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Abstract

In this paper we derive information theoretic performance bounds to sensing and reconstruction of
sparse phenomena from noisy projections. We consider two settings: output noise models where the
noise enters after the projection and input noise models where the noise enters before the projection. We
consider two types of distortion for reconstruction: support errors and mean-squared errors. Our goal is
to relate the number of measurements, m, and SNR, to signal sparsity, k, distortion level, d, and signal
dimension, n.

We consider support errors in a worst-case setting. We employ different variations of Fano’s inequality
to derive necessary conditions on the number of measurements and SNR required for exact reconstruction.
To derive sufficient conditions we develop new insights on max-likelihood analysis based on a novel
superposition property. In particular this property implies that small support errors are the dominant
error events. Consequently, our ML analysis does not suffer the conservatism of the union bound and leads
to a tighter analysis of max-likelihood. These results provide order-wise tight bounds. For output noise
models we show that asymptotically an SNR of Θ(log(n)) together with Θ(k log(n/k)) measurements is
necessary and sufficient for exact support recovery. Furthermore, if a small fraction of support errors
can be tolerated, a constant SNR turns out to be sufficient in the linear sparsity regime. In contrast
for input noise models we show that support recovery fails if the number of measurements scales as
o(n log(n)/SNR) implying poor compression performance for such cases.

Motivated by the fact that the worst-case setup requires significantly high SNR and substantial num-
ber of measurements for input and output noise models, we consider a Bayesian setup. To derive necessary
conditions we develop novel extensions to Fano’s inequality to handle continuous domains and arbitrary
distortions. We then develop a new max-likelihood analysis over the set of rate distortion quantization
points to characterize tradeoffs between mean-squared distortion and the number of measurements using
rate-distortion theory. We show that with constant SNR the number of measurements scales linearly
with the rate-distortion function of the sparse phenomena.

1 Introduction

In this paper we derive information theoretic bounds on the performance of the Compressed Sensing problem,
[1],[2],[3],

Y = GX +
N√
SNR

(1)

where the measurements Y ∈ Rm×1, the desired signal X ∈ Rn, and the compression (sensing) matrix

G ∈ Rm×n. The noise N
d∼ N (0, Im), where Im is an identity matrix of size m, is assumed to be a

Gaussian random vector with independent identically distributed (IID) components. We characterize results
for both deterministic and stochastic compression matrices G = [gij ]. For deterministic, G, the columns,
gj , are normalized to have unit `2 norm. For the stochastic setting we consider matrices drawn from IID
(independent identically distributed) Gaussian ensembles. Each component here is assumed to be distributed

as gij
d∼ N (0, 1/m), i = 1, . . . ,m, j = 1, 2, . . . , n. Note that under this normalized sensing matrix scenario,
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the term SNR also denotes the inverse of the noise variance. We refer to the signal model of Equation (1)
as the output noise model. In parallel we also consider the input noise model given by,

Y = G

(
X +

N√
SNR

)
(2)

where N
d∼ N (0, In) is a Gaussian random vector with IID components. Evidently the noise here enters

before the “compression” operator, G, is applied. This model is motivated by fusion problems that arise in
sensor networks [4], where noisy observations are compressed.

The support of the signal X is denoted by Supp(X) = {j | Xj 6= 0}. We assume that the cardinality of
the signal support, |Supp(X)| ≤ k < n. It is often convenient to state and interpret results in terms of the

sparsity ratio αn = k
n . The regime when αn

n→∞−→ α > 0 is referred to as the linear regime and the regime

when αn
n→∞−→ 0 is referred to as the sub-linear regime.

We consider two types of distortions in signal reconstruction, namely, (a) Support distortion, i.e.,

d(X̂,X)) = 1
k

∑n
j=1 |I{Xi 6=0} − I{X̂i 6=0}|, where, I{·} is the indicator function. (b) Mean squared distor-

tion, d(X̂,X)) = 1
n‖X̂ − X‖2 = 1

n

∑n
j=1 |X̂j − Xj |2. These two distortion metrics address two different

issues in signal recovery. The first metric penalizes solely the support detection part while the second metric
penalizes both support detection and amplitude estimation. We will now highlight the main contributions
and results of the paper.

1.1 Bounds for Exact and Approximate Support Recovery

In this part we further restrict the signal X to be bounded away from zero by a constant β > 0 on its
support. This is a standard assumption employed by other researchers(see [5, 6, 7, 8]) since it is impossible
to identify the support of a signal X from noisy measurements with arbitrarily small non-zero components.
We derive necessary and sufficient conditions for exact and approximate support recovery for this case
under both output and input noise models. A central contribution of our work in this setting is that
we explicitly quantify the required SNR and the number of measurements, m for exact support recovery.
For the output noise model we show that the minimum SNR required for support recovery is Ω(log(n))
regardless of m. In addition for this minimum SNR level, the number of measurements, m, must scale as
Ω(k log(n/k)) to guarantee exact support recovery. Furthermore, we derive sufficient conditions and show
that with SNR = Ω(log(n)) and m = Ω(k log(n/k)) the maximum-likelihood decoder can exactly identify
the signal support with high probability. These results are depicted in Table 1. While not depicted in this
table it is interesting to consider what happens as SNR increases. The bounds derived in this paper show
that we cannot get significant improvement in m unless SNR is scaled substantially (as a fractional power
of n). We also derive conditions for support recovery for input noise models. Here our necessary conditions

say that if m = o
(
n log(n)
SNR

)
then recovery would be impossible. Evidently, either the SNR or the number

of measurements must scale linearly with n to ensure support recovery. Thus either we must operate in an
essentially noiseless regime or forsake all compression. We also extend our results to approximate support
recovery. Here a tradeoff between the number of measurements, SNR and support errors for different sparsity
ratios. These tradeoffs are summarized in Column 2 of Table 2. An interesting aspect of these results is
that a constant SNR is sufficient if we could tolerate a constant fraction of errors in the support recovery.
To establish the necessary conditions we use Fano’s inequality and its variations [9]. For deriving sufficient
conditions we analyze the performance of the Maximum-Likelihood (ML) estimator based on a novel insight
that every large support error event is essentially contained in the union of single support error events.
This leads to a sharp bound that is order-wise optimal. Our necessary and sufficient conditions for different
sparsity levels require similar scaling of SNR, and the number of measurements(see Table 1).

Related Literature- The necessary condition that SNR = Ω(log(n)) irrespective of the number of
measurements was first reported by the authors in [10]. This paper extends these results to include necessary
conditions on the number of measurements. Similar conditions have also been reported by Fletcher et. al.
[11] but due to the constraints imposed on the signal space—the signal is limited to have small amplitude
variations on its support elements—their conditions are conservative (see discussion in [5]) for our setup.
Necessary conditions have also been derived by Wainwright [6]. When the bounds of [6] (see Theorem 2
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EXACT SUPPORT RECOVERY (Output Noise Model)
Linear Sparsity Sub-Linear Sparsity
0 < α = αn = k

n αn = k
n = n−γ , γ > 0

Necessity (this paper)
SNR = Ω

(
log(n)
β2

)
SNR = Ω

(
log(n)
β2

)
m = Ω(n) m = Ω(k log n

k )

Sufficiency (this paper)
SNR = 32 log(2n)

β2 SNR = 32 log(2n)
β2

m = 6nH2(2α), α ≤ 0.04 m = 6k log n
2k

Table 1: Summary of fundamental bounds for exact support recovery in the worst-case setting described in Equa-
tion (1). β is the minimum absolute value of the signal X on its support set; H2(·) denotes the binary entropy
function; k is the maximum allowable cardinality (sparsity) of the support of X; α is the maximum sparsity ratio
and; 1/SNR is the noise variance in each noise dimension. The necessary conditions are stated for arbitrary (not
necessarily IID) matrices, G, such that the marginal distribution of each component has zero mean and variance
1/m. The sufficient conditions are stated for the case when each element of G is drawn IID ∼ N (0, 1

m
).

in [6]) are applied to our setup, it implies that the number of measurements scale as Ω(log(n)), which is
conservative. In addition [6], primarily imposes conditions on the number of measurements but does not
impose separate bounds on SNR. In contrast we show that unless SNR scales as Ω(log(n)) support recovery is
impossible regardless of m. Furthermore, for SNR = O(log(n)) we show that m must scale as Ω(k log(n/k)).
Sufficient conditions for support recovery for output noise models has been described in [6, 12, 11, 7, 8]
as well. Nevertheless, these upper bounds are also significantly weaker than that appearing here. Both
Wainwright [6] and Akcakaya et. al. [12] use union bounding to derive error bounds for exact recovery.
Union bounds are generally conservative and results in requiring significantly high SNR, i.e. significantly
low admissible noise variance (see for instance, Theorem 1 in [6]). The sufficient conditions of Fletcher et. al.
[11] is based on Greedy Basis Pursuit algorithm. However, their analysis, as described earlier, constrains the
signals, X, to have small amplitude variations on its support elements and when applied to our output noise
setup is conservative (see again discussion in [5]). While [13, 12] derive some results for approximate support
recovery, the achievable region in terms of number of measurements and SNR as a function of achievable
distortion is implicitly stated and is therefore not comparable to the results presented here.

1.2 Rate distortion bounds

In the second part of the paper, we consider sparse Bayesian signal models for X to fully exploit the power of
information theoretic methods. This naturally leads us to characterizing necessary and sufficient conditions
in terms of the rate distortion function.

We first consider arbitrary pointwise distortion metrics, i.e., 1
nd(X̂,X) = 1

n

∑
j d(X̂j , Xj), j = 1, 2, . . . , n,

where Xj , X̂j are the j-th components of X, X̂ respectively. For deriving necessary conditions we develop a
new modified Fano’s inequality that provides us with a worst case lower bound to the probability of error in
reconstruction to within a distortion 1

nd(X̂,X) ≤ d0 in terms of the scalar rate distortion function RX(d0)
and mutual information I(X,Y), between X and Y. This bound is of independent interest since it can be
applied to non-sparsifying distributions as well. In particular we show that,

P
(

1

n
d(X̂,X) ≥ d0

)
≥
RX(d0)− c0 − 1

n I(X; Y)

RX(d0)

for some small constant c0 < RX(d0).
For deriving sufficient conditions we compute upper bounds to the probability of error subject to a

tolerable distortion based on the so called covering property of rate distortion theory. In particular we
formalize a minimum distance decoder (distance measured in terms of given distortion metric) over the set
of rate distortion quantization points. We then specialize our bounds to the mean squared distortion metric.
The results are summarized in the second column of Table 2. Our necessary and sufficient conditions for the
number of measurements and SNR match within a constant factor for the linear sparsity regime.
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APPROXIMATE SUPPORT RECOVERY - Sufficient conditions (Linear Sparsity Regime)

Support Error Distortion 1
k

∑n
j=1 |I{Xi 6=0}− I{X̂i 6=0}| ≤ d0 Mean Squared Distortion 1

n‖X̂−X‖2 ≤ d0

SNR = Ω
(
H2(2αnd0)

β2

)
and m = Ω(nH2(2αn)) m = Ω(nRX(d0/2)), for SNR = Ω(RX(d0/2)

d0
).

Table 2: The first column describes the achievable rate regions for approximate support recovery. Support error
distortion d0 is the fraction of the true support in error. The second column describes the results for the Bayesian
set-up in terms of the scalar rate distortion function for varying mean squared distortion. Here the distortion d0 is
the desired mean-squared-distortion.

Related Literature- Rate distortion analysis has been reported in [14, 15] for mean squared error and
for a Gaussian source. In contrast our expressions apply to general distortion measures and to any source for
which a rate distortion function is defined. These results appeared in our preliminary work [16]. In addition
the results in [14] for the case when G is random are only proven for k = 1. In contrast in this paper we
prove results for general k = αn. For a fixed problem size (n, k,m) the results in [15] are stated in terms of
a critical SNR threshold. This makes the expressions implicit in the number of measurements required as a
function of signal sparsity and therefore the scaling laws are unclear.

The rest of the paper is organized as follows. In Section 2 we present our problem set-up. Here the
notion of Sensing Capacity is introduced to study the asymptotic behavior of both the output noise and
input noise models. Section 3 presents necessary and sufficient conditions for support recovery. In Section 4
we consider the Bayesian setup and derive bounds for signal recovery under arbitrary distortion measures.
This requires us to generalize the traditional Fano’s inequality to general (average) distortion measures and
continuous signal spaces. We also provide extensions of Fano’s inequality for discrete signal spaces with
Hamming distortion in reconstruction. Section 4.2 presents a novel ML upper bound for signal recovery to
within a given squared distortion level. Using these results, in Section 5 we evaluate bounds for SNR and
number of measurements required to reconstruct X to different levels of distortion level for output and input
noise models. We then comment on the differences between worst-case and Bayesian setups.

2 Problem Set-up

We consider output and input noise models described in Equations (1) and (2). The sparsity of X is modeled
both deterministically and stochastically as is the compression matrix G. We use bold-face to denote vectors
and matrices, while regular font is used to denote scalar components of the vector and matrices. The jth
component of a vector X is denoted Xj , the jth column of a matrix G is denoted gj and its ij-th component
is denoted as gij . The cardinality of a set S is denoted by |S|. Given a set S ⊂ {1, 2 . . . , n}, XS denotes the
signal, X, restricted to the set of components indexed by S. Similarly, we denote by GS the matrix formed
from columns indexed by S. We use Pr(·) and P(·) interchangeably to denote the probability of an event.

Non-Random Sparsity Signal Model: We say that Ξ{k} ⊂ Rn is a family of k-sparse sequences if for
every X ∈ Ξ{k}, the support of X is smaller than or equal to k. Formally, let

Supp(X) = {j | Xj 6= 0}

Then Ξ{k} is a family of k-sparse sequences if,

Ξ{k} = {X : |Supp(X)| ≤ k} (3)

We will refer to the ratio, αn = k/n as the sparsity ratio. We will often work with subsets of Ξ
{k}
β ⊂ Ξ{k}.

These are sequences whose minimum absolute value is bounded away from zero by a constant β ≥ 0:

Ξ
{k}
β = {X ∈ Rn : |Supp(X)| ≤ k, |Xj | ≥ β, ∀ j ∈ Supp(X)} (4)

We will see when we derive necessary conditions that β > 0 is necessary for support recovery. This is
mainly because it is impossible to determine the support of a signal with arbitrarily small components under
noisy measurements. This condition is also assumed by other authors [17, 7].
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We denote by Ξk ⊂ Ξ{k} the set consisting of exactly k-sparse sequences.

Ξk = {X : |Supp(X)| = k} (5)

This distinction is important and the reader should keep this in mind. The subset Ξkβ ⊂ Ξk is analogously
defined.

Bayesian signal model: We say that a prior distribution on X is an asymptotically sparsifying distribu-
tion if for sufficiently large k, n the distribution concentrates all the measure on a subset of Ξ{k}. In this
paper we will provide general results for arbitrary sparsifying priors and explicit bounds for the following
Gaussian mixture model, namely, each component of the signal is distributed as:

Xi
d∼ PX = αN (µ1, σ

2
1) + (1− α)N (µ0, σ

2
0)

The corresponding n dimensional distribution of X is realized as a product measure on Rn. As an example
note that for µ1 = 1, µ0 = 0 and σ1 = σ0 → 0 this mixture model asymptotically models binary sparse
sequences with sparsity highly concentrated around k = αn. The main reason for using a Bayesian signal
model is that it lends itself to information theoretic tools and allows us to study the tradeoffs between the
number of measurements at different distortion levels for a given SNR.

2.1 Sensing Capacity

The nature of the results developed in the paper are asymptotic, namely, we let the signal dimension n and
the sparsity k each approach infinity at different rates and derive bounds on the number of measurements,
m, and SNR, for exact/approximate reconstruction of X. In this context we also derive bounds for m
and SNR for reconstruction of functions Z = f(X) of X. For instance, we consider functions f(·) that

indicate the support or sign function of X. We denote X̂(Y) (resp. Ẑ(Y)) as an estimate of X (resp Z)

based on the observation Y. The distortion between the estimate Z and the estimate Ẑ is denoted by
1
nd(Ẑ,Z) = 1

n

∑
j d(Ẑj , Zj) for some scalar distortion metric d(·, ·).

The sensing capacity involves determining the largest ratio nH2(αn)
m =

nH2( kn )

m , required for reconstruction
to within a desired distortion. To build motivation on this ratio, consider again the maximum sparsity ratio

αn = k
n . The cardinality of the support set is 2log(

∑k
j=0 (nj))) = O(2nH2(k/n)), where H2(·) denotes the binary

entropy function [18]. The term nH2(k/n) is a measure of the entropy of the support set, i.e., the average
number of bits required to uniquely encode the support set. The sensing capacity measures the number
of source bits/measurement required for accurate decoding to a desired distortion level from compressed
measurements.

If sensing capacity is a constant, it implies that the number of measurements required is proportional to
the source entropy. On the other hand if the sensing capacity approaches zero, it means that the number
of measurements must increase significantly faster than the source entropy. This also implies that the
compression operator G offers poor compression.

We next define the ε-sensing capacity for a signal X of dimension n and with maximum sparsity k. We
use Ξ to denote a suitable subset of admissible signals, X. This could be any subset such as those described
in Equations (4) and (5).

C1
n,ε(SNR, αn, d0)

∆
= C1

n,ε(SNR, k, d0) = sup
m

{
nH(k/n)

m
: EG sup

X∈Ξ
P
(

1

n
d(Z, Ẑ) ≤ d0|G,X

)
≥ 1− ε

}
(6)

where the probability is over N. Note that one may choose a less conservative notion by interchanging the
order of maxX∈Ξ{k} and EG:

C2
n,ε(SNR, αn, d0)

∆
= C2

n,ε(SNR, k, d0) = sup
m

{
nH(k/n)

m
: sup

X∈Ξ
EGP

(
1

n
d(Z, Ẑ) ≤ d0|G,X

)
≥ 1− ε

}
(7)

For the Bayesian set-up the sensing capacity is defined as,

C3
n,ε(SNR, αn, d0)

∆
= C3

n,ε(SNR, k, d0) = sup
m

{
nH(k/n)

m
: EG,XP

(
1

n
d(Z, Ẑ) ≤ d0|G,X

)
≥ 1− ε

}
(8)
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where the probability is again over N. Since

EG sup
X∈Ξ{k}

P
(

1

n
d(Z, Ẑ) ≥ d0|G,X

)
≥ sup

X∈Ξ{k}
EGP

(
1

n
d(Z, Ẑ) ≥ d0|G,X

)
≥ EG,XP

(
1

n
d(Z, Ẑ) ≥ d0|G,X

)
This implies that

C1
n,ε(SNR, k, d0) ≤ C2

n,ε(SNR, k, d0) ≤ C3
n,ε(SNR, k, d0) (9)

This chain of inequalities implies that an upper bound for the Bayesian sensing capacity is an upper bound
for the other notions as well. A lower bound for the worst-case sensing capacity (Equation (6)) is a lower
bound for the other notions as well. To derive the lower bound to sensing capacity we derive an upper bound
on the probability of error using Maximum Likelihood (ML) analysis that uniformly holds for all X ∈ Ξ{k}.
For this reason we primarily focus on the notion of Equation (6) and Equation (8). To avoid cumbersome

notation we drop the superscript denoting the different notions, namely, we employ Cn,ε(·)
∆
= Cin,ε(·), since

it is usually clear from the context.
We propose an asymptotic definition for sensing capacity by letting n −→∞ as follows.

Definition 2.1. Let {αn}, be any sequence of sparsity ratios where k is either fixed or approaching infinity
linearly or sub-linearly with n. Sensing capacity is the supremum over all the sensing rates such that as the
signal dimension, n, the number of measurements, m, and the dimension of the (possibly) random sensing

matrix, G ∈ Rm×n, approaches infinity, there exists a sequence of estimators Ẑ such that the probability that
the distortion, 1

nd(Z, Ẑ) is below d0 approaches one. Formally,

C(SNR, {αn}, d0) = lim
ε→0

lim sup
m,n

Cn,ε(SNR, αn, d0)

where we explicitly denote the dependence of capacity on SNR, sparsity sequence αn, and distortion level d0.

In the following we begin by considering the case of exact support recovery for the family of k-sparse
sequences.

3 Support Recovery: Worst-Case Setting

In this section we consider the problem of exact support recovery under the models of Equations (1) and (2)

for the non-random parameter set, Ξ
{k}
β given by Equation (4). Suppose, X̂ is the estimate for X based on

measurements Y. Recall that by exact support recovery we mean that,

Pe = EG sup
X∈Ξ

{k}
β

P{Supp(X̂) 6= Supp(X) | X,G} −→ 0

where the probability is over N. In this context one may also talk about sign pattern recovery,

Pe = EG sup
X∈Ξ

{k}
β

P{Sgn(X̂) 6= Sgn(X) | X,G} −→ 0

Here the Sgn function is described by

Sgn(X) =

 1, if X > 0
−1, if X < 0
0, if X = 0

It is easy to see that the results derived below also hold for sign pattern recovery with appropriate adaptation
of the proof methodology and the subsequent results only differ by constant factors and in particular does
not change the resulting scaling laws. Therefore we will focus on the problem of support recovery. For this
set-up following are our main results for the output and input noise models.

Theorem 3.1 (Output Noise Model:Necessity). Consider the output noise model of Equation (1) with
the signal set defined by Equation (4). Let G be any matrix such that the marginal distribution for each
component has zero mean with variance 1

m . Then there exists no estimator that can recover the support if
SNR = o(log(n)). Furthermore, for SNR = O(log(n)) support recovery is impossible if m = o(k log(n/k)).

6



Figure 1: Figure illustrating the intuition behind our ML analysis for support recovery using binary X as an example.
In the Figure X0 is the true signal that is taken to be the origin. Support error events with support errors more than
1 are contained in union of events with support error of 1 before the sensing/compression operator G is applied. This
property is essentially preserved under the transformation by G if the minimum singular value of matrix G is well
behaved.

The proof can found in Section 3.1.2. Note that we do not have to assume that the components of the
sensing matrix are distributed IID. The proof of the theorem also shows that the number of measurements
can not be decreased significantly unless SNR scales as nγ for some γ > 0. It is interesting to point out that
in contrast to the noiseless case where 2k + 1 are required for signal reconstruction, the presence of even
small noise (namely, variance scaling as 1/ log(n)) significantly alters this fundamental bound.

The following result characterizes a partial converse of Theorem 3.1.

Theorem 3.2 (Output Noise Model:Sufficiency). Suppose the sensing matrix, G, in Equation (1) is

drawn from an IID Gaussian ensemble with each component gij
d∼ N (0, 1

m ) and the signal set is given by

Equation (4). If m = Ω(nH2( kn )) = Ω(k log(n/k)) and SNR = Ω(log(n)) then the ML algorithm can exactly

recover the support with high probability for all k
n = αn ≤ .04. Alternatively, for any sensing matrix G with

m ≥ 2k + 1 and SNR = Ω(log(n)) the ML algorithm can recover the support with high probability, if the

minimum singular value, σG,min = minX∈Ξ{2k}
‖GX‖22
‖X‖22

is bounded way from zero.

Remark 3.1. Note that Theorem 3.2 for the deterministic case requires σG,min to be bounded away from
zero. One may question whether this requirement is fundamental. We argue that this is so here. Note that
the optimal decoder must compare different signals with supports smaller than k and pick the most likely. If
σG,min is arbitrarily small, it implies that there are k columns which are badly conditioned. In the presence
of noise a worst-case signal emanating from these k sparse columns will go virtually undetected relative to
noise.

The proof for the deterministic and stochastic sensing matrices appear in Sections 3.2 and 3.3. A
geometric intuition of the proof for deriving the sufficient condition is shown in Figure (1) for binary X.
The proof is based on the fact that for Gaussian noise N, before the compression operator G is applied, the
support errors larger than one are contained in the union of events with support error equal to one. We show
that this is largely true when the compression is applied as well. The proof for the random Gaussian matrix
G is based on the deterministic case. It turns out that the sparsity ratio αn < 0.04 controls the singular
values of the sub-matrix, namely, we can ensure σG,min > 0 with high probability for sparsity ratios below
this number.

7



Note that we can also state these results in terms of sensing capacity. Formally, given any ε > 0, there
is an n(ε) such that for all n ≥ n(ε) and any monotonic sequence αn < 0.04, there are positive constants,
c1, c2, so

0 < c1 ≤ Cn,ε(log(n), αn, 0) ≤ c2

In contrast to the optimistic results for output noise models, we have the following pessimistic result for the
input noise model whose proof can be found in Section 3.1.1.

Theorem 3.3 (Input Noise Model:Necessity). Consider the input noise model of Equation (2) with
the signal set defined by Equation (4) and G drawn from an IID Gaussian ensemble with each component

gij
d∼ N (0, 1/m). Let αn be any positive monotonic sequence of sparsity ratios. Then recovery fails if

m = o
(
nmax(log(n),log( 1

αn
))

β2SNR

)
. Alternatively, the sensing capacity is zero.

This says that for the input noise model one cannot expect meaningful compression in a noisy regime.
To ensure support recovery either the SNR has to scale linearly with n, which implies essentially a noiseless
regime, or the number of measurements must scale linearly with n with any meaningful level of noise. This
calls into question the sensor network motivated compression schemes such as those presented in [4] where
the raw noisy measurements are randomly projected and transmitted to a fusion center.

3.0.1 Achievable Distortion Regions for Support Recovery

In this section we will describe results for approximate support recovery, namely, we allow some distortion in
support recovery. An important implication of our result is that in the constant sparsity regime it is sufficient
for SNR to be a constant independent of n if we accommodate a constant fraction of support errors. We
account for the support distortion as

d(X̂,X)) =
1

k

n∑
j=1

|I{Xi 6=0} − I{X̂i 6=0}|

where, I{·} is the indicator function.

Theorem 3.4. Consider the observation model of Equation (1) with G drawn from a Gaussian ensemble.

Let X ∈ Ξ
{k}
β and let d0 be as described above. It follows that if SNR ≥ 64H2( 2kd0

n )
β2 and m ≥ 6nH2

(
2 kn
)

the
probability of support error greater than distortion d0 goes to zero. Consequently, it follows that for support
recovery with constant distortion, d0, in the linear sparsity regime, i.e, αn = k/n ≥ α > 0, it is sufficient
for the SNR to be a constant independent of the signal dimension n.

Proof. The proof is based on the proof of Theorem 3.2 and we refer the reader to the appendix.

Note that Theorem 3.4 only trades off SNR with the distortion. However one would expect that with
allowable distortion in support recovery it is possible to tradeoff number of measurements with distortion.
In the following sections we will develop this tradeoff of number of measurements with the rate-distortion
function by considering a Bayesian set-up. The main reason why this tradeoff is possible in a Bayesian set-up
is due to the fact that before we analyzed a worst case set-up while in Bayesian case we analyze an average
case scenario and it turns out that on an average the number of measurements can indeed be traded off with
distortion.

3.1 Proof of Theorems 3.3 and 3.1: Necessary Conditions

We derive necessary conditions based on lower bounds to probability of error. As we pointed out in Equa-
tion (9) putting a suitable measure on the signal X can provide necessary conditions for the worst-case setup.
This motivates employing different versions of Fano’s Lemma to establish the results. The standard version
of the lemma appears in [18] and we repeat it here for the sake of completion:
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Lemma 3.1. Suppose X is a finite discrete set and X ∈ X is distributed uniformly over this finite set.
Let the observation Y be distributed according to the conditional distribution P(Y|X), with X ∈ X . let X̂(Y)
denote the estimate of X given Y. Then the probability of error in estimating X from Y is lower bounded
by,

P(X̂(Y) 6= X) ≥ 1− I(X; Y) + log 2

log(|X | − 1)

where I(X; Y) denotes the mutual information between X and Y.

An alternate version of Fano’s lemma stated in [19] provides a lower bound for N -ary hypothesis testing.

Lemma 3.2. Let (Y,B) be a σ−field and let P1, . . . ,PN be probability measures on B thought of as
induced by N hypotheses {1, 2, . . . , N}. Denote by θ(y) the estimator of the measures defined on Y. Then

max
1≤i≤n

Pi(θ(y) 6= Pi) ≥
1

N

N∑
i=1

Pi(θ(y) 6= Pi) ≥ 1−
1
N2

∑
i,j D(Pi‖Pj) + log 2

log(N − 1)

where Pi means the distribution conditioned on the hypothesis i and D(Pi‖Pj) is the Kullback-Liebler (KL)
distance between the distributions Pi and Pj.

Note that the use of these Lemmas requires a finite number of hypothesis or discrete alphabets. Therefore,

in order to use these Lemmas for general k-sparse sequences X ∈ Ξ
{k}
β we first show that the worst case

probability of error in support recovery is lower bounded by the probability of error in support recovery for
X belonging to k-sparse sequences in {0, β}n. To this end we have the following Lemma.

Lemma 3.3. Let Ξ
{k}
β be the family of k sparse non-random sequences as defined in Equation (4). Denote

the conditional distribution of Y given X as P(Y | X). Let Ξ
{k}
{0,β} = {X ∈ Ξ

{k}
β | Xj = β, j ∈ Supp(X)} be a

subset of Ξ
{k}
β consisting of binary valued sequences. Let X̂ denote an estimator for X based on observation

Y. Then,

Pe|G = min
X̂∈Ξ

{k}
β

max
X∈Ξ

{k}
β

P{Supp(X̂) 6= Supp(X)|G,X} ≥ min
X̂∈Ξ

{k}
β

max
X∈Ξ

{k}
{0,β}

P(X̂ 6= X, X̂ ∈ Ξ
{k}
{0,β}|G,X)

≥ min
X̂∈Ξ

{k}
{0,β}

max
X∈Ξ

{k}
{0,β}

P(X̂ 6= X, X̂ ∈ Ξ
{k}
{0,β}|G,X) (10)

Proof. See Appendix.

The main idea behind the proofs of the results that follow below is to first lower bound the error probability
by using Lemma 3.3 and restrict attention to binary sequences. Next we further restrict the signal class to

a smaller subset of Ξ
{k}
{0,β} of cardinality n. Then, finally using Lemma 3.2 we derive the lower bounds for

the set of binary sequences. The lower bound thus obtained yields the necessary conditions.

3.1.1 Input Noise Model(Proof of Theorem 3.3)

From Lemma 3.3 it is sufficient to focus on the case when X belongs to the set of k-sparse sequences in
{0, β}n and any subset of these sequences. We will establish the first part of the Theorem as follows:- Let

Ξ
{η}
{0,β} be the subset of η < k sparse binary valued sequences. Let X0 ∈ Ξ

{η}
{0,β}, be an arbitrary element

with support Supp(X0) = η − 1. Next choose n elements Xj , j = 1, 2, . . . , n with support equal to η and
at a unit Hamming distance from X0. Denote by the probability kernel Pj , 0 ≤ j ≤ n the induced observed
distributions. Under the AWGN noise model, for a given G, and a fixed set of elements, Xj , the probability
kernels are Gaussian distributed, i.e.,

Hj : Y
d∼ Pj ≡ N

(
GXj ,

Σ

SNR

)
, j = 0, 1, . . . , n

9



where Σ = GGT . Furthermore we have n + 1 hypotheses. Consider now the support recovery problem.
It is clear that the error probability can be mapped into a corresponding hypothesis testing problem. For
this we consider θ(Y) as estimate of one of the n + 1 distributions above and we have the following set of
inequalities.

Pe|G = max
X∈Γη

PX(X̂ 6= X | G) = max
j

Pj(θ(Y) 6= Pj | G) ≥ 1

n+ 1

n∑
j=0

Pj(θ(Y) 6= Pj | G)

where we write Pe|G to point out that the probability of error is conditioned on G. Applying Lemma 3.2 it
follows that the probability of error in exact support recovery is lower bounded by,

Pe|G ≥
log(n)− 1

(n+1)2

∑
i,j,i 6=j D(Pi‖Pj)− log 2

log(n)

We observe that under AWGN noise N that,

D(Pi‖Pj) = SNR(Xi −Xj)
TGTΣ−1G(Xi −Xj) = SNR(Xi −Xj)

TV

[
I 0
0 0

]
V∗(Xi −Xj) (11)

where Σ = GGT , G = U[Λ, 0]V∗ is the SVD of G with V = [v1,v2, v3, . . . , vn] = [vrs]. The last equality
in Equation (11) follows from straightforward algebraic manipulations. Now by noting that (Xi −Xj) is at
most a 2-sparse vector with its non-zero entries equal to β at some locations q and p, we can further reduce
the last expression to D(Pi‖Pj) = SNRβ2

∑m
l=1(vpl − vql)2. Now using the standard rotational invariance

properties of IID Gaussian matrices [20], that its singular vectors are uniformly distributed over a sphere,
it follows by taking expectations and using symmetry that,

Pe = EGPe|G ≥
log(n)− n

n+1
2β2SNRm

n − log 2

log(n)
(12)

Now, the error probability is bounded away from zero by ε if the number of measurements scales as follows:

m = o

(
(n+ 1) log(n)

β2SNR

)
To establish the second upper bound we consider the family, Ξk{0,β} of exact k-sparse binary valued sequences

which form a subset of Ξ
{k}
{0,β}. Following similar logic as in the proof of the first part, for the set of exactly

k-sparse sequences, we form the corresponding
(
n
k

)
hypotheses. Then,

Pe = EGPe|G ≥
log(

(
n
k

)
− 1)− 1

(nk)
2

∑
i,j,i 6=j D(Pi‖Pj)− log 2

log(
(
n
k

)
− 1)

(13)

We compute the average pairwise KL distance,

1(
n
k

)2 ∑
i,j,i 6=j

D(Pi‖Pj)

=
1(
n
k

) k∑
j=1

SNR(X−X′)TGTΣ−1G(X−X′).](sequences X′ at hamming distance 2j from X)

The equality above follows from symmetry. Again using the standard rotational invariance properties of IID
Gaussian matrices [20], the above equation implies that ,

1(
n
k

)2 ∑
i,j,i 6=j

D(Pi‖Pj) =
m

n

1(
n
k

) k∑
j=1

SNRβ2

(
n− k
j

)(
k

j

)
(2j) =

m

n
2β2SNRαnn(1− αn)

where the last equality follows from standard combinatorial identity. The proof then follows by noting that
for large enough value of n, log(

(
n
k

)
− 1) ≥ αnn log 1

αn
.
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3.1.2 Output Noise Model (Proof of Theorem 3.1)

We will now establish Theorem 3.1 namely, that if SNR = o(log(n)) support recovery is impossible. Fur-
thermore, if SNR = O(log(n)) support recovery will be impossible if the number of measurements scales as
o(k log(n/k)). The first part follows from the following Proposition.

Proposition 3.1 (Output noise model - SNR Bound). For the observation model of Equation (1) with

the signal set of Equation (4) the SNR must scale with log(n)
2β2 for perfect support recovery irrespective of which

sensing matrix is used.

Proof. The proof follows along the same lines as the proof of Theorem 3.3 with Σ = I up to Equation (11).
In the Kullback Leibler distance calculation we are now left with the term GTG. Since G is normalized
its expected value is identity. Therefore, we no longer get the factor n/m in Equation 12. Consequently,
following the rest of the steps we have that, 2β2SNR ≥ log(n) for exact support recovery.

Next we establish what happens for SNR = O(log(n)) to prove the second part of Theorem 3.1. First,
note that if the sparsity, k, grows linearly with the signal dimension, n, there is nothing to prove, since it is
well-known [1] that the number of measurements must scale at least as 2k+ 1 = Ω(n) even when there is no
noise to guarantee support recovery. For this reason we focus on the sub-linear case namely, k = n−γ , γ < 1.
We consider the subset Ξk{0,β} consisting of strictly k-sparse sequences taking values in {0, β}n. From Lemma
3.3 we see that it is sufficient to focus on this set. Applying Lemma 3.1 with a uniform prior on the support
set we get

max
X∈X

P(X̂ 6= X|X,G) ≥ P(X̂ 6= X|G) ≥ 1− I(X; Y|G) + log 2

log(|X | − 1)
(14)

where X = Ξk{0,β} ⊂ {0, β}
n is the discrete alphabet in which values of X are realized. The first inequality

follows because the worst-case probability of error is larger than the Bayesian error.
Note that strictly speaking since we are interested in the support errors, the probability of error events

and the mutual information term must contain the support of X as the variable but since we are restricting
ourselves to binary valued sequences X ∈ Ξk{0,β}, knowing the support implies that we know X.

Now log |X | = log
(
n
k

)
since there are

(
n
k

)
such hypothesis consisting of all the possible support locations

with cardinality k. We will now upper bound the mutual information term. It follows that,

I(X; Y|G) = h(Y|G)− h(Y|X,G) ≤ h(Y)− h(N)
(a)

≤
m∑
i=1

h(Yi)−
m

2
log

(
2πe

1

SNR

)
(b)

≤ m

2
log

(
2πe

(
kβ2

m
+

1

SNR

))
− m

2
log(2πe

1

SNR
) =

m

2
log(1 +

kβ2SNR

m
)

where h(·) is the differential entropy; (a) follows from the fact that the noise is Gaussian and the chain rule
together with the fact that conditioning reduces entropy; (b) follows from the fact that Gaussian distributions
maximizes differential entropy. Now from Equation (14) it follows that the number of measurements must
satisfy,

m ≥
log
((
n
k

)
− 1
)

log(1 + kβ2SNR
m ) + log 2

m

(15)

Next unless SNR = Ω(log(n)) we know from Proposition 3.1 that support recovery is impossible. Hence we
set SNR = log(n), which is the minimum possible. We next establish the theorem by contradiction. To this
end let the number of measurements scale as m = ρn log(

(
n
k

)
), with ρn → 0, then, by rearranging the terms

in Equation (15) we get

log

(
1 +

kβ2SNR

ρn log(
(
n
k

)
)

)
+

log 2

ρn log(
(
n
k

)
)
≥

log
((
n
k

)
− 1
)

ρn log(
(
n
k

)
)

(16)
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Next note that the expression on the left can be simplified by noting that

kβ2SNR

ρn log(
(
n
k

)
)

= Θ

 1

ρn(1− log(k)
log(n) )


while the expression on the right has the scaling Θ(ρ−1

n ). Consequently, if maximum admissible sparsity, k,

grows sub-linearly with n then log(1+ kβ2SNR

ρn log((nk))
) = Θ(log(1+ρ−1

n )) and Equation (16) can never be satisfied

since ρn → 0. This shows that for sub-linear cases recovery is impossible if m = o(log(
(
n
k

)
)) = o(nH2(αn)).

Remark 3.2. Note that unless SNR scales as nδ for some δ > 0 we will still need the measurements to
scale as Ω(k log(n/k)) to guarantee support recovery.

3.2 Proof of Theorem 3.2: Deterministic Case

In this section we derive sufficient conditions for support recovery for the output noise model for any given
arbitrary deterministic matrix G and for general noise covariance Σ. For the output noise model of Equation
(1), we assume that each column of the deterministic G is normalized. Subsequently we specialize these
results to the case when G is chosen from the Gaussian ensemble and with Σ = I.

To simplify the exposition we introduce several new variables. We associate each admissible signal,
X ∈ Ξ{k} by its support, S. We denote by XS the signal, X, restricted to the set of components indexed by
S. Similarly, we denote by GS the matrix formed from columns indexed by S. Since the maximum sparsity
level is k the number of different support sets is equal to

∑k
j=1

(
n
j

)
− 1. We index the different support sets

as Sω with ω ∈ I =
{

0, 1, 2, . . . ,
∑k
j=1

(
n
j

)
− 1
}

. Also we denote by Xmin
Sω

the minimum absolute value of

the components of the signal X on the support set Sω, i.e., Xmin
Sω

= min{|Xj | : j ∈ Sω}. Without loss of
generality we assume that the true signal is X0, the support set of the true signal to be S0 corresponding to
ω = 0. We denote by X0,j the jth component of the true signal.

For any ω 6= 0, we denote the overlapping support by, S0,ω, false detection by, S0c,ω and missed detection
by, S0,ωc , namely,

Overlap−S0,ω = S0 ∩ Sω
False Alarms−S0c,ω = Sc0 ∩ Sω

Misses−S0,ωc = S0 ∩ Scω
For a given noise covariance Σ the ML estimator is given by,

X̂ = min
X∈Ξ

{k}
β

(Y −GX)TΣ−1(Y −GX)

The above ML estimator is hard to analyze. In order to simplify the analysis we will consider a sub-optimal

ML estimator. To this end consider the set, Ξ
{k}
β/2. Clearly, Ξ

{k}
β ⊂ Ξ

{k}
β/2. We propose the following sub-

optimal ML estimator,

X̂ = arg min
X∈Ξ

{k}
β/2

‖Y −GX‖2 (17)

and report Supp(X̂) as the final solution. Note that this estimator is sub-optimal since it is prone to more
errors. To see this note that we consider a larger signal set and we ignore possible noise correlation Σ
in our estimator. Consequently, the error probability in detecting the correct support can only be larger
than the optimal ML estimator. The performance of the relaxed estimator provides an upper bound for the
performance of ML estimator. Hence, we can write,

PML
e|G ≤ Pe|G = P

(
N : min

ω 6=0,Xmin
Sω
≥β/2

‖Y −GSωXSω‖2 ≤ min
Xmin
S0
≥β/2

‖Y −GS0
XS0
‖2
)

(18)

Note that in the above expression XS0
is not the true signal, X0, but any other signal whose support is

identical to that of the true signal. We then have the following result.
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Lemma 3.4.

PML
e|G ≤ Pe|G ≤ P(E1) + P(E2)

where

E1 = {N : min
ω 6=0,Xmin

Sω
≥β/2

‖Y −GSωXSω‖2 ≤ min
X̃
‖Y −GS0

X̃‖2}

E2 =
{
N : ‖(GT

S0
GS0

)−1GT
S0

N‖∞ ≥ β/2
}

Proof. First note the following qualitative points. In the event E1 we have replaced the constrained mini-
mization on the R.H.S. of the inequality in the error event with an unconstrained one. This will simplify the
subsequent analysis as closed form expressions can be obtained. The event E2 captures the probability that
the unconstrained minimization in E1 is very far from the constrained one. Here we use the fact that the
minimum component on the support of the true signal X0 is greater than β. We also relax our ML estimator
so that we find a best fit with any signal sharing the same support set, S0, as X0 but with Xmin

S0
≥ β/2.

Now, denote

A
∆
=

{
N : min

ω 6=0,Xmin
Sω
≥β/2

‖Y −GSωXSω‖2 ≤ min
Xmin
S0
≥β/2

‖Y −GS0
XS0
‖2
}

B
∆
=

{
N : min

Xmin
S0
≥β/2

‖Y −GS0XS0‖2 = min
X̃
‖Y −GS0X̃‖2

}
Then we have

Pe = P(A) = P(A ∩B) + P(A ∩ B̄) ≤ P(A ∩B) + P(B̄)

The Lemma then follows by noting that,

A ∩B =

{
N : min

Xmin
Sω
≥β/2,ω 6=0

‖Y −GSωXSω‖2 ≤ min
Xmin
S0
≥β/2

‖Y −GS0
XS0
‖2
}
∩B

=

{
N : min

Xmin
Sω
≥β/2,ω 6=0

‖Y −GSωXSω‖2 ≤ min
X̃
‖Y −GS0

X̃‖2
}

= E1

and,

B̄ =

{
N : min

Xmin
S0
≥β/2

‖Y −GS0XS0‖2 6= min
X̃
‖Y −GS0X̃‖2

}
⊂ E2

From the above Lemma, it is sufficient to focus on events E1 and E2 separately. The following lemma
provides a result that considerably simplifies the error event E1. It turns out that the event E1 is a subset of
the union of atomic events, namely,

Lemma 3.5. For m ≥ 2k + 1,

E1 ⊆ Ẽ1 =
⋃

X∈{β/2,−β/2}

n⋃
j=1

{
N : 2NTgjX ≥ σG,min|X|2

}
where, gj is the j − th column of the matrix G and

σG,min = min
|S|≤2k

σmin(GT
SGS) (19)

where σmin(GT
SGS) denotes the minimum singular values of GT

SGS.
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Proof. See Appendix.

We now have the following Lemma.

Lemma 3.6. Consider the output noise model for a deterministic matrix G with m ≥ 2k + 1 and N
distributed as N (0,Σ). The probability of the error event E1 is upper bounded by,

P(E1) ≤ exp

{
−σ2

G,min

λmin(Σ−1)β2SNR

32

}
exp{log 2n} (20)

where λmin(Σ−1) is the minimum eigenvalue value of the matrix Σ−1.

Proof. See Appendix.

We now have the following Lemma for the error event E2. Again note that the result applies to any
matrix G (not necessarily Gaussian).

Lemma 3.7. For the setup of Lemma 3.6, we have,

P(E2) ≤ exp

{
−σ2

G,min

λmin(Σ−1)β2SNR

8
+ log 2n

}
Proof. See Appendix.

By combining Lemmas 3.6 and 3.7 we can prove the deterministic case of Theorem 3.2. We state it as a
proposition since we will refer to it later.

Proposition 3.2. Consider the setup of Lemma 3.6. Then for exact support recovery it is sufficient that

m ≥ 2k + 1 and SNR = Ω

(
1

σ2
G,min

64 log 2n

β2λmin(Σ−1)

)
.

Proof. From Lemmas 3.6 and 3.7 it follows that for m ≥ 2k + 1,

Pe|G ≤ exp

{
−σ2

G,min

λmin(Σ−1)β2SNR

32
+ log 2n

}
+ exp

{
−σ2

G,min

λmin(Σ−1)β2SNR

8
+ log 2n

}
≤ 2 exp

{
−σ2

G,min

λmin(Σ−1)β2SNR

32
+ log 2n

}

Therefore for SNR = 2 · σ−2
G,min

32 log 2n

β2λmin(Σ−1)
the probability of error Pe|G ≤ 2e− log 2n. Thus with n → ∞,

Pe|G goes to zero as 1
n . This implies that SNR scaling of Ω

(
σ−2

G,min

64 log 2n

β2λmin(Σ−1)

)
is sufficient.

3.3 Proof of Theorem 3.2: Gaussian Case

We will now focus on sensing matrices, G, drawn from an IID Gaussian ensemble. As in the deterministic
case we need to bound the probabilities of events, E1 and E2. We will first focus our attention on event E1.

We point out that the proof for the deterministic case cannot be directly applied. First, note that σG,min

of Equation (19) is now a random variable. Therefore, we need to average over this random variable in
computing an upperbound to the probability of events E1, E2. A second problem is that in the deterministic
case we assumed that the `2 norm of each column, gj is deterministically normalized to unity. In the Gaussian
case only the expected power is normalized to unity. Note also that for the output noise model considered
in this paper Σ = I. Therefore λmin(Σ−1) = 1. Following along the lines of the proof of Lemma 3.6 we see
that,

P(E1 | G) ≤ exp

{
−
σ2

G,minβ
2SNR

32 maxj ‖gj‖2

}
exp{log 2n}
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We need to now characterize a lower bound for
σ2
G,min

maxj ‖gj‖2 . To this end we observe that,

Pr

(
σ2
G,min

maxj ‖gj‖2
≥ (1− η)2

1 + ε

)
≥ Pr(σG,min ≥(1− η)2, max

j
‖gj‖2 ≤ 1 + ε) (21)

≥ 1− (Pr(σG,min ≤ (1− η)2) + Pr(max
j
‖gj‖2 ≥ 1 + ε))

This implies that we should characterize σG,min and maxj ‖gj‖2 separately. We appeal to the following
lemma in [2], to characterize σG,min.

Lemma 3.8. Suppose the sparsity is αn = k/n and we consider a function f(q) :=
√
n/m

(√
q +

√
2H2(q)

)
,

where H2(q) := −q log q − (1 − q) log(1 − q). Let G be an m × n matrix drawn from a Gaussian ensemble

with gij
d∼ N (0, 1/m). Then it follows that σG,min described in Equation 19 has the following concentration

property,

P (σG,min ≤ 1− η) ≤ 2 exp

(
−nεH2(αn)

2

)
∆
= δ1(n, αn, ε) (22)

where, η = 2(1 + ε)f(2α) + (1 + ε)2f2(2α).

We consider the following concentration result to characterize maximum power of the columns of G.

Lemma 3.9. Let G be drawn from an IID Gaussian ensemble with gij
d∼ N (0, 1/m). Let gj , j =

1, 2 . . . , n be the columns of G. Then, for any ε > 0, it follows that,

P(max
j
‖gj‖22 ≥ 1 + ε) ≤ exp

(
−m

2
(log(1 + ε) + ε) + log n

)
∆
= δ2(m,n, ε)

Proof. Clearly X := m‖g‖22 is χ2 distributed with degree m and its moment generating function is E(etX) =
(1− 2t)−m/2. From Chernoff bound,

Pr(X ≥ a) ≤ E(etX)

eta
=

(1− 2t)−m/2

eta

Choosing a = m(1 + ε) and t = 1
2 (1−m/a) = ε

2(1+ε) , we have

Pr(‖g‖22 ≥ 1 + ε) ≤ exp
(
−m

2
(log(1 + ε) + ε)

)
The proof then follows by employing the union bound.

Putting Lemmas 3.8 and 3.9 together with Equation (21) and taking the expectation with respect to G
we get,

P(E1) =EG (P(E1 | G)IΓ + P(E1 | G)IΓc)

≤ exp

{
− (1− η)2β2SNR

32(1 + ε)

}
exp{log 2n}(1− δ) + δ

where Γ = {G :
σG,min

maxj ‖gj‖2 ≤
(1−η)2

(1+ε) } and δ = δ1(n, αn, ε) + δ2(m,n, ε). Note that P(Γc) ≤ δ and δ can be

made arbitrarily small for m = Ω(log(n)) and k sufficiently large. We are now left to ensure that the first
term in the RHS of the above equation can be made small as well. For this purpose we need

(1− η)2β2SNR

(1 + ε)32
= (1 + γ) log 2n (23)
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for some arbitrary γ > 0. Let η1 =
(

32(1+γ)(1+ε) log 2n
β2SNR

)1/2

. This implies that it is sufficient that,

1− η ≥ η1 =⇒ η ≤ 1− η1 (24)

=⇒ (1 + ε)f(2α)(2 + (1 + ε)f(2α)) + 1 ≤ 1 + (1− η1) (25)

=⇒ (1 + (1 + ε)f(2α))2 ≤ 2− η1 =⇒ (1 + ε)f(2α) ≤
√

2− η1 − 1 (26)

For this inequality to be satisfied we need η1 ≤ 1. A sufficient condition for support recovery can be obtained
by substituting for η and we get

η1 =
32(1 + γ)(1 + ε) log(2n)

β2SNR
< 1,

n

m
≤ 1

(1 + ε)2(
√

2α+
√

2H2(2α))2
(
√

2− η1 − 1)2

Since (
√

2α +
√

2H2(2α))2 ≤ 6H2(2α) and γ, ε can be made arbitrarily small, the result now follows for
event E1.

We are now left to bound the probability of event E2. This case is simple since the normalizing factor
maxj ‖gj‖2 is no longer relevant as seen from the proof of Lemma 3.7. It suffices to ensure that σG,min needs
to be bounded away from zero. However, note that we already have this from bounding the probability of
event E1. The result now follows.

4 Recovery for Arbitrary Distortions: Bayesian signal model

In this section we switch to a Bayesian signal model from the worst-case setting considered in the previous
section. There are a number of reasons for considering such a model:
(A) For both the input and output noise models we need the SNR to scale as Ω(log(n)) for exact support
recovery regardless of the number of measurements.
(B) For exact support recovery in the worst-case setup we require that the minimum singular values of all
sub-matrices of G as described in Equation (19) be uniformly bounded away from zero (Theorem 3.2). This
arises because a worst-case signal, X, matched to the smallest singular value can be chosen. However, this
problem may not arise in the average case setting.
(C) The situation is worse for the input noise model. Even with SNR of Ω(log(n)) the number of measure-
ments required is linearly proportional to signal dimension.
(D) Theorem 3.4 points out that even with distortion we can only hope to reduce the SNR but not the
number of measurements.

Consequently, it is worth exploring whether these results can be improved in the average Bayesian case.
Fundamentally, the idea is that if we remove a sufficiently small set of signals then it is conceivable that the
results could be more promising.

In the following we first develop novel lower and upper bounds to probability of error subject to a
distortion in reconstruction. The main ingredient in realizing these bounds is the use of the minimal covering
property of the rate distortion function. We begin with a minimal cover as a functional mapping of the source
to the set of rate distortion quantization points. Then for the lower bound to the probability of error we
follow the steps of the proof Fano’s inequality, [18] which we appropriately modify to address detection of the
correct quantization point corresponding to the true X. Similarly for the upper bound to the probability of
error we propose a minimum distance decoder (ML decoder for AWGN noise) over the set of rate distortion
quantization points and derive a closed form result for the particular case of `2 distortion.

4.1 Lower bound- modified Fano’s inequality

In the following we will use X and Xn interchangeably. The main reason for introducing this notation
is that we will deal with n-dimensional probability distributions over X induced by the product measure
PXn = PX × ...× PX(n times).

Lemma 4.1. Given observation(s) Y for the sequence Xn , {X1, . . . , Xn} of random variables drawn

IID with Xi
d∼ PX . Let X̂n(Y) be the reconstruction of Xn from Y. Let the distortion measure be given by
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d(Xn, X̂n(Y)) =
∑n
i=1 d(Xi, X̂i(Y)). Then given ε > 0 for sufficiently large n we have

P
(

1

n
d(X̂n(Y), Xn) ≥ d0

)
≥
RX(d0)−K(d0, n)− 1

n I(X
n; Y)

RX(d0) + ε
+ ε

where K(d0, n) is the logarithm of the number of neighbors of a quantization point in the n-dimensional
rate-distortion mapping) and RX(d0) is the corresponding (scalar) rate distortion function for X.

We have the following result for the special case of finite alphabets with Hamming distortion.

Lemma 4.2. Given observation(s) Y for the sequence Xn , {X1, ..., Xn} of random variables drawn
i.i.d. according to PX and Xi ∈ X , |X | <∞. Let X̂n(Y) be the reconstruction of Xn from Y. For hamming
distortion dH(·, ·) and for distortion levels,

d0 ≤ min

{
1/2, (|X | − 1) min

x∈X
PX(x)

}
we have

P
(

1

n
dH(Xn, X̂n(Y)) ≥ d0

)
≥ nRX(d0)− I(Xn; Y)− 1− log nd0

n log(|X |)− n
(
H2(d0) + d0 log(|X | − 1) + lognd0

n

)
4.2 Constructive upper bound to probability of error for `2 distortion

In this section we will provide a constructive upper bound to the probability of error in reconstruction
subject to an average squared distortion level for the output noise model. To this end assume that we
are given a minimal d0 cover as described in Theorem 8.1 of [21]. Specifically, we have a set of balls,
Bi ⊂ Rn, i = 1, 2 . . . , 2n(RX(d0)+ε), of diameter 2

√
nd0 such that, for any ε > 0 we have for sufficiently large

n that,

Pr{
Nε(n,d0)⋃
i=1

Bi} ≥ 1− ε

where RX(d0) is the (scalar) rate distortion function for X
d∼ PX and Nε(n, d0) = 2n(RX(d0)+ε). Each ball

Bi is represented by a quantization points Zi
.
= Zni . Thus with high probability for any X there exists a

point, Zi to which it can be mapped to such that the distortion is less than d0.
We consider a modified maximum likelihood estimator to establish an achievable upper bound. Given G

and the rate distortion points Zi, we enumerate the set of points, GZi ∈ Rm. Then given the observation
Y we map it to the nearest point GZi ∈ Rm×1. Our estimator X̂(Y) then outputs Zi. We refer to Figure
2 for an illustration.

Lemma 4.3. Given observation Y = GX + N
SNR for the sequence X

.
= Xn , {X1, . . . , Xn} of random

variables drawn IID with Xi
d∼ PX . Let X̂n(Y) be the reconstruction of Xn from Y. Then for any ε > 0 we

have for sufficiently large n,

P(‖X̂(Y)−X‖2 ≥ 2nd0) ≤ (1− ε) exp

{
−SNR‖G(Zi − Zj)‖2

32

}
2nRX(d0) + ε (27)

where Zi and Zj are any two quantization points such that ‖Zi − Zj‖ = 4
√
nd0.

Proof. To compute the probability of error we first consider a pairwise error probability, namely,

Pe(i, j) = P {N : X ∈ Bi → Zj | d(Bi,Bj) ≥ 2nd0,G} (28)

where, d(Bi,Bj) is the minimum squared distance between any two points, Xi ∈ Bi and Xj ∈ Bj . Under the
minimum distance estimator we have,

Pe(i, j) = P
{

N : ‖GX +
N√
SNR

−GZi‖2 ≥ ‖GX +
N√
SNR

−GZj‖2
}

(29)
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Figure 2: Figure showing the rate distortion cover by balls B of radius
√
nd0. The ML decoding over the set of

rate distortion quantization points (identified as centers of the distortion balls) consists of mapping Y to the correct
distortion ball for X using a minimum distance decoder. Shown in the figure is a pair-wise error event for mapping
X ∈ Bi to quantization point Zj ∈ Bj that is at a set distance of 2nd0 from Bi to which X belongs.

where we have omitted the conditioning variables and equations for brevity. Simplifying the expression inside
the probability of error we get that,

Pe(i, j) = P
{

2
NT

√
SNR

G(Zj − Zi)

‖G(Zj − Zi)‖
≥ ‖G(X− Zj)‖2 − ‖G(X− Zi)‖2

‖G(Zj − Zi)‖

}
(30)

In other words we are asking for the pairwise probability of error in mapping a signal that belongs to the
distortion ball Bi to the quantization point Zj of the distortion ball Bj under the noisy mapping GX + N
such that the set (squared) distance between the distortion balls is ≥ 2nd0, see Figure 2.

Under the assumption that the noise N is an AWGN noise with unit power in each dimension, its

projection N onto the unit vector
G(Zj−Zi)
‖G(Zj−Zi)‖ is also AWGN with unit power. Thus we have

Pe(i, j) = P
{

N√
SNR

≥ ‖G(X− Zj)‖2 − ‖G(X− Zi)‖2

2‖G(Zj − Zi)‖

}
≤ P

{
N√
SNR

≥ min
X∈Bi

‖G(X− Zj)‖2 − ‖G(X− Zi)‖2

2‖G(Zj − Zi)‖

}
where we have further upper bounded the probability of the pairwise error via choosing the worst case X
that minimizes the distance between the ball Bi and the quantization point Zj and maximizes the distance
from the quantization point Zi within the distortion ball Bi.

For the case of squared distortion and covering via spheres of average radius d0, it turns out that the
worst case X is given by X =

3Zi+Zj
4 and ‖Zi−Zj‖ = 4

√
nd0. Plugging this value in the expression we have

for the worst case pairwise probability of error that

Pe(i, j) ≤ P

{
N ≥

√
SNR‖G(Zi − Zj)‖

4

}
≤ exp

{
−SNR‖G(Zi − Zj)‖2

32

}
where the second inequality follows by the standard upper bound to the error function. Now we apply
the union bound over the set of rate distortion quantization points Zj minus the set of points that are the
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neighbors of Zi (see figure 2). The maximum number of such points is given by Nε(n, d0) = 2n(RX(d0)+ε),
where RX(d0) is the scalar rate distortion function, [18]. Hence we have,

P(‖X̂−X‖2 ≥ 2nd0 | X ∈
⋃
i

Bi) ≤ exp

{
−SNR‖G(Zi − Zj)‖2

32

}
2n(RX(d0)+ε)

with ‖Zi −Zj‖ = 4
√
nd0. To finish the proof we note that with probability (1− ε), the signal X belongs to

one of the balls Bj . Thus taking expectations with respect to X the result follows.

5 Approximate Recovery: Bayesian Bounds

In this paper we will consider the following mixture model for explicit evaluation of the bounds.

Xi
d∼ PX = αN (µ1, σ

2
1) + (1− α)N (µ0, σ

2
0) (31)

i.e., each component Xi of X is IID PX defined above. It is easy to see that for µ1 = 1, µ0 = 0 for σ0 = 0
this mixture model for large enough n results in an approximately k = αn sparse sequence. We use σ1 = 0
to model a binary discrete case and σ1 = 1 to model a continuous valued case. It is worth pointing out
that this model has been used previously in several papers, e.g. see [22, 14] to probabilistically model sparse
signals.

5.1 Discrete X: Support recovery

It is easy to see that using a binary signal model for X one can address the support recovery problem in the
Bayesian setting. Under this case X is drawn IID according to,

PX = αδ(X − β) + (1− α)δ(X) , : α ≤ 0.5 (32)

where, δ(·) is the usual singular measure. Note that it follows from Asymptotic Equipartition Property
(AEP), see [18], that asymptotically the n-dimensional probability distribution uniformly concentrates on

the set of exactly k-sparse sequences Ξαn{0,β}, i.e. given ε > 0,∃n such that PXn
(

Ξαn{0,β}

)
≥ 1− ε. Thus these

bounds can be compared to the worst-case setup of Section 3 when X ∈ Ξk{0,β} , k = αn. For this discrete

case we have the following main results stated in terms of the scalar rate distortion function RX(d0) with
Hamming distance as the distortion measure. Note that for this case RX(d0) = H2(α)−H2(d0) : d0 ≤ α.

Theorem 5.1. Consider the input noise model of Equation (2) and the binary model for X as described
above. Then,

a. Necessity: Asymptotically as n→∞ if m ≤ nRX(d0)

0.5 log(1 + αβ2SNR)
there does not exist any algorithm

that recovers the signal to within an average Hamming distortion of d0.

b. Sufficiency: Asymptotically as n → ∞, it is sufficient that m ≥ nRX(d0/2)

0.5 log(1 + d0β2SNR
2 )

for the con-

structive ML estimator of section 4.2 to reliably recover the signal to within Hamming distortion of
d0.

Proof. To prove part (a) note that from Lemma 4.2 for the probability of error to approach zero implies that
the numerator in the lower bound approach zero. This implies that we need,

n

m
≤

1
m I(X; Y|G)

RX(d0)− 1
n −

lognd0
n

(33)

To this end recall that Y = G(X+ 1√
SNR

N). Consider the SVD of G = USV∗, where U, V are orthonormal

matrices and S = [D 0], with D a positive diagonal matrix. From [20] it follows that U, S, V are independent
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random matrices. Furthermore U and V are isotropically random. By linearly transforming Y by pre-
multiplying by D−1U∗ we get an equivalent system of equations with

Ỹ = V∗1X +
1√

SNR
V∗1N (34)

where V∗1 is the matrix formed from the first m rows of V∗. Now note that since the rows of V∗1 are
orthogonal and normalized Ñ = 1√

SNR
V∗1N is IID Gaussian with each component having zero mean and

variance 1/SNR. This transformation implies that I(X; Y|G) = I(Ỹ; X̃|V1) since V is independent of U
and S. Now by direct computation it follows that,

EVI(Ỹ; X̃ | V1) ≤ h(Ỹ | V1)− h(Ỹ | V, X̃) ≤ m

2
log(1 + SNRαβ2)

where to get the last inequality we have used the fact that h(Ỹ | V, X̃) is the entropy of noise Ñ and for
the first term, h(Ỹ | V1), we have used the fact that a Gaussian distribution maximizes the entropy over all
other random variables with zero mean and identical variance [18]. Finally, for sufficiently large n the term
1
n + lognd0

n can be made arbitrarily small and the result follows.
We will now prove part (b). In order to simplify the derivation we again focus on Equation (34). Following

the proof of Lemma 4.3 the pairwise error can now be computed as follows

Pe(i, j) ≤ P

{
N ≥

√
SNR‖V∗1(Zi − Zj)‖

4
| V1

}
≤ exp

{
−SNR‖V∗1(Zi − Zj)‖2

32

}
(35)

To compute the error probability we will need to take the expectation over V1 and apply the union bound
to bound the error probability over all error patterns. To simplify the expectation over V1 we let,

φ(D,V1) = exp

{
−SNR‖DV∗1(Zi − Zj)‖2

32

}
(36)

where, D is a positive diagonal random matrix independent of V∗1. Note that our problem reduces to
bounding expectation of φ(Im,V1) over V1. Note that when σmax(D) ≤ 1 we have φ(Im,V1) ≤ φ(D,V1).
Next, note that trivially we have,

φ(Im,V1))I{σmax(D)≤1} ≤ φ(D,V1)I{σmax(D)≤1} + φ(D,V1)I{σmax(D)≥1} (37)

where I{·} denotes the indicator function. Consequently, we can take expectations over the two independent
matrices D and V1 to obtain,

EV1(φ(Im,V1)))Prob(σmax(D) ≤ 1) ≤ ED,V1 exp

{
−SNR‖DV∗1(Zi − Zj)‖2

32

}
(38)

Note that we can introduce a isotropically random unitary matrix U, namely, exp
{
−SNR

32 ‖DV∗1(Zi − Zj)‖2
}

=

exp
{
−SNR

32 ‖UDV∗1(Zi − Zj)‖2
}

without modifying the result. Now the matrix H = UDV∗1 can be identi-
fied by a suitable IID Gaussian matrix when U, D, V are chosen independently and U and V are chosen
uniformly from set of all unitary matrices; the positive diagonal matrix D is distributed according to the
distribution of singular values of a Gaussian matrix. To ensure a tight approximation we need to choose a
Gaussian matrix such that P(σmax(D) ≤ 1) approaches one. This can be accomplished by choosing H as an

IID Gaussian ensemble with each component hij
d∼ N (0, 1

(1+
√
m/n)n

). Then following similar steps as in the

proof of Lemma 4.3 we arrive at a similar upper bound,

P(‖X̂−X‖2 ≥ 2nd0) ≤ (1− ε) exp

{
−SNR‖H(Zi − Zj)‖2

32

}
2n(RX(d0)+ε) + ε

where, ‖Zi − Zj‖ = 4
√
nd0. Since ε is arbitrary, the result then follows by taking expectation with respect

to H and using the moment generating function of the χ2 random variable, [23].
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Theorem 5.2. Consider the output noise model of Equation (1) and the binary model for X as described
above. Then,

a. Necessity: Asymptotically as n→∞ if m ≤ nRX(d0)

0.5 log(1 + n
mαβ

2SNR)
there does not exist any algorithm

that recovers the signal to within an average Hamming distortion of d0.

b. Sufficiency: Asymptotically as n → ∞ it is sufficient that m ≥ nRX(d0/2)

0.5 log(1 + n
m
d0β2SNR

2 )
for the

constructive ML estimator of section 4.2 to reliably recover the signal to within Hamming distortion of
d0.

Proof. The proof of part (a) follows along the same lines as that of 5.1 with the following modification to
the upper bound of the mutual information expression,

EGI(X; Y|G) ≤ m

2
log(1 +

nαβ2SNR

m
) (39)

The proof of part (b) follows from the upper bound to the probability of error in Lemma 4.3 by taking
expectation with respect to G and using the moment generating function of the χ2 random variable, see
[23].

We will now reduce the implicit expression in the above Lemma to derive some explicit conditions on the
number of measurements m. To this end we have the following corollary.

Corollary 5.1. Consider the output noise model of Equation (1) and the binary model for X as described

above. Then, (a) Asymptotically as n→∞ if SNR ≤ 2RX(d0)
αβ2 and m ≤ 2nRX(d0) there exists no algorithm

that can recover X to within an average Hamming distortion of d0; (b) On the other hand asymptotically as

n→∞ it is sufficient that SNR ≥ 200RX(d0/2)
d0β2 with m ≥ 2.08nRX(d0/2) for the constructive ML estimator

of section 4.2 to recover X to within an average Hamming distortion of d0.

Proof. To begin with we will focus on the sufficient conditions. Denote by c = nRX(d0/2)
m . Also let η =

d0β
2SNR

2RX(d0/2) . Then from part (b) of Theorem 5.2 we have as a sufficient condition that,

f(c) = 0.5 log(1 + cη)− c ≥ 0 (40)

In particular we want to find max{c|f(c) ≥ 0}. To this end note that f(c) = 0 at c = 0. Also for there
to exist any positive c such that f(c) > 0 it is required that η ≥ 2. In particular η ≥ 2 is the condition

for a positive derivative near zero. This implies that d0β
2SNR

2RX(d0/2) ≥ 2 or SNR ≥ 4RX(d0/2)
d0β2 . Given that this

condition is satisfied, c = 1−2/η
2 lies in the feasible region. Therefore m = 2

1−2/ηnRx(d0/2) ≈ 2nRX(d0/2)

is a sufficient condition for reliable recovery for some sufficiently large η > 2, i.e. for SNR ≥ 4RX(d0/2)
d0β2 . In

particular if we choose η = 100 then SNR ≥ 200RX(d0/2)
d0β2 and m ≥ 2.08nRX(d0/2) is sufficient for reliable

recovery.

Analyzing part (a) of the Theorem 5.2 in a similar manner, one can show that if SNR ≤ 2RX(d0)
αβ2 and

m ≤ 2nRX(d0) there exits no algorithm that can reliably recover X to within the desired distortion level.

Remark 5.1. One immediate observation from the above analysis is that unlike the worst case set-up
one can indeed tradeoff the number of measurements with distortion in the Bayesian set-up.

5.2 Continuous X: `2 recovery

Under this case X is drawn IID according to,

PX = αN (0, β2) + (1− α)δ(X) (41)
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For this case we have the following main results. The results are stated in terms of the scalar rate distortion
function RX(d0) given by RX(d0) = H2(α) + α

2 log α
d0

: d0 < α, (see section 8.4 for the derivation of this
result). Notice in the following that in contrast to the discrete case where d0 ≤ α here we impose d0 ≤ α/2
and for reasonable reconstruction one typically desires d0 = εα for some small ε > 0. The reason that we
require d0 ≤ α

2 is due to the additional term of K(n, d0) in the modified Fano’s inequality 4.1 which appears
in the continuous setting.

Theorem 5.3. Consider the input noise model of Equation (2) and the mixture model for X as described
above. Then,

a. Necessity: Asymptotically as n→∞ if m ≤
n(RX(d0)− α

2 log 2)

0.5 log(1 + αβ2SNR)
there does not exist any algorithm

that recovers the signal to within an average `2 distortion of d0.

b. Sufficiency: Asymptotically as n → ∞ it is sufficient that m ≥ nRX(d0/2)

0.5 log(1 + d0β2SNR
2 )

for the con-

structive ML estimator of section 4.2 to reliably recover the signal to within an average `2 distortion
of d0.

Proof. For part (a) first note that from Theorem 5.1 we have EGI(X; Y|G) ≤ m
2 log(1 + β2αSNR). From

Lemma 4.1 it follows that for feasibility of recovery to with distortion d0 (asymptotically) it is required that,

n

m
≤

1
mEGI(X; Y|G)

RX(d0)−K(d0, n)
(42)

The result then follows by noting that |K(d0, n)− 0.5α log 2| < ε with ε arbitrarily small for large enough n,
see e.g. [24]. Note that for the case at hand in order for the expression RX(d0)−K(d0, n) to remain positive
and hence meaningful, d0 ≤ α/2. The proof of part (b) follows exactly along the same lines as the proof of
part (b) in Theorem 5.1.

Note that unlike the case of support recovery where the number of measurements had to grow with
signal dimension even with SNR of log(n) here we see that the number of measurements does scale with the
distortion for moderate signal to noise ratios. This maybe acceptable in cases where either a probability
model for the signal set is available.

Theorem 5.4. Consider the output noise model of Equation (1) and the mixture model for X as described
above. Then,

a. Necessity: Asymptotically as n→∞ if m ≤
n(RX(d0)− α

2 log 2)

0.5 log(1 + n
mαβ

2SNR)
there does not exist any algorithm

that recovers the signal to within an average `2 distortion of d0.

b. Sufficiency: Asymptotically as n → ∞ it is sufficient that m ≥ nRX(d0/2)

0.5 log(1 + n
m
d0β2SNR

2 )
for the

constructive ML estimator of section 4.2 to reliably recover the signal to within an average `2 distortion
of d0.

Proof. The proof is similar to the proof of Theorem 5.3.

It is easy to see that Corollary 5.1 holds true for this case too with appropriate modifications to the
necessary conditions in terms of RX(d0)− α

2 log 2 instead of RX(d0).

5.3 Comparison between Worst-Case and Bayesian Setups

Based on the worst-Case and Bayesian results we can comment on the main differences. The situation is
slightly complicated since we considered two different types of distortions in these cases. We recall the
items (A)—(D) listed in the beginning of Section 4 as a means for comparison. Note that by adopting
a Bayesian setup we no longer need that the minimum singular value of sub-matrices of G be uniformly
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bounded away from zero. This can be attributed to the fact that we are taking expectation with respect to
G in Equation (27). However, note that the number of quantization points Nε(n, d0) in Theorem 8.1 will go
to infinity if we insist on nearly exact support recovery. Second, note that the measurements do scale with
the distortion-level, larger the admissible distortion, smaller the number of measurements. This is even more
surprising for input noise models since in the worst-case setup we required the number of measurements to
scale with signal dimension. Finally, for signal reconstruction to within a distortion level d0 we only need a
constant SNR in contrast to the worst-case setup. However, this issue can be attributed to the fact that our
mean-squared distortion metric is less stringent in comparison to support errors.

6 Appendix

6.1 Proof of Lemma 3.3

Consider any arbitrary G and N. Let for each X ∈ Ξ
{k}
β denote by PX the observed distribution of Y

given X as induced by the relation Y = GX + N. We next consider the equivalence class of all sequences
with the same support and lump the corresponding class of observation probabilities into a single composite
hypothesis, i.e.,

[X] = {X′ ∈ Ξ
{k}
β | Supp(X′) = Supp(X)} (43)

Each equivalence class bears a one-to-one correspondence with binary valued k-sparse sequences,

Ξ
{k}
{0,β} = {X ∈ Ξ

{k}
β | Xi = β, i ∈ Supp(X)} (44)

Our task is to lower bound the worst-case error probability

Pe|G = min
X̂

max
X∈Ξ

{k}
β

PX([X̂] 6= [X]|G) (45)

Now note that,

max
X∈Ξ

{k}
β

PX([X̂] 6= [X]|G) ≥ max
X∈Ξ

{k}
{0,β}

PX([X̂] 6= [X]|G) = max
X∈Ξ

{k}
0,β

PX(X̂ 6= X, X̂ ∈ Ξ{0,β}|G) (46)

This implies that

Pe|G = min
X̂∈Ξ

{k}
β

max
X∈Ξ

{k}
β

PX{Supp(X̂) 6= Supp(X)|G} (47)

≥ min
X̂∈Ξ

{k}
β

max
X∈Ξ

{k}
{0,β}

PX(X̂ 6= X, X̂ ∈ Ξ
{k}
{0,β}|G) (48)

= min
X̂∈Ξ

{k}
{0,β}

max
X∈Ξ

{k}
{0,β}

PX(X̂ 6= X, X̂ ∈ Ξ
{k}
{0,β}|G) (49)

≥ min
X̂∈Ξ

{k}
{0,β}

max
X∈Ξ

′
{0,β}

PX(X̂ 6= X, X̂ ∈ Ξ
{k}
{0,β}|G) (50)

6.2 Proof of Lemma 3.5

Denote by E1ω the error event when a signal from the ωth support set is more likely, i.e.,

E1ω =

{
N : min

ω∈IXmin
Sω
≥β/2

‖Y −GSωXSω‖2 ≤ min
X̃
‖Y −GS0

X̃‖2, ω 6= 0,

}
(51)

In the following we will drop stating the obvious fact that ω ∈ I. Now note that,

E1 =
⋃
ω 6=0

E1ω (52)
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We first upperbound E1ω by a more manageable event, namely,

Fω =

{
N : min

Xmin
S0c,ω

≥β/2
min

XS0,ω

‖Y −GS0,ω
XS0,ω

−GS0c,ω
XS0c,ω

‖2 ≤ min
X̃
‖Y −GS0

X̃‖2, ω 6= 0

}
(53)

It is clear that,

E1ω ⊂ Fω (54)

This is because the signal on the common support S0,ω is relaxed to take on any value and not necessarily
those that are bounded away from zero by β/2. We will now simplify the events in Fω by analytically
carrying out the unconstrained minimizations. Recall that Y = GX0 + N. Let X0

S0
denote the true signal

X0 restricted to its support. Then Y = GS0X
0
S0

. Note that X0
S0

is composed of X0
S0,ω

corresponding to the

overlap and X0
0,ωc corresponding to the misses. We have the following Lemma.

Lemma 6.1. For m ≥ 2k + 1

Fω ⊂ F̃ω =
⋃

Xmin
S0c,ω

≥β/2,X0,min
S0,ωc

≥β

{
N : 2NTΠ1G

′X′ ≥ ‖Π1G
′X′‖2,

}
(55)

where

Π1 = (I−GS0,ω (GT
S0,ω

GS0,ω )−1GT
S0,ω

) (56)

is a projection operator and

G′ = [GS0c,ω
GS0,ωc

],X′ =

[
−XS0c,ω

X0
S0,ωc

]
, Xmin

S0c,ω
≥ β/2, X0,min

S0,ωc
≥ β (57)

Proof. Consider the error region,

Fω =

{
N : min

Xmin
S0c,ω

≥β/2
min

XS0,ω

‖Y −GS0,ω
XS0,ω

−GS0c,ω
XS0c,ω

‖2 ≤ min
X̃
‖Y −GS0

X̃‖2, ω 6= 0

}
(58)

Fixing XS0c,ω
we perform the inner minimization first on the L.H.S in the above equation. It can be shown

that the inner minimum is achieved at,

X0
S0,ω
−XS0,ω

= −(GT
S0,ω

GS0,ω
)−1GT

S0,ω
(N + GS0,ωc

X0
S0,ωc

−GS0c,ω
XS0c,ω

) (59)

Also the unconstrained minimum on the R.H.S. is given by,

min
X̃
||(Y −GS0

X̃)||2 = NTΠ0N (60)

where

Π0 = (I−GS0
(GT

S0
GS0

)−1GT
S0

) (61)

is a projection operator. Substituting these results in the expression for Fω we obtain,

Fω =

{
N : min

Xmin
S0c,ω

≥β/2
(G′X′)TΠ1G

′X′ − 2NTΠ1G
′X′ + NT (Π0 −Π1)N ≤ 0

}
(62)

A simple application of the matrix lemma shows that (Π0 −Π1) is a positive semi-definite matrix. This
implies NT (Π0−Π1)N ≥ 0, ∀N. Ignoring this non-negative term can only increase the probability of error.
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Therefore ignoring this term we obtain,

Fω =

{
N : min

Xmin
S0,ωc

≥β/2
(G′X′)TΠ1G

′X′ − 2NTΠ1G
′X′ ≤ 0

}
(63)

⊆
⋃

Xmin
S0c,ω

≥β/2,X0,min
S0,ωc

≥β

{
N : (G′X′)TΠ1G

′X′ − 2NTΠ1G
′X′ ≤ 0

}
(64)

=
⋃

Xmin
S0c,ω

≥β/2,X0,min
S0,ωc

≥β

{
N : 2NTΠ1G

′X′ ≥ ‖Π1G
′X′‖2

}
= F̃ω (65)

where the last equality follows from the fact that Π1 is a projection. Now note that if any column of G′

falls into the null space of GS0,ω
then probability of the event Fω is 1 and therefore the probability of error

is 1 in the worst case. This will not happen as long as G is full rank and m ≥ 2k + 1.

We now have the following Lemma.

Lemma 6.2.

F̃ω ⊆ Lω =

L⋃
j=1

{
N : 2NTg

′

jX
′ ≥ σmin((G′)TG′)X ′2, |X ′| = β/2

}
(66)

where L = |S0c,ω ∪S0,ωc | is the total number of location errors and, σmin((G′)TG′) is the minimum singular
value of the matrix (G′)TG′.

Proof. Let G̃ = Π1G
′. Then note that for any X′,{
Ñ : 2NT G̃X′ ≥ ‖G̃ X′‖2

}
⊆
{

N : 2NT G̃X′ ≥ σmin(G̃T G̃)‖X′‖2
}

(67)

Now note that

G̃X′ =

L∑
j=1

g̃jX
′
j

where g̃j is the j-th column of the matrix G̃ and X′ = [X ′1, . . . , X
′
j , . . . , X

′
L]T . Note also that

‖X′‖2 =
∑
j

|X ′j |2

By a simple superposition of events this implies that

F̃ω ⊆
⋃

Xmin
S0c,ω

≥β/2,X0,min
S0,ωc

≥β

L⋃
j=1

{
N : 2NT g̃jX

′
j ≥ σmin(G̃T G̃)|X ′j |2

}

⊆
⋃

Xmin
S0c,ω

≥β/2,X0,min
S0,ωc

≥β

L⋃
j=1

{
N : 2NT g̃jX

′
j ≥ σmin(G̃T G̃)|X ′j |2

}
(68)

⊆
L⋃
j=1

{
N : 2NT g̃jX

′ ≥ σmin(G̃T G̃)|X ′|2 : |X ′| = β/2
}

(69)

where the last inequality follows from the fact all the events with X ′ ≥ β/2 are contained in the event
X ′ = β/2. Now note that since Π1 is a projection and m ≥ 2k + 1 and L ≤ 2k it implies σmin(G̃T G̃) =
σmin((G′)TG′). This implies that,

F̃ω ⊆
L⋃
j=1

{
N : 2NT g̃jX

′ ≥ σmin(G̃T G̃)|X ′|2 : |X ′| = β/2
}

(70)

=
⋃

X′=±β/2

L⋃
j=1

{
N : 2NTg′jX

′ ≥ σG,min((G′)TG′)|X ′|2
}

(71)
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Since L ≤ 2k ≤ n and
{
g′1, ..,g

′
j , ...,g

′
L

}
= {gi : i ∈ S0c,ω ∪ S0,ωc} ⊆ {g1, ...,gn},

Fω ⊆
⋃

X′=±β/2

n⋃
j=1

{
N : 2NTgjX

′ ≥ σG,min|X ′|2
}

(72)

= Lω (73)

where σG,min = minS:|S|≤2k σmin(GT
SGS).

The result then follows by noting that,

E1 =
⋃
ω

E1ω ⊆
⋃
ω

Fω ⊆
⋃
ω

Lω (74)

and replacing the notation X ′ by X.

7 Proof of Lemma 3.6

From Lemma 3.5 we have ,

P(E1) ≤
⋃

X=±β/2

n⋃
j=1

{
N : 2NTgjX ≥ σG,min

√
SNR|X|2

}
=

⋃
X=±β/2

n⋃
j=1

{
W : 2WTΣ1/2gjX ≥ σG,min

√
SNR|X|2

}

=
⋃

X=±β/2

n⋃
j=1

w : 2wX ≥
√

SNRσG,min
X2√
g
′
jΣgj


Note that W is IID normally distributed Gaussian vector and we let w =

WTΣ1/2gj√
gTj Σgj

. Next noting that

‖gj‖ = 1 ∀j we have,w : 2wX ≥
√

SNRσG,min
X2√
‖gTj Σgj‖

 ⊆
{
w : 2wX ≥

√
SNRσG,min

√
1

λmax(Σ)
X2

}
(75)

=
{
w : 2wX ≥

√
SNRσG,min

√
λmin(Σ−1)X2

}
(76)

We now apply the union bound over all the possible 2n error events corresponding to each j ∈ {1, 2, ..., n}
and X = ±β/2 and obtain,

P(E1) ≤ P

{
w : w ≥

√
λmin(Σ−1)σG,min

√
SNRβ

4

}
exp(log 2n) (77)

=
1√
2π

∫ ∞
√
λmin(Σ−1)σG,min

√
SNRβ
4

exp(−y2/2)dy · exp(log 2n) (78)

≤ exp

{
−λmin(Σ−1)σ2

G,min

β2SNR

32

}
exp {log 2n} (79)

Note that the probability is only taken over the noise W (N) as G is given and is fixed. Here we have used the
approximation Q(x) ≤ exp(−x2/2) for the standard error function defined as Q(x) = 1√

2π

∫∞
x

exp(−x2/2)dx.

8 Proof of Lemma 3.7

For any X0 supported on the submatrix GS0
the probability of the error event E2 is given by,

P(E2) = P
{

N : ‖(GT
S0

GS0
)−1GT

S0
N‖∞ ≥

√
SNRβ/2

}
(80)
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To this end let GS0
= UΣS0

V∗,U ∈ Cm×k,V∗ ∈ Ck×m. Then (GT
S0

GS0
)−1GT

S0
= UΣ−1

S0
V∗. Then let

Ñ = V∗N. Then since V is orthonormal matrix Ñ has the same distribution as that of N. Now note that
if N ∼ N (0,Σ), then

P
{
‖UΣ−1

S0
Ñ‖∞ ≥ SNRβ/2

}
≤

m∑
i=1

P
{
‖(UΣ−1

S0
Σ1/2W)i‖ ≥

SNRβ

2

}
(81)

(a)

≤ 2m exp

{
−SNRβ2

8
λmin(Σ−1)σ2

GS0
,min

}
(82)

(b)

≤ exp

{
−

SNRβ2λmin(Σ−1)σ2
G,min

8
+ log 2n

}
(83)

where (a) follows from the following facts applied in succession- (1) Maximum variance among the noise
components (UΣ−1

S0
Σ1/2W)i is given by σ−1

GS0,min
λmax(Σ1/2) and λmax(Σ1/2) = λmin(Σ−1/2); (2) Q(x) ≤

e−x
2/2 for the standard error function defined as Q(x) = 1√

2π

∫∞
x

exp(−x2/2)dx. (b) follows from the fact

that m ≤ n and σG,min ≤ σGS0
,min.

8.1 Proof of Theorem 3.4

We follow along the lines of the proof for the deterministic case presented in Section 3.2. Basically we
modify Lemma 3.5. We follow the same steps till Lemma 6.2. Then following similar algebraic steps as used
in Lemma 6.2 it turns out that the support error events with Hamming distortion ≥ 2kd0 + 1 are almost
contained in the union of support error events with Hamming distortion kd0 ≤ dH ≤ 2kd0. Then in this
case the upper bound in Proposition 3.2 is modified to,

Pe|G ≤ 2 exp

{
−Σ−1)σ2

G,min

β2kd0SNR

32

}
e2kd0H2(2kd0/n) (84)

The result for Gaussian G is then identical to the development in Section 3.3.

8.2 Proof of lemma 4.1

Let Xn = {X1, . . . , Xn} be an IID sequence where each variable Xi is distributed according to a distribution
PX defined on the alphabet X . Denote PXn , (PX)n the n-dimensional distribution induced by PX .
Let the space Xn be equipped with a distance measure d(., .) with the distance in n dimensions given by
d(Xn, Zn) =

∑n
k=1 d(Xk, Zk) for Xn, Zn ∈ Xn. For this setting we have the following Theorem taken from

[21].

Theorem 8.1. Given ε > 0, there exist a set of points
{
Zn1 , ..., Z

n
Nε(n,d0)

}
⊂ Xn such that,

PXn

Nε(n,d0)⋃
i=1

Bi

 ≥ 1− ε (85)

where Bi ,
{
Xn : 1

nd(Xn, Zni ) ≤ d0

}
with the property that 1

n logNε(n, d0) ≤ RX(d0) + ε. This implies that

for all Xn, ∃ a mapping f(Xn) : Xn → Zni s.t. P
(

1
nd(Xn, Zni ) ≤ d0

)
≥ 1− ε

Now we are given that there is an algorithm X̂n(Y) that produces an estimate of Xn given the observation
Y. To this end define an error event on the algorithm as follows,

En =

{
1 if 1

nd(Xn, X̂n(Y)) ≥ d0

0 otherwise

Now, consider the following expansion,

H(f(Xn), En, |Y) = H(f(Xn)|Y) +H(En, An|f(Xn),Y)

= H(En|Y) +H(f(Xn)|En,Y)
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This implies that

H(f(Xn)|Y) ≤ H(En) +H(f(Xn)|En,Y)

Note that since H(En) ≤ 1

H(f(Xn)|Y) ≤ 1 + PeH(f(Xn)|Y, En = 1) + (1− Pe)H(f(Xn)|Y, En = 0) (86)

Note that by construction H(f(Xn)|Y, En = 1) ≤ logNε(n, d0) and (1 − Pe)H(f(Xn)|Y, En = 0) ≤
(1− Pne ) log (|S|) where S is the set given by,

S =
{
i : dset

(
Bf(Xn),Bi

)
≤ nd0

}
where dset(S1, S2) = mins∈S1,s′∈S2 dn(s, s′) is the set distance between two sets. Now note thatH(f(Xn)|Y) =
H(f(Xn))− I(f(Xn); Y) ≥ H(f(Xn))− I(Xn; Y) where the second inequality follows from data processing
inequality over the Markov chain f(Xn)↔ Xn ↔ Y. Thus we have,

Pe ≥
H(f(Xn))− log |S| − I(Xn; Y)− 1

logNε(n, d0)− log |S|
(87)

≥ I(f(Xn);Xn)− log |S| − I(Xn; Y)− 1

nRX(d0) + ε
(88)

The proof then follows by noting that by definition of the rate distortion function I(f(Xn);Xn) ≥ nRX(d0)
(see [18]) and by identifying K(n, d0) = 1

n log |S|.

8.3 Proof of lemma 4.2

Proof. Define the error event,

E =

{
1 if 1

ndH(Xn, X̂n(Y)) ≥ d0

0 otherwise

Expanding H(Xn, E|Y) in two different ways we get that,

H(Xn|Y) ≤ 1 + nPe log(|X |) + (1− Pe)H(Xn|E = 0,Y)

Now the term

(1− Pe)H(Xn|E = 0,Y) ≤ (1− Pe) log

nd0−1∑
j=0

(
n

d0n− j

)
(|X | − 1)nd0−j (89)

≤ (1− Pe) log nd0

(
n

d0n− 1

)
(|X | − 1)nd0 (90)

≤ n(1− Pe)
(
H2(d0) + d0 log(|X | − 1) +

log nd0

n

)
(91)

where the second inequality follows from the fact that d0 ≤ 1/2 and
(

n
d0n−j

)
(|X | − 1)nd0−j is a decreasing

function in j for d0 ≤ 1/2. Then we have for the lower bound on the probability of error that,

Pe ≥
H(Xn|Y)− n

(
H2(d0) + d0 log(|X | − 1) + lognd0

n

)
− 1

n log(|X |)− n
(
H2(d0) + d0 log(|X | − 1) + lognd0

n

)
Since H(Xn|Y) = H(Xn)− I(Xn; Y) we have

Pe ≥
n
(
H(X)−H2(d0)− d0 log(|X | − 1)− lognd0

n

)
− I(Xn; Y)− 1

n log(|X |)− n
(
H2(d0) + d0 log(|X | − 1) + lognd0

n

)
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It is known that RX(d0) ≥ H(X)−H2(d0)− d0 log(|X | − 1), with equality iff

d0 ≤ (|X | − 1) min
x∈X

PX(x)

see e.g., [25]. Thus for values of distortion d0,

d0 ≤ min

{
1/2, (|X | − 1) min

x∈X
PX(x)

}
(92)

we have for all n,

Pe ≥
nRX(d0)− I(Xn; Y)− 1− log nd0

n log(|X |)− n
(
H2(d0) + d0 log(|X | − 1) + lognd0

n

)

8.4 Rate distortion function for the mixture Gaussian source under squared
distortion measure

It has been shown in [26] that the rate distortion function for a mixture of two Gaussian sources with
variances given by σ1 with mixture ratio α and σ0 with mixture ratio 1− α, is given by

Rmix(D) ={
H2(α) + (1−α)

2 log(
σ2
0

D ) + α
2 log(

σ2
1

D ) if D < σ2
0

H2(α) + α
2 log(

ασ2
1

D−(1−α)σ2
0
) if σ2

0 < D ≤ (1− α)σ2
0 + ασ2

1

For a strict sparsity model we have σ2
0 → 0 we have

Rmix(D) = H2(α) + α
2 log(

ασ2
1

D ) if 0 < D ≤ ασ2
1
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