
W is kept secret from the eavesdropper at the relay, it is atqut kecret from the newly

introduced eavesdropper. Hence any secrecy rate achéewvatiie original channel is achievable
after introducing the second eavesdropper. This meanseitrecy capacity remains the same.
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Theoren # shows that if the relay is not self-interferingliag an eavesdropper as described in
step 1 will not incur any loss in secrecy rate. This, alond stép 2, will result in an “enhanced”
channel whose secrecy rate is an upper bound to that of tgmalrichannel.

Remark 11:Actually, for the channel model ih_(#1), we have
HWIY", X?) = HWIY,") (54)

This means the secrecy capacity of the channel model in caarbputed vidim,,_,, + H(W|Y;")
instead. This is proved in AppendiXF.

Remark 12:Note that the conditional probability distribution of treday channeb(Y, Y,| X, X,)
is left intact The benefit of the separation argument is that we have freedahoosingy,, as

long as it conforms ta (43) and_(44). Choosihgproperly allows us to tighten the bound.

B. Upper Bound for a Special Class of Model

We next use the result we derived in Secfion VI-A to upper lbtlve secrecy rate of a class
of relay channels. This class, as we mentioned earliervengdy [16), which can be specialized
from (41). Equation[(43) becomes:

p(Yp, Yg, Y;, Y| X, X;) = p(Yp|X)p(Y,[X, Yp)p(Yr|X:)p(Ye| X, YD, V) (55)

p(Yr[X) = p(Ye|X) (56)

Definition 1: DefineP as the set of joint probability distribution functionsdf, Yz, Y., Y., X, X,
such that[(85) and (56) are fulfilled.
With this definition, we have the following theorem:

Theorem 5:For the relay channel defined ih (16), where the relay is thesshopper, the
secrecy rateR. is upper bounded by

) T(X5YplYr)
max min (57)
P(X.X7) I(X,; Yr) +min 1 (X; Yp|Y,)

Proof: The first term can be obtained by specializing the result ffahj. Reference [21,

version 7,(13)] claims for a general relayY’, Y,| X, X,), the secrecy rate is upper bounded by

ke < I(X; Y'Y, X;) (58)
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Specializing it to our channel, which means replacingvith Y, Yz, we have
I(X;Yp, Yr|Y,, X,) (59)
<I(X;Yg|Yy, X)) + I (X;Yp|Ys, X, Yi) (60)

From (55),X — {Y;, X, } — Yy is a Markov chain. Hencé_(60) equals:

I(X;YplY,, X, YR) (61)
=h (YDD/T’)XT’)YR) - h’(YDD/;“)XT’?Xa YR) (62)
Sh (YD|K’) - h(YDD/;“aXT)Xa YR) (63)

From (55),Yp — {X,Y,} — {X,, Yz} is a Markov chain. Hencé (63) equals
h(YplY,) —h (Yp|X,Y,) = 1 (X;Yp|Y;) (64)

Hence we have proved the first term.

Next, we proceed to bound the second term:

H WY
(a)
<I (W YRYRIY™) + ney (65)
=T (W YRIY) + T (Wi YRIYIYE) + ney (66)
<ST(WX™YRIY) + T(WXS YRV YR + ney (67)
=T (X" YRY?) + T (WX YRYIYE) + ney (68)
=L(X"YRYD) + b (VEIYIYE) = S h (Yea Y YRXIYAE W) + ney (69)
=1
O (X YRy + h (YRY YR — S h (Yail Xos) + ner (70)
=1
<I(XMYRIY) 40 (h(Yri) = h (YRl X)) + ner (71)
i=1
h(YBIY?) = 3 b (Yo Y2 X Y5 ) + 30 1 (Xi; Vi) +ner (72)
=1 =1
h(YEIYD) =S h (YoalYeiXa) + 301 (Xpi; Yii) + ney (73)
=1 =1

n

< Z I(X;;Ypa|Ye) + Z I (X, YRi) 4+ ney (74)
i1

i=1
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=nl (X;Yp|Ye, Q) + I (X,;Yr|Q) + ney (75)

=nh (Yp|Ye, Q) — nh (Yp|Ye, X) + nh (Yr|Q) — nh (Yr|X,) + ne (76)
th (YD|Y;) —nh (YD‘Y;, X) + nh (YR) —nh (YR‘XT) + néeq (77)
=nl (X;Yp|Ye) +nl (X,;Yr) + ney (78)

Here step(a) follows from Fano’s inequality. Stegh) follows from the relay destination link
being orthogonal to the rest part of the channel. Steffollows from the fact that the relay is
not interfering the second eavesdropper. Therefore gi¥en, X,}, the signals{Y, ;,j > i} do
not provide further information aboufp ;. [ |

Remark 13:Another upper bound that can be obtained is
I(X;YpY,|Ye) (79)

which is proved in Appendik G, and it can be further tightemgdchoosingY,. However, as

shown below this upper bound does not improve the first terifa ).

I(X§YDY;‘Ye)

=I(X;YpY,Y,) — I (X;Y) (80)
O (X VpY,Y.) — 1(X:Yy) (81)
>1(X;YpY;) — I (X:Y)) (82)
=1 (X;YplY;) (83)

Step(b) follows from p(Y;|X) = p(Ye|X). O

C. The Gaussian Case of Modegl

Using Theoreni |5, we now evaluate the upper bound for the Gauskannel.
Corollary 3: For the Gaussian case of Modgl which has independent noise components,

the upper bound on secrecy rate is:

Inm{cxﬁp)+[cuw-cgﬁpﬂ+¢7(1+igp)} (84)

Proof: First we notice that (37) is upper bounded by:
maX)I(X;YD|YT)

min { POX (85)
max [ (X,;Yg) + min max [ (X;Ypl|Y,
max L (Xr; Ye) + myin max [(X;Yp[Y)
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Sincep(Y.|X) = p(Y,|X), we define a Gaussian random variable such that
Y, =aX + N, (86)

Then the sefP can be re-parametrized with the correlation betwéen/N, and the correlation
betweenN,, Np. For a given correlation, it is known thdt X; Yp|Y.) and I(X; Y, Ypl|Y,.) are
both maximized with Gaussian distribution [5, Appendix he first term in[(8b) then becomes
1 log, (1 + w%)' To obtain the second term inside the minimum, we chdgse? = Np+ N,
with N’, Np being independent if < 1, otherwise we choos&'p, = N, /a? + N, with N’ N,
being independent, wherg’ is a zero mean Gaussian random variable with appropriatenca.
[
In Figure[9, we compare the upper bound with the achievalits rfor the Gaussian case
of Model 2. We fix the source-to-relay channel gain= 1, and vary the relay-to-destination
channel gairb. As b — oo, we observe that the upper bound becomes tight: As0, the upper

bound decreases. This improvement is due to the first ternomoli@ry[3.
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VIlI. THE CoVER-KIM DETERMINISTIC RELAY CHANNEL

In this section, we investigate the Cover-Kim determigisélay channel of [24], [28] whose
capacity is established therein. The channel was definedgurd{5 in SectionlI.

For the achievable secrecy rate, we have the next theorem.

Theorem 6:For the Gaussian Cover-Kim deterministic channel, theotailhg secrecy rate is

achievable:
Ro+C(P)—C (a2P)]" (87)

+
Proof: Let C be a random code book withl"[Fo+C(P)=C(a*P)] IolnC(a*P)] codewords
sampled from an i.i.d. Gaussian distribution with zero mead variance”. These codewords

Fo+C(P)=C(o*P)]"] pins of equal size. The bin index of the

are randomly partitioned intal"l
transmitted codeword is determined by the mess&gd he actual transmitted codeword is then
selected randomly from this bin according to a uniform distiion. The relay uses either hash-
and-forward or compress-and-forward as described in [Ré]. E[P.|C] be the average error
probability over the codebook ensemHIé} that the destination could not correctly determine
X", hencel, from Y}; and side information provided by the relay. It was provedad][that
lim,, o E[P.|C] = 0.

Since each bin is a Gaussian codebook by itself whose rateltsvithe AWGN channel
capacity between the source and the relay, the relay nodele@nmineX™ given W andY,”
with high probability using jointly typical decoding. Trefore, from Fano’s inequality, we have

H (X"|WY"C) < ney. Thus:

H(W[YC) =H (X"WY"C) — H (X"|WY,"C) (88)
>H (X"WI[Y"C) — ne; (89)
=H (X"|Y"C) + H (W|X"Y"C) — ne, (90)
—H (X"|Y"C) — ne, (91)
=H (X"|C) — I (X™;Y,"|C) — ney (92)
>H(X"|C) = T(X™Y") — ney (93)

>H (X"|C) = S 1 (Xi;Y,s) — ney (94)
=1
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Since each code word is selected with equal probability, axeeh

lim ~H (X"|C) = C(P) + Ry (95)

n—0o0 p,
Also, I (X;;Y,;) = C(a?P). Substituting this and{95) intd_(P4), dividing it by and taking
the limit n — oo, we have[(87), which equalan,,_, ., %H(W|C). Thereforelim,, ., E[P.|C] +
~I(W;Y;"|C) = 0. Since both terms inside the limit are non-negative, this/es the existence
of at least one codebook with a rate @, + C'(P) — C (a*P)]" such that both terms are
arbitrarily small. Hence we have proved the theorem. [ ]
Theorem 7:The secrecy rate of the Gaussian Cover-Kim determinisacchl is upper bounded
by
Ry+ [C (P)— C (oa*P)]” (96)

Proof: We use Theoreml 4 to separate the eavesdropper and the retdy. he the signal

received by the eavesdropper such that (55) (56) areTinen, we have:

H(WIY)
(a)
<I (W YRXE|Y™) + ney (97)
=T (W YRIY™) + 1T (W; X2|YYE) + ney (98)
<I (W3 YpIY.")+ H (XR) + ney (99)
<I(WX™ YR|IY™) + H (X)) + ney (100)
=T (X" YR|IY") + H (X}) + ney (101)
=h (YR = SO b (Yp [y X"Yit) + H (X}) + ney (102)
=1
Oy, (YBIYT) = > h(Yp|Ye: Xi) + H (X}) + ney (103)
=1
<3O I(Xy Y| Ye,) + H (X3) +ney (104)
=1
=nl (X;Ypl|Ye, Q) + H (Xg) + ney (105)
=nh (Yp|Ye, Q) — nh (Yp|Ye, X) + H (X3) + ney (106)
<nh (Yp|Y.) — nh (Yp|Ye, X) + H (XP) + ney (107)

=nl (X, YD|Y;) + H (X;%) + néey (108)
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<nl (X;Ypl|Y.) + nRy + ne; (109)

Step (a) follows from Fano’s inequality. Stepb) follows from the fact that the relay is not
interfering with, i.e., heard by the (second) eavesdrappkerefore, giver{Y, ;, X;}, signals
{Y.;,7 > i} will not provide more information about}, ;.

The bound is further tightened by choosilig properly.
1) If « > 1, then

V.=aX+Z (110)
7

Yp=X+—+7 (111)
«

K:X—Z—Z (112)
«

Z'is a zero mean Gaussian random variable with varidhee=;|, andZ’ is independent
from Z.
2) If <1, then

Y.=X+2Z+7 (113)

Z'is a zero mean Gaussian random variable with varidhee=;|, andZ’ is independent
from Z.

Substituting these choices ®f into (109), we get[(96). [ |
Remark 14:Inspecting [(87) and_(96), we see that the upper bound anddhievable rate
coincide wheno < 1. Hence, fora < 1, i.e, when the source to destination link is not worse

than the source to the relay link, the secrecy capacity iseaetl by compress-and-forward.
Remark 15:The secrecy capacity can exceed the direct link capacify it- C'(P). This is

a benefit of the correlation of the noises corrupting thediflom the source. If the noises are

independent, the secrecy capacity cannot excegd), as proved next:

Observation 1:If the relay channel has the property:
p (YR, YD, V;[X, X;) = p (Yr|X:) p (V;|X) p (Yp|X) (114)

ThenR, < I(X;Yp)
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Proof: From (5T), we have

Re < 1(X;Yp|X,) (115)

= h(Yp|X;) = h (Yp|X,, X) (116)

=h(YplY;) = h (Yp|X) (117)

<I(X;Yp) (118)

where in [11V) we use the Markov chaify, — X — Y. [ |

O
We conclude this section by presenting Fighré 10 which shthesupper bound and the
achievable rate foR, = 0.5 bits/channel use anf® = 1. As expected, the two meet far< 1,

yielding the secrecy capacity.

VIII. CONCLUSION

In this paper, we have considered the relay channel with drusted relay that is treated
as an eavesdropper. In particular, we focused on two relaypred models with orthogonal

components. For the first model, we have found the capaqimecation region and proved
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that the relay-destination link does not help in increasiegrecy rate, and therefore the untrusted
relay should not be deployed if perfect secrecy is desimedohtrast, for the second model, we
have found an achievable secrecy rate which calls relayp@@tion and improves the secrecy
rate as compared to treating it simply as an eavesdroppide.ridhus, we conclude that, for this
model, the untrusted relay may help the source and the déstino communicate despite being
subjected to the secrecy constraint, and that cooperatitntiae untrusted relay is beneficial.

We have provided a channel transformation that separagesetay and the eavesdropper to
upper bound the secrecy rate for a special class of untruskayg channels. We have found this
approach to be useful in upper bounding the secrecy ratevmrcases: For the Gaussian relay
channel with an orthogonal relay-destination link, thisvrepproach yields a computable bound
that tightens previously known bounds. For the Gaussiareidim deterministic relay channel,
we have shown that this approach finds the secrecy capacén e source-destination link is
not worse than the source-relay link.

Since the first example demonstrating the potential benéfiboperating with an untrusted
relay [29], there has been recent growing interest in comaation models with untrusted relays.
Notable recent developments include work on the multipleeas channel with generalized
feedback [30] and relay broadcast channel [31], [32], whereddition to the secret message
considered in this work, the untrusted relay node has itssseret message. The role of untrusted
relay is examined in bi-directional communication in [3[#4], where the relay node in a two-
way relay network is untrusted. A case for the communicasioenario with multiple untrusted
relay nodes is recently presented in [35], [36], where th&r@® and the destination can only
communicate via a chain of untrusted relay nodes. All theskksy like this paper we are about
to conclude, speaks to the merit of cooperative commuimicaven with untrusted partners, and

that cooperation and secrecy can go hand in hand.

APPENDIX A

PROOF OFTHEOREM[I

The achievable scheme of Theoréin 1 is a combination of sstichencoding at the source
node and compress-and-forward at the relay node. The cesyarel-forward relaying scheme
is the same one described in [25]. The achievable schemévés/y blocks of channel uses.

Each block is composed of channel uses.
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A. Codebook Generation

1) The Codebook of the Source Nod&he source uses a codebook composed of i.i.d.
sequences sampled from the distributipiX' ). Each codeword has components. In order
to confuse the relay/eavesdropper, the codebook is fupdaitioned randomly to bins. Suppose

there are2" bhins. Each bin contain®"? codewords.B is chosen such that:
nB = |nl(X;Y,|X,)] (119)

The reason behind this choice will be clear shortly. Eacheaamntd is hence indexed by the

label {b, ¢}, wherec is the bin index and indexes the codeword within the bin. The rate of the
codebook is given by

n—o0

1

lim —log, | X"| = lim B+ C=1(X;Y]X,)+ lim C (120)
n n—00 n—o0

2) The Codebook of the Relay [25]:

i) The signal transmitted by the relay is from a codebook cosed of i.i.d. sequences
sampled from the distributiop(.X,.). Each codeword has components and is denoted by
X"(d). The codebook hag"” codewords.

i) For eachd, we generat&"” codewords, each with, components, denoted b (e|d).
The ith component of the codeword is drawn froiy,| X, = X7(d)) inan i.i.d. fashion.

iii) For eachd, we randomly bin the label into 2"” bins and label each bin with@according

to uniform distribution. This random binning is used for VéysZiv coding.

We useC to denote the random codebooks generated for the sourceharélay.

B. Stochastic Encoder at the Source Node

The codeword transmitted as ti¢h block is indexed by labeb,, ¢, wherec, is the bin
index andb,, indexes the codeword within the bin. LBt (k) be the message transmitted at the
kth block. Recall thatR, is the rate of the messad& (k). Hence R, = log, |W (k)|/n. The
messages are mapped to the codewords as follows.

i) If Ry > C, ¢ is the bin index determined By’ (k). The codewords in bin, are partitioned
into 2""1=C) subsets. The subset is chosen according to the unmappeaf pe(E). Then

bi. is selected from this chosen subset according to a unifostmilolition.
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i) If Ry <C, ¢ is still determined byV (k). by, is randomly chosen from group according
to a uniform distribution.
For this mapping, we observe that the cardinalitycpfs 2n™n{#1.C},
Only N —1 message$//(1)...W (N —1) are transmitted oveN blocks. During the last block,

the relay and the source agrees that the source will sendageks

C. Compress-and-forward at the relay [25]

During thekth block, the relay node first compressés(k) to Y (ex|dy,). Y is indexed by
two labels:e, anddy. dj. is chosen to be the label that correspondXfd k). Hence a different
set of Y, of size2"”, is used for compression depending on the valu&®fk). The labele;,

is chosen to be the first element in the following set:
{e: Y (eldr), Y, (k) , X] (k) are jointly typical (121)

If the set is emptyg, = 1. The size of the codebooK™(e|d;,) should be sufficiently large for
the set to be nonempty, which requirs> I(Y;;Y,|X,) [25].

Labele, is transmitted during the+1st block. At this time the destination has receinét k),
and can decod& (k). Since{Y™"(k), X*(k)} provide side information to the destination about
er, €x can be compressed further before transmission. This is danéyner-Ziv coding. Recall
that the sefe, d = d,.} is randomly binned. The size of each bin should be chosen thatthe
destination can decodg, and hence determing”(k) from this bin from the side information
{v"(k), X"(k)}. This requires/ (Y,; Y|X,) > E — D. Only the bin index is transmitted. Recall
that each bin is labeled witlh. Hence this determine$, . ;, which determines{”(k + 1).

Remark 16:0ne important aspect of this coding scheme is that the sgmnahsmitted by
the relay during different block$ X" (k),k = 1...N — 1} are correlated. This is because, as
described in the coding scheme at the relay, e&¢lik) is determined fromy(e;_;|dy_1),
which is shown in[(121) to be related £ (k — 1). Because of the self interference at the relay,
the signals received by the relay during different blo¢k&'(k),k = 1...N — 1} are correlated
as well. HoweverY,"(k) is correlated with past,”(p), p < k only throughX (k). This property

will be useful in bounding the equivocation rate.
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D. Decoder at the Destination

Recall that the short hantd/(a, ...,b) stands for the sefW(a), W(a + 1),...,W(b)}. The
short handi/* stands for the sefiV (1), W (2), ..., W(a)}.

The destination first decode¥™¥-1), The decoding at théth block happens as: It first
decodesX (k) from Y™(k). For this, we requireD < I(X,;Y). It then determinesl;, from
X'(k), which determines the bin that contains ;. It next determines;_; by finding the label
e in this bin such that"(e|d;_,) is joint typical with {Y"(k —1), X"(k —1)}. This determines
Y (ep_1|dy_1). Finally X™(k—1) is decoded fron¥™(k—1),Y"(k—1), X"(k—1). For details,
the reader is referred to [25, Theorem 6].

Let the decoding result h&»(N-1)_ According to error probability analysis in [25], if the eat

of the codebook of the source meets the condition:

1 )
lim —log, [X"| < I(X;Y,,Y|X,) (122)

n—o0

and the following condition is fulfilled:
[(X;Y) > 1(V,; V[V X,) (123)
then

lim E[Pr(X"N-Y £ xn(N-1i0)] =0 (124)

n—o0
The expectation is taken over the random codeb©ok
Combining [122) and {120), we have:

[(X;Y,|X,) + lim C < [(X;Y,,Y]X,) (125)

The destination then computé® ¥~ from X"(¥-1, since the former is a deterministic
function of the latter. The average probability of decodergor for W™N-1 is hence upper
bounded by the average probability of decoding errorXdf¥—1). Therefore equatior {124)

implies:

lim B[Pr(WY! # WNC)] =0 (126)
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E. Equivocation Computation

Let ¢<V~! denote{c,, cs, ..., cx_1}. The computation of the equivocation rate starts from the

following expression:

H(M v, X0 C) (127)
=H (Y, X C) (128)
=H (N, XY ) (129)

Here, the first equality follows from the fact that conditgmhon X*(V), the signalsy,"(N) are
independent fromy"V=1  xn(N=1) cN-1 The second equality is because, as described in the
relaying scheme abovel'(N) is a deterministic function o¥,”(N — 1) and X*(N — 1).

To simplify the notation, we omit thé from the conditioning term in the derivation below
and only mention it when necessary.

Equation [(12B) can be reformulated as:

H (CN_ID/;(N_DN,X(N_I)N) (130)

T

T Y T

- H (X(N—l)n‘cN—17Y;(N—l)n7X7EN—1)n) L+ H (CN—1‘X(N—1)n7Y(N_1)n X(N_l)")
X(N—l)n|y;(N—1)n’X7§N—1)n) (131)
- _H X(N—l)n‘CN—l’Y;(N—l)n’XﬁN—l)n) + H (X(N_l)n)

— 7 (X(N—l)n; Y*T(N—l)n7 XﬁN—l)n) (133)

(
- (X(N—l)n|CN—1’ Yr(N—l)n X(N—l)n) +H (X(N—l)n|Y;(N—1)n’ XﬁN—l)n) (132)
(

From the description of the stochastic encoder at the sauvde, we observe that each block
X"(i),i=1,...,N — 1 is independent from each other. Hence the second terfn i (E88be

expressed as:
N-1
H(XWV=0m) = 37 H(X"(i)) (134)
i=1
From the codebook used by the source node, we observe that
H(X"(i)) = n(B+ min{C, Ry }) (135)
Therefore

H (XNV=Dm) = (N = 1)n(B + min{C, Ri}) (136)
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The first term in[(13B) can be upper bounded as:

H (X(N—l)n‘CN—l’ Y;(N_l)n, XﬁN—l)n) (137)
N-1 ]

— H (Xn(’l)|X(Z—1)n, CN_l, Y;(N—l)n) XT(N—l)n) (138)
1=1
N-1

< > H(X"(@)]e, Y, (4), X71(0)) (139)
i=1

Recall thatX"(7) is determined by two indexes; andc;. The label; is already on the condition

term. To determiné;, we notice from[(119) that:
B < I(X:Y,|X,) (140)

With this constraint, for a given codebodk which is on the condition term implicitly, the
eavesdropper can estimdtefrom the following set:

{b: X"(b,c;), Y., (i), X)'(7) are jointly typical} (141)
This set should contain onl, with probability close to 1. From Fano’s inequality, we have
H (X"(i)|c;, Y,™(i), X(i)) < neqy, wheree; > 0 and lim,,_,,e; = 0. Therefore from [(137)-
(@39), we have:

H (X(N—l)n|CN—1’Y;(N—1)" X(N_l)") < (N — 1)7181 (142)

The third term in[(133) can be upper bounded as follows:

I (X(N—l)n; Y;(N_l)n, XﬁN—l)”) (143)
N—-1 . .
_ I (X(N—l)n; Y;n (’l) ’X;l (’l) |Y;n(1_1)"’ Xﬁ’_l)") (144)
i=1
N-1

L(XN=Dmy (i) [y,00m, X 5= X7 (i)
1

(2

+ 1 (NI () [y, X (145)

For compress-and-forward relaying, as explained in theipus section,X (i) is a deterministic
function of Y,=Yn X (=Yn Hence the second term i (145) is zefa. (145) thereforelequa

N-1
SO (XWIm Y ) |y XG0 X (i) (146)
i=1

2||

< S RO G) X G)) — b (Y ) Y0, X X (i), XU (147)

i=1
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From the coding scheme described in Secfion]A-C, we obsgfyg) depends on{Y,(i-bn,
X@=r X1, ...,i—1),X"(i +1,...n)} only throughX" (i), X"(i). Hence

Y7 (i) = {X" (i), X" (i)} = {yn xO=bn xn1 i —1), X" (i4+1,..,n)}  (148)

is a Markov chain. Therefor¢ (I47) equals:

D A (0 0) X 0)) = R (07 (0) X 3), X" 0) (149
SIS HUREOIA0) (150)
<(N = 1)(nI(X;Y,|X,) + ney) (151)

where wheres, > 0 andlim,,_,, eo = 0. Equation [[(151) follows from the fact the channel is
memoryless and the codebook is composed of i.i.d. sequences
Applying (I42), [136) and(151) t¢_(IB3), we have
H(N YN XN c) (152)
>(N — 1)n(B+min{C, R1}) — (N — 1)ne; — (N — 1)(nI(X; Y| X,) + nes) (153)
>(N — 1)n(m1n{C, Rl}) — (N — 1)71(81 + 82) (154)

=H(N7HC) — (N — Dn(e; + &) (155)

Equation [[(154) follows from[(140)[(155) is becausein each block is chosen independently
of other blocks,c, is chosen according to a uniform distribution from a set vétiardinality
of 2nmin{C,R1}l

From ([152){(15b), we have:

lim lI(cN-l; Y™V X"N|C) =0 (156)

n—oo n,

Combining it with [126) we have
R 1
Jim E[Pr(WN £ WO 4~ YN XN e) = 0 (157)
Therefore, there must exists a codebabksuch that

. 1
Jim BRI 2 WNC0)] + 1Ny, Xovien) = o (158)
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Since each term on the left side 6f (158) are nonnegativelldvws that with this codebook:

lim E[Pr(WN £ W) =0 (159)
1

lim —I(N 4 Y™ XN ety =0 (160)

n—oo n,

For the simplicity of notation, we omit* from the conditioning term. It is understood that all
the derivations below are conditioned 6h.

SincecV~! is a deterministic function o V-1, we have

HW Y XN, C)

=H (" WY, X C) (161)
= H (N HYM, X C) (162)
>(N — 1)n(min{C, Ry }) — (N — 1)n(e; + £2) (163)
Hence,
T . 1 N—-1|y/ nN niN
Re = lim lim —H (WYY xN) (164)

> min { Tim C, Rl} (165)
The achievable region can then be discussed for two cases:
i) Ry <lim, . C
i) Ry >lim, . C

When R; < lim,,_,., C, the region(Ry, R.) is given by:

0 S Re S Rl
(166)
n—00
wherelim,,_,., C meets the following condition fromi (IP5):
0< lim C < [I(X;Y,%]X,) — I(X; YV, | X)) (167)

subject to the constrait( X ,;Y) > ](Yr; Y, |Y X,). WhenR; > lim,,_,, C, the region(R;, R.)

is given by:

0<R. < lim C
lim C < By < lim O+ I(X;Y,|X,)

n— o0
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Finally, the union of these two regioris (166) ahd (168) bezoie region given below:

R < Ry < 1(X;Y,Y,|X,)
A (169)
0< R, <[I(X;Y,V[X,) = I(X;Y,[X,)]*

with the constraint (X,;Y) > I(Y,;Y,|Y X,).
APPENDIX B
PROOF OFTHEOREM[Z2

The converse foiR; is given in [22] using the cut set bound. The converse kprcan be
derived by specializing the upper bound in [21], which idedfan [58) as/(X;Y|X,,Y,). For

our model, this can be upper bounded as:
I(X;Y Y, X)) =1 (Xg, Xp; VY, X)) (170)
= h(YD/T’)XT) - h(YD/;“)XT)XRaXD) (171)

From (12),Y — Xp, X, — Y,, Xy is a Markov chain. Hencé_(1I71) equals:

h(Y|Y,, X,) = h(Y|X,, Xp) (172)
<h(Y|X,) = h(Y[X,, Xp) (173)
= I(Xp;Y|X,) (174)

Hence we have proved the converse .

The achievability of[(21) also follows from the partial deesand-forward scheme presented
in reference [21, Theorem 1].

Theorem 8: [21, Theorem 1] The following region is achievable:

Ry < I(X;Y|U,X,)+min{l (U;Y,|X,), (U, X,;Y)}
U R. < [I(X;Y|U,X,) = [ (X;Y,|U, X,)]* (175)
bvivx) | 0< R <Ry

In (I78), we letX = {Xp, Xr},U = Xg, and restrict the union to be over the probability
distributions of the formp(X,)p(Xp|X,)p(Xr|X,), and we obtain:

I(X;Y|U,X,) - 1(X;Y,|U,X,) (176)
=1 (XrXp;Y|XrX,) — I (XrXD; Y| XrX,) (177)

=1 (Xp;Y[XrX,) — I (Xp; Y;|XpX,) (178)
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=H (Y|XrX,) — H(Y|XpXrX,) — I (Xp; Y| XrX,) (179)
(a)

DH(VIX,) — H(Y|XpX,) — I (Xp:Y,|XrX,) (180)
[ (Xp:Y[X,) = I (Xp;Y,|XpX,) (181)
Or (Xp:YIX,) (182)

where step(a) follows from X — X, — Y being a Markov chain [22] anKr — X, Xp — Y
being a Markov chain. Stef)) follows from X, — Xz X, — Y, being a Markov chain [22].

Moreover, the bound o®®; can be expressed as:

I(X: YU, X;) 4+ min{!] (U Y| X:) T (U, X5 Y)} (183)
:min{ T(UXXY), I(U; Y |X,) +I(X;Y|U,X,) } (184)
(é’min{ I(XXY), 1(U: Y, |X,)+I(X;Y|U, X,) } (185)

where step(¢) follows from U — X X, — Y being a Markov chain.

Note that[(I8b) is the same as [22, (2)], therefore from timeesargument therein, we obtain:
min{ I(XXY), I(U; Y, |X,)+1(X;Y|U,X,) } (186)
:min{ I (Xp, X Y), I (Xg; Y| X,) + 1 (Xp;Y|X,) } (187)

By substituting [(187) and (182) int@ (175), we find that th&e rpair in [21) is achievable.
Remark 17:1t is shown in [21, Lemma 3] that the achievable rate reg[orBjlis convex.

Therefore the rate region (1) is also convex.

APPENDIX C

PROOF THAT ([38) 1S A MONOTONIC INCREASING FUNCTION OF THE SOURCE POWER

It suffices to show that the argument@f ), which i5p+ﬁ—2§’f, is @ monotonically increasing
Q

function of p. The expression ofZ, is given by [32). Thus we have:

a*p  ((1+a®) (PP +1)(p+1) —a?
1+o03 (PP +a2+1)(p+1) —a?

- (188)

Sincep + lf% is always positive, we can prove its monotonicitypifby showingln(p + 112(%)

is monotonically increasing ip. From [188), it is given by

mp+hn((1+a®) (PP +1)(p+1) = a®) = (PP +a®+1) (p+1) —a®) (189
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Let A £ (14 a2) (2P, +1). Let B 2 (2P, + a2 + 1). Then the derivative of (I89) with respect
to p is given by
S O ) B (ARG ) (At R (O]
O e I e R | R
Note thatA, B > a?. Hence the denominator df_(190) is positive. Therefore wiy oeed to
show that the numerator df (1190) is positive. The numeratdi®0) equals

(190)

(p+1)° - 2(ld%l>( +1y+if—+ 2<l——l> (191)
P “\aTB)V¥ ag " \a " B)?
B s 2a? a’t 9 < 1 1 )
=P+ = Fptgp - (5 + 3 (192)
a2\’ at /1 1 5 (1 1
—<P+1‘§> 525 3) (193)
a2\’ 9 a? 1 1
_<p+1_§> ta (1_5)(5—2) (194)
SinceA > B > d?, a*/B < 1, (I92) is positive. Therefore the derivative lofp + lffg ) with
Q

respect top is positive. This meansg (88) is a monotonic increasing fioncof p.

APPENDIX D
AN EXAMPLE WHERE INTRODUCING A SECOND EAVESDROPPERDECREASESSECRECY

CAPACITY

Consider a special case of Modedefined by
V,=X+N Yp=X-N (195)
Yr =X, (196)

This is a Gaussian relay channel with orthogonal componeitts reversely correlated noise.
N is a zero mean Gaussian random variable with unit varianeaceél its probability density
function is symmetric around the origip(—N) = p(V).

We first observe that since the orthogonal link between thayrand the destination is
noiseless, the optimal relaying scheme in this case is ehg0ds.; = Y, ;1. This can be proved
as follows: First we recognize, for this channel, giviEn, the signalsX;* do not provide more
information to the eavesdropper. This is because the rslat interfering itself and hence as

shown in Remark’11, the secrecy capacity can be computedlfrom,.. - 7 (W |Y,") instead,
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i.e., X' can be dropped from the conditioning term. Therefore for grmgn relay scheme, we
can always us&,; = Y, ,_; to give the destination the signals received by the relay,ask the
destination to to compute thE" generated from the original relaying scheme instead. Ithean
verified that in this way the secrecy constraint is fulfilledldl” can still be transmitted reliably.
Therefore, the secrecy rate achievable by any given relagmse is achievable vid, ; =Y, 1,
which must be the optimal relaying scheme.

Hence the destination essentially receiV®s;_;,Y) ;) at theith channel use and the eaves-
dropper receive¥,. The channel is therefore equivalent td & 2 MIMO wiretap channel [4].
Note that the destination can remove the nd\gecompletely by simply computing’,; + Yp ;.
The eavesdropper, on the other hand, observes an AWGN litik fimite capacity. Hence the
secrecy capacity of this channel is easily seen texhe

Now, we construct a second relay channel. The channel isatine as the previous one except

that the received signal at the relay becomes:
{V,. X;} ={X+ N, X, } (197)

That is to say that the relay receives an additional copy ootriansmitted signal. This should
not benefit the relay/eavesdropper at all. So the secre@citgps still co .
Now, we construct a third relay channel from the second rel@nnel, by adding one more

eavesdropper to the model. Let the signal received by tltisnskeavesdropper be:
Yo={X-N X} (198)

It follows that p(Y.| X, X,) = p(X — N, X, |X, X,) = p(—N) = p(N) = p(Y;|X, X,). Hence,
the new eavesdropper observes the same marginal distribas the eavesdropper located at
the relay node. However, this eavesdropper receives gxtwtl same signal received by the

destination. Therefore the secrecy capacity of the newesy$s reduced to 0.
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APPENDIX E

PROOF THAT (@8) AS A MARKOV CHAIN

Recall thatA is shown in[(1) as the local randomness generated at the tédayg chain rule,

we have
p (V" Y X" X A)
—p(x" ) [[p (XY X A YL X p (Yoo, Ve VL Y X0, X7 A) - (199)
i=1
From (1), we observe that

X =YL X0 A = Y0 X7 (200)

r,1 >

is a Markov chain. Since the channel is memoryless, and thg fenction [1) has to be causal,

we observe
{Yea Yo} = { X0, Xa} = {Y71 Y01 X000, Xy, A} (201)
is also a Markov chain. Applying these two Markov chains[t89)1 we have:
P (VY X0 X0 A) = p (X7, ) [ (Xl Vit X0 A) p (Ve Vel X X)) (202)
=1

We next integrate out;” and X from both side of [(202). This can be done in a recursive

fashion as we show next. First we integrate o¥gy on both side of[(202). This gives us:

p (V7Y XX A)

r,l <l

n—1
=p (X", A) H D (Xm'|Yi_1 Xt A) P (Yei, Y0il Xoi, Xi)
i=1

P (Xen VI XY A) p (Yol Xo, Xo) (203)

rl o<t
From (43), we have (Y, .| X,.., X,.) = p(Yen|X,). Applying it to (203) yields:
p (VLY X X A)

n—1
=p (X", A) H D (Xm'|Yi_1 Xt A) P (Yeir Y0il Xoi, X)
i=1

r,l <l

p (Xenl VL X2 A) p (You] X) (204)

rl o <rrl



42

We next integrate ovek’,,, on both side of[(204), which yields:
p (Y Y X X 1,A)
= (X", A)p (Yon|X) H P (Xnal Vi Xi A) p (Yo Yeal X, X) (205)
Repeating the process |IE(ZOEEC205) for-1,n—2,...,1, we have
POV, X", A) = p (X7, ) [ p (Ve X0 (206)
Integrating overA on both sides of {206), we havel_1
p (X7 = p (X T (Verl X) (207)

i=1
Integrating over”;, , on both sides of (207), we have

, j
p (Y2 X") = p(X") [Tp (Yeil X0) (208)
=1
Integrating overy; ; on both sides of{(208), we have
p (Y2 Xm) =p(X™) Hp (Yol X:) (209)
Dividing each side of[(208) by the correspondlng S|de|3_f'l§20\93 have
p (Yo V2T X™) = p (Yo lX)) (210)

Hence we have shown that ; — X; — X};Y/; " is a Markov chain.

We next prove that; ; — X; — X;Y;/; ' is a Markov chain. Again, we start with {202) and
integrate out,” and X" from both side of it in a recursive fashion. First we integraverY. ,
on both side of[(202) and obtain

p (VY XX A)

T

r,l <l o

—P Xn HP(XMD/Z X! ) (YemY?ﬂXm,Xz’)

p (Xrn|Y;~n1 17X;11 17A) ( T’,n|Xr,n7Xn) (211)
Then from [48) we observe that(Y, ,| X, ., X,) = p (Y,..|X,.). Hence [2Ill) becomes:
(Yn7YZL1 l’Xn Xn A)

—P Xn HP(XM|Y:11>X7Z«117 ) (YemY?ﬂXm,Xz’)

rl o<l

P (XY X0 A) p (V] X) (212)
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We next integrate ovek’,,, on both side of[(212), which yields:

p (VYo X X A)

bl e,l )
n—1
=p (X", A) p (V| Xo) T] 2 (Xoal V51 X031 A) p (Ve Vil X X0) (213)
=1

Repeating the process in (210)-(213) for- 1,n — 2, ..., 1, we have

=1
Integrating overA on both sides of (214), we have

p (V7 X" = p(X") [ p (Veil Xo) (215)

i=1
Integrating overY,”,,, on both sides ofi(215), we have

_ j
p (Y, X") = p (X" [Tp (Yl X0) (216)
i=1
Integrating overY;.; on both sides of (216), we have
. i1
p (VT XY = p (X" T p (Yl X0) (217)

i=1

Dividing each side of[{216) by the corresponding side[of [2 W& have
p (Y [V, X)) = p (V] X;) (218)
Hence we have shown thaf ; — X, — X}j[}@{fl is a Markov chain.

APPENDIX F
PROOF THAT H(W|Y,*X ") = H(W|Y,") FOR THEMODEL STATED IN (41)

We begin with
HWIY?, X) = HWIY!, X A) = HWIY??, A) (219)

where the last equality follows from the fact that" is a deterministic function ofY,”, A}.
Hence we only need to provd (W |Y,", A) = H(WY,") for the channel model defined in_(41).
This can be done as follows:
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First we factorizep (Y, X™, X", A, W) using a similar procedure seen [n (199)-(202):

p(Y X" X AW) (220)
—p (W, A, X") p (Y}, XJ|X", A, W) (221)
=P <W7 A7 Xn) H p (Xr,i|}/;«€;17 X:i,_117 A) p (}/;,i|Xr,i7 XZ) (222)

i=1

where in [22R) we use the Markov chain stated[in {200) and)(201
From [41), we have (Y, X, X;) = p (Y,:|X;). Hence we have

p(Y;n’Xn’X:L’ A’ W)

. o (223)
i=1

We next integrate ouk” from both sides of[(223) using the procedure shown in Appeli
which yields:

=1
We next use the fact that.; — X, — X]Z-[Yj;jl is a Markov chain, as stated ih_{45) and proved
in Appendix[E, from which we have

n

p (VX" AW) =p (W, X" A) [T p (Vs X7, Vi) (225)
=1
SinceWV is a deterministic function oX™, we have
PV X" AT = p (W, X" A) [[p (Verl X7, ¥, W) (226)
i=1
=p (W X", A)p (V"X W) (227)
Since A is independent fromiV, X", (226)-[22T) can be written as
p(Y, X" AW)=p(W, X" Y")p(A) (228)
From it, we can write:
p (Y A) =p (V") p(A) (229)

and

p(Y L AW) =p (W, Y")p(A) (230)
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From (229) and[(230), we have
p (WY A) = p(WI[Y) (231)

HenceH (WY, A) = H(W|Y").

APPENDIX G

PROOF THAT (79) IS AN UPPERBOUND
We begin with
H W) =H W[Y)+ 1 (W;Y) (232)

Due to the secrecy constraint, we hdue,,_, %](W; Y") = 0. Due to the fact thatl’ can be
decoded fromy};, Y} reliably, we have, from Fano’s inequalitlim,, . - (W|Y3Y}) = 0.

Hence there exists > 0 such that

I (W;Y") <ne/2 (233)
H(W|YEYE) < ne/2 (234)
Tim & =0 (235)

For thise, we find [232) is upper bounded by

H (WI[Y") 4 ne/2 (236)
<H (W|Y™) — H(W[YRY]) + ne (237)
<H (W|Y™) — H(W|YRY2X") + ne (238)
<T (WY, Y, XJ[Y) + ne (239)
<I (W, X" YR, Y2 X"Y") + ne (240)
=1 (X" Y2,V XY + ne (241)
=0(X™ Y5, XPY) + (X YRV YD, X)) + ne (242)

=1 (X" Y X2V + ST (X" Vel V2 Vi, X2 YS! + ne (243)
i=1
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From [55), we observéy, — {Y.", Y}, X!, Y/;;'} — X™ is a Markov chain. Hencé (243) equals:

I(X™ Y5, XY +ne (244)
<I(X™ YR YY" XY + ne (245)
=1 (X" YR, YY)+ T(X™ XPYS, Y, YY) +ne (246)
XY YY) 4 30T (X X XL YR, YL Y) 4 e (247)

=1
The term inside the sum ih_(247) can be bounded as

(X7 X0l X33 B, Y YY) (248)
<T(X™ A X VB YY) (249)
<T(X™AYE YY) + 1 (X X0 VR, YY) A) (250)
=T (X" AlYE, YY) (251)

where A is the local randomness at the reldy. (251) is due to the fatt; , is a deterministic
function of {Y*, A}.

From (55), we have

p (X" XA YR YY) =p(X")p(A) Hp (YD, Yois Yeul Xo) p (Xr,i|X;7_11> Y:,Il> A)

=1
(252)
from which we have
p (X" YR, YY" A) =p(X")p(A) Hp (YDm Yo, Ye,z‘|Xi) (253)
i=1
Hence {Y}, Y, Y X"} are all independent fromd. Therefore [(251) equals. (247) thus

becomes:

I

—~

X" YR YY) + ne (254)
h (Yo Yeal VEYTYE) = 30 h (Yo Yoa VEIYITYX™) + ne (255)

1 =1

|

(2

h (Yo iYeil Vei) = Db (Yo Yes YE YT YIX™) + e (256)
1 =1
From [6%) and the fact that the channel is memoryless anddlag function is causal, we

NE

<

-
Il

observe that

Yo, Yoot — {Yeu, Xi} — {Yﬁ_ll» Yri,fl> Yo it Xy} (257)
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is a Markov chain. Hencé (256) equals:

Z h(Yp,iYeilYe) — Z h (Yp,iYrilYeiX;) + ne (258)
i=1 1=1
= Z I(X3:YpYeilYes) + ne (259)

Il
—

2

Define ) as a random variable that is uniformly distributed ofér2,...,n}. Define X =
XQ7 YD = YD,Q7 }/7‘ = }/;,Qa }/e = }/e,Q' Then m) equaIS:

nl (X;YpY,|YeQ) + ne (260)
=n (h (YpY,[YeQ) — h (YDY, |V XQ)) + ne (261)
<n (h(YpY;[Ye) = h (YpY,[YcXQ)) + ne (262)

Since{Yp,Y,} —{Y., X} — @ is a Markov chain,[(282) equals:

n(h(YpY;|Ye) = h (YpY,[YeX)) 4 ne (263)

—nl (X;YpY,|V.) + ne (264)

Dividing both sides by: and lettingn — oo, we have the upper bound in(79).
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