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A quantum version of Wielandt’s inequality
Mikel Sanz, David Pérez-Garcı́a, Michael M. Wolf, and JuanI. Cirac

Abstract—In this paper, Wielandt’s inequality for classical
channels is extended to quantum channels. That is, an upper
bound to the number of times a channel must be applied, so
that it maps any density operator to one with full rank, is found.
Using this bound, dichotomy theorems for the zero–error capacity
of quantum channels and for the Matrix Product State (MPS)
dimension of ground states of frustration-free Hamiltonians are
derived. The obtained inequalities also imply new bounds on
the required interaction-range of Hamiltonians with unique MPS
ground state.

Index Terms—classical channels, information rates, quantum
channels, spin systems, strongly correlated electrons, Wielandt’s
inequality.

I. I NTRODUCTION

CONSIDER a classical memoryless channel acting in
discrete time on an alphabet of sizeD. Such a channel is

described by a stochastic matrixA ∈ MD×D which is called
primitive [1] if there is ann ∈ N such that(An)i,j > 0 for
all i, j. The minimumn for which this occurs,p(A), is called
the (classical)index of primitivityof A (or theexponentof A).
This ensures that after applying the channelp(A) times to any
probability distribution, there will be a non–zero probability
for any possible event.Wielandt’s inequality[2] states that,
for every primitive matrix,

p(A) ≤ D2 − 2D + 2

and this is the optimal bound which is independent of the
matrix elements. Wielandt’s inequality has a wide range of
applications in different fields, ranging from Markov chains [3]
to graph theory and number theory [4], and numerical analysis
[5].

In this work, we derive a quantum analogue of Wielandt’s
inequality. That is, we considerquantum channels, i.e., trace
preserving completely positive linear maps (TPCPM) and
define a property analogous to primitivity: the existence ofan
n ∈ N such that after then-fold application of the quantum
channel every positive semidefinite operator is mapped ontoa
positive definite operator. The smallest suchn then defines
a quantum index of primitivity,q. We begin by relating
primitivity to some other properties of quantum channels, such
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as the existence of a unique full-rank fixed point or the fact
that the Kraus operators corresponding to some number of
applications of the channel span the full space of matrices.
This will allow us to derive a quantum Wielandt’s inequality
for primitive quantum channels,

q ≤ (D2 − d+ 1)D2

whereD is the dimension of the Hilbert space, andd the
number of linearly independent Kraus operators. We will see
that, under certain generic conditions on the Kraus operators,
better inequalities can be derived. Finally, we apply the new
inequalities to three problems related to channel capacities and
to quantum spin chains: we derive a dichotomy theorem for
the zero–error capacity of quantum channels and prove a con-
jecture for ground states of frustration-free spin Hamiltonians.
Moreover, we show that our result also has new implications
concerning the interaction–range of Hamiltonians with MPS
as unique ground states [6].

II. BASIC NOTIONS

Let us start by fixing the notation and introducing the basic
notions. We will consider quantum channels, i.e., TPCPMs,E :
MD×D → MD×D, whereMD×D is the space of complex
D × D matrices. Let us denote byEA the quantum channel
with Kraus operators{Ak ∈ MD×D}dk=1, i.e.,

EA(X) =

d
∑

k=1

AkXA
†
k. (1)

We defineSn(A) ⊆ MD×D as the linear space spanned
by all possible products of exactlyn Kraus operators,
Ak1Ak2 . . . Akn , and by A

(n)
k the elements ofSn(A).

There is a one-to-one correspondence between a quan-
tum channel E and its Choi matrix ω(E) := (id ⊗
E)(Ω) where Ω =

∑D
i,j=1 |ii〉〈jj|. It is readily verified

that rank
[

ω(EAn)
]

= dim
[

Sn(A)
]

. We further define
Hn(A,ϕ) := Sn(A)|ϕ〉 ⊆ CD as the space spanned by
all vectorsAk1Ak2 . . . Akn |ϕ〉, where |ϕ〉 ∈ CD. That is,
rank

[

EAn(|ϕ〉〈ϕ|)
]

= dim
[

Hn(A,ϕ)
]

.
We introduce now three properties which will later turn out

to be equivalent:

(a) A quantum channelEA is called primitive if there
exists somen ∈ N such that for all|ϕ〉 ∈ CD,
Hn(A,ϕ) = CD. In other words, if for every input
density operatorρ the outputEAn(ρ) obtained after
n applications of the channel has full-rank. We will
denote byq(EA) the minimum n for which that
condition is fulfilled. Note that ifEA is primitive,
then for everym ∈ N, EmA is primitive, too, and we
haveHn(A,ϕ) = CD for all n ≥ q(EA).

http://arxiv.org/abs/0909.5347v2
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(b) A quantum channelEA is said to haveeventually
full Kraus rank if there exists somen ∈ N such
thatSn(A) = MD×D, i.e., if rank

[

ω(EAn)
]

= D2.
We denote byi(A) the minimumn for which that
condition is satisfied. Obviously, ifEA fulfills this
property, thenSn(A) = MD×D for all n ≥ i(A).

(c) We say that a quantum channelEA is strongly irre-
ducible1 if the following two conditions are fulfilled:
(i) EA has a unique eigenvalue,λ, with |λ| = 1; (ii)
the corresponding eigenvector,ρ, is a positive definite
operator (ρ > 0). This implies the convergence

lim
n→∞

EnA = E∞
A , (2)

whereE∞
A (X) := ρ tr(X). Note that, for instance,

the generalized Frobenius theorem proved in [7,
Theorem 2.5] ensures that a TPCPM always has
an eigenvalueλ = 1 with eigenvectorρ ≥ 0. In
this case it was already known [8, Lemma 5.2] that
there exits an upper bound fori(A) related with the
second eigenvalueλ2 of EA, which is essentially
i(A) . O(exp 1

λ2

).

Our first simple observation is that (b) implies (a), or stated
quantitatively:

Proposition 1. For every quantum channelEA we have that
q(EA) ≤ i(A).

Proof: Take anyn ≥ i(A). Then, by the definition of
i(A), the Choi matrixω(EnA) has full-rank, so that

EnA(|ϕ〉〈ϕ|) = (1⊗ 〈ϕ̄|) ω(EnA) (1⊗ |ϕ̄|)

also has full-rank.
Before continuing the analysis of the relationships among

the three properties above in the quantum context, let us
connect them to the classical notion of primitivity. Given a
stochastic matrixA = (aij), let us consider the mapEA
defined by the Kraus operatorsAi,j =

√
ai,j |i〉〈j|. EA has the

property that for an operatorρ with entriesρi,j = δi,jpi ≥ 0,
ρ′ := EA(ρ) is diagonal withρ′i,j = δi,jp

′
i, with p′ = Ap.

Thus,EA implements the stochastic mapA, i.e., the quantum
channel reduces to the classical channel when applied to
diagonal density operators. Note thatd is the number of
positive entries of the stochastic matrix in the classical case,
so the general quantum bound applied to a classical channel
is always worse than the classical bound.

Let us considerA primitive and denote byp(A) its classical
index of primitivity. Then, we have:

Proposition 2. Let us consider a primitive stochastic mapA
and the corresponding TPCPMEA. Then,EA is also primitive
and the equalityq(A) = p(A) = i(A) holds.

Proof: It is clear thatp(A) ≤ q(EA) and we proved in
Prop. 1 thatq(EA) ≤ i(A). In order to show thati(A) ≤ p(A),

1The notion of ’irreducibility’, used for instance in [7], differs from our
definition of ’strong irreducibility’ by allowing for othereigenvalues of
magnitude one. In fact,E is strongly irreducible iffEn is reducible for all
n ∈ N. This property is known asinjectivity in the context of Matrix Product
States.

we defineÃi,j =
√
ai,jAi,j , n = p(a)− 1, and take

D
∑

k1,...,kn=1

Ãi,k1Ãk1,k2 . . . Ãkn,j = (Ap(a))i,j |i〉〈j| 6= 0. (3)

Thus, |i〉〈j| ∈ Sp(A)(A) for all i, j.
We note thatq(EA) is different from i(A) in the general

case. To see that, let us consider an example withd = 3,
D = 2, and take as Kraus operatorsσα/

√
3, whereα = x, y, z

labels the three Pauli matrices. Hereq(EA) = 1 < i(A) = 2.
However, the following proposition shows thati(A) is finite

wheneverq(EA) is. In fact, all three definitions above are
equivalent:

Proposition 3. Given a quantum channelEA, the following
statements are equivalent: (a)EA is primitive; (b) EA has
eventually full Kraus rank; (c)EA is strongly irreducible.

Proof: We denote byρ ≥ 0 an eigenoperator ofEA
corresponding to the eigenvalueλ = 1.

(b) ⇒ (a)
This implication is given by Prop.1.

(a) ⇒ (c)
We prove it by contradiction. Let us assume thatEA is not

strongly irreducible. Then, we must have at least one of the
following cases: (i)ρ is not full-rank; (ii) there exists another
eigenoperator,ρ′, corresponding toλ = 1; (iii) there is another
eigenvalue,λ′, with |λ′| = 1. Since for alln ∈ N , EnA(ρ) = ρ,
(i) automatically implies thatEA is not primitive. Furthermore,
if we have (ii), choosingǫ = 1/max[spec(ρ−1/2ρ′ρ−1/2)] we
have thatρ̃ = ρ − ǫρ′ ≥ 0 is not full-rank and thus we are
back in (i). Moreover, it is proven in the demonstration of
[8, Proposition 3.3] that, if (i) and (ii) do not hold, the other
possible eigenvalues of modulus 1 are thep-th roots of unity
for some finitep ∈ N. Therefore, we have (ii) forEpA, and
thusEpA cannot be primitive.

(c) ⇒ (b)
This implication can be deduced from [8, Lemma 5.2], but

we include here a proof for completeness. We prove it by
contradiction. Let us assume thatEA is (j) strongly irreducible,
but (jj) does never get full Kraus rank. If we have (j) thenρ
is full-rank and Eq. (2) is fulfilled. Because of (jj), for all
n ∈ N andA(n)

k ∈ Sn(A), there exists someBn 6= 0 such
that tr(A(n)

k Bn) = 0. Thus,

∣

∣tr(ρB†
nBn)

∣

∣ =

∣

∣

∣

∣

∣

∣

∑

k1,...,kn

|tr(Ak1 · · ·AknBn)|2 − tr(ρB†
nBn)

∣

∣

∣

∣

∣

∣

=
∣

∣

∣
tr
[

Ω(EnA ⊗ id)(B̃nΩB̃
†
n)
]

− tr
[

Ω(E∞
A ⊗ id)(B̃nΩB̃

†
n)
]∣

∣

∣

≤ cn‖Ω‖∞tr(B̃nΩB̃
†
n) = Dcntr(B

†
nBn)

whereB̃n = Bn⊗1 andlimn cn = 0. If ρ was full-rank, then
for all X ≥ 0 one would have

tr(ρX) ≥ 1

‖ρ−1‖∞
tr(X)

and we obtain a contradiction.
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As a consequence of Prop. 3, we obtain that primitivity of
a quantum channel can be decided by observing its spectral
properties. In fact, this is the precise quantum analogue of
the classical result that a stochastic matrix is primitive iff it
has a unique eigenvalue of maximum modulus and a positive
definite fixed point (cf. [1]).

III. QUANTUM WIELANDT ’ S INEQUALITIES

In order to reach a quantum version of Wielandt’s inequality,
i.e. bounds forq(EA) and i(A), we require some preliminary
lemmas:

Lemma 1. LetEA be a primitive quantum channel onMD×D

with d Kraus operators. Then, there is aA(n) ∈ Sn(A) with
n ≤ D2 − d+ 1 such thattr(A(n)) 6= 0.

Proof: Let us denote byTn(A) the span of allSm(A)
with m ≤ n. We just have to show that: (*) for anyn ∈
N, if dim[Tn(A)] < D2, thendim[Tn+1(A)] > dim[Tn(A)].
Sincedim[T1(A)] = d, by iteration we obtain thatTD2−d+1 =
MD×D. This implies that a linear combination of the elements
of Sn(A) with variousn ≤ D2 − d+ 1 must be equal to the
identity, and thus at least one of the elements must have non–
zero trace. To prove (*) we note that, by definition,Tn(A) ⊆
Tn+1(A). If they would be equal, thenTm(A) = Tn(A) for
all m > n. Thus,dim[Tn(A)] = D2 since otherwise the map
EA would not be primitive.

Lemma 2. Let EA be primitive such thatA1|ϕ〉 = µ|ϕ〉
with µ 6= 0. Then: (a)HD−1(A,ϕ) = CD. (b) If A1 is not
invertible, then for all|ψ〉 ∈ CD, |ϕ〉〈ψ| ∈ SD2−D+1(A);

Proof: (a) We defineKn(A,ϕ) as the span of all
Hm(A,ϕ) with m ≤ n together with|ϕ〉. If dim[Kn(A,ϕ)] <
D, thendim[Kn+1(A,ϕ)] > dim[Kn(A,ϕ)], since otherwise
the map would not be primitive. Thus,KD−1(A,ϕ) = CD.
That is, for all|φ〉 ∈ CD, there exist matricesA(n) ∈ Skn(A),
kn ≤ D − 1 such that (withA(0) ∝ 1)

|φ〉 =
D−1
∑

n=0

A(n)|ϕ〉 =
D−1
∑

n=0

A(n)A
D−kn
1

µD−kn
|ϕ〉, (4)

and thus,|φ〉 ∈ HD−1(A,ϕ). (b) We writeA1 in the Jordan
standard form and divide it into two blocks. The first one,
of size D̃ × D̃, consists of all Jordan blocks corresponding
to non–zero eigenvalues, whereas the second one contains all
those corresponding to zero eigenvalues. We denote byP the
projector onto the subspace where the first block is supported
and by r ≤ D − D̃ the size of the largest Jordan block
corresponding to a zero eigenvalue. We have

A1P = PA1, Ar1 = Ar1P. (5)

We defineRn(A) = PSn(A) and show thatRDD̃(A) =
MD̃×D. For all n ∈ N, dim[Rn+1(A)] ≥ dim[Rn(A)]. The
reason is that for any linearly independent set of matrices
A

(n)
k ∈ Rn(A), A1A

(n)
k ∈ Rn+1(A) are also linearly indepen-

dent, given thatA1 is invertible on its range. By following the
reasoning of [6, Appendix A] we get that, ifdim[Rn+1(A)] =
dim[Rn(A)] =: D′, thendim[Rm(A)] = D′ for all m > n,
which is incompatible withEA being primitive unlessD′ =

D̃D. Thus, for all |ψ〉 ∈ CD, there existsA ∈ SD̃D with
|ϕ〉〈ψ| = PA = Ar1PA/µ

r = Ar1A/µ
r = A′ ∈ SD̃D+r. By

using thatD̃ ≤ D − r and thatr ≥ 1 (sinceA1 is supposed
to be not invertible) we get̃DD + r ≤ D2 − D + 1, which
concludes the proof.

We have now the necessary tools to prove our main result.

Theorem 1. Let EA be a primitive quantum channel on
MD×D with d Kraus operators. Thenq(EA) ≤ i(A) and

1) in generali(A) ≤ (D2 − d+ 1)D2,
2) if the span of Kraus operatorsS1(A) contains an

invertible element, theni(A) ≤ D2 − d+ 1,
3) if the span of Kraus operatorsS1(A) contains a non-

invertible element with at least one non-zero eigenvalue,
then i(A) ≤ D2.

Proof: The inequalityq(EA) ≤ i(A) is shown in Prop. 1.
2. If there is an invertible element, then it follows from [6,

Appendix A, Proposition 2]thatdimSn+1(A) > dimSn(A)
until the full matrix spaceMD×D is spanned and thusi(A) ≤
D2 − d+ 1.
1. Let us denote by{A(n)

k } the Kraus operators corre-
sponding toEnA. According to Lemma 1, one of them, say
A

(n)
1 , has non–zero trace and therefore there exists|ϕ〉 such

that A(n)
1 |ϕ〉 = µ|ϕ〉 with µ 6= 0. If A

(n)
1 is invertible,

then 1. is implied by 2., so we can assume that it is not
invertible. According to Lemma 2.(b), for all|ψ〉, |χ〉 ∈ CD

we have|ϕ〉〈ψ| ∈ SD2−D+1(B); and according to Lemma
2.(a) |χ〉〈ψ| ∈ SD2(B) = SnD2(A). This implies that
SnD2(A) =MD×D and hence the general bound1. follows.

The argument which proves3. is completely analogous. The
main difference is that, in order to guarantee the existenceof
a Kraus operator with non-zero eigenvalue, we have to apply
Lemma 1 for the general case1. and to take then’th power
of the quantum channel for somen ≤ D2 − d+ 1.

We do not know whether, or in which cases, our bounds are
sharp. A simple lower bound toi(A) comes from the examples
showing that the classical Wielandt’s inequality is sharp.In
these casesq(EA) = i(A) = D2 − 2D + 2. A lower bound
that goes beyond this value is given by the next example.

Example 1. Let us consider the completely positive map
described by the following Kraus operatorsAi ∈ MD:
A0 =

∑D−1
i=0 |i+ 1〉〈i| andA1 = |1〉〈D− 1|, with |D〉 = |0〉.

In this casei(A) = D2 −D which is larger than the bound
appearing in Wielandt’s classical inequality wheneverD > 2.

Proof: Consider the caseD > 2 asD = 2 is readily ver-
ified by inspection. ThenA2

1 = 0 andA1A
k
0A1 = A1δk,D−2.

Therefore
SN (A) = span{AN0 , Ak0A1A

l
0}, (6)

wherek, l = 0, . . . , D− 1 fulfill the additional constraint that

k + l + 1 + n(D − 1) +mD = N (7)

for some n,m ∈ N0. The additional constraint comes
from the fact that A1 can stem fromA1A

D−2
0 A1 or

A1A
D−2
0 A1A

D−2
0 A1 etc. which is a monomial of degree

1+n(D− 1). The fact thatAmD0 = 1 is taken care of by the
additional factormD. Now assume thatN = D(D−1)−1. Let
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us upper bound the number of linearly independent operators
in SN (A). Clearly, for every chosenn and k, we get thatl
andm are fixed by the additional constraint. Forn = D − 1,
the range ofk is by Eq.(7) restricted tok = 0, . . . , D− 3. So
in total we have at most(D − 2) + (D − 1)D + 1 = D2 − 1
independent elements which cannot span the entire matrix
algebra. Thusi(A) ≥ D2 −D (if the map is primitive). That
this bound is sharp, and the map actually primitive, is seen by
noting that forN = D2−D the constraint in Eq.(7) allows us
to choosek andl freely by adjustingn andm. Then, however,
Ak0A1A

l
0 runs through all matrix units which span the entire

matrix algebra.
We also note that for small dimensionD = 2, 3 there is

always an element inS1(A) which has a non-zero eigenvalue.
In other words, in these cases the first bound in Thm.1
never applies without one of the other bounds. The fact
that S1(A) has this property forD = 2, 3 stems from the
classification of nilpotent subspaces [9]: assume thatS1(A)
would be a nilpotent subspace within the space ofD × D
matrices. Then forD = 2 its dimension would have to
be one, so it could not arise from the Kraus operators of
a quantum channel. Similarly, forD = 3 there are (up to
similarity transformations) two types of nilpotent subspaces
[9] with d > 1: one of dimensiond = 3, the space of upper-
triangular matrices, whose structure does not allow the trace-
preserving property, and one of dimensiond = 2 which only
leads to quantum channels having a (in modulus) degenerate
largest eigenvalue. Hence, ifS1(A) is generated by the Kraus
operators of a primitive quantum channel, then it cannot be
nilpotent if D = 2, 3.

In the following we will show some applications of the
derived bounds.

IV. Z ERO-ERROR CAPACITY

The zero error capacityC0 of a noisy channel was defined
by Shannon in [10] as follows: There exists a sequence of
codes of increasing block length such that the rate of transmis-
sion approachesC0 and the probability of error after decoding
is zero (instead ofapproaches zeroas in the definition of
the usual capacity). Furthermore, this is not true for any
value higher thanC0. This concept becomes important in
situations where no error can be tolerated or when a fixed finite
number of uses of the channel is available and it constitutes
a central topic in information theory [11]. The definition
can be translated straightforwardly to the case of quantum
channels [12], where a number of interesting results appear:
the computation of this is QMA-hard [13] and it can be
superactivated [14] (see also [15], [16]).

We will show here a dichotomy behavior for the power
of a quantum channel with full-rank fixed point (e.g., a unital
quantum channel) as a consequence of our quantum Wielandt’s
inequality. If we think of the powerEn as a channel describing
the input-output relation aftern units in time/space, then the
subsequent result shows that there is a critical time/length n =
q(EA) such that a successful transmission throughEn implies
the possibility of a successful transmission to arbitrarym ≥ n.
By the quantum Wielandt’s inequality, this critical value can

be taken(D2−d+1)D2 and is thereforeuniversal. It depends
only onD and not on the channel itself.

Theorem 2. If E is a quantum channel with a full-rank fixed
point, and we callC0(E) the 0-error-classical capacity ofE .
Then, either2 C0(En) ≥ 1 for all n or C0(Eq(E)) = 0.

Proof: We split the problem into two cases:
Case 1:

Let us assume that the channel has two (or more)
different fixed points. By following [17], the set of
fixed points of a quantum channel which has a full-
rank fixed point is of the formV (⊕iρi ⊗Mmi

)V †

whereV is some unitary, theρi’s are density matrices
with full-rank, andMmi

is a full matrix algebra
of dimensionmi. Consequently, if the direct sum
is non-trivial, we can encode a classical bit in the
corresponding projectors. If the direct sum is trivial,
then the space of matrices is non-trivial, i.e., there
is ami ≥ 2, and we can encode one qubit in it. In
either caseC0(En) ≥ 1 independent ofn.
Similar statements hold if the channel has only one
fixed point (which is by assumption full-rank) but
another eigenvalueµ of magnitude one: sinceµ is a
root of unity, i.e., there is an integerp ≤ D2 with
µp = 1, we have thatEp has several fixed points. So
again we can safely encode a bit andC0(En) ≥ 1
independent ofn.

Case 2:
If the channel has just one fixed point and no other
eigenvalue of magnitude one, then it is primitive by
Prop.3. SoEq(E) has the property that all output
states are full-rank. This implies [14] thatC0(En) =
0 for all n ≥ q(E).

V. FRUSTRATION-FREE HAMILTONIANS AND MATRIX

PRODUCT STATES

Matrix Product States have proven to be a useful family
of quantum states for explaining the low energy sectors of
locally interacting one-dimensional systems. They constitute
a suitable variational ansatz for instance to compute ground
state energies to high accuracy [18] which can be explained
by the fact that MPS approximate ground states of local 1D
Hamiltonians well [19]. Similarly they are used to understand
effects on 1D quantum systems on analytic grounds, such as
string orders [20], symmetries [21], renormalization flows[22]
or sequential interactions [23], [24].

Associated to each translational invariant MPS of the form

|ψA〉 =
∑

i1,...,iN

tr(Ai1 · · ·AiN )|i1 · · · iN 〉 (8)

there is aparent HamiltonianHA which is frustration-free and
has|ψA〉 as ground state. Let us start by defining the concept
of frustration-free Hamiltonian. Consider a local translational
invariant Hamiltonian in a spin chainH =

∑

i τ
i(h) where

2In fact, one can consider here even the one-shot zero-error capacity, that
is, the one obtained with a single use of the channel.
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h denotes the local interaction term andτ the translation
operator. Then,

Definition 3. The Hamiltonian is calledfrustration-freeif its
ground state|ψ0〉 minimizes the energy locally, that is, if

min
|ψ〉

〈ψ|1⊗ h|ψ〉 = 〈ψ0|1⊗ h|ψ0〉. (9)

We assume w.l.o.g. that (9) is equal to0. Such Hamiltonians
include classical Hamiltonians, where the terms commute,
as well as allparent Hamiltoniansappearing in the Matrix
Product State (MPS) theory [6], [8], [25]. A remarkable
example is the AKLT Hamiltonian [26].

The corresponding local interaction termh above is con-
structed as the projector onto the orthogonal complement of
the image of

X ∈MD×D 7→
∑

i1,...,iL

tr(XAi1 · · ·AiL)|i1 · · · iL〉, (10)

for some sufficiently largeinteraction rangeL. Note that the
map in Eq.(10) isinjective for sufficiently largeL iff the
map EA(X) :=

∑

iAiXA
†
i is primitive3 and that injectivity

holds for all L ≥ i(A). The following theorem which was
proven in [6], [8] provides another application for the quantum
Wielandt’s inequalities fori(A):

Theorem 4. If the interaction rangeL of the parent Hamilto-
nianHA satisfiesL > i(A), then the MPS|ψA〉 is the unique
ground ofHA, andHA has a spectral gap above the ground
state energy.

Hence, the quantum Wielandt’s inequality provides a bound
for the interaction length required to get agood parent
Hamiltonian for a MPS. Indeed, the existence of such in-
equality was already conjectured in the context of MPS [6,
Conjectures 1 and 2] and some results obtained so far about
MPS do directly depend on the validity of that conjecture. In
particular, a dichotomy result for ground states of frustration-
free Hamiltonians, sketched in [6] and for which we give a
complete proof below, and the characterization of the existence
of global symmetries in arbitrary MPS given in [21].

One might conjecture that the ground state of every
frustration-free Hamiltonian (with non-degenerate ground
state) is a MPS. In fact, the quantum Wielandt’s inequality
allows us to get a dichotomy theorem in this direction:

Theorem 5. Take a local termh with interaction lengthL
and assume thatHN =

∑N
i=1 τ

i(h) is frustration-free and
has a unique ground state for everyN . Its ground state can
be represented as an MPS with matrix sizeD ×D, whereD
is

(i) either independent ofN ,
(ii) or > Ω(N

1

5 ) for all prime numbersN .

Proof: Let us recall from [6, Theorem 5] that each
MPS with D < N and N prime can be mapped into a
canonicaldecomposition where all matrices are block diagonal
Ai = ⊕bj=1A

j
i and each block satisfies injectivity. Moreover,

[6, Theorem 11] states that ifb ≥ 2, L0 = maxj i(A
j) and

3EA may be assumed to be trace-preserving without loss of generality [6].

L is the interaction length of any frustration-free translational
invariant HamiltonianH on N spins having|ψA〉 as ground
state, the conditionN ≥ 3(b − 1)(L0 + 1) + L implies that
|ψAj 〉 is also a ground state ofH for all j. Since the quantum
Wielandt’s inequality allows us to boundL0 ≤ O(D4) and
trivially b ≤ D, we get that either (ii)D ≥ Ω(N

1

5 ), or
b = 1 and ker(h) ∋

∑

i1,··· ,iL
tr(XAi1 · · ·AiL)|i1 · · · iL〉

where X ∈ SN−L(A). Since by the quantum Wielandt’s
inequality againN − L ≥ i(A), we get thatker(h) ⊇
{∑i1,··· ,iL

tr(XAi1 · · ·AiL)|i1 · · · iL〉 : X ∈ MD×D}. This
trivially implies that|ψA〉 is also a ground state forHN ′ when
N ′ > N and therefore the only one, so we obtain (i).

Regarding the restriction to primeN , note that by the Prime
Number Theorem the number of primes less than or equal to
a givenN is asymptotically N

logN . Therefore in (ii) there are
manylengths for which there is no MPS representation of the
ground state withsmall matrices.

VI. CONCLUSIONS AND OPEN PROBLEMS

The present work focuses on finding dimension dependent
bounds for the number of times that a quantum channel has
to be applied in order to have a full-rank Choi matrix. Once
this is obtained, bounds on the quantum index of primitivity
q are straightforwardly achieved, sinceq ≤ i(A). As direct
applications of these results, we derive dichotomy theorems for
the zero-error capacity of quantum channels as well as a couple
of results in Matrix Product States theory. The first one is the
demonstration of a conjecture with interesting implications for
ground states of frustration-free Hamiltonians and the other
a theorem which introduces new implications concerning the
interaction-range of Parent Hamiltonians.

As a possible future research, we suggest that it might be
advantageous to focus on computing bounds forq directly,
sinceq 6= i(A) in general. This is interesting because, while
some applications (like the ones in the MPS context) require
bounds oni(A), others like Thm. 2 are based onq. For
instance, from a purely mathematical point of view,i(A)
is not applicable for positive maps (the usual framework of
Frobenius theory), unless the map is completely positive.
Furthermore, we leave open the question about optimal bounds
for both q and i(A).

Another possible future research is to relate the quantum
Wielandt’s inequality to graph theory and quantum random
walks. In the classical case, there is a close relationship
between stochastic matrices and graph theory (by takingA
the adjacency matrix of a graph) which makes the inequality
broadly applicable. In fact, the usual proofs of the classical
inequality are based on the graph picture. However, although
there are different attempts to establish a relationship between
quantum channels and quantum graphs [27], [28], there is not
any well-defined analogous one for the quantum context.
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