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Fundamental Limits of Wideband Localization—
Part I: A General Framework
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Abstract— The availability of positional information is of great
importance in many commercial, public safety, and military
applications. The coming years will see the emergence of location-
aware networks with sub-meter accuracy, relying on accurate
range measurements provided by wide bandwidth transmissions.
In this two-part paper, we determine the fundamental limits of
localization accuracy of wideband wireless networks in harsh
multipath environments. We first develop a general framework
to characterize the localization accuracy of a given node here and
then extend our analysis to cooperative location-aware networks
in Part II.

In this paper, we characterize localization accuracy in terms
of a performance measure called the squared position error
bound (SPEB), and introduce the notion of equivalent Fisher
information to derive the SPEB in a succinct expression. This
methodology provides insights into the essence of the localization
problem by unifying localization information from individ ual
anchors and information from a priori knowledge of the agent’s
position in a canonical form. Our analysis begins with the re-
ceived waveforms themselves rather than utilizing only thesignal
metrics extracted from these waveforms, such as time-of-arrival
and received signal strength. Hence, our framework exploits all
the information inherent in the received waveforms, and the
resulting SPEB serves as a fundamental limit of localization
accuracy.

Index Terms—Cramér-Rao bound (CRB), equivalent Fisher
information (EFI), information inequality, localization , ranging
information (RI), squared position error bound (SPEB).

I. I NTRODUCTION

Location-awareness plays a crucial role in many wireless
network applications, such as localization services in next
generation cellular networks [1], search-and-rescue operations
[2], [3], logistics [4], and blue force tracking in battlefields [5].
The Global Positioning System (GPS) is the most important
technology to provide location-awareness around the globe
through a constellation of at least 24 satellites [6], [7]. How-
ever, the effectiveness of GPS is limited in harsh environments,
such as in buildings, in urban canyons, under tree canopies,
and in caves [8], [9], due to the inability of GPS signals to
penetrate most obstacles. Hence, new localization techniques
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Fig. 1. Location-aware networks: the anchors (A, B, C, and D)communicate
with the agents (1 and 2), and each edge denotes a connection link between
anchor and agent.

are required to meet the increasing need for accurate localiza-
tion in such harsh environments [8], [9].

Wideband wireless networks are capable of providing accu-
rate localization in GPS-denied environments [8]–[12]. Wide
bandwidth or ultra-wide bandwidth (UWB) signals are par-
ticularly well-suited for localization, since they can provide
accurate and reliable range (distance) measurements due to
their fine delay resolution and robustness in harsh environ-
ments [13]–[20]. For more information about UWB, we refer
the reader to [21]–[26].

Location-aware networks generally consist of two kinds of
nodes: anchors and agents. Anchors have known positions
(for example, through GPS or system design), while agents
have unknown positions and attempt to determine their po-
sitions (see Fig. 1). Each node is equipped with a wideband
transceiver, and localization is accomplished through theuse
of radio communications between agents and their neighboring
anchors. Localizing an agent requires a number of signals
transmitted from the anchors, and the relative position of the
agent can be inferred from these received waveforms using
a variety of signal metrics. Commonly used signal metrics
include time-of-arrival (TOA) [8], [9], [17]–[20], [27]–[30],
time-difference-of-arrival (TDOA) [31], [32], angle-of-arrival
(AOA) [9], [33], and received signal strength (RSS) [9], [34],
[35].

Time-based metrics, TOA and TDOA, are obtained by
measuring the signal propagation time between nodes. In ideal
scenarios, the estimated distance equals the product of the
known propagation speed and the measured signal propagation
time. The TOA metric gives possible positions of an agent on
a circle with the anchor at the center, and it can be obtained by
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either the one-way time-of-flight of a signal in a synchronized
network [18], [19], [28], [29], or the round-trip time-of-flight
in a non-synchronized network [26], [36]. Alternatively, the
TDOA metric provides possible positions of an agent on the
hyperbola determined by the difference in the TOAs from two
anchors located at the foci. Note that TDOA techniques require
synchronization among anchors but not necessarily with the
agent.

Another signal metric is AOA, the angle at which a signal
arrives at the agent. The AOA metric can be obtained using an
array of antennas, based on the signals’ TOA at each antenna.1

The use of AOA for localization has been investigated, and
many hybrid systems have been proposed, including hybrid
TOA/AOA systems [30], [41], and hybrid TDOA/AOA sys-
tems [42]. However, some of these studies employ narrowband
signal models, which are not applicable for wideband antenna
arrays. Others are restricted to far-field scenarios or use far-
field assumptions.

RSS is also a useful metric that uses the strength of the
received signal to estimate the propagation distance between
nodes [9], [34], [36]. This metric can be measured during the
data communications using low-complexity circuits. Although
widely implemented, RSS has limited accuracy due to the
difficulty in precisely modeling the relationship between the
RSS and the propagation distance [4], [9].

Note that the signal metrics extracted from the received
waveforms may discard relevant information for localization.
Moreover, models for the signal metrics depend heavily on
the specific measurement processes.2 Therefore, in deriving
the fundamental limits of localization accuracy, it is necessary
to utilize the received waveforms rather than the signal metrics
extracted from the waveforms [28], [29], [46], [47].

Since the received waveforms are affected by random
phenomena such as noise, fading, shadowing, multipath, and
non-line-of-sight (NLOS) propagations [48], [49], the agents’
position estimates are subject to uncertainty. The Cramér-
Rao bound (CRB) sets a lower bound on the variance of
estimates for deterministic parameters [50], [51], and it has
been used as a performance measure for localization accuracy
[52]. However, relatively few studies have investigated the
effect of multipath and NLOS propagations on localization
accuracy. Multipath refers to a propagation phenomenon in
which a transmitted signal reaches the receive antenna via
multiple paths. The superposition of these arriving paths
results in fading and interference. NLOS propagations, created
by physical obstructions in the direct path, produce a positive
bias in the propagation time and decrease the strength of the
received signal, which can severely degrade the localization
accuracy. Several types of methods have been proposed to deal
with NLOS propagations: 1) treat NLOS biases as additive

1The AOA metric can be obtained in two ways, directly through measure-
ment by a directional antenna, or indirectly through TOA measurements using
an antenna array [37]–[40]. Wideband directional antennasthat satisfy size and
cost requirements are difficult to implement, since they arerequired to perform
across a large bandwidth [36]. As such, antenna arrays are more commonly
used when angle measurement for wide bandwidth signals is necessary.

2For instance, the error of the TOA metric is commonly modeledas an
additive Gaussian random variable [8], [30], [43]. This model contradicts the
studies in [18]–[20], [44], [45], and the experimental results in [8], [16].

noise injected in the true propagation distances [8], [53],[54];3

2) identify and weigh the importance of NLOS signals for
localization [55]–[60]; or 3) consider NLOS biases as param-
eters to be estimated [27]–[30], [46], [47], [61], [62]. The
authors in [8], [9], [28], [29] showed that NLOS signals do not
improve localization accuracy unless a priori knowledge ofthe
NLOS biases is available, but their results were restrictedto
specific models or approximations. Moreover, detailed effects
of multipath propagations on localization accuracy remains
under-explored.

In this paper, we develop a general framework to determine
the localization accuracy of wireless networks.4 Our analysis
begins with the received waveforms themselves rather than
utilizing only signal metrics extracted from the waveforms,
such as TOA, TDOA, AOA, and RSS. The main contributions
of this paper are as follows:

• We derive the fundamental limits of localization ac-
curacy for wideband wireless networks, in terms of a
performance measure called thesquared position error
bound (SPEB), in the presence of multipath and NLOS
propagation.

• We propose the notion ofequivalent Fisher information
(EFI) to derive the agent’s localization information. This
approach unifies such information from different anchors
in a canonical form as a weighed sum of the direction ma-
trix associated with individual anchors with the weights
characterizing the information intensity.

• We quantify the contribution of thea priori knowledge
of the channel parameters and agent’s position to the
agent’s localization information, and show that NLOS
components can be beneficial when a priori channel
knowledge is available.

• We derive the performance limits for localization systems
employing wideband antenna arrays. The AOA metric
obtained from antenna arrays are shown not to further
improve the localization accuracy beyond that provided
by TOA metric alone.

• We quantify the effect ofclock asynchronismbetween
anchors and agents on localization accuracy for networks
where nodes employ a single antenna or an array of
antennas.

The rest of the paper is organized as follows. Section II
presents the system model, the notion of the SPEB, and the
Fisher information matrix (FIM) for the SPEB. In Section III,
we introduce the notion of EFI and show how it can help
the derivation of the SPEB. In Section IV, we investigate
the performance of localization systems employing wideband
antenna arrays. Section V investigates the effect of clock
asynchronism between anchors and agents. Discussions are
provided in Section VI. Finally, numerical illustrations are
given in Section VII, and conclusions are drawn in the last
section.

3In practice, however, a NLOS induced range bias can be as muchas a few
kilometers depending on the propagation environment [48],[55], and small
perturbation may not compensate for NLOS induced error.

4In Part II [63], we extend our analysis to cooperative location-aware
networks.
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Notations: The notationEz{·} is the expectation operator
with respect to the random vectorz; A � B denotes that the
matrix A−B is positive semi-definite; tr{·} is the trace of a
square matrix;[ · ]n×n denotes the upper leftn× n submatrix
of its argument;[ · ]n,m is the element at thenth row andmth
column of its argument;‖ · ‖ is the Euclidean norm of its
argument; and the superscripts[ · ]T represents the transpose
of its argument. We denote byf(x) the probability density
function (PDF)fX(x) of the random vectorX unless specified
otherwise, and we also use in the paper the following function
for the FIM:

Fz(w ;x,y) , Ez

{[
∂

∂x
ln f(w)

] [
∂

∂y
ln f(w)

]T
}

,

wherew can be either a vector or a symbol.5

II. SYSTEM MODEL

In this section, we describe the wideband channel model
[14], [21], [24], [26], [64], formulate the problem, and briefly
review the information inequality and Fisher information.We
also introduce the squared position error bound, which is a
fundamental limit of localization accuracy.

A. Signal Model

Consider a wireless network consisting ofNb anchors and
multiple agents. Anchors have perfect knowledge of their
positions, and each agent attempts to estimate its position
based on the received waveforms from neighboring anchors
(see Fig. 1).6 Wideband signals traveling from anchors to
agents are subject to multipath propagation.

Let p ∈ R
2 denote the position of the agent,7 which is

to be estimated. The set of anchors is denoted byNb =
{1, 2, . . . , Nb} , NL ∪ NNL, whereNL denotes the set of
anchors that provide LOS signals to the agent andNNL denotes
the set of remaining anchors that provide NLOS signals to the
agent. The position of anchork is known and denoted by
pk ∈ R

2 (k ∈ Nb). Let φk denote the angle from anchork to
the agent, i.e.,

φk = tan−1 y − yk
x− xk

,

wherep , [x y ]T andpk , [xk yk ]
T.

The received waveform at the agent from anchork can be
written as

rk(t) =

Lk∑

l=1

α
(l)
k s

(

t− τ
(l)
k

)

+ zk(t) , t ∈ [ 0, Tob) , (1)

where s(t) is a known wideband waveform whose Fourier
transform is denoted byS(f), α(l)

k andτ (l)k are the amplitude
and delay, respectively, of thelth path, Lk is the number

5For example,w is replaced by symbolr|θ in the case thatf(·) is a
conditional PDF ofr given θ.

6Agents estimate their positions independently, and hence without loss of
generality, our analysis focuses on one agent.

7We first focus on two dimensional cases and then extend the results to
three-dimensional cases wherep ∈ R

3.

of multipath components (MPCs),zk(t) represents the obser-
vation noise modeled as additive white Gaussian processes
with two-side power spectral densityN0/2, and [ 0, Tob) is
the observation interval. The relationship between the agent’s
position and the delays of the propagation paths is

τ
(l)
k =

1

c

[

‖p− pk‖+ b
(l)
k

]

, (2)

wherec is the propagation speed of the signal, andb
(l)
k ≥ 0

is a range bias. The range biasb(1)k = 0 for LOS propagation,
whereasb(l)k > 0 for NLOS propagation.8

B. Error Bounds on Position Estimation

Our analysis is based on the received waveforms given by
(1), and hence the parameter vectorθ includes the agent’s
position and the nuisance multipath parameters [9], [62], i.e.,

θ =
[
pT κT

1 κT
2 · · · κT

Nb

]T
,

whereκk is the vector of the multipath parameters associated
with rk(t), given by

κk =







[

α
(1)
k b

(2)
k α

(2)
k · · · b

(Lk)
k α

(Lk)
k

]T
,

k ∈ NL ,
[

b
(1)
k α

(1)
k b

(2)
k α

(2)
k · · · b

(Lk)
k α

(Lk)
k

]T
,

k ∈ NNL .

Note thatb(1)k = 0 for k ∈ NL and is excluded fromκk.
We introducer as the vector representation of all the

received waveformsrk(t), given by

r =
[
rT
1 rT

2 · · · rT
Nb

]T
,

whererk is obtained from the Karhunen-Loeve expansion of
rk(t) [50], [51]. Let θ̂ denote an estimate of the parameter
vector θ based on observationr. The mean squared error
(MSE) matrix of θ̂ satisfies the information inequality [50],
[51], [65]

Er,θ

{

(θ̂ − θ)(θ̂ − θ)
T
}

� J−1
θ . (3)

where Jθ is the Fisher information matrix (FIM) for the
parameter vectorθ.9 Let p̂ be an estimate of the agent’s
position, and it follows from (3) that10

Er,θ

{
(p̂− p)(p̂− p)T

}
�
[
J−1
θ

]

2×2
,

8LOS propagation does not introduce a range bias because there is an
unblocked direct path. NLOS propagation introduces a positive range bias
because such signals either reflect off objects or penetratethrough obstacles.
In this paper, received signals whose first path undergoes LOS propagation are
referred to as LOS signals, otherwise these signals are referred to as NLOS
signals.

9When a subset of parameters is random,Jθ is called the Bayesian
information matrix. Inequality (3) also holds under some regularity conditions
and provides lower bound on the MSE matrix of any unbiased estimates of
the deterministic parameters and any estimates of the random parameters [50],
[65]. With a slight abuse of notation,E

r,θ{·} will be used for deterministic,
hybrid, Bayesian cases with the understanding that the expectation operation
is not performed over the deterministic components ofθ.

10Note that for three-dimensional localization, we need to consider a3×3
matrix

[

J
−1
θ

]

3×3
.
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and hence

Er,θ

{
‖p̂− p‖2

}
≥ tr

{[
J−1
θ

]

2×2

}

. (4)

Therefore, we define the right hand side of (4) as a measure
to characterize the limits of position accuracy as follows.

Definition 1 (Squared Position Error Bound):The squared
position error bound (SPEB) is defined to be

P(p) , tr
{[

J−1
θ

]

2×2

}

.

C. Fisher Information Matrix

In this section, we derive the FIM for both deterministic
and random parameter estimation to evaluate the SPEB.

1) FIM without A Priori Knowledge: The FIM for the
deterministic parameter vectorθ is given by [50]

Jθ = Fr(r|θ ; θ, θ) , (5)

wheref(r|θ) is the likelihood ratio of the random vectorr
conditioned onθ. Since the received waveforms from different
anchors are independent, the likelihood ratio can be written as
[51]

f(r|θ) =
∏

k∈Nb

f(rk|θ) , (6)

where

f(rk|θ) ∝ exp

{

2

N0

∫ Tob

0

rk(t)

Lk∑

l=1

α
(l)
k s
(

t− τ
(l)
k

)

dt

−
1

N0

∫ Tob

0

[
Lk∑

l=1

α
(l)
k s
(

t− τ
(l)
k

)
]2

dt






.

Substituting (6) in (5), we have the FIMJθ as

Jθ =
1

c2

[

TLΛLT
T
L +TNLΛNLT

T
NL TNLΛNL

ΛNLT
T
NL ΛNL

]

, (7)

whereΛL, TL , ΛNL , andTNL are given by (41) and (42). In
the above matrices,ΛL andTL are related to the LOS signals,
andΛNL andTNL are related to the NLOS signals.

2) FIM with A Priori Knowledge: We now incorporate
the a priori knowledge of the agent’s position and channel
parameters for localization. Since the multipath parametersκk

are independent a priori, the PDF ofθ can be expressed as11

f(θ) = f(p)
∏

k∈Nb

f(κk|p) , (8)

wheref(p) is the PDF of the agent’s position, andf(κk|p)
is the joint PDF of the multipath parameter vectorκk con-
ditioned on the agent’s position. Based on the models of
wideband channels [36], [40], [64] and UWB channels [14],
[21], [24], [26], [36], we derivef(κk|p) in (53) in Appendix
B and show that

f(κk|p) = f(κk|dk) , (9)

wheredk = ‖p− pk‖.

11When a subset of parameters are deterministic, they are eliminated from
f(θ).

The joint PDF of observation and parameters can be written
as

f(r, θ) = f(r|θ) f(θ) ,

wheref(r|θ) is given by (6), and hence the FIM becomes

Jθ = Jw + Jp , (10)

where Jw , Fr,θ(r|θ ; θ, θ) and Jp , Fθ(θ ; θ, θ) are
the FIMs from the observations and the a priori knowledge,
respectively.12 The FIM Jw can be obtained by taking the
expectation ofJθ in (7) over the random parameter vectorθ,
andJp can be obtained by substituting (8) in (10) as

Jp =











Ξp +
∑

k∈Nb
Ξk

p,p Ξ1
p,κ · · · ΞNb

p,κ
[
Ξ1

p,κ

]T
Ξ1

κ,κ 0
...

. . .
[

ΞNb
p,κ

]T
0 ΞNb

κ,κ











, (11)

whereΞp describes the FIM from the a priori knowledge of
p, given by

Ξp = Fθ(p ;p,p) ,

and Ξk
κ,κ = Fθ(κk|p ;κk,κk), Ξk

p,p = Fθ(κk|p ;p,p),
andΞk

p,κ = Fθ(κk|p ;p,κk) characterize the joint a priori
knowledge ofp andκk.

D. Equivalent Fisher Information Matrix

Determining the SPEB requires inverting the FIMJθ in
(7) and (10). However,Jθ is a matrix of high dimensions,
while only a small submatrix

[
J−1
θ

]

2×2
is of interest. To

circumvent direction matrix inversion and gain insights into
the localization problem, we first introduce the notions of EFI
[46], [47].

Definition 2 (Equivalent Fisher Information Matrix):
Given a parameterθ =

[
θT
1 θT

2

]T
and the FIMJθ of the

form

Jθ =

[
A B
BT C

]

, (12)

where θ ∈ R
N , θ1 ∈ R

n, A ∈ R
n×n, B ∈ R

n×(N−n),
andC ∈ R

(N−n)×(N−n) with n < N , the equivalent Fisher
information matrix (EFIM) forθ1 is given by13

Je(θ1) , A−BC−1BT. (13)

Note that the EFIM retains all the necessary information
to derive the information inequality for the parameter vector
θ1, since [J−1

θ ]n×n = J−1
e (θ1),14 and the MSE matrix of

the estimates forθ1 is bounded below byJ−1
e (θ1).15 For

two-dimensional localization(n = 2), we aim to reduce the
dimension of the original FIM to the2× 2 EFIM.

12Note thatJθ in (10) requires averaging over the random parameters, and
hence does not depend on any particular value ofθ. In contrast,Jθ in (5) is
a function of a particular value of the deterministic parameter vectorθ.

13Note thatJe(θ1) does not depend on any particular value ofθ1 for a
random parameter vectorθ1, whereas it is a function ofθ1 for a deterministic
parameter vectorθ1.

14The right hand side of (13) is known as the Schur complement ofthe
matrix C [66].

15Whenθ1 ∈ R
1, the EFIM has only one element sinceJe(θ1) is a scalar.
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III. E VALUATION OF EFIM

In this section, we apply the notion of equivalent Fisher
information (EFI) to derive the SPEB for both the case with
and without a priori knowledge. We also introduce the notion
of ranging information (RI), which turns out to be the basic
component of the SPEB.

A. EFIM without A Priori Knowledge

First consider a case in which a priori knowledge is unavail-
able. We apply the notion of EFI to reduce the dimension of
the original FIM in (7), and the EFIM for the agent’s position
is presented in the following proposition.

Proposition 1: When a priori knowledge is unavailable, an
EFIM for the agent’s position is

Je(p, {κk : k ∈ NL}) =
1

c2
TLΛLT

T
L , (14)

whereTL andΛL are given by (41) and (42), respectively.
Proof: Let A = TNLΛNLT

T
NL+TLΛLT

T
L , B = TNLΛNL,

andC = ΛNL in (7). Applying the notion of EFI in (13) leads
to the result.

Remark 1:When a priori knowledge is unavailable, NLOS
signals do not contribute to the EFIM for the agent’s position.
Hence we can eliminate these NLOS signals when analyzing
localization accuracy. This observation agrees with the results
of [29], but the amplitudes of the MPCs are assumed to be
known in their model.

Note that the dimension of the EFIM in (14) is much
larger than2 × 2. We will apply the notion of EFI again to
further reduce the dimension of the EFIM in the following
theorem. Before the theorem, we introduce the notion of the
first contiguous-cluster and ranging information (RI).

Definition 3 (First Contiguous-Cluster):The first
contiguous-cluster is defined to be the set of paths
{1, 2, . . . , j}, such that|τi−τi+1| < Ts for i = 1, 2, . . . , j−1,
and |τj − τj+1| > Ts, whereTs is the duration ofs(t).

Definition 4 (Ranging Information):The ranging informa-
tion (RI) is a2 × 2 matrix of the formλJr(φ), whereλ is a
nonnegative number called the ranging information intensity
(RII), and Jr(φ) a 2 × 2 matrix called the ranging direction
matrix (RDM) with angleφ, given by

Jr(φ) ,

[

cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

]

.

The first contiguous-cluster is the first group of non-disjoint
paths (see Fig. 2).16 The RDM is one-dimensional along
the directionφ with unit intensity, i.e.,Jr(φ) has one (and
only one) non-zero eigenvalue equal to1 with corresponding
eigenvectorq =

[
cosφ sinφ

]T
.

Theorem 1:When a priori knowledge is unavailable, the
EFIM for the agent’s position is a2× 2 matrix

Je(p) =
∑

k∈NL

λk Jr (φk) , (15)

16The first contiguous-cluster, defined for general wideband received sig-
nals, may contain many MPCs. Two paths that arrive at timeτi and τj are
called non-disjointed if|τi − τj | < Ts.

r(t)

t

1st

2nd

lth l+1th

not overlap
first contiguous-cluster

Fig. 2. An illustration of the first contiguous-cluster (containing l paths) in
a LOS signal.

whereλk is the RII from anchork, given by

λk =
8π2β2

c2
(1− χk)SNR

(1)
k . (16)

In (16), 0 ≤ χk ≤ 1 is given by (61),

β ,

(∫ +∞

−∞
f2 |S(f)|2df

∫ +∞

−∞
|S(f)|2df

)1/2

, (17)

and

SNR
(l)
k ,

|α
(l)
k |2

∫ +∞

−∞
|S(f)|2df

N0
. (18)

Furthermore, only the first contiguous-cluster of LOS signals
contains information for localization.

Proof: See Appendix C-A.
Remark 2: In Theorem 1,β is known as theeffective

bandwidth [50], [67], χk is called path-overlap coefficient
(POC) that characterizes the effect of multipath propagation
for localization, andSNR(l)

k is the SNR of thelth path inrk(t).
We draw the following observations from Theorem 1:

• The original FIM in (7) can be transformed into a simple
2 × 2 EFIM in a canonical form, given by (15), as a
weighted sum of the RDM from individual anchors. Each
anchor (e.g. anchork) can provide only one-dimensional
RI along the directionφk, from the anchor to the agent,
with intensityλk.17

• The RII λk depends on the effective bandwidth ofs(t),
the SNR of the first path, and the POC. Since0 ≤ χk ≤ 1,
path-overlap in the first contiguous-cluster will reduce the
RII, thus leading to a higher SPEB, unless the signal via
the first path does not overlap with others (χk = 0).

• The POCχk in (61) is determined only by the waveform
s(t) and the NLOS biases of the MPCs in the first
contiguous-cluster. The independence ofχk on the path
amplitudes seems counter-intuitive. However, this is due
to the fact that, although largeα(l)

k causes severe interpath
interference for estimating the TOAτ (1)k , it increases

17For notational convenience, we suppress the dependence ofφk andλk

on the agent’s positionp throughout the paper.
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the estimation accuracy forτ (l)k , which in turn helps to
mitigate the interpath interference.

We can specialize the above theorem into a case in which
the first path in a LOS signal is completely resolvable, i.e.,
the first contiguous-cluster contains only a single component.

Corollary 1: When a priori knowledge is unavailable and
the first contiguous-cluster of the received waveform from
anchork contains only the first path, the RII becomes

λk =
8π2β2

c2
SNR

(1)
k . (19)

Proof: See Appendix C-B.
Remark 3:When the first path is resolvable,χk = 0 in (16)

and henceλk attains its maximum value. However, when the
signal via other paths overlap with the first one, these paths
will degrade the estimation accuracy of the first path’s arrival
time and hence the RII. Corollary 1 is intuitive and important:
the RII of a LOS signal depends only on the first path if the
first path is resolvable. In such a case, all other paths can be
eliminated, and the multipath signal is equivalent to a signal
with only the first path for localization.

From Theorem 1, the SPEB can be derived in (20) shown at
the bottom of the page. When the first paths are resolvable, by
Corollary 1, we have allχk = 0 in (20) and the corresponding
P(p) becomes the same as those based on single-path signal
models in [9], [29]. However, those results are not accurate
when the first path is not resolvable.

B. EFIM with A Priori Knowledge

We now consider the case where there is a priori knowledge
of the channel parameters, but not of the agent’s position.
In such cases, sincep is deterministic but unknown,f(p)
is eliminated in (8). Similar to the analysis in the previous
section, we can derive the2× 2 EFIM for the corresponding
FIM in (10).

Theorem 2:When a priori knowledge of the channel pa-
rameters is available and the sets of channel parameters
corresponding to different anchors are mutually independent,
the EFIM for the agent’s position is a2× 2 matrix

Je(p) =
∑

k∈NL

λk Jr (φk) +
∑

k∈NNL

λk Jr (φk) , (21)

whereλk is given by (65a) for LOS signals and (65b) for
NLOS signals.

Proof: See Appendix C-C.
Remark 4:Theorem 2 generalizes the result of Theorem 1

from deterministic to hybrid parameter estimation.18 In this
case, the EFIM can still be expressed in a canonical form as
a weighed sum of the RDMs from individual anchors. Note
that due to the existence of a priori channel knowledge, the

18This is the case where the agent’s positionp is deterministic and the
channel parameters are random.

RII of NLOS signals can be positive, and hence these signals
contribute to the EFIM as opposed to the case in Theorem 1.

Corollary 2: A priori channel knowledge increases the RII.
In the absence of such knowledge, the expressions of RII in
(65a) and (65b) reduce to (16) and zero, respectively.

Proof: See Appendix C-D.
Corollary 3: LOS signals can be treated as NLOS signals

with infinite a priori Fisher information ofb(1)k , i.e., b(1)k

is known. Mathematically, (65a) is equivalent to (65b) with
Fθ(θ ; b

(1)
k , b

(1)
k ) → ∞.

Proof: See Appendix C-E.
Remark 5:Corollary 2 shows that Theorem 2 degenerates

to Theorem 1 when a priori channel knowledge is unavailable.
Moreover, Corollary 3 unifies the LOS and NLOS signals
under the Bayesian estimation framework: the NLOS biases
b
(1)
k (k ∈ NL) can be regarded as random parameters with

infinite a priori Fisher information instead of being eliminated
from θ as in Section II-A. Hence, all of the signals can be
modeled as NLOS, and infinite a priori Fisher information of
b
(1)
k will be assigned for LOS signals.

We next consider the case where a priori knowledge of the
agent’s position is available in addition to channel parameters.
Note that the topology of the anchors and the agent changes
with the position of the agent. The2 × 2 EFIM is given in
(67), which is more intricate than the previous two cases. To
gain some insights, we consider a special case where19

Ep {g(p)} = g (p̄) , (22)

in which p̄ = Ep {p} is the agent’s expected position, for
some functiong(·) involved in the derivation of the EFIM
(see Appendix C-F).

Proposition 2: When the a priori position distribution of
the agent satisfies (22), and the sets of channel parameters
corresponding to different anchors are mutually independent,
the EFIM for the agent’s position is a2× 2 matrix

Je(p) =
∑

k∈Nb

λ̄k Jr
(
φ̄k

)
+Ξp , (23)

whereλ̄k is given by (68), and̄φk is the angle from anchork
to p̄.

Proof: See Appendix C-F.
Remark 6:The a priori knowledge of the agent’s position

is exploited, in addition to that of the channel parameters,for
localization in Proposition 2. The expressions for the EFIM
can be involved in general. Fortunately, if (22) is satisfied,
the EFIM can be simply written as the sum of two parts as
shown in (23): a weighted sum of the RDMs from individual
anchors as in the previous two cases, and the EFIM from

19This occurs when the agent’s a priori position distributionis concentrated
in a small area relative to the distance between the agent andthe anchors,
so thatg(p) is flat in that area. For example, this condition is satisfied in
far-field scenarios.

P(p) =
c2

8π2β2

2
∑

k∈NL
(1 − χk)SNR

(1)
k

∑

k∈NL

∑

m∈NL
(1− χk)(1 − χm)SNR

(1)
k SNR

(1)
m sin2(φk − φm)

(20)
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the a priori knowledge of the agent’s position. This result
unifies the contribution from anchors and that from the a priori
knowledge of the agent’s position into the EFIM. The concept
of localization with a priori knowledge of the agent’s position
is useful for a wide range of applications such as successive
localization or tracking.

IV. W IDEBAND LOCALIZATION WITH ANTENNA ARRAYS

In this section, we consider localization systems using
wideband antenna arrays, which can perform both TOA and
AOA measurements. Since the orientation of the array may be
unknown, we propose a model to jointly estimate the agent’s
position and orientation, and derive the SPEB and thesquared
orientation error bound(SOEB).

A. System Model and Squared Orientation Error Bound

Consider a network where each agent is equipped with an
Na-antenna array,20 which can extract both the TOA and AOA
information with respect to neighboring anchors. LetNa =
{1, 2, . . . , Na} denote the set of antennas, and letpArray

n ,

[x
Array
n y

Array
n ]T denote the position of the agent’snth antenna,

which needs to be estimated. Letφnk denote the angle from
anchork to the n knth antenna, i.e.,

φnk = tan−1 yArray
n − yk

xArray
n − xk

.

Since relative positions of the antennas in the array are usually
known, if we denotep = [x y ]T as a reference point andϕ
as the orientation of the array,21 then the position of thenth
antenna in the array can be represented as (Fig. 3)

pArray
n = p+

[
∆xn(p, ϕ)
∆yn(p, ϕ)

]

, n ∈ Na ,

where∆xn(p, ϕ) and∆yn(p, ϕ) denote the relative distance
in x and y direction from the reference point to thenth
antenna, respectively.

Since the array orientation may be unknown, we classify the
localization problem intoorientation-awareand orientation-
unawarecases, whereϕ can be thought of as a random pa-
rameter with infinite (orientation-aware) and zero (orientation-
unaware) a priori Fisher information [46].

The received waveform at the agent’snth antenna from
anchork can be written as

rnk(t) =

Lnk∑

l=1

α
(l)
nk s

(

t− τ
(l)
nk

)

+ znk(t), t ∈ [ 0, Tob) ,

whereα(l)
nk andτ (l)nk are the amplitude and delay, respectively,

of the lth path,Lnk is the number of MPCs, andznk(t) repre-
sents the observation noise modeled as additive white Gaussian
processes with two-side power spectral densityN0/2. The

20Each anchor has only one antenna here. We will discuss the case of
multiple antennas on anchors at the end of this section.

21Note from geometry that the orientationϕ is independent of the specific
reference point.

PSfrag replacements

· · ·

x

y

p
pArray
1pArray

2

p
Array
3 p

Array
Na

ϕ

Fig. 3. An antenna array is described by the reference pointp, the orientation
ϕ, and the relative positions of the antennas.

relationship between the position of thenth antenna and the
delay of thelth path is

τ
(l)
nk =

1

c

[

‖pArray
n − pk‖+ b

(l)
nk

]

. (24)

The parameters to be considered include the position of
the reference point, the array orientation, and the nuisance
multipath parameter as

θ =
[
pT ϕ κ̌T

1 κ̌T
2 · · · κ̌T

Na

]T
, (25)

whereκ̌n consists of the multipath parameters associated with
the received waveforms from all anchors at thenth antenna,

κ̌n =
[
κT
n,1 κT

n,2 · · · κT
n,Nb

]T
,

and eachκnk consists of the multipath parameters associated
with rnk(t),

κnk =
[

b
(1)
nk α

(1)
nk · · · b

(Lnk)
nk α

(Lnk)
nk

]T
.

Similar to Section II-B, the overall received waveforms at
the antenna array can be represented, using the KL expansion,
by r =

[
rT
1 rT

2 · · · rT
Na

]T
, where

rn =
[
rT
n,1 rT

n,2 · · · rT
n,Nb

]T
,

in which rnk is obtained by the KL expansion ofrnk(t).
Definition 5 (Squared Orientation Error Bound):The

squared orientation error bound (SOEB) is defined to be

P(ϕ) ,
[
J−1
θ

]

3,3
.

B. EFIM without A Priori Knowledge

We first consider scenarios in which a priori knowledge is
unavailable. Following similar steps in Section III-B, we have
the following theorem.

Theorem 3:When a priori knowledge is unavailable, the
EFIMs for the position and the orientation, using anNa-
antenna array, are given respectively by

JArray
e (p) =

∑

n∈Na

Je(p
Array
n )−

1
∑

n∈Na

∑

k∈Nb
λnkh2

nk

qqT,

(26)
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and

JArray
e (ϕ) =

∑

n∈Na

∑

k∈Nb

λnkh
2
nk − qT

[
∑

n∈Na

Je(p
Array
n )

]−1

q ,

(27)

whereλnk is given by (73),qnk =
[
cosφnk sinφnk

]T
,

and

Je(p
Array
n ) =

∑

k∈Nb

λnk Jr(φnk) ,

q =
∑

n∈Na

∑

k∈Nb

λnk hnk qnk , (28)

and

hnk =
d

dϕ
∆xn(p, ϕ) cosφnk +

d

dϕ
∆yn(p, ϕ) sinφnk .

(29)

Proof: See Appendix D-A.
Corollary 4: The EFIM for the position is given by

JArray
e (p) =

∑

n∈Na

Je(p
Array
n ) , (30)

for orientation-aware localization.
Proof: (Outline) In orientation-aware localization, the

angle ϕ is known and hence excluded from the parameter
vectorθ in (25). Consequently, the proof of this corollary is
analogous to that of Theorem 3 except that the components
corresponding toϕ are eliminated from the FIM in (69) and
(70). One can obtain (30) after some algebra.

Remark 7:The EFIM Je(p
Array
n ) in (26) and (30) corre-

sponds to the localization information from thenth antenna.
We draw the following observation from the above theorem.

• The EFIM J
Array
e (p) in (26) consists of two parts: 1)

the sum of localization information obtained by indi-
vidual antennas, and 2) the information reduction due
to the uncertainty in the orientation estimate, which
is subtracted from the first part.22 Since qqT in the
second part is a positive semi-definite2 × 2 matrix and
∑

n∈Na

∑

k∈Nb
λnkh

2
nk is always positive, we have the

following inequality

JArray
e (p) �

∑

n∈Na

Je(p
Array
n ) . (31)

The inequality implies that the EFIM for the position,
using antenna arrays, is bounded above by the sum of
all EFIMs corresponding to individual antennas, since
the uncertainty in the orientation estimate degrades the
localization accuracy, except forq = 0 or orientation-
aware localization (i.e., (30)).

• The EFIM JArray
e (p) and JArray

e (ϕ) depend only on the
individual RI between each pair of anchors and anten-
nas (throughλnk ’s and φnk ’s), and the array geometry
(through hnk ’s). Hence it is not necessary tojointly
consider the received waveforms at theNa antennas,
implying that AOA obtained by antenna arrays does not

22For notational convenience, we suppress the dependence ofhnk, λnk ,
andq on the reference positionp.

increase position accuracy. Though counterintuitive at
first, this finding should not be too surprising since AOA
is obtained indirectly by the antenna array through TOA
measurements, whereas the TOA information has already
been fully utilized for localization by individual antennas.

• The gain of using antenna arrays for localization mainly
comes from the multiple copies of the waveform received
at theNa antennas (see (26)),23 and its performance is
similar to that of a single antenna withNa measurements.
The advantage of using antenna arrays lies in their ability
of simultaneous measurements at the agent.

The equality in (31) is always achieved, independent of ref-
erence point, in orientation-aware localization. However, only
a unique reference point achieves this equality in orientation-
unaware localization. We define this unique point as the
orientation center.

Definition 6 (Orientation Center):The orientation center is
a reference pointp∗ such that

JArray
e (p∗) =

∑

n∈Na

Je(p
Array
n ) .

Proposition 3: Orientation centerp∗ exists and is unique in
orientation-unaware localization, and hence for anyp 6= p∗,

JArray
e (p) ≺ JArray

e (p∗) .

Proof: See Appendix D-B.
Remark 8:The orientation centerp∗ generally depends on

the topology of the anchors and the agent, the properties of
the received waveforms, the array geometry, and the array
orientation. Sinceq = 0 at the orientation center, the EFIMs
for the array center and the orientation do not depend on
each other, and hence the SPEB and SOEB can be calculated
separately. The proposition also implies that the SPEB of
reference points other thanp∗ will be strictly larger than that
of p∗. The SPEB for any reference point is given in the next
theorem.

Corollary 5: The SOEBP(ϕ) is independent of the refer-
ence pointp, and the SPEB is

P(p) = P(p∗) + ‖p− p∗‖2 · P(ϕ) . (32)

Proof: See Appendix D-C.
Remark 9:The SOEB does not depend on the specific

reference point, which was not apparent in (27). However,
this is intuitive since different reference points only introduce
different translations, but not rotations. On the other hand,
different reference pointp results in differenthnk ’s and hence
different q, which in turn gives different EFIM for position
(see (26)). We can interpret the relationship in (32) as follows:
the SPEB of reference pointp is equal to that of the orientation
centerp∗ plus the orientation-induced position error, which is
proportional to both the squared distance fromp to p∗ and
the SOEB.

23In near-field scenarios where the antenna separation is on the order of
the distances between the array and the anchors, additionalgain that arises
from the spatial diversity of the multiple antennas may be possible.
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C. EFIM with A Priori Knowledge

We now consider a scenario in which the channel parameter
vectorκnk independent for differentn’s and k’s. The inde-
pendence assumption serve as a reasonable approximation of
many realistic scenarios, especially near-field cases. When the
different sets of channel parameters are correlated, our results
provide an upper bound for the EFIM.

Proposition 4: When a priori knowledge of channel pa-
rameters is available and the set of channel parameters cor-
responding to different anchors and antennas are mutually
independent, the RIIλnk becomes (72).

Proof: See Appendix D-A.
We then consider the case where a priori knowledge of

the agent’s position and orientation is available in addition
to channel knowledge. Note that the topology of the agent’s
antennas and anchors changes with the agent’s positions and
orientations. The expression of the EFIM can be derived
analogous to (67), which is involved in general. Again to
gain insights about the contribution of a priori position and
orientation knowledge, we consider scenarios under condition

Ep,ϕ {g(p, ϕ)} = g(p̄, ϕ̄) , (33)

where ϕ̄ = Eϕ {ϕ}, for some functionsg(·) involved in the
derivation of the EFIM.

Corollary 6: When a priori position and orientation dis-
tribution of the agent satisfies (33), and the sets of channel
parameters corresponding to different anchors and antennas
are mutually independent, the EFIMs for the position and the
orientation, using anNa-antenna array, are given respectively
by

JArray
e (p) = Ξp +

∑

n∈Na

∑

k∈Nb

λ̄nk Jr(φ̄nk)

−
1

∑

n∈Na

∑

k∈Nb
λ̄nk h̄2

nk + Ξϕ
q̄ q̄T ,

and

JArray
e (ϕ) = Ξϕ +

∑

n∈Na

∑

k∈Nb

λ̄nkh̄
2
nk

− q̄T

(
∑

n∈Na

∑

k∈Nb

λ̄nk Jr(φ̄nk) +Ξp

)−1

q̄ ,

where λ̄nk, φ̄nk, h̄nk and q̄ are corresponding functions in
Theorem 3 ofp̄ and ϕ̄, respectively, andΞϕ = Fθ(ϕ ;ϕ, ϕ).

Proof: (Outline) The proof of this corollary is analogous
to that of Theorem 3. Note that when condition (33) is
satisfied, the a priori knowledge of position and orientation
for localization can be characterized in the EFIM by using the
approximation as in the proof of Proposition 2.

D. Discussions

1) Far-field scenarios:The antennas in the array are closely
located in far-field scenarios, such that the received waveforms
from each anchor experience statistically the same propagation
channels. Hence we haveφnk = φk and λnk = λk for all
n, leading toJe(p

Array
n ) = Je(p). We define an important

reference point as follows.

Definition 7 (Array Center):The array center is defined as
the positionp0, satisfying

∑

n∈Na

∆xn(p0, ϕ) = 0 and
∑

n∈Na

∆yn(p0, ϕ) = 0 .

Proposition 5: The array center becomes the orientation
center in far-field scenarios.

Proof: See Appendix D-D.
Remark 10:Since the orientation center has the minimum

SPEB, Proposition 5 implies that the array center always
achieves the minimum SPEB in far-field scenarios. Hence
the array center is a well-suited choice for the reference
point, since its position can be determined from the array
geometry alone, without requiring the received waveforms and
the knowledge of the anchor’s topology.

In far-field scenarios, we choose the array centerp0 as the
reference point. The results of Theorem 3 become

JArray
e (p0) = Na

∑

k∈Nb

λk Jr(φk) ,

and

JArray
e (ϕ) =

∑

n∈Na

∑

k∈Nb

λkh̄
2
nk ,

where h̄nk is a function ofp0. Similarly, when the a priori
position and orientation knowledge is available and condition
(33) is satisfied, the results of Proposition 6 become

JArray
e (p0) = Na

∑

k∈Nb

λ̄k Jr(φ̄k) +Ξp ,

and

JArray
e (ϕ) =

∑

n∈Na

∑

k∈Nb

λ̄k h̄
2
nk + Ξϕ ,

whereh̄nk is a function ofp̄0 = Ep0{p0}.
Note that the localization performance of anNa-antenna

array is equivalent to that of a single antenna withNa

measurements, regardless of the array geometry, in far-field
scenarios.

2) Multiple antennas at anchors:When anchors are
equipped with multiple antennas, each antenna can be viewed
as an individual anchor. In this case, the agent’s SPEB goes
down with the number of the antennas at each anchor. Note
that all the antennas of a given anchor provide RI approxi-
mately in the same direction with the same intensity, as they
are closely located.

3) Other related issues:Other issues related to localization
using wideband antenna arrays include the AOA estimation,
the effect of multipath geometry, and the effect of array
geometries. A more comprehensive performance analysis can
be found in [11].

V. EFFECT OFCLOCK ASYNCHRONISM

In this section, we consider scenarios in which the clocks of
all anchors are perfectly synchronized but the agent operates
asynchronously with the anchors [68]. In such a scenario, the
one-way time-of-flight measurement contains a time offset
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between the agent’s clock and the anchors’ clock.24 Here,
we investigate the effect of the time offset on localization
accuracy.

A. Localization with a Single Antenna

Consider the scenario described in Section II, where each
agent is equipped with a single antenna. When the agent
operates asynchronously with the anchors, the relationship of
(2) becomes

τ
(l)
k =

1

c

[

‖p− pk‖+ b
(l)
k +B

]

,

whereB is a random parameter that characterizes the time
offset in terms of distance, and the corresponding parameter
vectorθ becomes

θ =
[
pT B κT

1 κT
2 · · · κT

Nb

]T
.

Similar to Theorem 2, wherep is deterministic but unknown
and the remaining parameters are random, we have the fol-
lowing result.

Theorem 4:When a priori knowledge of the channel pa-
rameters and the time offset is available, and the sets of
channel parameters corresponding to different anchors are
mutually independent, the EFIMs for the position and the time
offset are given respectively by

JB
e (p) =

∑

k∈Nb

λk Jr(φk)−
1

∑

k∈Nb
λk + ΞB

qB qT
B (34)

and

Je(B) =
∑

k∈Nb

λk + ΞB − qT
B

(
∑

k∈Nb

λk Jr(φk)

)−1

qB , (35)

whereλk is given by (65b),qB =
∑

k∈Nb
λk qk, and

ΞB , Fθ(B ;B,B) .

Proof: See Appendix E-A.
Remark 11:SinceqB qT

B is a positive semi-definite matrix
and

∑

k∈Nb
λk is positive in (34), compare to Theorem 2, we

always have the inequality

JB
e (p) � Je(p) , (36)

where the equality in (36) is achieved for time-offset-known
localization (i.e.,ΞB = ∞), or time-offset-independent local-
ization (i.e.,qB = 0). The former corresponds to the case
where accurate knowledge of the time offset is available,
while the latter depends on the RII from each anchor, and
the topology of the anchors and agent. The inequality of (36)

24We consider scenarios in which localization time is short relative to clock
drifts, such that the time offset is the same for all measurements from the
anchors.

results from the uncertainty in the additional parameterB,
which degrades the localization accuracy. Hence the SPEB in
the presence of uncertain time offset is always larger than or
equal to that without a offset or with a known offset.

We next consider the case where a priori knowledge of
the agent’s position is available. When the a priori position
distribution of the agent satisfies (22), we have the following
corollary.

Corollary 7: When the a priori position distribution of
the agent satisfies (22), and the sets of channel parameters
corresponding to different anchors are mutually independent,
the EFIMs for the position and the time offset are given
respectively by

JB
e (p) =

∑

k∈Nb

λ̄k Jr(φ̄k) +Ξp −
1

∑

k∈Nb
λ̄k + ΞB

q̄B q̄T
B ,

and

Je(B) =
∑

k∈Nb

λ̄k + ΞB − q̄T
B

(

Ξp +
∑

k∈Nb

λ̄k Jr(φ̄k)

)−1

q̄B ,

whereφ̄k is the angle from anchork to p̄, λ̄k is given by (68),
and q̄B is a function ofp̄.

Proof: (Outline) Conditions in (22) hold in far-field sce-
narios, and we can approximate the expectation over random
parameter vectorp using the average position̄p. By following
the steps of Theorem 4 and Proposition 2, we can derive the
theorem after some algebra.

B. Localization with Antenna Arrays

Consider the scenario describing in Section IV where each
agent is equipped with an array ofNa antennas. Incorporating
the time offsetB, (24) becomes

τ
(l)
nk =

1

c

[

‖pArray
n − pk‖+ b

(l)
nk +B

]

,

and the corresponding parameter vectorθ becomes

θ =
[
pT ϕ B κ̌T

1 κ̌T
2 · · · κ̌T

N

]T
.

Similar to Theorem 3, wherep andϕ are deterministic but
unknown and the remaining parameters are random, we have
the following theorem.

Theorem 5:When a priori knowledge of the channel pa-
rameters is available, and the sets of channel parameters
corresponding to different anchors and antennas are mutually
independent, the EFIM for the position, the orientation, and
the time offset, using anNa-antenna array, is given by (37)
shown at the bottom of the page, whereΞ = ∞ andΞ = 0
correspond to orientation-aware and orientation-unawarelo-
calization, respectively, andλnk, qnk, andhnk are given by
(72), (28), and (29), respectively.

JArray-B
e =







∑

n∈Na

∑

k∈Nb
λnk qnk q

T
nk

∑

n∈Na

∑

k∈Nb
hnk λnk qnk

∑

n∈Na

∑

k∈Nb
λnk qnk

∑

n∈Na

∑

k∈Nb
hnk λnk q

T
nk

∑

n∈Na

∑

k∈Nb
h2
nk λnk + Ξ

∑

n∈Na

∑

k∈Nb
hnk λnk

∑

n∈Na

∑

k∈Nb
λnk q

T
nk

∑

n∈Na

∑

k∈Nb
hnk λnk

∑

n∈Na

∑

k∈Nb
λnk + ΞB







(37)
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Proof: See Appendix E-B.
Remark 12:Theorem 5 gives the overall4×4 EFIM for the

position, the orientation, and the time offset, where individual
EFIMs can be derived by applying the notion of EFI again.

We finally consider the case where a priori knowledge of
the agent’s position and orientation is available. The EFIMin
far-field scenarios is given in the following corollary.

Corollary 8: When a priori knowledge of the agent’s po-
sition, orientation, time-offset, and the channel parameters is
available, and the sets of channel parameters corresponding to
different anchors and antennas are mutually independent, in
far-field scenarios, the EFIMs for the position, the orientation,
and the time offset, using anNa-antenna array, are given
respectively by

JArray-B
e (p0) = Na

∑

k∈Nb

λ̄k Jr(φ̄k) +Ξp

−
1

Na
∑

k∈Nb
λ̄k + ΞB

q̄B q̄T
B ,

JArray-B
e (ϕ) =

∑

n∈Na

∑

k∈Nb

λ̄k h̄
2
nk + Ξϕ ,

and

JArray-B
e (B) = Na

∑

k∈Nb

λ̄k + ΞB

− q̄T
B

(

Na

∑

k∈Nb

λ̄k Jr(φ̄k) +Ξp

)−1

q̄B ,

wherep̄0 is the expected position of the agent’s array center,
φ̄k is the angle from anchork to p̄0, andλ̄k, q̄B, andh̄nk are
functions ofp̄0.

Proof: See Appendix E-C.

VI. D ISCUSSIONS

In this section, we will provide discussions on some related
issues in the paper. It includes 1) the relations of our results to
the bounds based on signal metrics, 2) the achievability of the
SPEB, and 3) generalization of the results to 3D localization.

A. Relation to Bounds Based on Signal Metrics

Analysis of localization performance in the literature mainly
employs specific signal metrics, such as TOA, AOA, RSS, and
TDOA, rather than utilizing the entire received waveforms.
Our analysis is based on the received waveforms and exploits
all the localization information inherent in these signal metrics,
implicitly or explicitly. In particular, TOA and joint TOA/AOA
metrics were incorporated in our analysis in Section III andIV,
respectively. Similarly, TDOA and joint TDOA/AOA metrics
were included in the analysis of Section V, and the RSS metric
has been implicitly exploited from a priori channel knowledge
in Section II-C2.

B. Achievability of the SPEB

Maximum a posterior (MAP) and maximum likelihood
(ML) estimates respectively achieve the CRB asymptotically
in the high SNR regimes for both the case with and without

PSfrag replacements

A1

A2

A3

A4

Fig. 4. Network topology: Four anchors are equally spaced ona circle with
an agent at the center. All signals from the anchors to the agent are LOS.

a priori knowledge [50]. High SNR can be attained using se-
quences with good correlation properties [69]–[71], or simply
repeated transmissions. Therefore, the SPEB is achievable.

C. Generalization to 3D Localization

All results obtained thus far can be easily extended to three-
dimensional case, i.e.,p = [x y z ]T and the RDM becomes

Jr(ϕk, φk) = qk q
T
k ,

whereϕk andφk are the angles in the coordinates, and

qk =
[
cosϕk cosφk sinϕk cosφk sinφk

]T
.

Similarly, we can obtain a corresponding3 × 3 EFIM in the
form of (21).

VII. N UMERICAL RESULTS

In this section, we illustrate applications of our analytical
results using numerical examples. We deliberately restrict our
attention to a simple network to gain insights, although our
analytical results are valid for arbitrary topology with any
number of anchors and any number of MPCs in the received
waveforms.

A. Effect of Path-Overlap

We first investigate the effect of path-overlap on the SPEB
when a priori knowledge is unavailable. In particular, we
compare the SPEB obtained by thefull-parameter model
proposed in this paper and that obtained by thepartial-
parameter modelproposed in [28]. In the partial-parameter
model, the amplitudes of MPCs are assumed to be known and
hence excluded from the parameter vector.

Consider a simple network with four anchors (Nb = 4)
equally spaced on a circle and an agent at the center receiving
all LOS signals (see Fig. 4). Each waveform consists of two
paths: one LOS path (SNR(1)

k = 0 dB) and one NLOS path
(SNR(2)

k = −3 dB), and the separations of the two paths
τ
(2)
k − τ

(1)
k are identical for allk. In addition, the transmitted

waveform is a second derivative of Gaussian pulse with width
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Fig. 5. SPEB as a function of path separation for the full-parameter, partial-
parameter, and non-overlap models, without a priori knowledge.

approximately equal to 4 ns. Figure 5 shows the SPEB as a
function of path separationτ (2)k − τ

(1)
k according to Theorem

1.
We can draw the following observations. First of all, path-

overlap increases the SPEB in both models, since it reduces the
ability to estimate the first path and hence decreases the RII.
Note that the shape of the curves depends on the autocorrela-
tion function of the waveforms(t) [47]. Secondly, when the
path separation exceeds the pulse width (approximately 4 ns),
the two models give the same SPEB, which equals the non-
overlapping case. In such cases, the first contiguous-cluster
contains only the first path, and hence the RII is determined
by the first paths. This agrees with the analysis in Section III.
Thirdly, excluding the amplitudes from the parameter vector
incorrectly provides more RI when the two paths overlap, and
hence the partial-parameter model results in a loose bound.
This demonstrates the importance of using the full-parameter
model.

B. Improvement from A Priori Channel Knowledge

We then quantify the contribution of the a priori knowledge
of channel parameters to the SPEB. The network topology
and channel parameters are the same as those in Section
VII-A, except a priori knowledge ofα(1)

k , α(2)
k andb(2)k is now

available. For simplicity, we consider these parameters tobe
independent a priori and denote the a priori Fisher information
of parameterθ1 by Ξθ1 = Fθ(θ ; θ1, θ1). In Fig. 6(a), the
SPEBs are plotted as functions of the path separation for
different a priori knowledge ofα(1)

k and α
(2)
k (no a priori

knowledge ofb(2)k ); while in Fig. 6(b), the SPEBs are plotted
for different a priori knowledge ofb(2)k (no a priori knowledge
of α(1)

k andα(2)
k ).

We have the following observations. First of all, the SPEB
decreases with the a priori knowledge of the amplitudes and
the NLOS biases. This should be expected since a priori
channel knowledge increases the RII and thus localization
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Fig. 6. SPEB with a priori knowledge of the amplitudes and theNLOS
biases as a function of path separation, respectively.

accuracy, as indicated in Corollary 2. Moreover, the NLOS
components are shown to be beneficial for localization in the
presence of a priori biases knowledge, as proven in Section
III-B. Secondly, as the a priori knowledge of the amplitudes
approaches infinity, the SPEB in Fig. 6(a) obtained using the
full-parameter model converges to that in Fig. 5 obtained
using the partial-parameter model. This is because the partial-
parameter model excludes the amplitudes from the parameter
vector, which is equivalent to assuming known amplitudes and
hence infinite a priori Fisher information for the amplitudes
(Ξ

α
(1)
k

= Ξ
α

(2)
k

= ∞). Thirdly, it is surprising to observe that,
when the a priori knowledge of the NLOS biases is available,
path-overlap can result in a lower SPEB compared to non-
overlapping scenarios. This occurs at certain regions of path
separations, depending on the autocorrelation function ofs(t).
Intuitively, path-overlap can lead to a higher SNR comparedto
non-overlapping cases, when a priori knowledge of the NLOS
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biases is available.

C. Path-Overlap Coefficient

We now investigate the dependence of POCχ on path
arrival rate. We first generate channels withL MPCs according
to a simple Poisson model with a fixed arrival rateν, and then
calculateχ according to (61). Figure 7 shows the average path-
overlap coefficient as a function of path inter-arrival rate(1/ν)
for different number of MPCs, where the averaging is obtained
by Monte-Carlo simulations.

We have the following observations. First of all, the POCχ
is monotonically decreasing from 1 to 0 with1/ν. This agrees
with our intuition that denser multipath propagation causes
more interference between the first path and other MPCs, and
hence the received waveform provides less RII. Secondly, for
a fixedν, the POC increases withL. This should be expected
as additional MPCs may interfere with earlier paths, which
degrades the estimation accuracy of the first path and thus
reduces the RII. Thirdly, observe that beyondL = 5 paths,χ
does not increase significantly. This indicates that the effect of
additional MPCs beyond the fifth path do not contribute to the
RII, regardless of the power dispersion profile of the received
waveforms.

D. Outage in Ranging Ability

We have observed that the channel quality for ranging is
characterized by the POC. If the multipath propagation has a
larger POC (close to 1), we may consider the channel in outage
for ranging. We define the ranging ability outage (RAO) as

pout(χth) , P{χ > χth},

whereχth is the threshold for the POC. The RAO tells us
that with probability pout(χth), the propagation channel is
unsatisfactory for ranging.

The RAO as a function ofχth for different Poisson arrival
rate is plotted in Fig. 8 for a channel withL = 50. The RAO
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Fig. 8. RAO as a function of the thresholdχth for different path inter-
arrival time 1/ν with L = 50. The five curves correspond to inter-arrival
time 1/ν = 3.5, 2.5, 2, 1.6, 1.4 ns, respectively.

decreases from 1 to 0, as the thresholdχth increases or the
path arrival rateν decreases. This should be expected because
the probability of path-overlap decreases with the path arrival
rate, and consequently decreases the RAO. The RAO can be
used as a measure to quantify the channel quality for ranging
and to guide the design of the optimal transmitted waveform
for ranging.

E. SPEB and SOEB for Wideband Antenna Array Systems

We consider the SPEB and SOEB for different reference
points of a uniform linear array (ULA). The numerical results
are based on a network with six equally spaced anchor nodes
(Nb = 6) located on a circle with an agent in the center. The
agent is equipped with a 4-antenna array (Na = 4) whose
spacing is 0.5 m. In far-field scenarios,λnk = λk = 10 and
φnk = φk. Fig. 9(a) and Fig. 9(b) show the SPEB and SOEB,
respectively, as a function of different reference point along
the ULA for different a priori knowledge of the orientation
and reference point.

We have the following observations. First of all, a priori
knowledge of the orientation improves the localization accu-
racy as the SPEB decreases withΞϕ. The curves forΞϕ = 0
and Ξϕ = ∞ correspond to the orientation-unaware and
orientation-aware cases, respectively. As a counterpart,a priori
knowledge of the reference point improves the orientation
accuracy as the SOEB decreases withΞp. This agrees with
both intuition and Theorem 3. Secondly, the array center has
the best localization accuracy, and its SPEB does not depend
on Ξϕ, which agrees with Theorem 3. On the other hand, the
array center exhibits the worst orientation accuracy, and its
SOEB does not depend onΞp. This should be expected since
the knowledge for the array center tells nothing about the array
orientation. Thirdly, the SPEB increases with both the distance
from the reference point to the array center and the SOEB, as
predicted by Corollary 5. On the contrary, the SOEB decreases
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Fig. 9. SPEB and SOEB with different a priori knowledge of agent’s position
and orientation, respectively

as a function of the distance from the reference point to the
array center if a priori knowledge of the reference point is
available. This observation can be verified by Theorem 3. Last
but not least, the SPEB is independent of specific reference
point if Ξϕ = ∞, as referred to orientation-aware localization,
and the SOEB is independent of the specific reference point
if Ξp = 0, as shown in Corollary 5.

F. SPEB with Time Offset and Squared Timing Error Bound

We finally investigate the effect of time offset on the SPEB
and squared timing error bound (STEB) for the network
illustrated in Fig. 4. The RII from each anchorλk = 10,
k ∈ {1, 2, 3, 4}. Initially, four anchors are placed atφ1 = 0,
φ2 = π/2, φ3 = π, andφ4 = 3π/2, respectively. We then
vary the position of AnchorA1 counter-clockwise along the
circle. Figure 10(a) and 10(b) show the SPEB and STEB,
respectively, as functions ofφ1 for different a priori knowledge
of the time offset.
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Fig. 10. SPEB and STEB with different a priori knowledge of the time
offset, andΞB = 0, 10, 102,∞ respectively.

We have the following observations. First of all, both the
SPEB and STEB decrease with the a priori knowledge of the
time offset. The SPEB for the caseΞB = ∞ in Fig. 10(a),
i.e., known time offset, is equal to that of a system without
a time offset. On the other hand, whenΞB = ∞, the STEB
in Fig. 10(b) is equal to zero regardless ofφ1 since the offset
is completely known. Secondly, all the curves in Fig. 10(a)
have the same value atφ1 = 0. The time offset has no effect
on the SPEB at this point, sinceqB = 0, referred to astime-
offset-independentlocalization. In this case, both the SPEB
and STEB achieve their minimum, implying that location and
timing information of a network are closely related. Third,
asφ1 increases from 0 toπ, all the curves in Fig. 10(a) first
increase and then decrease, whereas all the curves in Fig. 10(b)
increase monotonically. We give the following interpretations:
the estimation error of time offset in Fig. 10(b) becomes larger
when all the anchors tend to gather on one side of the agent (φ1

increases from 0 toπ). In Fig. 10(a), the SPEB first increases
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since both the localization information
∑

k∈Nb
λk Jr(φk) in

(34) and the information for the time offset becomes smaller.
Then the SPEB decreases since the localization information
increases (whenφ1 > π/2) faster compared to the decrease of
the information for time offset. Note in Fig. 10(a) that although
φ1 = 0 andφ1 = π result in the same SPEB in the absence of
time offset,φ1 = 0 gives a better performance in the presence
of time offset.

VIII. C ONCLUSION

In this paper, we developed a framework to study wideband
wireless location-aware networks and determined their local-
ization accuracy. In particular, we characterized the localiza-
tion accuracy in terms of a performance measure called the
squared position error bound (SPEB), and derived the SPEB
by applying the notion of equivalent Fisher information. This
methodology provides insights into the essence of the local-
ization problem by unifying the localization information from
the a priori knowledge of the agent’s position and information
from individual anchors. We showed that the contributions
from anchors, incorporating both measurements and a priori
channel knowledge, can be expressed in a canonical form as a
weighted sum of the ranging direction matrix. Our results are
derived from the received waveforms themselves rather than
the signal metrics extracted from the waveforms. Therefore,
our framework exploits all the information inherent in the
received waveforms, and consequently the results in this paper
serve as fundamental limits of localization accuracy. These
results can be used as guidelines for localization system
design, as well as benchmarks for location-aware networks.

APPENDIX A
FISHER INFORMATION MATRIX DERIVATION

To facilitate the analysis, we consider a mapping fromθ
into another parameter vectorη =

[
ηT
1 ηT

2 · · · ηT
Nb

]T
,

where ηk =
[

τ
(1)
k α̃

(1)
k · · · τ

(Lk)
k α̃

(Lk)
k

]T
with

α̃
(l)
k , α

(l)
k /c. When the agent is localizable,25 this mapping

is a bijection and provides an alternative expression for the
FIM as

Jθ = TJη TT, (38)

whereJη is the FIM forη, andT is the Jacobian matrix for
the transformation fromθ to η, given respectively by

Jη , Fr(r|θ ;η,η) =

[
ΛL 0
0 ΛNL

]

, (39)

and

T ,
∂η

∂θ
=

1

c

[
TL TNL

0 I

]

, (40)

with 0 denoting a matrix of all zeros andI denoting an identity
matrix. The block matricesTL , TNL , ΛL , andΛNL are given

25Note that an agent is said to be localizable if its position can be
determined by the signal metrics extracted from the waveforms received from
neighboring anchors, i.e., triangulation is possible. This is true whenM ≥ 3,
or in some special cases whenM = 2.

as follows:

TL =










G1 G2 · · · GM

D1 0
D2

. . .
0 DM










,

TNL =

[
GM+1 · · · GNb

0 · · · 0

]

, (41)

ΛL = diag{Ψ1,Ψ2, · · · ,ΨM} ,

and

ΛNL = diag{ΨM+1,ΨM+2, · · · ,ΨNb} , (42)

whereDk =
[
0 I2Lk−1

]
,

Gk = qk l
T
k with lk =

[
1 0 · · · 1 0

]

︸ ︷︷ ︸

2Lk components

T
, (43)

qk = [cosφk sinφk]
T, andΨk ∈ R

2Lk×2Lk is given by

Ψk , Fr(r|θ ;ηk,ηk) . (44)

Note that elements inΨk can be expressed as

Er

{

−
∂2 ln f(r|θ)

∂τ
(i)
k ∂τ

(j)
k

}

=
2α

(i)
k α

(j)
k

N0

∫

|2πfS(f)|2 exp
{

−j2πf (τ
(i)
k − τ

(j)
k )
}

df

=
2α

(i)
k α

(j)
k

N0

∂2

∂τ
(i)
k ∂τ

(j)
k

Rs

(

τ
(i)
k − τ

(j)
k

)

,

Er

{

−
∂2 ln f(r|θ)

∂τ
(i)
k ∂α̃

(j)
k

}

=
2α

(i)
k c

N0

∫

j 2πf |S(f)|2 exp
{

−j2πf (τ
(i)
k − τ

(j)
k )
}

df

=
2α

(i)
k c

N0

∂

∂τ
(i)
k

Rs

(

τ
(i)
k − τ

(j)
k

)

,

and

Er

{

−
∂2 ln f(r|θ)

∂α̃
(i)
k ∂α̃

(j)
k

}

=
2 c2

N0

∫

|S(f)|2 exp
{

−j2πf (τ
(i)
k − τ

(j)
k )
}

df

=
2 c2

N0
Rs

(

τ
(i)
k − τ

(j)
k

)

,

whereRs(τ) =
∫
s(t)s(t− τ)dt. In particular,

[Ψk]1,1 = Fr(r|θ ; τ
(1)
k , τ

(1)
k ) = 8π2β2

SNR
(1)
k , (46)

whereβ andSNR(i)
k are given by (17) and (18), respectively.

Substituting (39) and (40) into (38), we have the FIMJθ in
(7).
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APPENDIX B
WIDEBAND CHANNEL MODEL AND A PRIORI CHANNEL

KNOWLEDGE

Wideband channel measurements have shown that MPCs
follow random arrival and their amplitudes are subject to
path loss, large and small-scale fading. While our discussion
is valid for any wideband channels described by (1), we
consider the model of IEEE 802.15.4a standard for exposition.
Specifically, this standard uses Poisson arrivals, log-normal
shadowing, Nakagami small-scale fading with exponential
power dispersion profile (PDP) [26].

A. Path Arrival Time

The arrival time of MPCs is commonly modeled by a
Poisson process [26], [64]. Given the path arrival rateν, we
have

gτk

(

τ
(l)
k

∣
∣
∣ τ

(l−1)
k

)

= ν exp
{

−ν
(

τ
(l)
k − τ

(l−1)
k

)}

,

for τ (l)k ≥ τ
(l−1)
k and l ≥ 2. Using (2), we obtain

gbk

(

b
(l)
k

∣
∣
∣ b

(l−1)
k

)

=
ν

c
exp

{

−
ν

c

(

b
(l)
k − b

(l−1)
k

)}

, (47)

for b
(l)
k ≥ b

(l−1)
k and l ≥ 1. Note that we letb(0)k = 0 for

consistency.

B. Path Loss and Large-Scale Fading

The RSS in dB at the distancedk can be written as [26]

Pk = P0 − 10̺ log10

(
dk
d0

)

+ w ,

where P0 is the expected RSS at the reference distance
d0, ̺ is the propagation (path gain) exponent, andw is a
random variable (r.v.) that accounts for large-scale fading, or
shadowing. Shadowing is usually modeled with a log-normal
distribution, such thatw is a Gaussian r.v. with zero-mean and
varianceσ2

S, i.e., w ∼ N
(
0, σ2

S

)
.26 The PDF of the RSS of

rk(t) can then be written as

gP (Pk|dk) ∝ exp

{

−
1

2σ2
S

[

Pk − P0 + 10̺ log10

(
dk
d0

)]2
}

,

(48)

wheredk = ‖p− pk‖, andPk is given by

Pk = 10 log10

[
Lk∑

l=1

Es

{∣
∣
∣α

(l)
k

∣
∣
∣

2
}]

,

with Es{·} denoting the average over small-scale fading.

26The standard deviation is typically 1-2 dB (LOS) and 2-6 dB (NLOS)
[21] around the path gain.

C. Power Dispersion Profile and Small-Scale Fading

As in [24], [26], we consider an exponential PDP given
by,27

Es

{∣
∣
∣α

(l)
k

∣
∣
∣

2
}

= Qk exp

(

−
τ
(l)
k

γk

)

, Q
(l)
k , (49)

whereγk is the decay constant, andQk is a normalization
coefficient such that

Qk =
10Pk/10

∑Lk

l=0 exp
(

−τ
(l)
k /γk

) . (50)

In addition,α(l)
k is a Nakagami r.v. with second moment given

by (49). Specifically, we have

gαk

(

α
(l)
k |bk, dk, Pk

)

= gαk

(

α
(l)
k | τ k, Pk

)

=
2

Γ(ml)

(

ml

Q
(l)
k

)ml ∣
∣
∣α

(l)
k

∣
∣
∣

2ml−1

exp

(

−
ml

Q
(l)
k

∣
∣
∣α

(l)
k

∣
∣
∣

2
)

,

(51)

whereΓ(ml) is the gamma function andml ≥ 1/2 is the
Nakagamim-factor, which is a function ofτ k [26].

D. A Priori PDF for Multipath Parameters

The joint PDF of the multipath parameters and the RSS,
conditioned on the distance from anchork to the agent, can
be derived as

f (αk,bk, Pk |dk ) = gP(Pk|dk)
Lk∏

l=1

gαk

(

α
(l)
k |bk, dk, Pk

)

×
Lk∏

l=1

gbk

(

b
(l)
k |b

(l−1)
k

)

. (52)

By integrating overPk, we obtain the PDF of the multipath
parameters ofrk(t) as follows

f(κk|dk) = f (αk,bk|dk)

=

∫ ∞

−∞

f(αk,bk, Pk|dk) dPk . (53)

Equation (53) characterizes the a priori knowledge of channel
parameters, and can be obtained, for IEEE 802.15.4a standard,
by substituting (47), (48) and (51) into (52) and (53). Note that
sincepk is known,dk is a function ofp and hence we have
(9).

APPENDIX C
PROOFS OF THERESULTS IN SECTION III

A. Proof of Theorem 1

Proof: We first prove thatJe(p) is given by (15). We
partitionGk in (43) andΨk in (44) as

Gk ,
[

qk Ğk

]
and Ψk =

[

8π2β2 SNR
(1)
k kT

k

kk Ψ̆k

]

,

27Note that the first component of LOS signals can exhibit a stronger
strength than (49) in some UWB measurement [72]. In such cases, (49) and
(50) need to be modified, accordingly.
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where [Ψk]1,1 is obtained by (46),kk ∈ R
2Lk−1, Ψ̆k ∈

R
(2Lk−1)×(2Lk−1), and

Ğk = qk

[
0 1 0 · · · 1 0

]

︸ ︷︷ ︸

2Lk−1 components

T
.

Using these notations, we can write the EFIM given by (14)
in Proposition 1, after some algebra, in the form of (12),

A , 8π2β2
∑

k∈NL

SNR
(1)
k qk q

T
k

+
∑

k∈NL

{

Ğkkkq
T
k + qkk

T
kĞ

T
k + ĞkΨ̆kĞ

T
k

}

,

B ,
[

q1 k
T
1 + Ğ1 Ψ̆1 · · · qM kT

M + ĞM Ψ̆M

]
,

and

C , diag
{

Ψ̆1, Ψ̆2, . . . , Ψ̆M

}

.

Applying the notion of EFI as in (13), we obtain the2 × 2
Je(p) as

Je(p) =
8π2β2

c2

∑

k∈NL

(1− χk)SNR
(1)
k qk q

T
k , (55)

where the POC

χk ,
kT
k Ψ̆

−1

k kk

8π2β2 SNR
(1)
k

. (56)

This completes the proof of (15).
Next, we show that only the first contiguous-cluster contains

information for localization. Let us focus onχk. Define the
following notations for convenience:

Rs(i, j) , Rs(t)|t=τ
(i)
k

−τ
(j)
k

,

R̈s(i, j) , −
∂2

∂t2
Rs(t)|t=τ

(i)
k

−τ
(j)
k

,

and

Ṙs(i, j) ,
∂

∂t
Rs(t)|t=τ

(i)
k

−τ
(j)
k

= −Ṙs(j, i) .

If the length of the first contiguous-cluster in the received
waveform is L̃k where 1 ≤ L̃k ≤ Lk, then R̈s(i, j) =
Ṙs(i, j) = Rs(i, j) = 0 for i ∈ {1, 2, . . . , L̃k} and j ∈
{L̃k + 1, L̃k + 2, . . . , Lk}, and28

kk ,
[

k̃T
k 0T

]T
and Ψ̆k ,

[

Ψ̃k 0
0 ⊠

]

,

28⊠ is a block matrix that is irrelevant to the rest of the derivation.

wherek̃k ∈ R
2L̃k−1 andΨ̃k ∈ R

(2L̃k−1)×(2L̃k−1). Hence (56)
becomes

χk =
k̃T
k Ψ̃

−1

k k̃k

8π2β2 SNR
(1)
k

, (57)

which depends only on the first̃Lk paths, implying that only
the first contiguous-cluster of LOS signals contains informa-
tion for localization.

Finally, we show thatχk is independent ofα(l)
k . Note that

Ψ̃k and k̃k can be written as

Ψ̃k =
2

N0
diag

{

c, α
(2)
k , c, . . . , α

(Lk)
k , c

}

Υk

× diag
{

c, α
(2)
k , c, . . . , α

(Lk)
k , c

}

, (58)

and

k̃k =
2α

(1)
k

N0
diag

{

c, α
(2)
k , c, . . . , α

(Lk)
k , c

}

tk , (59)

whereΥk ∈ R
(2L̃k−1)×(2L̃k−1) and tk ∈ R

2L̃k−1 are given
by the matrix partition in (60) shown at the bottom of the
page. Substituting (58) and (59) into (57), we obtain

χk =
1

4π2β2
tT
kΥ

−1
k tk , (61)

which is independent of all the amplitudes.
Note that0 ≤ χk ≤ 1: χk is nonnegative since it is a

quadratic form andΥk is a positive semi-definite FIM (hence
is Υ−1

k ); andχk ≤ 1 since the contribution from each anchor
to the EFIM in (55) is nonnegative.

B. Proof of Corollary 1

Proof: This scenario can be thought of as a special case
of Theorem 1 withL̃k = 1, i.e., the first contiguous-cluster
contains only one path. In this case, (61) becomes

χk =
1

4π2β2

Ṙ2
s(1, 1)

Rs(1, 1)
.

Since waveforms(t) is continuous and time-limited in realistic
cases, we have

Ṙs(1, 1) =
∂

∂τ
Rs(τ)

∣
∣
∣
∣
τ=0

= 0 ,

implying thatχk = 0, which leads to (19).

[

R̈s(1, 1) tT
k

tk Υk

]

,















R̈s(1, 1) Ṙs(1, 1) R̈s(1, 2) Ṙs(1, 2) · · · R̈s(1, L̃k) Ṙs(1, L̃k)

Ṙs(1, 1) Rs(1, 1) −Ṙs(1, 2) Rs(1, 2) · · · −Ṙs(1, L̃k) Rs(1, L̃k)

R̈s(1, 2) −Ṙs(1, 2)

Ṙs(1, 2) Rs(1, 2)
...

...
R̈s(1, L̃k) −Ṙs(1, L̃k) · · · R̈s(L̃k, L̃k) Ṙs(L̃k, L̃k)

Ṙs(1, L̃k) Rs(1, L̃k) · · · Ṙs(L̃k, L̃k) Rs(L̃k, L̃k)















(60)
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C. Proof of Theorem 2

Proof: When a priori channel knowledge of the channel
is available, the FIM is

Jθ =
1

c2

[

TNLΛ̄NLT
T
NL +TLΛ̄LT

T
L TNLΛ̄NL

Λ̄NLT
T
NL Λ̄NL

]

+ Jp ,

where Λ̄NL = Eθ {ΛNL} , diag
{
Ψ̄1, Ψ̄2, . . . , Ψ̄M

}
and

Λ̄L = Eθ {ΛL} , diag
{
Ψ̄M+1, Ψ̄M+2, . . . , Ψ̄Nb

}
. The FIM

Jθ can be partitioned as (12), whereA is given by (62) shown
at the bottom of the page, and

B,

[

GM+1Ψ̄M+1+c2ΞM+1
p,κ · · · GNbΨ̄Nb+c2ΞNb

p,κ

0 · · · 0

]

,

and

C , diag
{

Ψ̄M+1 + c2ΞM+1
κ,κ , . . . , Ψ̄Nb + c2ΞNb

κ,κ

}

.

Apply the notion of EFI, and we have the2× 2 EFIM, after
some algebra, given by (63) at the bottom of the page. From
(9), we can rewriteΞk

p,p andΞk
p,κ in (11) using chain rule as

Ξk
p,p = qk Ξ

k
d,d q

T
k and Ξk

p,κ = qk Ξ
k
d,κ , (64)

where Ξk
d,d = Fθ(κk|dk ; dk, dk) and Ξk

d,κ =
Fθ(κk|dk ; dk,κk). Substituting (64) into (63) leads to
(21), whereλk is given by (65a) and (65b) for LOS signals
and NLOS signals, respectively, shown at the bottom of the
page.

D. Proof of Corollary 2

Proof: We first show that the a priori channel knowledge
increases the RII. Considerλk in (65a). Let

Fk ,
1

c2

[

lTkΨ̄klk + c2Ξk
d,d lTkΨ̄kD

T
k + c2Ξk

d,κ

DkΨ̄klk + c2Ξ̃
k T

p,κ DkΨ̄kD
T
k + c2Ξk

κ,κ

]

,

and

Ek ,
1

c2

[

lTkΨ̄klk lTkΨ̄kD
T
k

DkΨ̄klk DkΨ̄kD
T
k

]

.

We haveFk � Ek, since

Fk −Ek =

[

Ξk
d,d Ξk

d,κ

Ξ̃
k T

p,κ Ξk
κ,κ

]

= Fθ(κk|dk ; θ̃k, θ̃k) � 0 ,

where θ̃k =
[
dk κT

k

]T
. Hence we haveλk =

1/[F−1
k ]1,1 ≥ 1/[E−1

k ]1,1, where[E−1
k ]1,1 equals (16). This

implies that the a priori channel knowledge can increase the
RII.

We next show that the RIIs in (65a) and (65b) reduce to
(16) and zero, respectively, in the absence of a priori channel
knowledge.

When a priori channel knowledge is unavailable,Ξk
κ,κ,

Ξk
p,κ, andΞk

p,p all equal zero, and the corresponding RIIλk

in (65a) and (65b) becomes

λk =
1

c2

{

lTkΨklk −
(
lTkΨkD

T
k

) (
DkΨkD

T
k

)−1
(DkΨklk)

}

=
1

c2
lTk

{[

8π2β2 SNR
(1)
k kT

k

kk Ψ̆k

]

−

[
kT
k

Ψ̆k

]

Ψ̆
−1

k

[

kk Ψ̆k

]

}

lk

=
1

c2

{

8π2β2
SNR

(1)
k − kT

kΨ̆
−1

k kk

}

=
8π2β2

c2
(1− χk)SNR

(1)
k ,

for k ∈ NL , and

λk =
1

c2
{
lTkΨklk − lTkΨk Ψ

−1
k Ψklk

}
= 0 ,

for k ∈ NNL .

A ,











∑

k∈Nb
GkΨ̄kG

T
k + c2Ξk

p,p G1Ψ̄1D
T
1 + c2Ξ1

p,κ · · · GMΨ̄MDT
M + c2ΞM

p,κ
(
G1Ψ̄1D

T
1 + c2Ξ1

p,κ

)T
D1Ψ̄1D

T
1 + c2Ξ1

κ,κ

...
. . .

(

GMΨ̄MDT
M + c2ΞM

p,κ

)T
DMΨ̄MDT

M + c2ΞM
κ,κ











(62)

Je(p) =
1

c2

{
∑

k∈Nb

(

GkΨ̄kG
T
k + c2Ξk

p,p

)

−
∑

k∈NL

(

GkΨ̄kD
T
k + c2Ξk

p,κ

)(

DkΨ̄kD
T
k + c2Ξk

κ,κ

)−1(

GkΨ̄kD
T
k + c2Ξk

p,κ

)T

−
∑

k∈NNL

(

GkΨ̄k + c2Ξk
p,κ

)(

Ψ̄k + c2Ξk
κ,κ

)−1(

GkΨ̄k + c2Ξk
p,κ

)T
}

(63)

1

c2

{

lTkΨ̄klk + c2Ξk
d,d −

(

lTkΨ̄kD
T
k + c2Ξk

d,κ

)(

DkΨ̄kD
T
k + c2Ξk

κ,κ

)−1(

lTkΨ̄kD
T
k + c2Ξk

d,κ

)T }

, k ∈ NL (65a)

λk ,






1

c2

{

lTkΨ̄klk + c2Ξk
d,d −

(

lTkΨ̄k + c2Ξk
d,κ

)(

Ψ̄k + c2Ξk
κ,κ

)−1(

lTkΨ̄k + c2Ξk
d,κ

)T }

, k ∈ NNL (65b)
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E. Proof of Corollary 3

Proof: The block matricesΞk
κ,κ and Ξk

d,κ in (11) for
NLOS signals can be written as

Ξk
κ,κ =

[

t2 vT
k

vk Ξ̆
k

κ,κ

]

and Ξk
d,κ =

[

w Ξ̆
k

d,κ

]

,

wherevk, Ξ̆
k

d,κ ∈ R
2Lk−1, and Ξ̆

k

κ,κ ∈ R
(2Lk−1)×(2Lk−1).

Note that t2 corresponds to the Fisher information ofb(1)k .
When the a priori knowledge ofb(1)k goes to ∞, i.e.,
gb(b

(1)
k ) → δ(b

(1)
k ), we claim that

lim
t2→∞

[

Ψ̄k + c2Ξk
κ,κ

]−1

=

[
0 0T

0
(

DkΨ̄kD
T
k + c2Ξ̆

k

κ,κ

)−1

]

. (66)

To show this, we partition̄Ψk as

Ψ̄k =

[
u2
k kT

k

kk
˘̄Ψk

]

,

and then the left-hand-side of (66) becomes

LHS = lim
t2→∞

[

u2
k + c2t2 kT

k + c2vT
k

kk + c2vk Ψ̄
′

k + c2Ξ̆
k

κ,κ

]−1

= lim
t2→∞

[
A B
BT C

]

,

where

A ,

[

u2
k + c2t2

−
(
kk + c2vk

)T
(
˘̄Ψk + c2Ξ̆

k

κ,κ

)−1 (
kk + c2vk

)
]−1

,

B , −
1

u2
k + c2t2

(
kk + c2vk

)
C−1,

and

C ,

[

˘̄Ψk + c2Ξ̆
k

κ,κ

−
1

u2
k + c2t2

(
kk + c2vk

) (
kk + c2vk

)T
]−1

.

When b
(1)
k is known, i.e.,t2 → ∞, we havelimt2→∞ A =

0, limt2→∞ B = 0, and limt2→∞ C =
[
˘̄Ψk + c2Ξ̆

k

κ,κ

]−1

.

Notice that ˘̄Ψk = DkΨ̄kD
T
k. Hence, we proved our claim in

(66).
Substituting (66) into (65b), we have

lim
t2→∞

λk =
1

c2

{

lTkΨ̄klk + c2Ξk
d,d −

(

lTkΨ̄kD
T
k + c2Ξ̆

k

d,κ

)

×
(

DkΨ̄kD
T
k + c2Ξ̆

k

κ,κ

)−1(

lTkΨ̄kD
T
k + c2Ξ̆

k

d,κ

)T
}

,

for k ∈ NNL , which agrees with the RII of LOS signals
in (65a).29 Hence LOS signals are equivalent to NLOS with
infinite a priori knowledge ofb(1)k for localization.

F. Proof of Proposition 2

Proof: Note that qk, Ψ̄k, Ξk
p,p, Ξk

κ,κ, and Ξk
p,κ are

functions ofp when a priori knowledge of the agent’s position
is available. Hence we need to take expectation of them overp
in (10). After some algebra, we have the EFIM for the agent’s
position as (67) shown at the bottom of the page.

When the condition in (22) is satisfied for the
functions g(p)’s: 1) qk Ξ

k
d,d q

T
k, 2) qk l

T
k Ψ̄k lk q

T
k, 3)

qk

(

lTkΨ̄k + c2 Ξk
d,κ

)

, and 4)Ψ̄k+Ξk
κ,κ, we can approximate

the expectation of each function overp in (67) by the function
value at the expected position̄p. Hence the EFIM in (67) can
be expressed as

Je(p) = Ξp +
1

c2

∑

k∈Nb

{

qk

(
lTk Ψ̄k lk + c2 Ξk

d,d

)
qT
k

− qk

(

lTk Ψ̄k + c2 Ξk
d,κ

) (

Ψ̄k +Ξk
κ,κ

)−1

×
(

lTk Ψ̄k + c2 Ξk
d,κ

)T
qT
k

}

= Ξp +
∑

k∈Nb

λ̄k Jr(φ̄k) ,

whereφ̄k is the angle from anchork to p̄, andλ̄k is given by
(68) shown at the bottom of the page. Note that all functions
are evaluated at̄p.

29Note that the size ofΞk
κ,κ andΞk

d,κ for LOS signals and NLOS signals

are different for the sameLk. Indeed,Ξ̆
k

κ,κ and Ξ̆
k

d,κ are not associated

with b
(1)
k

, and hence they are in the same form asΞk
κ,κ andΞk

d,κ for LOS
signals in (65a).

Je(p) = Ξp +
∑

k∈Nb

{

Ep

{
qk Ξ

k
d,d q

T
k

}
+

1

c2
Ep

{
qk l

T
k Ψ̄k lk q

T
k

}

−
1

c2
Ep

{

qk

(

lTkΨ̄k + c2 Ξk
d,κ

)}

Ep

{

Ψ̄k +Ξk
κ,κ

}−1

Ep

{(

lTkΨ̄k + c2 Ξk
d,κ

)T
qT
k

}}

(67)

λ̄k ,
1

c2

{

lTk Ψ̄klk + c2 Ξk
d,d −

(

lTkΨ̄k + c2Ξk
d,κ

)(

Ψ̄k + c2 Ξk
κ,κ

)−1(

lTk Ψ̄k + c2 Ξk
d,κ

)T }

(68)
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APPENDIX D
PROOFS OF THERESULTS IN SECTION IV

A. Proof of Theorem 3

Note that this proof also incorporates the a priori channel
knowledge. In the absence of this knowledge, the correspond-
ing results can be obtained by removingJp that characterizes
the a priori channel knowledge.

Since p and ϕ are deterministic but unknown, the joint
likelihood function of the random vectorsr and θ can be
written as

f(r, θ) = f(r|θ) f(θ) =
∏

n∈Na

∏

k∈Nb

f(rnk|θ) f(κnk|p, ϕ) .

Note thatf(κnk|p, ϕ) = f(κnk|dnk), and the FIMJp from
f(θ) can be expressed as (69) shown at the bottom of the
page, whereΞnk

p,p = qnk Ξ
nk
d,d q

T
nk, Ξnk

p,ϕ = qnk Ξ
nk
d,d hnk,

andΞnk
ϕ,ϕ = h2

nk Ξ
nk
d,d, in which

Ξnk
d,d , Fθ(rnk|θ ; dnk, dnk) .

Block matricesΞp,n, Ξϕ,n, and Ξn correspond to thenth
antenna in the array, and they can be further decomposed into
block matrices corresponding to each anchor:

Ξp,n =
[
Ξn,1

p,κ Ξn,2
p,κ · · · Ξn,Nb

p,κ

]
,

Ξϕ,n =
[
Ξn,1

ϕ,κ Ξn,2
ϕ,κ · · · Ξn,Nb

ϕ,κ

]
,

and

Ξn = diag
{

Ξn,1
κ,κ,Ξ

n,2
κ,κ, . . . ,Ξ

n,Nb
κ,κ

}

,

where Ξnk
p,κ = qnk Ξ

nk
d,κ and Ξnk

ϕ,κ = hnk Ξ
nk
d,κ, and

Ξnk
κ,κ = Fθ(κnk|p, ϕ ;κnk,κnk), in which Ξnk

d,κ =
Fθ(κnk|p, ϕ ; dnk,κnk).

Similar to the proof of Theorem 2 in Appendix C-C, the
FIM from observation can be obtained as (70) shown at the
bottom of the page, where

Gn =
[
qn,1l

T
n,1 qn,2l

T
n,2 · · · qn,Nbl

T
n,Nb

]
,

hn =
[
hn,1l

T
n,1 hn,2l

T
n,2 · · · hn,Nbl

T
n,Nb

]
,

and

Λ̄n = diag
{
Ψ̄n,1, Ψ̄n,2, . . . , Ψ̄n,Nb

}

correspond to thenth antenna as defined in (44).
The overall FIMJθ is the sum of (69) and (70). By applying

the notion of EFI, we have the3 × 3 EFIM for the position
and the orientation as follows

Je(p, ϕ) =
∑

n∈Na

∑

k∈Nb

[

λnk qnk q
T
nk λnk hnk qnk

λnk hnk q
T
nk λnk h

2
nk

]

,

(71)

whereλnk is given by (72) shown at the bottom of the page.
Note that in the absence of a priori channel knowledge,

the above result is still valid, with the RII of (72) degen-
erating to (73) shown at the bottom of the page, where
Dnk =

[
0 I2Lnk−1

]
.

B. Proof of Proposition 3

Since qqT is always positive semi-definite, we need to
simply prove that there exists a uniquep∗ such thatq∗ = 0.

Jp =












∑

n∈Na

∑

k∈Nb
Ξnk

p,p

∑

n∈Na

∑

k∈Nb
Ξnk

p,ϕ Ξp,1 · · · Ξp,Na
∑

n∈Na

∑

k∈Nb
Ξnk

p,ϕ

T ∑

n∈Na

∑

k∈Nb
Ξnk
ϕ,ϕ Ξϕ,1 · · · Ξϕ,Na

ΞT
p,1 ΞT

ϕ,1 Ξ1

...
...

. . .

ΞT
p,Na

ΞT
ϕ,Na

ΞNa












(69)

Jw =
1

c2












∑

n∈Na
GnΛ̄nG

T
n

∑

n∈Na
GnΛ̄nh

T
n G1Λ̄1 · · · GNaΛ̄Na

∑

n∈Na
hnΛ̄nG

T
n

∑

n∈Na
hnΛ̄nh

T
n h1Λ̄1 · · · hNaΛ̄Na

Λ̄1G
T
1 Λ̄1h

T
1 Λ̄1

...
...

. . .

Λ̄NaG
T
Na

Λ̄Nah
T
Na

Λ̄Na












(70)

λnk ,
1

c2

{

lTnk Ψ̄nk lnk + c2 Ξnk
d,d −

(

lTnkΨ̄nk + c2Ξnk
d,κ

)(

Ψ̄nk + c2Ξnk
κ,κ

)−1(

lTnkΨ̄nk + c2Ξnk
d,κ

)T
}

(72)

λnk =

{

lTnk

{

Ψ̄nk −
(
Ψ̄nkD

T
nk

) (
DnkΨ̄nkD

T
nk

)−1(
DnkΨ̄nk

)}

lnk/c
2 , LOS

0 , NLOS
(73)
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Proof: Let p be an arbitrary reference point, and

p∗ = p+ g(ϕ) ,

whereg(ϕ) = [ gx(ϕ) gy(ϕ) ]
T, andgx(ϕ) andgy(ϕ) denote

the relative distance inx andy directions, respectively. Then,
hnk corresponding top can be written as a sum of two parts

hnk = h∗
nk + h̃nk ,

whereh∗
nk corresponds top∗

h∗
nk =

d

dϕ
∆xn(p

∗, ϕ) cosφnk +
d

dϕ
∆yn(p

∗, ϕ) sinφnk ,

and

h̃nk =
d

dϕ
gx(ϕ) cosφnk +

d

dϕ
gy(ϕ) sinφnk

, ġx cosφnk + ġy sinφnk = ġT qnk .

Hence,q corresponding to the reference positionp is given
by

q =
∑

n∈Na

∑

k∈Nb

λnk h
∗
nk qnk

︸ ︷︷ ︸

, q∗

+
∑

n∈Na

∑

k∈Nb

λnk h̃nk qnk

︸ ︷︷ ︸

, q̃

, (74)

and q̃ can be written as

q̃ =
∑

n∈Na

∑

k∈Nb

qT
nk ġ λnk qnk

=
∑

n∈Na

∑

k∈Nb

λnk qnk q
T
nk ġ =

∑

n∈Na

Je,n ġ . (75)

Since
∑

n∈Na
Je,n ≻ 0, we haveq∗ = 0 if and only if

ġ =

(
∑

n∈Na

Je,n

)−1

q ,

implying that there exists only onėg, and hence only one
g(ϕ), such thatq∗ = 0. Therefore, the orientation centerp∗

is unique.

C. Proof of Corollary 5

Proof: We first prove that the SOEB is independent of
the reference pointp. It is equivalent to show that the EFI for
the orientation given by (27) equals the EFI for the orientation
based onp∗, given by

J∗
e (ϕ) =

∑

n∈Na

∑

k∈Nb

λnk h
∗2
nk .

Let J =
∑

n∈Na
Je,n. From (74) and (75), we haveq =

q̃ = J ġ, and hence

qTJ−1q = q̃TJ−1q̃ = q̃T ġ =
∑

n∈Na

∑

k∈Nb

λnk h̃
2
nk .

On the other hand, we also have
∑

n∈Na

∑

k∈Nb

λnkh
∗
nk h̃nk = q∗ ġ = 0 .

Therefore, we can verify that the EFI for the orientation in
(27)

Je(ϕ) =
∑

n∈Na

∑

k∈Nb

λnk(h
∗
nk + h̃nk)

2 − q̃TJ−1q̃

=
∑

n∈Na

∑

k∈Nb

λnkh
∗2
nk + 2

∑

n∈Na

∑

k∈Nb

λnkh
∗
nkh̃nk

= J∗
e (ϕ) . (76)

This shows that the EFI for the orientation is independent of
the reference point, and thus is the SOEB.

We next derive the SPEB for any reference point given in
(32). The3× 3 EFIM in (71) can be written, using (74) and
(76), as

Je(p, ϕ) =

[
J q̃
q̃T Je(ϕ) + q̃TJ−1q̃

]

.

Using the equation of Shur’s complement [66], we have

J−1
e (p) = J−1 +

1

Je(ϕ)

(
J−1q̃

) (
J−1q̃

)T

= J−1 +
1

Je(ϕ)
ġ ġT . (77)

Since the translationg(ϕ) can be represented as

g(ϕ) = ‖p− p∗‖

[
cos(ϕ+ ϕ0)
sin(ϕ+ ϕ0)

]

,

whereϕ0 is a constant angle, we have‖ġ‖ = ‖p − p∗‖ .
Then, by taking the trace of both sides of (77), we obtain

P(p) = P(p∗) +
ġT ġ

Je(ϕ)

= P(p∗) + ‖p− p∗‖2 · P(ϕ) .

D. Proof of Proposition 5

Proof: Take the array centerp0 as the reference point,
and we have
∑

n∈Na

hnk =
∑

n∈Na

d

dϕ
∆xn(p0, ϕ) cosφnk

+
∑

n∈Na

d

dϕ
∆yn(p0, ϕ) sinφnk

=
d

dϕ

(
∑

n∈Na

∆xn(p0, ϕ)

)

cosφnk

+
d

dϕ

(
∑

n∈Na

∆yn(p0, ϕ)

)

sinφnk

= 0 .

Consequently,

q =
∑

n∈Na

∑

k∈Nb

λkhnk qk =
∑

k∈Nb

(
∑

n∈Na

hnk

)

λk qk = 0 ,

implying p0 = p∗, i.e., the array center is the orientation
center.
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APPENDIX E
PROOFS OF THERESULTS IN SECTION V

A. Proof of Theorem 4

In the presence of a time offset, the FIM can be written as
(78) shown at the bottom of the page, where

Jp =












∑

k∈Nb
Ξk

p,p 0 Ξ1
p,κ · · · ΞNb

p,κ

0T ΞB 0T · · · 0T

Ξ1 T
p,κ 0 Ξ1

κ,κ

...
...

. . .

ΞNb T
p,κ 0 ΞNb

κ,κ












.

Applying the notion of EFI, we obtain the3× 3 EFIM

Je(p, B) =

[ ∑

k∈Nb
λk qk q

T
k

∑

k∈Nb
λk qk

∑

k∈Nb
λk q

T
k

∑

k∈Nb
λk + ΞB

]

,

whereλk is given by (65b), and another step of EFI leads to
(34) and (35).

B. Proof of Theorem 5

We consider orientation-unaware case, whereas orientation-
aware case is a special case with a reduced parameter set. The
FIM using an antenna array can be written as (79) shown at the
bottom of the page, whereln =

[
lTn,1 lTn,2 · · · lTn,Nb

]
,

and Jp is given by (80) shown at the bottom of the page.
Applying the notion of EFI toJθ, we obtain the4× 4 EFIM
in (37).

C. Proof of Corollary 8

We incorporate the a priori knowledge of the array
center and orientation into (37), and obtain the EFIM
in far-field scenarios as (81) shown at the bottom of
the page. Recall that in far-field scenarios,p0 =
p∗, implying that

∑

n∈Na

∑

k∈Nb
λnkhnkqnk = 0 and

∑

n∈Na

∑

k∈Nb
λnkhnk = 0. Also, we haveλ̄nk = λ̄k and

φ̄nk = φ̄k for all n, and hence the EFIM can be written as
(82) shown at the top of the next page, whereh̄nk and q̄k is
a function ofp̄0.

Jθ =
1

c2












∑

k∈Nb
GkΨ̄kG

T
k

∑
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GkΨ̄klk G1Ψ̄1 · · · GNbΨ̄Nb

∑

k∈Nb
lTkΨ̄kGk

∑

k∈Nb
lTkΨ̄klk lT1Ψ̄1 · · · lTNb

Ψ̄Nb

Ψ̄1G
T
1 Ψ̄1l1 Ψ̄1

...
...

. . .

Ψ̄NbG
T
Nb

Ψ̄NblNb Ψ̄Nb












+ Jp (78)

Jθ =
1

c2
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









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T
n
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T
n
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T
n G1Λ̄1 · · · GNaΛ̄Na

∑

n∈Na
hnΛ̄nG

T
n

∑

n∈Na
hnΛ̄nh

T
n

∑

n∈Na
hnΛ̄nl

T
n h1Λ̄1 · · · hNaΛ̄Na
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n∈Na
lnΛ̄nG

T
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lnΛ̄nh
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n
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lnΛ̄nl
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T
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Na
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Na
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













+ Jp (79)

Jp =















∑

n∈Na
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0 ΞNa
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
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









(80)

JArray-B
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λ̄nkqnkq
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∑
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λ̄nkqnk
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∑
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∑
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λ̄nkq
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JArray-B
e =







Na
∑

k∈Nb
λ̄nkJr(φ̄k) +Ξp 0 Na

∑

k∈Nb
λ̄kq̄k

0T ∑

n∈Na

∑

k∈Nb
λ̄kh̄

2
nk + Ξϕ 0

Na
∑
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λ̄kq̄

T
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
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(82)
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