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Capacity Regions and Sum-Rate Capacities of

Vector Gaussian Interference Channels
Xiaohu Shang, Biao Chen, Gerhard Kramer and H. Vincent Poor

Abstract

The capacity regions of vector, or multiple-input multiple-output, Gaussian interference channels

are established for very strong interference and aligned strong interference. Furthermore, the sum-rate

capacities are established for Z interference, noisy interference, and mixed (aligned weak/intermediate

and aligned strong) interference. These results generalize known results for scalar Gaussian interference

channels.

I. INTRODUCTION

The interference channel (IC) models the situation in whichtransmitters communicate with their

respective receivers while generating interference to allother receivers. This channel model was mentioned

in [1, Section 14] and its capacity region is still generallyunknown.

In [2] Carleial showed that interference does not reduce capacity when it is very strong. This result

follows because the interference can be decoded and subtracted at each receiver before decoding the

desired message. Later Han and Kobayashi [3] and Sato [4] showed that the capacity region of the strong

interference channel is the same as the capacity region of a compound multiple access channel. In these

cases, the interference is fully decoded at both receivers.
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Fig. 1. The two-user MIMO IC.

When the interference is not strong, the capacity region is unknown. The best inner bound is by Han

and Kobayashi [3], which was later simplified by Chonget al. in [5] and [6]. Etkin et al. and Telatar

and Tse showed that Han and Kobayashi’s inner bound is withinone bit of the capacity region for scalar

Gaussian ICs [7] and [8]. Various outer bounds have been developed in [7]–[12].

Special ICs such as the degraded IC and the Z interference channel (ZIC) were studied in [13] and [14].

Costa proved that the capacity regions of degraded ICs and ZICs are the same for the scalar Gaussian

case [14]. The sum-rate capacity for the ZIC was establishedin [13] and [15]. A recent result in [10]–[12]

showed that if a two-user Gaussian scalar IC has noisy interference, then treating interference as noise

can achieve the sum-rate capacity. This result has been extended to multi-user Gaussian ICs in [16] and

[12]. The sum-rate capacity for mixed interference, i.e., one receiver has strong interference and the other

has weak/intermediate interference, was derived in [11] and [17].

In this paper, we study the capacity of the two-user Gaussianvector IC or multiple-input multiple-output

(MIMO) IC. As shown in Fig. 1, the received signals are definedas

yyy1 = H1xxx1 +H2xxx2 + zzz1 and

yyy2 = H3xxx1 +H4xxx4 + zzz2, (1)

wherexxxi, i = 1, 2, is the transmitted (column) vector signal of useri which is subject to the average

covariance matrix constraint
n∑

j=1

E
[
xxxijxxx

†
ij

]
� nSi, (2)

wherexxxi1,xxxi2, . . . ,xxxin, is the transmitted vector sequence of useri, andSi is a fixed positive semi-

definite matrix. InequalityA � B means thatA−B is Hermitian positive semi-definite. The noisezzzi is

a circularly symmetric complex Gaussian random vector withzero mean and identity covariance matrix;
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andHk, j = 1, . . . , 4, are the complex channel matrices known at both the transmitters and receivers.

Transmitteri hasti antennas and receiveri hasri antennas.

For the MIMO IC, Telatar and Tse [8] showed that Han and Kobayashi’s region is within one bit

per receive antenna of the capacity region. Some outer bounds for the capacity region were discussed

in [18] and some lower bounds for the sum-rate capacity basedon Han and Kobayashi’s region were

given in [19]. Recent work in [20] and [21] extended the existing capacity results from scalar ICs to

MIMO ICs under average power constraints. Specifically, [20] and [21] derived the capacity region for

aligned strong interference, and the sum-rate capacity forZ interference, noisy interference and mixed

interference under average power constraints. It should benoted that some of the results in [20] and [21]

require the channel matrices to be square and invertible, and the noisy-interference sum-rate capacity is

obtained by requiringall possible covariance matrices ofxxx1 andxxx2 to satisfy a condition. A partially

strengthened noisy interference condition for MIMO ICs waslater presented in [22] which required only

that the optimizing covariance matrices ofxxx1 andxxx2 satisfy the condition of [20] and [21], as long as these

optimizing covariance matrices have full rank (see [22, Remarks 2 and 3 and Theorem 1]). A special case

of the MIMO IC, the so-called parallel Gaussian IC where theHi’s are all square and diagonal matrices,

was studied in [23] and [24], and it was shown that under suitable conditions for channel matrices

and the power constraints, separate coding among antennas (or the transmit vector entries) and treating

interference as noise achieves the sum-rate capacity. In addition, the optimal covariance matrices can be

singular for this special case. Using the result of [25] thatbeamforming is optimal for the single-user

detection rate region of the multiple-input single-output(MISO) IC, [22] derived noisy-interference sum-

rate capacities for symmetric MISO ICs, i.e., theHj, j = 1, · · · , 4, are all row vectors withH1 = H4,

H2 = H3 and the two users have identical power constraints.

In this paper, we use the covariance matrix constraint (2) and derive the sum-rate capacity of the MIMO

IC with noisy interference, mixed aligned interference, aswell as one-sided interference. The capacity

regions of the MIMO IC with very strong interference and aligned strong interference are also obtained.

For all the results,Si, i = 1, 2, can be any positive semi-definite matrix, and the channel matricesHj,

j = 1, · · · , 4, can be singular or non-square unless otherwise specified.

The rest of the paper is organized as follows: we present our main results and numerical examples in

Sections II and III, and the proofs of the main results are given in Section IV.

Before proceeding, we introduce some notation that will be used in the paper.

• Italic letters (e.g.X) denote scalars; and bold lettersxxx andX denote column vectors and matrices,

respectively.
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• I denotes the identity matrix and0 denotes the all-zero matrix.

• |X|, X† andX−1 denote respectively the determinant, conjugate transpose, and inverse of the matrix

X, and‖xxx‖ denotes the Euclidean vector norm ofxxx.

• radius(X) is the numerical radius [26, p.g. 321] of the square matrixX, and is defined as

radius(X) = max
α†α≤1

abs
(
α

†Xα

)
,

whereα is a complex vector, andabs(·) denotes the absolute value.

• xxxn =
[
xxx
†
1,xxx

†
2, . . . ,xxx

†
n

]†
is a long vector which consists of a sequence of vectorsxxxi, i = 1, . . . , n.

• xxx ∼ CN (0,Σ) means that the random vectorxxx has the circularly symmetric complex Gaussian

distribution with zero mean and covariance matrixΣ.

• E[·] denotes expectation; Cov(·) denotes covariance matrix;I(·; ·) denotes mutual information;h(·)
denotes differential entropy with the logarithm basee, and log(·) = loge(·).

II. M AIN RESULTS

In this section, we give the capacity regions for MIMO ICs under very strong interference and aligned

strong interference, and the sum-rate capacities for MIMO ICs under Z interference, noisy interference

and mixed interference.

For economy of notation, we introduce a set of matrices

Bi =
{
B

∣∣∣all columns ofB† are in the null space ofSi

}
, i = 1, 2, (3)

i.e., each column ofB† is either a zero vector, or an eigenvector of the covariance matrix constraint

Si associated with the zero eigenvalue (ifSi has one). This condition is equivalent to the condition

SiB
† = 0.

A. Capacity region of MIMO IC under very strong interference

We begin with the result for the MIMO ZIC (MIMO IC with one-sided interference) with very strong

interference.

Theorem 1: For the MIMO IC defined in (1) withH3 = 0, if

log
∣∣∣I+H1S1H

†
1 +H2S2H

†
2

∣∣∣− log
∣∣∣I+H1S1H

†
1

∣∣∣ ≥ log
∣∣∣I+H4S2H

†
4

∣∣∣ , (4)

then the capacity region of the MIMO IC is

{
(R1, R2) : 0 ≤ R1 ≤ log

∣∣∣I+H1S1H
†
1

∣∣∣ , 0 ≤ R2 ≤ log
∣∣∣I+H4S2H

†
4

∣∣∣
}
, (5)
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whereS1 andS2 are the respective covariance matrix constraints defined in(2).

We say that a MIMO ZIC hasvery strong interference if (4) is satisfied. In this case the interference

does not reduce the capacity region. Theorem 1 can be easily extended to obtain the capacity region for

a two-sided MIMO IC under very strong interference.

Theorem 2: For the MIMO IC defined in (1) andH2 6= 0 andH3 6= 0, if

log
∣∣∣I+H1S1H

†
1 +H2S2H

†
2

∣∣∣− log
∣∣∣I+H1S1H

†
1

∣∣∣ ≥ log
∣∣∣I+H4S2H

†
4

∣∣∣ (6)

log
∣∣∣I+H3S1H

†
3 +H4S2H

†
4

∣∣∣− log
∣∣∣I+H4S2H

†
4

∣∣∣ ≥ log
∣∣∣I+H1S1H

†
1

∣∣∣ , (7)

then the capacity region of the MIMO IC is

{
(R1, R2) : 0 ≤ R1 ≤ log

∣∣∣I+H1S1H
†
1

∣∣∣ , 0 ≤ R2 ≤ log
∣∣∣I+H4S2H

†
4

∣∣∣
}
, (8)

whereS1 andS2 are the respective covariance matrix constraints defined in(2).

Inequalities (6) and (7) are thevery strong interference conditions for a two-sided MIMO IC, which

means that when both users transmit at the maximum rate, bothreceivers can first decode the interference

by treating the desired signal as noise, i.e., we have

I (xxx∗2;yyy
∗
1) ≥ I (xxx∗2;yyy

∗
2 | xxx∗1 ) and

I (xxx∗1;yyy
∗
2) ≥ I (xxx∗1;yyy

∗
1 | xxx∗2 ) ,

wherexxx∗i ∼ CN (0,Si) andyyy∗i is defined in (1) withxxxi replaced byxxx∗i , i = 1, 2. As with the scalar

Gaussian IC where the notion of very strong interference depends on both the channel coefficients and

power constraints, for the MIMO IC our definition of very strong interference involves both the channel

matrices and the covariance matrix constraints. LetH1 = H4 = 1, H2 =
√
a, H3 =

√
b, S1 = P1 and

S2 = P2, then (6) and (7) becomea ≥ 1 + P1 and b ≥ 1 + P2, respectively. Therefore, Theorem 2

generalizes the capacity region for scalar Gaussian ICs under very strong interference [2].

We remark that an alternative definition of MIMO with very strong interference is to use the power

constraints instead of the the covariance matrix constraints. The conditions as well the corresponding

capacity region have the same expression as that of Theorem 2except thatS1 andS2 are now replaced

with the waterfilling covariance matrices for the two intended links in the absence of interference. This

alternative definition gives a capacity region that is a superset of that defined using the covariance matrix

constraints with the trace of the covariance matrices beingequal to the power constraints. This alternative

definition also includes the scalar Gaussian ICs under very strong interference as its special case.
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B. Capacity region of MIMO IC under aligned strong interference

We begin with the result for the MIMO ZIC under aligned stronginterference.

Theorem 3: For the MIMO IC defined in (1) withH3 = 0, if there exist matricesA andB such that

H4 = AH2 +B, (9)

whereA†A � I andB ∈ B2, then the capacity region of the MIMO IC is




0 ≤ R1 ≤ log
∣∣∣I+H1S1H

†
1

∣∣∣

0 ≤ R2 ≤ log
∣∣∣I+H4S2H

†
4

∣∣∣

R1 +R2 ≤ log
∣∣∣I+H1S1H

†
1 +H2S2H

†
2

∣∣∣





, (10)

whereS1 andS2 are the respective covariance matrix constraints defined in(2).

Theorem 3 gives the capacity region of a MIMO ZIC underaligned strong interference. If S2 is

singular, then (9) means that all the columns ofH
†
4−H

†
2A

† are either zero vectors or the eigenvectors of

S2 associated with eigenvalue0. If S2 is nonsingular, thenH4 = AH2, i.e.,H4 is a linear transformation

of H2. Therefore, users1 and 2 seexxx2 in the forms ofH2xxx2 andAH2xxx2, respectively. IfA†A � I,

then user 1 can decodexxx2 if user 2 can.

The following is a special case of Theorem 3 where we can choose A explicitly as

A = (H4 −B)
(
H

†
2H2

)−1
H

†
2. (11)

Proposition 1: For the MIMO IC defined in (1) withH3 = 0, if H2 is left-invertible, i.e., has full

column rank, and there existsB ∈ B2 such that

H
†
2H2 � (H4 −B)† (H4 −B) , (12)

then the capacity region of the MIMO IC is given by (10).

By choosingBi = 0, (12) becomesH†
2H2 � H

†
4H4, which is related only toH2 andH4 and directly

mimics that of the scalar Gaussian IC.

Using Theorem 3, we obtain the capacity region for the two-sided MIMO IC under aligned strong

interference.

Theorem 4: For the MIMO IC defined in (1), if there exist matricesA1, A2, B1 andB2 such that

H1 = A1H3 +B1 and (13)

H4 = A2H2 +B2, (14)

October 24, 2018 DRAFT
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whereA†
iAi � I andBi ∈ Bi, i = 1, 2, then the capacity region of the MIMO IC is





0 ≤ R1 ≤ log
∣∣∣I+H1S1H

†
1

∣∣∣

0 ≤ R2 ≤ log
∣∣∣I+H4S2H

†
4

∣∣∣

R1 +R2 ≤ log
∣∣∣I+H1S1H

†
1 +H2S2H

†
2

∣∣∣

R1 +R2 ≤ log
∣∣∣I+H3S1H

†
3 +H4S2H

†
4

∣∣∣





, (15)

whereS1 andS2 are the respective covariance matrix constraints defined in(2).

Similarly to Proposition 1, we have the following proposition.

Proposition 2: For the MIMO IC defined in (1), and where the channel matricesH2 andH3 are both

left-invertible, if there existBi ∈ Bi, i = 1, 2, such that

H
†
2H2 � (H4 −B2)

† (H4 −B2) and (16)

H
†
3H3 � (H1 −B1)

† (H1 −B1) , (17)

then the capacity region of the MIMO IC is given by (15).

Obviously, Proposition 2 generalizes the capacity region of the scalar Gaussian ICs under strong

interference. Furthermore, Proposition 2 also generalizes the result of [18] for single-input multiple-

output (SIMO) ICs under strong interference. In this case,H2 andH3 are both non-zero column vectors,

and hence are left-invertible. Therefore, (16) and (17) becomeH
†
2H2 � H

†
4H4 and H

†
3H3 � H

†
1H1

which are the same as‖H2‖ ≥ ‖H4‖ and‖H3‖ ≥ ‖H1‖.

Let B1 = B2 = 0 and assume that there existA1 andA2 satisfying (13) and (14). We can verify

Theorem 4 in a way similar to that done in [3] and [4] for scalarGaussian ICs under strong interference.

Assuming the rate pair(R1, R2) is achievable, thenxxx1 andxxx2 can be reliably recovered at user1 and

user2, respectively. After subtractingxxx1 from yyy1, user1 obtains

yyy′1 = H2xxx2 + zzz1. (18)

We can pre-multiplyyyy′1 by A2 and get

yyy′′1 = A2H2xxx2 +A2zzz1

= H4xxx2 +A2zzz1. (19)

Sincexxx1 is recovered at user1, we can addH3xxx1 to (19). Thus user1 can eventually compute

yyy′′′1 = H3xxx1 +H4xxx2 +A2zzz1. (20)

October 24, 2018 DRAFT
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If A
†
2A2 � I, by Lemma 6 we haveA2A

†
2 � I and the received signal at user2 can be written as

yyy2 = H3xxx1 +H4xxx2 + zzz2

= yyy′′′1 +www, (21)

wherewww ∼ CN
(
0, I −A2A

†
2

)
, andwww is independent of all other random vectors. Sincexxx2 can be

recovered fromyyy2, xxx2 can also be recovered fromyyy′′′1 . Thus, user1 can decode bothxxx1 andxxx2. Similarly,

user2 can also decode bothxxx1 andxxx2. Therefore, the MIMO IC is now a compound MIMO multiple-

access channel, whose capacity region coincides with (15) [27]. The above development imposes no

structure onxxxi, i = 1, 2. Therefore, as long as the input signalxxxi (which can be non-Gaussian with

arbitrary covariance matrix) can be decoded by its desired receiver, it can also be decoded by the other

receiver. This result applies to MIMO ICs under a variety of power constraints, for example, peak power

constraints, average power constraints and per-antenna power constraints. We state this formally in the

following proposition.

Proposition 3: For the MIMO IC defined in (1) with expected per-symbol power constraints, or

expected block power constraints, or per-antenna expectedblock power constraints, if there exist matrices

Ai, i = 1, 2, such thatA†
iAi � I and

H1 = A1H3 and (22)

H4 = A2H2, (23)

then the capacity region of the MIMO IC is

⋃

(bS1,bS2)∈P





0 ≤ R1 ≤ log
∣∣∣I+H1Ŝ1H

†
1

∣∣∣

0 ≤ R2 ≤ log
∣∣∣I+H4Ŝ2H

†
4

∣∣∣

R1 +R2 ≤ log
∣∣∣I+H1Ŝ1H

†
1 +H2Ŝ2H

†
2

∣∣∣

R1 +R2 ≤ log
∣∣∣I+H3Ŝ1H

†
3 +H4Ŝ2H

†
4

∣∣∣





, (24)

whereP denotes the specified power constraints.

For this result, we say that there is anexpected per-symbol power constraint, anexpected block power

constraint, and aper-antenna expected block power constraint, respectively, if the following conditions

must be satisfied:

tr
(
E
[
xxxijxxx

†
ij

])
≤ Pi, j = 1, · · · , n, (25)

n∑

j=1

tr
(
E
[
xxxijxxx

†
ij

])
≤ nPi or (26)

October 24, 2018 DRAFT
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n∑

j=1

(
E
[
xxxijxxx

†
ij

])
k
≤ nPik, (27)

where(·)k denotes thekth diagonal element of a square matrix, andPik is the power constraint for the

kth antenna of useri.

Theorem 4 has relaxed conditions on the channel matrices as compared to Proposition 3. The extra

termBi in Theorem 4 results from the covariance matrix constraintSi. Suppose (13) and (14) hold and

the input signal of useri is xxx∗i ∼ CN (0,Si). From Theorem 4,xxx∗i achieves the capacity. Applying the

same procedure in (18)-(20) toyyy1, we obtain the counterpart of (19)

ȳyy′′ = A2H2xxx
∗
2 +A2zzz1

= (A2H2 +B2)xxx
∗
2 +A2zzz1

= H4xxx
∗
2 +A2zzz1, (28)

where the second equality holds since

Cov(B2xxx
∗
2) = B2S2B

†
2 = 0, (29)

and henceB2xxx
∗
2 = 0. Therefore,yyy2 can also be written as (21).

The difference between Proposition 3 and Theorem 4 is that (22) and (23) ensure thatxxxi can be reliably

decoded at both receivers as long as it can be decoded at the desired receiver, while (13) and (14) ensure

that the capacity-achievingxxx∗i can be reliably decoded at both receivers.

C. Sum-rate capacity of MIMO IC under noisy interference

In [10], we say that an IC hasnoisy interference when treating interference as noise achieves the

sum-rate capacity. In this section, we present the sum-ratecapacity results for MIMO ICs that have noisy

interference.

Theorem 5: For the MIMO IC defined in (1) withH3 = 0, if there exist matricesA andB that satisfy

H2 = A†H4 +B, (30)

whereA†A � I andB ∈ B2, then the sum-rate capacity of the MIMO IC is

log

∣∣∣∣I+H1S1H
†
1

(
I+H2S2H

†
2

)−1
∣∣∣∣+ log

∣∣∣I+H4S2H
†
4

∣∣∣ , (31)

whereS1 andS2 are the respective covariance matrix constraints defined in(2).

Similarly to Proposition 1, we obtain the following result.
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Proposition 4: For the MIMO IC defined in (1) withH3 = 0, if H4 is left-invertible and there exists

B ∈ B2 such that

H
†
4H4 � (H2 −B)† (H2 −B) , (32)

then the sum-rate capacity of the MIMO IC is given by (31).

Theorem 5 gives the noisy-interference sum-rate capacity of a MIMO ZIC. Specifically, when (30)

is satisfied, the sum-rate capacity can be achieved by treating interference as noise. Consider a scalar

Gaussian IC whereH1 = H4 = 1, H2 =
√
a andH3 = 0. Equation (30) is0 ≤ a ≤ 1. Therefore,

Theorem 5 includes the scalar Gaussian ZIC noisy-interference sum-rate capacity as a special case1.

For a SIMO IC whereH1, H3 and H4 are all nonzero column vectors, Proposition 4 shows that if

‖H2‖ ≤ ‖H4‖, the sum-rate capacity is achieved by treating interference as noise.

Similarly to Proposition 3, if we chooseB = 0 in (30), then Theorem 5 can be extended for different

power constraints. We state this formally in the following proposition.

Proposition 5: For the MIMO IC defined in (1) with expected per-symbol power constraints, or

expected block power constraints, or per-antenna expectedblock power constraints, ifH3 = 0 and

there exists a matrixA such thatA†A � I and

H2 = A†H4, (33)

then the sum-rate capacity is

max
(bS1,bS2)∈P

(
log

∣∣∣∣I+H1Ŝ1H
†
1

(
I+H2Ŝ2H

†
2

)−1
∣∣∣∣+ log

∣∣∣I+H4Ŝ2H
†
4

∣∣∣
)
, (34)

whereP denotes the specified power constraints.

Next, we give the noisy-interference sum-rate capacity of atwo-sided MIMO IC. Note that this result

does not requireS1 or S2 to have full rank (see [22] and Example 4 below).

Theorem 6: For the MIMO IC defined in (1), if there exist matricesAi, Bi ∈ Bi, and Hermitian

positive definite matricesΣi, i = 1, 2, such that

A
†
1A1 � Σ1 � I−A2Σ

−1
2 A

†
2, (35)

A
†
2A2 � Σ2 � I−A1Σ

−1
1 A

†
1, (36)

H3 = A
†
1

(
H2S2H

†
2 + I

)−1
H1 +B1 and (37)

1The case witha < 1 is often referred to as ZIC with weak interference in the literature. We use the term noisy-interference

simply because of the fact that treating interference as noise achieves the sum-rate capacity.
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H2 = A
†
2

(
H3S1H

†
3 + I

)−1
H4 +B2, (38)

then the sum-rate capacity of the MIMO IC is

log

∣∣∣∣I+H1S1H
†
1

(
I+H2S2H

†
2

)−1
∣∣∣∣+ log

∣∣∣∣I+H4S2H
†
4

(
I+H3S1H

†
3

)−1
∣∣∣∣ , (39)

whereS1 andS2 are the respective covariance matrix constraints defined in(2).

Theorem 6 gives sufficient conditions for the MIMO IC under which treating interference as noise

achieves the sum-rate capacity. In the case where bothH1 and H4 are left-invertible, the following

conditions are sufficient for (37) and (38):

A1 =
(
I+H2S2H

†
2

)
H1

(
H

†
1H1

)−1 (
H

†
3 −B

†
1

)
and (40)

A2 =
(
I+H3S1H

†
3

)
H4

(
H

†
4H4

)−1 (
H

†
2 −B

†
2

)
. (41)

That is, such matricesA1 andA2 exist whenH1 andH4 are left-invertible. It remains to find matrices

B1 ∈ B1 andB2 ∈ B2 such the matrix inequalities (35) and (36) have solutions. We state this formally

in the following proposition.

Proposition 6: For the MIMO IC defined in (1), ifH1 and H4 are left-invertible, and there exist

symmetric positive definite matricesΣ1 andΣ2 that satisfy (35) and (36) withA1 andA2 defined in

(40) and (41) for someB1 ∈ B1 andB2 ∈ B2, then the sum-rate capacity is given by (39).

Although Theorem 6 gives the noisy interference conditionsfor a MIMO IC, finding explicit solution

of the matrix inequalities (35) and (36) can be very complex.Therefore, using Theorem 6 to check

whether a MIMO IC has noisy interference is not practical. Wethus derive the following proposition

that is a special case of Theorem 6 but is more amenable to computation.

Proposition 7: For the MIMO IC defined in (1), the sum-rate capacity is given by (39) if

radius(Φi) ≤
1

2
, i = 1, 2, (42)

where

Φ1 =
(
I−A

†
1A1 −A2A

†
2

)− 1

2

A
†
1A

†
2

(
I−A

†
1A1 −A2A

†
2

)− 1

2

(43)

Φ2 =
(
I−A1A

†
1 −A

†
2A2

)− 1

2

A
†
2A

†
1

(
I−A1A

†
1 −A

†
2A2

)− 1

2

, (44)

andA1 andA2 are chosen to satisfy (37) and (38) respectively, andBi ∈ Bi, i = 1, 2.

In the scalar case, if we haveH1 = H4 = 1, H2 =
√
a, H3 =

√
b, S1 = P1 andS2 = P2, from (42)

we directly have

√
a(1 + bP1) +

√
b(1 + aP2) ≤ 1.
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The above condition can also be obtained from Theorem 6 aftersome mathematical manipulations.

Therefore Theorem 6 and Proposition 7 generalize the noisy-interference sum-rate capacity of the scalar

Gaussian IC [10]–[12] to the MIMO IC.

Similarly to Proposition 6, we obtain the following proposition.

Proposition 8: For the MIMO IC defined in (1), if bothH1 andH4 are left-invertible, and there exist

matricesB1 ∈ B1 andB2 ∈ B2 such that theA1 andA2 defined in (40) and (41) satisfy (42), then the

sum-rate capacity is (39).

D. Sum-rate capacity of MIMO IC under mixed aligned interference

Theorem 7: For the MIMO IC defined in (1), if there exist matricesA1, A2, B1 andB2 that satisfy

H1 = A1H3 +B1 and (45)

H2 = A
†
2H4 +B2, (46)

whereA†
iAi � I andBi ∈ Bi, i = 1, 2, then the sum-rate capacity of the MIMO IC is

min





log
∣∣∣I+H3S1H

†
3 +H4S2H

†
4

∣∣∣

log

∣∣∣∣I+H1S1H
†
1

(
I+H2S2H

†
2

)−1
∣∣∣∣+ log

∣∣∣I+H4S2H
†
4

∣∣∣





, (47)

whereS1 andS2 are the respective covariance matrix constraints defined in(2).

Proposition 9: For the MIMO IC defined in (1) whereH3 andH4 are left-invertible, if there exist

Bi ∈ Bi, i = 1, 2, such that

H
†
4H4 ≻ (H2 −B2)

† (H2 −B2) and (48)

H
†
3H3 � (H1 −B1)

† (H1 −B1) , (49)

then the sum-rate capacity is given by (47).

Theorem 7 gives the sum-rate capacity of the MIMO IC undermixed aligned interference, i.e., one

user sees aligned weak/intermediate interference and the other user sees aligned strong interference.

The sum-rate capacity is achieved by treating interferenceas noise at the receiver that sees aligned

weak/intermediate interference, and fully decoding the interference at the receiver that sees aligned strong

interference. Proposition 9 includes the sum-rate capacity of scalar Gaussian ICs with mixed interference

as a special case. If we chooseB1 = 0 andB2 = 0, the constraints (48) and (49) reduce toH†
4H4 ≻

H
†
2H2 and H

†
3H3 � H

†
1H1. The MIMO ICs that satisfy these two simplified conditions have mixed

interference and this result applies to channels with otherpower constraints.
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Similar to Propositions 3 and 5, we obtain the sum-rate capacity for MIMO ICs with aligned mixed

interference under different power constraints.

Proposition 10: For the MIMO IC defined in (1) with expected per-symbol power constraints, or

expected block power constraints, or per-antenna expectedblock power constraints, if there exist matrices

Ai, i = 1, 2, such thatA†
iAi � I and

H1 = A1H3 and (50)

H2 = A
†
2H4, (51)

then the sum-rate capacity is

max
(bS1,bS2)∈P

min





log
∣∣∣I+H3Ŝ1H

†
3 +H4Ŝ2H

†
4

∣∣∣

log

∣∣∣∣I+H1Ŝ1H
†
1

(
I+H2Ŝ2H

†
2

)−1
∣∣∣∣+ log

∣∣∣I+H4Ŝ2H
†
4

∣∣∣





, (52)

whereP denotes the specified power constraints.

E. Generalizations

The results in the previous sections are for MIMO ICs whose capacities are achieved byxxxi ∼
CN (0,Si), i = 1, 2, whereSi is the covariance matrix constraint for useri defined in (2). The methods

introduced can also be applied to more general cases in whichthe capacity is achieved byxxx′i ∼ CN (0,S′
i)

whereS′
i � Si. For example, consider the following generalization of Theorem 5 that gives the sum-rate

capacity of a class of MIMO ZICs under noisy interference. This extension applies to all the corresponding

theorems for other kinds of interference.

Theorem 8: For the MIMO IC defined in (1), ifH3 = 0 and the optimalA∗, S∗
1 and S∗

2 for the

following optimization problem

min
A

max
bS1,bS2

C
(
A, Ŝ1, Ŝ2

)

subject to AA† � I, 0 � Ŝ1 � S1, 0 � Ŝ2 � S2, (53)

satisfy

H2 = A∗†H4 +B, (54)

where

C
(
A, Ŝ1, Ŝ2

)
= log

∣∣∣H1Ŝ1H
†
1 +H2Ŝ2H

†
2 + I

∣∣∣− log
∣∣∣I−AA†

∣∣∣

+ log

∣∣∣∣H4Ŝ2H
†
4 + I−

(
H4Ŝ2H

†
2 +A

)(
H2Ŝ2H

†
2 + I

)−1 (
H2Ŝ2H

†
4 +A†

)∣∣∣∣ , (55)
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and

B ∈
{
B̃

∣∣∣ all columns ofB̃† are in the null space ofS∗
2

}
, (56)

then the sum-rate capacity for the MIMO IC is

log

∣∣∣∣I+H1S
∗
1H

†
1

(
I+H2S

∗
2H

†
2

)−1
∣∣∣∣+ log

∣∣∣I+H4S
∗
2H

†
4

∣∣∣ . (57)

The solution of problem (53) is an upper bound on the sum-ratecapacity of this MIMO ZIC. The

bound is tight when (54) is satisfied. Theorem 8 includes Theorem 5 as a special case in whichS1 and

S2 are optimal for problem (53).

III. N UMERICAL RESULTS

Example 1: Consider a MIMO IC with

H1 = H4 = I, H2 =


2.0 1.5

0.8 1.0


 , H3 =


1.2 2.0

0 0.8


 and S1 = S2 = I.

Conditions (6) and (7) are satisfied. Therefore this MIMO IC has very strong interference and the capacity

region is

{(R1, R2) : 0 ≤ R1 ≤ 1.3863, 0 ≤ R2 ≤ 1.3863} .

However, consider the aligned strong interference conditions (13) and (14) for this channel. We have

A1 = H−1
3 , A2 = H−1

2 andB1 = B2 = 0, whereA†
1A1 � I andA

†
2A2 � I. Therefore, the above

channel has very strong interference but not aligned stronginterference.

Example 2: Consider a MIMO IC with

H1 =


1.8 0.8 −0.6 1.4

1.2 −1.9 0.5 −0.7


 , H2 =


0.8 1.0 −0.5 0.6

1.0 −1.2 0.4 1.2


 ,

H3 =


1.0 1.0 0.5 0.5

0.4 0.2 1 0.6


 , H4 =


0.68 0.36 −0.22 0.6

1.04 −0.66 0.17 1.14


 ,

S1 =




0.9 0.4 1.0 0.1

0.4 0.4 0 −0.4

1.0 0 2.0 1.0

0.1 −0.4 1.0 0.9




and S2 = I.
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Conditions (13)-(14) are both satisfied by choosing

A1 =


0.8 0

0 0.5


 , A2 =


0.6 0.2

0.3 0.8


 , B1 =


1 0 −1 1

1 −2 0 −1


 and B2 = 0.

By Theorem 4, this MIMO IC is under aligned strong interference and the capacity region is

{(R1, R2) : 0 ≤ R1 ≤ 1.6770, 0 ≤ R2 ≤ 1.8636, 0 ≤ R1 +R2 ≤ 3.2812}

Example 3: Consider a MIMO ZIC where

H1 = I, H2 =




1.3 1.1 1.4

1.5 −0.5 3.0

0.9 −0.36 1.5


 , H3 = 0, H4 =




1.0 2.0 0.5

1.0 1.0 2

0.5 0.4 0.5


 ,

S1 = I and S2 =




1.8 1.0 −0.4

1.0 5.0 2.0

−0.4 2.0 1.2


 .

Condition (30) is satisfied by choosing

A =




0.8 0 0

0 0.5 0

0 0 0.6


 and B =




0.5 −0.5 1.0

1.0 −1.0 2.0

0.6 −0.6 1.2


 .

By Theorem 5 or Proposition 4, the above MIMO ZIC is under noisy interference and the sum-rate

capacityC = 5.6622 is obtained from (31).

Example 4: Consider a MISO IC with



H1

H2

H3

H4



=




6.0 4.0 5.0

0.5 0.8 1.0

0.4 0.6 0.1

3.0 −2.0 6.0



, S1 =




0.9 0.5 −0.2

0.5 2.5 1

−0.2 1 0.6


 and S2 =




2.2 −0.2 −0.6

−0.2 0.2 −0.4

−0.6 −0.4 1.3


 .

Condition (42) is satisfied by choosing

A1 = 0.1578, A2 = 0.2394, B1 = [−0.2, 0.2,−0.4] and B2 = [0.2, 1.0, 0.4].

By Proposition 7, this MISO IC is under noisy interference and the sum-rate capacityC = 7.7171

is achieved by treating interference as noise. In this case rank(S1) = rank(S2) = 2. However, if we

use average power constraintsP1 = tr (S1) = 4.0 and P2 = tr (S2) = 3.7 instead of the covariance
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matrix constraintsS1 and S2, then using the optimality of beamforming for single-user detection of

MISO ICs [25], we can achieve a sum rate ofR1 + R2 = 9.9162 by treating interference as noise

and choosingSi = γiγ
†
i , rank(Si) = 1, i = 1, 2, whereγ1 = [1.2133,−0.0181, 1.5899]† and γ2 =

[0.5673,−1.4460, 1.1345]† .

Example 5: Consider a MIMO IC under average power constraintsP1 = 8 andP2 = 1 with

H1 = diag[1.0392, 1.5937, 1.2689], H2 = diag[0.7746, 0.2646, 0.3162],

H3 = diag[0.3000, 0.6083, 0.3162] and H4 = diag[1.5330, 1.2124, 1.3784].

Since all the channel matrices are diagonal, this MIMO IC canbe considered as a parallel IC. From

[24, Theorem 3], this MIMO IC is under noisy interference andthe sum-rate capacityC = 6.1066 can

be achieved by independent coding across antennas and treating interference as noise. The optimal input

signals are Gaussian with covariance matrices

S̄1 , diag[2.0922, 3.3021, 2.6057] and S̄2 , diag[0.4472, 0, 0.5528] ,

where tr
(
S̄1

)
= P1 and tr

(
S̄2

)
= P2. The input covariance matrix of the second user is singular and the

second antenna is inactive.

If the average power constraintsP1 andP2 are replaced by covariance constraints:

S1 =




2.0922 0.5000 1.0000

0.5000 3.3021 0

1.0000 0 2.6057


 and S2 =




0.4472 0 0.1500

0 0 0

0.1500 0 0.5528


 ,

where tr(S1) = P1 and tr(S2) = P2 but S1 � S̄1 andS2 � S̄2. Conditions (40) and (41) are satisfied by

choosing

A1 =




0.3661 0 0.0092

0 0.3817 0

0.0106 0 0.2630


 , A2 =




0.6004 0.0199 0.0218

0.0461 0.4848 0

0.0479 0 0.2892


 , and B1 = B2 = 0.

It can be obtained from (42) that radius(Φ1) = 0.4614 and radius(Φ2) = 0.1822. Therefore, from

Proposition 7 this MIMO IC is under noisy interference and the sum-rate capacityC = 5.9541 is

achieved by treating interference as noise.

IV. PROOFS OF THEMAIN RESULTS

We first introduce some lemmas which will be used to prove our main results.
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A. Preliminaries

The following lemma is based on the fact that a Gaussian distribution maximizes conditional entropy

under a covariance matrix constraint [28].

Lemma 1: Let xxxni =
[
xxx
†
i,1, . . . ,xxx

†
i,n

]†
, i = 1, . . . , k, bek long random vectors each of which consists

of n vectors. Suppose thexxxi,j, i = 1, · · · , k all have the same lengthLj, j = 1, · · · , n. Let yyyn =[
yyy
†
1, . . . , yyy

†
n

]†
, whereyyyj has lengthLj, be a long Gaussian random vector with covariance matrix

Cov(yyyn) =
k∑

i=1

λiCov(xxxni ) , (58)

where
∑k

i=1 λi = 1, λi ≥ 0 and |Cov(xxxni )| > 0. Let S be a subset of{1, 2, . . . , n} andT be a subset of

S ’s complement. Then we have

k∑

i=1

λih (xxxi,S |xxxi,T ) ≤ h (yyyS |yyyT ) . (59)

Proof: See Appendix A.

When thexxxk, k = 1, · · · , n are all Gaussian distributed, Lemma 1 shows thath (xxxS |xxxT ) is concave

over the covariance matrices.

Lemma 2 includes some special cases of Lemma 1.

Lemma 2: Let xxxk = {xxx1, · · · ,xxxk} andyyyk = {yyy1, · · · , yyyk} be two sequences of random vectors, and

let x̂xx∗, ŷyy∗, x̄xx∗ and ȳyy∗ be Gaussian vectors with covariance matrices satisfying

Cov


x̂xx

∗

ŷyy∗


 =

1

k

k∑

i=1

Cov


xxxi
yyyi


 � Cov


x̄xx

∗

ȳyy∗


 . (60)

Then we have

h
(
xxxk

)
≤ k · h (x̂xx∗) ≤ k · h (x̄xx∗) and (61)

h
(
yyyk

∣∣∣xxxk
)
≤ k · h (ŷyy∗ |x̂xx∗ ) ≤ k · h (ȳyy∗ |x̄xx∗ ) . (62)

Proof: See Appendix B.

Lemma 3: Let xxxn = {xxx1, · · · ,xxxn} be a sequence ofn random vectors and let̄xxx∗ andx̂xx∗ be Gaussian

random vectors with covariance matrices

Cov(x̂xx∗) =
1

n

n∑

i=1

Cov(xxxi) � Cov(x̄xx∗) . (63)
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Let zzz and z̃zz be two independent Gaussian random vectors andzzzn and z̃zzn be two sequences of random

vectors each independent and identically distributed (i.i.d.) aszzz and z̃zz, respectively. We have

h (xxxn + zzzn)− h (xxxn + zzzn + z̃zzn) ≤ nh (x̂xx∗ + zzz)− nh (x̂xx∗ + zzz + z̃zz) (64)

≤ nh (x̄xx∗ + zzz)− nh (x̄xx∗ + zzz + z̃zz) . (65)

Proof: See Appendix C.

Lemma 4: [29, page 107] [30] Letxxx,yyy andzzz be joint Gaussian vectors. If Cov(yyy) is invertible, then

xxx → yyy → zzz forms a Markov chain if and only if

Cov(xxx,zzz) = Cov(xxx,yyy)Cov(yyy)−1 Cov(yyy,zzz) .

Using Lemma 4 we obtain the following lemma.

Lemma 5: Let xxx, uuu andvvv be jointly Gaussian vectors, such thatxxx is independent ofuuu andvvv. Denote

Cov(xxx) = Sx, Cov(uuu) = Su and Cov(uuu,vvv) = Suv. If Su is invertible, thenxxx → Hxxx + uuu → Gxxx + vvv

forms a Markov chain if and only if

SxG
† = SxH

†S−1
u Suv. (66)

Proof: See Appendix D.

Lemma 6:


I A

A† B


 � 0 if and only if B � A†A. If B ≻ 0, then B � A†A if and only if

I � AB−1A†.

Proof: See Appendix E.

Lemma 7: If B is left-invertible (orB†B is invertible) andA = B
(
B†B

)−1
C†, thenA†A � I or

AA† � I if and only if B†B � C†C.

Proof: See Appendix F.

Lemma 8: [31, Theorem 5.2] SupposeW is nonsingular andM is positive definite. Then the matrix

equation

X+W†X−1W = M

has a positive definite solutionX if and only if

radius
(
M− 1

2WM− 1

2

)
≤ 1

2
.
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Using Lemma 8, we obtain necessary and sufficient conditionsfor a pair of matrix equations to have

positive definite solutions.

Lemma 9: SupposeA1 andA2 are fixed, andI is the identity matrix, the following matrix equations

Σ1 = I−A2Σ
−1
2 A

†
2 and (67)

Σ2 = I−A1Σ
−1
1 A

†
1, (68)

have positive definite solutionsΣ1 ≻ A
†
1A1 andΣ2 ≻ A

†
2A2 if and only if

radius(Φi) ≤
1

2
, i = 1, 2, (69)

where

Φ1 =
(
I−A

†
1A1 −A2A

†
2

)− 1

2

A
†
1A

†
2

(
I−A

†
1A1 −A2A

†
2

)− 1

2

and (70)

Φ2 =
(
I−A1A

†
1 −A

†
2A2

)− 1

2

A
†
2A

†
1

(
I−A1A

†
1 −A

†
2A2

)− 1

2

. (71)

Proof: See Appendix G.

B. Proof of Theorem 1

The converse follows by giving receiver1 the message not destined for it and applying the maximum-

entropy theory to show that Gaussian input distributions are optimal. To prove achievability, letxxx1 ∼
CN (0,S1) and xxx2 ∼ CN (0,S2), and let user1 transmit at rateR1 = log

∣∣∣I+H1S1H
†
1

∣∣∣, and user

2 transmit at rateR2 = log
∣∣∣I+H4S2H

†
4

∣∣∣. Inequality (4) guarantees that user1 can first decodexxx2

by treatingxxx1 as noise. After the interference is subtracted, user1 sees a single-user Gaussian MIMO

channel. Therefore, the rate region (5) is achievable.

C. Proof of Theorem 2

Similarly to the proof of Theorem 1, the converse follows by giving each receiver the message not

destined for it and applying the maximum-entropy theory to show that Gaussian input distributions are

optimal. To prove the achievability, letxxx1 ∼ CN (0,S1) andxxx2 ∼ CN (0,S2), and let user1 transmit at

rateR1 = log
∣∣∣I+H1S1H

†
1

∣∣∣, and user2 transmit at rateR2 = log
∣∣∣I+H4S2H

†
4

∣∣∣. Inequalities (6) and

(7) guarantee that each user can first fully decode the interference by treating the desired signals as noise.

After the interference is subtracted, each user sees a single-user Gaussian MIMO channel. Therefore, the

rate region (8) is achievable.
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D. Proof of Theorem 3 and Proposition 1

Suppose the channel is usedn times. The transmitted and received vector sequences are denoted by

xxxni andyyyni for useri, i = 1, 2, andxxxni satisfies (2).

SinceA†A � I, from Lemma 6, there exists a Gaussian random vectornnn whose joint distribution

with zzz2 is

zzz2
nnn


 ∼ CN


0,


 I A

A† I




 . (72)

Moreover, from (9),nnn is of the same dimension aszzz1 hence has the same marginal distribution aszzz1.

Let ǫ > 0 andǫ → 0 asn → +∞, From Fano’s inequality, any achievable rates must satisfy

n(R1 +R2)− nǫ

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 )

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 ,H2xxx

n
2 +nnnn)

= h (H1xxx
n
1 +H2xxx

n
2 + zzzn1 )− h (H2xxx

n
2 + zzzn1 ) + h (H2xxx

n
2 +nnnn)− h (nnnn)

+h (H4xxx
n
2 + zzzn2 | H2xxx

n
2 +nnnn )− h (zzzn2 | nnnn )

(a)
= I (xxxn1 ,xxx

n
2 ;H1xxx

n
1 +H2xxx

n
2 + zzzn1 ) + h (H4xxx

n
2 + zzzn2 | H2xxx

n
2 +nnnn )− h (zzzn2 | nnnn )

(b)

≤ I (xxxn1 ,xxx
n
2 ;H1xxx

n
1 +H2xxx

n
2 + zzzn1 ) + nh (H4x̄xx

∗
2 + zzz2 | H2x̄xx

∗
2 +nnn)− nh (zzz2 | nnn)

(c)
= I (xxxn1 ,xxx

n
2 ;H1xxx

n
1 +H2xxx

n
2 + zzzn1 ) + nh (H4x̄xx

∗
2 + zzz2 | H2x̄xx

∗
2 +nnn, x̄xx∗2 )− nh (zzz2 | nnn)

= I (xxxn1 ,xxx
n
2 ;H1xxx

n
1 +H2xxx

n
2 + zzzn1 )

≤ n log
∣∣∣I+H1S1H

†
1 +H2S2H

†
2

∣∣∣ , (73)

wherezzzni =
[
zzz
†
i,1, zzz

†
i,2, . . . , zzz

†
i,n

]†
andnnnn =

[
nnn
†
1,nnn

†
2, . . . ,nnn

†
n

]†
, i = 1, 2, and

[
zzz
†
2,j,nnn

†
j

]†
, j = 1, . . . , n,

are i.i.d. as (72).

Equality (a) is from the fact thatnnn andzzz1 have the same marginal distribution. Inequality (b) is by

Lemma 2, and we let̄xxx∗i ∼ CN (0,Si), i = 1, 2. x̄xx∗1 is independent of̄xxx∗2 and ȳyy∗i is defined in (1) with

xxxi replaced bȳxxx∗i . Equality (c) is from (9) which means

S2H
†
4 = S2

(
H

†
2A

† +B†
)
= S2H

†
2A

†.

By Lemma 5,x̄xx∗2 → H2x̄xx
∗
2 +nnn → H4x̄xx

∗
2 + zzz2 forms a Markov chain.

Therefore, (10) is an outer bound for the capacity region. Onthe other hand, (10) is also achievable

by requiring user1 to decode messages from both users. Therefore, Theorem 3 is proved.
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If H2 is left-invertible, we can choose

A† = H2

(
H

†
2H2

)−1 (
H

†
4 −B†

)
, (74)

so that (9) is satisfied. By Lemma 7,A†A � I is equivalent to (12). Thus Proposition 1 is proved.

E. Proof of Theorem 4 and Proposition 2

Theorem 4 can be proved by using Theorem 3 twice. To prove a converse, we first remove the

interference link from transmitter1 to receiver2 and obtain a MIMO ZIC withH3 = 0. The capacity

region of the original MIMO IC is a subset of the capacity region of this MIMO ZIC because we are

effectively giving user1’s message to receiver2. Theorem 3 gives the capacity region of this MIMO

ZIC with (14). Similarly, we remove the interference link from transmitter2 to receiver1 and obtain a

MIMO ZIC with H2 = 0. Theorem 3 gives the capacity region of this MIMO ZIC with (13):




R1 ≤ log
∣∣∣I+H1S1H

†
1

∣∣∣

R2 ≤ log
∣∣∣I+H4S2H

†
4

∣∣∣

R1 +R2 ≤ log
∣∣∣I+H3S1H

†
3 +H4S2H

†
4

∣∣∣





. (75)

Thus, the capacity region of the original MIMO IC is includedin the intersection of (10) and (75)

which is (15). On the other hand (15) is achievable by requiring both receivers to decode messages from

both transmitters, and therefore (15) is the capacity region.

Proposition 2 is similarly proved as Proposition 1.

F. Proof of Theorem 5 and Propositions 4 and 5

SinceA†A � I, from Lemma 6 there exists a Gaussian random vectornnn whose joint distribution with

zzz2 is

zzz2
nnn


 ∼ CN


0,


 I A

A† I




 . (76)

Moreover, (30) and (76) mean thatnnn andzzz1 have the same dimension and distribution.

From Fano’s inequality, any achievable rates must satisfy

n(R1 +R2)− nǫ

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 )

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 ,H2xxx

n
2 +nnnn)
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= h (H1xxx
n
1 +H2xxx

n
2 + zzzn1 )− h (H2xxx

n
2 + zzzn1 ) + h (H2xxx

n
2 +nnnn)− h (nnnn)

+h (H4xxx
n
2 + zzzn2 | H2xxx

n
2 +nnnn )− h (zzzn2 | nnnn )

(a)
= h (H1xxx

n
1 +H2xxx

n
2 + zzzn1 )− h (nnnn) + h (H4xxx

n
2 + zzzn2 | H2xxx

n
2 +nnnn )− h (zzzn2 | nnnn )

(b)

≤ nh (H1x̄xx
∗
1 +H2x̄xx

∗
2 + zzz1)− nh (nnn) + nh (H4x̄xx

∗
2 + zzz2 | H2x̄xx

∗
2 +nnn)− nh (zzz2 | nnn) (77)

= nh (H1x̄xx
∗
1 +H2x̄xx

∗
2 + zzz1)− nh (nnn) + nh (H4x̄xx

∗
2 + zzz2) + nh (H2x̄xx

∗
2 +nnn | H4x̄xx

∗
2 + zzz2 )

−nh (H2x̄xx
∗
2 +nnn)− nh (zzz2 | nnn)

(c)
= nh (H1x̄xx

∗
1 +H2x̄xx

∗
2 + zzz1)− nh (nnn) + nh (H4x̄xx

∗
2 + zzz2) + nh (H2x̄xx

∗
2 +nnn | H4x̄xx

∗
2 + zzz2, x̄xx

∗
2 )

−nh (H2x̄xx
∗
2 +nnn)− nh (zzz2 | nnn)

(d)
= nh (H1x̄xx

∗
1 +H2x̄xx

∗
2 + zzz1)− nh (nnn) + nh (H4x̄xx

∗
2 + zzz2) + nh (nnn | zzz2 )− nh (H2x̄xx

∗
2 + zzz1)− nh (zzz2 | nnn)

= nh (H1x̄xx
∗
1 +H2x̄xx

∗
2 + zzz1)− nh (H2x̄xx

∗
2 + zzz1) + nh (H4x̄xx

∗
2 + zzz2)− nh (zzz2)

= n log

∣∣∣∣I+H1S1H
†
1

(
I+H2S2H

†
2

)−1
∣∣∣∣+ n log

∣∣∣I+H4S2H
†
4

∣∣∣ , (78)

wherennnn =
[
nnn
†
1,nnn

†
2, . . . ,nnn

†
n

]†
, and thennni are i.i.d. Gaussian vectors distributed as (76).

Equalities (a) and (d) are both from the fact thatnnn andzzz1 have the same marginal distribution. Inequality

(b) is from Lemma 2, and we let̄xxx∗i ∼ CN (0,Si), i = 1, 2. x̄xx∗1 is independent of̄xxx∗2 and ȳyy∗i is defined

in (1) with xxxi replaced bȳxxx∗i . Equality (c) is from (30) which means

S2H
†
2 = S2H

†
4A.

By Lemma 5,x̄xx∗2 → H4x̄xx
∗
2 + zzz2 → H2x̄xx

∗
2 +nnn forms a Markov chain.

Since (31) is achievable, the sum-rate capacity is (31) if (30) holds. Therefore, Theorem 5 is proved.

WhenH4 is left-invertible, we can choose

A = H4

(
H

†
4H4

)−1 (
H

†
2 −B†

)
. (79)

Then (30) is satisfied. By Lemma 7,A†A � I is equivalent to (32), therefore Proposition 4 is proved.

Proposition 5 is proved in a similar way as Theorem 5. Letx̂xxi ∼ CN
(
0, Ŝi

)
, i = 1, 2, where

Ŝi =
1

n

n∑

j=1

Cov(xxxij) . (80)

From Fano’s inequality, we have

n(R1 +R2)− nǫ

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 ,H2xxx

n
2 +nnnn)
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= h (H1xxx
n
1 +H2xxx

n
2 + zzzn1 )− h (nnnn) + h (H4xxx

n
2 + zzzn2 | H2xxx

n
2 +nnnn )− h (zzzn2 | nnnn )

(a)

≤ nh (H1x̂xx1 +H2x̂xx2 + zzz1)− nh (nnn) + nh (H4x̂xx2 + zzz2 | H2x̂xx2 +nnn)− nh (zzz2 | nnn)
(b)
= nh (H1x̂xx1 +H2x̂xx2 + zzz1)− nh (nnn) + nh (H4x̂xx2 + zzz2) + nh (H2x̂xx2 +nnn | H4x̂xx2 + zzz2, x̂xx2 )

−nh (H2x̂xx2 +nnn)− nh (zzz2 | nnn)

= nh (H1x̂xx1 +H2x̂xx2 + zzz1)− nh (H2x̂xx2 +nnn) + nh (H4x̂xx2 + zzz2)− nh (zzz2)

= log

∣∣∣∣I+H1Ŝ1H
†
1

(
I+H2Ŝ2H

†
2

)−1
∣∣∣∣+ log

∣∣∣I+H4Ŝ2H
†
4

∣∣∣ (81)

where (a) is from Lemma 2; and (b) is from (33) which meansŜ2H
†
2 = Ŝ2H

†
4A and thus by Lemma 5,

x̂xx2 → H4x̂xx2 + zzz2 → H2x̂xx2 +nnn forms a Markov chain.

G. Proof of Theorem 6 and Proposition 6

Since there existΣ1 andΣ2 which satisfy (35) and (36), by Lemma 6, there exist two random vectors

nnn1 andnnn2 whose joint distributions withzzz1 andzzz2 are

zzzi
nnni


 ∼ CN


0,


 I Ai

A
†
i Σi




 , i = 1, 2. (82)

Furthermore, from (35) and (36) we have

Cov(nnn1) � Cov(zzz2 | nnn2 ) and (83)

Cov(nnn2) � Cov(zzz1 | nnn1 ) . (84)

From Fano’s inequality, any achievable sum rateR1 +R2 must satisfy

n(R1 +R2)− nǫ

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 )

≤ I (xxxn1 ;yyy
n
1 ,H3xxx

n
1 +nnnn

1 ) + I (xxxn2 ;yyy
n
2 ,H2xxx

n
2 +nnnn

2 )

= h (H3xxx
n
1 +nnnn

1 )− h(nnnn
1 ) + h (yyyn1 | H3xxx

n
1 +nnnn

1 )− h (H2xxx
n
2 + zzzn1 | nnnn

1 ) + h (H2xxx
n
2 +nnnn

2 )− h(nnnn
2 )

+h (yyyn2 | H2xxx
n
2 +nnnn

2 )− h (H3xxx
n
1 + zzzn2 | nnnn

2 ) , (85)

wherennnn
i =

[
nnn
†
i,1,nnn

†
i,2, . . . ,nnn

†
i,n

]†
, and thennni,j are i.i.d. Gaussian vectors distributed as (82). Sincennn1,j

is independent ofnnn1,k, andzzz2,j is independent ofnnn2,k, for any j 6= k, from (83) we have

Cov(nnnn
1 ) � Cov(zzzn2 | nnnn

2 ) . (86)
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By Lemma 3 we have

h (H3xxx
n
1 +nnnn

1 )− h (H3xxx
n
1 + zzzn2 | nnnn

2 ) ≤ nh (H3x̄xx
∗
1 +nnn1)− nh (H3x̄xx

∗
1 + zzz2 | nnn2 ) , (87)

wherex̄xx∗1 ∼ CN (0,S1). Similarly, we have

h (H2xxx
n
2 +nnnn

2 )− h (H2xxx
n
2 + zzzn1 | nnnn

1 ) ≤ nh (H2x̄xx
∗
2 +nnn2)− nh (H2x̄xx

∗
2 + zzz1 | nnn1 ) , (88)

wherex̄xx∗2 ∼ CN (0,S2).

By Lemma 2 we have

h (yyyn1 | H3xxx
n
1 +nnnn

1 ) ≤ nh (ȳyy∗1 | H3x̄xx
∗
1 +nnn1 ) and (89)

h (yyyn2 | H2xxx
n
2 +nnnn

2 ) ≤ nh (ȳyy∗2 | H2x̄xx
∗
2 +nnn2 ) , (90)

whereȳyy∗i is defined in (1) withxxxj, j = 1, 2, replaced bȳxxx∗j .

On substituting (87)-(90) into (85) we have

R1 +R2 − ǫ

≤ h (H3x̄xx
∗
1 +nnn1)− h (nnn1) + h (ȳyy∗1 | H3x̄xx

∗
1 +nnn1 )− h (H2x̄xx

∗
2 + zzz1 | nnn1 )

+h (H2x̄xx
∗
2 +nnn2)− h (nnn2) + h (ȳyy∗2 | H2x̄xx

∗
2 +nnn2 )− h (H3x̄xx

∗
1 + zzz2 | nnn2 )

= I (x̄xx∗1; ȳyy
∗
1,H3x̄xx

∗
1 +nnn1) + I (x̄xx∗2; ȳyy

∗
2,H2x̄xx

∗
2 +nnn2)

(a)
= I (x̄xx∗1; ȳyy

∗
1) + I (x̄xx∗2; ȳyy

∗
2) ,

= log

∣∣∣∣I+H1S1H
†
1

(
I+H2S2H

†
2

)−1
∣∣∣∣+ log

∣∣∣∣I+H4S2H
†
4

(
I+H3S1H

†
3

)−1
∣∣∣∣ , (91)

where (a) is from (37), (38) and Lemma 5 sincex̄xx∗1 → ȳyy∗1 → H3x̄xx
∗
1 + nnn1 and x̄xx∗2 → ȳyy∗2 → H2x̄xx

∗
2 + nnn2

form two Markov chains.

On the other hand (91) is achievable by treating interference as noise, and therefore (91) is the sum-rate

capacity.

Proposition 6 is straightforward from Theorem 6.

H. Proof of Proposition 7 and Proposition 8

Since matricesA1 andA2 satisfy (42), by Lemma 9 there exist two Hermitian positive definite matrices

Σ1 andΣ2 that satisfy

A
†
1A1 � Σ1 = I−A2Σ

−1
2 A

†
2 and (92)

A
†
2A2 � Σ2 = I−A1Σ

−1
1 A

†
1. (93)
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Thus, we see (35) and (36) are satisfied. Since (37) and (38) are satisfied by hypothesis, Proposition 7

follows by Theorem 6.

Proposition 8 is straightforward from Proposition 7.

I. Proof of Theorem 7 and Propositions 9 and 10

The achievability part is straightforward by letting user2 first decode the message from user1 and

then decode its own message, and by letting user1 treat signals from user2 as noise. Then user1 and

user2 have the respective rates

R1 = min





log

∣∣∣∣I+H1S1H
†
1

(
I+H2S2H

†
2

)−1
∣∣∣∣

log

∣∣∣∣I+H3S1H
†
3

(
I+H4S2H

†
4

)−1
∣∣∣∣





and

R2 = log
∣∣∣I+H4S2H

†
4

∣∣∣ .

Therefore, the sum rate (47) is achievable.

To prove the converse, we first letH2 = 0. By using (45) and Theorem 3, the sum rate satisfies

R1 +R2 ≤ min





log
∣∣∣I+H3S1H

†
3 +H4S2H

†
4

∣∣∣

log
∣∣∣I+H1S1H

†
1

∣∣∣+ log
∣∣∣I+H4S2H

†
4

∣∣∣



 . (94)

Alternatively, we letH3 = 0. By using (46) and Theorem 5, the sum rate also satisfies

R1 +R2 ≤ log

∣∣∣∣I+H1S1H
†
1

(
I+H2S2H

†
2

)−1
∣∣∣∣+ log

∣∣∣I+H4S2H
†
4

∣∣∣ . (95)

Combining (94) and (95), we have

R1 +R2 ≤ min





log
∣∣∣I+H3S1H

†
3 +H4S2H

†
4

∣∣∣

log

∣∣∣∣I+H1S1H
†
1

(
I+H2S2H

†
2

)−1
∣∣∣∣+ log

∣∣∣I+H4S2H
†
4

∣∣∣

log
∣∣∣I+H1S1H

†
1

∣∣∣+ log
∣∣∣I+H4S2H

†
4

∣∣∣





. (96)

We complete the proof by pointing out that the last line of (96) is redundant because of the second line.

Proposition 9 is similarly proved by Propositions 1 and 4. Proposition 10 is similarly proved by

Propositions 3 and 5.

J. Proof of Theorem 8

The proof of Theorem 8 follows that of Theorem 5. The bound in problem (53) is derived from (77) by

assuminḡxxx∗i ∼ CN
(
0, Ŝi

)
, i = 1, 2. Following similar steps as in (78), one can verify that the sum-rate

capacity is (57) if (54) is satisfied.
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APPENDIX

A. Proof of Lemma 1

Let xxx∗i,S be a Gaussian vector with covariance matrix Cov(xxxi,S). We have

k∑

i=1

λih (xxxi,S |xxxi,T )
(a)

≤
k∑

i=1

λih
(
xxx∗i,S

∣∣xxx∗i,T
)

=

k∑

i=1

λi

[
h
(
xxx∗i,S∪T

)
− h

(
xxx∗i,T

)]

=

k∑

i=1

λi log




∣∣∣Cov
(
xxx∗i,S∪T

)∣∣∣
∣∣∣Cov

(
xxx∗i,T

)∣∣∣
· (πe)

P

j∈S Lj




(b)

≤
k∑

i=1

log

( |Cov(yyyS∪T )|
|Cov(yyyT )|

· (πe)
P

j∈S Lj

)

= h (yyyS | yyyT ) , (97)

where inequality (a) is from [28, Lemma 2], and inequality (b) is from [32, Theorem 17.10.1].

B. Proof of Lemma 2

The first inequalities of (61) and (62) are straightforward from Lemma 1. It suffices to prove the second

inequality of (62). Since (60) holds, we can define two randomvectorsuuu andvvv that are joint Gaussian,

independent of̂xxx∗ and ŷyy∗, and satisfy

x̄xx

∗

ȳyy∗


 =


x̂xx

∗

ŷyy
∗


+


uuu
vvv


 . (98)

Therefore,

h (ȳyy∗ |x̄xx∗ ) ≥ h (ȳyy∗ |x̄xx∗,uuu,vvv ) = h (ŷyy∗ |x̂xx∗ ) . (99)

C. Proof of Lemma 3

h (xxxn + zzzn)− h (xxxn + zzzn + z̃zzn)

= −I (z̃zzn;xxxn + zzzn + z̃zzn)

(a)

≤ −I (z̃zzn;xxx∗n + zzzn + z̃zzn)

= −h (z̃zzn) + h (z̃zzn | xxx∗n + zzzn + z̃zzn )
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(b)

≤ −nh (z̃zz) + nh (z̃zz | x̂xx∗ + zzz + z̃zz )

= nh (x̂xx∗ + zzz)− nh (x̂xx∗ + zzz + z̃zz) , (100)

where (a) is from [33, Lemma II.2], andxxx∗n is a Gaussian vector sequence that has the same covariance

matrix asxxxn. Inequality (b) is from Lemma 2. Alternatively, we can use Lemma 2 to bound (100) as

nh (x̂xx∗ + zzz)− nh (x̂xx∗ + zzz + z̃zz)

= −nh (z̃zz) + nh (z̃zz | x̂xx∗ + zzz + z̃zz )

≤ −nh (z̃zz) + nh (z̃zz | x̄xx∗ + zzz + z̃zz )

= nh (x̄xx∗ + zzz)− nh (x̄xx∗ + zzz + z̃zz) . (101)

D. Proof of Lemma 5

Let the eigenvalue decomposition ofSu be

Su = QΛQ†, (102)

whereQ is a unitary matrix andΛ is a diagonal matrix with strictly positive diagonal elements. Since

Cov(xxx,yyy)Cov(yyy)−1 Cov(yyy,zzz) = Cov(xxx,Ayyy)Cov(Ayyy)−1 Cov(Ayyy,zzz) (103)

for any invertible matrixA, we chooseA = Λ− 1

2Q and thenxxx → Hxxx+uuu → Gxxx+ vvv forms a Markov

chain if and only ifxxx → H̃xxx+ ũuu → Gxxx+ vvv forms a Markov chain, where

H̃ = Λ− 1

2QH and (104)

ũuu = Λ− 1

2Quuu,

and we have

Cov(ũuu) = I and

Cov(ũuu,vvv) = Λ− 1

2QSuv , S̃uv. (105)

By Lemma 4,xxx → H̃xxx+ ũuu → Gxxx+ vvv forms a Markov chain if and only if

SxG
† = SxH̃

†
(
I+ H̃SxH̃

†
)−1 (

H̃SxG
† + S̃uv

)

= SxH̃
†
(
I+ H̃SxH̃

†
)−1

H̃SxG
† + SxH̃

†
(
I+ H̃SxH̃

†
)−1

S̃uv

(a)
= Sx

[
I−

(
I+ H̃†H̃Sx

)−1
]
G† + SxH̃

†
(
I+ H̃SxH̃

†
)−1

S̃uv
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= SxG
† − Sx

(
I+ H̃†H̃Sx

)−1
G† + SxH̃

†
(
I+ H̃SxH̃

†
)−1

S̃uv

(b)
= SxG

† −
(
I+ SxH̃

†H̃
)−1 (

SxG
† − SxH̃

†S̃uv

)

(c)
= SxG

† −
(
I+ SxH̃

†H̃
)−1 (

SxG
† − SxH

†S−1
u Suv

)
(106)

where (a) is from the matrix inverse identity [34, page 151]

A (I+BA)−1
B = I− (I+AB)−1

.

Equality (b) is from the matrix inverse identity [34, page 151]

A (I+BA)−1 = (I+AB)−1
A.

Equality (c) is from (102), (104) and (105). We complete the proof by pointing out that (106) is equivalent

to (66).

E. Proof of Lemma 6

Let xxx be a vector with dimension equal to the number of rows ofA, andyyy be a vector with dimension

equal to the number of columns ofA. We haveB � A†A so thatyyy†Byyy ≥ yyy†A†Ayyy and

xxx
yyy



† 
 I A

A† B




xxx
yyy


 = xxx†xxx+ yyy†A†xxx+ xxx†Ayyy + yyy†Byyy

≥ xxx†xxx+ yyy†A†xxx+ xxx†Ayyy + yyy†A†Ayyy

= (Ayyy + xxx)† (Ayyy + xxx)

≥ 0.

Therefore, sufficiency is proved. On the other hand, if


 I A

A† B


 � 0, we have


xxx
yyy



† 
 I A

A† B




xxx
yyy


 = xxx†xxx+ yyy†A†xxx+ xxx†Ayyy + yyy†Byyy ≥ 0. (107)

We choosexxx = −Ayyy and substitute it into (107), then we have

yyy†
(
B−A†A

)
yyy ≥ 0. (108)

Therefore,B � A†A.

If B ≻ 0, thenB � A†A is equivalent to

0 ≤ yyy†
(
B−A†A

)
yyy
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= yyy†B
1

2

(
I−B− 1

2A†AB− 1

2

)
B

1

2yyy

= ỹyy†
(
I−B− 1

2A†AB− 1

2

)
ỹyy, (109)

where

B
1

2 = UΛ
1

2U† and

ỹyy = B
1

2yyy,

and

B = UΛU†

is the eigenvalue decomposition ofB with U being a unitary matrix andΛ being a diagonal matrix with

strictly positive diagonal elements. Sinceỹyy can be any vector, (109) means

I � B− 1

2A†AB− 1

2 .

Suppose that the singular value decomposition ofB− 1

2A† is

B− 1

2A† = P


Σ 0

0 0


Q†,

where bothP and Q are unitary matrices andΣ is a diagonal matrix with strictly positive diagonal

elements. Then we have

B− 1

2A†AB− 1

2 = P


Σ 0

0 0


P† and

AB− 1

2B− 1

2A† = Q


Σ 0

0 0


Q†.

Therefore,I � B− 1

2A†AB− 1

2 if and only if I � Σ which is also the necessary and sufficient condition

for I � AB− 1

2B− 1

2A† = AB−1A†.

F. Proof of Lemma 7

Let A = B
(
B†B

)−1
C† and suppose that the singular value decomposition ofB is

B = U


Σ
0


V†, (110)
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where bothU andV are unitary matrices, andΣ is a diagonal matrix with strictly positive diagonal

elements. Suppose further that

I � A†A

= C
(
B†B

)−1
C†

= CVΣ−2V†C†. (111)

Lemma 6 implies thatX†X � I if and only if XX† � I, therefore (111) is equivalent to

I � Σ−1V†C†CVΣ−1, (112)

i.e., for any vectorxxx we have

0 ≤ xxx†
(
I−Σ−1V†C†CVΣ−1

)
xxx

= xxx†Σ−1V†
(
VΣ2V† −C†C

)
VΣ−1xxx

= yyy†
(
B†B−C†C

)
yyy, (113)

where the last line is from (110), and we defineyyy = VΣ−1xxx. Sincexxx can be any vector andΣ−1V† is

invertible,yyy can also be any vector. Therefore, (113) proves Lemma 7.

G. Proof of Lemma 9

From (68) and the Woodbury matrix identity [35]:

(
E+CBC†

)−1
= E−1 −E−1C

(
B−1 +C†E−1C

)−1
C†E−1,

we have

Σ−1
2 = I−A1

(
−Σ1 +A

†
1A1

)−1
A

†
1. (114)

Substituting (114) into (67) we have

Σ1 = I−A2A
†
2 +A2A1

(
A

†
1A1 −Σ1

)−1
A

†
1A

†
2. (115)

Define

X1 = Σ1 −A
†
1A1, (116)

M1 = I−A
†
1A1 −A2A

†
2, (117)

M2 = I−A1A
†
1 −A

†
2A2, (118)
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W1 = A
†
1A

†
2 and (119)

W2 = A
†
2A

†
1. (120)

On substituting (116)-(119) into (115), we have the following matrix equation:

X1 +W
†
1X

−1
1 W1 = M1. (121)

Equation (121) is a special case of a discrete algebraic Ricatti equation [31]. From Lemma 8, withM1

Hermitian and positive definite, (121) has a positive definite solutionX1 (i.e., Σ1 ≻ A
†
1A1) if and only

if

radius
(
M

− 1

2

1 W1M
− 1

2

1

)
= radius(Φ1) ≤

1

2
.

Similarly, applying the Woodbury matrix identity to invertΣ2 in (67) and substituting the result into

(68), we obtain

X2 +W
†
2X

−1
2 W2 = M2, (122)

where

X2 = Σ2 −A
†
2A2.

Matrix equation (122) has a positive definite solutionX2 (i.e., Σ2 � A
†
2A2) if and only if

radius
(
M

− 1

2

2 W2M
− 1

2

2

)
= radius(Φ2) ≤

1

2
.
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