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Abstract

We consider the problem of rate and power allocation in a multiple-access channel. Our objective is to obtain

rate and power allocation policies that maximize a general concave utility function of average transmission rates on

the information theoretic capacity region of the multiple-access channel. Our policies does not require queue-length

information. We consider several different scenarios. First, we address the utility maximization problem in a non-

fading channel to obtain the optimal operating rates, and present an iterative gradient projection algorithm that uses

approximate projection. By exploiting the polymatroid structure of the capacity region, we show that the approximate

projection can be implemented in time polynomial in the number of users. Second, we consider resource allocation in

a fading channel. Optimal rate and power allocation policies are presented for the case that power control is possible

and channel statistics are available. For the case that transmission power is fixed and channel statistics are unknown,

we propose a greedy rate allocation policy and provide bounds on the performance difference of this policy and the

optimal policy in terms of channel variations and structureof the utility function. We present numerical results that

demonstrate superior convergence rate performance for thegreedy policy compared to queue-length based policies.

In order to reduce the computational complexity of the greedy policy, we present approximate rate allocation policies

which track the greedy policy within a certain neighborhoodthat is characterized in terms of the speed of fading.

Index Terms

Multiple access, resource allocation, power control, utility maximization, fading channel, rate splitting.

I. INTRODUCTION

Dynamic allocation of communication resources such as bandwidth or transmission power is a central issue in

multiple access channels in view of the time varying nature of the channel and the interference effects. Most of

the existing literature focuses on specific communication schemes such as TDMA (time-division multiple access)

[1], CDMA (code-division multiple access) [2], [3], and OFDM (Orthogonal Frequency Division Multiplexing) [4]

systems. An exception is the work by Tseet al. [5], which consider the notion ofthroughput capacityfor the fading

channel with Channel State Information (CSI). The throughput capacity is the notion of Shannon capacity applied

to the fading channel, where the codeword length can be arbitrarily long to average over the fading of the channel.
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Tseet al. [5] consider allocation of rate and power to maximize a linear utility function of the transmission rates

over the throughput region, which characterizes the pointson the boundary of the throughput capacity region.

In this paper, we consider the problem of rate and power allocation in a multiple access channel with perfect

CSI. Contrary to the linear case in [5], we consider maximizing a general utility function of transmission rates over

the throughput capacity region. Such a general concave utility function allows us to capture different performance

metrics such as fairness or delay (cf. Shenker [6], Srikant [7]). Our contributions can be summarized as follows.

We first consider a non-fading multiple-access channel where we introduce a gradient projection algorithm for

the problem of maximizing a concave utility function of transmission rates over the capacity region. We establish

the convergence of the method to the optimal rate allocation. Since the capacity region of the multiple-access

channel is described by a number of constraints exponentialin the number of users, the projection operation used

in the method can be computationally expensive. To reduce the computational complexity, we introduce a new

method that utilizesapproximate projections. By exploiting the polymatroid structure of the capacity region, we

show that the approximate projection operation can be implemented in time polynomial in number of users by using

submodular function minimization algorithms. Moreover, we present a more efficient algorithm for the approximate

projection problem which relies on rate-splitting [8]. This algorithm also provides the extra information that allows

the receiver to decode the message by successive cancelation.

Second, we consider a fading multiple access channel and study the case where channel statistics are known

and transmission power can be controlled at the transmitters. Owing to strict convexity properties of the capacity

region along the boundary, we show that the resource allocation problem for a general concave utility is equivalent

to another problem with a linear utility. Hence, theoptimal resource allocation policies are obtained by applying

the results in [5] for the linear utility. Given a general utility function, the conditional gradient method is used to

obtain the corresponding linear utility.

If the transmitters do not have the power control feature andchannel statistics are not known, the throughput

capacity region is a polyhedron and the strictly convexity properties of the region do not hold any more. Hence, the

previous approach is not applicable. In this case, we consider a greedy policy, which maximizes the utility function

for any given channel state. This policy is suboptimal, however, we can bound the performance difference between

the optimal and the greedy policies. We show that this bound is tight in the sense that it goes to zero either as the

utility function tends to a linear function of the rates or asthe channel variations vanish.

The greedy policy requires exact solution of a nonlinear program in each time slot, which makes it computationally

intractable. To alleviate this problem, we present approximate rate allocation policies based on the gradient projection

method with approximate projection and study its tracking capabilities when the channel conditions vary over time.

In our algorithm, the solution is updated in every time slot in a direction to increase the utility function at that time

slot. But, since the channel may vary between time-slots, the level of these temporal channel variations become

critical to the performance. We explicitly quantify the impact of the speed of fading on the performance of the

policy, both for the worst-case and the average speed of fading. Our results also capture the effect of the degree of

concavity of the utility functions on the average performance.

An important literature relevant to our work appears in the context of cross-layer design, where joint scheduling-

routing-flow control algorithms have been proposed and shown to achieve utility maximization for concave utility

functions while guaranteeing network stability (e.g. [9],[10], [11], [12]). The common idea behind these schemes

is to use properly maintained queues to make dynamic decisions about new packet generation as well as rate
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allocation.

Some of these works ([10], [11]) explicitly address the fading channel conditions, and show that the associated

policies can achieve rates arbitrarily close to the optimalbased on a design parameter choice. However, the rate

allocation with these schemes requires that a large optimization problem requiring global queue-length information

be solved over a complex feasible set in every time slot. Clearly, this may not always be possible owing to

the limitations of the available information, the processing power, or the complexity intrinsic to the feasible

set. Requirement for queue-length information may impose much more overhead on the system than channel

state information. On the other hand, even in the absence of fading, the interference constraints among nearby

nodes’ transmissions may make the feasible set so complex that the optimal rate allocation problem becomes

NP-hard (see [13]). Moreover, the convergence results of queue-length based policies ([10], [11]) are asymptotic,

and our simulation results show that such policies may suffer from poor convergence rate. In fact, duration of a

communication session may not be sufficient for these algorithms to approach the optimal solution while suboptimal

policies such as the greedy policy seems to have superior performance when communication time is limited, even

though the greedy policy does not use queue-length information.

In the absence of fading, several works have proposed and analyzed approximate randomized and/or distributed

rate allocation algorithms for various interference models to reduce the computational of the centralized optimization

problem of the rate allocation policy ([14], [9], [15], [13], [16], [17]). The effect of these algorithms on the utility

achieved is investigated in [13], [18]. However, no similarwork exists for fading channel conditions, where the

changes in the fading conditions coupled with the inabilityto solve the optimization problem instantaneously make

the solution much more challenging.

Other than the papers cited above, our work is also related tothe work of Vishwanathet al. [19] which builds

on [5] and takes a similar approach to the resource allocation problem for linear utility functions. Other works

address different criteria for resource allocation including minimizing delay by a queue-length based approach [20],

minimizing the weighted sum of transmission powers [21], and considering Quality of Service (QoS) constraints

[22]. In contrast to this literature, we consider the utility maximization framework for general concave utility

functions.

The remainder of this paper is organized as follows: In Section II, we introduce the model and describe the

capacity region of a fading multiple-access channel. In Section III, we consider the utility maximization problem

in a non-fading channel and present the gradient projectionmethod with approximate projection. In Section IV, we

address the resource allocation problem with power controland known channel statistics. In Section V, we consider

the same problem without power control and knowledge of channel statistics. We present the greedy policy and

approximate rate allocation policies and study their tracking behavior. Section VI provides the simulation results,

and we give our concluding remarks in Section VII.

Regarding the notation, we denote byxi the i-th component of a vectorx. We denote the nonnegative orthant

by R
n
+, i.e.,Rn

+ = {x ∈ R
n | x ≥ 0}. We writex′ to denote the transpose of a vectorx. We use the notationPr(·)

for the probability of an event in the Borelσ-algebra onRn. The exact projection operation on a closed convex

set is denoted byP, i.e., for any closed convex setX ⊆ R
n andx ∈ R

n, we haveP(x) = argminy∈X‖x − y‖,

where‖ · ‖ denotes the Euclidean norm.
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II. SYSTEM MODEL

We considerM transmitters sharing the same media to communicate to a single receiver. We model the channel

as a Gaussian multiple access channel with flat fading effects,

Y (n) =
M∑

i=1

√
Hi(n)Xi(n) + Z(n), (1)

whereXi(n) andHi(n) are the transmitted waveform and the fading process of thei-th transmitter, respectively,

andZ(n) is properly bandlimited Gaussian noise with varianceN0. We assume that the fading processes of all

transmitters are jointly stationary and ergodic, and the stationary distribution of the fading process has continuous

density. We assume that all the transmitters and the receiver have instant access to channel state information. In

practice, the receiver measures the channels and feeds backthe channel information to the transmitters. The implicit

assumption in this model is that the channel variations are much slower than the data rate, so that the channel can be

measured accurately at the receiver and the amount of feedback bits is negligible compared to that of transmitting

information.

Definition 1: The temporal variationin fading is modeled as follows:

|Hi(n+ 1)−Hi(n)| = V i
n, for all n, i = 1, . . . ,M, (2)

where theV i
ns are nonnegative random variables independent across timeslots for eachi. We assume that for each

i, the random variablesV i
n are uniformly bounded from above bŷvi, which we refer to as themaximum speed of

fading. Under slow fading conditions, the distribution ofV i
n is expected to be more concentrated around zero.

Consider the non-fading case where the channel state vectoris fixed. The capacity region of the Gaussian

multiple-access channel with no power control is describedas follows [23],

Cg(P ,H) =

{
R ∈ R

M
+ :

∑

i∈S
Ri ≤ C

(∑

i∈S
HiPi, N0

)
, for all S ⊆ M = {1, . . . ,M}

}
, (3)

wherePi andRi are thei-th transmitter’s power and rate, respectively.C(P,N) denotes Shannon’s formula for

the capacity of the AWGN channel given by

C(P,N) =
1

2
log(1 +

P

N
) nats. (4)

For a multiple-access channel with fading, but fixed transmission powersPi, the throughputcapacity region is

given by averaging the instantaneous capacity regions withrespect to the fading process [24],

Ca(P ) =

{
R ∈ R

M
+ :

∑

i∈S
Ri ≤ EH

[
C
(∑

i∈S
HiPi, N0

)]
, for all S ⊆ M

}
, (5)

whereH is a random vector with the stationary distribution of the fading process.

A power control policyπ is a function that maps any given fading stateh to the powers allocated to the

transmittersπ(h) = (π1(h), . . . ,πM (h)). Similarly, we can define the rate allocation policy,R, as a function that

maps the fading stateh to the transmission rates,R(h). For any given power-control policyπ, the capacity region

follows from (5) as

Cf (π) =

{
R ∈ R

M
+ :

∑

i∈S
Ri ≤ EH

[
C
(∑

i∈S
Hiπi(H), N0

)]
, for all S ⊆ M

}
. (6)
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Tseet al. [5] have shown that the throughput capacity of a multiple access fading channel is given by

C(P̄ ) =
⋃

π∈G
Cf (π), (7)

whereG = {π : EH[πi(H)] ≤ P̄i, for all i} is the set of all power control policies satisfying the average power

constraint. Let us define the notion of boundary or dominant face for any of the capacity regions defined above.

Definition 2: The dominant faceor boundaryof a capacity region, denoted byF(·), is defined as the set of all

M -tuples in the capacity region such that no component can be increased without decreasing others while remaining

in the capacity region.

III. R ATE ALLOCATION IN A NON-FADING CHANNEL

In this section, we address the problem of finding the optimaloperation rates in a non-fading multiple-access

channel. Without loss of generality, we fix the channel statevector to unity throughout this section, and denote the

capacity region by a simpler notationCg(P ) instead ofCg(P ,1), whereP > 0 denotes the transmission power.

Consider the following utility maximization problem for aM -user channel.

maximize u(R)

subject to R ∈ Cg(P ), (8)

whereRi andPi are i-th user rate and power, respectively. The utility functionu(R) is assumed to satisfy the

following conditions.

Assumption 1:The following conditions hold:

(a) The utility functionu : RM
+ → R is concave with respect to vectorR.

(b) u(R) is monotonically increasing with respect toRi, for i = 1, . . . ,M .

Assumption 2:There exists a scalarB such that

‖g‖ ≤ B, for all g ∈ ∂u(R) and allR,

where∂u(R) denotes the subdifferential ofu at R, i.e., the set of all subgradients1 of u at R.

Note that Assumption 2 is standard in the analysis of subgradient methods for non-differentiable optimization

problems [25]. The maximization problem in (8) is a convex program and the optimal solution can be obtained

by several optimization methods such as the gradient projection method. The gradient projection method with

exact projection is typically used for problems where the projection operation is simple, i.e., for problems with

simple constraint sets such as the non-negative orthant or asimplex. However, the constraint set in (8) is defined

by exponentially many constraints, making the projection problem computationally intractable. To alleviate this

problem, we use an approximate projection, which is obtained by successively projecting on violated constraints.

Definition 3: Let X = {x ∈ R
n|Ax ≤ b}, whereA has non-negative entries. Lety ∈ R

n violate the constraint

a′
ix ≤ bi, for i ∈ {i1, . . . , il}. The approximate projection ofy on X, denoted byP̃ , is given by

P̃(y) = Pi1(. . . (Pil−1
(Pil(y)))),

wherePik denotes the exact projection on the hyperplane{x ∈ R
n|a′

ik
x = bik}.

1The vectorg is a subgradient of a concave functionf : D → R at x0, if and only if f(x)− f(x0) ≤ g′(x− x0) for all x ∈ D.
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Fig. 1. Approximate projection ofR on a two-user MAC capacity region

An example of approximate projection on a two-user multiple-access capacity region is illustrated in Figure 1.

As shown in the figure, the result of approximate projection is not necessarily unique. In the following, when we

write P̃ , it refers to an approximate projection for an arbitrary order of projections on the violated hyperplanes.

Although the approximate projection is not unique, it is pseudo-nonexpansive as claimed in the following Lemma.

Lemma 1:The approximate projectioñP given by Definition 3 has the following properties:

(i) For anyy ∈ R
n, P̃(y) is feasible with respect to setX, i.e., P̃(y) ∈ X.

(ii) P̃ is pseudo-nonexpansive, i.e.,

‖P̃(y)− ỹ‖ ≤ ‖y − ỹ‖, for all ỹ ∈ X. (9)

Proof: For part (i), it is straightforward to see thatPi(y) is given by (cf. [26] Sec. 2.1.1)

Pi(y) = y − a′
iy − bi
‖ai‖

ai.

Sinceai has only non-negative entries, all components ofy are decreased after projection and hence, the constraint

i will not be violated in the subsequent projections. This shows that given an infeasible vectory ∈ R
n, the

approximate projection operation given in Definition 3 yields a feasible vector with respect to setX.

Part (ii) can be verified by using the nonexpansiveness property of projection on a closed convex set (See

Proposition 2.1.3 of [26]) forl times. Sincẽy is a fixed point ofPi for all i, we have

‖P̃(y)− ỹ‖ = ‖Pi1(. . . (Pil(y))) − Pi1(. . . (Pil(ỹ)))‖
≤ ‖Pi2(. . . (Pil(y))) − Pi2(. . . (Pil(ỹ)))‖
...

≤ ‖y − ỹ‖. (10)

Here, we present the gradient projection method with approximate projection to solve the problem in (8). The

k-th iteration of the gradient projection method with approximate projection is given by

Rk+1 = P̃(Rk + αkgk), gk ∈ ∂u(Rk), (11)

wheregk is a subgradient ofu at Rk, andαk denotes the stepsize. Figure 2 demonstrates gradient projection

iterations for a two-user multiple access channel. The following theorem provides a sufficient condition which can

be used to establish convergence of (11) to the optimal solution.
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Fig. 2. Gradient projection method with approximate projection on a two-user MAC region

Theorem 1:Let Assumptions 1 and 2 hold, andR∗ be an optimal solution of problem (8). Also, let the sequence

{Rk} be generated by the iteration in (11). If the stepsizeαk satisfies

0 < αk <
2
(
u(R∗)− u(Rk)

)

‖gk‖2 , (12)

then

‖Rk+1 −R∗‖ < ‖Rk −R∗‖. (13)

Proof: We have

‖Rk + αkgk −R∗‖2 = ‖Rk −R∗‖2 + 2αk(Rk −R∗)′gk + (αk)2‖gk‖2.

By concavity ofu(·), we have

(R∗ −Rk)′gk ≥ u(R∗)− u(Rk). (14)

Hence,

‖Rk + αkgk −R∗‖2 ≤ ‖Rk −R∗‖2 − αk
[
2
(
u(R∗)− u(Rk)

)
− (αk)‖gk‖2

]
.

If the stepsize satisfies (12), the above relation yields thefollowing

‖Rk + αkgk −R∗‖ < ‖Rk −R∗‖.

Now by applying pseudo-nonexpansiveness of the approximate projection we have

‖Rk+1 −R∗‖ = ‖P̃(Rk + αkgk)−R∗‖ ≤ ‖Rk + αkgk −R∗‖ < ‖Rk −R∗‖.

Theorem 2:Let Assumptions 1 and 2 hold. Also, let the sequence{Rk} be generated by the iteration in (11).

If the stepsizeαk satisfies (12), then{Rk} converges to an optimal solutionR∗.

Proof: See Proposition 8.2.7 of [25].

The convergence analysis for this method can be extended fordifferent stepsize selection rules. For instance, we

can employ diminishing stepsize, i.e.,

αk → 0,

∞∑

k=0

αk = ∞,

or more complicated dynamic stepsize selection rules such as thepath-based incremental target levelalgorithm

proposed by Brännlund [27] which guarantees convergence to the optimal solution [25], and has better convergence

rate compared to the diminishing stepsize rule.
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A. Complexity of the Projection Problem

Even though the approximate projection is simply obtained by successive projection on the violated constraints,

it requires to find the violated constraints among exponentially many constraints describing the constraint set. In

this part, we exploit the special structure of the capacity region so that each gradient projection step in (11) can

be performed in polynomial time inM .

Definition 4: Let f : 2M → R be a function defined over all subsets ofM. The functionf is submodularif

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ), for all S, T ∈ 2M. (15)

Lemma 2:DefinefC(S) : 2M → R as follows:

fC(S) = C
(∑

i∈S
Pi, N0

)
, for all S ⊆ M. (16)

If Pi > 0 for all i ∈ M, thenfC(S) is submodular. Moreover, the inequality(15) holds with equality if and

only if S ⊆ T , or T ⊆ S.

Proof: The proof is simply by plugging the definition offC(·) in inequality (15). In particular,

fC(S) + fC(T )− f(S ∪ T )− f(S ∩ T ) =
1

2
log

[
(N0 +

∑
i∈S Pi)(N0 +

∑
i∈T Pi)

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]

=
1

2
log

[
1 +

∑
(i,j)∈(S\T )×(T\S) PiPj

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]

≥ 0. (17)

SincePi > 0, the above inequality holds with equality if and only ifS \ T = ∅, or T \ S = ∅. This condition is

equivalent to eitherS or T contains the other.

Theorem 3:For anyR̄ ∈ R
M
+ , finding the most violated capacity constraint in (3) can be written as asubmodular

function minimization(SFM) problem, that is unconstrained minimization of a submodular function over allS ⊆ M.

Proof: We can rewrite the capacity constraints ofCg(P ) as

fC(S)−
∑

i∈S
Ri ≥ 0, for all S ⊆ M. (18)

Thus, the most violated constraint at̄R corresponds to

S∗ = arg min
S∈2M

fC(S)−
∑

i∈S
Ri.

By Lemma 2 fC is a submodular function. Since summation of a submodular and a linear function is also

submodular, the problem above is of the form of submodular function minimization.

It was first shown by Grötschelet al. [28] that an SFM problem can be solved in polynomial time. Theare several

fully combinatorial strongly polynomial algorithms in theliterature. The best known algorithm for SFM proposed

by Orlin [29] has running timeO(M6). Note that approximate projection does not require any specific order for

successive projections. Hence, finding the most violated constraint is not necessary for approximate projection. In

view of this fact, a more efficient algorithm based on rate-splitting is presented in Appendix I, to find a violated

constraint. It is shown in Theorem 11 that the rate-splitting-based algorithm runs inO(M2 logM) time, whereM

is the number of users.

Although a violated constraint can be obtained in polynomial time, it does not guarantee that the approximate

projection can be performed in polynomial time. Because it is possible to have exponentially many constraints
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violated at some point and hence the total running time of theprojection would be exponential inM . However,

we show that for a small enough stepsize in the gradient projection iteration (11), no more thanM constraints can

be violated at each iteration. Let us first define the notions of expansion and distance for a polyhedra.

Definition 5: Let Q be a polyhedron described by a set of linear inequalities, i.e.,

Q = {x ∈ R
n : Ax ≤ b} . (19)

Define theexpansionof Q by δ, denoted byEδ(Q), as the polyhedron obtained by relaxing all the constraintsin

(19), i.e.,Eδ(Q) = {x ∈ R
n : Ax ≤ b+ δ1} , where1 is the vector of all ones.

Definition 6: Let X andY be two polyhedra described by a set of linear constraints. Let Ed(X) be an expansion

of X by d as defined in Definition 5. The distancedH(X,Y ) betweenX andY is defined as the minimum scalar

d such thatX ⊆ Ed(Y ) andY ⊆ Ed(X).

Lemma 3:Let fC be as defined in (16). There exists a positive scalarδ satisfying

δ ≤ 1

2
(fC(S) + fC(T )− fC(S ∩ T )− fC(S ∪ T )), for all S, T ∈ 2M, S ∩ T 6= S, T, (20)

such that any point in the relaxed capacity region of anM -user multiple-access channel,Eδ(Cg(P )), violates no

more thanM constraints ofCg(P ) defined in (3).

Proof: Existence of a positive scalarδ satisfying (20) follows directly from Lemma 2, using the fact that

neitherS nor T contains the other one.

Suppose for someR ∈ Eδ(Cg(P )), there areM + 1 violated constraints ofCg(P ). Since it is not possible to

haveM + 1 non-empty nested sets in2M, there are at least two violated constraints correspondingto some sets

S, T ∈ 2M whereS ∩ T 6= S, T , and

−
∑

i∈S
Ri < −fC(S), (21)

−
∑

i∈T
Ri < −fC(T ). (22)

SinceR is feasible in the relaxed region,
∑

i∈S∩T
Ri ≤ fC(S ∩ T ) + δ, (23)

∑

i∈S∪T
Ri ≤ fC(S ∪ T ) + δ. (24)

Note that ifS ∩ T = ∅, (23) reduces to0 ≤ δ, which is a valid inequality.

By summing the above inequalities we conclude

δ >
1

2
(fC(S) + fC(T )− fC(S ∩ T )− fC(S ∪ T )), (25)

which is a contradiction.

Theorem 4:Let Assumptions 1 and 2 hold. LetP1 ≤ P2 ≤ . . . ≤ PM be the transmission powers.

If the stepsizeαk in the k-th iteration (11) satisfies

αk ≤ 1

4B
√
M

log

[
1 +

P1P2

(N0 +
∑M

i=3 Pi)(N0 +
∑M

i=1 Pi)

]
, (26)

then at mostM constraints of the capacity regionCg(P ) can be violated at each iteration step.
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Proof: We first show that inequality in (20) holds for the following choice ofδ:

δ =
1

4
log

[
1 +

P1P2

(N0 +
∑M

i=3 Pi)(N0 +
∑M

i=1 Pi)

]
. (27)

In order to verify this, rewrite the right hand side of (20) as

1

4
log

[
(N0 +

∑
i∈S Pi)(N0 +

∑
i∈T Pi)

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]

=
1

4
log

[
1 +

∑
(i,j)∈(S\T )×(T\S) PiPj

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]

≥ 1

4
log

[
1 +

P1P2

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]

≥ 1

4
log

[
1 +

P1P2

(N0 +
∑

i∈S∩T Pi)(N0 +
∑M

i=1 Pi)

]

≥ 1

4
log

[
1 +

P1P2

(N0 +
∑M

i=3 Pi)(N0 +
∑M

i=1 Pi)

]
.

The inequalities can be justified by using the monotonicity of the logarithm function and the fact that(S \ T )×
(T \ S) is non-empty becauseS ∩ T 6= S, T .

Now, let Rk be feasible in the capacity region,Cg(P ). For everyS ⊆ M, we have

∑

i∈S
(Rk

i + αkgki ) =
∑

i∈S
Rk

i + αk‖gk‖
∑

i∈S

gki
‖gk‖

≤ f(S) +
δ

B
√
M

B
∑

i∈S

gki
‖gk‖

≤ f(S) + δ, (28)

where the first inequality follows from Assumption 1(b), Assumption 2, and Eq. (26). The second inequality holds

because for any unit vectord ∈ R
M , it is true that

∑

i∈S
di ≤

∑

i∈S
|di| ≤

√
M. (29)

Thus, ifαk satisfies (26) then(Rk+αkgk) ∈ Eδ(Cg(P )), for someδ for which (20) holds. Therefore, by Lemma

3 the number of violated constraints does not exceedM .

In view of the fact that a violated constraint can be identified in O(M2 logM) time (see the Algorithm in

Appendix I), Theorem 4 implies that, for small enough stepsize, the approximate projection can be implemented

in O(M3 logM) time.

In section V, we will develop algorithms that use the gradient projection method for dynamic rate allocation in

a time varying channel.

IV. DYNAMIC RATE AND POWER ALLOCATION IN FADING CHANNEL WITH KNOWN CHANNEL STATISTICS

In this section, we assume that the channel statistics are known. Our goal is to find feasible rate and power

allocation policies denoted byR∗ andπ∗, respectively, such thatR∗(H) ∈ Cg

(
π∗(H),H

)
, andπ∗ ∈ G. Moreover,

EH[R∗(H)] = R∗ ∈ argmax u(R), subject to R ∈ C(P̄ ), (30)

whereu(·) is a given utility function and is assumed to be differentiable and satisfy Assumption 1.
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For the case of a linear utility function, i.e.,u(R) = µ′R for someµ ∈ R
M
+ , Tseet al. [5] have shown that the

optimal rate and power allocation policies are given by the optimal solution to a linear program, i.e.,

(R∗(h),π∗(h)) = argmax
r,p

(
µ′r − λ′p

)
, subject to r ∈ Cg(p,h), (31)

where h is the channel state realization, andλ ∈ R
M
+ is a Lagrange multiplier satisfying the average power

constraint, i.e.,λ is the unique solution of the following equations

∫ ∞

0

1

h

∫ ∞

2λi(N0+z)

µi

∏

k 6=i

Fk

(
2λkh(N0 + z)

2λi(N0 + z) + (µk − µi)h

)
fi(h)dhdz = P̄i, (32)

whereFk andfk are, respectively, the cumulative distribution function (CDF) and the probability density function

(PDF) of the stationary distribution of the channel state process for transmitterk.

Exploiting the polymatroid structure of the capacity region, problem (31) can be solved by a simple greedy

algorithm (see Lemma 3.2 of [5]). It is also shown in [5] that,for positiveµ, the optimal solution,R∗, to the

problem in (30) isuniquelyobtained. Given the distribution of channel state process,denoted byFk and fk, we

have

R∗
i (µ) =

∫ ∞

0

1

2(N0 + z)

∫ ∞

2λi(N0+z)

µi

∏

k 6=i

Fk

(
2λkh(N0 + z)

2λi(N0 + z) + (µk − µi)h

)
fi(h)dhdz. (33)

The uniqueness ofR∗ follows from the fact that the stationary distribution of the channel state process has a

continuous density [5]. It is worth mentioning that (33) parametrically describes theboundaryof the capacity region

which is precisely defined in Definition 2. Thus, there is a one-to-one correspondence between the boundary of

C(P̄ ) and the positive vectorsµ with unit norm.

Now consider a general concave utility function satisfyingAssumption 1. It is straightforward to show thatR∗,

the optimal solution to (30), is unique. Moreover, by Assumption 1(b) it lies on the boundary of the throughput

region. Now suppose thatR∗ is given by some genie. We can chooseµ∗ = ∇u(R∗) and ũ(R) = (µ∗)′R, as

a replacement for the nonlinear utility. By checking the optimality conditions, it can be seen thatR∗ is also the

optimal solution of the problem in (30), i.e.,

R∗ = argmax (µ∗)′R subject to R ∈ C(P̄ ). (34)

Thus, we can employ the greedy rate and power allocation policies in (31) for the linear utility functioñu(·), and

achieve the optimal average rate for the nonlinear utility functionu(·). Therefore, the problem of optimal resource

allocation reduces to computing the vectorR∗. Note that the throughput capacity region is not characterized by

a finite set of constraints, so standard optimization methods such as gradient projection or interior-point methods

are not applicable in this case. However, the closed-form solution to maximization of a linear function on the

throughput region is given by (33). This naturally leads us to the conditional gradient method [26] to computeR∗.

The k-th iteration of the method is given by

Rk+1 = Rk + αk(R̄
k −Rk), (35)

whereαk is the stepsize and̄Rk is obtained as

R̄
k ∈ argmax

R∈C(P̄ )

(
∇u(Rk)′(R−Rk)

)
, (36)
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where∇u(Rk) denotes the gradient vector ofu(·) at Rk. Since the utility function is monotonically increasing

by Assumption 1(b), the gradient vector is always positive and, hence, the unique optimal solution to the above

sub-problem is obtained by (33), in whichµ is replaced by∇u(Rk). By concavity of the utility function and

convexity of the capacity region, the iteration (35) will converge to the optimal solution of (30) for appropriate

stepsize selection rules such as the Armijo rule or limited maximization rule (cf. [26] pp. 220-222).

Note that our goal is to determine rate and power allocation policies. FindingR∗ allows us to determine such

policies by the greedy policy in (31) forµ∗ = ∇u(R∗). It is worth mentioning that all the computations for

obtainingR∗ are performed once in the setup of the communication session. Here, the convergence rate of the

conditional gradient method is generally not of critical importance.

V. DYNAMIC RATE ALLOCATION WITHOUT KNOWLEDGE OFCHANNEL STATISTICS

In this part we assume that the channel statistics are not known and that the transmission powers are fixed toP .

In practice, this scenario occurs when the transmission power may be limited owing to environmental limitations

such as human presence, or limitations of the hardware.

The capacity region of the fading multiple access channel for this scenario is a polyhedron given by (5). Similarly

to the previous case, the goal is to find an optimal rate allocation policyR∗(·) with respect to a given utility function,

which we formally define next.

Definition 7: [Optimal Policy] The optimal rate allocation policy denoted by R∗(·) is a mapping that satisfies

R∗(H) ∈ Cg

(
P ,H

)
for all H, such that

EH[R∗(H)] = R∗ ∈ argmax u(R)

subject to R ∈ Ca(P ). (37)

It is worth noting that the approach used to find the optimal resource allocation policies for the case with known

channel statistics does not apply to this scenario, becauseCg(P ,h) is a polyhedron and hence, unlike in Section

IV the uniqueness of the optimal solution,R∗ for any positive vectorµ does not hold anymore.

Here we present a greedy rate allocation policy and compare its performance with the unknown optimal policy.

The performance of a particular rate allocation policy is defined as the utility function evaluated at the average rate

achieved by that policy.

Definition 8: [Greedy Policy] Agreedyrate allocation policy, denoted bȳR, is given by

R̄(H) = argmax u(R)

subject to R ∈ Cg(P ,H) (38)

i.e., for each channel state, the greedy policy chooses the rate vector that maximizes the utility function over the

corresponding capacity region.

The utility functionu(R) is assumed to satisfy the following conditions.

Assumption 3:For everyδ > 0, let Nδ =
{
H : dH(Cg(P ,H), Ca(P )) ≤ δ

}
. The following conditions hold:

(a) There exists a scalarB(δ) such that for allH ∈ Nδ,

|u(R1)− u(R2)| ≤ B(δ)‖R1 −R2‖, for all Ri, ‖Ri‖ ≥ Dδ, i = 1, 2,

where

Dδ = inf
H∈Nδ

sup
R∈Cg(P ,H)

‖R‖. (39)
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(b) There exists a scalarA(δ) such that for allH ∈ Nδ,

|u(R̄(H))− u(R)| ≥ A(δ)‖R̄(H)−R‖2, for all R ∈ Cg(P ,H).

Assumption 3(a) is a weakened version of Assumption 2, whichimposes a bound on subgradients of the utility

function. This assumption only requires bound on the subgradient in a neighborhood of the optimal solution and

away from the origin, which is satisfied by a larger class of functions. Assumption 3(b) is a strong concavity type

assumption. In fact, strong concavity of the utility implies Assumption 3(b), but it is not necessary. The scalarA(δ)

becomes small as the utility tends to have a linear structurewith level sets tangent to the dominant face of the

capacity region. Assumption 3 holds for a large class of utility functions including the well knownα-fair functions

given by

fα(x) =

{
x1−α

1−α
, α 6= 1

log(x), α = 1,
(40)

which do not satisfy Assumption 2.

Note that the greedy policy is not necessarily optimal for general concave utility functions. Consider the following

relations

EH

[
u
(
R∗(H)

)]
≤ EH

[
u
(
R̄(H)

)]

≤ u
(
EH

[
R̄(H)

])

≤ u
(
EH

[
R∗(H)

])
, (41)

where the first and third inequality follow from the feasibility of the optimal and the greedy policy for any channel

state, and the second inequality follows from Jensen’s inequality by concavity of the utility function.

In the case of a linear utility function we haveu
(
EH

[
R∗(H)

])
= EH

[
u
(
R∗(H)

)]
, so equality holds throughout

in (41) andR̄(·) is indeed the optimal rate allocation policy. For nonlinearutility functions, the greedy policy can

be strictly suboptimal.

However, the greedy policy is not arbitrarily worse than theoptimal one. In view of (41), we can bound the perfor-

mance difference,u(R∗)−u
(
EH

[
R̄(H)

])
, by bounding

∣∣∣u
(
EH

[
R∗(H)

])
−u
(
EH

[
R̄(H)

])∣∣∣ or
∣∣∣u
(
EH

[
R∗(H)

])
−

EH

[
u
(
R∗(H)

)]∣∣∣ from above. We show that the first bound goes to zero as the channel variations become small

and the second bound vanishes as the utility function tends to have a more linear structure.

Before stating the main theorems, let us introduce some useful lemmas. The first lemma asserts that the optimal

and greedy policies assign rates on the dominant face of the capacity region.

Lemma 4:Let u(·) satisfy Assumption 1(b). Also, letR∗(·) and R̄(·) be optimal and greedy rate allocation

policies as in Definitions 7 and 8, respectively. Then,

(a) R̄(H) ∈ F
(
Cg(P ,H)

)
, for all H .

(b) Pr
{
H : R∗(H) ∈ F

(
Cg(P ,H)

)}
= 1.

whereF(·) denotes the dominant face of a capacity region (cf. Definition 2).

Proof: Part (a) is direct consequence of Assumption 1(b) and Definition 2. If the optimal solution to the

utility maximization problem is not on the dominant face, there exists a useri such that we can increase its rate

and keep all other user’s rates fixed while staying in the capacity region. Thus, we are able to increase the utility

by Assumption 1(b), which leads to a contradiction.
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For part (b), first note that with the same argument as above wehave

R∗ = EH[R∗(H)] ∈ F
(
Ca(P )

)
. (42)

From Definition 2 and the definition of throughput capacity region in (5), we have

EH

[ M∑

i=1

R∗
i (H)

]
= EH

[
C
( M∑

i=1

HiPi, N0

)]
. (43)

Thus,
∑M

i=1 R∗
i (H) = C

(∑M
i=1HiPi, N0

)
, with probability one, becauseC

(∑M
i=1HiPi, N0

)
−∑M

i=1R∗
i (H) ≥

0, for all H . Therefore, by definition of MAC capacity region in (3) we concludeR∗(H) ∈ F
(
Cg(P ,H)

)
, with

probability one.

The following lemma extends Chebyshev’s inequality for capacity regions. It states that, with high probability,

the time varying capacity region does not deviate much from its mean.

Lemma 5:Let H be a random vector with the stationary distribution of the channel state process, mean̄H and

covariance matrixK. Then

Pr
{
dH (Cg(P ,H), Ca(P )) > δ

}
≤ σ2

H

δ2
, (44)

whereσ2
H is defined as

σ2
H ,

1

4

∑

S⊆{1,...,M}
Γ
′
SKΓS


1 +

[
(1 + Γ

′
SH̄)(

√
2 log(1 + Γ

′
SH̄)−

√
Γ
′
SKΓS

2
)

]2
 , (45)

where

(ΓS)i =

{
Pi

N0
, i ∈ S

0, otherwise.
(46)

Proof: See Appendix II.

The system parameterσ2
H in Lemma 5 is proportional to channel variations, and we expect it to vanish for very

small channel variations. The following lemma ensures thatthe distance between the optimal solutions of the utility

maximization problem over two regions is small, provided that the regions are close to each other.

Lemma 6:Let the utility function,u : RM → R, satisfy Assumptions 1 and 3. Also, letR∗
1 andR∗

2 be the

optimal solution of maximizing the utility overCa(P ) andCg(P ,H), respectively. If

dH
(
Cg(P ,H), Ca(P )

)
≤ δ,

then we have

‖R∗
1 −R∗

2‖ ≤ δ
1

2

[
δ

1

2 +
(B(δ)

A(δ)

) 1

2

]
. (47)

Proof: See Appendix III.

The following theorem combines the results of the above two lemmas to obtain a bound on the performance

difference of the greedy and the optimal policy.

Theorem 5:Let u : RM → R+ satisfy Assumptions 1 and 3. Also, letR∗(·) and R̄(·) be optimal and greedy

rate allocation policies as in Definitions 7 and 8, respectively. Then for everyδ ∈ [σ2
H ,∞),

u(R∗)− u
(
EH

[
R̄(H)

])
≤ σ2

H

δ2
u(R∗) +

(
1− σ2

H

δ2

)
B(δ)

[
δ

1

2 +
(B(δ)

A(δ)

) 1

2
]
δ

1

2 , (48)

whereR∗ = EH[R∗(H)], andA(δ) andB(δ) are positive scalars defined in Assumption 3.
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Proof: Pick anyδ ∈ [σ2
H ,∞). Define the event,V as

V =

{
H : dH

(
Cg(P ,H), Ca(P )

)
≤ δ

}
.

By Lemma 5, the probability of this event is at least1− σ2
H

δ2
. Using Jensen’s inequality as in (41) we can bound

the left-hand side of (48) as follows

u(R∗)− u
(
EH[R̄(H)]

)
≤ u(R∗)− EH

[
u(R̄(H))

]

= u(R∗)− (1− σ2
H

δ2
)EH

[
u(R̄(H))

∣∣∣V
]

−Pr(Vc)EH

[
u(R̄(H))

∣∣∣Vc
]

≤ σ2
H

δ2
u(R∗) + (1− σ2

H

δ2
)

(
u(R∗)− EH

[
u(R̄(H))|V

])

≤ σ2
H

δ2
u(R∗) + (1− σ2

H

δ2
)

∣∣∣∣EH

[
u(R∗)− u(R̄(H))

∣∣V
]∣∣∣∣

≤ σ2
H

δ2
u(R∗) + (1− σ2

H

δ2
)EH

[
|u(R∗)− u(R̄(H))|

∣∣∣V
]
. (49)

In the above relations, the first inequality follows from thefact thatPr(V) ≥ 1 − σ2
H

δ2
, and the second inequality

holds because of the non-negativity ofu(R).

On the other hand, by incorporating Lemma 4 in Assumption 3(a) we have

|u(R∗)− u(R̄(H))| ≤ B(δ)‖R̄(H)−R∗‖.

Now by Assumption 3 we can employ Lemma 6 to conclude the following from the above relation:

|u(R∗)− u(R̄(H))| ≤ B(δ)
(
δ

1

2 +
(B(δ)

A(δ)

) 1

2
)
δ

1

2 , for all H , dH
(
Cg(P ,H), Ca(P )

)
≤ δ,

which implies

EH

[∣∣u(R∗)− u(R̄(H))
∣∣
∣∣∣V
]

≤ B(δ)
(
δ

1

2 +
(B(δ)

A(δ)

) 1

2
)
δ

1

2 . (50)

The desired result follows immediately from substituting (50) in (49).

Theorem 5 provides a bound parameterized byδ. For very small channel variations,σH becomes small. Therefore,

the parameterδ can be picked small enough such that the bound in (48) tends tozero. Figure 3 illustrates the behavior

of right hand side of Eq. (48) as a function ofδ for different values ofσH . For each value ofσH , the upper bound

is minimized for a specific choice ofδ, which is illustrated by a dot in Figure 3. As demonstrated inthe figure,

for smaller channel variations, a smaller gap is achieved and the parameterδ that minimizes the bound decreases.

The next theorem provides another bound demonstrating the impact of the structure of the utility function on the

performance of the greedy policy.

Theorem 6:Let Assumption 1 hold for the twice differentiable functionu : RM → R+. Also, let R∗(·) and

R̄(·) be the optimal and the greedy rate allocation policies, defined in Definitions 7 and 8, respectively. Then for

everyǫ ∈ (0, 1],

u(R∗)− u
(
EH

[
R̄(H)

])
≤ ǫu(R∗) +

1

2
(1− ǫ)r(ǫ)2Ω, (51)
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Fig. 3. Parametric upper bound on performance difference between greedy and optimal policies as in right hand side of (48) for different

channel variations,σH , as a function ofδ

whereR∗ = EH[R∗(H)], andΩ satisfies the following

λmax

(
−∇2u(ξ)

)
≤ Ω, for all ξ, ‖ξ −R∗‖ ≤ r(ǫ), (52)

in which ∇2 denotes the Hessian ofu, andr(ǫ) is given by

r(ǫ) =
√
M

σH√
ǫ
+




M∑

i=1

EH

[
1

2
log

(
(1 +HiPi)(1 +

∑
j 6=iHjPj)

1 +
∑M

j=1HjPj

)]2


1

2

. (53)

Proof: Similarly to the proof of Theorem 5, for anyǫ ∈ (0, 1] define the eventV as

V =

{
H : dH(Cg(P ,H), Ca(P )) ≤ σH√

ǫ

}
. (54)

By Lemma 5, this event has probability at least1 − ǫ. Lemma 4 asserts that the optimal policy almost surely

allocate rate vectors on the dominant face ofCg(P ,H). Therefore, for almost allH ∈ V, the optimal policy

satisfies the following

EH

[
1

2
log
(
1 +

HiPi

1 +
∑

j 6=iHjPj

)]
− σH√

ǫ
≤ R∗

i (H) ≤ EH

[
1

2
log
(
1 +HiPi

)]
+

σH√
ǫ
. (55)

Thus, for almost allH ∈ V, we have

|R∗
i (H)−R∗

i | ≤
σH√
ǫ
+ EH

[
1

2
log

(
(1 +HiPi)(1 +

∑
j 6=iHjPj)

1 +
∑M

j=1HjPj

)]
.

Therefore,

‖R∗(H)−R∗‖ ≤
√
M

σH√
ǫ
+




M∑

i=1

EH

[
1

2
log

(
(1 +HiPi)(1 +

∑
j 6=iHjPj)

1 +
∑M

j=1HjPj

)]2


1

2

= r(ǫ), for almost allH ∈ V. (56)
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Now let us write the Taylor expansion ofu(·) at R∗ in the direction ofR,

u(R) = u(R∗) +∇u(R∗)′(R−R∗)− 1

2
(R−R∗)′(−∇2u(ξ))(R −R∗)

≥ u(R∗) +∇u(R∗)′(R−R∗)− 1

2
‖R−R∗‖2λmax(−∇2u(ξ))

for someξ, ‖ξ −R∗‖ ≤ ‖R −R∗‖. (57)

In the above relation, letR = R∗(H) for all H ∈ V. The utility function is concave, so its Hessian is negative

definite and we can combine (56) with the above relation to write

u(R∗(H)) ≥ u(R∗) +∇u(R∗)′(R∗(H)−R∗)− 1

2
r(ǫ)2Ω, for almost allH ∈ V. (58)

Taking the expectation conditioned onV, and using the fact thatR∗(H) ∈ F
(
Cg(P ,H)

)
we have the following

EH

[
u(R∗(H))

∣∣V
]
≥ u(R∗)− 1

2
r(ǫ)2Ω. (59)

Hence, we conclude

u(R∗)− u(EH(R̄(H))) ≤ u(R∗)− EH[u(R∗(H))]

≤ u(R∗)− (1 − ǫ)EH

[
u(R∗(H))

∣∣∣V
]

−Pr(Vc)EH

[
u(R∗(H))

∣∣∣Vc
]

≤ u(R∗)− (1 − ǫ)
(
u(R∗)− 1

2
r(ǫ)2Ω

)

= ǫu(R∗) +
1

2
(1− ǫ)r(ǫ)2Ω.

where the first inequality is verified by (41), and the third inequality follows from non-negativity of the utility

function and the inequality in (59).

Similarly to Theorem 5, Theorem 6 provides a bound parameterized by ǫ. As the utility function tends to have

a more linear structure,Ω tends to zero. For instance,Ω is proportional toα for a weighted sumα-fair utility

function. Hence, we can chooseǫ small such that the right hand side of (51) goes to zero. The behavior of this

upper bound for different values ofΩ is similar to the one plotted in Figure 3.

In summary, the performance difference between the greedy and the optimal policy is bounded from above by

the minimum of the bounds provided by Theorem 5 and Theorem 6.

Even though the greedy policy can perform closely to the optimal policy, it requires solving a nonlinear program

in each time slot. For each channel state, finding even a near-optimal solution of the problem in (38) requires a

large number of iterations, making the online evaluation ofthe greedy policy impractical. In the following section,

we introduce an alternative rate allocation policy, which implements a single gradient projection iteration of the

form (11) per time slot.

A. Approximate Rate Allocation Policy

In this part, we assume that the channel state information isavailable at each time slotn, and the computational

resources are limited such that a single iteration of the gradient projection method in (11) can be implemented in

each time slot. In order to simplify the notation in this partand avoid unnecessary technical details, we consider a

stronger version of Assumption 3(b).



LIDS REPORT 2787 18

Assumption 4: LetR† = argmaxR∈Cg(P ,H)u(R). Then there exists a positive scalarA such that

|u(R†)− u(R)| ≥ A‖R† −R‖2, for all R ∈ Cg(P ,H).

Definition 9: [Approximate Policy] Given some fixed integerk ≥ 1, we define theapproximaterate allocation

policy, R̃, as follows:

R̃
(
H(n)

)
,

{
R̄
(
H(0)

)
, n = 0

R̃
τ

t(n), n ≥ 1,
(60)

where

τ = argmax
0≤j<k−1

u(R̃
j

t(n)), t(n) =

⌊
n− 1

k

⌋
, (61)

andR̃
j

t(n) ∈ R
M is given by the following gradient projection iterations:

R̃
0
t(n) = P̃t(n)

[
R̃
(
H
(
kt(n)

))]
,

R̃
j+1
t(n) = P̃t(n)

[
R̃

j

t(n) + αj g̃
j
t(n)

]
, j = 1, . . . , k − 1, (62)

where g̃j

t(n) is a subgradient ofu(·) at R̃
j

t(n), α
j denotes the stepsize and̃Pt(n) is the approximate projection on

Cg

(
P ,H(kt(n))

)
.

For k = 1, (62) reduces to taking only one gradient projection iteration at each time slot. Fork > 1, the proposed

rate allocation policy essentially allows the channel state to change for a block ofk consecutive time slots, and

then takesk iterations of the gradient projection method with the approximate projection. We will show below that

this method tracks the greedy policy closely. Hence, this yields an efficient method that on average requires only

one iteration step per time slot. Note that to compute the policy at time slotn, we are using the channel state

information at time slotskt, k(t− 1), . . .. Hence, in practice the channel measurements need to be doneonly every

k time slots.

There is a tradeoff in choosing system parameterk, because taking only one gradient projection step may not

be sufficient to get close enough to the greedy policy’s operating point. Moreover, for largek the new operating

point of the greedy policy can be far from the previous one, and k iterations may be insufficient.

Before stating the main result, let us introduce some usefullemmas. In the following lemma, we translate the

model in Definition 1 for temporal variations in channel state into changes in the corresponding capacity regions.

Lemma 7:Let
{
[Hi(n)]i=1,...,M

}
be the fading process that satisfies condition in (2). We have

dH

(
Cg

(
P ,H(n+ 1)

)
, Cg

(
P ,H(n)

))
≤ Wn, (63)

where{Wn} are non-negative independent identically distributed random variables bounded from above bŷw =
1
2

∑M
i=1 v̂

iPi, where v̂i is a uniform upper bound on the sequence of random variables{V i
n} andPi is the i-th

user’s transmission power.
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Proof: By Definition 6 we have

dH

(
Cg

(
P ,H(n+ 1)

)
, Cg

(
P ,H(n)

))

= max
S⊆M

1

2

∣∣∣∣ log
(
1 +

∑
i∈S(Hi(n+ 1)−Hi(n))Pi

1 +
∑

i∈S Hi(n)Pi

)∣∣∣∣

≤ max
S⊆M

∑
i∈S |Hi(n + 1)−Hi(n)|Pi

2(1 +
∑

i∈S Hi(n)Pi)

≤ 1

2

M∑

i=1

|Hi(n+ 1)−Hi(n)|Pi =
1

2

M∑

i=1

V i
nPi. (64)

Therefore, (63) is true forWn = 1
2

∑M
i=1 V

i
nPi. Since the random variablesV i

n are i.i.d. and bounded above byv̂in,

the random variablesWn are i.i.d. and bounded from above by12
∑M

i=1 v̂
iPi.

The following useful lemma by Nedić and Bertsekas [30] addresses the convergence rate of the gradient projection

method with constant stepsize.

Lemma 8:Let rate allocation policies̄R andR̃ be given by Definition 8 and Definition 9, respectively. Also,let

Assumptions 1, 2 and 4 hold and the stepsizeαn be fixed to some positive constantα. Then for a positive scalar

ǫ we have

u
(
R̃
(
H(n)

))
≥ u

(
R̄
(
H(kt)

))
− αB2 + ǫ

2
, (65)

if k satisfies

k ≥
⌊‖R̃0

t − R̄
(
H(kt)

)
‖2

αǫ

⌋
. (66)

Proof: See Proposition 2.3 of [30].

We next state our main result, which shows that the approximate rate allocation policy given by Definition 9

tracks the greedy policy within a neighborhood which is quantified as a function of the maximum speed of fading,

the parameters of the utility function, and the transmission powers.

Theorem 7:Let Assumptions 1, 2 and 4 hold and the rate allocation policiesR̄ andR̃ be given by Definition 8

and Definition 9, respectively. Choose the system parameters k andα for the approximate policy in Definition 9 as

k =

⌊
(
2B

Aw′ )
2

3

⌋
, α =

(
16A

B2

) 1

3

w′ 23 ,

wherew′ = ŵ
1

2

(
ŵ

1

2 + (B
A
)

1

2

)
, ŵ is the upper bound onWn as defined in Lemma 7,A andB are constants given

in Assumptions 4 and 2. Then, we have

‖R̃
(
H(n)

)
− R̄

(
H(n)

)
‖ ≤ 2θ = 2

(2B
A

) 2

3

w′ 1
3 . (67)

Proof: First, we show that

‖R̃
(
H(n)

)
− R̄

(
H(kt)

)
‖ ≤ θ =

(2B
A

) 2

3

w′ 1
3 , (68)

wheret = ⌊n−1
k

⌋. The proof is by induction ont. For t = 0 the claim is trivially true. Now suppose that (68) is

true for some positivet. Hence, it also holds forn = k(t+ 1) by induction hypothesis, i.e.,

‖R̃0
t+1 − R̄

(
H(kt)

)
‖ ≤ θ. (69)

On the other hand, by Lemma 7 implies that for everyn,

dH

(
Cg

(
P ,H(n+ 1)

)
, Cg

(
P ,H(n)

))
≤ ŵ.
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Thus, by Lemma 6 and the triangle inequality we have

‖R̄
(
H(k(t+ 1))

)
− R̄

(
H(kt)

)
‖ ≤ kw′ ≤ θ. (70)

Therefore, by another triangle inequality we conclude from(69) and (70) that

‖R̃0
t+1 − R̄

(
H(k(t+ 1))

)
‖ ≤ 2θ. (71)

After plugging the corresponding values ofα andθ, it is straightforward to show that (66) holds forǫ = αB2.

Thus, we can apply Lemma 8 to show
∣∣∣∣u
(
R̃
(
H(n)

))
− u
(
R̄
(
H(k(t+ 1))

))∣∣∣∣ ≤ αB2. (72)

By Assumption 4 we can write

‖R̃
(
H(n)

)
− R̄

(
H(k(t+ 1))

)
‖ ≤

(αB2

A

) 1

2

= θ. (73)

Therefore, the proof of (68) is complete by induction.

Again by applying Lemma 6 and Lemma 7 we have

‖R̄
(
H(n)

)
− R̄

(
H(kt)

)
‖ ≤ kw′ ≤ θ, (74)

and the desired result directly follows from (68) and (74) bythe triangle inequality.

Theorem 7 provides a bound on the size of the tracking neighborhood as a function of the maximum speed

of fading, denoted bŷw, which may be too conservative. It is of interest to provide arate allocation policy and

a bound on the size of its tracking neighborhood as a functionof the average speed of fading. The next section

addresses this issue.

B. Improved Approximate Rate Allocation Policy

In this section, we design an efficient rate allocation policy that tracks the greedy policy within a neighborhood

characterized by the average speed of fading which is typically much smaller than the maximum speed of fading.

We consider policies which can implement one gradient projection iteration per time slot.

Unlike the approximate policy given by (60) which uses the channel state information once in everyk time

slots, we present an algorithm which uses the channel state information in all time slots. Roughly speaking, this

method takes a fixed number of gradient projection iterations only after the change in the channel state has reached

a certain threshold.

Definition 10: [Improved Approximate Policy] Let{Wn} be the sequence of non-negative random variables as

defined in Lemma 7, andγ be a positive constant. Define the sequence{Ti} as

T0 = 0,

Ti+1 = min

{
t |

t−1∑

n=Ti

Wn ≥ γ

}
. (75)

Define theimproved approximaterate allocation policy,R̂, with parametersγ andk, as follows:

R̂
(
H(n)

)
,

{
R̄
(
H(0)

)
, n = 0

R̂
τ

t(n), n ≥ 1,
(76)
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Fig. 4. The improved approximate policy takesk gradient projection iterations at timeTt(n), which is the time that the random walk

generated by the random variablesWn reach the thresholdγ.

where

t(n) = max{i | Ti < n}, (77)

τ = argmax
0≤j<k−1

u
(
R̂

j

t(n)

)
, (78)

andR̂
j

t(n) ∈ R
M is given by the following gradient projection iterations

R̂
0
t(n) = P̃t(n)

[
R̂
(
H(Tt(n))

)]
,

R̂
j+1
t(n) = P̃t(n)

[
R̂

j

t(n) + αj ĝ
j
t(n)

]
, j = 1, . . . , k − 1, (79)

where ĝj
t(n) is a subgradient ofu(·) at R̂

j

t(n), α
j denotes the stepsize and̃Pt(n) is the approximate projection on

Cg(P ,H(Tt(n))).

Figure 4 depicts a particular realization of the random walkgenerated byWn, and the operation of the improved

approximate policy.

Theorem 8:Let t(n) be as defined in (77), and let̄w = E[Wn]. If k = γ
w̄

, then we have

lim
n→∞

n

t(n)k
= 1, with probability 1. (80)

Proof: The sequence{Ti} is obtained as the random walk generated by theWn crosses the threshold levelγ.

Since the random variablesWn are positive, we can think of the threshold crossing as a renewal process, denoted

by N(·), with inter-arrivalsWn.

We can rewrite the limit as follows

lim
n→∞

n−N
(
t(n)γ

)
+N

(
t(n)γ

)

t(n)k
= lim

n→∞
n−N

(
t(n)γ

)

t(n)k
+ w̄

N
(
t(n)γ

)

t(n)γ
. (81)

Since the random walk will hit the threshold with probability 1, the first term goes to zero with probability 1.

Also, by Strong law for renewal processes the second terms goes to 1 with probability 1 (see [31], p.60).

Theorem 8 essentially guarantees that the number of gradient projection iterations is the same as the number of

channel measurements in the long run with probability 1.

Theorem 9:Let Assumptions 1, 2 and 4 hold and the rate allocation policiesR̄ andR̂ be given by Definition 8

and Definition 10, respectively. Also, letk = ⌊ γ
w̄
⌋, and fix the stepsize toα = Aγ2

B2 in (79), whereγ = c(B
A
)

3

4 w̄
1

4 ,

andc ≥ 1 is a constant satisfying the following equation

(c2 − 1)8

28c4
= ŵ. (82)
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Then

‖R̂
(
H(n)

)
− R̄

(
H(n)

)
‖ ≤ 2γ +

(γB
A

) 1

2

. (83)

Proof: We follow the line of proof of Theorem 7. First, by induction on t we show that

‖R̂
(
H(n)

)
− R̄

(
H(Tt)

)
‖ ≤ γ, (84)

wheret is defined in (77). The base is trivial. Similar to (69), by induction hypothesis we have

‖R̂0
t+1 − R̄

(
H(Tt)

)
‖ ≤ γ. (85)

By definition of Ti in (75) we can write

dH

(
Cg

(
P ,H(Tt+1)

)
, Cg

(
P ,H(Tt)

))
≤ γ. (86)

Thus, by Lemma 6, we have

‖R̄
(
H(Tt+1)

)
− R̄

(
H(Tt)

)
‖ ≤ γ

1

2

(
γ

1

2 +
(B
A

) 1

2

)
. (87)

Therefore, by combining (85) and (87) by triangle inequality we obtain

‖R̂0
t+1 − R̄

(
H(Tt+1)

)
‖ ≤ 2γ +

(γB
A

) 1

2

. (88)

Using the fact that̄w ≤ ŵ = (c2−1)8

28c4
, after a few steps of straightforward manipulations we can show that

‖R̂0
t+1 − R̄

(
H(Tt+1)

)
‖2 ≤

(
2γ +

(γB
A

) 1

2

)2
≤ c4

γB

A
. (89)

Now by plugging the values ofα andγ in terms of system parameters in (66), we can verify that

k =
⌊ γ
w̄

⌋
=

⌊
c4 γB

A

A γ2

B2Aγ2

⌋
≥
⌊‖R̂0

t+1 − R̄
(
H(Tt+1)

)
‖2

αǫ

⌋
. (90)

Hence, we can apply Lemma 8 forǫ = Aγ2, and conclude
∣∣∣∣u
(
R̂
(
H(n)

))
− u
(
R̄
(
H(Tt+1)

))∣∣∣∣ ≤ αB2. (91)

By exploiting Assumption 4 we have

‖R̂
(
H(n)

)
− R̄

(
H(Tt+1)

)
‖ ≤

(αB2

A

) 1

2

= γ. (92)

Therefore, the proof of (84) is complete by induction. Similarly to (87) we have

‖R̄
(
H(n)

)
− R̄

(
H(Tt)

)
‖ ≤ γ

1

2

(
γ

1

2 + (
B

A
)

1

2

)
, (93)

and (83) follows immediately from (84) and (93) by invoking triangle inequality.

Theorem 8 and Theorem 9 guarantee that the presented rate allocation policy tracks the greedy policy within a

small neighborhood while only one gradient projection iteration is computed per time slot, with probability 1. The

neighborhood is characterized in terms of the average behavior of temporal channel variations and vanishes as the

fading speed decreases.
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Fig. 5. Structure of thei-th transmitter and the receiver for the queue-length-based policy [10].

Fig. 6. Structure of thei-th transmitter and the receiver for the presented policies.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we provide simulation results to complement our analytical results and make a comparison with

other fair resource allocation algorithms. We focus on the case with no power control or knowledge of channel

statistics. We also make reasonable assumption that the channel state processes are generated by independent

identical finite state Markov chains. We consider weightedα-fair function as the utility function, i.e.,

u(R) =
∑

i

wifα(Ri), (94)

wherefα(·) is given by equation (40).

We consider two different scenarios to compare the performance of the greedy policy with the queue-based rate

allocation policy by Eryilmaz and Srikant [10]. This policy, parameterized by some parameterK, uses queue length

information to allocate the rates arbitrarily close to the optimal policy by choosingK large enough. As illustrated

in Figure 6,xi(n) denotes the queue-length of thei-th user. At time slotn, the scheduler chooses the service rate

vectorµ(n) based on a max-weight policy, i.e.,

µ(n) = argmax
M∑

i=1

xi(n)Ri

subject to R ∈ Cg(P ,H(n)) (95)

The congestion controller proposed in [10] leads to a fair allocation of the rates for a givenα-fair utility function.

In particular, the data generation rate for thei-th transmitter, denoted byai(n) is a random variable satisfying the

following conditions:

E
[
ai(n) |xi(n)

]
= min

{
K
( wi

xi(n)

) 1

α

,D

}
,

E
[
a2i (n) |xi(n)

]
≤ U < ∞, for all xi(n), (96)
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Fig. 7. Performance comparison of greedy and queue-based policies for a communication session with limited duration, for σH

H̄
= 1.22.
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Fig. 8. Performance comparison of greedy and queue-based policies for a communication session with limited duration, for σH

H̄
= 0.13.

whereα, D andU are positive constants.

In the first scenario, we compare the average achieved rate ofthe policies for a communication session with

limited duration. Figure 7 depicts the distance between empirical average rate achieved by the greedy or the queue-

length based policy, andR∗, the maximizer of the utility function over the throughput region. In this case, the

utility function is given by (94) withα = 2 and w1 = 1.5w2 = 1.5, and the corresponding optimal solution

is R∗ = (0.60, 0.49). As observed in Figure 7, the greedy policy outperforms the queue-length based policy a

communication session with limited duration. It is worth noting that there is a tradeoff in choosing the parameter

K of the queue-length based policy. In order to guarantee achieving close to optimal rates by queue-based policy,

the parameterK should be chosen large which results in large expected queuelength and lower convergence rate.

On the other hand, ifK takes a small value to improve the convergence rate, the achieved rate of the queue based

policy converges to a larger neighborhood of theR∗.

As established in Theorem 5, the performance of the greedy policy improves by decreasing the channel variations.
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Fig. 9. Performance comparison of greedy and queue-based policies for file upload scenario with respect to file sizef = f1 = f2. Rg and

Rq are expected upload rate of the greedy and the queue-length based policy, respectively.

Figure 8 demonstrates the improvement in performance of thegreedy policy whenσH

H̄
decreases from 1.22 to 0.13.

We also observe in Figure 8 that the queue-length based policy is not sensitive to channel variations, and its

performance does not improve by decreasing the channel variations. It is worth mentioning that the greedy policy

as observed in the simulation results performs significantly better than the bounds provided by Theorems 5 and 6.

These upper bounds characterize the behavior of the greedy policy in terms of channel variations and structure of

the utility function, but they are not necessarily tight.

Second, we consider a file upload scenario where each user transmitting a file with finite size to the base station

in a rateless manner. LetTi be thei-th user’s completion time of the file upload session for a fileof sizefi. Define

the average upload rate for thei-th user asfiTi
. We can measure the performance of each policy for this scenario

by evaluating the utility function at the average upload rate. Figure 9 demonstrates the utility difference of the

greedy and the queue-based policy for different file sizes. We can observe that for small file sizes the greedy policy

outperforms the queue-based policy significantly, and thisdifference decreases by increasing the file size. We can

interpret this behavior as follows. The files are first buffered into the queues based on the queue lengths and the

weightedα-fair utility, while the queues are emptied by a max-weight scheduler. Once the files are all buffered in

the queues, the queues are empties with the same rate which isnot fair because it does not give any priority to the

users based on their utility. For larger file size, the duration for which the entire file is emptied into the queue is

negligible compared to the total transmission time, and theaverage upload rate converges to a near-optimal rate.

VII. C ONCLUSION

We addressed the problem of optimal resource allocation in afading multiple access channel from an information

theoretic point of view. We formulated the problem as a utility maximization problem for a more general class of

utility functions.

We considered several different scenarios. First, we considered the problem of optimal rate allocation in a non-

fading channel. We presented the notion of approximate projection for the gradient projection method to solve the

rate allocation problem in polynomial time in the number of users.
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Second, we studied rate and power allocation in a fading channel with known channel statistics. In this case,

the optimal rate and power allocation policies are obtainedby greedily maximizing a properly defined linear utility

function. If for the fading channel power control and channel statistics are not available, the greedy policy is not

optimal for nonlinear utility functions. However, we showed that its performance in terms of the utility is not

arbitrarily worse compared to the optimal policy, by bounding their performance difference. The provided bound

tends to zero as the channel variations become small or the utility function behaves more linearly.

The greedy policy may itself be computationally expensive.A computationally efficient algorithm can be em-

ployed to allocate rates close to the ones allocated by the greedy policy. Two different rate allocation policies are

presented which only take one iteration of the gradient projection method with approximate projection at each time

slot. It is shown that these policies track the greedy policywithin a neighborhood which is characterized by average

speed of fading as well as fading speed in the worst case.

APPENDIX I

ALGORITHM FOR FINDING A VIOLATED CONSTRAINT

In this section, we present an alternative algorithm based on rate-splitting idea to identify a violated constraint for

an infeasible point. For a feasible point, the algorithm provides information for decoding by successive cancellation.

We first introduce some definitions.

Definition 11: The quadruple(M,P ,R, N0) is called aconfigurationfor an M -user multiple-access channel,

whereR = (R1, . . . , RM ) is the rate tuple,P = (P1, . . . , PM ) represents the received power andN0 is the noise

variance. For any given configuration, theelevation, δ ∈ R
M , is defined as the unique vector satisfying

Ri = C(Pi, N0 + δi), i = 1, . . . ,M. (97)

Intuitively, we can think of messagei as rectangles of heightPi, raised above the noise level byδi. In fact, δi is

the amount of additional Gaussian interference that message i can tolerate. Note that if the rate vector corresponding

to a configuration is feasible its elevation vector is non-negative. However, that is not sufficient for feasibility check.

Definition 12: The configuration(M,P ,R, N0) is single-user codable, if after possible re-indexing,

δi+1 ≥ δi + Pi, i = 0, 1, . . . ,M − 1, (98)

where we have definedδ0 = P0 = 0 for convention.

By the graphical representation described earlier, a configuration is single-user codable if the none of the messages

are overlapping. Figure 10(a) gives an example of graphicalrepresenting for a message with powerPi and elevation

δi. Figures 10(b) and 10(c) illustrate overlapping and non-overlapping configurations, respectively.

Definition 13: The quadruple(m,p, r, N0) is a spin-off of (M,P ,R, N0) if there exists a surjective mapping

φ : {1, . . . ,m} → {1, . . . ,M} such that for alli ∈ {1, . . . ,M} we have

Pi ≥
∑

j∈φ−1(i)

pj,

Ri ≤
∑

j∈φ−1(i)

rj .

whereφ−1(i) is the set of allj ∈ {1, . . . ,m} that map intoi by means ofφ.
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Definition 14: A hyper-userwith powerP̄ , rateR̄, is obtained by mergingd actual users with powers(Pi1 , . . . , Pid)

and rates(Ri1 , . . . , Rid), i.e,

P̄ =

d∑

k=1

Pik , R̄ =

d∑

k=1

Rik . (99)

Theorem 10:For anyM -user achievable configuration(M,P ,R, N0), there exists a spin-off(m,p, r, N0) which

is single user codable.

Proof: See Theorem 1 of [8].

Here, we give a brief sketch of the proof to give intuition about the algorithm. The proof is by induction onM . For a

given configuration, if none of the messages are overlappingthen the spin-off is trivially equal to the configuration.

Otherwise, merge the two overlapping users into ahyper-userof rate and power equal the sum rate and sum power

of the overlapping users, respectively. Now the problem is reduced to rate splitting for(M − 1) users. This proof

suggests a recursive algorithm for rate-splitting that gives the actual spin-off for a given configuration.

It follows directly from the proof of Proposition 10 that this recursive algorithm gives a single-user codable

spin-off for an achievable configuration. If the configuration is not achievable, then the algorithm encounters a

hyper-user with negative elevation. At this point the algorithm terminates. Suppose that hyper-user has rateR̄ and

power P̄ . Negative elevation is equivalent to the following

R̄ > C(P̄ ,N0).

Hence, by Definition 14 we have, ∑

i∈S
Ri > C(

∑

i∈S
Pi, N0).

whereS = {i1, . . . , id} ⊆ M. Therefore, a hyper-user with negative elevation leads us to a violated constraint in

the initial configuration.

Theorem 11:The presented algorithm runs inO(M2 logM) time, whereM is the number of users.

Proof: The computational complexity of the algorithm can be computed as follows. The algorithm terminates

after at mostM recursions. At each recursion, all the elevations corresponding to a configuration with at mostM

hyper-users are computed inO(M) time. It takesO(M logM) time to sort the elevation in an increasing order.

Once the users are sorted by their elevation, a hyper-user with negative elevation could be found inO(1) time,

or two if such a hyper-user does not exists it takesO(M) time to find two overlapping hyper-users. In the case

that there are no overlapping users and all the elevations are non-negative the input configuration is achievable,

and the algorithm terminates with no violated constraint. Hence, computational complexity of each recursion is

O(M) +O(M logM) +O(M) = O(M logM). Therefore, the algorithm runs inO(M2 logM) time.

APPENDIX II

PROOF OFLEMMA 5

First, consider the following lemmas. Lemma 9 bounds Jensen’s difference of a random variable for a concave

function. The upper bound is characterized in terms of the variance of the random variable.

Lemma 9:Let f : R → R+ be concave and twice differentiable. LetX be a random variable with varianceσ2
X .

Then,

f(E[X])− E[f(X)] ≤
√

2Mσ2
Xf(E[X])− σ2

XM

2
, (100)
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Fig. 10. Graphical representation of messages over multi-access channel [8].

whereM be an upper-bound on|f ′′(x)|.
Proof: Pick any0 < ǫ ≤ 1. By Chebyshev’s inequality we have

Pr (|X − E(X)| > c) ≤ ǫ, (101)

wherec = σX√
ǫ
. Therefore, we have

E[f(X)] = E

[
f(X)

∣∣∣|X − E(X)| ≤ c
]

Pr
(
|X − E(X)| ≤ c

)

+ E

[
f(X)

∣∣∣|X − E(X)| > c
]

Pr
(
|X − E(X)| > c

)

≥ (1− ǫ)E
[
f(X)

∣∣∣|X − E(X)| ≤ c
]

≥ 1− ǫ

2

(
f
(
E[X] + c

)
+ f

(
E[X]− c

))

= (1− ǫ)f(E[X]) +
1− ǫ

4
c2(f ′′(ξ1) + f ′′(ξ2)), (102)

where the first inequality follows from non-negativity off , and the second and the second inequality follows from

concavity off . The scalarsξ1 ∈
[
E[X],E[X] + c

]
andξ2 ∈

[
E[X]− c,E[X]

]
are given by Taylor’s theorem.

Given the above relation, for anyǫ > 0 we have

f(E[X])− E[f(X)] ≤ 1− ǫ

2ǫ
σ2
XM + ǫf(E[X]). (103)

The right-hand side is minimized for

ǫ∗ = min

{(
σ2
XM

2f(E[X])

) 1

2

, 1

}
. (104)

By substitutingǫ∗ in (103), the desired result follows immediately.

We next provide an upper bound on variance ofY = log(1 +X) proportional to the variance ofX.

Lemma 10:Let X > 0 be a random variable with mean̄X and varianceσ2
X , andY = log(1+X) then variance

of Y is upper-bounded as

σ2
Y ≤ σ2

X

(
1 +

[
(1 + X̄)(

√
2 log(1 + X̄)− σX

2
)

]2)
. (105)
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Proof: Let E(Y ) = log(1 + X̂) for someX̂ < X̄ . By invoking the mean value theorem, we have

σ2
Y = E

[(
log(1 +X)− log(1 + X̂)

)2]

= E

[( 1

1 + X̃
(X − X̂)

)2]

≤ E

[(
X − X̂

)2]
, (106)

whereX̃ is a non-negative random variable.

On the other hand, by employing lemma 9 withf(x) = log(1 + x), we can write

E
[
log(1 +X)

]
≥ log(1 + X̄)−

√
2σ2

X log(1 + X̄) +
σ2
X

2
. (107)

Hence,

X̄ ≥ X̂ = exp {E[log(1 +X)]} − 1

≥ exp

{
log(1 + X̄)−

√
2σ2

X log(1 + X̄) +
σ2
X

2

}
− 1

≥ X̄ − σX(1 + X̄)(
√

2 log(1 + X̄)− σX
2

), (108)

where the first inequality is by (107), and the second relation can be verified after some straightforward manipulation.

By combining (106) and (107) the variance ofY can be bounded as follows

σ2
Y ≤ E[(X − X̂)2]

≤ E

[(
X − X̄ + σX(1 + X̄)(

√
2 log(1 + X̄)− σX

2
)

)2
]

= σ2
X

(
1 +

[
(1 + X̄)(

√
2 log(1 + X̄)− σX

2
)

]2)
. (109)

Now we provide the proof for Lemma 5. Define random variableYS as the following:

YS =
1

2
log(1 +

∑

i∈S

HiPi

N0
), for all S ⊆ M = {1, . . . ,M}. (110)

The facet defining constraints ofCg(P ,H) andCa(P ) are of the form of
∑

i∈S Ri ≤ YS and
∑

i∈S Ri ≤ E[YS ],

respectively. Therefore, by Definition 6, we havedH (Cg(P ,H), Ca(P )) ≤ δ if and only if |YS − E[YS ]| ≤ δ, for

all S ⊆ M. Thus, we can write

Pr
{
dH (Cg(P ,H), Ca(P )) > δ

}
= Pr

{
max
S

∣∣YS − E[YS ]
∣∣ > δ

}

≤
∑

S⊆M
Pr
{∣∣YS − E[YS ]

∣∣ > δ
}

≤ 1

δ2

∑

S⊆M
σ2
YS
. (111)
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where the first inequality is obtained by union bound, and thesecond relation is by applying Chebyshev’s inequality.

On the other hand,σ2
YS

can be bounded from above by employing Lemma 10, i.e.,

σ2
YS

≤ σ2
ZS

4

(
1 +

[
(1 + Z̄S)(

√
2 log(1 + Z̄S)−

σZS

2
)

]2)
, (112)

where

Z̄S = E

[∑

i∈S

HiPi

N0

]
=
∑

i∈S
ΓiH̄i = Γ

′
SH̄ ,

σ2
ZS

= var
(∑

i∈S

HiPi

N0

)
=

∑

(i,j)∈S2

ΓiΓjcov(Hi,Hj) = Γ
′
SKΓS .

The desired result is concluded by substitutingZ̄S andσ2
ZS

in (112) and combing the result with (111). �

APPENDIX III

PROOF OFLEMMA 6

Let us first state and prove a useful lemma which asserts that Euclidean expansion of a capacity region byδ

contains its expansion by relaxing its constraints byδ.

Lemma 11:Let C1 be a capacity region withpolymatroidstructure, i.e.,

C1 =

{
R ∈ R

M
+ :

∑

i∈S
Ri ≤ f(S), for all S ⊆ M

}
, (113)

where f(S) is a nondecreasing submodular function. Also, letC2 be anexpansionof C1 by δ as defined in

Definition 5. Then, for allR ∈ C2, there exists someR′ ∈ C1 such that‖R−R′‖ ≤ δ.

Proof: By Definition 15, it is straightforward to show thatC2 is also a polymatroid, i.e.,

C2 =

{
R ∈ R

M
+ :

∑

i∈S
Ri ≤ g(S) = f(S) + δ, for all S ⊆ M

}
, (114)

whereg(S) is a submodular function. By convexity ofC2, we just need to prove the claim for the vertices ofC2.

Let R ∈ R
M be a vertex ofC2. The polymatroid structure ofC2 implies thatR is generated by an ordered subset

of M (see Theorem 2.1 of [32]). Hence, there is somek ∈ M such thatRk = f({k})+ δ. Consider the following

construction forR′:

R′
i =

{
Ri − δ, i = k

Ri, otherwise.
(115)

By construction,R′ is in a δ-neighborhood ofR. So we just need to show thatR′ is feasible inC1. First, let

us consider the setsS that containk. We have
∑

i∈S
R′

i =
∑

i∈S
Ri − δ ≤ f(S). (116)

Second, consider the case thatk /∈ S.
∑

i∈S
R′

i =
∑

i∈S∪{k}
R′

i −Rk + δ

≤ f(S ∪ {k}) + δ −Rk

≤ f(S) + f({k}) + δ −Rk

= f(S),
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where the first inequality comes from (116), and the second inequality is true by submodularity of the function

f(·). This completes the proof.

Proof: [of Lemma 6] Without loss of generality assume thatu(R∗
2) ≥ u(R∗

1). By Lemma 11, there exists

someR ∈ Ca(P ) such that‖R∗
2 −R‖ ≤ δ. Moreover, we can always chooseR to be on the boundary so that

‖R‖ ≥ Dδ, whereDδ is defined in (39). Therefore, by Assumption 3(a) and the factthatu(R∗
2) ≥ u(R∗

1) ≥ u(R),

we have

u(R∗
2)− u(R) = |u(R∗

2)− u(R)| ≤ B‖R∗
2 −R‖ ≤ Bδ. (117)

Now suppose that‖R∗
1 −R‖ > (B

A
δ)

1

2 . By Assumption 3(b) we can write

u(R∗
1)− u(R) = |u(R∗

1)− u(R)| ≥ A‖R∗
1 −R‖2 > Bδ. (118)

By subtracting (117) from (118) we obtainu(R∗
2) < u(R∗

1) which is a contradiction. Therefore,‖R∗
1−R‖ ≤ (B

A
δ)

1

2 ,

and the desired result follows immediately by invoking the triangle inequality.
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[30] A. Nedić and D.P. Bertsekas.Convergence Rate of Incremental Subgradient Algorithms. Stochastic Optimization: Algorithms and

Applications (S. Uryasev and P. M. Pardalos, Editors), Kluwer Academic Publishers, 2000.

[31] R. Gallager.Discrete Stochastic Processes. Kluwer Academic Publishers, London, United Kingdom, 1996.

[32] R. E. Bixby, W. H. Cunningham, and D. M. Topkis. The partial order of a polymatroid extreme point.Mathematics of Operations

Research, 10(3):367–378, 1985.


	Introduction
	System Model
	Rate Allocation in a Non-fading Channel
	Complexity of the Projection Problem

	Dynamic Rate and Power Allocation in Fading Channel with Known Channel Statistics
	Dynamic Rate Allocation without Knowledge of Channel Statistics
	Approximate Rate Allocation Policy
	Improved Approximate Rate Allocation Policy

	Simulation Results and Discussion
	Conclusion
	Appendix I: Algorithm for finding a violated constraint
	Appendix II: Proof of Lemma ??
	Appendix III: Proof of Lemma ??
	References

