arXiv:0907.0472v1 [cs.IT] 2 Jul 2009

Capacity Regions and Sum-Rate Capacities of

Vector Gaussian Interference Channels
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Abstract

The capacity regions of vector, or multiple-input multqgatput, Gaussian interference channels
are established for very strong interference and alignexhgtinterference. Furthermore, the sum-rate
capacities are established for Z interference, noisy fitence, and mixed (aligned weak/intermediate
and aligned strong) interference. These results generatiswn results for scalar Gaussian interference

channels.

. INTRODUCTION

The interference channel (IC) models the situation in whiGnsmitters communicate with their
respective receivers while generating interference tothir receivers. This channel model was mentioned
in [1, Section 14] and its capacity region is still generaltyknown.

In [2] Carleial showed that interference does not reduceaciép when it is very strong. This result
follows because the interference can be decoded and stdutrat each receiver before decoding the
desired message. Later Han and Kobayashi [3] and Sato [#leshthat the capacity region of the strong
interference channel is the same as the capacity region ofmpaund multiple access channel. In these

cases, the interference is fully decoded at both receivers.
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Fig. 1. The two-user MIMO IC.

When the interference is not strong, the capacity regiomisnawn. The best inner bound is by Han
and Kobayashi [3], which was later simplified by Choetgal. in [5] and [6]. Etkin et al. and Telatar
and Tse showed that Han and Kobayashi’s inner bound is withéenbit of the capacity region for scalar
Gaussian ICs [7] and [8]. Various outer bounds have beenlaeye in [7]-[12].

Special ICs such as the degraded IC and the Z interferenesmeh@|IC) were studied in [13] and [14].
Costa proved that the capacity regions of degraded ICs a@d Zte the same for the scalar Gaussian
case [14]. The sum-rate capacity for the ZIC was establigh§B] and [15]. A recent result in [10]-[12]
showed that if a two-user Gaussian scalar IC has noisy armite, then treating interference as noise
can achieve the sum-rate capacity. This result has beend®deio multi-user Gaussian ICs in [16] and
[12]. The sum-rate capacity for mixed interference, i.@g ceceiver has strong interference and the other
has weak/intermediate interference, was derived in [18] [47].

In this paper, we study the capacity of the two-user Gaus&ator |C or multiple-input multiple-output

(MIMO) IC. As shown in Fig. 1, the received signals are defiasd
y; = Hiz; + Hozo +2; and
Yo = Hazy + Hamy + 29, 1)

wherez;,i = 1,2, is the transmitted (column) vector signal of ugewhich is subject to the average
covariance matrix constraint
n
Y E {wijmjj] = nS;, )
j=1
wherex;,z;o,...,%;,, IS the transmitted vector sequence of useand S; is a fixed positive semi-
definite matrix. InequalityA < B means thatA — B is Hermitian positive semi-definite. The noisgis

a circularly symmetric complex Gaussian random vector wého mean and identity covariance matrix;
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andH,,j = 1,...,4, are the complex channel matrices known at both the trarenmitind receivers.
Transmitter: hast; antennas and receivethasr; antennas.

For the MIMO IC, Telatar and Tse [8] showed that Han and Kokays region is within one bit
per receive antenna of the capacity region. Some outer Isofoncthe capacity region were discussed
in [18] and some lower bounds for the sum-rate capacity basetian and Kobayashi's region were
given in [19]. Recent work in [20] and [21] extended the drigtcapacity results from scalar ICs to
MIMO ICs under average power constraints. Specifically] @8d [21] derived the capacity region for
aligned strong interference, and the sum-rate capacity forterference, noisy interference and mixed
interference under average power constraints. It shoulablbed that some of the results in [20] and [21]
require the channel matrices to be square and invertiblk ttze noisy-interference sum-rate capacity is
obtained by requiringll possible covariance matrices #f andz, to satisfy a condition. A partially
strengthened noisy interference condition for MIMO ICs Waisr presented in [22] which required only
that the optimizing covariance matricessgfandz, satisfy the condition of [20] and [21], as long as these
optimizing covariance matrices have full rank (see [22, B 2 and 3 and Theorem 1]). A special case
of the MIMO IC, the so-called parallel Gaussian IC where Higs are all square and diagonal matrices,
was studied in [23] and [24], and it was shown that under bldgtaonditions for channel matrices
and the power constraints, separate coding among anteon#se(transmit vector entries) and treating
interference as noise achieves the sum-rate capacity.ditiayg the optimal covariance matrices can be
singular for this special case. Using the result of [25] theamforming is optimal for the single-user
detection rate region of the multiple-input single-outftSO) IC, [22] derived noisy-interference sum-
rate capacities for symmetric MISO ICs, i.e., thg, j = 1,--- ,4, are all row vectors witlH; = Hy,

H, = H3 and the two users have identical power constraints.

In this paper, we use the covariance matrix constraint (8)dsmive the sum-rate capacity of the MIMO
IC with noisy interference, mixed aligned interference wadl as one-sided interference. The capacity
regions of the MIMO IC with very strong interference and aég strong interference are also obtained.
For all the resultsS;, i = 1,2, can be any positive semi-definite matrix, and the channétioea H;,
j=1,--- .4, can be singular or non-square unless otherwise specified.

The rest of the paper is organized as follows: we present @in nesults and numerical examples in
Sections Il and Ill, and the proofs of the main results aregiin Section IV.

Before proceeding, we introduce some notation that will beduin the paper.

« ltalic letters (e.g.X) denote scalars; and bold lettersand X denote column vectors and matrices,

respectively.
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I denotes the identity matrix an@l denotes the all-zero matrix.
« |X

, X" andX ! denote respectively the determinant, conjugate transposkinverse of the matrix

X, and||z|| denotes the Euclidean vector normanf

« radiugX) is the numerical radius [26, p.g. 321] of the square maXixand is defined as

radiugX) = max abs (aTXa> ,
aia<

wherea is a complex vector, andbs(-) denotes the absolute value.

. " = [x{,x; . ,mIL]T is a long vector which consists of a sequence of vectgrs= 1, ..., n.

e £ ~ CN (0,X) means that the random vecterhas the circularly symmetric complex Gaussian
distribution with zero mean and covariance mafx

« E[-] denotes expectation; Coy denotes covariance matriX(-; -) denotes mutual informatiorf;(-)

denotes differential entropy with the logarithm basendlog(-) = log,(-).

Il. MAIN RESULTS

In this section, we give the capacity regions for MIMO ICs andery strong interference and aligned
strong interference, and the sum-rate capacities for MIND® Winder Z interference, noisy interference
and mixed interference.

For economy of notation, we introduce a set of matrices
B; = {B ‘all columns ofB' are in the null space cﬁi}, 1=1,2, 3)

i.e., each column oBT is either a zero vector, or an eigenvector of the covarianagixnconstraint
S; associated with the zero eigenvalue §f has one). This condition is equivalent to the condition
S,BT = 0.

A. Capacity region of MIMO IC under very strong interference

We begin with the result for the MIMO ZIC (MIMO IC with one-sd interference) with very strong
interference.

Theorem 1: For the MIMO IC defined in (1) withH3 = 0, if

log [T+ H1S1H] + HySH| — log [T+ H, S, HY| > log |1+ HS,H]|, @)
then the capacity region of the MIMO IC is
{(Rl,Rg) . 0< R, <log (I +HSHI|, 0< Ry <log ‘I+ H4SQHL(} , 5)
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whereS; and S, are the respective covariance matrix constraints defingd)in

We say that a MIMO ZIC hasery strong interference if (4) is satisfied. In this case the interference
does not reduce the capacity region. Theorem 1 can be easigde=d to obtain the capacity region for
a two-sided MIMO IC under very strong interference.

Theorem 2: For the MIMO IC defined in (1) and, % 0 andH3 # 0, if

log [T+ H;S1H] + H;8HY| — log [T+ HiS,HY| > log |1+ H,S,H]| ©6)
log (1 +HSHI + H482Hj;( ~log (1 n H4S2H1( > log (1 +H,SHI|, )

then the capacity region of the MIMO IC is
{(Rl,Rg) : 0< Ry <log ‘I +H181HJ{ , 0< Ry <log ‘I—i— H4SQHH} , (8)

whereS; and S, are the respective covariance matrix constraints defingd)in
Inequalities (6) and (7) are theery strong interference conditions for a two-sided MIMO IC, which
means that when both users transmit at the maximum rate rbodiivers can first decode the interference

by treating the desired signal as noise, i.e., we have
I (z5;y1) 2 1 (93] 1) and
I'(x1;y5) > (@791 ] 23),

wherez! ~ CN (0,S;) andy! is defined in (1) withz; replaced byz!, i = 1,2. As with the scalar
Gaussian IC where the notion of very strong interferenceesdédp on both the channel coefficients and
power constraints, for the MIMO IC our definition of very stigpinterference involves both the channel
matrices and the covariance matrix constraints. Het= H, = 1, Hy = \/a, H3 = Vb, S; = P, and

S, = P, then (6) and (7) become > 1 + P, andb > 1 + P, respectively. Therefore, Theorem 2
generalizes the capacity region for scalar Gaussian ICsrwety strong interference [2].

We remark that an alternative definition of MIMO with veryatg interference is to use the power
constraints instead of the the covariance matrix conggaifhe conditions as well the corresponding
capacity region have the same expression as that of Theommept thalS; andS, are now replaced
with the waterfilling covariance matrices for the two inteddinks in the absence of interference. This
alternative definition gives a capacity region that is a ssgteof that defined using the covariance matrix
constraints with the trace of the covariance matrices bequal to the power constraints. This alternative

definition also includes the scalar Gaussian ICs under vieong interference as its special case.
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B. Capacity region of MIMO IC under aligned strong interference

We begin with the result for the MIMO ZIC under aligned strangerference.
Theorem 3: For the MIMO IC defined in (1) withH3s = 0, if there exist matrices\ andB such that

H, = AH, + B, 9)

where ATA < T andB ¢ B, then the capacity region of the MIMO IC is

0< R, <log (1 n HlslHH
0 < Ry < log |1+ HuS H| , (10)
Ry + Ry < log ‘1 +H;S ]+ HQSQH;‘
whereS; andS, are the respective covariance matrix constraints defingd)in
Theorem 3 gives the capacity region of a MIMO ZIC undaigned strong interference. If S, is

singular, then (9) means that all the cqumnsHilf— HEAT are either zero vectors or the eigenvectors of
S, associated with eigenval@e If S, is nonsingular, thefl, = AHo, i.e.,H, is a linear transformation
of H,. Therefore, users and?2 seex, in the forms ofHyz, and AH,z,, respectively. IfATA < T,
then user 1 can decode if user 2 can.

The following is a special case of Theorem 3 where we can ehdosxplicitly as
A = (H, - B) (H§H2>_l . (11)
Proposition 1. For the MIMO IC defined in (1) withHs = 0, if Hs is left-invertible, i.e., has full
column rank, and there exisB € By such that
HIH, ~ (H, - B)' (H; - B), (12)

then the capacity region of the MIMO IC is given by (10).

By choosingB; = 0, (12) becomengHQ = H£H4, which is related only td, andH,4 and directly
mimics that of the scalar Gaussian IC.

Using Theorem 3, we obtain the capacity region for the tvdediMIMO IC under aligned strong
interference.

Theorem 4: For the MIMO IC defined in (1), if there exist matrices;, A5, By andB;, such that
H; =AH;+B; and (13)

H,=A>H-> + B, (14)
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WhereAZT.Ai <TIandB; € B;, i = 1,2, then the capacity region of the MIMO IC is

0 < R; <log ‘I +H181HJ{‘

0 < Ry < log (I + H4SQH1‘ )
Ry + Ry < log ‘1 +H. S H ¢ HZSQH;‘ ’

Ry + Ry < log [T+ HyS:HY + HiS H|
whereS; and S, are the respective covariance matrix constraints defingd)in

Similarly to Proposition 1, we have the following propositi

Proposition 2: For the MIMO IC defined in (1), and where the channel matriBigsandHs are both
left-invertible, if there exisB; € B;, i = 1,2, such that

HIH, - (H, — B,)' (H, — B,) and (16)
H{H; - (H, - B))' (H, - By), (17)
then the capacity region of the MIMO IC is given by (15).

Obviously, Proposition 2 generalizes the capacity regibrihe scalar Gaussian ICs under strong
interference. Furthermore, Proposition 2 also genemlthe result of [18] for single-input multiple-
output (SIMO) ICs under strong interference. In this cd$¢,andHjs are both non-zero column vectors,
and hence are left-invertible. Therefore, (16) and (17)obeeH}H, = HIH, and HiH; = HIH;
which are the same gd,|| > ||Hy|| and ||Hs| > [|[H4||.

Let B = B2 = 0 and assume that there exiA; and A, satisfying (13) and (14). We can verify
Theorem 4 in a way similar to that done in [3] and [4] for scdkaussian ICs under strong interference.

Assuming the rate paifR;, R,) is achievable, them; andz, can be reliably recovered at usermnd

user2, respectively. After subtracting; from y,, userl obtains
Yy = Howy + 2. (18)
We can pre-multiplyy} by A, and get
Y1 = AoHyxy + Az
= Hyxo + Asz;. (29)
Sincezx; is recovered at uselr, we can addH3zz; to (19). Thus uset can eventually compute

"

y1 = Hzz1 + Hyzo + A2y, (20)
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If AEAQ <1, by Lemma 6 we haveAgAE < I and the received signal at usgican be written as

Yo = Haz1 + Hyzo + 29
=y +w, (21)

wherew ~ CN (O,I —A2A£>, andw is independent of all other random vectors. Siagecan be
recovered frony,, 2 can also be recovered frogf’. Thus, usetl can decode botla; andzs. Similarly,
user2 can also decode botty andz,. Therefore, the MIMO IC is now a compound MIMO multiple-
access channel, whose capacity region coincides with @8] [The above development imposes no
structure onx;, ¢ = 1,2. Therefore, as long as the input signal (which can be non-Gaussian with
arbitrary covariance matrix) can be decoded by its desieediver, it can also be decoded by the other
receiver. This result applies to MIMO ICs under a variety ofver constraints, for example, peak power
constraints, average power constraints and per-antenmarpmnstraints. We state this formally in the
following proposition.

Proposition 3: For the MIMO IC defined in (1) with expected per-symbol pow@nstraints, or
expected block power constraints, or per-antenna expbdbed power constraints, if there exist matrices
A;, i=1,2, such thatAZTAi <TIand

H, = A;H; and (22)
H, = AyHo, (23)
then the capacity region of the MIMO IC is
0< Ry <log ‘I + H1§1HH
0< Ry <log ‘I + H4§2H}1‘

Ry + Ry < log (1 +H,SH + H2§2H§‘
Ry + Ry < log (1 +H3SHf + H4§2H:'1‘

; (24)

U
S2)eP

(§1

whereP denotes the specified power constraints.
For this result, we say that there is expected per-symbol power constraint, arexpected block power
constraint, and ger-antenna expected block power constraint, respectively, if the following conditions

must be satisfied:

tr (E [m,-jmij <P, j=1,---,m, (25)
zt (£[zyal)]) <npi or (25)
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> (2 [euel]), < P @

j=1
where(-);, denotes theth diagonal element of a square matrix, aRg is the power constraint for the
kth antenna of user.

Theorem 4 has relaxed conditions on the channel matricesrapared to Proposition 3. The extra
term B; in Theorem 4 results from the covariance matrix constrdjntSuppose (13) and (14) hold and
the input signal of user is zf ~ CA (0, S;). From Theorem 4g} achieves the capacity. Applying the

same procedure in (18)-(20) #q, we obtain the counterpart of (19)
Y = AsHozh + Aoz
= (AoHs + Bo) x5 + Agzy
= Hyx; + Aszy, (28)
where the second equality holds since
Cov(Byzh) = BySyBl = 0, (29)

and hencéBqz; = 0. Thereforey, can also be written as (21).
The difference between Proposition 3 and Theorem 4 is tf2atg@ad (23) ensure thatf can be reliably
decoded at both receivers as long as it can be decoded atsimedde=ceiver, while (13) and (14) ensure

that the capacity-achieving; can be reliably decoded at both receivers.

C. Sumrate capacity of MIMO IC under noisy interference

In [10], we say that an IC hasoisy interference when treating interference as noise achieves the
sum-rate capacity. In this section, we present the sumeggiacity results for MIMO ICs that have noisy
interference.

Theorem 5: For the MIMO IC defined in (1) witiH3 = 0, if there exist matriceA andB that satisfy
H, = A'H, + B, (30)
whereATA < T andB € B,, then the sum-rate capacity of the MIMO IC is

-1
log I + H1S1HI <I + H2S2H£)

+log (1 + H,S.H1 | (31)

whereS; andS, are the respective covariance matrix constraints defingd)in

Similarly to Proposition 1, we obtain the following result.
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10

Proposition 4: For the MIMO IC defined in (1) withH3 = 0, if Hy is left-invertible and there exists
B € B5 such that

H{H, ~ (H, - B)' (H; - B), (32)

then the sum-rate capacity of the MIMO IC is given by (31).

Theorem 5 gives the noisy-interference sum-rate capa€ity MIMO ZIC. Specifically, when (30)
is satisfied, the sum-rate capacity can be achieved by ngeatterference as noise. Consider a scalar
Gaussian IC wherdl; = Hy = 1, Hy = \/a and H; = 0. Equation (30) is0 < a < 1. Therefore,
Theorem 5 includes the scalar Gaussian ZIC noisy-intarteresum-rate capacity as a special éase
For a SIMO IC whereH;, H3 and H4 are all nonzero column vectors, Proposition 4 shows that if
|Hz|| < ||Hy4l|, the sum-rate capacity is achieved by treating interfexeas noise.

Similarly to Proposition 3, if we choosB = 0 in (30), then Theorem 5 can be extended for different
power constraints. We state this formally in the followingposition.

Proposition 5: For the MIMO IC defined in (1) with expected per-symbol pow@nstraints, or
expected block power constraints, or per-antenna expeatak power constraints, iH; = 0 and

there exists a matriA such thatATA < T and

H, = ATH,, (33)
then the sum-rate capacity is
S it St Ry
_max <log I+H,SH (I + HQSQHZ) ‘ +log ‘I + H4SQH4D , (34)
(51782)673

whereP denotes the specified power constraints.

Next, we give the noisy-interference sum-rate capacity tf@sided MIMO IC. Note that this result
does not requirés; or Sy to have full rank (see [22] and Example 4 below).

Theorem 6: For the MIMO IC defined in (1), if there exist matrices;, B; € B;, and Hermitian

positive definite matrice¥:;, i = 1,2, such that

ATA; <% <T— A5 AT, (35)

AJA, <3 <T— A S 'AT, (36)
t t -1

Hy = A] (HoSH, +1)  Hy+B; and (37)

The case withy < 1 is often referred to as ZIC with weak interference in therditare. We use the term noisy-interference

simply because of the fact that treating interference asenathieves the sum-rate capacity.
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11

-1
H, = Al (HsSH| +1)  H, + B, (38)
then the sum-rate capacity of the MIMO IC is

1 —1
log | + ;S H| (1 +H,S,H}) |+ log : (39)

I+ H452H1 <I + H3S1H£)

whereS; andS, are the respective covariance matrix constraints defingd)in
Theorem 6 gives sufficient conditions for the MIMO IC underigthtreating interference as noise
achieves the sum-rate capacity. In the case where Btrand H, are left-invertible, the following

conditions are sufficient for (37) and (38):
Ay = (T+ Ho8,H) ) H, (H{H, ) - (ui-B}) and (40)
Ay = (T+ HySH} ) Hy (H{H, ) - (u}-B}). (41)

That is, such matriced; and Ay exist whenH; andH, are left-invertible. It remains to find matrices
B; € By andBs € B, such the matrix inequalities (35) and (36) have solutions.3féte this formally
in the following proposition.

Proposition 6: For the MIMO IC defined in (1), ifH; and Hy are left-invertible, and there exist
symmetric positive definite matricés; and X, that satisfy (35) and (36) witlA; and A, defined in
(40) and (41) for som@; € B; andB; € B,, then the sum-rate capacity is given by (39).

Although Theorem 6 gives the noisy interference conditimnsa MIMO IC, finding explicit solution
of the matrix inequalities (35) and (36) can be very complEerefore, using Theorem 6 to check
whether a MIMO IC has noisy interference is not practical. iMas derive the following proposition
that is a special case of Theorem 6 but is more amenable towatign.

Proposition 7: For the MIMO IC defined in (1), the sum-rate capacity is givgn(89) if

radius(®;) < %, 1=1,2, (42)

where
&, — (1 ~AA, - AzAg) T AlAl (I ~AJA; - A2A£>_% (43)
&, — (I —AA] - A£A2)_% AlAl (1 —AAl - A;Az)‘% : (44)

andA; and A, are chosen to satisfy (37) and (38) respectively, Bad B;, i = 1, 2.
In the scalar case, if we hald; = Hy = 1, Hy = /o, H3 = Vb, 81 = P, andS, = P>, from (42)

we directly have
Va1l +bP) +Vb(1 +aPy) < 1.
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12

The above condition can also be obtained from Theorem 6 afiere mathematical manipulations.
Therefore Theorem 6 and Proposition 7 generalize the rintsyference sum-rate capacity of the scalar
Gaussian IC [10]-[12] to the MIMO IC.

Similarly to Proposition 6, we obtain the following propti@i.

Proposition 8: For the MIMO IC defined in (1), if bottH; andH,4 are left-invertible, and there exist
matricesB; € B; and B, € B; such that theA; and A, defined in (40) and (41) satisfy (42), then the

sum-rate capacity is (39).

D. Sum-rate capacity of MIMO IC under mixed aligned interference

Theorem 7: For the MIMO IC defined in (1), if there exist matriceés;, Ay, B; and B, that satisfy
H,; =A;H;+B; and (45)
H, = A{H, + By, (46)

whereAZT.Ai <TandB; € B;, i = 1,2, then the sum-rate capacity of the MIMO IC is

log (I + H3S Hi + H4SZH§(

min

; (47)

-1
log [T+ H1S1HJ{ <I + H252H£) + log ‘I + H452H1

whereS; and S, are the respective covariance matrix constraints defingd)in
Proposition 9: For the MIMO IC defined in (1) wherd; and Hy are left-invertible, if there exist
B; € B;, i = 1,2, such that

H/H, - (H, - B,)' (H, - B,) and (48)
HIH; - (H, — B))' (H, — B)), (49)

then the sum-rate capacity is given by (47).

Theorem 7 gives the sum-rate capacity of the MIMO IC unehered aligned interference, i.e., one
user sees aligned weak/intermediate interference and ttter aser sees aligned strong interference.
The sum-rate capacity is achieved by treating interferaaeanoise at the receiver that sees aligned
weak/intermediate interference, and fully decoding tlierference at the receiver that sees aligned strong
interference. Proposition 9 includes the sum-rate capatiscalar Gaussian ICs with mixed interference
as a special case. If we chooBg = 0 andB; = 0, the constraints (48) and (49) reduceIﬁH4 -
H£H2 and H§H3 > HIHl. The MIMO ICs that satisfy these two simplified conditionsv&éamixed

interference and this result applies to channels with otloever constraints.
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Similar to Propositions 3 and 5, we obtain the sum-rate dapfar MIMO ICs with aligned mixed
interference under different power constraints.

Proposition 10: For the MIMO IC defined in (1) with expected per-symbol powenstraints, or
expected block power constraints, or per-antenna expbibed power constraints, if there exist matrices

A;,i=1,2, suchthatAlA; < T and
H; =A;H; and (50)
H, = AlH,, (51)

then the sum-rate capacity is

log ‘I + Hg/S\ng + H4/S\2H£‘
: (52)

max min

PN ~ ~ —1
(8..8:)eP log [T+ ;8 HI (T+ H,S,H})

+ log ‘I + H4§2Hjl

whereP denotes the specified power constraints.

E. Generalizations

The results in the previous sections are for MIMO ICs whospacidies are achieved by; ~
CN (0,S;), i = 1,2, whereS; is the covariance matrix constraint for ugedefined in (2). The methods
introduced can also be applied to more general cases in wheotapacity is achieved y, ~ CA (0, S))
whereS) < S;. For example, consider the following generalization of dieen 5 that gives the sum-rate
capacity of a class of MIMO ZICs under noisy interferenceiséxtension applies to all the corresponding
theorems for other kinds of interference.

Theorem 8: For the MIMO IC defined in (1), ifH; = 0 and the optimalA*, S7 and S} for the

following optimization problem

mjin I§1117a§>§ C (A, §1,§2>
subjectto AAT <I, 0=<S;<S;, 0=<8S,=<8S,, (53)
satisfy
H, = A*'H, + B, (54)
where

o (A, S, §2) — log ‘H1§1H{ + HLS,H} + 1( ~log ‘1 _ AAT(

+ log

HS;H| + 1~ (HiS:H + A) (HL,SH] + I>_1 (FaS.H] + AT )' , (55)
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and

B c {B‘ all columns of BT are in the null space 8} }, (56)
then the sum-rate capacity for the MIMO IC is

log

-1
I+H,S;H| <1+H2s;H;) '+log‘I+H4S§HZ‘. (57)

The solution of problem (53) is an upper bound on the sum-cagacity of this MIMO ZIC. The
bound is tight when (54) is satisfied. Theorem 8 includes Tdéradb as a special case in whiSh and

S, are optimal for problem (53).

[11. NUMERICAL RESULTS

Example 1: Consider a MIMO IC with

20 15 1.2 2.0
H

Hi=H;=1 H;= ;
0.8 1.0 0 038

and S1 =S, =1.

w
I

Conditions (6) and (7) are satisfied. Therefore this MIMO K3 kery strong interference and the capacity
region is

{(R1,Rs): 0<R; <1383, 0<R,<1.3863}.

However, consider the aligned strong interference comuti(13) and (14) for this channel. We have
A, = H;', Ay = H;' andB; = B, = 0, whereAlA; £ T and A{A, £ I. Therefore, the above
channel has very strong interference but not aligned stiotegference.

Example 2: Consider a MIMO IC with

1.8 08 —-06 14 0.8 1.0 -0.5 0.6
Hl = ; H2 - )
1.2 —-19 0.5 —-0.7 1.0 =12 04 1.2
1.0 1.0 05 0.5 0.68 036 —0.22 0.6
H;s = ; H, = ;
0.4 0.2 1 0.6 1.04 —-0.66 0.17 1.14
(09 04 1.0 01|
0.4 04 0 -—-04
S, = and S, =1

1.0 0 20 1.0
0.1 —-04 1.0 0.9
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Conditions (13)-(14) are both satisfied by choosing

0.6 0.2 1 0 -1 1
, A= , Bi= and B, = 0.
0.3 0.8 1 -2 0 -1

By Theorem 4, this MIMO IC is under aligned strong interfexerand the capacity region is

0.8 0
0 05

A=

{(Rl,Rg) : 0< R £1.6770, 0< Ry <1.8636, 0< R+ Ry < 3.2812}

Example 3: Consider a MIMO ZIC where

1.3 11 14 1.0 2.0 05
H, =1 Hy= |15 -05 3.0, H3=0, Hy=]10 1.0 2|,
09 —0.36 15 0.5 04 0.5

1.8 1.0 —-04
Si;=T and So=|10 50 20

-04 20 1.2
Condition (30) is satisfied by choosing

0.8 0 0 0.5 —-0.5 1.0
A=10 05 0 and B= [1.0 —1.0 20
0 0 0.6 06 —-0.6 1.2

By Theorem 5 or Proposition 4, the above MIMO ZIC is under ndigterference and the sum-rate
capacityC' = 5.6622 is obtained from (31).
Example 4: Consider a MISO IC with

H, 6.0 4.0 5.0
09 05 —0.2 22 —0.2 —0.6

H, 0.5 08 1.0
= , S1i=105 25 1 and Sy = |—-0.2 02 -04

H; 0.4 06 0.1
—-02 1 06 06 —-04 1.3

H, 3.0 —2.0 6.0

Condition (42) is satisfied by choosing
A; =0.1578, A5 =0.2394, B; =[-0.2,0.2,—-0.4] and By =[0.2,1.0,0.4].

By Proposition 7, this MISO IC is under noisy interferenced ghe sum-rate capacity’ = 7.7171
is achieved by treating interference as noise. In this cask(8,) = rank(S2) = 2. However, if we

use average power constrains = tr(S;) = 4.0 and P, = tr(S2) = 3.7 instead of the covariance
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matrix constraintsS; and S,, then using the optimality of beamforming for single-usetedtion of
MISO ICs [25], we can achieve a sum rate Bf + R, = 9.9162 by treating interference as noise
and choosingS; = ~yi~yj., rank(S;) = 1, i = 1,2, where~; = [1.2133,-0.0181,1.5899]" and~, =
[0.5673, —1.4460, 1.1345]T.

Example 5: Consider a MIMO IC under average power constraifits= 8 and P, = 1 with

H; = diag1.0392, 1.5937, 1.2689], H, = diag0.7746,0.2646, 0.3162],

H; = diag0.3000,0.6083,0.3162] and H, = diagi1.5330, 1.2124, 1.3784].

Since all the channel matrices are diagonal, this MIMO IC banconsidered as a parallel IC. From
[24, Theorem 3], this MIMO IC is under noisy interference ahd sum-rate capacity’ = 6.1066 can
be achieved by independent coding across antennas anddredéerference as noise. The optimal input

signals are Gaussian with covariance matrices
S; = diag[2.0922, 3.3021,2.6057] and S, = diag[0.4472,0,0.5528] ,

where tr(S;) = P, and tr(Sz) = P». The input covariance matrix of the second user is singuidrtae
second antenna is inactive.

If the average power constrainty and P, are replaced by covariance constraints:

2.0922 0.5000 1.0000 0.4472 0 0.1500
S1 = {0.5000 3.3021 0 and Sy = 0 0 0 ,
1.0000 0 2.6057 0.1500 0 0.5528

where t(S;) = P, and t(S2) = P, butS; # S; andS; # S,. Conditions (40) and (41) are satisfied by

choosing
0.3661 0 0.0092 0.6004 0.0199 0.0218
A= 0 0.3817 0 , Ay =10.0461 0.4848 0 , and B; =By =0.
0.0106 0 0.2630 0.0479 0 0.2892

It can be obtained from (42) that radids;) = 0.4614 and radius®,) = 0.1822. Therefore, from
Proposition 7 this MIMO IC is under noisy interference an@ tum-rate capacity’ = 5.9541 is

achieved by treating interference as noise.

IV. PROOFS OF THEMAIN RESULTS

We first introduce some lemmas which will be used to prove oainmesults.
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A. Preliminaries

The following lemma is based on the fact that a Gaussianilolision maximizes conditional entropy

under a covariance matrix constraint [28].

T . .
Lemma 1: Letz! = [mjl, .. ,mjn} ,i=1,...,k, bek long random vectors each of which consists
of n vectors. Suppose the; ;, i = 1,--- ,k all have the same length;, j = 1,--- ,n. Lety" =
[yl, . ,yn] , wherey; has lengthZ;, be a long Gaussian random vector with covariance matrix

k

Cov(y") = AiCov(z}), (58)
=1

wherezle Ai=1,)\; > 0and|Cov(z]')| > 0. LetS be a subset 0f1,2,...,n} and7 be a subset of

S’s complement. Then we have

k
> Xih(@is wiT) < h(Ys lyr)- (59)

=1
Proof: See Appendix A.
When thez, £k = 1,--- ,n are all Gaussian distributed, Lemma 1 shows théts |z ) is concave
over the covariance matrices.
Lemma 2 includes some special cases of Lemma 1.

Lemma 2. Letz* = {z1,--- ,z;} andy” = {y,, - ,y,} be two sequences of random vectors, and

let z*, y*, z* andy* be Gaussian vectors with covariance matrices satisfying

~k k K
x x; x
Cov _1 > Cov < Cov . (60)
o~ k 4 ‘ .
) =1 Y; Yy
Then we have
h (mk> <k-h@)<k-h(z) and (61)
h(yk‘mk>§k-h@* ) <k-h(@|3*). (62)
Proof: See Appendix B.
Lemma 3: Letz" = {z,--- ,x,} be a sequence of random vectors and lat* andz™ be Gaussian

random vectors with covariance matrices

Cov(z") = %Xn: Cov(z;) < Cov(z"). (63)
i=1
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Let z andz be two independent Gaussian random vectorszindndz™ be two sequences of random
vectors each independent and identically distributedi(j.iasz and z, respectively. We have
h(z" +2") —h(x" +2"+2") <nh(Z" +2)—nh@ +2+2) (64)

<nh(@x* +2z)—nh(E* +2z+2). (65)

Proof: See Appendix C.
Lemma 4: [29, page 107] [30] Lek:,y andz be joint Gaussian vectors. If C@y) is invertible, then

x — y — z forms a Markov chain if and only if

Cov(z,z) = Cov(z,y) Cov(y) ' Cov(y,z2).

Using Lemma 4 we obtain the following lemma.
Lemma 5: Letz, u andwv be jointly Gaussian vectors, such thats independent ofs andv. Denote
Cov(z) = S, Cov(u) = S, and CoVu,v) = Sy,. If S, is invertible, thenx - Hz +u — Gz + v

forms a Markov chain if and only if

S.G' =S, H'S!S,,. (66)
Proof: See Appendix D.
I A
Lemma 6: T > 0 if and only if B = ATA. If B = 0, thenB = A'A if and only if
A" B

I>-AB AT
Proof: See Appendix E.
Lemma 7: If B is left-invertible (orBB is invertible) andA = B (BIB) ™ Cf, thenATA < T or
AA'" <Tif and only if B'B = CfC.
Proof: See Appendix F.
Lemma 8: [31, Theorem 5.2] Suppos& is nonsingular andM is positive definite. Then the matrix

equation
X+ WX'W =M
has a positive definite solutioK if and only if

radius(M‘§WM‘%> <

N =
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Using Lemma 8, we obtain necessary and sufficient condifiona pair of matrix equations to have
positive definite solutions.

Lemma 9: SupposeA; and A, are fixed, and is the identity matrix, the following matrix equations
¥ =1-A,3;'Al and (67)
3y =1- A, 3Al (68)

have positive definite solutions; > AIAl and X, >~ AgAg if and only if

radius(®;) < % i=12 (69)

where
B = (1 —AlA; - AQA;)_% Alal (T- Al - A2A;)_% and (70)
®, = (1- AA] - A£A2>_% Alal (1- Al - AlA,) 5 (72)

Proof: See Appendix G.

B. Proof of Theorem 1

The converse follows by giving receivérthe message not destined for it and applying the maximum-
entropy theory to show that Gaussian input distributiores @gtimal. To prove achievability, let; ~
CN (0,S1) andzy ~ CN (0,S5), and let userl transmit at rateR; = log I+H181HI , and user
2 transmit at rateR, = log |I +H4SQH£ . Inequality (4) guarantees that uskrcan first decodex,
by treatingz; as noise. After the interference is subtracted, useees a single-user Gaussian MIMO

channel. Therefore, the rate region (5) is achievable.

C. Proof of Theorem 2

Similarly to the proof of Theorem 1, the converse follows byigg each receiver the message not
destined for it and applying the maximum-entropy theory hove that Gaussian input distributions are
optimal. To prove the achievability, lat; ~ CN (0,S;) andzy ~ CN (0,S2), and let useil transmit at
rate R; = log |T+ H,S;H!|, and user transmit at rateR, = log |I + H,S,H},|. Inequalities (6) and
(7) guarantee that each user can first fully decode the @rente by treating the desired signals as noise.
After the interference is subtracted, each user sees asisgr Gaussian MIMO channel. Therefore, the

rate region (8) is achievable.
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D. Proof of Theorem 3 and Proposition 1

Suppose the channel is usedimes. The transmitted and received vector sequences amedeby
z7 andy? for useri, ¢ = 1,2, andz} satisfies (2).
Since ATA < I, from Lemma 6, there exists a Gaussian random veetarhose joint distribution
with z5 is
z I A
| ~cn | o, . (72)
n At I
Moreover, from (9),n is of the same dimension as hence has the same marginal distributionzas
Lete > 0 ande — 0 asn — 400, From Fano’s inequality, any achievable rates must satisfy
n(Ry + Ra) — ne
<I(z7;y7) +1(z5;93)
< I(z1;y7) + 1 (z3;y3, Hozs +n")
= h (Hiz! + Hoxyy + 27) — h (Hozhy + 27) + h (Hozy +n") — h (n")
+h (Ha} + 23 | ool +n") — h (25| n")
Y [ (@2 Haah + Hozl + 27) + h (Ll + 28 | Hozl +n") — h (23 | n")
(0)
< I(zV,25;Hiz] + Hozxh + 27) + nh (HaZ5 + 22 | HoZ5 +n) — nh (22| n)

O [ (@0, 22 ozl + Hoad + 20) + nh (Hu@s + 22| HoZ +n,55) — nh (22| n)

—

—

= I (27, z5; Hizt + Hoxy + 27)

< nlog ‘1 +H S H + stmg( , (73)

wherez] = [z;l,zb,...,z;nr andn” = [n{,n;,...,n;ﬁ T, 1 =1,2, and [z;j,nj.r, j=1,...,n,
are i.i.d. as (72).

Equality (a) is from the fact that and z; have the same marginal distribution. Inequality (b) is by
Lemma 2, and we lez; ~ CN (0,S;), i = 1,2. z} is independent o5 andy; is defined in (1) with

z; replaced byzx;. Equality (c) is from (9) which means
S,H = S, (H;AT + Bl ) = S,HIAT,

By Lemma 5,25 — Hyx5 +n — HuZ3 + 25 forms a Markov chain.
Therefore, (10) is an outer bound for the capacity region.ti@nother hand, (10) is also achievable

by requiring userl to decode messages from both users. Therefore, Theoremr8visdp
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If Hy is left-invertible, we can choose
-1
Al = H, (H;HQ) (Hj1 _Bf ) , (74)

so that (9) is satisfied. By Lemma AfA < I is equivalent to (12). Thus Proposition 1 is proved.

E. Proof of Theorem 4 and Proposition 2

Theorem 4 can be proved by using Theorem 3 twice. To prove aeced, we first remove the
interference link from transmittet to receiver2 and obtain a MIMO ZIC withH3 = 0. The capacity
region of the original MIMO IC is a subset of the capacity myif this MIMO ZIC because we are
effectively giving userl’s message to receivex. Theorem 3 gives the capacity region of this MIMO
ZIC with (14). Similarly, we remove the interference linlofn transmitter2 to receiverl and obtain a
MIMO ZIC with H, = 0. Theorem 3 gives the capacity region of this MIMO ZIC with Y13

Ry < log ‘1 + HlslHH
R, < log ‘1 n H4SQHL( . (75)
Ry + Ry < log ‘I + H3S Hf + H4SQHZ‘

Thus, the capacity region of the original MIMO IC is includedthe intersection of (10) and (75)
which is (15). On the other hand (15) is achievable by reggilioth receivers to decode messages from
both transmitters, and therefore (15) is the capacity regio

Proposition 2 is similarly proved as Proposition 1.

F. Proof of Theorem 5 and Propositions 4 and 5
SinceATA < I, from Lemma 6 there exists a Gaussian random vect@hose joint distribution with
Z9 is

z9 I A
~CN |0, : (76)
n Af 1

Moreover, (30) and (76) mean thatand z; have the same dimension and distribution.

From Fano’s inequality, any achievable rates must satisfy
n(Ry + Ra) — ne
<I(zV;y7) + 1 (x3;95)

< I (zV;y7) + I (z3;y5, Hoz +n")
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= h (Hiz! + Hozh + 27) — h (Hazh + 27) + h (Hazy +n") — h (n")

+h (Hyxl + 25 | Hoxd +n") — h (25| n™)
@ h (Hiz! 4+ Hozl + 27) — h (n™) + h (Hyzh + 25 | Hozh +n") — h (25 | n™)

(b)
nh (Hlfff + Hgfiz + 21) —nh (n) + nh (H4{E§ + 29 | HQ(E; + n) —nh (22 | n) (77)

=nh (H12] + HoZ5 + 21) — nh (n) + nh (HaZ5 + 22) + nh (HoZ) +n | HaZi + 22)
—nh (Ha2Z5 +n) — nh (22| n)

9 b (H2% + Hol + 21) — nh (n) + nh (Hu@h + 22) + nh (Hoz + n | Ha@l + 20, 25)
—nh (HaZ5 +n) —nh (22| n)

D b (HE + HoZl 1 21) — nh (n) + nh (HyE + 22) +nh (n] 22) — nh (Hos + 21) — nh (22| n)

= nh (H1Z] + Hox5 + 21) — nh (HaZ5 + 21) + nh (HyZ5 + 22) — nh (z2)

=nlog

-1
I+H,S H! <I+HQS2H;) '+nlog(I+H482Hjl : (78)

T .. . s
wheren” = [ni,n; ... ,nIL] , and then; are i.i.d. Gaussian vectors distributed as (76).
Equalities (a) and (d) are both from the fact thaindz; have the same marginal distribution. Inequality
(b) is from Lemma 2, and we letf ~ CN (0,S;), i = 1,2. Z] is independent o} andy; is defined

in (1) with z; replaced byz;. Equality (c) is from (30) which means
SoH) = SoHIA.

By Lemma 5,25 — Hx5 + 20 — Hyx; + n forms a Markov chain.
Since (31) is achievable, the sum-rate capacity is (31)0) (®lds. Therefore, Theorem 5 is proved.

WhenH, is left-invertible, we can choose
-1
A-w, (HH,) (B -BY). (79)

Then (30) is satisfied. By Lemma AfA < I is equivalent to (32), therefore Proposition 4 is proved.

Proposition 5 is proved in a similar way as Theorem 5. £et- CN <O,§Z~), 1 =1,2, where

~ 1 &
S == Y
= Z Cov(z;j) (80)
7j=1
From Fano’s inequality, we have
n(Ry + Ra) — ne
< I (z1;y7) +1(z3;y3, Hozg +n")
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= h (Hi2" + Hozhy + 27) — h(n") + h (Hyzhy + 25 | Hozhy +n™) — h (25 | n™)

(a) R N R N
< nh (H1Z; + HoZy + 21) — nh (n) + nh (HyZs + 29 | HoZo +n) —nh (22| n)

© (H1z1 + HoZs + 21) — nh (n) + nh (HyZs + 22) + nh (HoZo + n | HaZo + 22,22)
—nh (HoZy +n) —nh (22| n)

= nh (H1Z1 + HoZs + 21) — nh (HaZs +n) + nh (HyZy + 22) — nh(23)

1+H,SH (I + H2§2H;> B

— log +log ‘1 + H,S,H]| (81)

where (a) is from Lemma 2; and (b) is from (33) which megal‘sl; = §2HZA and thus by Lemma 5,

Ty — HyZo + 2o — HoZs +n forms a Markov chain.

G. Proof of Theorem 6 and Proposition 6

Since there exist; and X, which satisfy (35) and (36), by Lemma 6, there exist two randectors

n, andn, whose joint distributions witlz; andz, are

zZ; I Ai
~CN |0, . i=1,2. (82)

)

Furthermore, from (35) and (36) we have

Cov(n;) < Cov(zz| ny) and (83)
Cov(ny) X Cov(zy | ny). (84)

From Fano’s inequality, any achievable sum r&te+ R, must satisfy

n(Ry + R2) — ne

< I(2;y7) + 1 (23:93)

< I (zi;97, Hszl +ny) + 1 (z3;y3, Howy +n3)

= h(Hsz! +nf) — h(ny) + h(y7 | Hsxy +n7) — h (Hoxy + 27 | n)') + b (Hozh +ny) — h(ng)

+h (y3 | Hoxy +ny) — h (Hsat + 25 | ny), (85)

T . . o .
wheren? = |nf  ,nl,, ... ,njn] , and then, ; are i.i.d. Gaussian vectors distributed as (82). Swagcg

is independent of; , andz, ; is independent oy, for any j # k, from (83) we have

Cov(n]) = Cov(zy | ny). (86)
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By Lemma 3 we have

h (Hzz? +n) — h (Hsz + 25 | n5 ) < nh (Hsz] +n1) — nh (H3Z] + 22| n2), (87)
wherez; ~ CN (0,S;). Similarly, we have

h (Hozhy +ny) — h (Hoxh + 27 | nT') < nh (HoZ5 +n2) — nh (HoZi + 21| ny ), (88)

wherez; ~ CN (0, Ss).
By Lemma 2 we have
h(y} | Hsz! +n}) <nh(y]| Hsz] +n;) and (89)
h(yy | Hozy +ny) < nh(y; | HaZs +n2), (90)
wherey; is defined in (1) withe;, j = 1,2, replaced byz;.
On substituting (87)-(90) into (85) we have
Ri+ Ry — ¢
< h(HsZ] +n1) — h(n) + h (g7 | HsZy +n1) — h (HoZs + 21| na)
+h (HoZi +m2) — h(n2) + h(y3 | Hos +n2) — h (H3Z] + 22| no)
=1 (21;91, HsZ] +ny) + I (Z3; 93, HoZs + o)
@ @) + 1 @5,

= log

f £
I+ H;S H (1+ H,S,H]) ' +log

f !
I+ H,S,H] (1+ HyS HY) ‘ (91)

where (a) is from (37), (38) and Lemma 5 sineg — y; — H3x] +ny andz; — y5 — HoZ3 + no
form two Markov chains.

On the other hand (91) is achievable by treating interfezexxcnoise, and therefore (91) is the sum-rate
capacity.

Proposition 6 is straightforward from Theorem 6.

H. Proof of Proposition 7 and Proposition 8

Since matriced\; and A, satisfy (42), by Lemma 9 there exist two Hermitian positiedinite matrices

31 and X, that satisfy
AfA; <% =1—-A,5;'Al and (92)
AlAy <3 =1— A 371ATL (93)
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Thus, we see (35) and (36) are satisfied. Since (37) and (883atisfied by hypothesis, Proposition 7
follows by Theorem 6.

Proposition 8 is straightforward from Proposition 7.

I. Proof of Theorem 7 and Propositions 9 and 10

The achievability part is straightforward by letting usefirst decode the message from ugeand
then decode its own message, and by letting Usieat signals from user as noise. Then usdrand

user2 have the respective rates

i £
log |1+ H, S H (1 -+ H,S,HY)
R = min 4 and
log [T+ H381H£ (I + H4SQHZ>

Ry = log T + H4SQHH .

Therefore, the sum rate (47) is achievable.

To prove the converse, we first &l = 0. By using (45) and Theorem 3, the sum rate satisfies

log ‘1 + H3S H] + H4SQH1‘

Ry + Ry < min (94)
log ‘I + H1SlHJ{‘ + log [T+ H4SQH;E‘
Alternatively, we letHs; = 0. By using (46) and Theorem 5, the sum rate also satisfies
—1
R+ Re <log|I+ H181HI (I + H282H£> + log ‘I + H4SQHH . (95)
Combining (94) and (95), we have
log [T+ HyS  HJ, + HLS,H]|
-1

Ry + Ry < min { log [T+ S H| (T+ H,S,H}) ' +log (I + H4SQHH . (96)

log ‘I + H1SlHJ{‘ + log ‘I + H4SQH;E‘
We complete the proof by pointing out that the last line of)(B6redundant because of the second line.
Proposition 9 is similarly proved by Propositions 1 and 4ogesition 10 is similarly proved by

Propositions 3 and 5.

J. Proof of Theorem 8

The proof of Theorem 8 follows that of Theorem 5. The boundrbfem (53) is derived from (77) by
assuminge; ~ CN (0, §i), i = 1,2. Following similar steps as in (78), one can verify that thengate

capacity is (57) if (54) is satisfied.
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APPENDIX
A. Proof of Lemma 1

Let z7 o be a Gaussian vector with covariance matrix (Ggy). We have

k

(@) &
Z/\ (Tis|ziT) < Z ;s |l T)

i=1

. .
_ ‘COV (mi’SUT> ‘ Yoo L])
; A log ( ‘COV <ij) ‘ (me)
(S )
= h(ysl yr), (97)

where inequality (a) is from [28, Lemma 2], and inequality i from [32, Theorem 17.10.1].

B. Proof of Lemma 2

The first inequalities of (61) and (62) are straightforwanahi Lemma 1. It suffices to prove the second

inequality of (62). Since (60) holds, we can define two rand@ttorsu andv that are joint Gaussian,
independent of™ andy™, and satisfy

64

h@ |z*) = h(y" 2" uv) =h(y" |z"). (99)

Therefore,

C. Proof of Lemma 3
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(b)
< -—nh(Z)+nh(Z|Z"+2+2)

=nh(@x +2z)—nh@ +2z+2), (100)

where (a) is from [33, Lemma 11.2], anef” is a Gaussian vector sequence that has the same covariance

matrix asz™. Inequality (b) is from Lemma 2. Alternatively, we can usemma 2 to bound (100) as
nh(Zx* +2z) —nh (@ +2z+2)
=-—nh(z)+nh(z|2"+2+2%)
< —nh(Z)+nh(Z| 2 +2+%)

=nh(Z +2)—nh@ +2+3). (101)

D. Proof of Lemma 5

Let the eigenvalue decomposition 8f, be
S. = QAQT, (102)
whereQ is a unitary matrix and\ is a diagonal matrix with strictly positive diagonal elernserSince
Cov(z,y) Cov(y) ' Cov(y,z) = Cov(z, Ay) Cov(Ay) ' Cov(Ay, z) (103)

for any invertible matrixA, we chooseA = A‘éQ and therw — Hz + u — Gz + v forms a Markov

chain if and only ifz — Hz + 4 — Gz + v forms a Markov chain, where
H=A:QH and (104)
@=A":Qu,
and we have
Cov(u)=1 and
Cov(@,v) = A 2QSup 2 Sy (105)
By Lemma 4,2 — Hzx + & — Gz +v forms a Markov chain if and only if
S,G! = s, H' (1+ ﬁsxﬁT)_l (AS.G' +8.,)

(a) !

s, (1478, f8,61 + 8,0 (14 88,107 S,
9 g, { - (I+ﬁ*ﬁsz>_l] Gl 48,8 (T+HS,H') S,
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=8,G' -8, (1+ IJITIEISJ;)_1 G+ 8,0 (T+ Iﬁlsxlﬁﬂ)_1 Suv

Ys.al - (1+ SxfITﬁ)_l (s.G! - s,H1S,,)

©s,Gf - (1+s.1 ﬁ)_l (5.6 - s,H's S, (106)
where (a) is from the matrix inverse identity [34, page 151]

A(I+BA)'B=1—(I1+AB)'.
Equality (b) is from the matrix inverse identity [34, pagell5

A(I+BA) ' =(I+AB) A,

Equality (c) is from (102), (104) and (105). We complete thegb by pointing out that (106) is equivalent
to (66).

E. Proof of Lemma 6

Let z be a vector with dimension equal to the number of row\ofandy be a vector with dimension

equal to the number of columns &. We haveB > AfA so thaty'By > y'ATAy and

.I>
I A

At B

x Zz

=z’ +y'ATz + 2TAy + 3By

Y ()

>zlz +y'Alz +2TAy +yTATAy

= (Ay+2)" (Ay + )

> 0.
- . 1
Therefore, sufficiency is proved. On the other hand, if = 0, we have
At B
.I>
T I Al |z
—zlz+y'Afz + 2TAy + yBy > 0. (207)
y| |AT B| |y

We chooser = — Ay and substitute it into (107), then we have

y' (B — A*A) y > 0. (108)

Therefore B = ATA.
If B> 0, thenB > ATA is equivalent to

ogyT<B—ATA)y
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_ B} (1 _ B—aATAB—z) By
=3 (1-B:AlAB %) g, (109)
where
B: = UA:U' and
§ =By,
and
B = UAU'

is the eigenvalue decomposition Bfwith U being a unitary matrix and being a diagonal matrix with

strictly positive diagonal elements. Singecan be any vector, (109) means
I-B :ATAB™ 2.
Suppose that the singular value decompositioﬂB(jﬁAT is

. 0
B :AT=P Qf
0 0

where bothP and Q are unitary matrices an is a diagonal matrix with strictly positive diagonal

elements. Then we have

, . >0
B :ATAB™: =P P! and
0 0
i s > 0
AB:BzAT=Q Q.
0 0

1

Therefore,I > B :AtAB~: if and only if I = 3 which is also the necessary and sufficient condition
for 1= AB 3B :Af = AB!Af.

F. Proof of Lemma 7

LetA =B (BTB)_1 C' and suppose that the singular value decompositioB i

B=U v, (110)
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where bothU and V are unitary matrices, anBl is a diagonal matrix with strictly positive diagonal

elements. Suppose further that
I>-ATA
- c(B'B) el
= Ccvz2vich. (111)
Lemma 6 implies thaX X < I if and only if XX < I, therefore (111) is equivalent to
I-3x"'vicicve!, (112)
i.e., for any vectorr we have
0<al (1-27'viclcvs)s
= zfe-1vi <V22VT - CTC> VElg
—y (BTB - clo)y, (113)

where the last line is from (110), and we defipe- VX ~'2. Sincez can be any vector an®E~'VT is

invertible,y can also be any vector. Therefore, (113) proves Lemma 7.

G. Proof of Lemma 9

From (68) and the Woodbury matrix identity [35]:
—1 -1
<E + CBCT) —E'-E"!C (B—1 + CTE—lc) CiE,
we have
1 FaA ) Al
Sl =1- Ay (-21 +AlA) Al (114)

Substituting (114) into (67) we have

T =T AAL+ Az, (Al - 3)) U ATAL (115)
Define
X, =%, — AlA, (116)
M; =1—ATA; — A,Al, (117)
My =1—A;Al — AlA,, (118)

October 24, 2018 DRAFT



31

W, = AlAl and (119)

W, = AJAT (120)
On substituting (116)-(119) into (115), we have the follogrimatrix equation:

X, + WIX['W, = M. (121)

Equation (121) is a special case of a discrete algebraicttRaguation [31]. From Lemma 8, withvI;
Hermitian and positive definite, (121) has a positive dedisiblutionX; (i.e., 31 > A}Al) if and only
if
radius(Ml_%WlMl_%) = radius(®;) < %
Similarly, applying the Woodbury matrix identity to inve¥y in (67) and substituting the result into
(68), we obtain

Xy + WIX5'Wy = My, (122)
where
X, =X, — AlA,.
Matrix equation (122) has a positive definite soluti®n (i.e., 3o > AEAQ) if and only if

] _1 _1 ) 1
radlus<M2 2W,M, 2) = radius(®;) < 3
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