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A quantum version of Wielandt’s inequality

Mikel Sanz, David Pérez-Garcia, Michael M. Wolf, and Jlia@irac

Abstract—In this paper, Wielandt's inequality for classical as the existence of a unique full-rank fixed point or the fact
channels is extended to quantum channels. That is, an upper that the Kraus operators corresponding to some number of
bound to the number of times a channel must be applied, s0 g5 gjications of the channel span the full space of matrices.

that it maps any density operator to one with full rank, is found. . - . . o .
Using this bound, dichotomy theorems for the zero—error capcity This will allow us to derive a quantum Wielandt's inequality

of quantum channels and for the Matrix Product State (MPS) for primitive quantum channels,
dimension of ground states of frustration-free Hamiltonians are

derived. The obtained inequalities also imply new bounds on g < (D2 —d+ 1)D2
the required interaction-range of Hamiltonians with unique MPS ) . . .
ground state. where D is the dimension of the Hilbert space, arddthe

Index Terms—classical channels, information rates, quantum number of Iinear!y indep(_endent !(_raus operators. We will see
channels, spin systems, strongly cé)rrelated electrons,, \Blandt’s that, ui’lder Ce,rt_a'n generic Co_nd't'on§ on the Kraus opesato
inequality. better inequalities can be derived. Finally, we apply ther ne
inequalities to three problems related to channel cagscind
to quantum spin chains: we derive a dichotomy theorem for
the zero—error capacity of quantum channels and prove a con-

ONSIDER a classical memoryless channel acting i@cture for ground states of frustration-free spin Hamikms.

discrete time on an alphabet of size Such a channel is Moreover, we show that our result also has new implications
described by a stochastic mattuke Mp. p which is called concerning the interaction-range of Hamiltonians with MPS
primitive [1] if there is ann € N such that(A™); ; > 0 for as unique ground states [6].
all ¢, 5. The minimumn for which this occursp(A), is called
the (classical)ndex of primitivityof A (or theexponenof A).
This ensures that after applying the chanpiel) times to any o ] . ] )
probability distribution, there will be a non—zero probipi L_et us start_by flxmg the notation and |ntro.ducmg the basic
for any possible evenWielandt's inequality2] states that, notions. We will consider quantum channels, i.e., TPCP4\is,

I. INTRODUCTION

Il. BASIC NOTIONS

for every primitive matrix, Mpxp — /\_/leD, where M py p is the space of complex

D x D matrices. Let us denote by, the quantum channel
p(A) < D*—-2D +2 with Kraus operator§ A, € Mpxp}i_,, i.e.,

and this is the optimal bound which is independent of the d

matrix elements. Wielandt's inequality has a wide range of Ea(X) = ZA;CXAL. (1)

applications in different fields, ranging from Markov cha[8] k=1

to graph theory and number theory [4], and numerical angalysije define S,(A) € Mpyp as the linear space spanned

[5]- by all possible products of exactly, Kraus operators,

_ In thi_s work, we derive a_quantum analogue (_)f Wielandt'y Ay, ... A, and by A](gn) the elements ofS, (A).
inequality. That is, we considefuantum channejs.e., tracé There is a one-to-one correspondence between a quan-

preserving completely positive linear maps (TPCPM) angdy, channel & and its Choi matrix w(€) = (id ®
define a property analogous to primitivity: the existenceuof £)(Q) where Q = ZD’ lii)(jj]. It is readily verified
n € N such that after thex-fold application of the quantum that rank [W(gAnﬂ - ljd.:l;n [S (A)} We further define

channel every positive semidefinite operator is mapped ant
positive definite operator. The smallest suctthen defines
a quantum index of primitivity,q. We begin by relating
primitivity to some other properties of quantum channalshs

(}In(A, ©) = Su(A)|p) C CP as the space spanned by
all vectors Ay, Ay, ... Ax,|¢), Where|p) € CP. That is,
rank[E4" () ()] = dim [H, (4, ¢)].

We introduce now three properties which will later turn out
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quantum channef, is said to haveeventually we defined; ; = ./a;;A; ;, n = p(a) — 1, and take
b A hannef, i id to h Il defined; ; = /@i ;Ai d tak
full Kraus rank if there exists some: € N such D
that S,,(4) = Mpxp, i.e., if rank[w(E4™)] = D2 A A A = (AP@Y. V£ 0. (3
We denote byi(A) the minimumn for which that - wha A - Ak g = (A7) 1)1 0. (3)
condition is satisfied. Obviously, i€ fulfills this o o
property, thenS,,(A) = Mpyp for all n > i(A).  ThUS,[§){j] € Sp(a)(A) for all 7, j. o u
(c) We say that a quantum chanr] is strongly irre- We note thatg(£4) is dlfferen_t fromi(A) in the g_eneral
ducibld if the following two conditions are fulfilled; ¢ase- To see that, let us consider an example wita 3,

(i) £4 has a unique eigenvalug, with |\| = 1; (i) D = 2, and take as Kraus operatars/v/3, wherea = z,y, z
the corresponding eigenvectprs a positive definite 12bels the three Pauli matrices. Hef@€a) =1 <i(A) = 2.

operator > 0). This implies the convergence However, the f_oIIowing proposition shovys_ t_h'mA) is finite
wheneverg(£4) is. In fact, all three definitions above are

lim &% =&, (2) equivalent:

n—oo
where £3°(X) := ptr(X). Note that, for instance, Proposition 3. Giver_w a quantum _char!ne_f]_A, the following
the generalized Frobenius theorem proved [ih [Platements are equivalent: (@), is primitive; (b) £4 has
Theorem 2.5] ensures that a TPCPM always hgventually full Kraus rank; (cE4 is strongly irreducible.

an eigenvalue = 1 with eigenvectorp > 0. In Proof: We denote byp > 0 an eigenoperator of 4
this case it was already knownl [8, Lemma 5.2] thaiorresponding to the eigenvalue= 1.

there exits an upper bound fofA) related with the

second eigenvalue, of £4, which is essentially(b) = _(a_) L

i(A) < O(exp %2)' N Thl(sc)lmpllcatlon is given by Propl.1.

Our. fir;t simple observation is that (b) implies (a), or sat V:>Ve prove it by contradiction. Let us assume tlatis not
quantitatively: strongly irreducible. Then, we must have at least one of the
Proposition 1. For every quantum channél, we have that following cases: (i) is not full-rank; (ii) there exists another
q(Ea) <i(A). eigenoperatop’, corresponding td = 1; (iii) there is another
eigenvalue)’, with |\'| = 1. Since for alln € N, £%(p) = p,
(i) automatically implies thaf 4 is not primitive. Furthermore,
if we have (i), choosing = 1/ max[spec(p~/2p'p=1/2)] we

k1,..kn

Proof: Take anyn > i(A). Then, by the definition of
i(A), the Choi matrixw(€7%) has full-rank, so that

A , i
(o)) = (L@ (@) w(E?) (Lo ) have Fhatp =p—ep 2. 0_ is not fuII.rank and thus we are
back in (i). Moreover, it is proven in the demonstration of
also has full-rank. B [8, Proposition 3.3] that, if (i) and (ii) do not hold, the eth

Before continuing the analysis of the relationships amompssible eigenvalues of modulus 1 are fhth roots of unity
the three properties above in the quantum context, let {8 some finitep € N. Therefore, we have (ii) fo£%, and
connect them to the classical notion of primitivity. Given ghus&? cannot be primitive.
stochastic matrixA = (a;;), let us consider the mag, (c) = (b)
defined by the Kraus operators ; = ,/a; ;|i)(j|- £4 has the  This implication can be deduced from [8, Lemma 5.2], but
property that for an operatgr with entriesp; ; = §; jp; > 0, we include here a proof for completeness. We prove it by
p' = Ealp) is diagonal withp] ; = &; ;p;, with p" = Ap. contradiction. Let us assume th@t is () strongly irreducible,
Thus, &4 implements the stochastic maj i.e., the quantum but (jj) does never get full Kraus rank. If we have (j) then
channel reduces to the classical channel when appliedigofull-rank and Eq.[(R) is fulfilled. Because of (jj), for all
diagonal density operators. Note thatis the number of n € N and A,(C”) € S,(A4), there exists somé,, # 0 such
positive entries of the stochastic matrix in the classiee; thattr(A,(C")Bn) = 0. Thus,
so the general quantum bound applied to a classical channel
is always worse than the classical bound. : 5 :

Let us considerd primitive and denote by(A) its classical tr(pBLBn)[ = | Y [tx(Ak, - A, Ba)|* — tr(pBlBy)
index of primitivity. Then, we have: kiyeekn

Proposition 2. Let us consider a primitive stochastic map = ‘tr {Q(SZ ® id)(BnQBL)] —tr {Q(SZO ® id)(BnQBL)] ‘
and the corresponding TPCPWl. Then,£4 is also primitive A ;
and the equality;(A) = p(A4) = i(A) holds. < cn[[Qlootr(Ba2By,) = Dentr(By, Bn)

Proof: It is clear thatp(A) < q(£4) and we proved in whereB,, = B, ® 1 andlim,, ¢, = 0. If p was full-rank, then

Prop[d thay(£4) < i(A). In order to show that(A4) < p(4), for all X >0 one would have
1

1The notion of "irreducibility’, used for instance in][7], ftérs from our tr(pX) = Hp—lH tr(X)
definition of 'strong irreducibility’ by allowing for othereigenvalues of e
magnitude one. In fact is strongly irreducible iff€™ is reducible for all and we obtain a contradiction.
n € N. This property is known amjectivity in the context of Matrix Product
States. |



As a consequence of Prdg. 3, we obtain that primitivity abD. Thus, for all[¢)) € CP, there existsA € Sp,, with
a quantum channel can be decided by observing its spectral(y)| = PA = ATPA/p" = AJA/u" = A" € Spp,,.- By
properties. In fact, this is the precise quantum analogue @ing thatD < D — r and thatr > 1 (since 4; is supposed
the classical result that a stochastic matrix is primitifféti to be not invertible) we geDD + r < D2 — D + 1, which
has a unique eigenvalue of maximum modulus and a positiencludes the proof. ]
definite fixed point (cf.[[1]). We have now the necessary tools to prove our main result.

Theorem 1. Let £4 be a primitive quantum channel on

I11. QUANTUM WIELANDT'S INEQUALITIES Mopp With d Kraus operators. Then(€4) < i(A) and
In order to reach a quantum version of Wielandt's inequality 1) in generali(A) < (D? — d + 1)D?

i.e. bounds forg(£4) andi(A), we require some preliminary 2) if the span of Kraus operatorss;(A) contains an

lemmas: invertible element, thei(A) < D? —d +1,

Lemma 1. Let&4 be a primitive quantum channel oWl px p 3) if the span of Kraus operator§;(A4) contains a non-
with d Kraus operators. Then, there is 4™ € S,,(A) with invertible element with at least one non-zero eigenvalue,
n < D% —d+ 1 such thattr(A™) £ 0. theni(A) < D?.

Proof: Let us denote byl},(A) the span of allS,,(A) Proof: The inequalityg(£4) < i(A) is shown in Propl]1.
with m < n. We just have to show that: (*) for any € 2. If there is an invertible element, then it follows frof [6,
N, if dim[T},(A)] < D?, thendim[T},11(A)] > dim[T,,(A)]. Appendix A, Proposition 2]thatlim Sy, 11(A) > dim 5, (A)
Sincedim[T} (A)] = d, by iteration we obtain thafp._,, = until the full matrix spaceM px p is spanned and thugA) <

M by p. This implies that a linear combination of the element®® — d + 1.
of S, (A) with variousn < D? — d + 1 must be equal to the 1. Let us denote by{A}"} the Kraus operators corre-
identity, and thus at least one of the elements must have ndgionding to€%. According to Lemmdll, one of them, say
zero trace. To prove (*) we note that, by definitidh,(A) C A&"), has non-zero trace and therefore there existssuch
T, +1(A). If they would be equal, theff,,,(A) = T;,(A) for that A§")|gp> = ule) with u # 0. If Ag") is invertible,
all m > n. Thus,dim[T,,(A4)] = D? since otherwise the mapthen 1. is implied by 2., so we can assume that it is not
&4 would not be primitive. m invertible. According to Lemmaél2.(b), for alty), |x) € CP
we have|p)(y| € Sp2_p,1(B); and according to Lemma
2.(a) |x)(v| € Sp2(B) = S,p2(A). This implies that
Sp,p2(A) = Mpxp and hence the general bouhdfollows.
The argument which proves is completely analogous. The
Proof: (a) We define K,,(A,) as the span of all main difference is that, in order to guarantee the existarice
H,,(A, ) with m < n together with¢). If dim[K,,(A, ¢)] < a Kraus operator with non-zero eigenvalue, we have to apply
D, thendim|[K,,+1(4, ¢)] > dim[K,, (A4, )], since otherwise Lemmall for the general cade and to take the:'th power

Lemma 2. Let £4 be primitive such thatd;|p) = pulp)
with 1 # 0. Then: (@) Hp_1(A, p) = CP. (b) If A; is not
invertible, then for all|y)) € CP, |p) (1| € Sp2_pi1(A);

the map would not be primitive. Thug{p_1(4,¢) = CP. of the quantum channel for some< D? — d + 1. ]
That is, for all|¢) € CP, there exist matriced ™ € S, (A), We do not know whether, or in which cases, our bounds are
k, < D —1 such that (withA(®) 1) sharp. A simple lower bound tdA) comes from the examples
D1 D_1 4D~k showing that the classical Wielandt's inequality is shdrp.
) = Z A | = Z An) é_k o), (4) these caseg(€a) = i(A) = D? — 2D + 2. A lower bound
o s pEm that goes beyond this value is given by the next example.

and thus,|¢) € Hp_1(A, ¢). (b) We write 4; in the Jordan Example 1. Let us consider the completely positive map
standard form and divide it into two blocks. The first oneajescribed by the following Kraus operatord; € Mp:

of size D x D, consists of all Jordan blocks correspondingl, = Zi’;ﬁl |i +1)(i] and Ay = |1){D — 1], with | D) = |0).

to non—zero eigenvalues, whereas the second one conthingmathis casei(4) = D? — D which is larger than the bound
those corresponding to zero eigenvalues. We denotB bBye appearing in Wielandt's classical inequality whenever> 2.
projector onto the subspace where the first block is supgorte

and byr < D — D the size of the largest Jordan bIockf. dFt’)ropf: Cont_5|dethfr]1enZ§15_BO> 2;134DA;42 'S_riag”y ver
corresponding to a zero eigenvalue. We have mead by inspection. Themy = U and 414y A1 = 410k, p—2.

Therefore
AP =PA,, A} =A'P. (5) Sn(A) = span{A}Y,K AF A AL}, (6)

We defineR,(A) = PS,(A) and show thatR,;(A) = wherek,l=0,...,D — 1 fulfill the additional constraint that
Mz, . Foraln € N, dim[R,,+1(A)] > dim[R,,(A)]. The

reagtx)ﬁ is that for any Iine[arly ir(1d2>]penden£ se(t ())]f matrices kti+l+n(D-1)+mD=N (7)
A,(g") € R, (A), AlA,(g") € R,+1(A) are also linearly indepen-for some n,m € Ny. The additional constraint comes
dent, given that4; is invertible on its range. By following the from the fact that A; can stem from AlAg’_?Al or
reasoning of([6, Appendix A] we get that,dim[R,,1(A)] = A;AY 24, A0 %A, etc. which is a monomial of degree
dim[R,, (A)] =: D', thendim|[R,,(A)] = D’ for all m > n, 1+n(D —1). The fact thatA7'” = 1 is taken care of by the
which is incompatible with, being primitive unlessD’ = additional factorm D. Now assume thaV = D(D—1)—1. Let



us upper bound the number of linearly independent operattwestaken D? —d+1)D? and is thereforeniversal It depends

in Sy (A). Clearly, for every chosen and k, we get that/
andm are fixed by the additional constraint. Fer= D — 1,
the range of is by Eq.[T) restricted t& = 0,...,D — 3. So
in total we have at mostD —2)+ (D —1)D+1=D?—1
independent elements which cannot span the entire matrix
algebra. Thus(A) > D? — D (if the map is primitive). That

only on D and not on the channel itself.

Theorem 2. If £ is a quantum channel with a full-rank fixed
point, and we callCy(€) the 0-error-classical capacity of.
Then, eithéd Co(E™) > 1 for all n or Co(£16)) = 0.

Proof: We split the problem into two cases:

this bound is sharp, and the map actually primitive, is sgen b Ccase 1:

noting that forN = D? — D the constraint in Ed.{7) allows us
to choosek and! freely by adjusting: andm. Then, however,
Ak A AL runs through all matrix units which span the entire
matrix algebra. ]

We also note that for small dimensiadd = 2,3 there is
always an element ii§; (A) which has a non-zero eigenvalue.
In other words, in these cases the first bound in Thm.1
never applies without one of the other bounds. The fact
that S1(A) has this property forD = 2,3 stems from the
classification of nilpotent subspaces [9]: assume $dtd)
would be a nilpotent subspace within the spacelbfx D
matrices. Then forD = 2 its dimension would have to
be one, so it could not arise from the Kraus operators of
a quantum channel. Similarly, fab = 3 there are (up to
similarity transformations) two types of nilpotent subses
[9] with d > 1: one of dimensionl = 3, the space of upper-
triangular matrices, whose structure does not allow theetra
preserving property, and one of dimensi®a- 2 which only
leads to quantum channels having a (in modulus) degenerate

Let us assume that the channel has two (or more)
different fixed points. By following[[17], the set of
fixed points of a quantum channel which has a full-
rank fixed point is of the fornV (©;p; ® M,,,) V1
whereV is some unitary, the;’s are density matrices
with full-rank, and M,,, is a full matrix algebra
of dimensionm;. Consequently, if the direct sum
is non-trivial, we can encode a classical bit in the
corresponding projectors. If the direct sum is trivial,
then the space of matrices is non-trivial, i.e., there
is am; > 2, and we can encode one qubit in it. In
either case’y(£™) > 1 independent of..

Similar statements hold if the channel has only one
fixed point (which is by assumption full-rank) but
another eigenvalug of magnitude one: sincg is a
root of unity, i.e., there is an integer < D? with

uP = 1, we have that? has several fixed points. So
again we can safely encode a bit a@g(E™) > 1
independent of.

largest eigenvalue. Hence, $f (A) is generated by the Kraus Case 2:

operators of a primitive quantum channel, then it cannot be
nilpotent if D = 2, 3.

In the following we will show some applications of the
derived bounds.

IV. ZERO-ERROR CAPACITY

The zero error capacitg, of a noisy channel was defined
by Shannon in[[10] as follows: There exists a sequence of
codes of increasing block length such that the rate of tréasysm
sion approache&y and the probability of error after decoding

If the channel has just one fixed point and no other
eigenvalue of magnitude one, then it is primitive by
Prop3. So&£9€) has the property that all output
states are full-rank. This implies [14] th&y (E™) =
0 for all n > ¢(&).

[ |

V. FRUSTRATION-FREEHAMILTONIANS AND MATRIX

PrRODUCT STATES

Matrix Product States have proven to be a useful family

is zero (instead ofapproaches zeras in the definition of Of quantum states for explaining the low energy sectors of
the usual capacity). Furthermore, this is not true for ardgcally interacting one-dimensional systems. They cousti
value higher thanC,. This concept becomes important irf suitable variational ansatz for instance to compute gioun

situations where no error can be tolerated or when a fixe@finftiat® energies to high accuracy [18] which can be explained
number of uses of the channel is available and it constitut@¥ the fact that MPS approximate ground states of local 1D
a central topic in information theory [L1]. The definitioni@miltonians well[[19]. Similarly they are used to undensta
can be translated straightforwardly to the case of quantfffects on 1D quantum systems on analytic grounds, such as
channels[[12], where a number of interesting results appesifing orders[20], symmetries [21], renormalization flq@2]
the computation of this is QMA-hard [13] and it can b@®F Sequential interactions [23]. [24].
superactivated [14] (see al<o [15]. 16]). Associated to each translational invariant MPS of the form

We will show here a dichotomy behavior for the power
of a quantum channel with full-rank fixed point (e.g., a uhita
guantum channel)l asa consequennce of our quantum W.Ie.lanﬂ%esre is gparent HamiltonianH 4 which is frustration-free and
inequality. If we think of the powe£™ as a channel describing .

. . o has|y 4) as ground state. Let us start by defining the concept

the input-output relation after units in time/space, then the . S X ;

. o . of frustration-free Hamiltonian. Consider a local tratisliaal
subsequent result shows that there is a critical time/tengt invariant Hamiltonian in a spin chaifl — 3>, 7(h) where
q(£4) such that a successful transmission throgdghmplies P T Zal
the possibility of a S_UCC€55fU.| transmISSIOh to ?!’bnmk n. 2n fact, one can consider here even the one-shot zero-empacity, that
By the quantum Wielandt’s inequality, this critical valuanc is, the one obtained with a single use of the channel.

[a) = Y (A - Agy)lin - in) ®)

11,0 0IN



h denotes the local interaction term andthe translation L is the interaction length of any frustration-free trarisiaal
operator. Then, invariant HamiltonianH on N spins having|¢4) as ground
state, the conditionlV > 3(b — 1)(Lo + 1) + L implies that
|t 45) is also a ground state df for all 5. Since the quantum
Wielandt's inequality allows us to bound, < O(D*) and
min (|1 ® hly) = (o]l @ hlibo). (9) trivially b < D, we get that either (i)D > Q(N3), or
%) b = 1andker(h) 3 >, .., tr(XA; - A )|ir--iL)

We assume w.l.0.g. thdfl(9) is equaltoSuch Hamiltonians where X € Sn_r(A). Since by the quantum Wielandt's
include classical Hamiltonians, where the terms commuieequality againN — L > i(A4), we get thatker(h) D
as well as allparent Hamiltoniansappearing in the Matrix {>_, . ; tr(XA; ---A; )[i1---ir) + X € Mpxp}. This
Product State (MPS) theory |[6]][8]_[25]. A remarkabldrivially implies that|4) is also a ground state fd - when
example is the AKLT Hamiltoniar [26]. N’ > N and therefore the only one, so we obtain (i). H

The corresponding local interaction tertnabove is con-  Regarding the restriction to primf€, note that by the Prime
structed as the projector onto the orthogonal complementfimber Theorem the number of primes less than or equal to
the image of a givenN is asymptotically%. Therefore in (i) there are

) _ manylengths for which there is no MPS representation of the

X € Mpxp = . Z tr(X Ay - Ai )i ---ip), - (10) ground state witlsmall matrices.

1 y.enstL

Definition 3. The Hamiltonian is calledrustration-fredf its
ground state|yy) minimizes the energy locally, that is, if

for some sufficiently largénteraction rangeL. Note that the
map in Eql(ID) isinjective for sufficiently large L iff the
map&a(X) =), AiXAlT is primitivé] and that injectivity ~ The present work focuses on finding dimension dependent
holds for all . > i(A). The following theorem which was bounds for the number of times that a quantum channel has
proven in [6], [8] provides another application for the qtian  to be applied in order to have a full-rank Choi matrix. Once
Wielandt's inequalities fog(A): this is obtained, bounds on the quantum index of primitivity
g are straightforwardly achieved, singe< i(A). As direct
applications of these results, we derive dichotomy thesrfiem
he zero-error capacity of quantum channels as well as deoup
f results in Matrix Product States theory. The first one & th
demonstration of a conjecture with interesting implicasidor
Hence, the quantum Wielandt’s inequality provides a bourgsiound states of frustration-free Hamiltonians and thesioth
for the interaction length required to get good parent a theorem which introduces new implications concerning the
Hamiltonian for a MPS. Indeed, the existence of such imAteraction-range of Parent Hamiltonians.
equality was already conjectured in the context of MPS [6, As a possible future research, we suggest that it might be
Conjectures 1 and 2] and some results obtained so far abadvantageous to focus on computing bounds fatirectly,
MPS do directly depend on the validity of that conjecture. Isinceq # i(A) in general. This is interesting because, while
particular, a dichotomy result for ground states of frustrea some applications (like the ones in the MPS context) require
free Hamiltonians, sketched inl[6] and for which we give Aounds oni(A), others like Thm[2 are based an For
complete proof below, and the characterization of the erist instance, from a purely mathematical point of vieifA)
of global symmetries in arbitrary MPS given in [21]. is not applicable for positive maps (the usual framework of
One might conjecture that the ground state of eveRrobenius theory), unless the map is completely positive.
frustration-free Hamiltonian (with non-degenerate gmburFurthermore, we leave open the question about optimal ound
state) is a MPS. In fact, the quantum Wielandt's inequalifpr both ¢ andi(A).
allows us to get a dichotomy theorem in this direction: Another possible future research is to relate the quantum
Wielandt's inequality to graph theory and quantum random
walks. In the classical case, there is a close relationship
between stochastic matrices and graph theory (by taking
the adjacency matrix of a graph) which makes the inequality
broadly applicable. In fact, the usual proofs of the classic
inequality are based on the graph picture. However, althoug
there are different attempts to establish a relationshiyéxn
guantum channels and quantum graphs [27], [28], there is not
Proof: Let us recall from [[6, Theorem 5] that eachany well-defined analogous one for the quantum context.
MPS with D < N and N prime can be mapped into a
canonicaldecomposition where all matrices are block diagonal
A; = ®%_, A] and each block satisfies injectivity. Moreover, ) )
[6, Theorem 11] states that i > 2, Ly = max; i(A7) and The authors_would Ilke_to tha_lnk Frank Verstraet_e for his
useful suggestions and discussions and A. Nogueira for the
3.4 may be assumed to be trace-preserving without loss of dipd.  invaluable technical assistance.

VI. CONCLUSIONS AND OPEN PROBLEMS

Theorem 4. If the interaction rangel, of the parent Hamilto-
nian H 4 satisfiesL > i(A), then the MPSy 4) is the unique
ground of H4, and H4 has a spectral gap above the groun
state energy.

Theorem 5. Take a local termh with interaction lengthL
and assume thatiy = Zf.vzl Ti(h) is frustration-free and
has a unique ground state for evely. Its ground state can
be represented as an MPS with matrix sizex D, whereD
is

(i) either independent oW,

(iiy or > Q(N%) for all prime numbersV.
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