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Abstract— The availability of positional information is of great
importance in many commercial, public safety, and military
applications. The coming years will see the emergence of ktion-
aware networks with sub-meter accuracy, relying on accurat
range measurements provided by wide bandwidth transmissius.
In this two-part paper, we determine the fundamental limits of
localization accuracy of wideband wireless networks in hash
multipath environments. We first develop a general framewok
to characterize the localization accuracy of a given node e and
then extend our analysis to cooperative location-aware neiorks
in Part Il.

In this paper, we characterize localization accuracy in tems
of a performance measure called the squared position error
bound (SPEB), and introduce the notion of equivalent Fisher
information to derive the SPEB in a succinct expression. Tt
methodology provides insights into the essence of the logation
problem by unifying localization information from individ ual
anchors and information from a priori knowledge of the agents
position in a canonical form. Our analysis begins with the re
ceived waveforms themselves rather than utilizing only thesignal
metrics extracted from these waveforms, such as time-of-awal
and received signal strength. Hence, our framework explog all
the information inherent in the received waveforms, and the
resulting SPEB serves as a fundamental limit of localizatio
accuracy.

Index Terms—Cramér-Rao bound (CRB), equivalent Fisher
information (EFI), information inequality, localization , ranging
information (RI), squared position error bound (SPEB).

I. INTRODUCTION

Fig. 1. Location-aware networks: the anchors (A, B, C, ang@hmunicate
with the agents (1 and 2), and each edge denotes a conneictiobetween
anchor and agent.

are required to meet the increasing need for accurate t@eali
tion in such harsh environmentis [8] [9].

Wideband wireless networks are capable of providing accu-
rate localization in GPS-denied environmennts [8]-H12]d&/i
bandwidth or ultra-wide bandwidth (UWB) signals are par-
ticularly well-suited for localization, since they can pite
accurate and reliable range (distance) measurements due to
their fine delay resolution and robustness in harsh environ-
ments [13]-]20]. For more information about UWB, we refer

Locatlon-av_vare_zness plays a crumgl r(_)le in-many V\_/lreleﬁ§e reader to [21]5[26].
network applications, such as localization services intnex | y.ation-aware networks generally consist of two kinds of

generation cellular networksl[1], search-and-rescueaijoers
[2], [3], logistics [4], and blue force tracking in battldfils [5].

nodes: anchors and agents. Anchors have known positions
(for example, through GPS or system design), while agents

The Global Positioning System (GPS) is the most importagt, e ynknown positions and attempt to determine their po-

technology to provide location-awareness around the glofg s (see Figll1). Each node is equipped with a wideband
through a constellation of at Ie,as,t 2,4 sgtellites (61, ,[7@"“ transceiver, and localization is accomplished throughuthe
ever, the .effect.lvgnesslof GPS is limited in harsh enviramsje .of radio communications between agents and their neighori
such as in buildings, in urban canyons, under tree canopig§enors, Localizing an agent requires a number of signals
and in caves/[8],[9], due to the inability of GPS signals t§,ngmjtted from the anchors, and the relative positiorhef t
penetrate most obstacles. Hence, new localization teulsualqalgent can be inferred from these received waveforms using
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a variety of signal metrics. Commonly used signal metrics
include time-of-arrival (TOA) [[8], [[9], [[1¥]+[20], [[2[7]1+30],
time-difference-of-arrival (TDOA)[[31],[132], angle-ddrival
(AOA) [9], [B3], and received signal strength (RSS) [9], [34
[35].

Time-based metrics, TOA and TDOA, are obtained by
measuring the signal propagation time between nodes. &t ide
scenarios, the estimated distance equals the product of the
known propagation speed and the measured signal propagatio
time. The TOA metric gives possible positions of an agent on
a circle with the anchor at the center, and it can be obtaiged b
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either the one-way time-of-flight of a signal in a synchrawiz noise injected in the true propagation distantcés [8], [[]E
network [18], [19], [28], [29], or the round-trip time-ofifiht 2) identify and weigh the importance of NLOS signals for
in a non-synchronized network [26], [36]. Alternativeljret localization [55]-[60]; or 3) consider NLOS biases as param
TDOA metric provides possible positions of an agent on theters to be estimated [27]—[30], [46], 1471, [61], [62]. The
hyperbola determined by the difference in the TOAs from twauthors in([8],[9], [28],[29] showed that NLOS signals dd no
anchors located at the foci. Note that TDOA techniques requimprove localization accuracy unless a priori knowledgéhef
synchronization among anchors but not necessarily with thNeOS biases is available, but their results were restritted
agent. specific models or approximations. Moreover, detailedotsfe

Another signal metric is AOA, the angle at which a signadf multipath propagations on localization accuracy remain
arrives at the agent. The AOA metric can be obtained using ander-explored.
array of antennas, based on the signals’ TOA at each arflennain this paper, we develop a general framework to determine
The use of AOA for localization has been investigated, ante localization accuracy of wireless netwofk€ur analysis
many hybrid systems have been proposed, including hybtidgins with the received waveforms themselves rather than
TOA/AOA systems [[30], [[41], and hybrid TDOA/AOA sys- utilizing only signal metrics extracted from the waveforms
tems [42]. However, some of these studies employ narrowbagitth as TOA, TDOA, AOA, and RSS. The main contributions
signal models, which are not applicable for wideband ardenof this paper are as follows:
arrays. Others are restricted to far-field scenarios or ase f
field assumptions.

RSS is also a useful metric that uses the strength of the
received signal to estimate the propagation distance legtwe
nodes|[9], [34], [36]. This metric can be measured during the
data communications using low-complexity circuits. Alktdgh
widely implemented, RSS has limited accuracy due to the*
difficulty in precisely modeling the relationship betwedre t
RSS and the propagation distance [4], [9].

Note that the signal metrics extracted from the received
waveforms may discard relevant information for localiaati
Moreover, models for the signal metrics depend heavily on
the specific measurement proce&él‘sherefore, in deriving *
the fundamental limits of localization accuracy, it is nesary
to utilize the received waveforms rather than the signaticset
extracted from the waveforms [28], [29], [46], [47].

Since the received waveforms are affected by random
phenomena such as noise, fading, shadowing, multipath, and
non-line-of-sight (NLOS) propagations [48], [49], the atg
position estimates are subject to uncertainty. The Cramér
Rao bound (CRB) sets a lower bound on the variance of by TOA metric alone.

estimates for deterministic parameters][50], [51], .anda'i; h We quantify the effect ofclock asynchronisnbetween
been used as a perfprmance measure for Ioc_al|zat|_on ageurac - anchors and agents on localization accuracy for networks
[52]. However, relatively few studies ha_lve mvestlgat_eé _th where nodes employ a single antenna or an array of
effect of multipath and NLOS propagations on localization antennas.

accuracy. Multipath refers to a propagation phenomenon in

which a transmitted signal reaches the receive antenna vidhe rest of the paper is organized as follows. Seckion I
multiple paths. The superposition of these arriving patf§esents the system model, the notion of the SPEB, and the
results in fading and interference. NLOS propagationstece Fisher information matrix (FIM) for the SPEB. In Section, 111

by physical obstructions in the direct path, produce a pesit We introduce the notion of EFI and show how it can help
bias in the propagation time and decrease the strength of thg derivation of the SPEB. In Secti¢nllV, we investigate
received signal, which can severely degrade the locatizatith® performance of localization systems employing wideban
accuracy. Several types of methods have been proposedito @8enna arrays. Sectidnl V investigates the effect of clock

with NLOS propagations: 1) treat NLOS biases as additi@Synchronism between anchors and agents. Discussions are
provided in Sectior_VI. Finally, numerical illustrationgea

1The AOA metric can be obtained in two ways, directly througeasure- given in Sectior_ VI, and conclusions are drawn in the last
ment by a directional antenna, or indirectly through TOA mugements using section.
an antenna array [37]=[40]. Wideband directional antetimaissatisfy size and
cost requirements are difficult to implement, since theyrageired to perform
across a large bandwidth [36]. As such, antenna arrays are coonmonly 3In practice, however, a NLOS induced range bias can be as asiahew
used when angle measurement for wide bandwidth signalsceseary. kilometers depending on the propagation environment [[85], and small
2For instance, the error of the TOA metric is commonly modedsdan  perturbation may not compensate for NLOS induced error.
additive Gaussian random variablée [8]. [30]. [43]. This rabdontradicts the 4In Part 1l [63], we extend our analysis to cooperative |cmatware
studies in[[18]+[2D],[[44],[145], and the experimental resin [8], [16]. networks.

« We derive the fundamental limits of localization ac-
curacy for wideband wireless networks, in terms of a
performance measure called tegquared position error
bound (SPEB), in the presence of multipath and NLOS
propagation.

We propose the notion afquivalent Fisher information
(EFI) to derive the agent’s localization information. This
approach unifies such information from different anchors
in a canonical form as a weighed sum of the direction ma-
trix associated with individual anchors with the weights
characterizing the information intensity.

We quantify the contribution of tha priori knowledge

of the channel parameters and agent’s position to the
agent’s localization information, and show that NLOS
components can be beneficial when a priori channel
knowledge is available.

We derive the performance limits for localization systems
employingwideband antenna arraysThe AOA metric
obtained from antenna arrays are shown not to further
improve the localization accuracy beyond that provided
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Notations: The notationE,{-} is the expectation operatorof multipath components (MPCs}(¢) represents the obser-
with respect to the random vectar A = B denotes that the vation noise modeled as additive white Gaussian processes
matrix A — B is positive semi-definite; {r} is the trace of a with two-side power spectral densit¥,/2, and [0, Top) IS
square matrix{-] . denotes the upper left x n submatrix the observation interval. The relationship between thentge
of its argument{- ], ,,, is the element at theth row andmth position and the delays of the propagation paths is
column of its argument|| - || is the Euclidean norm of its ho1 .
argument; and the superscridty’ represents the transpose T;E) =- [ [P — pxll + bé)} ) (2
of its argument. We denote by(x) the probability density ¢
function (PDF)fx (x) of the random vectaK unless specified wherec is the propagation speed of the signal, dxfglﬂ >0
otherwise, and we also use in the paper the following functids a range bias. The range bi&i{é) = 0 for LOS propagation,

for the FIM: Whereasbg) > 0 for NLOS propagatio.
T
F ; L2 E —a 1 —8 1
2(Wi%,y) S Bz | | 5 Inf(w) By nfw)l o B. Error Bounds on Position Estimation

Our analysis is based on the received waveforms given by
(@), and hence the parameter vectbiincludes the agent's
position and the nuisance multipath parameters [9], [68], i

wherew can be either a vector or a symﬁol.

Il. SYSTEM MODEL
T T

. ] ] ] 0 = T T e T

In this section, we describe the wideband channel model [P sl s i ]

[14], [21], [24], [2€], [64], formulate the problem, and bfiy wherexy is the vector of the multipath parameters associated
review the information inequality and Fisher informatidde with r4(¢), given by

also introduce the squared position error bound, which is a

;
fundamental limit of localization accuracy. { ald b QP g } :
H ke NL s

. L= L

A. Signal Model [ bg) Oéz(ql) bf) O‘;f) bl(CLk) O[;CL,C) } ’

Consider a wireless network consisting 8f anchors and
multiple agents. Anchors have perfect knowledge of their

positions, and each agent attempts to estimate its positighie thatbg) — 0 for k € N, and is excluded fromc.
based on the received waveforms from neighboring anchorSpye introducer as the vector representation of all the
(see Fig.[llﬁ Wideband signals traveling from anchors tQqceived waveformsy, (t), given by
agents are subject to multipath propagation.
Let p € R2 denote the position of the agéhtyhich is r=[r] rj - r} }T ,

to be estimated. The set of anchors is denoted\jy = . . .
(1,2 No} 2 AL U N, whereA; denotes the set of wherer;, is obtained from the Karhunen-Loeve expansion of

re(t) [50], [51]. Let & denote an estimate of the parameter
chtore based on observation. The mean squared error
(MSE) matrix of @ satisfies the information inequality [50],

kENNL.

anchors that provide LOS signals to the agent.&Rd denotes
the set of remaining anchors that provide NLOS signals to
agent. The position of anchdr is known and denoted by

pr € R? (k € Mp). Let ¢, denote the angle from anchérto (=11, [63]
i ~ ~ T
the agent, i.e., E.o {(9 —6)(6 - 0) } S el 3)
¢ = tan~! H, where Jg is the Fisher information matrix (FIM) for the
F parameter vectop] Let p be an estimate of the agent’s
wherep £ [z y]T andpy = [z yx]'. position, and it follows from[{3) th{
The received waveform at the agent from ancharan be . . T 1
written as Ero{(®-P)P-P)'} = [Tg |5,

Ly 8LOS propagation does not introduce a range bias because ihen

Tk (t) = Z O‘I(ql) s (t - T;gl)) =+ Zk(t) , L€ [07 Tob) ) (1) unblocked direct path. NLOS propagation introduces a pesitange bias
=1 because such signals either reflect off objects or penetredegh obstacles.

. . . In this paper, received signals whose first path undergo€s j©pagation are

where s(t) is a known wideband waveform whose Fouriefeferred to as LOS signals, otherwise these signals areredféo as NLOS

transform is denoted b§( f), a,(f) andT,gl) are the amplitude signals.

. . SWhen a subset of parameters is randafip, is called the Bayesian
and delay’ respectlvely, of thih path, Ly is the number information matrix. Inequality((3) also holds under somgularity conditions

) ) ) and provides lower bound on the MSE matrix of any unbiasemnegts of
SFor example,w is replaced by symbot|6 in the case thaif(-) is a the deterministic parameters and any estimates of the rapdoameters [50],

conditional PDF ofr given 6. [65]. With a slight abuse of notatiorE,. ¢{-} will be used for deterministic,
6Agents estimate their positions independently, and heritteout loss of hybrid, Bayesian cases with the understanding that thectaggen operation
generality, our analysis focuses on one agent. is not performed over the deterministic component# of
“We first focus on two dimensional cases and then extend thdtse® 1ONote that for three-dimensional localization, we need tosider a3 x 3

three-dimensional cases whapec R3. matrix [J51]3x3'
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and hence The joint PDF of observation and parameters can be written
. _ as
Ero (B =PI} = r{[35"],.,} @)

f(r,0) = f(r|0) f(6),
Therefore, we define the right hand side [df (4) as a measure o
to characterize the limits of position accuracy as follows. where f(r|6) is given by [6), and hence the FIM becomes

Definition 1 (Squared Position Error BoundYhe squared Jo=Jw+Jp, (10)
position error bound (SPEB) is defined to be where Ju 2 Fro(r0:6,6) and J, 2 Fo(6:6,0) are
P(p) 2 tr { [J;l]2 2}, the FIMs from the observations and the a priori knowledge,
X

respectivelE The FIM J,, can be obtained by taking the
expectation ofly in (@) over the random parameter vecthr

C. Fisher Information Matrix andJ, can be obtained by substituting (8) [n{10) as
In this section, we derive the FIM for both deterministic

and random parameter estimation to evaluate the SPEB. Ep+ Y ken; Bop Spa 0 ENB
1) FIM without A Priori Knowledge: The FIM for the [:1 }T =1 0
T . . —p,k K,k
deterministic parameter vectéris given by [50] Jp = _ _ . (11)
Jo =F.(r]0;0,0), (5) T
=N =N
where f(r|0) is the likelihood ratio of the random vecter [“Pabn} 0 Sk

conditioned ord. Since the received waveforms from diﬁerenwhereap describes the FIM from the a priori knowledge of
anchors are independent, the likelihood ratio can be wrédte p, given by

51 -
[ ] |=ip::FQ(p;pap)a
0) = 0 6 _ _
f(r| ) kg\[/ .f(rk| )a ( ) and :i’n — FG(Hk|p;K/k7Hk)- ‘=‘]:),p = Fg(fﬁ‘,k|p;p7p),
’ and Efm = Fo(kr|p;p, ki) characterize the joint a priori
where knowledge ofp and k.
2 [T <Ly !
f(rx|0) o exp F/ T (t) Z aé)s (t - 7,5 )) dt D. Equivalent Fisher Information Matrix
070 =1 ) Determining the SPEB requires inverting the FI§j in
1 [Too [ L o 0 (@) and [ID). HoweverJy is a matrix of high dimensions,
_F/ >oas (t—Tk ) dt . while only a small submatrixJ,'], , is of interest. To
070 1=1 circumvent direction matrix inversion and gain insightsoin
Substituting [(B) in[(5), we have the FINlp as EZgllolza;I]ization problem, we first introduce the notions &1 E
3o — 1 TLALT] + Tae AT T Anc @ Definition 2 (Equivalent FisherTInformation Matrix):
o2 AT, A | Given a parameted = [6] 03] and the FIMJy of the
form
whereA, Ty, An, andTy, are given by[(41) and_(42). In A B
the above matrices\. andT| are related to the LOS signals, Jog = [ BT C ] , (12)

and Ay. and Ty are related to the NLOS signals.

2) FIM with A Priori Knowledge: We now incorporate where@ € RY, ; € R*, A € R**", B € R"*(N-n),
the a priori knowledge of the agent's position and channahd C € R(W—)x(N=n) with n < N, the equivalent Fisher
parameters for localization. Since the multipath paramseig information matrix (EFIM) for@, is given b

are independent a priori, the PDF @fcan be expresseds Je(61) 2 A - BC'BT (13)
e = :
£0)=f®) [] flselp). (8)  Note that the EFIM retains all the necessary information
keNy to derive the information inequality for the parameter wvect

where f(p) is the PDF of the agent's position, arfdrx|p) 01 SiNce [Jg ' lnxn = J51(61)H and the MSE matrix of
is the joint PDF of the multipath parameter vectof con- the estimates fo®, is bounded below byig!(6:)E For
ditoned on the agent's position. Based on the models B¥o-dimensional localizatiorin = 2), we aim to reduce the
wideband channel$ [36]. [40]. [64] and UWB channéls| [14fimension of the original FIM to the x 2 EFIM.

[21], [24], [286], [3€], we derivef(kk|p) in (BI) in Appendix

12Note thatJ ¢ in [@I0) requires averaging over the random parameters, and

Bl and show that hence does not depend on any particular valu@.dh contrastJe in (@) is
a function of a particular value of the deterministic partenerectoré.
f("ik|P) = f("”vk|dk) , (9) BNote thatJe(01) does not depend on any particular valueéaf for a
random parameter vectér , whereas it is a function d?; for a deterministic
wheredy, = ||p — px/|- parameter vecto# .

14The right hand side of{13) is known as the Schur complemerthef
Wwhen a subset of parameters are deterministic, they arénalied from matrix C [66].
1(8). BWheno: € RY, the EFIM has only one element sindg(01) is a scalar.
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I1l. EVALUATION OF EFIM

In this section, we apply the notion of equivalent Fisher r(¢)
information (EFI) to derive the SPEB for both the case with 1st
and without a priori knowledge. We also introduce the notion
of ranging information (RI), which turns out to be the basic 2nd
component of the SPEB. Ith  +1th

A. EFIM without A Priori Knowledge

First consider a case in which a priori knowledge is unavail- not overlap
able. We apply the notion of EFI to reduce the dimension of first contiguous-cluster
the original FIM in [7), and the EFIM for the agent’s position
is presented in the following proposition.
Proposition 1: When a priori knowledge is unavailable, arrig. 2. An illustration of the first contiguous-cluster (¢aiming ! paths) in

EFIM for the agent’s position is a LOS signal.
Je(p, {H;C ke NL}) = iQ TLALTI, (24)
C
whereT, and A, are given by[[@1) and(#2), respectively. WhereX is the RIl from anchot, given by
Proof: Let A = TNLANLT.II\-IL"FTLALTI, B = TN A, 871'252 )
andC = Ay, in (7). Applying the notion of EFI in[{113) leads A = = (1 —xk)SNR, 7. (16)

to the result. O - o
Remark 1:When a priori knowledge is unavailable, NLOS" @8), 0 < xx < 1is given by [61),

signals do not contribute to the EFIM for the agent’s poaitio 400 o ) 1/2
Hence we can eliminate these NLOS signals when analyzing N Loo FISU)df (17)
localization accuracy. This observation agrees with tiselts fjf: |S(f)|2df ’
of [29], but the amplitudes of the MPCs are assumed to hgg
known in their model. (D2 1+ | g0 F\2g
Note that the dimension of the EFIM if_{14) is much SNRJ(CI) N oy |* oo 1S() f_ (18)

larger than2 x 2. We will apply the notion of EFI again to No

further reduce the dimension of the EFIM in the following-y thermore, only the first contiguous-cluster of LOS signa
theorem. Before the theorem, we introduce the notion of thgntains information for localization.

first contiguous-cluster and ranging information (RI). Proof: See AppendiX C=A. n

Definition 3 (First Contiguous-Cluster)The first  Remark 2:In Theorem[dL, 3 is known as theeffective
contiguous-cluster is defined to be the set of pathsnqwidth [50), [67], v, is called path-overlap coefficient
{1,2,.... 5}, such thafr — 7 [ < Tsfori = 1,2,...,j =1, (pOC) that characterizes the effect of multipath propagati

and|7; — 7;1| > Ts, whereTs is the duration ofs(¢). for localization, andsNR'" is the SNR of théth path inr ().
Definition 4 (Ranging Information)The ranging informa- We draw the following observations from Theor& 1:

tion (RI) is a2 x 2 matrix of the formA J,(¢), where\ is a . . . :
nonnegative number called the ranging information intgnsi  * The original I_:IM in (1) can be transfprmed into a simple
(RIl), and J;(¢) a 2 x 2 matrix called the ranging direction 2 x 2 EFIM in a canonical form, given byL(15). as a
matrix (RDM) with angle¢, given by weighted sum of the RDM from individual anf:hors..Each
anchor (e.g. anchadr) can provide only one-dimensional
cos?¢  cos¢sing RI along the directionp, from the anchor to the agent,
sin? ¢ : with intensity)\k
« The RII \;, depends on the effective bandwidth «f),

The first contiguous-cluster is the first group of non-disjoi the SNR of the first path, and the POC. Siice i < 1,

paths (see Figll# The RDM is one-dimensional along path-overlap in the first contiguous-cluster will reduce th

Ji(g) 2

cos ¢sin ¢

the direction¢ with unit intensity, i.e.,J;(¢) has one (and RII, thus leading to a higher SPEB, unless the signal via
only one) non-zero eigenvalue equalltavith corresponding the first path does not overlap with othesg. (= 0).
eigenvectorg = [ cos¢ sing }T. « The POCyy in (€]) is determined only by the waveform
Theorem 1:When a priori knowledge is unavailable, the  s(¢) and the NLOS biases of the MPCs in the first
EFIM for the agent’s position is 8 x 2 matrix contiguous-cluster. The independencexqfon the path
amplitudes seems counter-intuitive. However, this is due
Je(p) = kZN M Jr (0r) (15) to the fact that, although Iargéf) causes)severe interpath
ENL

interference for estimating the TOA! , It increases

18The first contiguous-cluster, defined for general widebaukived sig-
nals, may contain many MPCs. Two paths that arrive at tinand ; are 17For notational convenience, we suppress the dependengg ahd )\,
called non-disjointed ifr; — 7;| < Ts. on the agent’s positiop throughout the paper.
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the estimation accuracy far”), which in turn helps to RII of NLOS signals can be positive, and hence these signals
mitigate the interpath interference. contribute to the EFIM as opposed to the case in Theddem 1.
We can specialize the above theorem into a case in whichCorollary 2: A priori channel knowledge increases the RII.
the first path in a LOS signal is completely resolvable, i.elf the absence of such knowledge, the expressions of RII in
the first contiguous-cluster contains only a single compane(653) and[(65b) reduce tb (16) and zero, respectively.

Corollary 1: When a priori knowledge is unavailable and  Proof: See Appendik C-D. O
the first contiguous-cluster of the received waveform from Corollary 3: LOS signals can be treated as NLOS signals
anchork contains only the first path, the RIl becomes with infinite a priori Fisher information 0%21), ie., bg
§72 2 is known. Mathematically[(6%a) is equivalent fo_(65b) with
A = ——5—SNRY!). (19) Fo(6;0" (") = oc.
Proof: See AppendiCCB. . Proof: See Appendix C-E. 0

_ - ) ) Remark 5:Corollary[2 shows that Theorelnt 2 degenerates
Remark 3:When the first path is resolvable, = 0in (18) 5 Theorentll when a priori channel knowledge is unavailable.
and hence\, attains its maximum value. However, when th‘f«/loreover, Corollany(B unifies the LOS and NLOS signals

signal via other paths overlap with the first one, these patfigyer the Bayesian estimation framework: the NLOS biases
will degrade the estimation accuracy of the first path’'svairi ; (1)

. S ) b’ (k € ML) can be regarded as random parameters with
time and hence the_ RII. Corollaly 1 s intuitive a_md IMpottan; gnite 5 priori Fisher information instead of being elirated
the RII of a LOS signal depends only on the first path if th

G hi able. | h I oth h om 6 as in Sectioi I[=A. Hence, all of the signals can be
':.St _patt (;S rezot\f/]a €. ltf‘ S?r:: a callge, all ot ler tp?t s;ian Bdeled as NLOS, and infinite a priori Fisher information of
eliminated, and the multipath signal is equivalent to a gnbg) will be assigned for LOS signals.

with only the first path for localization. ; L
: We next consider the case where a priori knowledge of the
From Theorerilll, the SPEB can be derivedd (20) shown Hent's position is available in addition to channel parizmse

the bottom of the page. When the first paths are resolvable,
o . te that the topology of the anchors and the agent changes
Corollaryll, we have all; = 0 in (20) and the correspondmgwitq the position of the agent. The x 2 EFIM is given in

P(p) becomes the same as those based on single-path si , which is more intricate than the previous two cases. To

i [¢ (
models in _[.)], [2.)]._However, those results are not accuraign some insights, we consider a special case Fhere
when the first path is not resolvable.

Ep{9(p)} =9(P), (22)

B. EFIM with A Priori Knowledge in which p = E, {p} is the agent’s expected position, for
We now consider the case where there is a priori knowledggme functiong(-) involved in the derivation of the EFIM

of the channel parameters, but not of the agent's positiqdee AppendiXx CIF).

In such cases, sincp is deterministic but unknownf(p) Proposition 2: When the a priori position distribution of

is eliminated in [(B). Similar to the analysis in the previoughe agent satisfie§ (22), and the sets of channel parameters

section, we can derive thex 2 EFIM for the corresponding corresponding to different anchors are mutually indepetde

FIM in (10). the EFIM for the agent’s position is 21x 2 matrix
Theorem 2:When a priori knowledge of the channel pa- B B
rameters is available and the sets of channel parameters Je(p) = > M Jr (61) + Bp, (23)
corresponding to different anchors are mutually indepatide keNy
the EFIM for the agent’s position is 2x 2 matrix where, is given by [6B), andb, is the angle from anchde
JeP) = D M@+ Y MJi(en), (21) P _
k;; kezN:”L R Prooli: g?rehAppendlﬁc}'l dge of th ts posit
L . emark 6:The a priori knowledge of the agent’s position
vl\\l/E(e)rg /:icg:alglven by [65k) for LOS signals and {85b) fOris exploited, in addition to that of the channel parametfens,

localization in Propositio]2. The expressions for the EFIM
] . can be involved in general. Fortunately, [f122) is satisfied

Remark 4._T_he_orerr1]2 g(_enerallzes the res_,ult of Theo@”‘ ﬂ\e EFIM can be simply written as the sum of two parts as
from deterministic to hybrid parameter estimafidnin this shown in [23): a weighted sum of the RDMs from individual

case, the EFIM can still be expressed in a canonical form a3 : :
i’ S chors as in the previous two cases, and the EFIM from
a weighed sum of the RDMs from individual anchors. Note P

that due to the existence of a priori channel knowledge, thesthis occurs when the agent's a priori position distributisconcentrated

in a small area relative to the distance between the agenthendnchors,
18This is the case where the agent's positipris deterministic and the so thatg(p) is flat in that area. For example, this condition is satisfied i
channel parameters are random. far-field scenarios.

Proof: See AppendiX C-IC.

_ 2 Y pen: (1 - xi) SNRYY
81202 S e Somen (1= Xi)(L = xm) SNRVSNREY sin? (¢, — ¢ )

P(p) (20)
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the a priori knowledge of the agent’s position. This result A 4
unifies the contribution from anchors and that from the arprio
knowledge of the agent’s position into the EFIM. The concept
of localization with a priori knowledge of the agent’s pamit
is useful for a wide range of applications such as successive Y
localization or tracking. A”’“‘VY

2

Array
P

p _ -7
\\\ //—X SO
IV. WIDEBAND LOCALIZATION WITH ANTENNA ARRAYS AN x

Y

A
In this section, we consider localization systems using % AN Y
wideband antenna arrays, which can perform both TOA and Ay A Array
AOA measurements. Since the orientation of the array may be ’
unknown, we propose a model to jointly estimate the agent's
position and orientation, and derive the SPEB andstigared
orientation error boundSOEB).

Na

Fig. 3. An antenna array is described by the reference goitite orientation
o, and the relative positions of the antennas.

A. System Model and Squared Orientation Error Bound

Consider a network where each agent is equipped with an_.. : .
N,-antenna arra@ which can extract t?oth the 'I(']O,fgnd AOArer'at|0nsh|p between the position of th¢h antenna and the
: . : . . delay of thelth path is
information with respect to neighboring anchors. V¢ =
{1Ar2ré' . .A,rga} denote the set of antennas, and WY 2 70— 1 { IpA™ — byl + bff,)c} . (24)
[zn Y yn Y ]T denote the position of the agentish antenna, c
which needs to be estimated. Lg&t, denote the angle from The parameters to be considered include the position of

anchork to the n kath antenna, i.e., the reference point, the array orientation, and the nuesanc
Array multipath parameter as
o ~1 Yn — Yk - - - T
¢nk = tan 7x$rray—xk . 6=[p" ¢ klORY n},ﬂ ], (25)

wherek,, consists of the multipath parameters associated with

Since relative positions of the antennas in the array arellysu the received waveforms from all anchors at fhté antenna,

known, if we denotep = [z y]" as a reference point angd T
as the orientation of the arrg¥,then the position of theith Fn=[K1 Kio = KLn | s

antenna in the array can be represented as [Fig. 3) and eachk,,;, consists of the multipath parameters associated

with 7, (%),
ﬁrray:p_’_ [ iInEpﬂO; ]  neN, k(1) .
Yn(P, ¥ - { AP BN (RN }

nk nk

whereAxz, (p, ¢) and Ay, (p, ¢) denote the relative distance

in » and y direction from the reference point to theth Similar to Sectior 1I-B, the overall received waveforms at

the antenna array can be represented, using the KL expansion

antenna, respectively. T
’ _ T .T ... T
Since the array orientation may be unknown, we classify th¥ * = [x] 3 ri,] » where
localization problem intcorientation-awareand orientation- r,=[rhy th, - 1l }T
n — n,l n,2 n,Np )

unawarecases, where can be thought of as a random pa- . . ) .
rameter with infinite (orientation-aware) and zero (origion- 1N Which r,,;. is obtained by the KL expansion of..(t).

unaware) a priori Fisher information [46]. Definition 5 (Squared Orientation Error Bound}he
The received waveform at the agienﬁ$h antenna from sduared orientation error bound (SOEB) is defined to be
anchork can be written as Pp) 2 [J51]3’3 _
Lk
rac(t) = all) s (t _ Tr(fk)) Fz(t), 1€ 10, Ton), B. EFIM without A Priori Knowledge
1=1 We first consider scenarios in which a priori knowledge is

o o _ __unavailable. Following similar steps in Sectionll-B, wave
wherec,,;, andr, are the amplitude and delay, respectively,, . following theorem.

of theith path, L., is the number of MPCs, and,.(t) repre-  Theorem 3:When a priori knowledge is unavailable, the
sents the observation noise modeled as additive white @GaUS$E|vs for the position and the orientation, using af-

processes with two-side power spectral densiy/2. The ,nienna array, are given respectively by

2%Each anchor has only one antenna here. We will discuss the afas  JA™(p) — Z Jo(pha) — 1 qq’,
multiple antennas on anchors at the end of this section. ~ " ZneNa Zker AnkhZ ),

2INote from geometry that the orientatianis independent of the specific neNa 26
reference point. ( )
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and increase position accuracy. Though counterintuitive at
-1 first, this finding should not be too surprising since AOA
JA (o) = Z Z Akh2, — g [Z Je(pﬁrray)] q. is obtained indirectly by the antenna array through TOA
NN heN N, measurements, whereas the TOA information has already
(27) been fully utilized for localization by individual anterma
o . « The gain of using antenna arrays for localization mainly
where )\, is given by [78),qnx = [ cosdnr  singus |, comes from the multiple copies of the waveform received
and at the N, antennas (seﬂk@,and its performance is

similar to that of a single antenna wifti, measurements.
The advantage of using antenna arrays lies in their ability
of simultaneous measurements at the agent.

9= Z Z Ank Pk ik 8 The equality in[(31) is always achieved, independent of ref-
neENa keENy . f R . j .
erence point, in orientation-aware localization. Howegoaty
d d a unique reference point achieves this equality in oriérat
hok = — Azp (P, @) €08 Pnr, + — Ayn(P, ) Sin ¢y - unaware localization. We define this unique point as the
dy dy 29 orientation center.
(29) Definition 6 (Orientation Center)The orientation center is
Proof: See AppendiX D-A. O a reference poinp* such that
Corollary 4: The EFIM for the position is given by
I (p*) = Y Je(ph™).

IE¥(p) = > Te(Pp™), (30) nENG
neNa

Je(pﬁrray) = Z /\nk Jr((bnk)a

kEND

and

Proposition 3: Orientation centep* exists and is unique in

for orientation-aware localization. . . N .
rientation-unaware localization, and hence for @ny p*,

Proof: (Outline) In orientation-aware localization, the®

angle ¢ is known and hence excluded from the parameter JATY (1) < JATY(p*)
vector @ in (28). Consequently, the proof of this corollary is e P e WP
analogous to that of Theorel 3 except that the components Proof: See AppendiXD-B. O

corresponding ta are eliminated from the FIM i {69) and

Remark 8:The orientation centgp* generally depends on
(Z0). One can obtairi (B0) after some algebra. ! ! ® g y cep

the topology of the anchors and the agent, the properties of

. Arrayy _ )
Remark 7:The E_F IM. Je(,p" ) In (26) and [(3D) corre the received waveforms, the array geometry, and the array
sponds to the localization information from th¢h antenna. orientation. Sincey = 0 at the orientation center, the EFIMs

We draw the following observation from the above theoremfor the array center and the orientation do not depend on

A - ™q : .

« The EFIM Jc"¥(p) in (28) consists of two parts: 1) each other, and hence the SPEB and SOEB can be calculated

the sum of localization information obtained by indiseparately. The proposition also implies that the SPEB of

vidual antennas, and 2) the information reduction dugference points other thast will be strictly larger than that

to the uncertainty in the orientation estimate, whichf p*. The SPEB for any reference point is given in the next

is subtracted from the first p&d. Since qq in the theorem.

second part is a positive semi-definite< 2 matrix and  corollary 5: The SOEBP(y) is independent of the refer-

D neNa 2okeny Akl IS always positive, we have thegnce pointp, and the SPEB is

following inequality

Jé\rray(p) < Z Je(pﬁ‘rray) ) (31) P(p) = P(p*) + Hp - p*||2 . P(‘P) . (32)

n€Na Proof: See AppendiX D-C. O

The inequality implies that the EFIM for the position, Remark 9:The SOEB does not depend on the specific
using antenna arrays, is bounded above by the sumreference point, which was not apparent [nl(27). However,
all EFIMs corresponding to individual antennas, sincghis is intuitive since different reference points onlyrottuce
the uncertainty in the orientation estimate degrades tHiferent translations, but not rotations. On the otherchan
localization accuracy, except fay = 0 or orientation- different reference poinp results in different.,,;,’s and hence
aware localization (i.e.[(30)). different q, which in turn gives different EFIM for position

. The EFIM J¢"(p) and J¢" () depend only on the (see[[ZB)). We can interpret the relationshipial (32) asvest
individual RI between each pair of anchors and antethe SPEB of reference poiptis equal to that of the orientation
nas (through\,x's and ¢,.'s), and the array geometry centerp* plus the orientation-induced position error, which is
(through h,;’s). Hence it is not necessary tintly proportional to both the squared distance frepmo p* and
consider the received waveforms at t& antennas, the SOEB.
implying that AOA obtained by antenna arrays does not

23In near-field scenarios where the antenna separation is emwrtter of
22For notational convenience, we suppress the dependenag gf)\,.,, the distances between the array and the anchors, additamalthat arises
and q on the reference positiop. from the spatial diversity of the multiple antennas may besgide.



SHEN AND WIN: FUNDAMENTAL LIMITS OF WIDEBAND LOCALIZATION— PART I: A GENERAL FRAMEWORK 9

C. EFIM with A Priori Knowledge Definition 7 (Array Center):The array center is defined as

We now consider a scenario in which the channel paramet@@ POsitionpo, satisfying
vector k,,;; independent for different’s and k's. The inde-
pendence assumption serve as a reasonable approximation ofz Azn(po, ) =0 and Z Ayn(Po, ¢) = 0.

.. . . . neNa neNa
many realistic scenarios, especially near-field cases.rivitne
different sets of channel parameters are correlated, auitee ~ Proposition 5: The array center becomes the orientation
provide an upper bound for the EFIM. center in far-field scenarios.

Proposition 4: When a priori knowledge of channel pa- Proof: See AppendixD-D. O
rameters is available and the set of channel parameters colRemark 10:Since the orientation center has the minimum
responding to different anchors and antennas are mutueliEB, Propositiod]5 implies that the array center always
independent, the RI\,; becomes[(742). achieves the minimum SPEB in far-field scenarios. Hence

Proof: See AppendiXD-A. 0 the array center is a well-suited choice for the reference

We then consider the case where a priori knowledge pbint, since its position can be determined from the array
the agent's position and orientation is available in additi geometry alone, without requiring the received wavefornt a
to channel knowledge. Note that the topology of the agentise knowledge of the anchor’s topology.
antennas and anchors changes with the agent’s positions anigh far-field scenarios, we choose the array cepigias the
orientations. The expression of the EFIM can be derivadference point. The results of TheorEim 3 become
analogous to[{87), which is involved in general. Again to

gain insights about the contribution of a priori positiordan J&"™(po) = Na Z Ak Je(9r) 5
orientation knowledge, we consider scenarios under ciomdit keNy
and
EP#’ {g(pa 90)} = g(l_)a @) ’ (33)

Ty =D > Nl

whereg = E,, {¢}, for some functiong;(-) involved in the N RN
derivation of the EFIM. B

Corollary 6: When a priori position and orientation dis-Whereh, is a function ofpo. Similarly, when the a priori
tribution of the agent satisfie§ {33), and the sets of chanmglsition and orientation knowledge is available and coowit
parameters corresponding to different anchors and ansenfi2d) is satisfied, the results of Propositidn 6 become
are mutually independent, the EFIMs for the position and the

) " . - ) Array _ 3 =z —_
orientation, using arVy-antenna array, are given respectively Je"¥(po) = Na Z M Ir(dn) + Ep
by kENp

and
JArray P)= = + XnkJ (lgnk Y T —_
R R YD NN
1 neNa keENp
aq’,

whereh,,;, is a function ofpy = Ep,{po}.
Note that the localization performance of @j-antenna

Zne/\/a Zker ;\nk Bik +Z

and . : .
array is equivalent to that of a single antenna with
JA () = 2, + Z Z Auh?), measurements, regardless of the array geometry, in fdr-fiel
nENakeN, scenarios.
-1 2) Multiple antennas at anchors:When anchors are
- qT (Z Z Ank Jr(énk) + Ep> q, equipped with multiple antennas, each antenna can be viewed
nENakeNy as an individual anchor. In this case, the agent's SPEB goes

down with the number of the antennas at each anchor. Note

TheoreniB ofp and 3, respectively, an@,, = Fg(0; 0, ). that all _the antennas_of a give_n anchor pro_vide RI approxi-
Proof: (Outline) The proof of this corollary is analogou ately in the same direction with the same intensity, as they

to that of Theoreni]3. Note that when conditidn](33) igre closely Iocated: ] o
satisfied, the a priori knowledge of position and orienfatio _3) Other related issuesOther issues related to localization

for localization can be characterized in the EFIM by using tH/SiNg Wideband antenna arrays include the AOA estimation,

approximation as in the proof of Propositibh 2. the effe<_:t of multipath geometry, and the effect of array
geometries. A more comprehensive performance analysis can

be found in [11].

where Ak, éni, hnr and q are corresponding functions in

D. Discussions

1) Far-field scenariosThe antennas in the array are closely
located in far-field scenarios, such that the received veawres
from each anchor experience statistically the same prdjpega  In this section, we consider scenarios in which the clocks of
channels. Hence we havg,, = ¢, and \,,x = A\, for all all anchors are perfectly synchronized but the agent opgrat
n, leading toJe(pﬁ"ay) = Je(p). We define an important asynchronously with the anchofs [68]. In such a scenar®, th

reference point as follows. one-way time-of-flight measurement contains a time offset

V. EFFECT OFCLOCK ASYNCHRONISM
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between the agent’s clock and the anchors’ clcidere, results from the uncertainty in the additional paramefer
we investigate the effect of the time offset on localizatiowhich degrades the localization accuracy. Hence the SPEB in

accuracy. the presence of uncertain time offset is always larger than o
equal to that without a offset or with a known offset.
A. Localization with a Single Antenna We next consider the case where a priori knowledge of

. . . . the agent’s position is available. When the a priori pogitio
Consider the scenario described in Secfidn Il, where each, ..~ .. e .
agent is equipped with a single antenna, When the agegrlw tribution of the agent satisfiels {22), we have the foliayvi

. ) Zcorollary.
operates asynchronously with the anchors, the relatiprshi Corol?/ary 7: When the a priori position distribution of
(2) becomes :

the agent satisfie§_(22), and the sets of channel parameters
n 1 ! i i i
T;g) _ 2 [ Ip — prll + b,g) + B}, corresponding to dlffere.n.t anchors are .mutually |ndepaqde
c the EFIMs for the position and the time offset are given
where B is a random parameter that characterizes the timespectively by

offset in terms of distance, and the corresponding paramete 5 B B 1 .
vector becomes ) = D> M Ji(dk) +Ep — S wiSs L
9 [ T B T T T ]T keNy RENy 7 —°
= K K s K .
p 1 2 Np and
Similar to Theoreni]2, wherp is deterministic but unknown -1
and the remaining parameters are random, we have the fol; ) — Z e +Ze—al [ Ep+ Z NeJo(dr) | s,
lowing result. v heNs

Theorem 4:When a priori knowledge of the channel pa- o o
rameters and the time offset is available, and the sets Wpereox is the angle from anchdr to p, Ay is given by [€8),
channel parameters corresponding to different anchors &Rélds is a function ofp.

mutually independent, the EFIMs for the position and theetim ~_ Proof: (Outline) Conditions in[(22) hold in far-field sce-
offset are given respectively by narios, and we can approximate the expectation over random

parameter vectop using the average positign By following
Jg’(p) — Z e Ji(dn) — = qB qg (34) the steps of Theorefd 4 and Propositidn 2, we can derive the
ke 2 keny Mk + EB theorem after some algebra. O

and
-1 B. Localization with Antenna Arrays
Je(B) = Z M + 28 —qg (Z Ak Jr(d)k)) as, (35) Consider the scenario describing in Secfioh IV where each
kENy keENs agent is equipped with an array 6f, antennas. Incorporating
the time offsetB, (24) becomes

where )\, is given by [(65b).qs = > n;, Ax ar, and
1
=o 2 Fy(5; B.5). = 2108 ol 4+ B],
Proof: See AppendiX E-A. [0 and the corresponding parameter veddoecomes
Remark 11:Sinceqg qf, is a positive semi-definite matrix T Tt T
and}, .\, Ak is positive in [3#), compare to Theorém 2, we O=[p" ¢ B ki Ry - Ry .
always have the inequality Similar to Theorenil3, where and ¢ are deterministic but
JB(p) < Jo(p) (36) unknown and the remaining parameters are random, we have

the following theorem.

where the equality in[(36) is achieved for time-offset-kmow Theorem 5:When a priori knowledge of the channel pa-
localization (i.e.,Zg = o0), or time-offset-independent local-rameters is available, and the sets of channel parameters
ization (i.e.,qg = 0). The former corresponds to the caseorresponding to different anchors and antennas are niyitual
where accurate knowledge of the time offset is availablgydependent, the EFIM for the position, the orientationd an
while the latter depends on the RII from each anchor, alﬂﬁ'e time offset, using amVz-antenna array, is given bﬂg?)
the topology of the anchors and agent. The inequality of (3§hown at the bottom of the page, whéfe= oo and= = 0

24 . o o , correspond to orientation-aware and orientation-unai@re

We consider scenarios in which localization time is shdetiee to clock

drifts, such that the time offset is the same for all measergmfrom the calization, respectively, andﬁk’ Qnk, andhy, are given by
anchors. (72), (28), and[{29), respectively.

ZneNa Zke.’\fb Ank Qnk q-rrzk ZneNa ZkENb Pk Ak Ank Z"ENa ZkEN” Ank Gk
Array-B =
J"VE = 2 neN 2keNy, mk Ank ar D neNs ke hig Ak + 2 D oneNa 2okeny Mmk Ank (37)
ZneNa Zke/\/b Ank quk Zne/\/a ZkGNb Pk Ak ZHGNa Zke/\fb Ank + 8
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Proof: See AppendiXE-B. O _ -

Remark 12:Theorenib gives the overallx 4 EFIM for the .7 RN
position, the orientation, and the time offset, where idial y N
EFIMs can be derived by applying the notion of EFI again. / \

We finally consider the case where a priori knowledge of / \
the agent’s position and orientation is available. The ERM 45 ) |y,
far-field scenarios is given in the following corollary.

Corollary 8: When a priori knowledge of the agent’s po- \
sition, orientation, time-offset, and the channel paramsets \ /
available, and the sets of channel parameters correspptalin N
different anchors and antennas are mutually independent, i N d
far-field scenarios, the EFIMs for the position, the ori¢iotg S~ @ -
and the time offset, using aiV,-antenna array, are given Ay
respectively by

Jérray—B(pO) = N, Z ;\k Jr(ék) +Ep

Fig. 4. Network topology: Four anchors are equally spaced citcle with
an agent at the center. All signals from the anchors to thetage LOS.

keNy
1 I
Na Xpens M + Zs RERLE a priori knowledge[[50]. High SNR can be attained using se-
Array-B - . guences with good correlation properties|[69]+71], orfdim
Je (p) = Z Z e hg + 26, repeated transmissions. Therefore, the SPEB is achievable
neENa kENy
and C. Generalization to 3D Localization
JAB(B) = N, Z M + Zg All results obtained thus far can be easily extended to three
kEND dimensional case, i.ep = [z y z]" and the RDM becomes
-1
_ _ _ T
—ag <Na S X Ie(e) +Ep> as Tr(ow Ou) = i e
keNy wherep;, and ¢, are the angles in the coordinates, and

wherepy is the expected position of the agent's array center,
¢y is the angle from anchar to py, and )\, s, andh,,; are

functions ofpg. Similarly, we can obtain a correspondig< 3 EFIM in the
Proof: See AppendiXx EZC. O  form of (22).

. . T
qr = [ COS Qf, COS P, sin g cos ¢, sin oy }

VI. DISCUSSIONS VII. NUMERICAL RESULTS
In this section, we will provide discussions on some related | this section, we illustrate applications of our analgtic
issues in the paper. It includes 1) the relations of our tesal resylts using numerical examples. We deliberately restric
the bounds based on signal metrics, 2) the achievabilith®f tattention to a simple network to gain insights, although our
SPEB, and 3) generalization of the results to 3D Iocalimtioana|ytica| results are valid for arbitrary topology withyan
number of anchors and any number of MPCs in the received
A. Relation to Bounds Based on Signal Metrics waveforms.

Analysis of localization performance in the literature nigi
employs specific signal metrics, such as TOA, AOA, RSS, ard Effect of Path-Overlap

TDOA, rather_ than utilizing the e_ntire received Waveforms._ We first investigate the effect of path-overlap on the SPEB
Our analysis is based on the received waveforms and expljf§en a priori knowledge is unavailable. In particular, we
all the localization information inherent in these signatrics, compare the SPEB obtained by thell-parameter model
impli_citly or e>.<plicitly. In particular, TOA qu joint TOAAOA proposed in this paper and that obtained by ratial-
metrlcs_were m_co_rporated in ouran_al_y3|sm Sediion III_d parameter modeproposed in[[28]. In the partial-parameter
respectively. Similarly, TDOA and joint TDOA/AOA metrics o e, the amplitudes of MPCs are assumed to be known and
were included in the analysis of Sectloh V, and the RSS metfignce excluded from the parameter vector.

has been implicitly exploited from a priori channel knowded  ~gpsider a simple network with four anchory( = 4)

in Section T-C2. equally spaced on a circle and an agent at the center regeivin
all LOS signals (see Fid]4). Each waveform consists of two

B. Achievability of the SPEB paths: one LOS pathS(\IRECl) = 0 dB) and one NLOS path
Maximum a posterior (MAP) and maximum likelihood(SNR;” = —3 dB), and the separations of the two paths

(ML) estimates respectively achieve the CRB asympto;ical’r,f) — r,gl) are identical for allt. In addition, the transmitted

in the high SNR regimes for both the case with and withoutaveform is a second derivative of Gaussian pulse with width
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a) SPEB with a priori knowledge af!") and (2), while = =0.
Fig. 5. SPEB as a function of path separation for the fulapaeter, partial- @ P g k Ak b(xf)

parameter, and non-overlap models, without a priori kndgde

0.08

Full-parameter

- = = Partial-parameter|}
-—-—- Non-overlap

approximately equal to 4 ns. Figuré 5 shows the SPEB as %07}
:Jnction of path separation?) — 7'151) according to Theorem 0.06h
.

We can draw the following observations. First of all, path- ~ 0.05f
overlap increases the SPEB in both models, since it redbees i
ability to estimate the first path and hence decreases the R
Note that the shape of the curves depends on the autocorre @ g3}
tion function of the waveforny(t) [47]. Secondly, when the
path separation exceeds the pulse width (approximately,4 n: ~ 092f
the two models give the same SPEB, which equals the no

o0.01}
overlapping case. In such cases, the first contiguouseclus!
contains only the first path, and hence the RIl is determine 0 : : :
: . . I 0 1 2 3 4
by the first paths. This agrees with the analysis in Se€fibn II Path separation (ns)

_Th|rdly, excludmg the amplitudes from the parameter vecto (b) SPEB with a priori knowledge of?), while = (1, = £ (s, — 0.
incorrectly provides more RI when the two paths overlap, and o oy,
hence the partial-parameter model results in a loose boupd.

. . ) 19: 6. SPEB with a priori knowledge of the amplitudes and MeOS
This demonstrates the importance of using the full-paramebiases as a function of path separation, respectively.

model.

B. Improvement from A Priori Channel Knowledge

We th ity th ibut  th iori knowled accuracy, as indicated in Corollaky 2. Moreover, the NLOS
€ then quantily the contribution of the a priori knowle g‘(n:omponents are shown to be beneficial for localization in the

of (;:har?nel pllarameters to the ?]PEB' The neENork _tOpglog_Yesence of a priori biases knowledge, as proven in Section
and channel parameters are the same as those in Se Secondly, as the a priori knowledge of the amplitudes

[VII-A] except a priori knowledge O@I(cl)’ ay” and;” is now approaches infinity, the SPEB in F[g. §(a) obtained using the
available. For simplicity, we consider these parameterseto full-parameter model converges to that in Fid. 5 obtained
independent a priori and denote the a priori Fisher infolonat | i the partial-parameter model. This is because théapart
of parametert, by 2y, = Fo(0;61,61). In Fig.[6(@), the ,,ameter model excludes the amplitudes from the parameter
SPEBs are plotted as funct|0n?1)of the g?th separation &(ctor, which is equivalent to assuming known amplitudes an
different a priori knowledge ot and oy (no a priori phence infinite a priori Fisher information for the amplitsde
knowledge ofb”)); while in Fig.[6(B), the SPEBs are plotted(= ) = = ) = oc). Thirdly, it is surprising to observe that,
for different a priori knowledge of”’ (no a priori knowledge whén the a'priori knowledge of the NLOS biases is available,
of a;” anda,(f)). path-overlap can result in a lower SPEB compared to non-
We have the following observations. First of all, the SPEBverlapping scenarios. This occurs at certain regions tf pa
decreases with the a priori knowledge of the amplitudes amdparations, depending on the autocorrelation functiorf
the NLOS biases. This should be expected since a pritmiuitively, path-overlap can lead to a higher SNR compaoed
channel knowledge increases the RIl and thus localizationn-overlapping cases, when a priori knowledge of the NLOS
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Fig. 7. POC as a function of the path inter-arrival time fdfedient number

of MPCs. Fig. 8. RAO as a function of the thresholgy for different path inter-

arrival time 1/v with L = 50. The five curves correspond to inter-arrival
time 1/v = 3.5,2.5,2,1.6,1.4 ns, respectively.

biases is available.

decreases from 1 to 0, as the threshglg increases or the
path arrival rater decreases. This should be expected because
We now investigate the dependence of PQCon path the probability of path-overlap decreases with the pativadrr
arrival rate. We first generate channels wittMPCs according rate, and consequently decreases the RAO. The RAO can be
toa Simple Poisson model with a fixed arrival ratmnd then used as a measure to quantify the channel qua“ty for ranging

calculatex according to[(6i1). Figutie 7 shows the average patind to guide the design of the optimal transmitted waveform
overlap coefficient as a function of path inter-arrival réite)  for ranging.

for different number of MPCs, where the averaging is obthine

by Monte-Carlo simulations.
We have the following observations. First of all, the Pc E- SPEB and SOEB for Wideband Antenna Array Systems

C. Path-Overlap Coefficient

is monotonically decreasing from 1 to O withv. This agrees ~ We consider the SPEB and SOEB for different reference
with our intuition that denser multipath propagation causeoints of a uniform linear array (ULA). The numerical result
more interference between the first path and other MPCs, aar¢ based on a network with six equally spaced anchor nodes
hence the received waveform provides less RIl. Secondly, fgVy, = 6) located on a circle with an agent in the center. The
a fixedv, the POC increases with. This should be expectedagent is equipped with a 4-antenna array, (= 4) whose

as additional MPCs may interfere with earlier paths, whicspacing is 0.5 m. In far-field scenarios,, = Ax = 10 and
degrades the estimation accuracy of the first path and thiys, = ¢x. Fig.[9(a) and Fig. 9(b) show the SPEB and SOEB,
reduces the RIl. Thirdly, observe that beyohd= 5 paths,y respectively, as a function of different reference poimnal
does not increase significantly. This indicates that thectfif the ULA for different a priori knowledge of the orientation
additional MPCs beyond the fifth path do not contribute to thend reference point.

RII, regardless of the power dispersion profile of the reegtiv We have the following observations. First of all, a priori
waveforms. knowledge of the orientation improves the localizationwacc
racy as the SPEB decreases wih. The curves foE, = 0

and =, = oo correspond to the orientation-unaware and

_ ~orientation-aware cases, respectively. As a counterpgripri
We have observed that the channel quality for ranging ji;gowledge of the reference point improves the orientation

characterized by the POC. If the multipath propagation ha%é‘curacy as the SOEB decreases véth. This agrees with
larger POC (close to 1), we may consider the channel in outagi&h intuition and Theorerl 3. Secondly, the array center has
for ranging. We define the ranging ability outage (RAO) asthe pest localization accuracy, and its SPEB does not depend
a on £, which agrees with Theoref 3. On the other hand, the
Poul(xin) = B > xin} arraf center exhibits the worst orientation accuracy, dsd i
where xu is the threshold for the POC. The RAO tells uSOEB does not depend &,. This should be expected since
that with probability pou(xw), the propagation channel isthe knowledge for the array center tells nothing about theyar
unsatisfactory for ranging. orientation. Thirdly, the SPEB increases with both theatise
The RAO as a function of for different Poisson arrival from the reference point to the array center and the SOEB, as
rate is plotted in Figl18 for a channel with = 50. The RAO predicted by Corollar]5. On the contrary, the SOEB decrease

D. Outage in Ranging Ability
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Fig. 9. SPEB and SOEB with different a priori knowledge of @ttgeposition Fig. 10. SPEB and STEB with different a priori knowledge oé ttime
and orientation, respectively offset, and=g = 0, 10, 102, co respectively.

as a function of the distance from the reference point to the _ _ _
array center if a priori knowledge of the reference point is We have the following observations. First of all, both the

available. This observation can be verified by Thedrém 3t La3PEB and STEB decrease with the a priori knowledge of the
but not least, the SPEB is independent of specific refererféide offset. The SPEB for the casés = oo in Fig. [10(a),

point if =, = oo, as referred to orientation-aware localizatiori;&-, known time offset, is equal to that of a system without
and the SOEB is independent of the specific reference potiime offset. On the other hand, whéi = oo, the STEB
if Z, = 0, as shown in Corollaryls. in Fig.[I0(b) is equal to zero regardlessdaf since the offset
is completely known. Secondly, all the curves in Hig. 10(a)
) ) o have the same value &t = 0. The time offset has no effect
F. SPEB with Time Offset and Squared Timing Error Boungy,, the SPEB at this point, sinags = 0, referred to agime-
We finally investigate the effect of time offset on the SPEBffset-independeribcalization. In this case, both the SPEB
and squared timing error bound (STEB) for the networktnd STEB achieve their minimum, implying that location and
illustrated in Fig.[4. The RIlI from each anchdy, = 10, timing information of a network are closely related. Third,
k € {1,2,3,4}. Initially, four anchors are placed &y = 0, as¢; increases from O tar, all the curves in Fig. 10(p) first
¢ = /2, ¢p3 = m, and ¢, = 37/2, respectively. We then increase and then decrease, whereas all the curves [n Fig|. 10
vary the position of Anchord; counter-clockwise along the increase monotonically. We give the following interpriias:
circle. Figure[10(a) and _10(b) show the SPEB and STEBye estimation error of time offset in Fig. 10(b) becomegédar
respectively, as functions @f for different a priori knowledge when all the anchors tend to gather on one side of the agent (
of the time offset. increases from 0 ta). In Fig.[I0(@), the SPEB first increases
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since both the localization informatioEker A Je(dr) In as follows:
(34) and the information for the time offset becomes smaller

Then the SPEB decreases since the localization information [ G1 Gz -+ Gu
increases (whep, > m/2) faster compared to the decrease of D, 0
the information for time offset. Note in Fig. 10[a) that altlgh T, = Do ,
¢1 = 0 and¢; = « result in the same SPEB in the absence of .
time offset,p; = 0 gives a better performance in the presence 0 Dy,
of time offset. -
Tai — Gusr - G a1

VIIl. CONCLUSION .
AL =diag{®, ¥y, - , Py},

In this paper, we developed a framework to study widebal
wireless location-aware networks and determined theialioc
ization accuracy. In particular, we characterized the linaa Ane =diag{®r 1, P2, YN}, (42)
tion accuracy in terms of a performance measure called the
squared position error bound (SPEB), and derived the SPBBereD; = [ 0 Ibp,— }
by applying the notion of equivalent Fisher information.isTh
methodology provides insights into the essence of the docal G =qily with 1 = [ 10 --- 10 ]T, (43)
ization problem by unifying the localization informatiorofn
the a priori knowledge of the agent’s position and informati
from individual anchors. We showed that the contributions
from anchors, incorporating both measurements and a priglﬁ
channel knowledge, can be expressed in a canonical form as a Ty, 2 Fo(r]0;m,,m) - (44)
weighted sum of the ranging direction matrix. Our results ar T
derived from the received waveforms themselves rather thgia that elements i), can be expressed as
the signal metrics extracted from the waveforms. Therefore
our framework exploits all the information inherent in the { 52 lnf(r|0)}

2L, components

= [cos ¢, sin¢y]T, and ¥y, € R2L+*2Lk s given by

received waveforms, and consequently the results in thpspakE, TG
serve as fundamental limits of localization accuracy. €hes 3_7% (?Tk
results can be used as guidelines for localization system 204](;) o9

! X _ 2 2 : (4) )
design, as well as benchmarks for location-aware networks. = No 127 fS(f)|” exp {‘J27Tf (n, =7 )} df
20i)af)  0? @ _ ()
APPENDIXA = ~— B (T — T, ) ;
NQ 87.]8)67_]5]) ( k k

FISHER INFORMATION MATRIX DERIVATION
2
To facilitate the analysis, we consider a mapping fr1t_9m E, {_w}

into another parameter vectgr= [ n] n3 -+ 7nL, |, or" 04y
_ W~ (Li)  ~(Li) i 2" ; -
Wf;ere 77/; = T G e T At } with = —(j\’; ¢ jomf |S(f)|2exp {—j27rf (T;E) - T;ij))} df
dé’ £ al(c)/c. When the agent is localizati#@ this mapping (?)
is a bijection and provides an alternative expression fer th _ 2ap7¢c 0 R (T(i) _ T(j))
FIM as No —67,?) s \ Tk k) o
Jo=TJ,T", (38) and

2
wherelJ,, is the FIM forn, andT is the Jacobian matrix for E, {—%}
the transformation fron® to n, given respectively by day,” Oay;

2¢? 2 : @) _ ()
e vl E O B J 18 exp{sems (7 =5 o
NL )
and _ 2—CR5 (T]gi) - T;Ej)) ’
Ny
redn 1[T T o
900 ¢ 0O T |’ where R (1) = [ s(t)s(t — 7)dt. In particular,
with 0 denoting a matrix of all zeros ardddenoting an identity 1) () 5 )
matrix. The block matrice® , Tn., AL, and Ay, are given (Wil = Fe(r|0;7,7,77) =87 B=SNR,”,  (46)

ZNote that an agent is said to be localizable if its positom ¢&& \wheres and SNR(i) are given by[(1l7) and(18), respectivel
determined by the signal metrics extracted from the wawesareceived from B k 9 y ) )’ P Y-

neighboring anchors, i.e., triangulation is possible sTiitrue whem\/ > 3, Substituting [(3P) and (40) intd (B8), we have the FIM in
or in some special cases whad = 2. .
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APPENDIXB C. Power Dispersion Profile and Small-Scale Fading
WIDEBAND CHANNEL MODEL AND A PRIORI CHANNEL As in [24], [26], we consider an exponential PDP given
KNOWLEDGE by

follow random arrival and their amplitudes are subject to %k o (49)
path loss, large and small-scale fading. While our discussi . . o

is valid for any wideband channels described by (1), V\}gher.e.% is the decay constant, arg; is a normalization
consider the model of IEEE 802.15.4a standard for expcutsitiocoe'cfICIent such that
Specifically, this standard uses Poisson arrivals, lograbr O = _
shadowing, Nakagami small-scale fading with exponential zL—ko exp (_Tél)/%)

power dispersion profile (PDP)_[R6]. h

Wideband channel measurements have shown that MPCs o2 T,El) INPNG)
Es ‘Oék ‘ =Qrexp | ———

10Pk/10

(50)

In addition,a,(f) is a Nakagami r.v. with second moment given
by (49). Specifically, we have

A. Path Arrival Time 0
Jour (Oék |bk,dk,Pk)

The arrival time of MPCs is commonly modeled by a

l
Poisson process [26], [64]. Given the path arrival rateve = Jou, (Oél(g) |7 k,Pk)
have ) . o -
@ |,.(1-1) 0] (1-1) T | A0 ’041(@)’ exp _W‘ a;)‘ ,
Gri (Tk ‘Tk ) :uexp{—u (Tk — Ty )}, I'(my) Q, Q!
(51)
for T,El) > T,El_l) and! > 2. Using [2), we obtain where T'(m;) is the gamma function aneh; > 1/2 is the

Nakagamim-factor, which is a function ot [26].
— v 14 —
go. (0 [0 = Zep{-Z (0 -8V)}. @D

for b’ > 5" andi > 1. Note that we let)\”) = 0 for
consistency.

D. A Priori PDF for Multipath Parameters

The joint PDF of the multipath parameters and the RSS,
conditioned on the distance from anchotto the agent, can
be derived as

Ly
f (o, by, P |di ) = gp(Pr|di) 1_[904,c (ag) |bk,dk,Pk)
=1

L
X l_k[gbk (b,<j>|b,<j*1>) . (52)
=1

By integrating overP;, we obtain the PDF of the multipath

) ) parameters ofy(t) as follows
where P, is the expected RSS at the reference distance

do, o is the propagation (path gain) exponent, andis a f(Kildr) = f (ou, brldy)
random variable (r.v.) that accounts for large-scale fador _ / F(aup, b, Pyldy) dP (53)

shadowing. Shadowing is usually modeled with a log-normal
(Equation [(58) characterizes the a priori knowledge of ckann

distribution, such that is a Gaussian r.v. with zero-mean an
varianceo?, i.e.,w ~ N (0,02) P The PDF of the RSS of parameters, and can be obtained, for IEEE 802.15.4a sthndar

rx(t) can then be written as by substituting[[47)[[@8) and(51) into (52) afd](53). Ndiatt
sincep; is known,d;, is a function ofp and hence we have

1 de\1*
gp (Pyldy) o exp{ —=—5 | P — Py + 100logy, | = . O
20 do

B. Path Loss and Large-Scale Fading
The RSS in dB at the distanek can be written as [26]

d
P, = Py — 10plog;, (d_z> +w,

S (48) APPENDIXC
PROOFS OF THERESULTS IN SECTION[II
wheredy, = ||p — px|, and P is given by A. Proof of Theorerfil1
L , _I_Droof: We first prove t_hat]e(p) is given by [I5). We
Py = 1010z, ZES{‘O‘S) ‘ }] 7 partition G, in (@3) and¥;, in (@4) as
- G2 [q G| andw,= | STASNRY K

with Eg {-} denoting the average over small-scale fading. ki i

2"Note that the first component of LOS signals can exhibit ansieo
26The standard deviation is typically 1-2 dB (LOS) and 2-6 dBL@) strength than[{49) in some UWB measureméni [72]. In suchsc4d8) and
[21] around the path gain. (50) need to be modified, accordingly.
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where [¥,],; is obtained by [[@6)k; € R2L+—1, ¥, c wherek;, € R2L+~! and¥,, € RCLx—Dx(2Li=1) Hence[[5b)
RELE—1)x2Lx=1) gnd becomes
Gr=ar[0 1 0 - 1 0] . K, Ky
k= 1>
2L, —1 components 8232 SNR](:)
Using these notations, we can write the EFIM given DY (14)ich depends only on the firdt, paths, implying that only
in PropositiorL 1, after some algebra, in the form[ofl (12), e first contiguous-cluster of LOS signals contains infarm

A 28232 SNRW T tion for localization.
4 Z R Finally, we show thaty; is independent ofy,(f). Note that

(57)

keNL - A
o . NV ¥, andk; can be written as
+ 3 {Gkkkqg + k[ GT + qu:kc:;} : )
N keM L. U, = N diag{c, a,(f),c, ey a,(f’“), c} Y
B[ qikl+Gi¥; - auky,+Gu®uy |, 0 :
and X diag{c, a,(f),c, e, 041(c ’“), c} , (58)
Cédiag{‘ill,‘ilg,...,‘i’M}. and
Applying the notion of EFI as in[{13), we obtain tiex 2 - 20 @ (Do)
Je(p) as ki = N, dlag{c, a0y ,c} te, (59)
212 - - -
Je(p) = 87 f S a- xt)SNR qi qf,  (55) where Y, € REE+DxEE—1 andt, € R*“+~! are given
e by the matrix partition in[{680) shown at the bottom of the
where the POC page. Substitutind (8) ang (59) info {57), we obtain
_ 1
Ty = — It 61
S 7. (56) X = g B ©)
87232 SNR{Y o ,
. which is independent of all the amplitudes.
This completes the proof of (1L5). Note that0 < xx < 1: xx iS nonnegative since it is a

~ Next, we show that only the first contiguous-cluster corsaiyuadratic form andr, is a positive semi-definite FIM (hence
information for localization. Let us focus OR - Define the is T/:l); andxk < 1 since the contribution from each anchor
following notations for convenience: to the EFIM in [55) is nonnegative. 0

R.(i,§) £ Ry(t)]

t=r (D s )5
. 92 B. Proof of Corollary(1
R (i, ) £ __2R5(t)|t:7“‘)—r(j) ) Ry . .
ot K Tk Proof: This scenario can be thought of as a special case
and of Theoren(ll withL; = 1, i.e., the first contiguous-cluster
Ry, ) 2 &Rs(t)lt:ﬂii),ﬂij) — k(i) contains only one path. In this case,](61) becomes

1 R%(1,1)

If the length of the first contiguous-cluster in the received X& =
47252 R4(1,1)

waveform is L, where1 < Lj, < Ly, then R,(i,j) =

Ry(i,j) = Rs(i,7) = 0 for i € {1,2,..., Ly} and j €  since waveforms(¢) is continuous and time-limited in realistic

{Li+1,Lx +2,..., L}, andd cases, we have
- T v ¥, 0 . P
ke = [k o' ] and ‘I’kﬁ{ 0 g}v R(11) = 5 R(7)| =0,
=0
28% is a block matrix that is irrelevant to the rest of the deiivat implying thaty, = 0, which leads to[(1]9). O
[ R.(1,1)  R(1,1)  R1,2) R.1,2) - Ri1,Ly) R, Lg) |
R,(1,1)  R,,1) -R(1,2) R(1,2) - -R1,Ly) R, Ly
. ( ) T Rs(172) —R3(1,2)
Ro(L1) tp | a | Ry1,2 Rs(1,2
[ ¢ TJ_ 12 R(L2) (60)
Rs(lvék) _RS(17~Ek) Rs(ékvl}k) RS(Z:;kvl:;k)
| Ro(1,Li)  Ro(1,Ly) Rs(Lk, Ly)  Rs(Lg, Li) |
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C. Proof of Theorerq]2 and
_ P_roof: When a p_riori channel knowledge of the channel B 2 1 w1, 1J¥,D]
is available, the FIM is ko2 DT, 1, Dk‘i’kD}; ‘
_ T R _
3y — 1 TNLANLE[‘NL + T AT TNﬁLANL +3,, We haveF; > Ej, since
¢? AnCTY, An ok ok
B _ o —d,d —d,k o : =
where Ay, = Eg {An} £ diag{®, ¥,,..., ¥y} and Fr — By = ST gk = Fo(kr|di;01,01) = 0
AL =Eo {AL} 2 diag{®pri1, Tarso, .. \I:N,,} The FIM P .
Jo can be partitioned ab([12), whefeis glven by [62) shown where Ok = [dr k] ]. Hence we have), =
at the bottom of the page, and 1/[Fy i1 > 1/[E; )1, where[E; ' )11 equals[(ZB). This
- - im Iies that the a priori channel knowledge can increase the
pa| GBI o Gy E, I P g
0 0 We next show that the RIls if_(66a) arld (65b) reduce to
and (18) and zero, respectively, in the absence of a priori chlann
. B M1 B N knowledge.
Cc= dlag{‘I’M+1 +c E&I v ¥+ C E,i,b,i} . When a priori channel knowledge is unavailabE’,fm,
Apply the notion of EFI, and we have tiex 2 EFIM, after Ep . andE, , all equal zero, and the corresponding R

some algebra, glven b{Z (63) at the bottom of the page. FrdPn@) and[f(@b) becomes
—1
(@), we can rewr|t£p7p and_p_’,{ in (1) using chain rule as Ap = > {IZ‘I’klk _ (IZ‘I’kDD (Dk‘I’kD-]@r) (Dk‘I’klk)}

':/C _ =k T v:]i} _ u:k
Sp,p — Ak 24,4 9k and Sp,k = Ak Sk (64) _ i lT 87232 SNR](:) k'kl'
where =%, = Fo(kildr;d,dy) and Ej, = 2k k;. W,
Fo(rg|dy ; dg, k). Substituting [[64) into [(83) leads to T
(21), where),, is given by [65h) and {65b) for LOS signals _ [ kj, ] \j,;l [k @ ] bl
and NLOS signals, respectively, shown at the bottom of the v,
age. O 1 o —
bag = 5 {87282 SNR(Y — 1, ke, |
D. Proof of Corollar 232
ollani2 . = 1= ) SNR(Y
Proof: We first show that the a priori channel knowledge c
increases the RIl. Considey;, in (653). Let for k € N, and
= - —_ 1
Fool [ Lkl + CQ:’;& LW, D} + Ef ] A= S {0l — W0 @, Wi} =0,
I 2= T 2=k ’
Dk\I/klk +c Sk Dk\I/kD +c (=" K for k c NNL- m
Zke/\/ Gk‘I’kGT + 02:1;, p G, ‘i’ DT + 0251 ce GM‘i’MD Mt Cz:g{n
(G, DT+c2”1 ny D1\I:1DT+C2"1
AL ' . (62)
- ' T .
(GM\IIMD T+ EY ) Dy ¥, DY, + 22,

v =L 3 (el iom,) - ¥ (el s (bt o=t (Gl o)

— Z (Gk‘I’k + 2 Ep, R) (‘i’k + CQEZ,R) (Gk\I'k + 2 Ep, R)T } (63)

keNNL

1 _ T
c—z{gwklk + ek, - (IT\IIka + ek &) (Dkq:ka + ek &) (1T\1:ka + ek &) } keN. (65a)

1 - _ -1, _ _ T
C—Q{lk\llklk + ek, - (1{% + CQEZN) (\I:k + czzgn) (1{% + CQE’;N) } ke N (65b)
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E. Proof of Corollary(8

Proof: The block matricesE”

NLOS signals can be written as

2 T
=k l t Vi,

=K.k

;k

Vi ‘=‘n,n

vk vk
wherevy, B, ,. € R?&+~1 andE,

—Fk -~
‘| and ‘=‘d,h‘/ - |: w :d,li j| )

x and 2 _d,i in (1) for

c R(Qkal)X(Qkal).

Note thatt* corresponds to the Fisher information @f).

When the a priori knowledge
gu(bV) = (b)), we claim that
-1

lim
t2—00

et
OT

0
- [ 0 (Dk‘i’kDZ+C2

To show this, we partitionk;, as

ki
¥, |

o’bg) goes to oo, ie.,

ok o\ L.
‘:n,n)

(66)

T 2T -
k, +c ka
_, -
\Ilk +c '='K’/,K’/

2
— u
U= "
=
and then the left-hand-side ¢f (66) becomes
2 242
+ct
LHS= lim | * ¢
t2— 00 kk—i—CQVk
oy A B
eS| BT C°
where

AL [ui + 2

— (kk + CQVk)T (‘i’k + &2
1

vk o\l -1
Em,n) (kk+c2vk)] J

B (kk + czvk) c

u? + c2t?
and

“ vk
A 2=
C: |:‘I’k+c :K,I{

1

-1
— 555 (kk + CQVk) (kk + C2V;C)T] .

uj + c2t?

When b,(cl)

is known, i.e.,t?> — oo, we havelim_,,, A =

~ vk -1
0, limp_,.. B = 0, andlimy>_,., C = [\Ilk +C2EK,R} .

Notice that¥, — D, ¥, D]. Hence, we proved our claim in

(©8).
Substituting [(66) into[{63b), we have

1 _ - Ck
lim A, = - {quklk + ek, - (1;\11kD; + CQEd,R)

t2—00

ok ok \T
(Dk\Ilka 2 n) (IT\Ilka + 2B, ﬁ) }

for £ € Ny, which agrees with the RII of LOS signals
in 653)2 Hence LOS signals are equivalent to NLOS with
infinite a priori knowledge o’bg) for localization. O

F. Proof of Propositiori. 2

Proof: Note thatqx, ¥, Ef , Bk ., and Ef . are
functions ofp when a priori knowledge of the agent’s position
is available. Hence we need to take expectation of thempver
in (I0). After some algebra, we have the EFIM for the agent’s
position as[(6]7) shown at the bottom of the page.

When the condition in [[22) is satisfied for the
functions g(p)'s: 1) axEf,aj, 2) @ 1L ¥l qf, 3)
ar (IZ\P;C +c2Ek ), and 4)¥,,+Z, ., we can approximate
the expectation of each function oveiin (€4) by the function
value at the expected positigh Hence the EFIM in[(67) can
be expressed as

1
pT 3 >

keNy
— —1
—ai ([ &+ 8L, (Ti+EL,)
x (L + =) q{}

=Zp+ > MJi(dr),
keNy

[

Je(p) = {Qk (el + B ) ap

wheregy, is the angle from anchor to p, and ), is given by
(€8) shown at the bottom of the page. Note that all functions
are evaluated gp. O

ZNote that the size &
are different for the samaL,C Indeed, = HH . and .Ld . are not associated

with b( ), and hence they are in the same form&ﬁn and = :’; for LOS
S|gnals |n [(6Bh).

and._‘d . for LOS signals and NLOS signals

Je(p) =Ep+ Z

kENy

1 _ _
- 5Ep {qk (1{% + e EZ%)} E, {\Ilk n

1 _
{Ep {aeZhaai} + 5 Ep {ae 1 Urliai}

=) s (e em) a ] e

Ae £

_ T
{1k Byl + 22k, — (1{% + 02527,%) (\Ilk re2Ek ) (1T ¥, + A2k n) }

(68)
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APPENDIXD where 2% = q. 2}, and B, = h.,Ej}, and
PROOFS OF THERESULTS IN SECTION[V] Et. = Folknk|P,¢:Knk kuk), in which Ejh =
Fo(k s dnk, Knk)-
A. Proof of Theorerfl3 0 (Konk [P, 2 Ak, o)

Similar to the proof of Theorerl 2 in Appendix_G-C, the
Note that this proof also incorporates the a priori channglM from observation can be obtained &s](70) shown at the
knowledge. In the absence of this knowledge, the correspomdttom of the page, where
ing results can be obtained by removidig that characterizes

the a priori channel knowledge. Gn = [ Qn,lll,l %,212,2 qnval;rhNb ] ’
Since p and ¢ are deterministic but unknown, the joint hy, = [ hnally hnalyo - hn,Nbl;rL,Nb E
likelihood function of the random vectons and 6 can be gpgd
written as _ - - _
An = diag{\Ilml, ‘I’n,g, ey ‘I’mNb}
f(r,0) = f(x|6) £(6) = nle_/[\/ kl;\[/bf(r"km I (nilp, ) correspond to theth antenna as defined ib_{44).

The overall FIMJ is the sum of{(69) and (70). By applying
Note that f(k,x|p,¥) = f(Kknk|dnk), and the FIMJ, from the notion of EFI, we have thg x 3 EFIM for the position
f(0) can be expressed ds169) shown at the bottom of taed the orientation as follows

page, whereEr" = qur Z3%al,, EpY = duk E55 b, T
P 4, : = Ank Qnk Qpi Ank Pnk Ank
=nk _ p2 =nk _ nk Un k nk ''nk Un
and=2% = h2, =3, in which Je(p, @) = E E o . e ;
nENa kENy nk lnk Ay nk nk

Block matricesE, ., .., and &, correspond to theith where\,,;, is given by [72) shown at t_he_bottom of the page.
antenna in the array, and they can be further decomposed intdl0té that in the absence of a priori channel knowledge,

block matrices corresponding to each anchor: the .above result is still valid, with the RIl of (¥2) degen-
erating to [[7B) shown at the bottom of the page, where
— =n,l = ,2 =) LN —
=pon = [ :g,n “g,n “g,nb } J Dy = [ 0 Ip,—1 }
= - [ =1 =n2 o =Ny }
Eon=| Elx B0k Eok’ s N
and B. Proof of Proposition 13
= _ diag{E"’l —_n,2 :n,N,,} Since qq'" is always positive semi-definite, we need to
" L simply prove that there exists a unigpé such thatq* = 0.

r =nk =nk = = b
Ene/\/a Zkex\/b ‘—‘pypT Zne/\/a Zkex\/b =p,p =Pl =p;Na
=k =nk = =
Zne/\/a Zk?ENb =p,p Zne/\/a Zker “gw =1 =¢,Na
=T =T —_
Jp = =p,1 =1 =1 (69)
=T =T =
L =p,Na =¢,Na =Na
Yonen, GnAnGl Y . GuAnh) GiA -+ GpAp,
ZneNa hnAnGIl ZnENa hnAnhIl h:A; - hyAn,
1 — — —
Jw = — AlG-{ Alh-{ Aq (70)
c
An,G] Anh] Ax,
a > Na a " Na a .
1 _ — = —nk = —nk ! I ——
)\nk £ c—2 {ll—lk \Ilnk lnk + C2 »:chd — (ll—lk‘]?nk + Czﬁg_’n) (‘Ilnk + Czﬁzyn) (ll—lk\]?nk + 62:7(17,7“) (72)

(73)

o Tk = (#D],) (Dur®uD]) (D) flu/e?, LOS
"o, NLOS
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Proof: Let p be an arbitrary reference point, and

P =p+sgly),

whereg() = [g2(¢) 9y(¢)]", andg.(») andg,(p) denote
the relative distance im andy directions, respectively. Then,

hni corresponding tg can be written as a sum of two parts

hnk = h:,k; + ﬁnk s
whereh’ . corresponds tep*

*

d d
k= %Axn(p*, @) €OS Pni + %Ayn(p*, ©) sin gy

and

- d d
Pk, = %gz (‘P) COS P + %gy (‘P) sin gni

£ Gy COS Pk + Gy SIN Gk = &' Ak -

Hence,q corresponding to the reference positipnis given
by

neNa keNy neNa keNy

1>
el

A L *
=q
and g can be written as

q= Z Z ql—zkg/\nkan

neNa ]CE./\/b

n€Na keNp neN,

(75)

SinceZneNa Jen > 0, we haveq® = 0 if and only if

g= <Z Je,n>1q,

nENa

implying that there exists only ong, and hence only one

g(¢), such thatq* = 0. Therefore, the orientation centpf
is unique. O

C. Proof of Corollary[®

Proof: We first prove that the SOEB is independent of
the reference poinp. It is equivalent to show that the EFI for
the orientation given by (27) equals the EFI for the oridotat

based orp*, given by

J@) =3 Y aahii.

neENy kEN

LetJ = > cnr Jen- From [74) and[(75), we havg =
q=Jg, and hence

QI 'a=qT'a=q"g= > > Auwhd;.
neNa ]CE./\/b
On the other hand, we also have

SO Akhiphar=q g =0.

nENa kENy

Therefore, we can verify that the EFI for the orientation in

()
Je() = Z Z Ak (e + hni)® = @73 7'q

n€ENa kENy

=D IDIENIFEED Bl yPRTEHM
neENy k€N ne€Na keNy

= Ji (). (76)

This shows that the EFI for the orientation is independent of
the reference point, and thus is the SOEB.

We next derive the SPEB for any reference point given in
(32). The3 x 3 EFIM in (Z1) can be written, usindg (¥4) and

(79), as

_|J q
Je(p,cp) - qT Je(<ﬂ) + qTJflq .

Using the equation of Shur’'s complement|[66], we have

I p) =T+ (I7'q) (3 'a)"

Je(p)
=J '+ gg'. (77)
Je(p)
Since the translatiog(y) can be represented as
o — ot | cos(e + o)
g(@) = lp—p| [ sin(¢p + o) ]
where ¢, is a constant angle, we havig| = ||p — p*|| -

Then, by taking the trace of both sides [ofl(77), we obtain
.T .
* g g
P(p) =P(P") +
) =P+ 57
=P(P") +lp—p*II* - P(p).

D. Proof of Propositioi b

Proof: Take the array centgp, as the reference point,
and we have

Z hnk — Z %Aﬂcn(l)oﬁp) COSs ¢nk

nENa neNa
d
+ > %Ayn (Po; ) sin pk

nENa
_ 4 Z Az ( )| cos¢
- d(p n\Po0, ¥ nk
’n.eNa
d .
+ d_ Z Ayn(p07 (P) Si ¢nk
¥ neNa
=0.
Consequently,
q= Z Z Achnk Qi = Z (Z hnk) Aear =0,
n€ENa kENy kENy, \neEN,

implying po = p*, i.e., the array center is the orientation
center. O
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APPENDIXE B. Proof of Theorem]5

PROOFS OF THERESULTS IN SECTION[V] ) ) ) ) ]
We consider orientation-unaware case, whereas orientatio

A. Proof of Theorernl4 aware case is a special case with a reduced parameter set. The
in th fat - he FIM b . FIM using an antenna array can be written[as (79) shown at the
n the presence of a time offset, the can be written 83 +m of the page, wherk, = | LA L ll,Nb I

(78) shown at the bottom of the page, where and J, is given by [8D) shown at the bottom of the page.

0 =l =N Applying the notion of EFI taJy, we obtain thet x 4 EFIM

_ _k ;
D kenh Epop Spk T Zpk in (37).
o' Z 0" ... 0
J, = Ep 0 =,
C. Proof of Corollary[8

L EJJ,ZT 0 E,]X,bn J We incorporate the a priori knowledge of the array
_ _ _ center and orientation into[ (37), and obtain the EFIM
Applying the notion of EFI, we obtain the x 3 EFIM in far-field scenarios as[{B1) shown at the bottom of

; the page. Recall that in far-field scenariopy =

Jo(p, B) = Dokeny M Ay D pens Mk Ak p*, implying that > - > e Akhnkdgne = 0 and

Y omens oken; Ankhink = 0. Also, we have),; = A, and
¢nr = ¢ for all n, and hence the EFIM can be written as
where )\ is given by [65b), and another step of EFI leads tB2) shown at the top of the next page, wheérg andqy is

Dohens Mk aj, > ken, M+ EB

(34) and [(35). a function ofpy.
[ Zker Gk‘i’kGZ Zker GrPLl, G1¥; - GnPy, i
X Shens WORGE  Ypens WL P - I Py,
Jg = 0—2 ‘I’lG-{ ‘1’111 ‘I’l + Jp (78)
\iINbG-]I—Vb \iINble \iINb J
_ Snens GnAnGY Y GuAnhl Y- GuALLL GiAy - GaAp, i
S hnAnGl Y o haART Y o hALT hiAy --- hyAg,
;1 YonensInAnGL Y v lnAshl Y G LAGT LA - 1vAg, ] 2o
0=z AGT AhT AT Ay T 9)
i AN, G], Anh} Anh], An, |
r —nk —nk = — 7
Zne/\/a ZkGNb =p,p Zne/\/a Zker Sp,p 0 =p,1 =p,Na
=nk =n = =
ZneNa Zker Sp,p ZnGNa Zke/\/b znpl.ip 0 —p,1 —¢,Na
o' 0 Z 0o ... o0f
Jp = =T - - (80)
Ep1 B 0 =1
I EL N, E, N, 0 En, |

Yonens Lkeny Mk + Ep Ynenn Lkens Mklinknk  Dnen; Dkens Ankdnk
Array-B 3 3 = )
Jerray = Zne/\/a Zker /\nkhnquTLk ZTIENa Zke/\/b )‘"kh?zk + = Zne/\/a Zke/\/b Anklink (81)
Do neN. 2okeNs MkCk 2oneNs ke, Anklnk e n, Zren, Ank + b
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Na ZkENb Madr(r) + Ep 0 Nazke/\/b AkQik
Array-B __ T Y 72 —-
Te B 0 Zne/\/a Zke/\/b Aehig +Ep 0 (82)
Na-pens Mo 0 Nad pen, Mo+ Z8
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