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On Resource Allocation in Fading Multiple Access
Channels - An Efficient Approximate Projection
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Abstract

We consider the problem of rate and power allocation in aiplakaccess channel. Our objective is to obtain
rate and power allocation policies that maximize a geneyatave utility function of average transmission rates on
the information theoretic capacity region of the multiplecess channel. Our policies does not require queue-length
information. We consider several different scenariosstFiwve address the utility maximization problem in a non-
fading channel to obtain the optimal operating rates, aedent an iterative gradient projection algorithm that uses
approximate projection. By exploiting the polymatroidustiure of the capacity region, we show that the approximate
projection can be implemented in time polynomial in the nentif users. Second, we consider resource allocation in
a fading channel. Optimal rate and power allocation pdiciee presented for the case that power control is possible
and channel statistics are available. For the case thariasion power is fixed and channel statistics are unknown,
we propose a greedy rate allocation policy and provide bswmdthe performance difference of this policy and the
optimal policy in terms of channel variations and structoféhe utility function. We present numerical results that
demonstrate superior convergence rate performance fagréfesly policy compared to queue-length based policies.
In order to reduce the computational complexity of the gygealicy, we present approximate rate allocation policies
which track the greedy policy within a certain neighborhaloat is characterized in terms of the speed of fading.

Index Terms

Multiple access, resource allocation, power controljtytinaximization, fading channel, rate splitting.

. INTRODUCTION

Dynamic allocation of communication resources such as Wwaltd or transmission power is a central issue in
multiple access channels in view of the time varying natdréhe channel and the interference effects. Most of
the existing literature focuses on specific communicatidmemes such as TDMA (time-division multiple access)
[1], CDMA (code-division multiple access) [2], [3], and ORD(Orthogonal Frequency Division Multiplexing) [4]
systems. An exception is the work by Teeal. [5], which consider the notion dhroughput capacityor the fading
channel with Channel State Information (CSl). The throughgapacity is the notion of Shannon capacity applied
to the fading channel, where the codeword length can beraribitlong to average over the fading of the channel.
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Tseet al. [5] consider allocation of rate and power to maximize a linedity function of the transmission rates
over the throughput region, which characterizes the pantshe boundary of the throughput capacity region.

In this paper, we consider the problem of rate and power atioe in a multiple access channel with perfect
CSI. Contrary to the linear case in [5], we consider maxingza general utility function of transmission rates over
the throughput capacity region. Such a general concavigyutihction allows us to capture different performance
metrics such as fairness or delay (cf. Shenker [6], Sriké&pt Pur contributions can be summarized as follows.

We first consider a non-fading multiple-access channel evler introduce a gradient projection algorithm for
the problem of maximizing a concave utility function of teanission rates over the capacity region. We establish
the convergence of the method to the optimal rate allocatBince the capacity region of the multiple-access
channel is described by a number of constraints exponentiale number of users, the projection operation used
in the method can be computationally expensive. To redueectimputational complexity, we introduce a new
method that utilizesapproximate projectionsBy exploiting the polymatroid structure of the capacitgion, we
show that the approximate projection operation can be imefged in time polynomial in number of users by using
submodular function minimization algorithms. Moreovee present a more efficient algorithm for the approximate
projection problem which relies on rate-splitting [8]. $hilgorithm also provides the extra information that allows
the receiver to decode the message by successive cangelatio

Second, we consider a fading multiple access channel anly stie case where channel statistics are known
and transmission power can be controlled at the transit@wing to strict convexity properties of the capacity
region along the boundary, we show that the resource aibrcatoblem for a general concave utility is equivalent
to another problem with a linear utility. Hence, tbptimal resource allocation policies are obtained by applying
the results in [5] for the linear utility. Given a generallityi function, the conditional gradient method is used to
obtain the corresponding linear utility.

If the transmitters do not have the power control feature emahnel statistics are not known, the throughput
capacity region is a polyhedron and the strictly convexigperties of the region do not hold any more. Hence, the
previous approach is not applicable. In this case, we censidjreedy policy, which maximizes the utility function
for any given channel state. This policy is suboptimal, haevewe can bound the performance difference between
the optimal and the greedy policies. We show that this boart@jht in the sense that it goes to zero either as the
utility function tends to a linear function of the rates orthe channel variations vanish.

The greedy policy requires exact solution of a nonlineagpm in each time slot, which makes it computationally
intractable. To alleviate this problem, we present appnaxée rate allocation policies based on the gradient piioject
method with approximate projection and study its trackiagabilities when the channel conditions vary over time.
In our algorithm, the solution is updated in every time sioaidirection to increase the utility function at that time
slot. But, since the channel may vary between time-sloes,lélel of these temporal channel variations become
critical to the performance. We explicitly quantify the iagt of the speed of fading on the performance of the
policy, both for the worst-case and the average speed afida@ur results also capture the effect of the degree of
concavity of the utility functions on the average performan

An important literature relevant to our work appears in tbatext of cross-layer design, where joint scheduling-
routing-flow control algorithms have been proposed and shimaachieve utility maximization for concave utility
functions while guaranteeing network stability (e.g. [@0], [11], [12]). The common idea behind these schemes
is to use properly maintained queues to make dynamic desisidout new packet generation as well as rate
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allocation.

Some of these works ([10], [11]) explicitly address the fgdchannel conditions, and show that the associated
policies can achieve rates arbitrarily close to the optibeded on a design parameter choice. However, the rate
allocation with these schemes requires that a large omiiniz problem requiring global queue-length information
be solved over a complex feasible set in every time slot. i§lethis may not always be possible owing to
the limitations of the available information, the procesgsipower, or the complexity intrinsic to the feasible
set. Requirement for queue-length information may imposehmmore overhead on the system than channel
state information. On the other hand, even in the absencadifid, the interference constraints among nearby
nodes’ transmissions may make the feasible set so compéxtite optimal rate allocation problem becomes
NP-hard (see [13]). Moreover, the convergence results etigdength based policies ([10], [11]) are asymptotic,
and our simulation results show that such policies may stiftan poor convergence rate. In fact, duration of a
communication session may not be sufficient for these algus to approach the optimal solution while suboptimal
policies such as the greedy policy seems to have superi@rpgnce when communication time is limited, even
though the greedy policy does not use queue-length inféomat

In the absence of fading, several works have proposed angzedaapproximate randomized and/or distributed
rate allocation algorithms for various interference medelreduce the computational of the centralized optintrati
problem of the rate allocation policy ([14], [9], [15], [1L3[L6], [17]). The effect of these algorithms on the utility
achieved is investigated in [13], [18]. However, no similaork exists for fading channel conditions, where the
changes in the fading conditions coupled with the inabtlitysolve the optimization problem instantaneously make
the solution much more challenging.

Other than the papers cited above, our work is also relatedetavork of Vishwanattet al. [19] which builds
on [5] and takes a similar approach to the resource allatgiimblem for linear utility functions. Other works
address different criteria for resource allocation ingtgdminimizing delay by a queue-length based approach [20],
minimizing the weighted sum of transmission powers [21]d aonsidering Quality of Service (QoS) constraints
[22]. In contrast to this literature, we consider the utilinaximization framework for general concave utility
functions.

The remainder of this paper is organized as follows: In $ectl, we introduce the model and describe the
capacity region of a fading multiple-access channel. IntiSedll, we consider the utility maximization problem
in a non-fading channel and present the gradient projectiethod with approximate projection. In Section IV, we
address the resource allocation problem with power coatrdlknown channel statistics. In Section V, we consider
the same problem without power control and knowledge of ohhstatistics. We present the greedy policy and
approximate rate allocation policies and study their tiegkbehavior. Section VI provides the simulation results,
and we give our concluding remarks in Section VII.

Regarding the notation, we denote bythe i-th component of a vectar. We denote the nonnegative orthant
by R%, i.e.,, R} = {z € R" | > 0}. We writez’ to denote the transpose of a veciorWe use the notatioPr (-)
for the probability of an event in the Borel-algebra onR™. The exact projection operation on a closed convex
set is denoted by, i.e., for any closed convex sé&f C R" andz € R", we haveP(z) = argmin, x|z — y|,
where|| - || denotes the Euclidean norm.
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II. SYSTEM MODEL

We considerM transmitters sharing the same media to communicate to #egiageiver. We model the channel
as a Gaussian multiple access channel with flat fading sffect

M
Y(n) =Y VHi(n)Xi(n) + Z(n), (1)
i=1

where X;(n) and H;(n) are the transmitted waveform and the fading process of-thetransmitter, respectively,
and Z(n) is properly bandlimited Gaussian noise with variaiég We assume that the fading processes of all
transmitters are jointly stationary and ergodic, and tlaiaary distribution of the fading process has continuous
density. We assume that all the transmitters and the racbaaxe instant access to channel state information. In
practice, the receiver measures the channels and feedshgackannel information to the transmitters. The implicit
assumption in this model is that the channel variations arelnslower than the data rate, so that the channel can be
measured accurately at the receiver and the amount of felediis is negligible compared to that of transmitting
information.

Definition 1: The temporal variationin fading is modeled as follows:

|Hi(n+1) — Hy(n)| =V, foralln, i=1,..., M, 2)

where theV,is are nonnegative random variables independent acrosshatsefor each. We assume that for each
i, the random variableg,’ are uniformly bounded from above k¥, which we refer to as thenaximum speed of
fading Under slow fading conditions, the distribution Gf is expected to be more concentrated around zero.

Consider the non-fading case where the channel state vectilxed. The capacity region of the Gaussian
multiple-access channel with no power control is descriiedollows [23],

Cy(P, H) = {R eRY:Y R < C(ZHZ-PZ-,NO),for al SC M=1{1,... ,M}}, )
€S €S
where P; and R; are thei-th transmitter’s power and rate, respectively(P, N) denotes Shannon’s formula for
the capacity of the AWGN channel given by
C(P,N) = %log(l + %) nats 4
For a multiple-access channel with fading, but fixed trassion powersP;, the throughputcapacity region is

given by averaging the instantaneous capacity regions iegpect to the fading process [24],

Cu(P) = {R eRY:Y R, <Ep [C(ZHZ-PZ-,NO)] Sforall § C M}, )
ieS €S
where H is a random vector with the stationary distribution of thdif@ process.

A power control policyw is a function that maps any given fading stdteto the powers allocated to the
transmittersw(h) = (w1 (h),..., 7 (h)). Similarly, we can define the rate allocation poli@, as a function that
maps the fading statk to the transmission rate® (h). For any given power-control policy, the capacity region
follows from (8) as

Cy(m) = {R eRY Y R <Ep [C(ZHiwi(H),NO)} for all § C M}. (6)

€S €S
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Tseet al. [5] have shown that the throughput capacity of a multipleegascfading channel is given by
C(P) = | Cs(m), )
weg

whereG = {m : Eg[m;(H)] < P;,for all i} is the set of all power control policies satisfying the agergpower
constraint. Let us define the notion of boundary or dominane ffor any of the capacity regions defined above.

Definition 2: The dominant faceor boundaryof a capacity region, denoted b¥(-), is defined as the set of all
M-tuples in the capacity region such that no component candseased without decreasing others while remaining
in the capacity region.

I1l. RATE ALLOCATION IN A NON-FADING CHANNEL

In this section, we address the problem of finding the optiomdration rates in a non-fading multiple-access
channel. Without loss of generality, we fix the channel statetor to unity throughout this section, and denote the
capacity region by a simpler notatiaty, (P) instead ofC,(P, 1), where P > 0 denotes the transmission power.
Consider the following utility maximization problem for &/-user channel.

maximize  u(R)

subjectto R € Cy(P), (8)

where R; and P; are i-th user rate and power, respectively. The utility functiofR) is assumed to satisfy the
following conditions.
Assumption 1:The following conditions hold:

(&) The utility functionu : Rﬂ‘f — R is concave with respect to vectdt.
(b) u(R) is monotonically increasing with respect Iy, fori =1,..., M.
Assumption 2:There exists a scaldB such that

lgll < B, forallgeodu(R)and allR,

wheredu(R) denotes the subdifferential af at R, i.e., the set of all subgradielﬂsof u at R.

Note that Assumptiofl2 is standard in the analysis of subgnagnethods for non-differentiable optimization
problems [25]. The maximization problem inl (8) is a convergram and the optimal solution can be obtained
by several optimization methods such as the gradient giofeenethod. The gradient projection method with
exact projection is typically used for problems where thejgmtion operation is simple, i.e., for problems with
simple constraint sets such as the non-negative orthantsanplex. However, the constraint set [d (8) is defined
by exponentially many constraints, making the projectioabfem computationally intractable. To alleviate this
problem, we use an approximate projection, which is obthimg successively projecting on violated constraints.

Definition 3: Let X = {x € R"|Ax < b}, where A has non-negative entries. Lgtc R" violate the constraint
alx <Ub;, fori e {iy,...,q}. The approximate projection @f on X, denoted byP, is given by

P(y) = Pi, (.. (Pir_,(Pi(y)))),
whereP;, denotes the exact projection on the hyperplémec R"|a; = = b;, }.

The vectorg is a subgradient of a concave functign D — R at xo, if and only if f(x) — f(x0) < g'(x — x0) for all x € D.
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Fig. 1. Approximate projection oR on a two-user MAC capacity region

An example of approximate projection on a two-user multgbeess capacity region is illustrated in Figlte 1.
As shown in the figure, the result of approximate project®mat necessarily unique. In the following, when we
write P, it refers to an approximate projection for an arbitraryesrdf projections on the violated hyperplanes.
Although the approximate projection is not unique, it isygd®nonexpansive as claimed in the following Lemma.

Lemma 1:The approximate projectio® given by Definitior[B has the following properties:

(i) For anyy € R™, P(y) is feasible with respect to séf, i.e., P(y) € X.
(i) P is pseudo-nonexpansive, i.e.,

IP(y) =gl < lly = gll. forall §eX. 9)
Proof: For part (i), it is straightforward to see th&(y) is given by (cf. [26] Sec. 2.1.1)

Pi(y) =y —

7.

Sincea; has only non-negative entries, all componentgy afre decreased after projection and hence, the constraint
7 will not be violated in the subsequent projections. Thisvehdhat given an infeasible vectgr € R", the
approximate projection operation given in Definition 3 giela feasible vector with respect to sét

Part (ii) can be verified by using the nonexpansiveness pippd projection on a closed convex set (See
Proposition 2.1.3 of [26]) fot times. Sincey is a fixed point ofP; for all ¢, we have

Py —gll = Pl (Pi(y) = Pil.. (Pi(@)))ll
< P (Pi () = Pio(- - (Pu (@)l

IA

ly — 9. (10)
|

Here, we present the gradient projection method with apprate projection to solve the problem inl (8). The
k-th iteration of the gradient projection method with appneate projection is given by

R = P(RF + ofgh), g¢F € Ou(RY), (11)

where g* is a subgradient of. at R*, and o denotes the stepsize. Figure 2 demonstrates gradientcpooje
iterations for a two-user multiple access channel. Thefalg theorem provides a sufficient condition which can
be used to establish convergencelofl (11) to the optimalisalut
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C(Py, Ny) |— W

-
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Fig. 2. Gradient projection method with approximate pro@con a two-user MAC region

Theorem 1:Let Assumption§ll and 2 hold, ad&* be an optimal solution of problernl(8). Also, let the sequence
{R*} be generated by the iteration in{11). If the stepsiZesatisfies
2 (u(R*) — u(Rk))

0<ak < , (12)
lg" 2
then
IR*! — R*|| < | R* — RY|. (13)
Proof: We have
IR* + o*¢" — R*||> = | R — R*|* + 20" (R* — R*)'g" + (")?|l¢"|1*.
By concavity ofu(-), we have
(R* — B")g" > u(R") — u(R"). (14)
Hence,
|RF + k" — RY|? < | RF — RYP — o |2 (w(R) - u(RY)) — (a*)g"1]
If the stepsize satisfie5 ([L2), the above relation yieldsfdlewing
IR* + o*¢" — R*|| < |IR" — R*|.
Now by applying pseudo-nonexpansiveness of the approgimajection we have
IR*! — R*|| = |P(R" + a"g") — R*|| < | R* + ofg* — R*|| < | R* — R*||.
[

Theorem 2:Let Assumption§11 andl 2 hold. Also, let the sequefi#¥} be generated by the iteration in {11).
If the stepsizex* satisfies[[IR), thed R*} converges to an optimal solutioR*.
Proof: See Proposition 8.2.7 of [25]. [ |
The convergence analysis for this method can be extendatifferent stepsize selection rules. For instance, we
can employ diminishing stepsize, i.e.,

o
of — 0, Z of = 00,
k=0

or more complicated dynamic stepsize selection rules ssctin@path-based incremental target levalgorithm
proposed by Brannlund [27] which guarantees convergemtieet optimal solution [25], and has better convergence
rate compared to the diminishing stepsize rule.
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A. Complexity of the Projection Problem

Even though the approximate projection is simply obtaingdidiccessive projection on the violated constraints,
it requires to find the violated constraints among expomaépntmany constraints describing the constraint set. In
this part, we exploit the special structure of the capaatyion so that each gradient projection steplin (11) can
be performed in polynomial time if/.

Definition 4: Let f : 2™ — R be a function defined over all subsets./of. The functionf is submodularif

FSUT)+ f(SNT) < f(S)+ f(T), forall S, T € 2. (15)

Lemma 2:Define fo(S) : 2M — R as follows:
fo(8) =C (> P, N,), forall SC M. (16)

€S

If P, > 0 for all i € M, then fo(S) is submodular. Moreover, the inequali§5) holds with equality if and
onlyif SCT,orT CS.
Proof: The proof is simply by plugging the definition g%:(-) in inequality (15%). In particular,

11 [ (N0+ziespi)(N0+zieTPi) }
(

Fo(S) + fo(T) = F(SUT) — f(SNT) = =1lo
S+ (M) = JEUT) = JENT) = gloa | (RS B MVo + Soicson P)
= Lo [1+ 2ije\)x\s) Bl ]
2 (No + > icsnr Po)(No + D iesur i)
> 0. (17)

Since P; > 0, the above inequality holds with equality if and onlySf\ 7" = (), or 7'\ .S = ). This condition is
equivalent to eithelS or 7' contains the other. [ |
Theorem 3:For anyR ¢ R{‘f, finding the most violated capacity constraint[ih (3) can bigt@n as asubmodular
function minimizatior(SFM) problem, that is unconstrained minimization of a saoiar function over als' C M.
Proof: We can rewrite the capacity constraints@jf(P) as

fe(S)=> Ry >0, forall §C M. (18)
€S

Thus, the most violated constraint Bt corresponds to

S* = arg min fC(S)—ZEi.

SeaMm ;

€S
By Lemmal2 f- is a submodular function. Since summation of a submodular @dinear function is also
submodular, the problem above is of the form of submodulaction minimization. [ |

It was first shown by Grotschet al. [28] that an SFM problem can be solved in polynomial time. &leseveral
fully combinatorial strongly polynomial algorithms in thiéerature. The best known algorithm for SFM proposed
by Orlin [29] has running timeD(M©). Note that approximate projection does not require anyipewder for
successive projections. Hence, finding the most violatetstraint is not necessary for approximate projection. In
view of this fact, a more efficient algorithm based on ratksm is presented in AppendiX I, to find a violated
constraint. It is shown in Theorein]11 that the rate-spiitirased algorithm runs i@®(M? log M) time, whereM
is the number of users.

Although a violated constraint can be obtained in polyndriiae, it does not guarantee that the approximate
projection can be performed in polynomial time. Becauses ipdssible to have exponentially many constraints
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violated at some point and hence the total running time ofpifigection would be exponential in/. However,

we show that for a small enough stepsize in the gradient giojeiteration [(1ll), no more thah/ constraints can

be violated at each iteration. Let us first define the notidnexpansion and distance for a polyhedra.
Definition 5: Let Q be a polyhedron described by a set of linear inequalities, i.

Q={xecR": Az < b}. (19)

Define theexpansionof @ by ¢, denoted bys(Q@Q), as the polyhedron obtained by relaxing all the constramts
@9), i.e.,.&(Q) ={x e R": Az < b+ 01}, wherel is the vector of all ones.

Definition 6: Let X andY be two polyhedra described by a set of linear constraintsEleX ) be an expansion
of X by d as defined in Definitioq]5. The distandg (X,Y") betweenX andY is defined as the minimum scalar
d such thatX C &;(Y) andY C &;(X).

Lemma 3:Let f- be as defined if(16). There exists a positive scalsatisfying

5< %(fC(S) v fo(T) — fe(SNT) — fe(SUT)),  forall 5,7 €2M, SAT #S,T, (20)

such that any point in the relaxed capacity region ofidruser multiple-access channé}(C,(P)), violates no
more than) constraints ofC,(P) defined in [(B).
Proof: Existence of a positive scaldr satisfying [20) follows directly from Lemmial 2, using the ffahat
neitherS nor 1" contains the other one.
Suppose for somé& € & (Cy(P)), there areM + 1 violated constraints of’,(P). Since it is not possible to
have M + 1 non-empty nested sets ", there are at least two violated constraints correspontirgpme sets
S, T € 2M whereSNT # S, T, and

N Ri < —fals), (21)
=
~> R < —fo(D). (22)
i€T
Since R is feasible in the relaxed region,
Y R < fe(SNT)+35, (23)
i€eSNT
> R < fe(SUT)+3. (24)
1€ SUT

Note that if SNT = (), (23) reduces td < 4, which is a valid inequality.
By summing the above inequalities we conclude

5> 3 (fe(8) + folT) — (S NT) ~ fe(SUT)), (25)

which is a contradiction. [ ]
Theorem 4:Let Assumption§]l and 2 hold. Lét < P, < ... < Py, be the transmission powers.
If the stepsizex* in the k-th iteration [T1) satisfies
1 PP
k< log |1+ L2 ,
4BVM (No+ M3 P)(No + X0, P)
then at most\/ constraints of the capacity regiary, (P) can be violated at each iteration step.

(26)
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Proof: We first show that inequality iri_(20) holds for the followingaice of¢:
5:110g{1+ i ity 7 ]
4 (No + 223 P)(No + 3221 B)

In order to verify this, rewrite the right hand side 6f20) as
[ (NO + Zz’es Pi)(NO + ZiGT Pi) }

(No + X iesmr Pi)(No + 3 iesur Bi)

- - P.P;

R Lipe\nx s PP ]

L (No+ Xiesnr P)(No + Xiesur i)
(No + Xiesnr ) (No + 2icsur i)
PP ]
(No =+ >iesnr Pi) (No + YL, P)
PPy }

(No+ 3225 P)(No + 323, P

The inequalities can be justified by using the monotonicftyhe logarithm function and the fact tha$ \ 7') x
(T'\ S) is non-empty becaus€ N T # S, T.

Now, let R* be feasible in the capacity regio@y, (P). For everyS C M, we have

(27)

1
1 log

Vv
=] =

N N I N B

)_..
o
o

Y

1+

—
@)
0Q

V

—
@)
0Q

1+

k

9i

> (RF+aPgl) = ZRera’“Hg’“HZH g
€S €S €S 9
) k

< f($)+—=BY

)+ 5737 2T

< F(S)+a 9)

where the first inequality follows from Assumptidh 1(b), Assption[2, and Eql(26). The second inequality holds
because for any unit vectaet € RM it is true that

D di <) ldil < VM. (29)
i€s i€s
Thus, if of satisfies[(26) theQR* +a*g*) € & (C,(P)), for somes for which (20) holds. Therefore, by Lemma
the number of violated constraints does not exckéd [ |

In view of the fact that a violated constraint can be iderdifie O(M?log M) time (see the Algorithm in
Appendix[]), Theorenil4 implies that, for small enough stepsthe approximate projection can be implemented
in O(M?3log M) time.

In section Y, we will develop algorithms that use the gratiigmjection method for dynamic rate allocation in
a time varying channel.

IV. DYNAMIC RATE AND POWERALLOCATION IN FADING CHANNEL WITH KNOWN CHANNEL STATISTICS

In this section, we assume that the channel statistics apavrknOur goal is to find feasible rate and power
allocation policies denoted big* and=*, respectively, such tha&*(H) € C, (Tr*(H), H), andn* € G. Moreover,

Eg[R*(H)] = R* € argmax u(R), subjectto R € C(P), (30)

wherew(-) is a given utility function and is assumed to be differerigadnd satisfy Assumption 1.
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For the case of a linear utility function, i.es(R) = p/R for someu € RY, Tseet al. [5] have shown that the
optimal rate and power allocation policies are given by tpénaal solution to a linear program, i.e.,

(R*(h),m*(h)) = argnga;)x (u'r —X'p), subjectto r e Cy(p,h), (31)

where h is the channel state realization, and e ]Riﬂﬁf is a Lagrange multiplier satisfying the average power
constraint, i.e.\ is the unique solution of the following equations

o0 oo 2Ach(No + 2) _
> b i(h)dhdz = P, 32
/0 h /2A1(N9+z> I!;Iz k <2)\i(NO + Z) + (,Uk - /Li)h f ( ) § ( )

where F;, and f; are, respectively, the cumulative distribution functi@D§) and the probability density function

(PDF) of the stationary distribution of the channel statecpss for transmittet.

Exploiting the polymatroid structure of the capacity raegi@roblem [(3ll) can be solved by a simple greedy
algorithm (see Lemma 3.2 of [5]). It is also shown in [5] thity positive u, the optimal solution,R*, to the
problem in [(30) isuniquelyobtained. Given the distribution of channel state procdespted byF; and fj, we

* N o 1 o0 2A\h(No + 2) _
B0 = ), 575075 o 1P (oot i ) e )

have

The uniqueness aR* follows from the fact that the stationary distribution ofticshannel state process has a
continuous density [5]. It is worth mentioning that(33) aaetrically describes thHeoundaryof the capacity region
which is precisely defined in Definitidn 2. Thus, there is a-tmene correspondence between the boundary of
C(P) and the positive vectorg with unit norm.

Now consider a general concave utility function satisfykgsumptior L. It is straightforward to show thBf",
the optimal solution to[{30), is unique. Moreover, by Asstmp[I(b) it lies on the boundary of the throughput
region. Now suppose tha®* is given by some genie. We can chogsé = Vu(R*) anda(R) = (u*)'R, as
a replacement for the nonlinear utility. By checking theimjadity conditions, it can be seen th#&t* is also the
optimal solution of the problem in_(80), i.e.,

R* = argmax (u*)R subjectto R < C(P). (34)

Thus, we can employ the greedy rate and power allocatioripslin [31) for the linear utility functior(-), and
achieve the optimal average rate for the nonlinear utilityction«(-). Therefore, the problem of optimal resource
allocation reduces to computing the vec®r. Note that the throughput capacity region is not charaxteriby
a finite set of constraints, so standard optimization methsacth as gradient projection or interior-point methods
are not applicable in this case. However, the closed-forhatisa to maximization of a linear function on the
throughput region is given by (B3). This naturally leadsashe conditional gradient method [26] to compuR&.
The k-th iteration of the method is given by

R*1 = R* + o*(R" — RY), (35)
wherea” is the stepsize an®" is obtained as

R" ¢ argmax. (Vu(Rk)’(R - R’f)) , (36)
ReC(P)
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where Vu(R") denotes the gradient vector af-) at R*. Since the utility function is monotonically increasing
by Assumptiori1L(b), the gradient vector is always positiné,ehence, the unique optimal solution to the above
sub-problem is obtained by (83), in whigh is replaced byVu(R"). By concavity of the utility function and
convexity of the capacity region, the iteratidn |(35) willmverge to the optimal solution of _(B0) for appropriate
stepsize selection rules such as the Armijo rule or limiteakimization rule (cf. [26] pp. 220-222).

Note that our goal is to determine rate and power allocatwlities. FindingR* allows us to determine such
policies by the greedy policy if_(81) fon* = Vu(R"). It is worth mentioning that all the computations for
obtaining R* are performed once in the setup of the communication seskiere, the convergence rate of the
conditional gradient method is generally not of criticalpiontance.

V. DYNAMIC RATE ALLOCATION WITHOUT KNOWLEDGE OFCHANNEL STATISTICS

In this part we assume that the channel statistics are natikamd that the transmission powers are fixed?o
In practice, this scenario occurs when the transmissionepamay be limited owing to environmental limitations
such as human presence, or limitations of the hardware.

The capacity region of the fading multiple access chanmehiis scenario is a polyhedron given Iy (5). Similarly
to the previous case, the goal is to find an optimal rate ailmecgolicy R*(-) with respect to a given utility function,
which we formally define next.

Definition 7: [Optimal Policy] The optimal rate allocation policy dendtby R*(-) is a mapping that satisfies
R*(H) € Cy(P,H) for all H, such that

Eg[R*(H)| = R* € argmax u(R)
subjectto R € Cy(P). (37)

It is worth noting that the approach used to find the optimabuece allocation policies for the case with known
channel statistics does not apply to this scenario, beca@ly§P, h) is a polyhedron and hence, unlike in Section
[Vithe uniqueness of the optimal solutioR* for any positive vectop. does not hold anymore.

Here we present a greedy rate allocation policy and compageiformance with the unknown optimal policy.
The performance of a particular rate allocation policy ifirda as the utility function evaluated at the average rate

achieved by that policy.
Definition 8: [Greedy Policy] Agreedyrate allocation policy, denoted g, is given by

R(H)= argmax  u(R)
subjectto R e Cy(P,H) (38)
i.e., for each channel state, the greedy policy choosesatieeviector that maximizes the utility function over the
corresponding capacity region.
The utility functionu(R) is assumed to satisfy the following conditions.
Assumption 3:For everyd > 0, let N = {H 1du(Cy(P,H),Cy(P)) < 5}. The following conditions hold:
(a) There exists a scald(d) such that for allH € N,

[u(R1) —u(Rs)| < BO)[|[R1 — Rpf|,  forall R |Ri[| > Ds,i=1,2,

where

Ds = inf sup || R]. (39)
HeNs e, (P,H)
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(b) There exists a scalat(d) such that for allH € N,

lW(R(H)) —u(R)| > A(S)||R(H) — R|?>, foral Rec C,(P,H).

Assumptior_B(a) is a weakened version of Assumpgtion 2, whigtoses a bound on subgradients of the utility
function. This assumption only requires bound on the subigra in a neighborhood of the optimal solution and
away from the origin, which is satisfied by a larger class afctions. Assumptiohl3(b) is a strong concavity type
assumption. In fact, strong concavity of the utility imglidAssumption3(b), but it is not necessary. The scadl@)
becomes small as the utility tends to have a linear struatitfe level sets tangent to the dominant face of the
capacity region. Assumptidd 3 holds for a large class oftytilinctions including the well knowm-fair functions
given by ]

fola) ={ o7 (40)
log(z), a=1,
which do not satisfy Assumptidd 2.

Note that the greedy policy is not necessarily optimal faregal concave utility functions. Consider the following

relations

Eu[u(R*(H))] < Eu[u(R

< w(Eu[R*(H)]), (41)

where the first and third inequality follow from the feasityilof the optimal and the greedy policy for any channel
state, and the second inequality follows from Jensen’suakity by concavity of the utility function.

In the case of a linear utility function we hau€E g [R*(H)|) = Eg[u(R*(H))], so equality holds throughout
in (&1) andR(-) is indeed the optimal rate allocation policy. For nonlingtlity functions, the greedy policy can
be strictly suboptimal.

However, the greedy policy is not arbitrarily worse than dipgimal one. In view of[(411), we can bound the perfor-
mance differencey(R*) —u(Ex [R(H)) ), by boundingu(E s [R*(H)])—u(Ex [R(H)] )| or [u(Es[R* (H)]) -
Egr [u(R*(H))H from above. We show that the first bound goes to zero as thenehaariations become small
and the second bound vanishes as the utility function temdi&te a more linear structure.

Before stating the main theorems, let us introduce somailkegfimas. The first lemma asserts that the optimal
and greedy policies assign rates on the dominant face ofapacity region.

Lemma 4:Let u(-) satisfy Assumptiori]1(b). Also, leR*(-) and R(-) be optimal and greedy rate allocation
policies as in Definition§]7 arld 8, respectively. Then,

(@) R(H) € F(Cy(P,H)), forall H.
(b) Pr{H : R*(H) € F(Cy(P,H))} =1.
where 7 (-) denotes the dominant face of a capacity region (cf. Defim{gp

Proof: Part (a) is direct consequence of Assumpfion 1(b) and Dieimi. If the optimal solution to the
utility maximization problem is not on the dominant faceer exists a user such that we can increase its rate
and keep all other user’s rates fixed while staying in the cigpaegion. Thus, we are able to increase the utility
by AssumptioriL(b), which leads to a contradiction.
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For part (b), first note that with the same argument as abovhave
R =En[R*(H)] € F(Cu(P)). (42)

From Definition[2 and the definition of throughput capacitgioa in (8), we have
M M
EH[ZRf(H)} :EH[C<ZH2‘P2‘,N0>]- (43)
i=1 i=1

Thus, Y, RE(H) = C( XM, HiP;, Ny), with probability one, becausg( >, H;P;, No) — S, RE(H) >
0, for all H. Therefore, by definition of MAC capacity region inl (3) we ctude R*(H) € J—“(Cg(P,H)), with
probability one. |

The following lemma extends Chebyshev’s inequality foramy regions. It states that, with high probability,
the time varying capacity region does not deviate much friammiean.

Lemma 5:Let H be a random vector with the stationary distribution of tharutel state process, me&h and
covariance matrix<. Then

2
g
Pr{di (C,(P, H).Cu(P)) > 6} < 2L, (44)
whereo?; is defined as
7 2
o2 & i S TuKETs 1+ | +r’sﬁ)(\/2 log(1 + T H) — 7“152“15) , (45)
SC{1,..M}
where -
~, €8
Ts), =4 Mo’ 46
(Ls); { 0, otherwise. (48)
Proof: See Appendix]I. [

The system parametet; in Lemmal5 is proportional to channel variations, and we ekjigo vanish for very
small channel variations. The following lemma ensures tthatdistance between the optimal solutions of the utility
maximization problem over two regions is small, providedttthe regions are close to each other.

Lemma 6:Let the utility function,u : RM 5 R, satisfy Assumptionsl1 arld 3. Also, I€t; and R} be the
optimal solution of maximizing the utility ovet’,(P) andC,(P, H), respectively. If

dH(Cg(PﬂH)aca(P)) § 57

then we have B(6)\ 4
IRi - Rl < o o2+ (557 @)
Proof: See Appendixll. [ |
The following theorem combines the results of the above taranhas to obtain a bound on the performance
difference of the greedy and the optimal policy.
Theorem 5:Let u : RM — R, satisfy AssumptionEl1 arld 3. Also, I&*(-) andR(-) be optimal and greedy
rate allocation policies as in Definition$ 7 and 8, respetyivThen for eveny € [0%, 00),
2 2 1
*\ D U_H * _ U_H % B(é) B %
u(RY) — u(En[R(H)]) < Zu(RY) + (1 2 )B()[5% + (—A(a)) [o, (48)
where R* = Eg[R*(H)], and A(6) and B(9) are positive scalars defined in Assumptidn 3.
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Proof: Pick anys € [0%, 00). Define the eventy as
Y- {H : di(Cy (P, H),Ca(P)) < 5}.

By Lemmal, the probability of this event is at ledst ‘g—?; Using Jensen’s inequality as in_{41) we can bound
the left-hand side of (48) as follows

u(R*) — u(EH[ﬁ(H)]) < u(R")— EH[u ﬁ(H))]
o? -
= u(R) — (1= ZDEn[u(R(H))|V]
_Pr(V)Eg|u(R(H)) VC}
52 o2 _
< TR + (- ) (uR) - B (R
52 o2 _
< Zhu(m)+ (- 3 Ea[ur) — u(RE)Y]|
52 o2 _
< Zu(R) + (1 B [Ju(R) —u(RED))V]. (49)

In the above relations, the first inequality follows from tleet thatPr(V) > 1 — ‘g—% and the second inequality
holds because of the non-negativity @fR).

On the other hand, by incorporating Lemfda 4 in Assumgtion &@ have
[u(R") —u(R(H))| < B(3)|R(H) — R*|.

Now by Assumptiori 3 we can employ Lemina 6 to conclude thevigtlg from the above relation:

lW(R*) — u(R(H))| < B(5)<5§+<%)%)5%, for all H,dy (Cy(P, H),Ca(P)) < 6,
which implies
EH[\U(R*)—u(ﬁ(H))HV] < B(5)<5§+<%>%)55 (50)

The desired result follows immediately from substituti@) in (49).

[

Theorenm. b provides a bound parameterized Hyor very small channel variations;; becomes small. Therefore,
the parametef can be picked small enough such that the boundih (48) termks¢o Figuré B illustrates the behavior
of right hand side of Eq[(48) as a function ®for different values obry. For each value ofy, the upper bound
is minimized for a specific choice @, which is illustrated by a dot in Figuid 3. As demonstratedha figure,
for smaller channel variations, a smaller gap is achievetitha parametef that minimizes the bound decreases.

The next theorem provides another bound demonstratingrtpadt of the structure of the utility function on the
performance of the greedy policy.

Theorem 6:Let Assumptior(1L hold for the twice differentiable functian: R — R,. Also, let R*(-) and
R(-) be the optimal and the greedy rate allocation policies, ddfin Definitiond¥ and18, respectively. Then for
everye € (0,1],

W(R*) — w(Eg[RH)]) < cu(R?) + %(1 — (e, (51)
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10"

Fig. 3. Parametric upper bound on performance differenterdsn greedy and optimal policies as in right hand sidé_of {d8different

channel variationsg g, as a function of

where R* = Eg[R*(H)], and( satisfies the following

Amax (= VZu(§)) <, forall & [[€ - R*| <r(e), (52)
in which V2 denotes the Hessian af andr(e) is given by
M 2 %
1 L+ HiP)(1+ 3, HiPy)
—vmZe 4 Eg =1 i 53
Proof: Similarly to the proof of Theorernl 5, for anye (0, 1] define the event as
V= {H - dy(Cy(P, H),C,(P)) < "—\/fg} (54)

By Lemmal®, this event has probability at ledst ¢. Lemmal4 asserts that the optimal policy almost surely
allocate rate vectors on the dominant face@f(P, H). Therefore, for almost alH < V, the optimal policy

satisfies the following

1 HZPZ OH 1 OH

Er|5log (14— )| — = <Ri(H) <Em |5 log (1+ HP)| + . 55

H[2 Og( +1+Zj;éz'Hij>] \ﬁ_R’( )< H{2 Og( + )}Jr\/g (55)
Thus, for almost allH € V, we have

1 1+ H;P)(1+ ) .., HiP;
Ri(H) - R < 2L+ B 510g<< JCED WL n)
¢ 1+ 3752 HiP;
Therefore,
273

1 <(1+Hipi)(1+2j7£i HJP])>
—log 7
= r(e), foralmostallH € V. (56)

M
* * UH
|R*(H) - R*| < \/M—\/E—l— § En
=1
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Now let us write the Taylor expansion ef-) at R* in the direction ofR,
1
u(R) = u(R")+Vu(R"(R-R") - (R R (-V*u()(R - R")
1
> u(R") + Vu(R) (R = R") = S|R = B [*Amax (= V*u(€))
for somes, [¢ — R*|| < [|R — R"||. (57)

In the above relation, leR = R*(H) for all H € V. The utility function is concave, so its Hessian is negative
definite and we can combing_(56) with the above relation taewri
1
wR*(H)) > u(R*)+ Vu(R")(R*(H)— R") — §r(e)2§2, for almost allH € V. (58)

Taking the expectation conditioned ®h and using the fact tha*(H) € F(Cy(P, H)) we have the following
1
Eg [u(R*(H))|V] > u(R*) — §r(e)2§z. (59)
Hence, we conclude

u(R") — w(Ep(R(H)))

IN

u(R*) —Eg[u(R*(H))]
wW(R*) — (1 - )Eg [U(R*(H))(V}
Vc}

IN

—Pr(V°)Eg [u(R*(H))

IN

u(R?) — (1= ) (u(R) ~ 5r(0)*9)
= eu(R")+ %(1 — e)r(e)*Q.

where the first inequality is verified by (41), and the thiréduality follows from non-negativity of the utility
function and the inequality ifi_(59). [ |

Similarly to Theoreni b, Theorefd 6 provides a bound paranzeigby e. As the utility function tends to have
a more linear structure tends to zero. For instancg, is proportional toa for a weighted sumu-fair utility
function. Hence, we can choosesmall such that the right hand side 6f51) goes to zero. Thmaber of this
upper bound for different values 6f is similar to the one plotted in Figufe 3.

In summary, the performance difference between the greadyttde optimal policy is bounded from above by
the minimum of the bounds provided by Theorem 5 and Thedadem 6.

Even though the greedy policy can perform closely to thenagitipolicy, it requires solving a nonlinear program
in each time slot. For each channel state, finding even aamanal solution of the problem if_(88) requires a
large number of iterations, making the online evaluatiothef greedy policy impractical. In the following section,
we introduce an alternative rate allocation policy, whialpiements a single gradient projection iteration of the
form (11) per time slot.

A. Approximate Rate Allocation Policy

In this part, we assume that the channel state informati@vadable at each time slat, and the computational
resources are limited such that a single iteration of theligra projection method ifi_(11) can be implemented in
each time slot. In order to simplify the notation in this panid avoid unnecessary technical details, we consider a
stronger version of Assumptidn 3(b).
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Assumption 4: LeR' = argmaxgc o, (p,rryu(R). Then there exists a positive scaldrsuch that

lu(R") —u(R)| > A|R' — R|?, forall Rec C,(P,H).

Definition 9: [Approximate Policy] Given some fixed integér> 1, we define theapproximaterate allocation
policy, R, as follows:

- ) R(H(0), n=0
R(H(n)) £ { R, ol (60)
where ' )
Feag | (), )= |, oy

and Ri(n) € RM is given by the following gradient projection iterations:

R = P [Ri(n) n oﬂ'gg(n)} =1, k-1, (62)

Wheregg(n) is a subgradient ofi(-) at R{(n), o/ denotes the stepsize ar)f@i(n) is the approximate projection on
Cy (P, H(kt(n).

Fork = 1, (62) reduces to taking only one gradient projection iferait each time slot. Fot > 1, the proposed
rate allocation policy essentially allows the channelestat change for a block of consecutive time slots, and
then takesk iterations of the gradient projection method with the apprate projection. We will show below that
this method tracks the greedy policy closely. Hence, thiddgi an efficient method that on average requires only
one iteration step per time slot. Note that to compute thécpalt time slotn, we are using the channel state
information at time slotg¢, k(¢ — 1), .... Hence, in practice the channel measurements need to beodbnevery
k time slots.

There is a tradeoff in choosing system paramétebecause taking only one gradient projection step may not
be sufficient to get close enough to the greedy policy’s dpeygoint. Moreover, for large: the new operating
point of the greedy policy can be far from the previous onel fanterations may be insufficient.

Before stating the main result, let us introduce some udefuamas. In the following lemma, we translate the
model in Definition ] for temporal variations in channel staito changes in the corresponding capacity regions.

Lemma 7:Let {[H;(n)];=1,..,m } be the fading process that satisfies conditior(in (2). We have

dy (Cg (P,H(n+1)),C, (P,H(n))) < W, (63)

where {W,,} are non-negative independent identically distributecdioan variables bounded from above by—=
LM %P, whered’ is a uniform upper bound on the sequence of random varigdig$ and P, is the i-th
user’s transmission power.
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Proof: By Definition[6 we have

dyr (Cg(P,H(n + 1)),Cg(P7H(n)))

1 Yies(Hi(n +1) — Hy(n))P;
= maxg|log (1 = > oo Hi(n) P, ) ‘
Yies [Hi(n +1) — Hi(n)| P

SEM 201+ Lpes Hi(n)P)

IN

LM LMo
< 3 Z; |H;(n+ 1) — Hiy(n)|P; = 3 Z;Vgpi- (64)

Therefore, [(EB) is true folV,, = 1 "M, VP, Since the random variablé4 are i.i.d. and bounded above by,
the random variable®/, are i.i.d. and bounded from above %yzf‘il o' P;.
[ |
The following useful lemma by Nedi¢ and Bertsekas [30] addes the convergence rate of the gradient projection
method with constant stepsize.
Lemma 8:Let rate allocation policie® andR be given by Definitiomn B and Definitidd 9, respectively. Alset,
Assumption$ 1112 anld 4 hold and the stepsiZebe fixed to some positive constamt Then for a positive scalar

€ we have B2
~ _ ap”® +€
w(R(H(n)) = u(R(H (k) ) - 5 (65)
if k satisfies -0
P 2
. “Rt R(H )| J ©6)
Proof: See Proposition 2.3 of [30]. |

We next state our main result, which shows that the appraeimete allocation policy given by Definitidd 9
tracks the greedy policy within a neighborhood which is dified as a function of the maximum speed of fading,
the parameters of the utility function, and the transmisgiowers.

Theorem 7:Let Assumption§1;]2 arid 4 hold and the rate allocation &l andR be given by Definitio 8
and Definitior 9, respectively. Choose the system parasigetand« for the approximate policy in Definition 9 as

9B 164\ 2
k:\‘(Aw/)JJ az(ﬁ) wl37

wherew' = w32 (12)% + (%)%), w is the upper bound oi¥,, as defined in Lemmial 74 and B are constants given
in Assumptions ¥4 and| 2. Then, we have

@ o

IR (BI(n)) ~ R(E )] < 26 =2(2]) st (67)
Proof: First, we show that
IR (H () - R(EE)| < 0= (27) u, (68)

wheret = L"T‘lj. The proof is by induction on. Fort = 0 the claim is trivially true. Now suppose that (68) is
true for some positive. Hence, it also holds fon = k(¢ + 1) by induction hypothesis, i.e.,

...0 —
1Ry = R(H (k1)) < 6. (69)
On the other hand, by Lemnia 7 implies that for every
an (Cy(P, H(n +1)),C,(P, H(n))) <.
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Thus, by Lemmal6 and the triangle inequality we have
|R(H(k(t+1))) — R(H(kt))| < kuw' < 6. (70)
Therefore, by another triangle inequality we conclude fi@8) and [7D) that
IRy — R(H(k(t+1))] < 26. (72)

After plugging the corresponding values @fand, it is straightforward to show thaf (66) holds fer= aB2.
Thus, we can apply Lemnid 8 to show

u(ﬁ(H(n))) - U(Q(H(k‘(t + 1))))‘ < aB? (72)

By Assumptior 4 we can write
aB?

IR(Hm) - REGE )] < (“2) =0 73
Therefore, the proof of (68) is complete by induction.
Again by applying Lemmal6 and Lemma 7 we have
IR(H(n)) — R(H(kt))| < kw'" <0, (74)
and the desired result directly follows frofn {68) andl(74)tbg triangle inequality. |

Theorem¥ provides a bound on the size of the tracking neitjfdoal as a function of the maximum speed
of fading, denoted byo, which may be too conservative. It is of interest to provideate allocation policy and
a bound on the size of its tracking neighborhood as a funaifotihe average speed of fading. The next section
addresses this issue.

B. Improved Approximate Rate Allocation Policy

In this section, we design an efficient rate allocation gotltat tracks the greedy policy within a neighborhood
characterized by the average speed of fading which is tijpicauch smaller than the maximum speed of fading.
We consider policies which can implement one gradient ptimje iteration per time slot.

Unlike the approximate policy given by (60) which uses tharutel state information once in evekytime
slots, we present an algorithm which uses the channel stédariation in all time slots. Roughly speaking, this
method takes a fixed number of gradient projection iteratiomly after the change in the channel state has reached
a certain threshold.

Definition 10: [Improved Approximate Policy] Le{1W,} be the sequence of non-negative random variables as
defined in Lemm&]7, and be a positive constant. Define the seque{itg as

TO - 07
t—1
Tix1 = min {t D= 7}. (75)

Define theimproved approximateate allocation policyﬁ, with parameters, andk, as follows:

~ { R(H(0)), n=0

R(Hn) 2! 76
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n—1

=Ty

Fig. 4. The improved approximate policy takésgradient projection iterations at timg,(,,), which is the time that the random walk
generated by the random variablédg, reach the thresholg.

where
t(n) = max{i|T; <n}, (77)
o ~J
r = agmax, u(Ri) (78)

and Ri(n) € RM is given by the following gradient projection iterations

Rm>=f%ﬂﬂH@mM7
Rl = P [Ri(n) +oﬂ'g{(n)} =1, k-1, (79)
Wheregi(n) is a subgradient ofi(-) at Ri(n), o/ denotes the stepsize ar)f@i(n) is the approximate projection on
Co(P, H(Ty(n)))-
Figure[4 depicts a particular realization of the random vgdkerated byV,,, and the operation of the improved
approximate policy.
Theorem 8:Let t(n) be as defined i (77), and lat = E[W,]. If £k = Z, then we have
lim =1, with probability 1. (80)
n—oo t(n)k
Proof: The sequencgT;} is obtained as the random walk generated bylthecrosses the threshold level
Since the random variablé¥,, are positive, we can think of the threshold crossing as awehprocess, denoted
by N(-), with inter-arrivalsiV,,.
We can rewrite the limit as follows
i n— N(t(n)v) + N(t(n)v) ~ lim n— N(t(n)y) 7I)N(t(n)y) .
n—00 t(n)k n—00 t(n)k t(n)y
Since the random walk will hit the threshold with probalyillt, the first term goes to zero with probability 1.
Also, by Strong law for renewal processes the second terras gl with probability 1 (see [31], p.60). =
Theoreni 8 essentially guarantees that the number of gitagiiejection iterations is the same as the number of

(81)

channel measurements in the long run with probability 1.

Theorem 9:Let Assumption§]1[12 arid 4 hold and the rate allocation i@ andR be given by Definitioi 8
and Definition 1D, respectively. Also, lét= | L], and fix the stepsize ta = AB—f in (79), wherey = c(%)%wi,
andc > 1 is a constant satisfying the following equation

(&~ 1)°

o = - (82)
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Then Bl
IR(H(n) - REM)| <27+ (1) (83)
Proof: We follow the line of proof of Theoreml 7. First, by inductiom 6 we show that

IR(H (n)) = R(H(T)| <, (84)
wheret is defined in[(Z]7). The base is trivial. Similar {0 {69), by uetion hypothesis we have
IRy = R(H(T)| < 7. (85)
By definition of 7; in (Z5) we can write
dy <Cg (P7H(Tt+1)>>cg<P>H(Tt))> <. (86)

Thus, by Lemma&l6, we have

=

IR(H(T,12)) ~ R(E(@) | <~ (v + (5)

Therefore, by combinind (85) and (87) by triangle ineqyalfe obtain

) . (87)

W |-

vB

~0 _
IR~ RH T <29+ (20) " (88)
Using the fact thatv < @ = % after a few steps of straightforward manipulations we daowsthat
~0 - vB\1\2 vB
IRy = RE ()P < (20 + (10)7) <tz (89)
Now by plugging the values af and~ in terms of system parameters [n(66), we can verify that
418 R}, - R(H(T, 2
b — LzJ _ { C’YZA 2J > w t+1 (H(Ti41))ll J (90)
w A?A’Y e
Hence, we can apply Lemnia 8 fer= A+2, and conclude
w(R(H®))) - u(R(H(T1:1))) ‘ <aB?. (91)
By exploiting Assumption4 we have
~ — aB?\ 3
IR(EHm) - RHT) | < () =7 (92)
Therefore, the proof of (84) is complete by induction. Sarlil to (87) we have
_ _ 1/ 1 B..
IR(Hm) = RET))| <% (3 +(7)?). (93)
and [83) follows immediately froni_(84) and_(93) by invokimiahgle inequality. [ |

Theoren 8 and Theorem 9 guarantee that the presented mtatah policy tracks the greedy policy within a
small neighborhood while only one gradient projectionatem is computed per time slot, with probability 1. The
neighborhood is characterized in terms of the average l@halvtemporal channel variations and vanishes as the
fading speed decreases.
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Fig. 5. Structure of thé-th transmitter and the receiver for the queue-length-dassicy [10].
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Fig. 6. Structure of theé-th transmitter and the receiver for the presented policies

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we provide simulation results to completrair analytical results and make a comparison with
other fair resource allocation algorithms. We focus on thsecwith no power control or knowledge of channel
statistics. We also make reasonable assumption that thenehatate processes are generated by independent
identical finite state Markov chains. We consider weightefhir function as the utility function, i.e.,

u(R) = Z w; fo(R:), (94)

where f,(-) is given by equation (40).

We consider two different scenarios to compare the perfoomaf the greedy policy with the queue-based rate
allocation policy by Eryilmaz and Srikant [10]. This poligyarameterized by some paramekéruses queue length
information to allocate the rates arbitrarily close to thtimal policy by choosing¥ large enough. As illustrated
in Figure[®,x;(n) denotes the queue-length of th¢h user. At time slot:, the scheduler chooses the service rate
vector u(n) based on a max-weight policy, i.e.,

M
p(n) = argmax > x;(n)R;
=1
subjectto R € Cy(P,H(n)) (95)

The congestion controller proposed in [10] leads to a fddrcaltion of the rates for a givem-fair utility function.
In particular, the data generation rate for thih transmitter, denoted hy;(n) is a random variable satisfying the
following conditions:
. Wi \a
Blasto) les)] = win {(55)", 0},
E[aZ(n) |zi(n)] < U <oo, forall z;(n), (96)
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Fig. 7. Performance comparison of greedy and queue-badiiepdor a communication session with limited duratiooy £ = 1.22.
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Fig. 8. Performance comparison of greedy and queue-badiiepdor a communication session with limited duratiooy £ = 0.13.

wherea, D andU are positive constants.

In the first scenario, we compare the average achieved ratieeopolicies for a communication session with
limited duration. Figur&]7 depicts the distance betweenigcap average rate achieved by the greedy or the queue-
length based policy, andr*, the maximizer of the utility function over the throughpagion. In this case, the
utility function is given by [[9#) witha = 2 andw; = 1.5wy = 1.5, and the corresponding optimal solution
is R* = (0.60,0.49). As observed in Figurgl 7, the greedy policy outperforms theug-length based policy a
communication session with limited duration. It is worthting that there is a tradeoff in choosing the parameter
K of the queue-length based policy. In order to guaranteeesitiy close to optimal rates by queue-based policy,
the parameteK should be chosen large which results in large expected geegéh and lower convergence rate.
On the other hand, if{ takes a small value to improve the convergence rate, thewsthirate of the queue based
policy converges to a larger neighborhood of Ré.

As established in Theorelm 5, the performance of the greelityygmproves by decreasing the channel variations.
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Fig. 9. Performance comparison of greedy and queue-badwmiepdor file upload scenario with respect to file sife= f1 = f.. R, and
R, are expected upload rate of the greedy and the queue-leag#dtpolicy, respectively.

Figure[8 demonstrates the improvement in performance ofithedy policy wherfZ decreases from 1.22 to 0.13.
We also observe in Figurg 8 that the queue-length basedypisliciot sensitive to channel variations, and its
performance does not improve by decreasing the channeitizars. It is worth mentioning that the greedy policy
as observed in the simulation results performs signifigametter than the bounds provided by Theoréins 5[and 6.
These upper bounds characterize the behavior of the gredity in terms of channel variations and structure of
the utility function, but they are not necessarily tight.

Second, we consider a file upload scenario where each usentitting a file with finite size to the base station
in a rateless manner. L&t be thei-th user’'s completion time of the file upload session for adilsize f;. Define
the average upload rate for theh user as%. We can measure the performance of each policy for this sicena
by evaluating the utility function at the average uploacerdigure[® demonstrates the utility difference of the
greedy and the queue-based policy for different file sizes.cah observe that for small file sizes the greedy policy
outperforms the queue-based policy significantly, and difference decreases by increasing the file size. We can
interpret this behavior as follows. The files are first budtkinto the queues based on the queue lengths and the
weighteda-fair utility, while the queues are emptied by a max-weigtittexduler. Once the files are all buffered in
the queues, the queues are empties with the same rate whioh fair because it does not give any priority to the
users based on their utility. For larger file size, the dorafor which the entire file is emptied into the queue is
negligible compared to the total transmission time, andaterage upload rate converges to a near-optimal rate.

VIlI. CONCLUSION

We addressed the problem of optimal resource allocatiorfémliag multiple access channel from an information
theoretic point of view. We formulated the problem as a tytifhaximization problem for a more general class of
utility functions.

We considered several different scenarios. First, we densd the problem of optimal rate allocation in a non-
fading channel. We presented the notion of approximateeptiojn for the gradient projection method to solve the
rate allocation problem in polynomial time in the number sérs.
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Second, we studied rate and power allocation in a fading relanith known channel statistics. In this case,
the optimal rate and power allocation policies are obtaimgdreedily maximizing a properly defined linear utility
function. If for the fading channel power control and chdrstatistics are not available, the greedy policy is not
optimal for nonlinear utility functions. However, we shaivéhat its performance in terms of the utility is not
arbitrarily worse compared to the optimal policy, by bourgdiheir performance difference. The provided bound
tends to zero as the channel variations become small or tlity fitnction behaves more linearly.

The greedy policy may itself be computationally expensirecomputationally efficient algorithm can be em-
ployed to allocate rates close to the ones allocated by thedgrpolicy. Two different rate allocation policies are
presented which only take one iteration of the gradientqutiyn method with approximate projection at each time
slot. It is shown that these policies track the greedy poldhin a neighborhood which is characterized by average
speed of fading as well as fading speed in the worst case.

APPENDIX |
ALGORITHM FOR FINDING A VIOLATED CONSTRAINT

In this section, we present an alternative algorithm basedte-splitting idea to identify a violated constraint for
an infeasible point. For a feasible point, the algorithmvides information for decoding by successive cancellation
We first introduce some definitions.

Definition 11: The quadruplg M, P, R, Ny) is called aconfigurationfor an A/-user multiple-access channel,
whereR = (Ry,..., Ryy) is the rate tupleP = (P, ..., Py) represents the received power aiNg is the noise
variance. For any given configuration, tekevation § € RV, is defined as the unique vector satisfying

Ri=C(P;,No+06;), i=1,...,M. (97)
Intuitively, we can think of messageas rectangles of heighft;, raised above the noise level by In fact, ¢; is
the amount of additional Gaussian interference that messzan tolerate. Note that if the rate vector corresponding
to a configuration is feasible its elevation vector is nogaiwe. However, that is not sufficient for feasibility ckec
Definition 12: The configuration M, P, R, Ny) is single-user codabldf after possible re-indexing,

d0ix1>0;+F;,i=0,1,... M—1, (98)

where we have defined = Py = 0 for convention.
By the graphical representation described earlier, a cor#tgpn is single-user codable if the none of the messages
are overlapping. Figufe 10(a) gives an example of graphégaksenting for a message with pow&rand elevation
d;. Figured 1D(b) and10(c) illustrate overlapping and noerlapping configurations, respectively.

Definition 13: The quadruplgm, p,r, Ny) is aspin-off of (M, P, R, Ny) if there exists a surjective mapping
¢:{1,....,m} —{1,..., M} such that for ali € {1,..., M} we have

jed1(4)

DT

JEPT (i)
where¢~1(i) is the set of allj € {1,...,m} that map intoi by means of.

R;

IN
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Definition 14: A hyper-usemwith powerP, rateR, is obtained by merging actual users with powe(s;, , ..., P;,)
and rateq R;,,..., R;,), i.e, ] ]

P=>"P,, R=) R, (99)

Theorem 10:For anyM-user achievable colFl?ilguraticQM, Plji@l, Ny), there exists a spin-offn, p, r, Ny) which
is single user codable.

Proof: See Theorem 1 of [8]. [ |
Here, we give a brief sketch of the proof to give intuition abthe algorithm. The proof is by induction dvi. For a
given configuration, if none of the messages are overlapieg the spin-off is trivially equal to the configuration.
Otherwise, merge the two overlapping users intoyper-userof rate and power equal the sum rate and sum power
of the overlapping users, respectively. Now the probleneduced to rate splitting fof)M/ — 1) users. This proof
suggests a recursive algorithm for rate-splitting thaegithe actual spin-off for a given configuration.

It follows directly from the proof of Proposition 10 that shrecursive algorithm gives a single-user codable
spin-off for an achievable configuration. If the configupatiis not achievable, then the algorithm encounters a
hyper-user with negative elevation. At this point the aitpon terminates. Suppose that hyper-user has Ragand
power P. Negative elevation is equivalent to the following

R> C(p,No)

Hence, by Definition 14 we have,

Y R >C()_ PN

i€S i€S
whereS = {iy,...,iq} € M. Therefore, a hyper-user with negative elevation leadous Yiolated constraint in
the initial configuration.

Theorem 11:The presented algorithm runs @(M? log M) time, whereM is the number of users.

Proof: The computational complexity of the algorithm can be coraguws follows. The algorithm terminates
after at mostM recursions. At each recursion, all the elevations cornedimg to a configuration with at mogt/
hyper-users are computed (M) time. It takesO(M log M) time to sort the elevation in an increasing order.
Once the users are sorted by their elevation, a hyper-ushrneigative elevation could be found (1) time,
or two if such a hyper-user does not exists it tak&s\/) time to find two overlapping hyper-users. In the case
that there are no overlapping users and all the elevatiomsian-negative the input configuration is achievable,
and the algorithm terminates with no violated constrairgnét, computational complexity of each recursion is
O(M) + O(Mlog M) +O(M) = O(M log M). Therefore, the algorithm runs i@ (M? log M) time. [ |

APPENDIX I
PROOF OFLEMMA 5

First, consider the following lemmas. Lemik 9 bounds Jesgdifierence of a random variable for a concave
function. The upper bound is characterized in terms of th@mae of the random variable.
Lemma 9:Let f : R — R, be concave and twice differentiable. L&tbe a random variable with varianed.

Then,
0.2
F(EX]) ~ BF(X)] < /22103 f(B[x) ~ 2 (100
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Fig. 10. Graphical representation of messages over metéss channel [8].
where M be an upper-bound ofy” (z)|.
Proof: Pick any0 < € < 1. By Chebyshev’s inequality we have
Pr(| X —E(X)| >c¢) <k, (101)
wherec = 0_\/}2 Therefore, we have
E[f(X)] = E[f(X)]|X —E(X)| <] Pr(IX - E(X)| <)
+ E[fX)(yX E(X \>c] r(|X — E(X)| > c)
> (1—6)1@[ (yX E(X)| < ]

v

1 > ¢ (f(E[X] +c) + f(B[X] - c)>

€

= (- QFEX]) + A6 + (@) (102)

where the first inequality follows from non-negativity ¢f and the second and the second inequality follows from
concavity of f. The scalarg; € [E[X],E[X] + ¢] and¢; € [E[X] — ¢, E[X]] are given by Taylor's theorem.
Given the above relation, for ary> 0 we have

FELX)) ~ E[F(X)] < 1“0k M + ef(E[X)) (103)

The right-hand side is minimized for

¢ =min {(2;(‘%{?41))% ’1}' (104)

By substitutinge* in (Z03), the desired result follows immediately.

We next provide an upper bound on varianceYof= log(1 + X) proportional to the variance of.
Lemma 10:Let X > 0 be a random variable with meax and variancer?., andY = log(1 + X) then variance

of Y is upper-bounded as
2
0% < o% <1+ [(1+X)(,/21og(1+X)—%X)} ) (105)
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Proof: Let E(Y) = log(1 + X) for someX < X. By invoking the mean value theorem, we have

o2 = E -(log(l +X) — log(1 + X)ﬂ

_ E _(H%(X - X)ﬂ

(x - x)7). (106)

IN
&=

where X is a non-negative random variable.

On the other hand, by employing leminia 9 witfw) = log(1 + x), we can write

E[log(1+ X)] > log(1+ X) — \/203( log(1+ X) + % (107)

Hence,
X>X = exp{E[log(1+X)]} —1

2
> exp {log(l—i-X) — \/203(10g(1+X)+ UTX} -1

> X—ax(l—i-X)(\/ﬂog(l—i-X)—UTX), (108)

where the first inequality is by (107), and the second retat&n be verified after some straightforward manipulation.
By combining [106) and_(107) the variance Y¥fcan be bounded as follows

ol < E[(X - X)]
< IE[(X—X—Fax(l—i—X)(w/Zlog(l—i—X)—%))1

2
= o% <1+ {(1+X)( 210g(1—|—X)—J—X)] ) (109)

Now we provide the proof for Lemnid 5. Define random varialideas the following:

Ii\’}P"), forall SC M ={1,...,M}. (110)
0

1

The facet defining constraints 6f, (P, H) andC,(P) are of the form ofy ", ¢ R; < Yg and}_, ¢ R; < E[Ys],
respectively. Therefore, by Definitidn 6, we havg (Cy(P, H),C,(P)) < ¢ if and only if |Ys — E[Ys]| < 4, for
all S C M. Thus, we can write

Pr{dH (C,(P,H),Co(P)) > 5} - Pr{ max Vs — E[Ys]| > 5}

> pr{|vs ~Elvs]| > 6}

1
= > o (111)
SCM

IN

IN
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where the first inequality is obtained by union bound, andstteond relation is by applying Chebyshev’s inequality.
On the other hand;%s can be bounded from above by employing Lenimh 10, i.e.,

2

2
of, < Uf (1 + [(1 + Zs)(y/2log(1 + Zg) — 055 )} ) : (112)

where
_ H.P _ _
Zg = E[Z = ] =Y A =T4H,
ies 0 €S
2 _ H’LP’L _ N /
o} = var(Z T) = 3 Tiljcov(H;, Hj) = TsKTs.
€S 0 (3,7)€52

The desired result is concluded by substitutifig and o—%s in (112) and combing the result with (711). W

APPENDIX I
PROOF OFLEMMA [

Let us first state and prove a useful lemma which asserts thelideéan expansion of a capacity region by
contains its expansion by relaxing its constraintssby
Lemma 11:Let C; be a capacity region witpolymatroidstructure, i.e.,

Cy = {Rer : ZRZ« < f(S), for all SgM}, (113)
i€S
where f(S) is a nondecreasing submodular function. Also, dét be anexpansionof C; by § as defined in
Definition[3. Then, for allR € Cs,, there exists som&’' € C; such that|R — R'|| <.

Proof: By Definition[15, it is straightforward to show thét, is also a polymatroid, i.e.,
02:{ReR%:ZRigg(S):f(S)+5, for aIISgM}, (114)
ieS
whereg(S) is a submodular function. By convexity 6f,, we just need to prove the claim for the vertices(bf
Let R € RM be a vertex ofC;. The polymatroid structure af, implies thatR is generated by an ordered subset
of M (see Theorem 2.1 of [32]). Hence, there is sdime M such thatR, = f({k}) + ¢. Consider the following

construction forR':
| R0 =k (115)
"\ R, otherwise.

By construction,R’ is in a é-neighborhood ofR. So we just need to show th#&' is feasible inC;. First, let
us consider the setS that containk. We have

D Ri=Y Ri—3<[(9) (116)
€S i€S
Second, consider the case thag S.

R, = > Ri—R+0

i€s i€SU{k}
F(SU{k}) +6 — Ry

FS)+ f({k}) +0 - Ry
f(9),

INIA
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where the first inequality comes frorh (116), and the secoeduality is true by submodularity of the function
f(-). This completes the proof. [ |
Proof: [of Lemmal[6] Without loss of generality assume thdtR3) > «(R}). By Lemmalll, there exists
someR € C,(P) such that|R5 — R|| < . Moreover, we can always choode to be on the boundary so that
|R|| > Ds, whereD; is defined in[(3B). Therefore, by Assumption 3(a) and the taatu(R5) > u(R]) > u(R),
we have
u(Ry) —u(R) = |[u(Ry) — uw(R)| < B|[R; — R|| < BJ. (117)

Now suppose thatR] — R|| > (%5)%. By Assumptiori B(b) we can write

u(RY) — u(R) = |u(R]) — u(R)| > A||R] - R|* > B. (118)

By subtracting[(117) froni(118) we obtairt R5) < u(R7) which is a contradiction. ThereforgR} — R|| < (%5)%,

and the desired result follows immediately by invoking thartgle inequality. [ |
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