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Abstract

We consider a system whose state is a vector of dimensjovhose value is chosen randomly by
nature. The system consists of two entities. The first entipnifoller) has complete information about
the state of the system, and must reveal a certain “minimum” amount of information about the system
state to the second entity. It can however choose the nature of the information it reveals subject to
satisfying the above constraint. The second entitytdr) takes certain actions based on the information
the controller reveals, and the actions are associated with certain utilities for both the controller and the
actor which also depend on the state of the system. The controller needs to decide the information it
would reveal, or equivalently conceal, so as to maximize its own utility, and the actor needs to determine
its actions based on the information the controller reveals so as to again maximize its utility.

We demonstrate that the above problem forms the basis of several technical and social systems.
We show that the decision problems for the entities can be formulated as a signaling game. The
Perfect Bayesian Equilibrium (PBE) for this game exhibits several counter intuitive properties, e.g.,
some intuitively appealing greedy policies for the controller and the actor turn out to be suboptimal.
We prove that the PBE of this game can be obtained as a saddle point of a different two person zero
sum game. The number of policies of the players in this two person zero sum game is however super-
exponential inn, which implies that standard linear programs for obtaining its saddle points will be
computationally intractable even for moderate Next, using specific characteristics of the problem,
we develop linear programs that compute the optimal policies using a computation time that increases
exponentially withn, and can therefore be numerically solved for moderaté/e finally propose simple
linear time computable policies that approximate the optimal policies within guaranteeable approximation

ratios.
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I. INTRODUCTION
A. Overview

Exchange of information among different entities forms the basis of most technological advances in the
information era and also of social interactions. Several seminal advances in communication systems have
lead to schemes that maximize the rate of exchange of information. An aspect that has received somewhat
less attention, and is as important, is that of designing a framework for deciding what information should
be revealed and what should be concealed during exchange of information among different entities so as to
maximize their utilities. The main challenge towards developing such a framework is that oftentimes such
decisions depend on the objective for exchange of information, and hence can only be determined on a case
by case basis. The contribution of this paper is to develop a rigorous mathematical framework for deciding
what information an entity should reveal when the objectives satisfy certain broad characterizations that

capture the essence of several communication and social systems.

We consider a system with two entities. The state of the system is a random vector of dimen&ton

any given time the first entitycontroller) has complete information about the state of the system, and
must reveal a certain “minimum” amount of information about the system state to the second entity. It
can however choose the nature of the information it reveals subject to satisfying the above constraint.
The second entityactor) takes certain actions based on the information the controller reveals, and the
actions are associated with certain utilities for both the controller and the actor which also depend on
the state of the system. The same actions and the system states fetch different utilities for the controller
and the actor, and usually when one entity has a high utility the other has a low utility. We devise a
framework that enables the controller to decide the information it would reveal, or equivalently conceal,
S0 as to maximize its own utility, and the actor to determine its actions based on the information the

controller reveals so as to again maximize its utility.

B. Motivation

We first establish that this information concealing problem forms the basis of several communication
systems.

1) Information concealing problems in wireless networks:

a) Cognitive radio networksConsider a transmitter with accessit@hannels, whose qualities constitute

the state of the system. The transmitter needs to select one channel for transmission, and the transmission



guality of the selected channel determines the rate of successful transmission. Hence, the transmitter
probes the channels in order to assess their qualities before it transmits any packet. A malicious entity,
say a jammer, seeks to reduce the rate of successful transmission. The jammer is usually assumed to
accomplish its goal by generating signals that interfere with the transmitter's communication; however
the jammer may be able to deteriorate the transmission rate much more by preventing the transmitter
from learning the states of the channels. This may cause the transmitter to make a wrong choice, that
is, select a channel with a poor transmission quality, and thereby obtain a poor data rate for a while.
Note that the jammer can prevent the transmitter from learning the states of some channels, possibly by
generating signals that interfere with the corresponding probe packets or responses to these probes, and
generating such signals may consume less energy as compared to those that jam the actual transmission
since the probe packets are transmitted over shorter durations. We therefore consider the case where
the jammer blocks the probe packets and not the actual transmission. Furthermore, we assume that the
jammer knows the quality of the channels and can block the probes in atkndsannels since the
blocking process consumes energy. Hence, the states of atkmobstnnels can be concealed from the
transmitter. The transmitter selects the channel after it learns about the states of the channels the jammer
does not conceal. Note that the transmitter may either select a channel whose state has been revealed or
one whose state has been concealed; the latter may happen since the fact that the jammer has concealed
the state of a channel may indicate that the transmission quality of the corresponding channel is good.
The rate of successful transmission attained by the transmitter determines the utility of the transmitter
and the jammer. The information concealing problem we described will enable the jammer (controller)

to optimally determine which channels it would conceal, and the transmitter (actor) to select the channel.
2) Information concealing problems in other information systems:

a) Query resolution networksiVe next describe another communication system in which the information

concealing problem arises. Consider a client that needs to locate a desired information. It queries some
data bases to determine which of them has the information. The responses constitute the state of the
system and specify the probability with which the requested information is present in the data base (as
the search in response to such preliminary queries may not be comprehensive and also the information
may be dated). The responses reach the node through a gateway that has a malicious entity which
blocks some of the responses in order to undermine the information location service. The client needs
to determine which database it would request the information from based on the responses to its query,
and again it may choose one it received a response from or one it did not receive a response from (the

latter may happen if the responses it receives reveal low probabilities). The utility of the client and the



malicious entity depends on the probability that the client obtains the information it is interested in. The
information concealing problem we described will enable the malicious entity (controller) to optimally
determine which responses it would suppress and the client (actor) to select the database it would request

the information from.

b) Buyer-Seller authentication in e-commercéonsider an e-commerce system where a buyer and a
seller are bargaining. The authentication process between them proceeds in two stages. The buyer has
pieces of information using which he can authenticate himself to the seller. He reveals limited information
aboutk of these pieces using which the seller can complete the first stage of the authentication successfully
if the buyer is who he claims to be (e.g., using some proof verification methods). Next, the seller
identifies himself to the buyer, and subsequently asks about complete information for one rof the
pieces which may or may not be among those that the buyer initially selects. The buyer provides the
requested information and the authentication is successful if again he is who he claims to be. This two-
stage authentication process allows each entity to identify himself once he has some (albeit incomplete)
information about the other participant. Now, the complete information the buyer reveals about any one
piece in the authenticating process may allow the seller to acquire more information about the buyer
than that required for mere authentication, e.g., information about his previous transactions with other
merchants, etc. This will for example allow him to bargain more effectively with the buyer once the
authentication is successful. Now, the different pieces of information the buyer possesses about himself
reveals different amount of information about him, and the buyer must selektdieees in the first stage

so as to minimize the additional information he finally reveals to the seller. The seller must subsequently
select the piece in the second stage to acquire maximum possible information about the buyer. The
information concealing problem we described will enable the buyer (controller) and the seller (actor) to

attain their respective objectives by optimally selecting the pieces in question.
3) Information concealing problems in social context:

a) Gambling: Consider a gambling game in which two gamblers have a common collectidhaafrds

each of which can have one e colors. They randomly select a number for each card and write the
chosen number on one side of the corresponding card. Subsequently, the second gamblercdrals's
randomly from the collection without observing the numbers on them. The first gambler then observes
the colors and the numbers of the cards drawn and tells the second the numbers and the éotdrs of
these cards, and only the colors of the rest of the cards. The second gambler needs to select one of these
n cards (either a card whose number it knows or one whose number it does not know), and the first pays

him an amount that equals the number on the selected card (if this number is negative then the second



pays the first). The first gambler (the controller) needs to seledt tads so as to minimize the amount

it pays, and the second needs to select a card so as to maximize the amount it receives.

b) Security systemsConsider a corrupt employee who sells secrets about the company’s security system
to a burglar. The building in which the company is located hagates, and the employee knows the
efficacy of the security system at each gate (e.g., he may know the number of guards at each gate which
may be a random variable owing to the company’s security plan), and based on the price the burglar
has offered or in order to conceal his collusion in the event of an enquiry, the employee informs the
burglar about the security system of omly- k& of these gates. He also decides to select the gates whose
information he reveals so as to minimize the probability that the break in is successful since if there
is a successful break-in a comprehensive enquiry is likely to be launched. Based on the information he
obtains from the employee, the burglar selects one gate through which he tries to enter; he selects this

gate so as to maximize his probability of success.

In both these examples, the information concealing problem we described will enable the controller (first
gambler or employee) and the actor (second gambler or burgler) to attain their objectives by making

appropriate selections.

C. Contribution and Challenges

Our first contribution is to provide a framework for investigating information concealing problems. We
formulate this problem as a signaling game ([5], Chapter 8.2) between two players and consider perfect
Bayesian equilibrium (PBE) ([5], Chapter 8.2) as the solution concept (Section Ill). The subsequent
challenge is to compute desirable equilibrium policies of the players as in general in signaling games
multiple policy pairs attain this equilibrium and different equilibrium policies fetch different utilities for

the same player. Also, general purpose algorithms for computing a PBE policy-pair are not known for
arbitrary signaling games. We show that in the information concealing game all PBE policy-pairs fetch
the same expected utility for each player - thus all such policy-pairs are functionally equivalent, and hence
choice among them is not critical. We also show that PBE policy-pairs in this game can be computed by
solving linear programs with finite number of variables and constraints. We prove the above by showing
that there is a one-to-one correspondence between the set of PBE in the above game and the set of saddle
points in a two-person zero-sum game (Section IV-A), which we refer to as an equivalent game. This
equivalence holds although the original game is not a zero-sum game, and is an interesting result in itself
as such equivalences are not commonly encountered between signaling games and two-person zero-sum

games. Using this equivalence, we further demonstrate that several intuitively appealing policies of the



controller and the actor do not in general constitute PBE. For example, in cognitive radio networks, a
naive policy for the jammer that conceals the states of the channels that hakebdst transmission
gualities does not constitute a PBE. This happens because the actor can learn about the system not only

from the information the controller reveals, but also from the choices of the controller.

We next investigate the computational tractability of the information concealing games. Our results in this
area constitute our second contribution since general results that can address the computational aspects in
this case are not known in the game theory or approximation algorithm literature. Note that the saddle-
points of the equivalent games can be computed by solving standard linear programs (Chapter 111.2.4,
[6]), which would therefore provide a PBE of the original game as well. But, the number of variables and
constraints in the standard linear program formulations for the equivalent games are super-exponential in
(Q(em?")), wheren is the dimension of the state-space of the system. Thus, the standard linear programs
become computationally intractable even for small values:..oExploiting specific characteristics of

the game under consideration, we next obtain linear programs which compute the saddle points of the
equivalent game and the optimal policies for the two players while using exponential number of variables
and constraints (Section 1V-B). This significant reduction in computation time enables the computation of
the optimal policies for moderate We next obtain linear time({(n)) computable policies with provable
performance guarantees for the two players (Section V). Specifically, these policies attain utilities that
differ from the utilities of the saddle points by (a) constant factors in several important special cases,
and (b) by factors that depend only on the amount of information that the controller reveals to the actor,
and do not depend on in the most general case. We also show that there exists examples where these
performance guarantees are tight, which in turn allows us to complete characterize the performance of

these policies.

Il. RELATED LITERATURE

To the best of our knowledge, the information concealing game has not been investigated before.
Information concealing game is however a special case of the well-known signaling games ([5], Chapter
8.2), and arises when the utilities of the two players in signaling games satisfy certain structure. The
investigation of this special case has been motivated by its relevance in modeling a diverse range of
applications in technical and social context, and also because a framework for computing the solutions

and investigating their characteristics is not known for signaling games in general.

A game that is close to the information concealing games and has been investigated before is that

introduced by noble-laureate P. Aumaah al. [2]. They consider a scenario where nature randomly



selects a game from a family of two-player matrix games, and informs playait not player2, about

the selected game. The same game will now be played again and again. At each time- unit, ...,

the players choose their moves (actions) which collectively determine their payoffs, and both players
observe each others actions. Player 1 is confronted with the dilemma of whether to play optimally in the
game chosen by nature; if he does that (and if player 2 knows which policy is used by player 1), then
player 2 will eventually be able to guess which is the game being played, so that player 1 looses his
advantage of being informed. If, on the contrary, he uses a policy that does not utilize his knowledge
of the game, then again he does not gain from being informed. Unlike in the game we consider, in this
game the informed player does not directly control what information to reveal or to conceal to the other
player. Also, here the information chosen by nature does not change with time, whereas we assume that
the nature’s choice changes with time and the evolution is temporally independent. Thus, here, unlike
in the game we consider, at any given time a player can exploit the knowledge he has acquired from
past interactions; in our case the game effectively starts fresh at each instant (our solutions therefore
do not consider any temporal relation at all). Thus, the formal questions that are answered and also the

techniques used to obtain the answers substantially differ in the two cases.

Information concealing has been extensively investigated in context of multi-media [10]. An example is
the research on watermarking, where one tries to hide a signature in some picture or audio recording in
order to be able to identify it later. Informally speaking, these scenarios consist of only one player who
seeks to conceal as much information as possible. We consider a scenario with two players such that both
players act sequentially and the first conceals information with the goal of degrading the performance
of the second by decreasing the second’s capabilities to make good action choices. Again, the formal
guestions that are answered and also the techniques used to obtain the answers substantially differ in the

two cases.

Finally, standard results in classical and computational game theory do not apply in the information
concealing game we consider. First, classical game theory provides us with the PBE solution concept
for signaling games [5], but does not guarantee uniqueness of this equilibrium. In our case, for any
given pair of policies of the players, their utilities are functions of their informations, which in turn
depend on the system states, and the system can be in one of several possible states. Next, general
purpose algorithms are not known for computing a PBE policy-pair, either exactly or approximately

with a provable-approximation guarantee, except when the PBE is the same as the well-known Nash



equilibrium [3], which happens in our case only when the number of system statesNis show that

all PBE policy-pairs are functionally equivalent, and a PBE policy-pair can be obtained (exactly and not
approximately) by solving linear programs with finite (but super-exponentidl mumber of variables and
constraints. The above results follow from a one-to-one correspondence that we have established between
the PBE in the game we consider and the saddle-point strategies in an equivalent two-person zero-sum
game. To the best of our knowledge, such equivalence is not commonly encountered in game-theory.
Now, this equivalence does not however guarantee polynomial-time (polynomigl édomputation of
equilibrium policies since the number of deterministic policies in the equivalent game is super-exponential
in n in our case, which results in super-exponential number of variables and constraints of the above linear
programs. Note that computational game theory focuses on determining exact solutions (e.g., for saddle-
points of two-person zero-sum games Chapter I11.2.4, [6])) whenever such solutions are computationally
tractable, or approximations otherwise (e.g., for Nash equilibrium of bi-matrix games [4], [7]), using
computation times that are polynomial in the number of deterministic policies of the players. Thus,
since the number of deterministic policies is super-exponentialimour case, standard algorithms will

have computation times that are again super-exponential ifo the best of our knowledge, standard
algorithms for fast computation of exact solutions or approximations when the number of policies of
the players is itself intractable (e.g., super-exponential) are not available in the literature. Thus, one
of our important contributions has been to develop computationally efficient (that is with computation
time that is polynomial im) (i) exact solutions in special cases, and (ii) approximations with provable
approximation guarantees in general cases using specialized arguments that exploit the above equivalence

and the special characteristics of the game under consideration.

Il. AM ATHEMATICAL FRAMEWORK

We formulate the information concealing problem as a signaling game and consider the Perfect Bayesian
Equilibrium or the PBE solution concept (Section IlI-A). We next elucidate the terminologies and the
solution concept using the motivating examples presented in the previous section (Section 1I-B). We
finally demonstrate that the PBE for this game exhibits several counter-intuitive properties which indicate
that the computation of such equilibrium may not be straight-forward (Section 1lI-C). In Section VI, we
generalize the framework to relax several assumptions made in this Section.

INash equilibrium policies can be computed (i) exactly using a computation time that is exponential in the number of

deterministic policies of the players (Chapter 3.4 [9]) (i) approximately with provable approximation guarantees using a

computation time that is polynomial in the number of deterministic policies of the players [4], [7].



A. Terminologies and Solution Concepts

We start by modeling the information concealing game as a stochastic leader-follower game between two
players: the controller and the actor. We describe the game in both the normal form as well as in the

strategic form.

« System state: The state of the system is andimensional vectorX whose entries take values in
K={0,..,K—1}.Let N = {1,...,n}. The state space i§". The random variables corresponding
to the components of the state vector may be dependent and can be described by a joint probability
distribution 5.

« Information of the Controller: The controller knows the system state and thereby has full
information.

« Actions of the Controller: The controller conceals the values of at méstomponents of the
system state from the actor; it decides which components it would conceal based on its information.
Thus, the controller's action is a subset®f with cardinality £ or lower. Let.A.(Z) denote the
set of all sub-vectors of with n — k& or more components, and. = UzcxnA(Z). We show in
Section VI, the formulations and most of the results in this paper hold when we allow the controller
to conceal exact values of all components in the entire system-state, and reveal arbitrary functions
of the system state to the actor instead (e.g., the average of the states of the components, ranges
containing the states of some components, etc.).

« Information of the actor: The actor knows the states of those components of the system state
which the controller does not conceal. Specifically; i§ the action taken by the controller and the
system state i, then the actor’s informatiog consists of the sub-vector afwith components in
N\ c. Therefore, from its informatiory, the actor knows the controller’s action, i.e., the subset of
components:(y) the controller conceals.

« Actions of the actor: The actor selects one of the components of the system state. Thus, its action
is an integerl € A. Again, we show in Section VI that the formulations and most of the results
in this paper hold when we generalize the actions of the actor, that is, when the actor selects a
sub-vector of the system state (instead of one component only).

« Payoff function: If a component of the system state has valufen the expected utility associated
with that component ig (i) such thatr(0) < (1) < ... < r(K — 1). If the system state ig, and
the actor selects componehtthen its payoff isr(z;).

o Common Knowledge: The parameters, k, K, (i) for eachi € K and s are common knowledge.

These parameters are determined based on goals and constraints of specific systemsn@yg.,
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be determined based on resource constraints of the jammer in the cognitive radio network and the
price the burglar has offered in the security system) - investigation of how these parameters are
determined is beyond the scope of the current paper.

« Strategies:

— Pure policies: A controller's (actor’s, respectively) pure policy is a function frd@t to A,

(A. to NV, respectively). Let/? (VP, respectively) be the set of pure policies for the controller
(actor, respectively).

— Mixed policies: A mixed policy of a player is a probability measure over its pure policies.
Let U (V, respectively) be the set of mixed policies for controller (actor, respectively). Note
that each pure policy of a player can be viewed as a (degenerate) mixed policy for the same
player. A policyw in U (v in V) can also be represented as the probability distribufioft)}

(v(y), respectively) used by the controller (actor, respectively) for selecting its actions when
its information isz’ (i, respectively). Specifically,(Z)y (v(y):, respectively) is the probability
with which the controller (actor, respectively) reveals the sub-vegter A.(%) (selects the
component € A/, respectively) when its information i8 (i, respectively).
Let Eg’” be the expectation operator for the action and informations of the two players when the
players use policies € U,v € V and 3 is the probability distribution of the system state.
o Utility: The utility of each player is its expected payoff conditioned on its information, and is
therefore a function of its information.

— Utility of the actor: When the actor’s information ig, the controller and the actor use

(behavioral or mixed) policies andv respectively, and the joint probability distribution of the

system state i, the actor's utility.J2*" (7)) is given by
T3 () = B [r(Xp)|Ya = i, 1

where?a is the random information of the actak;; is the random state of th&h component
of the system statel3 is the (potentially random) action of the actor.

— Utility of the controller: The controller's utility is the negative of the expected payoff of
the actor conditioned on the controller's information. Specifically, when the system state is
and the controller and the actor use (behavioral or mixed) policiesnd v respectively, the

controller’s utility J:""(Z) is given by

JEU(@) = —B*[r(zp)| X = 4, (2)
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where X is the random system states is the Bth component ofz, B is the (potentially

random) action of the actor. This expectation dependg amly throughu, v.

Thus, for any given policy-pair of the players, the utility of each player is a function of its information,
rather than a single number. Also, note that the utility functions are quite general, except for the
special relation we assume between the utilities of the two players, that is, that the controller's
utility is the negative of the expected payoff of the actor conditioned on the controller’s information;
the payoff function of the actor can be arbitrary. This relation between the utility functions of the
players has been motivated by our requirement that the players’ utilities oppose each other and if
one player’s utility is high, the other’s utility must be low. This relation will be key in computing
the solutions of this game.

« Controller's and Actor’'s goals: The controller and the actor seek to maximize their respective

utilities J2* (&), J2"(ij) for all values of their respective informatiots .

We now define the Perfect Bayesian Equilibrium (PBE) solution concept ([5], Chapter 8.2).

Definition 3.1: Let «* andv* be mixed policies of the controller and actor respectively. Thenv*)

is a Perfect Bayesian Equilibrium if the following conditions hold:

« for eachZ € K™ such that3(Z) > 0, u*(Z) is a best response of the controller againstof the
actor, i.e.,u*(Z) maximizes.J:"" (&) among allu € U, and
« for eachy € A, which occurs with positive probability under, v*, v*(%) is a best response of the

actor against* of the controller, i.e.p*(Z) maximizesJ,"* (i) among allv € V.

B. Elucidating examples

We now elucidate the above terminologies using the examples in Section I-B.

In cognitive radio networks the system state constitutes the states of the channelg) &the expected

rate of successful transmission of the transmitter (actor) when it transmits in a channel that is in state

The jammer’s (controller’s) action is to conceal the states safne) channels and the transmitter’s action

is to select a channel for transmission. An example class of policies of the jammer, denGiee @ for

Controller or GC, is to conceal the channels withbest states, that is, those withbest expected rates

of successful transmission®C denotes an arbitrary policy in this class. An example class of policies of

the transmitter, denoted &est Among Revealed for Actor BRA, is to select the channel that has the
highest state among the revealed channels. The pure policies in these classes are those that break the ties in

some deterministic order. Let the jammer and transmitter use policiesespectively. Then, ()" (%)



12

is the negative of the expected rate of successful transmission of the transmitter when the channel state
is Z, and (b)Jf’“’”(gj) is the expected rate of successful transmission of the transmitter when the jammer
revealsy to the transmitter, and the joint distribution of the channel statg. i€onsider theUniform

among Concealed for Actasr UCA policy of the transmitter that selects a channel for transmission
uniformly among those whose states are concealed. Vﬁfgr?’UCA(f) = —% Maxgcn,|S|=k 2ics Tis

and JAuCOUCA ) — } e EZGC’UCA(ij). If the transmitter uses a policy in the class BRA,

any policy in the class GC is the jammer’s best response, and if the state processes of the channels are
identically distributed, UCA is the transmitter’s best response against the GC policy of the jammer that

breaks ties uniformly and randomly among the channels.

In the authentication example for e-commerce, the seller (actor) may have different bargaining powers
associated with different informations it can learn about the buyer (controller), and the buyer may not
know the seller’s bargaining power associated with any piece even though he knows the details about the
piece. This is because different sellers may have access to different data bases and therefore may be able
to extract different amount of additional information about the buyer from the same content. The buyer
may however know the expected bargaining power of the seller associated with each piece of information.
This scenario can be modelled by assuming that each different piece of information of the buyer can be
in one of K states and the knowledge of the state of a piece of information implies the knowledge of
the expected and not the exact value of the bargaining power associated with that piece(:Nmsithe

expected bargaining power associated with a piece when it is in istdtee system state consists the

states of then pieces of informations the buyer has about himself. The action of the buyer is to reveal
limited information about somen(— k) pieces of information in the first stage of the authentication: the
seller can only determing the states of these pieces of information from the limited information the
buyer reveals (since although he knows what databases he can search he does not know the details about
any of these pieces). Let the buyer and the seller use policiesespectively. The seller’'s action is to

select one piece for which it requests details. ThenJ{4)(%) is the negative of the expected bargaining

power of the seller when the system stat&ignd (b)Jf’“’”(y*) is the expected bargaining power of the

seller when it observeg in the first stage, and the joint distribution of the system stafe is

In the gambling game can be obtained from the distribution that is simultaneously used to draw the
random numbers, anfl is the cardinality of the support set of this original distribution. Note that the
random numbers drawn may be negative; we enumerate them Ksjmgitive integers, and each such
enumeration constitutes the state of a card. Thus, each caid passible states, andi) is the number

associated with théth state. The system state consists the random numbers on the cards drawn by the
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second gambler (actor), and is known only to the first. The action of the first gambler (controller) is to
reveal the states of some (n — k) of these cards, which constitutes the informatipfor the second.

The second gambler’s action is to select one card among those that it selected initially, and his payoff is
the number on this card. Let the gamblers use poligiesrespectively. Then, (aJ:""(Z) is the negative

of the expectation of the random number on the card the second finally (potentially randomly) selects for
examination when the system statezisand (b)J;"*"" (i) is the expectation of the number on the card

the second finally selects for examination, when it obsei¥@sd the joint distribution of the system

state isg.

The query resolution network and the security systems are similar to the cognitive radio network. In the
former, the system state constitutes the states of the databases, each database darstades and

r(i) is the probability that the information sought is in a database that is in &téttethe latter, the

system state constitutes the states of the gates (e.g., the number of guards at each gate), each gate can
be in K states, each state represents a level of efficacy of the security system at the gatg anthe

probability that the burglar will successfully break in through a gate that is in &tate

C. Counter-intuitive properties of the Perfect Bayesian Equilibrium

We now demonstrate that the PBE exhibits several counter-intuitive properties which suggests that it may
not always consist of simple policies that can be represented in closed form. This in turn motivates the

design of efficient frameworks for computing it, which is the focus of the next two sections.

Consider the “Greedy for Controller” (GC) class of policies for the controller (Section I11-B). The policies

in this class conceal the components witthighest states. Intuitively, it seems that some GC policy
minimizes the efficacy of the actor and therefore there always exists some GC policy and some policy
v for the actor such that the pair is a point-wise nash equilibrium. The following lemma shows that this
intuition is unfounded, even when the state processes for different components are mutually independent

and identically distributed (i.e., even when all channels are i.i.d. in cognitive radio networks).

Lemma 3.1:There may not exist any policy in the class GC, and € V such that(u, v) is a PBE, even
in systems where the state processes for different components are mutually independent and identically
distributed.

Next, consider a simple class of policies “ Statistically Best for Actor” (SBA) for the actor under which
when its information igj, it selects a componentfor which EB[T(XZ‘)D_} = g] is the maximum. Again,

different policies in this class use different tie-break rules. Note that the above conditional expectation
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is computed using only and not the controller's policy. For example, when the state processes of all
components are mutually independeht,= 2, component is in statej with probability p;;, 7(0) = 0,

a policy in SBA selects a component that is in statié the state of a component that is in stdtdas

been revealed, and selects a concealed companientwhich p;; is the maximum. We will useSBA

to denote an arbitrary policy in this class. It may seem that at least in simple special cases, i.e., when
K =2, there always exists som&PB” such that ¢, vSB?) is a PBE for some policy. of the controller.

The following lemma shows that such intuition is unfounded.

Lemma 3.2:There may not exist a policy pair € U, vS®A € SBA such that(u,vS®?) is a PBE, even

in systems where the state processes for different components are mutually independ&ntand

We prove lemmas 3.1 and 3.2, in appendices A and B respectively, after obtaining some additional

properties of the PBE.

IV. A COMPUTATIONAL FRAMEWORK FOR THEPERFECTBAYESIAN EQUILIBRIUM

The signaling game formulated in the previous section is clearly not a two-person zero-sum game as the
arguments of the controller’'s and actor’s utility functions have different dimensions, and hence the sum of
these functions is not well-defined. Nevertheless, owing to the relations between the players’ utilities ((1)
and (2)) we demonstrate that there exists an equivalent zero-sum game with finitely many pure policies
for each player such that a policy pait,v) of the controller and actor is a PBE in the original game

if and only if it is a saddle point in the equivalent game (Section IV-A). This equivalence implies that
all PBE policy-pairs are functionally equivalent in the original game, and one such equilibrium can be
determined by solving a pair of linear programs. The number of variables and constraints of this linear
program is however super-exponentiakinand hence the linear program turns out to be computationally
intractable even for moderate Nevertheless, using this equivalence, we next develop a framework for

computing the PBE using a computation time which is exponential {Bection IV-B).

A. An equivalent two-person zero-sum game

Definition 4.1: Consider a game with two players: the controller and the actor. The action of each player
now is to select one of its pure policies in the signaling game described in the previous section. When the
two players select policies, v respectively, the utility of the actor under the joint probability distribution

0 for the system states is given by

Ry = By r(Xp)) = Y A By Ir(wp)|X = 1. 3)
rekn
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where B is the action of the actor under policiesv and random system staf€. The actor seeks
to maximize its utility and the controller seeks to minimize the actor’s utility. The game is clearly a

two-person zero-sum game with finitely many pure policies for each player.

For notational simplicity, we use the same notations (e.g., 4, ¥, etc.) to denote the individual mixed

policies and the sets of mixed policies in both games. Clearly,

REY = =Y @)@ Y u, b, @)
e
and RS = 3 PO @I Y w0, 6 ©
yeA.

Thus, although the utilities of the controller and actor in the original game are functions of their
informations, utility of the actor in the above two-person zero sum game is a number, which turns
out to be (a) the negative of the expectation of the utility of the controller in the original game over all
system states (which are the controller’s information) (from equation (4)), and also (b) the expectation
of the utility of the actor in the original game over all possible information vectors of the actor (from

equation (5)).
Definition 4.2: The upper and lower value®s, R of the above two-person zero-sum game are

Rj = inf sup R%", Rjs = sup inf R%".
7 ueuveg A = vegueu s

Thus, R, referred to as the min-max utility of the actor, is the minimum possible utility of the actor in
the two-person zero-sum game if it selects its policy so as to maximize its utility while assuming full
knowledge of the controller’s policy. Alsais, referred to as the max-min utility of the actor, is the
maximum possible utility of the actor in the two-person zero-sum game if the controller selects its policy

so as to minimize the actor’s utility while assuming full knowledge of the actor’s policy.
For anyu* € U andv* € V we have

. u,v* ) u*,v
inf Ry" <Ry < Rg< Sup Ry (6)

Definition 4.3: If for someu* € U andv* € V, inf,cy Ry" = sup,ey Ry then all inequalities in
(6) hold with equality and.* (v*, respectively) is called the saddle point policy of the controller (actor,

respectively).

If w*,v* are saddle point policies of the controller and actor respectivefy,;, Rg’”* = Rg*’”* =
SUPyey Rg*’”, and henceRg*’”* = Ry = R,. Thus,Rg*’”* is denoted as the value of the two-person
zero-sum game. Also, if both the controller and the actor selects the saddle-point policies, the actor’s

utility in the two-person zero-sum game equals its max-min and min-max utilities.
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Two-person zero-sum games, with finitely many pure policies for each player, are known to have a saddle
point within the mixed policies (Chapter 111.2.4, [6]). The following theorem proves that a pair of policies
constitutes a saddle point for the two-person zero-sum game if and only if it is a PBE of the original

game.

Theorem 4.1:A mixed policy pair(u*,v*) is a PBE in the original game if and only if the corresponding

mixed policy pair(u*,v*) is a saddle point pair in the two-person zero-sum game.

This theorem holds because of the relation between the utilities of the controller and actor we consider,
that is, since the controller’s utility is the negative of the expected payoff of the actor conditioned on the
controller’s information ((1) and (2)). Such equivalence is not true for arbitrary signaling games, or even
for arbitrary “partial zero-sum games” [1] of which our game is a special case. Partial zero sum games
are those that have a basic zero-sum feature: the sum of utilities for the two players that correspond to a
fixed action-pair and system state, is zero, but are not zero-sum games since the players have different
information. Aumannet. al. [1] showed that such games may lead to equivalent games that are not
zero-sum. Hence, although the transformation that we use is quite standard, the fact that it leads to a

zero-sum game is new and specific to our problem.

Proof: Assume thafu*,v*) is a PBE. We show that it is a saddle point pair. From definition 4.3
and since there always exists a saddle point pair in the two-person zero-sum game, the above is indeed
the case if (i)u* minimizes Rg’”* and (ii) v* maximizeng*’“. We show that (i) holds. Assume it
does not. Then for some, Rj;" < Ry "". Hence, from (4), there exists somec K" such that
JEU(E) > JYU (&) and B(&) > 0. This contradicts the assumption thai*, v*) is a PBE. Thus, (i)

holds. Using (5), it can be similarly shown that (ii) holds as well. THug, v*) is a saddle point pair.

Conversely, assume that*, v*) is a saddle point pair. We show that (i) in Definition 3.1 holds. Assume
it does not. Then for som& andu, J2V (Z) > J¥" (&) and 5(&) > 0. Define the policyw for the
controller as the one that coincides withif the system state i$ and that coincides otherwise wittt.
ThenR;”’”* < RZ*’”*. This contradicts the assumption that, v*) is a saddle point pair. Thus, (i) holds.

It can be similarly shown that (i) holds as well. Thys,", v*) is a PBE. ]

Theorem 4.1 constitutes the basis for proving the counter-intuitive properties of the PBE described in
Section I1I-C. For example, for proving lemma 3.1, we show that whern> 3, no GC policy may
constitute a saddle point for the controller. This is because if the actor knows that the controller is using
a GC policy, it also knows that any component whose state has been concealed is in a state which is

at least as good as that of a component whose state has been revealed, and thus, its best action is to
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select a channel whose state has been concealed. Now, if instead of using a GC policy, the controller
reveals the states of some components whose states are better than those of the components whose states
he conceals, the actor may be confused regarding the choice of the component even when it knows the
controller’s policy, and is therefore more likely to make a poor selection. For example, Wher3, if

the controller reveals some components in siatnd conceals some components in stat¢he actor

may select a concealed component hoping that it is in giaed the component may instead be in state

0. This is however not the case whén = 2 (Observation 2). This is because now the components are

in statesl or 0. Thus, the controller can not confuse the actor by revealing some component that are in
statel, as then the actor will select the revealed component since it knows that no other component can

be in a better state.

We next argue that a PBE exists in this original game, and that although the PBE policy-pairs are

not-necessarily unique, all PBE policy-pairs are however functionally equivalent in the following sense:

Corollary 4.1: A PBE (u*,v*) exists in the original game. All PBE policy-pairs in the original game
fetch in the original game (i) the same expected utility over all system states for the controller and (ii)

the same expected utility over all possible information vectors for the actor.

Proof: The first statement follows since the information revealing game is a signaling game with a
finite number of players, policies and system states. Such signaling games, referred to as finite signaling

games, always have at least one PBE.[8]

The second statement follows from Theorem 4.1 since (i) any PBE policy-pair constitutes a saddle-point
in the equivalent two-person zero-sum game, (ii) any saddle-point policy pair fetches the same utility,
Rg, for the actor in the equivalent game and (iii) the utility of the actor in the equivalent game under
any policy-pair equals the expectation of the utility of the actor, and the negative of the expectation of
the utility of the controller, in the original game under the same policy pair (equations (4) and (5) and

the discussion immediately after).
[ |

Henceforth, we focus on the properties and computations of the saddle point. Also, owing to the
equivalence of the saddle-point policies in the two games and since the utilities of the players in the
original games are vectors, while the utility of the actor in the two-person zero-sum game is a number

which has a simple linear relation with (that is, either positive or negative of, depending on the player

2In our context, this statement also independently follows from Theorem 4.1 and since two-person zero-sum games, with

finitely many pure policies for each player, are known to have a saddle point within the mixed policies (Chapter 111.2.4, [6]).
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as discussed after equations (4) and (5)) the expectations of the utilities of both players in the original
game, we will henceforth focus on the utility of the actor in the two-person zero-sum game. Specifically,
whenever we refer to the utility of the actor, we will refer to that in the two-person zero-sum game,

unless stated otherwise.

B. Computation of the saddle point policies

We now investigate the computation of saddle point policies. It is well-known that a saddle point policy
of a player in a two-person zero-sum game can be computed using a linear program whose number
of variables equal the number of its pure policies and the number of constraints equal the number of
pure policies of the other player (Chapter 111.2.4, [6]). This may sound quite encouraging at first since
solving linear programs is polynomial in the number of decision variables and constraints. Nevertheless,
the computation is intractable due to the huge number of pure poli¢iesf the controller andV,, of

the actor, given by

k K
N, = (Z (?)) and N, = n>=io (K" (7

1=0

(7) is obtained as follows.

« The controller’'s information ha&™ possible values, and for each such information it can choose
¥ o (%) actions (note tha}_;_, (") is the number of subsets of the components of cardinality at
most k).

« The actor’s information ha§"" (") K"~ possible values, and for each such information it can

choosen actions.

Simplifying (7), the number of pure policies of the controller (actor, respectively) in the original game
min( ([, " Ln/2) . o .
is at least(}) ™" (n ((W?J)’K ), respectively). The computation is therefore intractable even for

moderate values af, K.

Exploiting system characteristics, we however compute the saddle point policies using linear programs
whose number of variables and constraints are substantially fewer than those of the linear programs
((K”k)(Z) as opposed tav,. and N, above) which the generic theory for two-person zero sum games
provide. Specifically, the computation times of the linear programs we develop are polynomials in

(K”k)(Z), and therefore substantially lower than that of the generic linear programs.

Henceforth,u (v, respectively) denotes the probabilities with which the controller (actor, respectively)

select the actions given their informations. Specifically;); (v();, respectively) is the probability with
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which the controller (actor, respectively) reveals the sub-vegwrA.(Z) (selects the componene N,
respectively) when its information i8 (i, respectively). Each such probability distribution corresponds
to a mixed policy for the respective player. Hence, with slight abuse of notations, we state ¢Ht

andv € V.

1) Saddle point for the controllerThe following linear program obtains a saddle point policy for the

controller.

LP-CONTROLLER Mln{z V(@) 7} Z
ye.A

A7) = Y BE@r(w)uld)y

—

T:YeA.(T)
VieN,je A

u(@)y = 1 forallzeK”

> 0V Z2eK"ye A(D)

g
Theorem 4.2:Any optimum solution{u(%);}jec 4. (z),zex» Of LP-CONTROLLERIs a saddle point policy

v* for the controller.

We first provide the intuition behind the proof. Note thdf) is the product of (i) the probability that

the controller revealg to the actor and (ii) the maximum possible utility of the actor if the controller
uses policyu and revealg/ to the actor. The following theorem will prove that the saddle-point policy of
the controller is the one that minimizes the sumz¢§) over the set of all possible information vectors

of the actor. The constraints of the above linear program can be motivated by the following observations.
The right hand side of the first constraint is the product of (i) the probability that the controller reveals
iy to the actor and the (ii) utility of the actor if it selects compongemind the controller uses poliay

and revealg; to the actor. From the characterization «fy) in the second sentence of this paragraph,
z(3) must be at least the above quantity for each componedbte that{u(z);} satisfies the last two
constraints of the above linear program if and only if it is a policy of the controller. The formal proof

follows.

Proof: From (5), for anyu € U,v € V, 3,
C= Y PGB r(Xp)Y =i
yeEA,
Given u € U, consider a policyv,, € V such that for eaclyy € A, v,(¥); = 1 for some; such that
Eg[r(Xj)]? = §] = max;en Ef[r(X DY = 7], and v, (7 y); = 0, for other values ofj (i.e., underv,

w.p. 1 B is a component that attains the above maximum and hengéds the actor’s best response to
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controller’s policyu). Note that

max B[ (Xp) |V = §] = max EYlr(X0) [V = 1 = By [-(Xp)|V = 7, ¥ 7 € A,

veY

Thus, sup Ry' = > PP"(Y =§)m G%Eg[r(xm? =] = R%". (8)
v yEA.

Thus,Rz = f Ry, 9
us, Rs qireluR 9

Next, B§[r(X,)[Y =g] = > Ejlr( —§, X = F@Pr’(X = 7Y = §)
Zexn
= ) ()P = §1X = )PrP(X = 2)/PrPUY =)
ek
= > r(z)u(@)gBE)/PrP(Y = ).
reknr
Thus, B§[r(X,)[Y = §IPrP (Y =§) = Y r(z)u(@)z8(Z).
rekn
Thus, from (8) and (9),

Ry = Z max Y r(x;)u(E)gh(7)

ieEN
rexn
andRg = llLrela Izréax Z r(x;)u(Z)z6(%).
Tekn

Now, consider a feasible solutiof, z) of LP-CONTROLLER, such thatz is chosen so as to minimize
U, Vs

the value of the objective function subject to choosingThe value of the objective function IR

for any such pair.

Thus, if u9 is the optimum solution olLP-CONTROLLER Rjz = R“ @ Thus, from (8),Rs =
SUP,cy Rg . Now, since a saddle point policy pair always exists, it follows from Definition 4.3 that
any ' € U for which Rg = sup,cy, RE"“ is a saddle point policy of the controller. Thug] is a saddle

point policy of the controller. ]

The following corollary proves an intuitive property of saddle point policies of the controller, and will

help reduce the number of variablesldP-CONTROLLER

Corollary 4.2: There exists a saddle point poliey of the controller which always conceals the states

of k components.

Proof: Consider an optimal solutioifu, z) of LP-CONTROLLER which conceals the states of
fewer thank components with positive probability for one or more system states, that is, there exists

7€ K",y € Ac(%) such thatu(z); > 0 and |a(y)| < k (recall thata(y) is the set of components the
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controller conceals when the actor’s informationgls Since (u, z) is an optimal solutionz(y') =
maxie ' Yz gea, @) BE@)r(@)u(@)y ¥ 7 € Ae.. We will show that there exists another optimal
solution of LP-CONTROLLER which always conceals the statesiotomponents.

—

Consider a sub-vector of, w, such thatla(w)| = k. Consider a new feasible solutiop/, z’) of

=

LP-CONTROLLER such that for each’ € K", i € A.(¥),
w(@)g+uw(@)g if § =0,7€ A(T)
@)y =4 0 it =7, (10)
u(Z) g otherwise.
In words, v’ is the same as except that it reveals to the actor whenever revealsy to the actor. Let,
Z(y') = max;en Zf’;g"eAc(f/) BE)r () (@)g ¥V i € Ae.
Here, (v/, ") is feasible sincei € A.(Z") for all Z’ such thaty € A (7).

Also,
{7 : /@)y > 0 for somez’ € K", and |a(y')| < k}
C {7 : u(@)y > 0 for somez’ € K", and|a(7)| < k}. (11)

Thus, v’ conceals the states & — 1 or fewer components with positive probability for strictly fewer

system states tham does.

Clearly, 2/ (i) = z(¢) for all ¥ & {¢,w}, 2/(y) = 0 and 2/ (W) < z(wW) + 2(¥). Thus, the value of the
objective function undef/, z") is not higher than that unddw, z). Thus, (v, 2’) is also an optimal

solution of LP-CONTROLLER

Thus, due to (11), repeating this process we obtain an optimal sol(tion*) of LP-CONTROLLER
such that{¢/ : u*(z")y > 0 for someZ’ € K", anda(y') < k} = ¢, i.e., u* always conceals the states

of k components. The result follows. ]
Now, consider the following definition.
Definition 4.4: Let A, = {7 : |a(y)| = k., ¥ € Ac} and A, x(Z) = Ac i N A(Z).

Due to Corollary 4.2, we only need to consider the variablgg such thatja(y)| = k. Also, note that
for any ¢ and # such thaty € A.(Z), x; = y; for anyi € N\ a(y). Thus, LP-CONTROLLER can be

described as follows.
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LP-CONTROLLER MinGu@,y D 20 st

yeA.
A7) = max r(y) Y B@u(d)y V€ Ak

i€ENM\a(¥) L

Z:jeA(T)
A7) = Y B@r(zul@)g, Vi€ a(y),y € Ak,

TYEA(T)
Yo ul@y =1 vF € Kn
e

u(@)y; > 0 V Ze K" je Acp(@)

Here, the right hand side of the first constraint is the product of (i) the probability that the controller
revealsy to the actor and (ii) the utility of the actor if it selects the revealed component that has the
highest state and the controller uses policgnd revealg; to the actor. The right hand side of the second
constraint is the product of (i) the probability that the controller revgdls the actor and (ii) the utility

of the actor if it selects concealed componérgnd the controller uses policy and reveals; to the

actor.

Henceforth, we will use this description bP-CONTROLLER Note thatLP-cONTROLLERhasO(K™ (7))
variables ancO(k(’,;‘)K") constraints. Thus, the computation time of this linear program is polynomial
in Kk(7).

2) Saddle point for the actorThe following linear program obtains a saddle point policy for the actor.

LP-ACTOR: |\/|8.X{Z(:;;)7 v(@):} Z ﬁ(a’c’)z(i")
rexn
2(F) < Y v(@ir(wi) Vi € A(D), T € K"
ieEN

du@); = 1 VjieA
JEN

Theorem 4.3:The optimum solution{v(%); };cnr 7.4, Of LP-ACTOR is a saddle point policy* for the

actor.

We first provide the intuition behind the proof. Note thdt) is the minimum possible utility of the
actor if it uses policyv and the state of the system i5 Since # is a random variable, so is(¥).

The following theorem will prove that the saddle-point policy of the actor is the one that maximizes
the expectation ot (Z) over all possible system stat&s The constraints of the above linear program
can be motivated by the following observations. The right hand side of the first constraint is the actor’s
utility when the system state i§ and the actor’s information i§ and the actor uses the poliey From

the characterization of(%) in the second sentence of this paragrapl®) must be at most the above
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guantity for each possible information of the act@r,This is because the controller can reveal any such
i/ to the actor. Note that satisfies the last two constraints of the above linear program if and only if it

is a policy of the actor. The formal proof follows.

Proof: From (4), for anyu € U,v € V, 3,

Ry = > B@E Ir@p)|X =7 = Y A7) u(@)g Y v@)ir ().

ek Teknr JEA(T) ieN
Consider a policyu,, € U such that for eacly € K", u,(Z); = 1 for somey € A.(Z) such that
Sien 0(@)ir () = ming 4z Yien v()ir(zi) anduy()y = 0, for all otheryy € A.().

Sincew(Z) is a probability distribution ond. (%),

inf w(@)g > v(i)ir(x) = A > v(@ir(zi) = wo(E)g Y 0(§)ir(ws)-
JeA.(T) ieN YA jen FEA(T) iEN
Thus, irelzg Ry" = jez,c B(Z) gerflAlI(lf) lezj\[v(g)zr(xz) = Ry (12)

i.e., u, is the controller's best response to actar)s Now, R; = sup R%". Thus, from (12),
3 veY i3

R; =su min v(9);r(z;).
By =sup 3 915 min, 3 (dhr(e

Now, consider a feasible solutiofv, z) of LP-ACTOR, such thatz is chosen so as to maximize the
value of the objective function subject to choosingThe value of the objecnve function |R“ v for
any such pair. Thus, it© is the optimum solution oL P-ACTOR, Ry = R“ 2" Thus, from (12),
Rg = infyuey RB . Now, since a saddle point policy pair always exists, it follows from Definition 4.3
that anyv’ € V for which R; = inf,c Rg’”' is a saddle point policy of the actor. Thug) is a saddle

point policy of the actor. ]

Definition 4.5: A policy v € V of an actor is said to bsensible if it never selects a component whose

state has been revealed and which is in a state that is lower than the highest state among the states of
all components whose states have been revealedu(i;, = 0 if i ¢ a(¥) andy; # max;eano(g) Y-
Observation 1:Note thatR“’”1 = Rg’vz for any u € U,v',v? € V such thatv! (7); = v2(i); for any

i€ a(®) and Y ica =i V' @i = Ziiga(i pi—; v (¥): for eachj € {0,..., K —1}.

The following corollary proves an intuitive property of saddle point policies of the actor, and will help

reduce the number of variables bP-ACTOR.

Corollary 4.3: There exists a sensible saddle point poli¢yof the actor.
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Proof: For anyi € N'\ a(9), z; = y; if § € A.(Z). Thus, the first constraint ihP-ACTOR can be

written asz(Z) < v(v, ¥)+2_eqp) v(H)ir(x:) for all j € A(F), wherey(v, %) = 3-,can o) V(@i (¥3)-
Given a feasible solutiom, consider another feasible solutiohsuch that for eacly € A.,

v(9)i if i € a(),
V()i =9 Yjena v(@); for somei st i € N\ a(if) andy; = max;jenna(g) ¥i»
0 otherwise.

Note thatv' is a sensible policy, and the maximum value of the objective function {thie maximization

—

is w.r.t. 2) is not higher than that for’. This is becausey(v',4) > ~(v,y) for eachy € A and
DM@ U (@)ir(@i) = Xieaa@p v(@)ir(zi) for each, §. The result follows. [
Due to Corollaries 4.2 and 4.3 and the above observation, we only consider sensible saddle point policies
v for the actor and variables(i) such thata(y)| = £ and need to determine the componen(tg); for
Jj € a(y). For any sensible saddle point polieyof the actor,

Z v(g)ir(zi) = (1 - Z U@)i) ieﬁ\rfleﬁg‘)r(%) + Z v()ir (i),

ieN i€a(y) i€a(y)
where the first component in the r.h.s arises due to the actor’s selection of revealed components with the
highest state only under such a policy and the second arises due to the actor’s selection of concealed
components. Thus, the r.h.s of the first componertRPfACTOR can be modified, and the overall linear

program can be re-written as follows.

LP-ACTOR: Max.(z), vy D BE@)2(T)
ek

z2(¥) < (12 ’U(gj’)z) max _ 7(y;)

ieN\a(y)

S
~~
<y
S~—
<.
AV

= L

v(y); <
Jj€a(y)

Henceforth, we consider the above description f®-ACTOR. Thus,LP-ACTOR hasO(K"k(Z)) vari-

ables andD(K"k(})) constraints. Thus, the computation timeld?-AcToR is polynomial in(K™k)(}}).
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V. PERFORMANCE GUARANTEES USING POLYNOMIAL TIME COMPUTATION

We have proved that the saddle point policies can be obtained by solving linear programs whose number
of variables is exponential in and polynomial inK. Using fast algorithms for solving linear programs,

the saddle point policies can now be computed for moderate values laft the computation will

still be intractable for large.. We therefore focus on obtaining provable performance guarantees using
polynomial time computable policies. We first consider the important special case where the system
consists of few classes of components such that all components in each class are statistically identical
and the number of statds is small (note that each class may have a large number of components and
thereforen can be large). We prove that the saddle point policies can be computed in polynomial time
in such systems (Section V-A). Specifically, when the system consisté ofasses of components, the
saddle point policies can be obtained by solving linear programs@ti#<*!) variables and)(n?5)
constraints for arbitrary., K, k, M. Thus, when all components are statistically identiddl € 1), the
computation time is polynomial in, but exponential ik (note thatK is small in most systems). The

result is interesting given that some intuitive policies do not constitute saddle point policies even when all
components are statistically identical (Lemma 3.1). We next show that provable approximation guarantees
can be obtained in arbitrary systems using some simple policies that can be computed in almost linear

time (eitherO(n) or O(nlogn)) time (Section V-B).

A. Polynomial time computation of saddle point policies in systems with constant number of classes of

components and constant number of states

We first formally define the notion of classes of components and motivate the investigation of the special
case where the system consists of a few classes and few states for the components. We subsequently
present a key technical property (Theorem 5.1) for systems with arbitrary number of classes of components
and states (Section V-A.1). Using this property and some additional terminologies (Section V-A.2), we
show how saddle point policies for the controller and actor can be computed in polynomial time when

K, M are constant (Sections V-A.3 and V-A.4).

Definition 5.1: Let 7/ € K" be obtained by interchanging thith and thejth components off € K.
Let 5/ € A. be obtained as follows: (a) if.j ¢ a(i)), thena(§"9) = a(§), v;’ = y;, v’ = v,
vl =y ¢ a(i) Ui, 5} () if i € a(i), j & a(@), thena(§™) = a(#) UL\ {i}, vi7 = vj u” =,
¢ a(i?) Ui}, (©) 1f i & a(@), j € a(@), thena(7)) = a(@) U {i}\ i} o = v 9 = .
I ¢ a(g*) U{j}, (d) 7 = ¢, otherwise.
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Definition 5.2: Componentsi, j are said to be in the same classfifz) = g(z*/) for all ¥ € K".

Note that the membership in the same class is an equivalence relation and hence the classes constitute
a partition of V. Let the system consist df/ classes, wheré < M < n. The classes are numbered as

1,..., M, andn; components are in clasfswhererVi1 n; = n. Leta(y, i) be the set of components in

classi that have been concealed when the actor’s informatign Note thata (i) = UM, a(¥,1).
Note that)M can be determined fromi and hence is also known to both players.

Several systems have large number of components but small or moderate number of classes of components
and states. For example, cognitive radio networks may have large number of channels, but often, many of
these channels are statistically identical, and hence the number of classes of channels is often substantially
less than the number of channels. Also, the total number of states of these channels is likely to be moderate
as well. Next, consider the gambling example (Section I-B). The cards that have the same color constitute
the same class as the distributions of the random numbers are statistically identical for all cards of the
same color. Usually, the number of colors, or more generally number of types of cards (e.g., aces, jokers,

etc.) is small although the number of cards can be large.
We first present a key property of systems with arbitrary number of classes of components.
1) Symmetry among components in the same class:

Definition 5.3: Let u, v be behavioral policies of the controller and actor respectivelyiang N. The
mirror image w.r.t(i, j) of the policy u (v, respectively)u’’ € U (v € V, respectively) is a policy
obtained as followsu"/ (%) = u(Z") 7.5 (V" (¥); = v(§*); andv™ (§); = v(§"7);, respectively).
Intuitively, v*7 (v*7, respectively) treat asj and;j asi.

Definition 5.4: A policy v € U (v € V, respectively) is said to be symmetric w.it, j) if u = u®J

(v = v™9, respectively). A policyu € U (v € V, respectively) is said to be symmetric if it is symmetric
w.r.t. each pair of components that are in the same clasd/tet i/ andV*® C V be the classes of all

symmetric policies of the controller and actor respectively.
The following theorem shows the existence of a symmetric saddle point policy for each player.

Theorem 5.1:There exists a symmetric policy € U® (v € V?, respectively) for the controller (actor,

respectively) such that (v, respectively) is a saddle point policy of the controller (actor, respectively).

Proof: We prove the theorem for the controller, and the proof for the actor is similaSt.€t V' x N
be the set of tuple$a, b) such thata,b are in the same class andis not symmetric w.r.ta,b. From

the definition of a symmetric policy; is symmetric (i.e.u € U®), iff S* = ¢. From Theorem 4.2, it is
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sufficient to prove that if there exists an optimal solutionf LP-CONTROLLER such thatS“ # ¢, there

exists an optimal solutio of LP-CONTROLLER such thatS* ¢ S*. Note that such & is symmetric

w.r.t. a strictly larger set of tuples of components in the same class. Thus, repeating the process, we can
obtain an optimal solution which is symmetric w.r.t. all components in the same class, and is therefore,

a symmetric optimal solution by definition.

Thus, we now considex an optimal solution oLP-CONTROLLER such thatS" # ¢, and set to obtain
an optimal solutioniz of LP-CONTROLLER such thatS* ¢ S*. Thenu®? is an optimal solution of
LP-CONTROLLER for any pair of components, b that are in the same class. Now, consider an arbitrary

_ u(@g+u’(E)g
2

pair of components, j € S%, and a policyaz € U such thatu(z)y for eachz € K™
andy € A.(¥). In other words,i is the same as except that it treats component(j respectively)
asu treats component (i respectively)50% of the time. Now, since: is a linear combination of two
optimal solutions olLP-CONTROLLER u andu’/, @ is an optimal solution of P-CONTROLLER Next,
W (T)g = % = u(Z); for eachZ € K™ and§ € A.(%). Thus, a*/ = 4, and hencei is
symmetric w.r.t.(i, 7). Thus, (i,j) ¢ S% Also, note thatu’/, and clearlyu, are symmetric w.r.t. all
tuples(a, b) ¢ S*. Thus, is clearly symmetric w.r.t. all such tuples, and no such tuple belong¥'in

Thus,S% C 8*\ {(i,4)}. The result follows. [ ]

Using Theorem 5.1, we show that the computation timelLfBFCONTROLLER and LP-ACTOR can be

substantially reduced whelW and K are small.
2) Additional Terminologies:

Definition 5.5: Let 1(Z) be a matrix with)/ rows andK columns and entries i, . .., » such that(Z); ;
is the number of components afthat are in class and statej. Let £ = {1 : 1(¥) = 1,7 € K"}. Let
m(y) be a matrix withA/ rows andK columns with entries i), ..., n — |a(%)| such thatn(y); ; is the
number of components af that are in clasg and statej. Let Mz = {m : m(y) = m,y € A.,(Z)}.
Note thatMz; = Mg if 1(#) = 1(72). Let M) = Uzeien 1zm1Ma and M = Ure s M.

With slight abuse of notation, we have uskdn to denote both the functions and the values of the
functions as well - the implication of specific usages are clear from the context. We wlTJ nsestead

of 4/ so as to substantially reduce the number of variables and constraihf3-0ONTROLLER
Note that (a){7 : m(y) = m,y € A.x(Z)}| depends o’ only throughl(Z). and (b)|{Z : 1(Z) = 1,7 €
A.(Z)}| depends ory only throughm(%). Thus, we can introduce the following definitions.

Definition 5.6: Let ©;(1, m) denote for one (representativé) such thatl(¥) = 1 the number ofy

in A.(Z) such thatm(y) = m. Let ©(1, m) denote the number of system state vectdrsuch
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that (a)1(Z) = 1 and (b)y € A.(Z) for one (representative) such thatm(y) = m. Let ©3(m) =
|7 € Ack - m(y) = ml|, andOy(l) = |Z € K" : (&) =1].

Note that both©;(1, m)O3(m) and ©;(1, m)O4(1) constitute the number of tuples,y) such that
Ze K" ye A ,(Z) and1l(Z) =1, m(y) = m. Thus,

O2(1, m)O3(m) = O1(1, m)O4(1)
Definition 5.7: Let

Ri(m) = max r(j

1( ) S e 50 (])7

lij —mi
ni— 300 miy

Note thatR; (m) is the expected reward the actor obtains when its informatighsisch thatm(y) = m

K-1
andRy(Lm,i) = Y r(j)
j=0

and it selects a component whose state has been revealed and whose state is the highest among those
of the components whose states have been revealed. Rigb,m, i) is the expected reward the actor
obtains when its information i§ such thatm(y) = m, the system state i8 such thatl(¥) =1 and it

selects a component of classiniformly amonga(¥, ).

Definition 5.8: Let C(m), 1 < |C(m)| < min(k, M), be the set of classes for which at least one
component’s state has been concealed when the actor’s informatisrsuch thatm(y) = m. Let
®(m, i) be the number of components of clasthat have been concealed when the actor’s information

¥ is such thatm(7) = m. Note that®(m, i) = Z]K:_()l m;;, and|C(m)| = ZZ , min (®(m,q),1).
Finally, sinces(Z) = g(z%/) for all i, j that are in the same class(z!) = g(z?) if 1(z') = 1(z?).
Definition 5.9: Let #'(1) denote3() for some (representative) € X" such thatl(z') = 1, and3"(1) =
O4(A'().

Thus, 3" (1) is the probability that the system is in a statesuch thatl(z) = 1.

3) Polynomial time computation of saddle point policy of controller for consiant/: We now consider

the simplification ofLP-CONTROLLER

Note thatu is symmetric if and only |fu( Dy = u(@ 2) whenever the following conditions hold: (a)
1(#) = 1(#?), (b) m(y") = m(7?) (€) §* € A(7"), §? € A(7?). Let /(1) denoteu(F); for some
(representativeY € K", ¢ € A.x(Z) such thatl(Z) = 1, m(y) = m. Thus, eachu € U® is uniquely
described byu®(1)m whereuw’(1)y, = O1(1, m)u/(1)m. Also, {u*(1)m }men, 1z IS @ Symmetric policy

for the controller if and only |me€Ml W(m=1 forallle £ andu(l)y, >0 V me Mple L.
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We now statd P-CONTROLLER-CLASS that computequ®(1),, } for a symmetric saddle point policy of

the controller.

LP-CONTROLLER-CLASS: Min {m)w () D N(m) s.t.
meM

VmeM, nm) > Ri(m) Y B’ )m
l:meM,

Y. W )mBa(lm, i)

LmeM,;
Smem, Wm = 1 forallle

W(Dm > 0V me Myle L.

Vme M,ie€C(m)n(m)

Y

(13)

Theorem 5.2:The optimum solution{«®(1)m } me, 1cc Of LP-CONTROLLER-CLASS is a symmetric

saddle point policy for the controller.

We first provide the intuition behind the proof. Note that since we focus on computing a symmetric saddle
point policy of the controller, and since the components in the same class are statistically identical, we
can consider the controller's and actor’s informationf,aﬁ instead ofZ, i respectively. Nowy(m) is

the product of the probability that the controller revegilgo the actor and the maximum possible utility

of the actor if the controller uses poliey’ and revealsrn to the actor. Thusy(m) plays the role of:(y)

in LP-CONTROLLER (refer to the paragraphs just after the statement of Theorem 4.2 and the formulation
of LP-CONTROLLERat the end of Section 1V-B.1). Nov,P-CONTROLLER-CLASS seeks to compute the
saddle-point policyu® by minimizing the sum of)(17:) over the set of all possible information vectors

m of the actor, just aE P-CONTROLLER seeks to compute the saddle-point policgf the controller by
minimizing the sum o&(y) over the set of all possible information vectafsf the actor. The constraints

of LP-CONTROLLER-CLASS can be motivated by relating them to thoseL&f-CONTROLLER formulated

just before Section IV-B.2. The right hand side of the first constrainitRfCONTROLLER-CLASS is the
product of (i) the probability that the controller reveailsto the actor and (ii) the utility of the actor if

it selects the revealed component with the highest state and the controller usesup@ainy revealsr

to the actor. The right hand side of the second constraimtFsCONTROLLER-CLASS is the product of

(i) the probability that the controller reveais to the actor and (ii) the utility of the actor if it selects a
concealed componeritand the controller uses poliay’ and revealsn to the actor. Both of these are
analogous with the r.h.s. of the corresponding constraintsPFeGEONTROLLER Again, analogous to the

last two constraints df P-CONTROLLER, «° satisfies the last two constraintsloP-CONTROLLER-CLASS
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if and only if it is a policy of the controller. The formal proof is relegated to appendix C.

Thus, LP-CONTROLLER-CLASS hasO(n?5M) variables and)(n?%M) constraints. Thus, the computa-
tion time of LP-CONTROLLER-CLASS s polynomial inn and exponential ifk(, M, and hence polynomial
in n if K, M are constants. The computation time can be reduced furthek fer 2. We first observe

the following.
Observation 2:For K = 2, there exists a saddle point policy for the controller in the GC class.

Recall that the ties can be broken by policies in the GC class in several different ways and thus all members
in the GC class need not be saddle points; a saddle point policy can be computed if the appropriate tie-
break policy is determined. Also, for any policy of the controller, there exists a best response policy of
the actor that selects a component whose state is revealed and which is inwtaeeeverm; ; > 0 for

somei. Due to these observationsP-CONTROLLER-CLASS needs to considef(m), u®(l),, only for

1, m such thatzf‘i1 lipn <k5m1=0Vie{l,...,M}. Thus,LP-CONTROLLERCLASS hasO(kM)

variables and) (k™) constraints in this case.

4) Polynomial time computation of saddle point policy of actor for consiamt/: We now consider the
computation of a symmetric saddle point policy for the actor. Note that the actor's polécgymmetric
if and only if v(7'); = v(7?); whenever the following conditions hold: (a)(7*) = m(7?) (b) 4, are

in the same class, and (b) either {i¥ a('), j € a(#?), or (i) i € a(§'),7 & a(§?),y} = yj2

Consider am € M and a classg € C(m). Then, letv'(m); be the probability with which a symmetric
policy v selects one (representative) component, gafat is in class and has been concealed, when
the actor's information state is a (representatiyeuch thatm(y) = m (i.e., v'(m); = v(7);). Let
v¥(m); = ®(m,j)v'(m);, j € C(m), be the total probability with which a symmetric polieye V*

of the actor selects a component which is in clasand whose state has been concealed, when the
actor’s information state is a (representatiyeguch thatm(y) = m. Thus,v selects a component whose

state has been revealed with probability- 7) v°(m(y));. From Corollary 4.3 it is sufficient

JeC(m(
to consider only sensible policies. Note thdtm);, j € C(m) uniquely specifies a symmetric sensible
saddle point policy € V* for the actor. Also, anf{v*(m); } e, jec(m) that satisfies®(m); > 0 Vi €

C(m),m € M, icoim)v®(m); <1V .m € M provides a symmetric, sensible policy for the actor.

We prove that the following linear prograrhP-ACTOR-CLASS, computes s symmetric, sensible saddle

point policy for the actor.
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LP-ACTOR-CLASS: MaX, 1), v¢ (m):} Z 8" (1)

lel
nd) < (1= > v’(m)Ri(m) | + Y v*(m);Ry(l,m, i)
ieC(m) i€C(m)
Vme M,lel

v’(m); > 0 Viel(m),meM

Theorem 5.3:The optimum solutiof{v*(m); }me a1, jec(m) Of LP-ACTOR-CLASS is a symmetric saddle

point policy for the actor.

We first provide the intuition behind the proof. Note that since we focus on computing a symmetric
saddle point policy of the actor, and since the components in the same class are statistically identical,
we can consider the controller's and actor’s informatiorf,aﬁ instead ofZ, ¢ respectively. Nowy(1)

is the minimum possible utility of the actor if it uses policyand the state of the system lisThus,

n(1) plays the role o(Z) in LP-ACTOR (refer to the paragraphs just after the statement of Theorem 4.3
and just before the formulation dfP-ACTOR at the end of Section IV-B.2). Now,P-ACTOR-CLASS
seeks to compute the saddle-point policyby maximizing the sum of;(ﬁ over the set of all possible
system stateg just asLP-ACTOR seeks to compute the actor's saddle-point polidyy minimizing the

sum of z(Z) over the set of all possible system staigsThe constraints of. P-ACTOR-CLASS can be
motivated by relating them to those bP-AcTOR formulated at the end of Section IV-B.2. The right
hand side of the first constraint afP-ACTOR-CLASS is the actor’s utility when the system statelis

and the actor’s information i8: and the actor uses the poliey This is analogous with the r.h.s. of the
first constraint ofLP-ACTOR. Again, analogous to the last two constraintd &f-ACTOR, v* satisfies the

last two constraints oEP-ACTOR-CLASS if and only if it is a policy of the actor. The formal proof is

relegated to appendix D.

LP-ACTOR-CLASS hasO(Mn®™M) variables andD (n?%) constraints. Thus, the computation time of

LP-ACTOR-CLASS is polynomial inn and exponential ik, M.

Observation 3:For K = 2, there exists a symmetric sensible saddle point policy of the actoy® such

that 3 ;cc(m) v°(m); = 1 if all revealed components are in stétend yv*(m); = 0 otherwise.

i€C(m
Also, when K = 2, for any policy of the actor, there exists a best response for the controller that is
a GC policy (with a tie-break rule that may depend on the actor’'s policy). Using these observations,
when K = 2, the number of variables and constraintsLé#-CONTROLLER-CLASS may be reduced to
O(MEM) and O(kM) respectively.
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B. Approximation guarantees using polynomial time computable policies for arbitrary systems

Saddle point policies can be computed in polynomial time when eithés a constant (usind.P-
CONTROLLER or LP-ACTOR) or K, M are constants (usingP-CONTROLLER-CLASS or LP-ACTOR-

CLASS). The computation however becomes intractable when two or more of these parameters are large.
We first develop notions of approximations for saddle-point policies. We next prove that simple linear
(O(n)) or almost linear @ (nlogn)) time computable policies can provably approximate the saddle point
policies as per the above notions. We also show that the approximation guarantees are tight, which in
turn, completely characterize the performances of these policies. The policies we consider are intuitively

appealing, and simple to implement, and hence may be of independent interest.

We first develop notions for approximations of saddle-point policies. Recall that when both players use
saddle-point policies, the utility of the actor ;""" which in turn equals the max-min and the min-max
utilities of the actors. Since the actor seeks to maximize its utility, a policy of the actor may be considered
a k—approximation of its saddle-point policy, if the actor is guaranteed to obtain a utility that is at least
Rg*’”*/m irrespective of the policy used by the controller. Similarly since the controller seeks to minimize
the actor’s utility, a policy of the controller may be considered-aapproximation of its saddle-point
policy, if this policy ensures that the actor’s utility is at m@ﬂﬁg*’”* irrespective of the policy used by

the actor.

We show that there exists@(n) time computablédmin(k, M) + 1)—approximation of the saddle-point
policy for the actor. This policy, which is referred to as UA (“uniform for actor”) and which is a variation
of the UCA policy described earlier, selects uniformly among the concealed components and the revealed
component with the highest state. Specifically, irrespective of the policy of the controller, the utility of
the actor with this policy is at lea3t/(min(k, M)+ 1) times the max-min utility of the actor for arbitrary
n, K, k, M (Theorem 5.4, Section V-B.1). Thus, the worst case approximation guarantee of this policy
is (k+ 1) (attained for large\), and the approximation guarantee when all components are statistically
identical (/ = 1) is 2. Also, the approximation improves with decreaselinand k. We also show that

this approximation bound is tight in that given any ande > 0, there exists a system with = 3

which satisfies the following property: if the actor uses this policy, the controller can select its policy
S0 as to upper bound the actor’s utility bby(min(k, M) + 1) times the actor's max-min utility plus
(Section V-B.1). Nevertheless, our extensive simulations reveal that for large rangek of, M, 3, the
minimum utility attained by the actor when he uses this policy is at [2Astof the max-min utility of

the actor (Section V-B.1).
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We next show that there exists@(nlogn) time computablet + 1-approximation of the saddle-point
policy for the controller. This policy is referred to as UGC (a GC policy that breaks ties randomly and
uniformly). Specifically, irrespective of the policy of the actor, the utility of the actor when the controller
uses this policy is at mogdt + 1 times the actor’s min-max utility for arbitrary, K, k, M, and at most

2 times the actor’s min-max utility for arbitrary, K,k and M = 1 (i.e., when all components are
statistically identical) (Theorem 5.5, Section V-B.2). We also show that this approximation bound is tight
in that there exists a system whelé = 2, K = 3 and the maximum utility of the actor when the
controller uses this policy is at leasttimes the min-max utility of the actor (Section V-B.2). Also, when
M = 1, given anye > 0, there exists a system whefé = 3 and the maximum utility of the actor
when the controller uses this policy is at ledst ¢ times the min-max utility of the actor (Section V-
B.2). Again, our extensive simulations reveal that for large ranges &f, k£, M, 3, the maximum ultility
attained by the actor when the controller uses this policy is at iddimes that of the min-max utility

of the actor (Section V-B.2).

1) Approximation guarantees using a linear time computable policy for the a€onsider a symmetric
sensible policy, denoted as “Uniform for Actor” oJA”, that selects each concealed class and a revealed
component with equal probabilities, i.€/,A(m); = 1/ (|C(m)| + 1) for eachm € M, i € C(m). Note

that this uniguely describes any symmetric sensible policy since a symmetric policy selects uniformly
among the concealed components in each class and a sensible policy selects only a revealed component
with the highest state whenever it selects a revealed component. Clearly, the actoOfegtime and

memory to select a component using this policy.
We now prove the main result of this section.

Theorem 5.4:For anyg3, k,n, K, M,

1
inf RYYA > sup inf RZU

we" P T min(k, M) + 1 4y uelt
Proof: Consider an arbitrary sensible policyc V*. Let T'(1,m, v) be the utility of the actor if the
system state i§ such thatl(¥) =1 and the actor’s information is somgsuch thatm(y) = m and the

actor uses the policy. Then,

T(L,m,v) = (1- > v*(m))Ri(m)+ Y  v*(m);Ry(l,m,i)

1€C(m) 1€C(m)
< max <R1(m), 'IICI?X) Ry (1, m, z)) : (14)
1eC(m
Al f Ruv = "( T(1, 15
so a5 = 20 tuip T(lm.v) 9

lel
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From (14) and (15),

u,UA
inf RG™ = gﬂ min T(1,m,UA), where, (16)
Ry (m) + ZieC(m) RQ(I’ m, Z)
T(l,m,UA) = Clm) [ 31
maX(Rl(m)v maX;cc(m RQ(L m, Z) . .
> inlh Aj)<+)1 (since|C(m)| < min(k, M))  (17)

Now, let v* be the optimal solution oEP-ACTOR-CLASS. Then, from Theorem 5.3 and (15),

su 1nfR’ ) min 7'(1,m,v*
UGEUGM IEZ,C/B mEM )

Thus, from (16) it is sufficient to prove that(l,m,UA) > T(1,m,v*)/ (min(k, M) + 1) for each
le L,me M.

Sincev* is sensible, the result follows from (14) and (17). ]

For K = 2, the approximation ratio can be improved slightly using Observation 3. It follows from
Observation 3, the actor's policy that selects (a) a component in sti#téhe state of at least one
such component is revealed and (b) each concealed class with equal probability, otherwise, attains a

1/ min(k, M) approximation ratio.

We prove that the approximation bound obtained for UA is tight. Specifically, givencany), there
exists a system with components whose state processes are mutually independent where the minimum
utility obtained by the actor when it uses the uniform policy exceedsnin(k, M) + 1) times the max-
min utility in the system by at most. Consider a system wher®l > 1, K = 3. Let the first class
consist of only 1 component which is in st&ev.p. 1 —e; and in staté) w.p. e;. The components in the
other classes are either in statesr 1 (the probability distributions for the state processes for channels
in different classes are different). The state processes of the components are mutually independent. Let
r(2) =1—461,7(1) = d2. Let v; € V be the policy that always selects the component in the first class.
Clearly Ry™ = (1—61)(1 — e1) for anyu € Y. Thus,sup,ey infuey Ry® > (1 —d1)(1 — €1). Consider
awu; € U that conceals the component from the first class, and selects the rest of the components to be
concealed in a round robin manner. Specifically, in the first raunselects one component from classes

., M each, repeats the process in second, third rounds etc.kuatimponents have been selected.

Thus, min(k, M) classes are concealed. Clearly, the state of the component that has the highest state
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among the revealed components is no more thafhus,

ul,UA
Ry

IN

(r(2) + min(k, M)r(1)) /(min(k, M) + 1)

< (1 + min(k, M)d2)/(min(k, M) + 1)
(1-061)(1—e1)
(min(k, M) + 1)
sup,cy infuey Rg’v
(min(k, M) + 1)

IN

+ € for sufficiently smalldy, 0o, €1

+ €.

Thus, inf e Ry ™" < (Supvev infyc Ry /(min(k, M) + 1)) + . The result follows. The scenario
where this approximation factor turns out to be tight however rarely arises in practice, and as our numerical
computations demonstrate, the minimum utility obtained by the uniform policy closely approximates the

max-min utility of the actor in general.

We now compare, using simulations, the minimum utility attained by the actor when he uses UA with
max-min utility attained by the actor. We assum@) = i + 1 throughout. We first consider the case

when the states processes of all components are independent. In this case, we consider the subcases
where (a) the states of each component is selected uniformly atmong K — 1 (b) the states of each
component is selected as per a Binonfiak 1, v) distribution for differentv and (c) the states of odd

(even) numbered components are selected as per (a) (b). We next consider the case where the states of
components are correlated. In this case, we consider the subcases where (a) only the states of first two
components are correlated (i.e., if the first component is in stébe second component is in state.p.

« and in states adjacent towith equal probabilities otherwise), and the states of the rest of the channel

are mutually independent and (b) the states of all components are correlated (ije fothe state of
component; depends on that of — 1 in the manner described in (a)). In each of the above subcases,

we allow the state of the first component to be either fixed or distributed Uniformly or Binomially. For

all these scenarios we consider different valuesgf, K such thatn < 6, K <4,k <n — 1. In all of

these cases, the minimum utility attained by the actor when he uses UA turns out to be af3eaist

the max-min utility of the actor [12]. Thus, the performance of UA is generally significantly better than

the worst case analytical bounds.

2) Approximation guarantees using an almost linear time computable policy for the contrGibersider
UGC, the GC policy of the controller that breaks ties randomly and uniformly. Clearly, HGE. Note
that the controller need®(nlogn) time andO(n) memory to decide its actions using this policy.

Theorem 5.5:For any 8, k,n, K, sup,cy Ry° " < (k + 1) infuey sup,ey Rj". For any 8 such that

M =1 and arbitraryk, n, K, sup,ey Rgo " < 2infuey sup,ey Rj".
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Proof: The proof proceeds in three steps. The first step is to obtain a sufficiency condition for the

following to hold for an arbitrary: and arbitrary3, k, n, K, M: sup,cy RUG v

< kinfyey sup, ey R;’v.
The next steps are to show that the above sufficiency condition is satisfied foe<(&)+ 1 and arbitrary
8, k,n, K, M and (b)x = 2 and arbitraryk, n, K andM = 1. The last two steps prove the two statements

of the theorem respectively.

Step 1: We obtain a sufficiency condition for the following to hold for an arbitraryand arbitrary
B, k,n, K, M: sup,cy REGC’” < K infyey Supyey Rg’”. Towards this end, we will first prove that

sup REGC’” < k inf RZ’U’ for somev’ € V. (18)

veY uel

UGC,v

NOow, sup,,¢y, Rﬁ < Kinfyey sup,ey RZ’W sinceinf, ¢y Rg’” < sup,ey infyey RZ’” = infy, ey sSup,ey RZ’U.

Now, (18) can be proved as follows. Clearly,
sup Ry°" = 3 B(#)0(7) (19)
VeV Fekr

for some real-valued functioft on K™ which depends o, k,n, K, M. Let T'(Z, y,v") be the utility of

the actor if the system state i5and the actor’s information i§ and the actor uses the policy. Then,

fRYY = T'(%.§.0). 20
inf Rj xgc;ﬁ i T'(%,9,v) (20)

Thus, from (19) and (20), (18) follows if we can prove that there exists a polio§ the actor such that
for eachz € K",

0(Z) <k min T'(Z,7,v). (21)
JEA(T)

Thus, (21) is the desired sufficiency condition.

Terminologies for Steps 2 and 3We introduce some terminologies first. Consider an arbitiagy "
andy € A.(Z). Let UGQX) be the set of components whose states have been concealed by UGC when
the system state ig, D, (7, %) = UGC(Z)\ a(7), andDy(Z, i) = a(7) \UGC(Z). Let #YCC be the actor's

information under UGC when is the system state.

Note that the actor's best response to UGC is to select components whose states have been concealed
since the state of any such component is at least as high as that of a component whose state has been
revealed. Thusf(#) = 3=, cyacra) V(Z7°C)ir (:) wherey(VC) is a probability distribution on UG()

which depends oV®C 3, k, n, K, M.

Step 2: We now consider the general case, that is, arbitrdrg, n, K and construct a policy’ of

the actor such that the sufficiency condition (21) holds wite= k& + 1. Thus, the first statement of
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the theorem follows. We consider that selects each concealed component w/g|a(%)| + 1) and

the revealed component with the highest state W/g|a(y)| + 1). Then, T'(Z,v,v") = (1/(|la(¥)| +

1)) (maXiEN\a@ (@) + Xicap) 7“(;1?@-)) . Sincela(y)| < k asy € A.(Z), (21) follows if we can show
that

0(%) < max 7(z;)+ r(z;) VZeK" e A(D). 22
< gy rie)+ 3 rie) 7e A @2)

i€a(y) 1€UGC(Z) ica(y)

< Y(@C)r(zi) = > r(w) (sinced < 4(zY°%); <1V i € UGC(x))
1€D1 (Z,7) €D (Z,7)

< @) ()
1€D1 (Z,7)

< max_r(z;) (since Y 4(@%); <1)
€D (Z9) i€Ds (7,7)

< max r(x;) (sinceDy(Z,7) = UGC(Z) \ a(7) € N\ a(i)))
ieM\a()

Thus, (22) follows.

Step 3 We now consider the special case in whith= 1, and construct a policy’ of the actor such

that the sufficiency condition (21) holds with= 2. Thus, the second statement of the theorem follows.

SinceM = 1, all components are statistically identical. In this case, from symmet#rcC@); = 1/k,
for eachi € UGC(%), that is, the actor’'s best response is to select each concealed componentiw.p.

Thus,
0@ = D rlx)/k (23)

i€UGC(Z)
We consider’ that selects (a) each concealed component W.f2|a(%)|) and the revealed component
with the highest state w.[./2 if at least one component is concealed and (b) the revealed component
with the highest state if no component is concealed. Then,
I > ica@) T(:)
T (%,4,0) = (ie%iﬁﬁzj)r(xi) + %) /2.
Here, we assume that the second term in the sufnifisu(y) = ¢. Thus, from (23), (21) follows if we

can show that

V#e K", ije AdT). (24)
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If a(y) = ¢, the result clearly holds as then the left hand sideis;car 7(z;), and sincdUGC(Z)| = k,

max;en 7(Zi) = 3 ;cucc) r(€i)/k. We therefore assume thaty) # ¢.

3 r(z) Ziea(g)j’( ;) < ¥ r(zi) 3 7? (sincela(y)| < k asy € A.(7))

i€UGC(Z) k (&) - i€UGC(Z) k ica(if)
r(z:)

<

< 2
1€D1(Z,Y)

< %z%)fﬂ)r(xi) (since|D:(Z,9)| < k asD1(Z, ) C UGC(Z))
€D (T,y

< maxr(ai) (sinceD (7, 7) = UGC(T) \ a(g) A"\ a(7)).
S a

Thus, (24) follows. [ ]

Note that whenK = 2 the approximation factor turns out to lie (instead ofk + 1) for arbitrary

8, k,n, M. The proof is similar, but considers only statgsn which all revealed components are in
state0 and instead of’ considers a policy Modified Uniform for Actor or MUA V that selects (a) a
revealed component that is in stdté the state of one such component is revealed and (b) the concealed

components with equal probability if the revealed components are intate

We now prove that the approximation bound obtained for UGC is tight. We first consider the case with
arbitrary 3, and prove that there exists a system wh&fe= 2 and the maximum utility of the actor
when the controller uses UGC istimes the min-max utility of the actor. Let’ = 3,7(2) = 1,7(1) =
1/k,r(0) = 0,n > 2k — 1. The first class of components h&scomponents such that one of these
components is in stat2 and the rest are in sta® and every component is as likely as any other
component to be in state Each component in the second class is in staldGC will conceal the state

of the component that is in stafeand the states of — 1 components in the second class. Consider the
policy of the actor that selects a component in the first class provided one such is concealed. When the
controller uses UGC, this policy always selects a component in $tatad thus fetches the maximum
possible utility, 1. Thus, the actor's maximum expected utility in this casé.iféNow, consider another
policy of the controller which conceals the states ofkalomponents in clask and reveals the states of

the components in clags Now, if the actor selects a component in clasg attains a utility ofl /£. If the

actor selects a component in cldsst maximizes its utility by selecting the component uniformly among
the components in clads since it does not know the state of any component in dasx all components

in classl are statistically identical. Thus, the actor’s expected utilityligc) x 1+ (1 —1/k) x 0 = 1/k.

Thus, the actor’'s overall maximum expected utilitylisk. Thus, the min-max expected utility of the
actor is at most /k. Thus, the maximum utility of the actor when the controller uses UGC is at keast

times the min-max utility of the actor.
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We now prove that the approximation bound obtained for UGC is tighdfor 1. Specifically, given any

e > 0, there exists a system with components whose state processes are identically distributed where the
maximum utility obtained by the actor when the controller uses UGC exceedstimes the min-max

utility in the system. Letn = 2(|1/e] + 1), k =n/2 and K = 3. Let r(2) = 1,7(1) = 1/k,r(0) = 0.

Next, 3 is such that the state processes of all components are identically distributedcamadponent

is in state2, k — 1 components are in state and the rest of the components are in stateUnder

UGC, the controller conceals the states of the components that are in statedince all components

are identically distributed, when the controller uses UGC, the actor maximizes its utility by selecting
uniformly and randomly among the components whose states have been concealed. Thus, the actor’s
expected utility is(1/k) x 1+ (1 — 1/k) x (1/k) = (2/k) — (1/k?). Now, consider another policy of

the controller which conceals the states of (a) the component that is irRstai (b)k — 1 components

that are in stat® (selected randomly and uniformly among the components that are in(3ta&nce

the state processes of the components are identically distributed, in order to maximize its utility, the
actor can select (a) a component whose state is revealed and which is in sta{®) a component
selected uniformly among those whose states have been concealed. Under (a), the actor’s expected utility
is 1/k. Under (b), the actor’s expected utility {d/k) x 1 + (1 — 1/k) x 0 = 1/k. Thus, the actor’s

overall expected utility id /. Thus, the min-max expected utility of the actor is at mb&t. Note that
%ﬁ/m) =2—-1/k=2-2/n>2— e Thus, the maximum utility obtained by the actor when the

controller uses UGC exceeds- ¢ times the min-max utility in the system.

We now compare, using simulations, the maximum utility attained by the actor when the controller uses
UGC with min-max utility attained by the actor. We use the same scenarios as those described in the last
paragraph of Section V-B.1. When the states of the components are independent, the maximum utility
attained by the actor when the controller uses UGC turns out to be very close to the min-max utility.
When the states of the components are correlated, the maximum utility attained by the actor when the
controller uses UGC turns out to be withirs times that of the min-max utility of the actor [12]. Thus,
the performance of UGC is generally significantly better than the worst case analytical bounds.

3This can for example be accomplished by selecting the component that is ir2stétl probability 1/n first, and then

selecting the set ok — 1 components that will be in state among the rest such that the probability of selecting each set of

sizek — 1 is equal, and assigning staleto the rest of the components.
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VI. GENERALIZATIONS

We have so far assumed that the controller conceals a sub-vector of the system state, and reveals the
residual sub-vector. But, in general, the controller may wish to reveal a function of the system state. For
example, the controller may reveal (a) limited information about each component of the system state,
e.g., it may reveal for each component an interval that contains its state, or (b) a vector of a certain
minimum dimensionality where each component is a function of the system state, e.g., compagnt

be the average of the firstcomponents of the system state, etc. Next, we have assumed that the actor
selects a component of the system state, and its utility is determined by the state of the component it
selects. But, in general, it can select a subset of the components, and its utility may be a function of
the subset it selects. For example, in cognitive radio networks, an actor may decide to transmit in more
than one channels, and split its transmission power among the channels it selects; its rate of successful
transmission then depends on the channels it selects and its power allocation. Our framework can be

generalized to capture the above artifacts, and many of our results extend to this case.

We now describe the generalizations of the terminologies and solution concepts. Far €#ch, there
exists a setd.(Z), such that the controller selects a mempaf A.(Z) as the actor’s information, when

the system state i8. Here, A.(Z¥) must be designed in accordance with the constraints on the controller’s
actions, e.g., in previous sectiops (Z) consists of all sub-vectors of of dimension at least — k&, now

A.(Z) may also consist of the range of other vector functiong’ d¢ifiat satisfy specific constraints, e.g.,
intervals containing the states of the components,a#tc. The actor knows the vectgrselected by the
controller, which may in turn reveal the controller’s action (i.e., the function selected by the controller to
obtainy from Z) to the actor. When the actor’s informationgsits possible actions constitute a $étv),
e.g.,NV(¥) may consist of possible power allocations used by the transmitter when its informagjon is

If the system state i§, and the actor selects actianthen the payoff for the actor is a functien(Z, z)

of both Z, z (in previous sections we assumed th&tr, z) = r(x,)). Both the controller and the actor
know n, K, 3, A.(Z) for eachZ € K", N(¢) for eachy € A, w(7,2) for each® € K", z € N () for
eachy € A.(Z). Next, a behavioral policy.(Z) (v(y), respectively) of the controller (actor, respectively)

is the probability distribution used by the controller (actor, respectively) for selecting its actions when
its information isz (i, respectively). Specificallyu(z); (v(¥)., respectively) is the probability with
which the controller (actor, respectively) selects the informagoa A.(Z) for the actor (selects the
action z € N(y), respectively) when its information i8 (7, respectively). The controller's (actor’s,
respectively) utility J*(Z) (J° (i), respectively) is given by/*(Z) = —E*'[r(z,B)|X = 7|
(J2 (i) = By lw(X, B)|Y, = #j], respectively) whereB is the action of the actor. Finally, the PBE
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can now be described as before.

We now discuss the generalizations of the results. An equivalent zero-sum game can be obtained as
in Section IV-A. Here,Rg’” can be defined using/(#, B) instead ofr(xp) in (3). Theorem 4.1 and
Corollary 4.1 hold - the proofs remain the same. The saddle point policy for the controller can be
computed using a slight modification &fP-CONTROLLER as described in p. 19. The modification is

that the lower bound constraint become) > > - 4 ) B(@)w(z, j)u(@)y V j € N(9),7 € A..
Theorem 4.2 holds. The modified version IoP-CONTROLLER has O(} ;< x» | Ac(%)|) variables and
O(deAc
using a slight modification df P-ACTOR as described in p. 22. The modification is that the first constraint

N (@) + X zexn |Ac(Z)]) constraints. The saddle point policy for the actor can be computed

becomes:(Z) < 3~ vy v(@)iw(x,7) forall 7 € A(Z), 7 € K", and N must be replaced by (%) in
the second and third constraints. Theorem 4.3 holds. The modified versioR-a€TOR hasO(K™ +

Zg’eAc

programs depend polynomially d&”, | A.(Z)| for eachZ € K™ and |V (y)| for eachy € A.. Next, we

N (7)) variables an® (> ... |-Ac(Z)|) constraints. Thus, the computation times for these linear

can generalize the UA policy for the actor - the generalization is to uniformly choose among different
possible actions. We can show that for gy, K, infuey Ry~ > ] SWey infucu Ry

The proof is similar to that for Theorem 5.4. The performance guarantee may be improved if some
actions inN\ (%) can be ruled out for eacli € A, for at least one saddle point policy of the actor. For
example, in the special case in whigh(y) = N for eachy € A, |N ()| = n, for eachy € A.. But, in
addition, whenA,. consists of the sub-vectors of the vectorsh of sizen — k or more, we know that at

least one saddle point policy of the actor is sensible (Corollary 4.3) and therefore selects among at most
k + 1 possible actions irrespective gf Thus, the worst case approximation guaranteg/i& + 1) in
Theorem 5.4. Obtaining performance guarantees for the controller, using polynomial time computation,

as in Section V-B.2, however remains open.

VIlI. CONCLUSIONS AND OPEN QUESTIONS

We have studied a leader-follower game where the actions of the leader (controller) determine the infor-
mation available to the follower (actor). By concealing information, the leader degrades the performance
of the follower that attempts to choose one out of several resources with the best state among all. We have
provided a rich body of computation and approximation tools for that problem along with mathematical

foundations and complexity analysis.

Open problems include establishing that the computation of the saddle point policies is NP-hard, and

determining whether the approximation factors can be substantially improved while using polynomial
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time computation. We plan to extend our study to the stochastic game framework in which the states can

change in time according to some Markov structure.
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APPENDIX
A. Proof for Lemma 3.1

Proof: Recall thatu®C refers to an arbitrary policy in the GC class. We show that there exists a
system withn = 2,k = 1,K = 3,0 = r(0) < r(1) < r(2) = 1 and g under which the states of the

components are mutually independent and statistically identical such that

Ry < sup RS, (25)
s veY A

GC
Thus, from (6),inf,cy Rg’” < SUPyey Rg " for eachv € V. Thus,u®C is not a saddle point policy

for the controller. The lemma follows from Theorem 4.1.

Let ¢; be the probability with which a component is in statendr(1) < g2/(q0 + 92), g0 > 0,41 > 0.
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LetU C Us be the set of symmetric policies of the controller that conceal one component reveal the state
of a component that is in stageonly if both components are in stae Note that every policy i/ can

be described by a parameterwhose role is as follows: when the system state {(0,1), (1,0)}, the
controller reveals the component that is in stateith probability . Also, u®C € ¢4 and corresponds

toa=0.

Let Vj C Vs be the set of symmetric policies of the actor that (a) never selects a revealed component
that is in state if a component is concealed, (b) selects a component that is in2stitiee state of one

such component is revealed and selects the component with higher state if the states of both components
are revealed and one has a higher state than the other. Note that every palitycam be described

by a parametety whose role is as follows: when a component that is in stagerevealed and another

component is concealed, the actor selects the revealed component with probability

Using Theorem 5.1, we can prove that there exists polieieg U/ andv* € Vj that constitute the

saddle point policies of the controller and the actor respectively. Foramylf;,v' € V5,

inf R%Y < inf R%Y < R, <R, < sup RY" <supR"" (26)
ueu P uelly Y = f vEVS s vey A
-/
whereR; = inf sup R3"
p uely yeys A
R, = sup inf R3".
g veV; ueldy p

Sinceu* € U} andv* € V§ constitute the saddle point policies of the controller and the actor respectively,
infuey Ry" = sup,ey Ry . Thus, all the inequalities in (26) become equalities dbe= u*, v’ = v*.
Thus, sinceinf, Rg’“* < Rg*’”* < Supyey R;*’”, RE*’”* = Rj. Also, sinceu*,v* constitute the
saddle point policies of the controller and actor respectivBJy,’”* = Ry. Thus, Ry = EB' Also,
clearly, sup,cy: Rl < sup,ey R . Thus, (25) follows if we show that

GC
R} < sup Ry v, (27)
veVy

Consider arbitrary: € U7, V§ and leta and 3 respectively represent andv. First, £ [r(zp)| X =
7 = ayr(l) + (1 — a)r(1) if £ € {(0,1),(1,0)}, and Egm[r(xB)]X =z = (1) + (1 —~) if
7e{(1,2),(2,1)}. Next, Eg’”[r(mg)p? = 7] does not depend am, v if & ¢ {(0,1), (1,0), (1,2),(2,1)}.
Also, 5(Z) = qoq1 If € {(0,1),(1,0)}, and3(Z) = qiqe if ¥ € {(1,2),(2,1)}. Thus, from (3),

Rg" =2g0q1 (ayr(1) + (1 = e)r(1)) + 2012 (47(1) + (1 = 7)) + C, (28)

whereC' is a constant that depends o q¢1, g2 but nota;, .
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GC
Sincea = 0 for €, from (28), forv € V3, Ry " =2q0qir(1) +2q192 (y7(1) + (1 — 7)) + C. Thus,

GC
sup Ry " = 2goqir(1) + C + 2g1g2 max (yr(1) + (1 —7))
veV; 0<~<1
= 2qoq1m(1) + C +2qi1q2 (sincer(1l) < 1). (29)
/ _ . _ _
Ry = C+ 01%21%(1 0lélrglfgll 2q0q1 (ayr(1) + (1 — a)r(1)) 4+ 2q1g2 (yr(1) + (1 — 7)) (from (28))
= O+ 20 max (y7(1)(g0 +42) + (1 —7)g2) (sincey < 1,7(1) = 0)
= C+2qqe sincer(l) < q2/(qo + q2)- (30)
Now, (27) follows from (29) sinceo > 0,91 > 0,7(1) > 0. ]

B. Proof for Lemma 3.2

Proof: Let vSBA refer to an arbitrary policy in the SBA class. Recall the description of the MUA
policy for the actor at the end of Section V-B.1. We show that there exists a systerm with, k =
2, K =2,r(0) =0,r(1) = 1, g under which the states of the components are mutually independent, a

policy v’ of the controller such that

' wSBA X w
Ry < inf RyMA, (31)

B. BA

_ SBA , . SBA s

Thus, sincénf, RZ’” < RZ T andinf ey RZ’MUA < sup,ey infuey RZ’” = Ry, infyey RZ’” <
SBA . .

Ryg. Thus, from (6),infucy Ry < sup,cy Ry" for eachu € U. Thus,vS* is not a saddle point

policy for the actor. The lemma follows from Theorem 4.1.

Let ¢; be the probability with which a component is in statandg; > max(q2, ¢3). Thus,vSBA selects

componentl whenever componerit has been concealed and no revealed component is inlstate

Letu' € U (a) conceal components and never reveal a component that is in biatéess all components
are in statel and (b) conceal componeftunless both componensand 3 are in statel, and reveal

componentl otherwise. Now,

w vSBA
Rg™  =q+(1—q1)qas. (32)

Clearly, for anyu € U, RZ’MUA > 01/2+ 09, where©; is the probability that only one component is in

statel and O, is the probability that two or more components are in statdow, ©1 = ¢;(1 —¢2)(1 —
q3) + (1 —q1)(1—g3) +g3(1 = q1)(1 — gq2) and Oz = q1 (1 — (1 — g2)(1 — g3)) + (1 — q1)g2g3. Thus,
©1/2+02 = a1+ (1—-q1)eqs —q1(1—q2) (1 —q3)/2+q2(1 —q1) (1 —q3) /2 +q3(1 — q1) (1 — g2) /2. We now
show that there exisig > g2 > g3 such thaiga(1—¢1)(1—g3) +g3(1—q1)(1—q2) —q1 (1 —g2)(1 —g3) >
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0.0625. Thus, for anyu € U, RZ’MUA >01/2+ 02> q1 + (1 — q1)g2q3 + 0.0625. Hence, (31) follows
from (32).

Let g1 = 0.5,q2 = 0.5 —€1,q3 = 0.5 — €2, wheree; > 0 and ez > 0. Note thatga(1 — ¢1)(1 —
(]3) + Q3(1 — ql)(l — QQ) = (1 — q1)(q2 + q3 — 26]26_[3) =0.5 (1 — €1 — €2 — 2(05 — 61)(05 — 62)) . Next,
(1 —q2)(1 —g3) =0.5(1 — g2 — g3+ q2q3) = 0.5 (€1 + €2+ (0.5 — €1)(0.5 — €2)) . Thus,

©(1-—q)1—g3) +¢@(l—q)1—q)—q(l—qg)1—g3)
= 0.5(1 —2¢; —2e2 —3(0.5 —€1)(0.5 — €2))
> 0.5(1 — 261 — 265 — 0.75 — 3eren) = 0.5(0.25 — 21 — 2en — 3ere2) > 0.0625 for small ey, eo.

C. Proof for Theorem 5.2

Proof: Consider the description dfP-CONTROLLER at the end of Section IV-B.1, and restrict the
feasible solutions: to ¢/*. From Theorem 5.1, the optimal solution bP-CONTROLLER is a saddle
point policy of the controller even with this restriction, and the optimal solution is clearly a symmetric
policy for the controller. The last two constraints lilP-CONTROLLER-CLASS ensure that its optimal
solution is a symmetric policy of the controller. Thus, we only need to show that there is a one-to-one
correspondence between the sets of optimal solutioheEONTROLLER-CLASSandLP-CONTROLLER

with the above restriction, such that the corresponding solutions in the two sets provide the same policies.

Consider LP-CONTROLLER with the additional constraint that € U*. Let L(y) = {1 : 1(¥) =
1 for someZ s.t.y € A.(Z)}. Note thatL(y) depends ory only throughm(%), and can therefore be

denoted asL(m(y)). Sinceu € U*, for eachy € A.;, we can write the first constraint as

2(5) = Rim(@) Y B mep©O2(1, m(7)). (33)
1eL(m(y))
Let (i) denote the class of componentNow, note thatzl’:‘%j(’f';“@f; rim) _ Ry(1, m(%),v(7)). Thus,
for eachy € A, i € a(y), we can write the second constraint as
@)z Y, B WU OOl m(@)Ra(l,m(7), v(i)). (34)
leL(m(y))

Since Mz depends orr' throughl(z) and can be denoted byt z), the third and fourth constraints are:

> 01(1(@), m)u (I(F)m =1 forall #e K™ (35)
meMyz)
U (UZ))m@ >0 ¥V T €K, 7€ A(). (36)
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We can write the objective function 3s,,,c v( >_g.m(7)=m #(¥)-

The optimization that maximizes the above objective function subject to constraints(33) to (36) has at
least one optimal solution in whicl/, z depend onz, ¢ only throughm(y) and1(Z), and any such/’

is in U*. Thus, we can rewrité. P-CONTROLLER with the additional constraint as follows.

LP-CONTROLLER Ming (1), 2(m)} 2omenm ©3(m)z(m)
Ry(m) Yy F/ Dt (DmO2(1 m) ¥ m € M
Piecim) B (D' (NmO2(1, m)Ro (1, m, i) V. m € M,i € C(m)
Y omer, ©1(m)u' (), = 1 forallle £
WDm > 0V lelymeM,

v

z(m)

z(m)

v

SinceO3(1,m)O3(m) = ©1(1,m)O4(1)) and©4(1)5' (1) = 3"(1), the first constraint is:

O3(m)z(m) > Ry (m Z A"’ (1)mO1(1,m) V m € M.
IGL

Similarly, the rest of the constraints can be written as

O3(m)z(m) > Y B' )/ D)mO1(l, m)Ry(l,m,i) ¥V m € M,i € C(m)
leL(m)
> W ()mO1(lm) = 1V1eL

meM,
v (DmO1(1L,m) > 0V 1€ L,me M,
In the above linear program, we substitute @)(m)z(m) with n(m) in the objective function and the
first two constraints, and (h)' (1), ©1(1, m) with «*(1),, in all the constraints. Clearly, there is a one to
one correspondence, given by (a) and (b) above, between the set of optimal soluti®rs ONTROLLER
(with the additional constraint that € 1/°) and the resulting linear program whichli®-CONTROLLER-
CLASS, and they have equal optimal values. Also, the corresponding optimal solutions provide the same

symmetric policy for the controller. The result follows. ]

D. Proof for Theorem 5.3

Proof: Consider the description @fP-ACTOR at the end of Section IV-B.2, and restrict the feasible
solutionswv to V*. From Theorem 5.1, even with this restriction, the optimal solutioh.BfACTOR is
a saddle point policy for the actor, and is clearly a symmetric policy as well. It is therefore sufficient
to show that there is a one-to-one correspondence between the sets of optimal solutiBrsafor-
CLASS and LP-AcTOR with the above restriction. such that the corresponding optimal solutions in the

two sets provide the same policies.
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ConsiderLP-AcToOR with the additional constraint thate V. SinceRs (1(Z), m(y),i) = Zg@’i(yl;f)%)

for eachZ € K™ andy € A, (&), we can write the first constraint as

(%) = Ri(m()) (1 > v'(m(ﬁ))i@(m(ﬁ)vi))Jr Y. v (m(@), P(m(f). i) Re (1(F), m(7), 7).

ieC(m(y))

We can write the second and third constraints as

o (m(y)); ®(m(§),i) > 0, VieC(m(y)),7 < Ack.

SV (m@); em(§),i) < 1V §E A
i€C(m(y))

The objective function can be written 38, » >~ (7= 8(2)2(Z), which equal$ . » 5'(1) -7z 2(2)-

The optimization that minimizes the above objective function subject to the above constraints has at least
one optimal solution in which’, > depend onz,y only throughl(#) and m(y) respectively, and any
suchv’ is in V. Thus, the dependence ahy can be replaced with(Z) andm(y). Thus, the objective
function for example becomey,, . 5'(1)z(1)©4(1), and thens’(1)0©4(1) can be replaced by”(1). Also,

v'(m);®(m, i) can be replaced by*(m); in all the constraints.

Clearly, there is a one to one correspondence, between the set of optimal solutidisaofror (with
the additional constraint that € V*) and the resulting linear program which li¥-ACTOR-CLASS, and
they have equal optimal values. Also, the corresponding optimal solutions provide the same symmetric

policy for the actor. The result follows. ]



