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Abstract

We consider channels with action-dependent states: Given the message to be communicated, the transmitter

chooses an action sequence that affects the formation of the channel states, and then creates the channel input

sequence based on the state sequence. We characterize the capacity of such a channel both for the case where the

channel inputs are allowed to depend non-causally on the state sequence and the case where they are restricted to

causal dependence. Our setting covers previously considered scenarios involving transmission over channels with

states known at the encoder, as well as various new coding scenarios for channels with a ‘rewrite’ option that

may arise naturally in storage for computer memories with defects or in magnetic recoding. A few examples are

worked out in detail.

Key words and phrases: Actions, Channel with a Rewrite option, Channel with states, Cost constraints, Dirty paper

coding, Gel’fand-Pinsker Channel, Shannon Channel.

1 Introduction

Communication through state-dependent channels, with states known at the transmitter, is a problem that has

received much attention since the work of Shannon [11], Kusnetsov and Tsybakov [7], Gel’fand and Pinsker [4], and

Heegard and El Gamal [5]. The assumption in these seminal papers, as well as in the work on communication with

state-dependent channels that followed (cf. [6] and references therein), is that the channel states are generated by

nature, and cannot be affected or controlled by the communication system.

In this work, we revisit this problem setting for the case where the transmitter can take actions that affect the

formation of the states. Specifically, we consider a communication system where encoding is in two parts: given the

message, an action sequence is created. The actions affect the formation of the channel states, which are accessible

to the transmitter when producing the channel input sequence. A channel with action-dependent states then is

characterized by two ingredients: the distribution of state given an action PS|A (in lieu of the distribution of the

state PS in the original setting) and, as in the original setting, the distribution of the channel output given the input

and state PY |X,S . We characterize the capacity of such a channel both for the case where the channel inputs are

allowed to depend non-causally on the state sequence, and that where they are restricted to causal dependence. Our

problem can be thought of as the channel coding dual of source coding, with decoder side information, where the

decoder is allowed to choose actions that affect the nature and quality of the side information, as considered in [9].

Beyond merely generalizing previously considered problems involving coding with states known at the transmitter,

our framework captures various new channel coding scenarios that may arise naturally in recording for magnetic

storage devices or coding for computer memories with defects. Concretely, consider a 2-stage procedure for recording

on a memory with defects. After writing into the memory for the first time, the encoder observes a noisy version of
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what the decoder will see when it tries to read from the memory. The encoder is now allowed to rewrite at whichever

memory locations it chooses before the decoder attempts to decipher the information. How much information can

be reliably communicated in this process ? Suppose that in the first use of the memory neither encoder nor decoder

know where the defects are. Then, in the second use (the ‘rewrite’ stage), the encoder will have some idea on these

defects according to the signal he input in the first stage and the noisy measurement of the channel output for that

stage. In general, there is a tension between the amount of information the encoder can convey in the first pass and

its ability to learn about the channel state to better communicate in the second pass. Our framework quantifies this

tension and yields a characterization of the fundamental limits on communication for such 2-stage coding systems.

The remainder of the paper is organized as follows: Sections 2 and 3 are dedicated, respectively, to characterizing

the fundamental limits of communication over channels with action-dependent states available at the encoder, when

the states are available non-causally and causally. In Section 4 we extend our results to the case of cost constraints,

point out equivalent representations of our capacity formulae, and discuss some special cases. In Section 5 we apply

our results to characterize the capacity for various coding scenarios involving a channel ‘rewrite’ option. In Section

6 we look at a “writing-on-clean-paper-and-then-writing-on-its-corrupted version” channel, which is an extension of

Costa’s dirty paper problem [1] to our setting. We conclude in Section 7 with a summary of our work and some

future directions.

2 Non-Causally Available States

Let upper case, lower case, and calligraphic letters denote, respectively, random variables, specific or deterministic

values they may assume, and their alphabets. For two jointly distributed random objects X and Y , let PX , PX,Y ,

and PX|Y respectively denote the distribution of X , the joint distribution of X, Y , and the conditional distribution

of X given Y . In particular, when X and Y are discrete, PX|Y represents the stochastic matrix whose elements are

PX|Y (x|y) = P (X = x|Y = y). Xn
m denotes the n − m + 1-tuple (Xm, . . . , Xn) when m ≤ n and the empty set

otherwise. Xn is shorthand for Xn
1 .

We dedicate this section to characterizing the fundamental limits on reliable communication for schemes of

the form depicted in Figure 1: given the message M , selected uniformly at random from the message set M =

{1, . . . , |M|}, an action sequence An = An(M) is selected. Nature now generates the state sequence Sn as the

output of the memoryless channel PS|A whose input is An. A channel input sequence is now selected on the basis

of the message and the whole state sequence Xn = Xn(M, Sn). The joint PMF of M, An, Sn, Xn, Y n, induced by a

given scheme, is thus

PM,An,Sn,Xn,Y n(m, an, sn, xn, yn) =
1{An(m)=an,Xn(m,sn)=xn}

|M|

n
∏

i=1

PS|A(si|ai)PY |X,S(yi|xi, si). (1)

The associated probability of error is Pe = P (M 6= M̂(Y n)), where M̂(Y n) is the best (maximum likelihood)

estimate of M based on Y n under the joint distribution in (1). The rate R is said to be achievable if there exists

a sequence of schemes for increasing block lengths with 1
n

log |M| ≤ R and Pe
n→∞
−→ 0. The capacity of the channel

with action-dependent states known non-causally to the transmitter is the supremum over all achievable rates.

Theorem 1 The capacity of the channel with action-dependent states known non-causally to the transmitter is given

by

C = max [I(U ; Y ) − I(U ; S|A)] , (2)
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Figure 1: Channel with action-dependent states.

where the maximization is over all joint distributions of the form

PA,S,U,X,Y (a, s, u, x, y) = PA(a)PS|A(s|a)PU|S,A(u|s, a)1{x=f(u,s)}PY |X,S(y|x, s) (3)

for some PA, PU|S,A, f and |U| ≤ |A||S||X | + 1.

Comments:

• Similarly as in the classical Gelfand-Pinsker setting [4], the maximum in (2) does not increase when allowing

more general distributions of the form

PA,S,U,X,Y (a, s, u, x, y) = PA(a)PS|A(s|a)PU|S,A(u|s, a)PX|U,S(x|u, s)PY |X,S(y|x, s), (4)

i.e., allowing a general conditional distribution PX|U,S rather than restricting X to be a deterministic function

of (U, S) as in (3). The reason is that I(U ; Y ) − I(U ; S|A) is a convex functional of PX|U,S (when all other

distributions and conditional distributions in (3) are fixed), and thus maximized at a corner point of the

simplex. To see why this convexity holds note that I(U ; S|A) depends only on PU,S,A so we need only establish

convexity of I(U ; Y ) in PX|U,S . To this end take two conditional distributions P
(1)
X|U,S

, P
(2)
X|U,S

and let PX|U,S =

αP
(1)
X|U,S

+ (1−α)P
(2)
X|U,S

for α ∈ [0, 1]. The convexity of I(U ; Y ) in PX|U,S follows by the convexity of I(U ; Y )

in PY |U (cf., e.g., [2]) upon noting that PY |U = αP
(1)
Y |U + (1 − α)P

(2)
Y |U when PY |U , P

(1)
Y |U , P

(2)
Y |U denote the

conditional distributions induced, respectively, by PX|U,S , P
(1)
X|U,S

, P
(2)
X|U,S

.

• Let CGP (PS , PY |X,S) denote the capacity of the channel with states known non-causally at the transmitter, as

considered in [4, 5]. It is natural to wonder how the capacity in our setting, as characterized in Theorem 1,

compares with maxa∈A CGP (PS|A=a, PY |X,S), the rate that would be achieved by greedily selecting the action

leading to the best Gelfand-Pinsker (GP) channel at all time points, and proceeding with an optimal GP code

for that channel. Under such a strategy, no information is conveyed by the actions which are only used to set

up the channel, and communication is performed only at the second stage. For an extreme example of how

suboptimal such a strategy can be, consider a channel for which PY |X,S = PY |S . Clearly CGP (PS , PY |X,S) = 0

for any such channel and therefore maxa∈A CGP (PS|A=a, PY |X,S) = 0. On the other hand, as is readily seen

to follow by applying Theorem 1 or from first principles, the capacity of this channel is maxPA
I(A; Y ), which

may be positive. More generally, the capacity achieving scheme finds the optimal balance between conveying

information through the choice of actions and the tendency to take actions that will result in states conducive

for the communication in the second stage.
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Proof of Theorem 1:

Proof of Achievability: Fix PA, PU|S,A, f and consider A, S, U, X, Y jointly distributed as in (3).

• Generate1 {An(m)}2nR

m=1 n-tuples iid∼ PA

• For each 1 ≤ m ≤ 2nR generate {Un(j, m)}2nR
′

j=1 iid∼
∏n

i=1 PU|A(·|Ai(m))

• Encoding:

– choose An(M) as the action sequence

– let Sn be the state sequence generated in response to the action sequence

– let J be the smallest value of j such that (Un(j, M), Sn, An(M)) ∈ TP ,2 and take J = 1 if no such j exists

– let the channel input sequence be given by Xn = f(Un(J, M), Sn), where f(Un, Sn) denotes the n-tuple

whose ith component is f(Ui, Si)

• Decoding:

– seeing the channel output Y n, let M̂ be the smallest value of m̂ for which there exists a ĵ such that

(An(m̂), Un(ĵ, m̂), Y n) ∈ TP , and take M̂ = 1 if no such m̂ exists.

The event M 6= M̂ is contained in the union of the following three error events:

• At the encoding stage, there exists no j such that (Un(j, M), Sn, An(M)) ∈ TP . The probability of this event

is vanishing so long as R′ > I(U ; S|A).

• There exists m̂ 6= M for which there exists a ĵ such that (An(m̂), Un(ĵ, m̂), Y n) ∈ TP . To bound the probability

of this event note first that, for all m̂ and ĵ,

P
(

(An(m̂), Un(ĵ, m̂), Y n) ∈ TP |m̂ 6= M
)

·
= 2−nI(A,U ;Y ) ≤ 2−nI(U ;Y ).

Therefore, by the union bound,

P
(

∪ĵ

{

(An(m̂), Un(ĵ, m̂), Y n) ∈ TP

}∣

∣

∣ m̂ 6= M
) ·
≤ 2−n(I(U ;Y )−R′).

It follows that the probability of the existence of m̂ 6= M for which there exists a ĵ such that (An(m̂), Un(ĵ, m̂), Y n) ∈

TP is vanishing provided R < I(U ; Y ) − R′.

• (An(M), Un(j, M), Y n) 6∈ TP for all j. The probability of this event is vanishing so long as R′ > I(U ; S|A)

since, as argued for the first event, (Un(J, M), Sn, An(M)) ∈ TP with probability approaching one and, hence,

so is the probability that (Un(J, M), Sn, An(M), Xn, Y n) ∈ TP .

Thus we have established the existence of a sequence of schemes with R′ = I(U ; S|A)+ε, R = I(U ; Y )−I(U ; S|A)−2ε,

and vanishing probability of decoding error.

1Here and throughout we will ignore integer constraints, writing 2nR in lieu of the more precise ⌊2nR⌋.
2To avoid cumbersome notation, we let TP generically denote sets that are typical in the sense of [3] (cf., in particular, the δ-convention

therein), with respect to (joint) distributions that are clear from the context.
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Proof of Converse: Fix a scheme and consider:

I(M ; Y n) (5)

= I(M ; Y n) − I(M ; Sn|An) (6)

=

n
∑

i=1

I(M ; Yi|Y
i−1) − I(M ; Si|S

n
i+1, A

n) (7)

=

n
∑

i=1

I(M, Sn
i+1, A

n; Yi|Y
i−1) − I(Sn

i+1, A
n; Yi|M, Y i−1) − I(M, Y i−1; Si|S

n
i+1, A

n) + I(Y i−1; Si, A
n|M, Sn

i+1, A
n)

(8)

=
n
∑

i=1

I(M, Sn
i+1, A

n; Yi|Y
i−1) − I(M, Y i−1; Si|S

n
i+1, A

n) (9)

≤

n
∑

i=1

H(Yi) − H(Yi|Y
i−1, M, Sn

i+1, A
n) − [H(Si|S

n
i+1, A

n) − H(Si|Y
i−1, M, Sn

i+1, A
n)] (10)

=
n
∑

i=1

H(Yi) − H(Yi|Ui) − [H(Si|Ai) − H(Si|Ui, Ai)] (11)

=

n
∑

i=1

I(Ui; Yi) − I(Ui; Si|Ai) (12)

≤ n max [I(U ; Y ) − I(U ; S|A)] , (13)

where:

• (6) is due to the Markov relation M − An − Sn

• (8) is due to the identities I(M ; Yi|Y
i−1) = I(M, Sn

i+1, A
n; Yi|Y

i−1)−I(Sn
i+1, A

n; Yi|M, Y i−1) and I(M ; Si|S
n
i+1, A

n) =

I(M, Y i−1; Si|S
n
i+1, A

n) − I(Y i−1; Si|M, Sn
i+1, A

n) = I(M, Y i−1; Si|S
n
i+1, A

n) − I(Y i−1; Si, A
n|M, Sn

i+1, A
n)

• (9) follows from the identity
∑n

i=1 I(Sn
i+1, A

n; Yi|M, Y i−1) =
∑n

i=1 I(Y i−1; Si, A
n|M, Sn

i+1, A
n) which can be

seen as follows:

n
∑

i=1

I(Sn
i+1, A

n; Yi|M, Y i−1) =

n−1
∑

i=1

I(Sn
i+1, A

n; Yi|M, Y i−1)

=

n−1
∑

i=1

n
∑

j=i+1

I(Sj , A
n; Yi|M, Y i−1, Sn

j+1, A
n)

=

n−1
∑

j=1

n
∑

i=j+1

I(Si, A
n; Yj |M, Y j−1, Sn

i+1, A
n)

=

n
∑

i=2

i−1
∑

j=1

I(Si, A
n; Yj |M, Y j−1, Sn

i+1, A
n)

=
n
∑

i=2

I(Si, A
n; Y i−1|M, Sn

i+1, A
n)

=

n
∑

i=1

I(Si, A
n; Y i−1|M, Sn

i+1, A
n)

• (11) is due to the Markov relation Si − Ai − (Sn
i+1, A

n\i) and the definition Ui = (M, Y i−1, Sn
i+1, A

n)

5



• the maximization in (13) is over distributions of the form in (3) for some PA, PU|S,A, f . That this maximum

upper bounds each summand in (12) is due to the fact, noted following the statement of the theorem, about

equivalence between maximization over distributions of the form in (3) and the form in (4), and the facts that

for each 1 ≤ i ≤ n we have PSi|Ai
= PS|A, PYi|Xi,Si

= PY |X,S and the Markov relations Xi − (Ui, Si) −Ai and

(Ui, Ai) − (Xi, Si) − Yi. The bound on the cardinality of U follows in a standard way via the support lemma

of [3]: U should have |A||S||X | − 1 elements to preserve PA,S,X (which in turn preserves also PA,S,X,Y , H(Y )

and H(S|A)), plus two elements to preserve H(Y |U) and H(S|U, A).

The proof is completed via the usual appeal to Fano’s inequality. 2

Comments:

• It is natural to wonder whether ‘feedback’ from the past states at the action stage might increase the capacity.

In the proof of the converse part we have used the Markov relation Si −Ai − (Sn
i+1, A

n\i), which need not hold

when allowing actions of the form Ai(M, Si−1). Thus, our converse does not hold for that case and whether

capacity could be increased when such dependence is allowed remains open.

• On the other hand, it is readily verified that all the Markov relations in the converse proof remain intact when

the usual type of feedback is allowed, i.e., when Xi is allowed to be of the form Xi(M, Sn, Y i−1). Evidently,

similarly as in the classical case of non-causal state dependence without actions [8], in the present setting too

feedback does not increase capacity.

3 Causally Available States

Consider now a setting similar to that of the previous section, with an action sequence, as before, of the form An(M),

but with a channel input restricted to causal dependence on the state sequence, i.e., of the form Xi(M, Si), 1 ≤ i ≤ n.

So the joint PMF of M, An, Sn, Xn, Y n, induced by a given scheme, is

PM,An,Sn,Xn,Y n(m, an, sn, xn, yn) =
1{An(m)=an}

|M|

n
∏

i=1

PS|A(si|ai)1{Xi(m,si)=xi}PY |X,S(yi|xi, si). (14)

The associated probability of error is Pe = P (M 6= M̂(Y n)), where M̂(Y n) is the best (maximum likelihood) estimate

of M based on Y n under the joint distribution in (14). As before, the rate R is said to be achievable if there exists

a sequence of schemes for increasing block lengths with 1
n

log |M| ≤ R and Pe
n→∞
−→ 0. The capacity of the channel

with action-dependent states known causally to the decoder is the supremum over all achievable rates.

Theorem 2 The capacity of the channel with action-dependent states known causally to the decoder is given by

C = max I(U ; Y ), (15)

where U, A, S, X, Y are distributed according to

PU,A,S,X,Y (u, a, s, x, y) = PU (u)1{g(u)=a}PS|A(s|a)1{f(u,s)=x}PY |X,S(y|x, s), (16)

for some PU , f , g and |U| ≤ min{|Y|, |A||S||X | + 1}.

Comments:

6



• Note the convexity of I(U ; Y ) in PA|U (due to its convexity in PY |U ), which implies that the maximum in (15)

would be unaffected when allowing a general PA|U rather than A which is a function of U , as is implied by (16).

Also, A being a function of U implies that the above maximization would remain unchanged when allowing

an f of the form f(u, s, a). Since the convexity of I(U ; Y ) in PA|U also implies its convexity in PX|U,S,A for

fixed PU,S,A, it further follows that the maximum would be unaffected upon allowing a general PX|U,S,A in lieu

of the X = f(U, S) relationship implied in (17). Thus, C in (15) can also be expressed as C = max I(U ; Y ),

where U, A, S, X, Y are distributed according to

PU,A,S,X,Y (u, a, s, x, y) = PU,A(u, a)PS|A(s|a)PX|U,S,A(x|u, s, a)PY |X,S(y|x, s), (17)

for some distributions PU,A and PX|U,S,A. It follows that, given jointly distributed Ui, Ai, Si, Xi, Yi, to check that

I(Ui; Yi) ≤ max I(U ; Y ) one need only verify that: Si−Ai−Ui, that PSi|Ai
= PS|A, that Yi−(Xi, Si)−(Ai, Ui),

and that PYi|Xi,Si
= PY |X,S . We will use this fact in the proof of Theorem 2.

• Since I(U ; S|A) = 0 when U−A−S, the capacity expression for the causal case can be viewed as a maximization

of the same functional as that for the non-causal case, but over a smaller set of distributions restricted to satisfy,

in addition to the constraints from the non-causal case, the Markov relation U − A − S.

• Letting CS(PS , PY |X,S) denote the capacity of the channel with states known causally at the transmitter, as

considered in [11] (the subscript standing for ‘Shannon’), a comment analogous to that made in the setting

of non-causally available states, about the way that maxa∈A CS(PS|A=a, PY |X,S) compares with the capacity

characterized in Theorem 2, is applicable here.

Proof of Theorem 2: The achievability part follows similarly as in the original setting of [11], by constructing a good

code for the standard problem of channel coding over the DMC from U to Y . For the converse part, fix an arbitrary

scheme and consider

I(M ; Y n) = H(Y n) − H(Y n|M) (18)

≤

n
∑

i=1

H(Yi) − H(Yi|M, Y i−1) (19)

≤
n
∑

i=1

H(Yi) − H(Yi|M, Y i−1, Si−1) (20)

=

n
∑

i=1

I(Ui; Yi) (21)

≤ nC, (22)

where the equality before last follows from defining Ui = (M, Y i−1, Si−1). To see why the last inequality holds note

the relations Si − Ai − Ui, PSi|Ai
= PS|A, Yi − (Xi, Si) − (Ui, Ai), and PYi|Xi,Si

= PY |X,S , so it remains only to

justify the bound on the cardinality of |U|. That this cardinality need not be larger than that of the channel output

alphabet follows from an argument identical to that given in [10] for why in the classical channel coding problem

there is a capacity achieving distribution putting positive mass on a number of channel input symbols that is no

larger than the number of channel output symbols. That it need not exceed |A||S||X | + 1 is due to an argument

similar to that given at the end of the proof of Theorem 1: the requirement to preserve H(S|U, A) is replaced by the

requirement to preserve the Markov relation S − A − U so the overall cardinality bound remains unchanged. The

proof is completed via a standard use of Fano’s inequality. 2
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It is readily checked that all the Markov and marginal distribution relations verified in the proof continue to hold

when Ai is allowed to depend on past states, i.e., to be of the form Ai(M, Si−1) rather than just Ai(M). Thus,

unlike for the setting of the previous section, here we have proof that ‘feedback’ from the past states at the action

stage does not increase the capacity. In fact, said relations are readily verified to continue to hold for even more

general action strategies where, in addition to the past channel states, there is feedback from the past channel outputs

available, i.e., schemes of the form Ai(M, Si−1, Y i−1).3 Finally, similarly as in the setting of non-causal encoding of

the previous section, and as in the classical case of causal state dependence without actions [8], here too it can be

seen that feedback at the encoding stage does not increase the capacity by verifying that the above relations continue

to hold for channel inputs of the form Xi(M, Si, Y i−1).

4 Extensions, Equivalent Representations, and Special Cases

4-A Cost Constraints

Similarly as in the classical problems, where it is often natural to introduce cost constraints on the channel input

sequence, in our present setting it is natural to consider constraints on the cost of actions, of channel inputs, and of

combinations thereof. Indeed, the cost in our setting, in its most general form, should be a function jointly of both

the action and the channel input symbol. For example, when both actions and channel input symbols are real-valued,

it is natural to constrain the power of the sum of those symbols, i.e., to consider the cost function (a + x)2. Further,

as in classical problems where one may be concerned say with both peak and power constraints, it will make sense

to accommodate the possibility of d ≥ 1 cost functions. Equivalently, we may assume one cost function of the form

Λ : A×X → R
d and refer to

E

[

1

n

n
∑

i=1

Λ(Ai, Xi)

]

(23)

as the cost (vector) associated with a coding scheme. Given a vector λ ∈ R
d, we refer to a rate R as achievable

at cost λ if there exists a sequence of schemes for increasing block lengths with 1
n

log |M| ≤ R, Pe
n→∞
−→ 0, and

lim supn→∞ E
[

1
n

∑n
i=1 Λk(Ai, Xi)

]

≤ λk for 1 ≤ k ≤ d (where Λk and λk denote the kth coordinates of Λ and λ).

The capacity C(λ) is the supremum over all rates achievable at cost λ.

Theorem 3 The capacities of the channel with action-dependent states known non-causally and causally to the

transmitter, under a cost constraint λ, are given by the respective maximizations in Theorem 1 and Theorem 2, with

the same cardinality bounds and an additional cost constraint

E [Λ(A, X)] ≤ λ. (24)

Note that both sides of inequality (24) are d-dimensional vectors, and inequality between vectors is to be understood

componentwise.

Proof of Theorem 3: We prove the Theorem for the case where states are known non-causally. Proof for the case

of causally available states is similar (and simpler). That the introduction of cost constraints entails no increase in

the cardinality of U follows from the fact that the preservation of PA,S,X , which was argued in the absence of a cost

constraint, automatically implies the preservation of E [Λ(A, X)]. Let now C(I)(λ) denote the maximum specified in

Theorem 1, with the additional constraint E [Λ(A, X)] ≤ λ. That C(λ) ≥ C(I)(λ) follows from essentially the same

3Note that it is meaningless to consider schemes of this form in the setting of the previous section where the channel inputs (and
hence outputs) are formed only after the whole state (and hence action) sequence has been formed.
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achievability arguments as in the case without a cost constraint. The converse, namely that C(λ) ≤ C(I)(λ), follows

similarly as in the unconstrained case once concavity of C(I)(λ) is established. To this end, define

C
(I)
Q (λ) = max [I(U ; Y |Q) − I(U ; S|A, Q)] , (25)

where the maximization is over all joint distributions of the form

PQ,A,S,U,X,Y (q, a, s, u, x, y) = PQ(q)PA|Q(a|q)PS|A(s|a)PU|S,A,Q(u|s, a, q)1{x=f(u,q,s)}PY |X,S(y|x, s) (26)

for some PQ, PA|Q, PU|S,A,Q, f and such that E [Λ(A, X)] ≤ λ. Thus, C
(I)
Q (λ) is the ‘concavification’ of C(I)(λ)

via the ‘time-sharing’ random variable Q. Since the maximum defining C
(I)
Q (λ) is over a larger set than that in the

definition of C(I)(λ), we obviously have C
(I)
Q (λ) ≥ C(I)(λ). It remains to argue why C

(I)
Q (λ) ≤ C(I)(λ). To this end

note that under any distribution of the form in (26),

I(U ; Y |Q) − I(U ; S|A, Q) = H(Y |Q) − H(Y |Q, U) − H(S|A, Q) − H(S|A, Q, U) (27)

≤ H(Y ) − H(Y |Q, U) − H(S|A) − H(S|A, Q, U) (28)

= I(Q, U, Y ) − I(Q, U ; S|A) (29)

= I(U ′, Y ) − I(U ′; S|A) (30)

where the inequality follows since H(Y |Q) ≤ H(Y ) and H(S|A, Q) = H(S|A) due to the Markov relation S−A−Q,

and the last equality follows by letting U ′ = (Q, U). The proof is completed by noting that the joint distribution of

(A, S, U ′, X, Y ) is of the form in the feasible set for the maximization defining C(I)(λ). 2

4-B Equivalent Representations

The capacity expression can equivalently be considered a maximization of I(A, U ; Y ) − I(U ; S|A), rather than

I(U ; Y ) − I(U ; S|A). That the former is at least as large as the latter is clear. To see why the reverse inequal-

ity holds, note that I(A, U ; Y ) − I(U ; S|A) = I(A, U ; Y ) − I(A, U ; S|A) = I(U ′; Y ) − I(U ′; S|A), where U ′ = (U, A)

and the joint distribution (A, S, U ′, X, Y ) satisfies the same conditional independence relations as (A, S, U, X, Y ). In

some of the subsequent examples we will use this equivalent form.

Also, it might sometimes be natural to consider channels of the form PY |X,S,A. The capacity expressions for this

seemingly more general channel remain almost unchanged, the only difference being that X need be taken of the

form X(U, S, A) rather than X(U, S). This follows directly by defining a new state S′ = (S, A) and applying the

original characterizations. We use these equivalent representations in some of the examples below.

4-C Special Cases

4-C.1 Common Message Capacity of MAC with States at One Transmitter

A setting considered in [12] is that of communicating a common message over a memoryless state-dependent multiple

access channel characterized by PY |S,X1,X2
, where the state sequence is known (non-causally) to the second encoder,

but unknown at the first encoder and at the receiver. This problem can be seen as a special case of our setting via

the following associations:

• A → X1

• PS|A → PS

9



• X → X2

• PY |S,A,X → PY |S,X1,X2

Applying Theorem 1 to this case, keeping the comment about channels of the form PY |S,A,X from Subsection 4-B in

mind, and noting that I(U ; S|X1) = I(U, X1; S) when X1 and S are independent, we get that the capacity is given

by

max [I(U ; Y ) − I(U, X1; S)] , (31)

under joint distributions of the form

PX1(x1)PS(s)PU|S,X1
(u|s, x1)1{x2=f(u,s,x1)}PY |S,X1,X2

(y|s, x1, x2), (32)

where the maximization is over PX1 , PU|S,X1
, and f . This recovers Corollary 2 of [12].

4-C.2 Actions Seen by Decoder

Non-Causal Knowledge of States at Transmitter: Consider the case where the decoder has access to the actions

taken. Noting that this is a special case of our setting by taking the pair (Y, A) as the new channel output, that

U−(X, S, A)−Y if and only if U−(X, S, A)−(Y, A), and the identity I(A, U ; Y, U)−I(U ; S|A) = H(A)+I(U ; Y |A)−

I(U ; S|A), we obtain that the capacity for this case is given by

max[H(A) + I(U ; Y |A) − I(U ; S|A)], (33)

where the maximization is over the same set of distributions as in Theorem 1. This expression is quite intuitive: The

amount of information per symbol that can be conveyed through the actions in the first stage is represented by the

term H(A). In the second stage, both encoder and decoder know the action sequence, so can condition on it and

proceed with ordinary Gelfand-Pinsker coding on each subsequence associated with each action symbol, achieving a

rate I(U ; Y |A)−I(U ; S|A). The maximization is a search for the optimal tradeoff between the amount of information

that can be conveyed by the actions, and the quality of the Gelfand-Pinsker channel that they induce.

Causal Knowledge of States at Transmitter: Consider now the case where the states are known causally to the

transmitter. Noting the same things as above, and the identity I(U ; Y, A) = H(A) + I(U ; Y |A), we obtain that the

capacity for this case is given by

max[H(A) + I(U ; Y |A)], (34)

where the maximization is over the same set of distributions as in Theorem 2. Analogously as in the preceding case,

here the expression has a similar interpretation of conveying information in the first part via the selection of actions

and then proceeding with coding for the ordinary Shannon channel on each subsequence associated with each action

symbol.

5 Channels with a Rewrite Option

The generic framework considered thus far can be specialized to various scenarios involving coding for channels with

a ‘rewrite’ option. We now detail some of these scenarios.
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5-A Noise-Free Feedback

Consider a DMC characterized by PY |X . After using the channel once and observing its output with no additional

noise, the encoder makes another pass where it may rewrite at whichever locations it chooses, and the channel output

after a rewrite will be an independent realization of the same channel PY |X . What is the capacity of such a coding

scenario?

This can be cast into our framework via the following associations:

• A → X (alphabet of the first channel input)

• S → Y(1) = Y, (the superscript (1) pertaining to the channel output after the first pass)

• X → X̃ = {no rewrite} × X (channel input alphabet in second pass)

• Y → Y(2) = Y (the superscript (2) pertaining to the channel output after the second pass)

• PS|A → PY (1)|X , where PY (1)|X = PY |X

• PY |X,S,A → PY (2)|X,Y (1),X̃ , where

PY (2)|X,Y (1),X̃(y(2)|x, y(1), x̃) = PY (2)|Y (1),X̃(y(2)|y(1), x̃) =

{

1{y(1)=y(2)} if x̃ = no rewrite

PY |X(y(2)|x̃) otherwise
(35)

Applying Theorem 1, with the above associations, and using the equivalent form discussed in Subsection 4-B, we

get that the capacity for the case where the rewrite operations in the second pass may depend non-causally on the

channel output from the first pass is given by

max[I(X, U ; Y (2)) − I(U ; Y (1)|X)], (36)

where the maximization is over all joint distributions of the form

PX,Y (1),U,X̃,Y (2)(x, y(1), u, x̃, y(2)) = PX(x)PY |X(y(1)|x)PU|Y (1),X(u|y(1), x)1{x̃=f(u,y(1),x)}PY (2)|Y (1),X̃(y(2)|y(1), x̃),

(37)

with PY (2)|Y (1),X̃ given in (35), and where the maximization is over PX , PU|Y (1),X , f , with |U| ≤ |X ||Y|(|X | + 1) + 1.

Applying Theorem 2, with the above associations, we get that the capacity for the case where the rewrite

operations in the second pass depend causally on the channel output components from the first pass is given by

max I(U ; Y (2)), (38)

where U, X, Y (1), X̃, Y (2) are distributed according to

PU,X,Y (1),X̃,Y (2)(u, x, y(1), x̃, y(2)) = PU (u)1{g(u)=x}PY |X(y(1)|x)1{f(u,y(1))=x̃}PY (2)|Y (1),X̃(y(2)|y(1), x̃), (39)

with PY (2)|Y (1),X̃ given in (35), and where the maximization is over PU , g, f , with |U| ≤ |Y|. In other words,

perhaps not surprisingly given [11], capacity is achieved by coding for a memoryless channel whose input alphabet

is X × {f : Y → X̃}, output alphabet is Y, and where the probability of a channel output symbol y given input

‘symbol’ (x, f(·)) is the probability that the symbol y is eventually observed at the output of the channel when the

symbol x is first input into it and then f(·), evaluated at the output symbol in response to the first input, is used to

determine whether and what will be inserted for the rewrite.
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Example: BSC

Consider the case where the channel is a BSC (δ), 0 ≤ δ ≤ 1/2. Under any joint distribution allowed in the

maximization in (38):

I(U ; Y (2)) = H(Y (2)) − H(Y (2)|U) (40)

≤ log |Y| − H(Y (2)|U) (41)

≤ 1 − h2(δ
2). (42)

To see why the last inequality holds note that for all u ∈ U , H(Y (2)|U = u) is the entropy of the channel output

after the (option of a) rewrite operation when the first input is some deterministic symbol (which equals g(u)) and

the rewrite operation is determined based on the channel output according to some deterministic function (which

equals f(u, ·)). In the case of the BSC, this entropy is lower bounded by h2(δ
2), δ2 being the probability that a flip

would occur twice in two consecutive uses of the channel. That 1− h2(δ
2) is indeed the capacity for this case follows

from the fact that equality can be achieved in (41) and in (42) by taking in (39) U ∼ Bernoulli(1/2), g the identity

mapping, and f to be given by

f(u, y(1)) =

{

no rewrite if u = y(1)

u otherwise.
(43)

Moving to the case where the rewrite operations may depend non-causally on the channel output from the first

pass, consider a joint distribution of the type allowed in (37), as follows: X ∼ Bernoulli(1/2), Y (1) is the output of

PY |X (the BSC(δ) in this case), now generate U ∈ {0, 1} according to

U =

{

0 if Y (1) = X
Bernoulli(α) otherwise,

(44)

where 0 ≤ α ≤ 1 is a parameter. Now let

X̃ = f(U, Y (1), X) =

{

no rewrite if Y (1) = X or U = 1
X otherwise

(45)

and Y (2) is the output of the rewrite channel PY (2)|Y (1),X̃ . Under this joint distribution, simple computations give:

H(Y (2)) = 1,
H(Y (1)|X) = h2(δ),

H(Y (1)|X, U) = h2

(

δ 1−α
1−δα

)

(1 − δα),

H(Y (2)|X, U) = h2

(

δ2 1−α
1−δα

)

(1 − δα)

(46)

so that

I(X, U ; Y (2)) − I(U ; Y (1)|X) = H(Y (2)) − H(Y (2)|X, U) − H(Y (1)|X) + H(Y (1)|X, U) (47)

= 1 − h2(δ) +

[

h2

(

δ
1 − α

1 − δα

)

− h2

(

δ2 1 − α

1 − δα

)]

(1 − δα). (48)

As is to be expected, when α = 0, U is degenerate, so we recover a joint distribution of the type allowed and achieving

the maximum in the causal case, and indeed the expression in (48) becomes 1 − h2(δ
2) when α = 0. However, we

may now optimize over α to obtain the following lower bound on the capacity of the BSC with a rewrite option for

the non-causal case:

1 − h2(δ) + max
0≤α≤1

{[

h2

(

δ
1 − α

1 − δα

)

− h2

(

δ2 1 − α

1 − δα

)]

(1 − δα)

}

. (49)
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To see that this capacity can be strictly higher than its counterpart for the causality-constrained scenario, consider

the case δ = 1/2. A straightforward calculation shows that in this case (49) assumes the value ≈ 0.207519 (α = 1/3

achieves the maximum), as compared to 1−h2(1/4) ≈ 0.188722, which is the capacity under the causality constraint.

Thus, for the BSC(1/2), relaxation of the causality constraint boosts the rewrite capacity by at least 10%.

5-B Channels with a Rewrite Option based on Noisy Feedback

We now generalize the setting of the previous subsection to the more realistic scenario where the rewrite decision is

based on a noisy observation of the channel outputs from the first pass. The forward channel is, as before, a DMC

PY |X , while the channel outputs from the first pass are observed by the rewrite encoder through a DMC PZ|Y , the

‘backward’ channel. What is the rewrite capacity in this noisy setting?

This can be cast into our framework via the following associations:

• A → X (alphabet of the first channel input)

• S → Z (alphabet of noisy observation of the first channel input)

• X → X̃ = {no rewrite} × X (channel input alphabet in second pass)

• Y → Y(2) = Y (the superscript (2) pertaining to the channel output after the second pass)

• PS|A → PZ|X , where PZ|X(z|x) =
∑

y PY |X(y|x)PZ|Y (z|y)

• PY |X,S,A → PY (2)|X̃,Z,X which is explicitly given by

PY (2)|X̃,Z,X(y(2)|x̃, z, x) =

{

PY |X,Z(y(2)|x, z) if x̃ = no rewrite
PY |X(y(2)|x̃) otherwise,

(50)

where PY |X,Z is induced by PY |X and PZ|Y , namely

PY |X,Z(y|x, z) =
PY |X(y|x)PZ|Y (z|y)

∑

y′ PY |X(y′|x)PZ|Y (z|y′)
. (51)

Applying Theorem 2, with the above associations, we get that the capacity for the case where the rewrite

operations in the second pass depend causally on the channel output components from the first pass is given by

max I(U ; Y (2)), (52)

where U, X, Y (1), Z, X̃, Y (2) are distributed according to

PU,X,Y (1),Z,X̃,Y (2)(u, x, y(1), z, x̃, y(2)) = PU (u)1{g(u)=x}PY |X(y(1)|x)PZ|Y (z|y(1))1{f(u,z)=x̃}PY (2)|X̃,Z,X(y(2)|x̃, z, x),

(53)

with PY (2)|X̃,Z,X given in (50), and where the maximization is over PU , g, f , with |U| ≤ min{|Y|, |X |(|X |+1)|Z|+1}.

In other words, capacity is achieved by coding for a memoryless channel whose input alphabet is X × {f : Y → X̃},

output alphabet is Y, and where the probability of a channel output symbol y given input ‘symbol’ (x, f(·)) is the

probability that the symbol y is eventually observed at the output of the channel when the symbol x is first input

into it and then f(·), evaluated at the noisy measurement of the channel output after the first input, is used to

determine whether that location will be rewritten to and, if so, what will the new input symbol be.
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Figure 2: Capacity of BSC(δ) with rewrite based on BSC(ε)-corrupted feedback from the first pass, when the rewrite
is restricted to causal dependence on the channel outputs from the first pass. Plotted here for δ = 1/2, as a function
of ε.

Applying Theorem 1, with the above associations, we get that the capacity for the case where the rewrite

operations in the second pass may depend non-causally on the channel output from the first pass is given by

max[I(X, U ; Y (2)) − I(U ; Z|X)], (54)

where the maximization is over all joint distributions of the form

PX,Y (1),Z,U,X̃,Y (2)(x, y(1), u, x̃, y(2)) = PX(x)PY |X(y(1)|x)PZ|Y (z|y(1))PU|Z,X(u|z, x)1{x̃=f(u,z,x)}PY (2)|X̃,Z,X(y(2)|x̃, z, x),

(55)

with PY (2)|X̃,Z,X given in (50), and where the maximization is over PX , PU|Z,X , f , with |U| ≤ |X |(|X | + 1)|Z| + 1.

Example: BSC

Consider the case where both the forward and the backward channels are BSCs with respective parameters 0 ≤ δ ≤

1/2 and 0 ≤ ε ≤ 1/2. For the case where the rewrite operations in the second pass depend causally on the (noisy)

observations of the channel output components from the first pass, the arguments in Subsection 5-A carry over to

this noisy scenario and imply that the capacity achieving triple (U, g, f) for the causal case is the same as that for

the noise-free backward channel. Under this triple, a simple calculation shows that the channel from X to Y (2) is a

BSC with crossover probability εδ(2 − δ) + δ2(1 − ε), so the resulting capacity is

1 − h2

(

εδ(2 − δ) + δ2(1 − ε)
)

, (56)

which is plotted in Figure 2. Note, in particular, the two extremes: when ε = 0, we recover the 1 − h2(δ
2) of

Subsection 5-A while for ε = 1/2, (56) becomes 1 − h2(δ), capacity of the vanilla BSC(δ).
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Moving to the case where the rewrite operations may depend non-causally on the channel output from the first

pass, consider a joint distribution of the type allowed in (55), as follows: X ∼ Bernoulli(1/2), Y (1) is the output

of PY |X (the BSC(δ) in this case), Z is the output of PZ|Y (1) (the BSC(ε) in this case), now generate U ∈ {0, 1}

according to

U =

{

0 if Z = X
Bernoulli(α) otherwise,

(57)

where 0 ≤ α ≤ 1 is a parameter. Let now

X̃ = f(U, Z, X) =

{

no rewrite if Z = X or U = 1
X otherwise,

(58)

and Y (2) is the output of the rewrite channel PY (2)|X̃,Z,X in (50) which in this case is given by

PY (2)|X̃,Z,X(y(2)|x̃, z, x) =

{

PY |X,Z(y(2)|x, z) if x̃ = no rewrite
1{y(2)=x̃}(1 − δ) + 1{y(2) 6=x̃}δ otherwise,

(59)

where

PY |X,Z(y|x, z) =



















(1−δ)(1−ε)
1−δ∗ε

if (y, x, z) = (0, 0, 0) or (y, x, z) = (1, 1, 1)

1 − (1−δ)(1−ε)
1−δ∗ε

if (y, x, z) = (1, 0, 0) or (y, x, z) = (0, 1, 1)
(1−δ)ε

δ∗ε
if (y, x, z) = (0, 0, 1) or (y, x, z) = (1, 1, 0)

1 − (1−δ)ε
δ∗ε

if (y, x, z) = (1, 0, 1) or (y, x, z) = (0, 1, 0).

(60)

and ∗ denotes binary convolution defined by ε ∗ δ = ε(1 − δ) + δ(1 − ε). The above mappings and conditional

distributions further induce the following joint and conditional PMFs:

PX,Z,U (x, z, u) =















1
2 (1 − δ ∗ ε) if (x, z, u) = (0, 0, 0) or (x, z, u) = (1, 1, 0)

1
2 (δ ∗ ε)(1 − α) if (x, z, u) = (0, 1, 0) or (x, z, u) = (1, 0, 0)

1
2 (δ ∗ ε)α if (x, z, u) = (0, 1, 1) or (x, z, u) = (1, 0, 1)

0 if (x, z, u) = (0, 0, 1) or (x, z, u) = (1, 1, 1).

(61)

PY (2)|X,U (y(2)|x, u)

=
∑

z

PY (2),Z|X,U (y(2), z|x, u)

=
∑

z

PZ|X,U (z|x, u)PY (2)|U,Z,X(y(2)|u, z, x)

=
∑

z

PZ|X,U (z|x, u)PY (2)|X̃,Z,X(y(2)|f(u, z, x), z, x)

=

{

(1−δ∗ε)
(1−δ∗ε)+(δ∗ε)(1−α)

(1−δ)(1−ε)
(1−δ∗ε) + (δ∗ε)(1−α)

(1−δ∗ε)+(δ∗ε)(1−α) (1 − δ) if (y(2), x, u) = (0, 0, 0)
(1−δ)ε

δ∗ε
if (y(2), x, u) = (0, 0, 1).

(62)

Equipped with the PMFs in (61) and (62), the entropies are readily obtained as:

H(Y (2)) = 1,
H(Z|X) = h2(δ ∗ ε),

H(Z|X, U) = h2

(

1−δ∗ε
1−δ∗ε+(δ∗ε)(1−α)

)

[1 − δ ∗ ε + (δ ∗ ε)(1 − α)] ,

H(Y (2)|X, U) = h2

(

(1−δ)(1−ε)+(δ∗ε)(1−α)(1−δ)
1−δ∗ε+(δ∗ε)(1−α)

)

[1 − δ ∗ ε + (δ ∗ ε)(1 − α)] + h2

(

(1−δ)ε
δ∗ε

)

(δ ∗ ε)α

(63)
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so that

I(X, U ; Y (2)) − I(U ; Z|X)

= H(Y (2)) − H(Y (2)|X, U) − H(Z|X) + H(Z|X, U)

= 1 − h2(δ ∗ ε)

+

[

h2

(

1 − δ ∗ ε

1 − δ ∗ ε + (δ ∗ ε)(1 − α)

)

− h2

(

(1 − δ)(1 − ε) + (δ ∗ ε)(1 − α)(1 − δ)

1 − δ ∗ ε + (δ ∗ ε)(1 − α)

)]

[1 − δ ∗ ε + (δ ∗ ε)(1 − α)]

−h2

(

(1 − δ)ε

δ ∗ ε

)

(δ ∗ ε)α.

= 1 − h2(δ ∗ ε)

+

[

h2

(

1 − δ ∗ ε

1 − (δ ∗ ε)α

)

− h2

(

(1 − δ)(1 − ε) + (δ ∗ ε)(1 − α)(1 − δ)

1 − (δ ∗ ε)α

)]

[1 − (δ ∗ ε)α] − h2

(

(1 − δ)ε

δ ∗ ε

)

(δ ∗ ε)α.

(64)

As would be expected, and as is easily verified, (64) coincides with (56) when α = 0 and with (48) when ε = 0.

Optimizing over α, we obtain the following lower bound on the capacity of the BSC with a rewrite option based on

a noisy observation of the channel output, for the non-causal case:

1 − h2(δ ∗ ε)

+ max
0≤α≤1

{[

h2

(

1 − δ ∗ ε

1 − (δ ∗ ε)α

)

− h2

(

(1 − δ)(1 − ε) + (δ ∗ ε)(1 − α)(1 − δ)

1 − (δ ∗ ε)α

)]

[1 − (δ ∗ ε)α] − h2

(

(1 − δ)ε

δ ∗ ε

)

(δ ∗ ε)α

}

.

(65)

Figure 3 presents a plot of the expression in (65), and one of the capacity when the rewrite is restricted to causality,

when the forward channel is a BSC(1/2) and the backward one is BSC(ε).

5-C Computer Memory with Defects and a Rewrite Option

Consider a computer memory with defects, characterized by the distribution of the state of each cell, PS , and the

channel PY |X,S . Consider the following two-pass coding scenario: the memory state is known neither to the encoder

nor the decoder. After writing into the storage device and observing the channel output components, the encoder

makes another encoding pass where it may rewrite at whichever memory locations it chooses. At each memory

location, the state remains unchanged regardless of whether or not a rewrite was performed. What is the storage

capacity of such a two-pass coding device?

This can be cast into our framework via the following associations:

• A → X

• S → Y(1) = Y, (the superscript (1) pertaining to the channel output after the first pass)

• X → X̃ = {no rewrite} × X

• Y → Y(2) = Y (the superscript (2) pertaining to the channel output after the second pass)

• PS|A → PY (1)|X , where PY (1)|X is the PY |X induced by the original channel, i.e.,

PY (1)|X(y|x) =
∑

s

PS(s)PY |X,S(y|x, s) (66)

16



Out[30]=

0.01 0.02 0.03 0.04 0.05

0.17

0.18

0.19

0.20

Figure 3: The lower curve is the actual capacity of a BSC(1/2) with a rewrite option based on observation of the
channel outputs from the first pass through a BSC(ε), when the rewrite is restricted to causality, as given in (56).
The upper curve is the lower bound on the capacity when there is no restriction to causality, as given in (65). The
two curves touch the Y -axis at the points mentioned in Subsection 5-A, namely ≈ 0.207519 (α = 1/3 achieves the
maximum in (65) for this case), as compared to 1 − h2(1/4) ≈ 0.188722.

• PY |X,S,A → PY (2)|X,Y (1),X̃ , where

PY (2)|X,Y (1),X̃(y(2)|x, y(1), x̃) =

{

1{y(1)=y(2)} if x̃ = no rewrite
∑

s PY |X,S(y(2)|x̃, s)PS|X,Y (s|x, y(1)) otherwise,
(67)

where PS|X,Y is the posterior distribution on the state given knowledge of the channel input and output, as

induced by the original channel, namely

PS|X,Y (s|x, y) =
PS,Y |X(s, y|x)

PY |X(y|x)
=

PS(s)PY |X,S(y|x, s)
∑

s′ PS(s′)PY |X,S(y|x, s′)
. (68)

Note that Y (1) is affected by the encoding ‘action’ chosen for the first pass, and is then observed by the encoder

before choosing its channel input symbol for the second pass. Further, knowledge of Y (1) conveys information about

the state S, and thus affects the conditional distribution of the channel output if a rewrite operation is selected, so

is playing the role of the channel state when cast into our general setting.

Applying Theorem 2, with the above associations, we get that the capacity for the case where the rewrite

operations in the second pass depend causally on the channel output components from the first pass CCMDRW
C , 4 is

given by

CCMDRW
C = max I(U ; Y (2)), (69)

where U, X, Y (1), X̃, Y (2) are distributed according to

PU,X,Y (1),X̃,Y (2)(u, x, y(1), x̃, y(2)) = PU (u)1{g(u)=x}PY (1)|X(y(1)|x)1{f(u,y(1))=x̃}PY (2)|X,Y (1),X̃(y(2)|x, y(1), x̃), (70)

4The superscript in CCMDRW

C
standing for ‘Computer Memory with Defects and a ReWrite option’ while the subscript stands for

‘Causal’.
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with PY (1)|X and PY (2)|X,Y (1),X̃ given in (66) and (67), and where the maximization is over PU , g, f , with |U| ≤ |Y|.

Applying Theorem 1, with the above associations, we get that the capacity for the case where the rewrite

operations in the second pass may depend non-causally on the channel output components from the first pass

CCMDRW
NC , 5 is given by

CCMDRW
NC = max[I(X, U ; Y (2)) − I(U ; Y (1)|X)], (71)

where the maximization is over all joint distributions of the form

PX,Y (1),U,X̃,Y (2)(x, y(1), u, x̃, y(2)) = PX(x)PY (1)|X(y(1)|x)PU|Y (1),X(u|y(1), x)1{x̃=f(u,y(1),x)}PY (2)|X,Y (1),X̃(y(2)|x, y(1), x̃),

(72)

with PY (1)|X and PY (2)|X,Y (1),X̃ given in (66) and (67), and where the maximization is over PX , PU|Y (1),X , f , with

|U| ≤ |X |(|X | + 1)|Y| + 1.

5-C.1 Example: A BSC that gets Stuck

Consider a channel whose input-output relation can be in one of the following four states: Y ≡ X , Y ≡ X⊕1, Y ≡ 0,

Y ≡ 1, with respective probabilities (1−δ)2, δ(1−δ), δ(1−δ), δ2. When the states are unkown, and there is no rewrite

option, this is nothing but a BSC(δ). Let us now compute the rewrite capacities, with and without the causality

restriction, (69) and (71) for this channel. Note that a rewrite with the same symbol is pointless since would yield

the same output. Thus, for this channel, if a rewrite operation is chosen, it can, without loss of optimality, always

be taken to the value which is complementary to that used in the first pass. This fact simplifies the derivation.

It is readily verified that the maximum in (69) is achieved by the following encoding: if the symbol output by

the channel in response to the first input is equal to that input, no rewrite is performed. Otherwise, a rewrite is

performed with the complementary symbol. We obtain an effective BSC with crossover probability δ(1−δ), and thus

CCMDRW
C = 1 − h2 (δ(1 − δ)) . (73)

Moving to the evaluation of (71), symmetry implies that the most general form of a joint distribution we need to

consider and optimize over is a follows: PX is Bernoulli(1/2), PY (1)|X is the BSC(δ), U = {0, 1} and PU|Y (1),X is of

the form

PU|Y (1),X(1|y(1), x) =















1 − α if y(1) = x = 1
α if y(1) = x = 0

β if y(1) 6= x = 0

1 − β if y(1) 6= x = 1.

(74)

Since, when a rewrite is performed, it need only be to the value which is complementary to that used in the first

pass, there is no loss in assuming that f is of the form

f(u, y(1), x) =

{

no rewrite if (u, y(1), x) ∈ {(0, 0, 0), (1, 1, 1), (1, 1, 0), (0, 0, 1)}

x ⊕ 1 if (u, y(1), x) ∈ {(1, 0, 0), (0, 1, 1), (0, 1, 0), (1, 0, 1)}.
(75)

Let us now compute the induced joint distributions:

PY (1),X,U (y(1), x, u) =















1
2 (1 − δ)(1 − α) if (y(1), x, u) ∈ {(0, 0, 0), (1, 1, 1)}

1
2 (1 − δ)α if (y(1), x, u) ∈ {(0, 0, 1), (1, 1, 0)}

1
2δβ if (y(1), x, u) ∈ {(0, 1, 0), (1, 0, 1)}

1
2δ(1 − β) if (y(1), x, u) ∈ {(0, 1, 1), (1, 0, 0)},

(76)

5The subscript in CCMDRW

NC
standing for ‘Non-Causal’.
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PX,U (x, u) =















1
2 (1 − δ)(1 − α) + 1

2δ(1 − β) if (x, u) = (0, 0)
1
2 (1 − δ)α + 1

2δβ if (x, u) = (0, 1)
1
2δβ + 1

2 (1 − δ)α if (x, u) = (1, 0)
1
2δ(1 − β) + 1

2 (1 − δ)(1 − α) if (x, u) = (1, 1)},

(77)

PY (2)|Y (1),X,U (1|y(1), x, u) =















0 if (y(1), x, u) ∈ {(0, 0, 0), (0, 1, 0)}

1 if (y(1), x, u) ∈ {(1, 1, 1), (1, 0, 1)}
δ if (y(1), x, u) ∈ {(1, 1, 0), (0, 1, 1)}

1 − δ if (y(1), x, u) ∈ {(0, 0, 1), (1, 0, 0)},

(78)

PY (2),X,U (y(2), x, u) =
∑

y(1)

PY (2),Y (1),X,U (y(2), y(1), x, u) =















1
2 (1 − δ)(1 − α) + 1

2δ2(1 − β) if (y(2), x, u) = (0, 0, 0)
1
2 (1 − δ)αδ if (y(2), x, u) = (0, 0, 1)

1
2δβ + 1

2 (1 − δ)2α if (y(2), x, u) = (0, 1, 0)
1
2 (1 − δ)(1 − β)δ if (y(2), x, u) = (0, 1, 1).

(79)

So

H(Y (1)|X, U) (80)

= h2

( 1
2 (1 − δ)(1 − α)

1
2 (1 − δ)(1 − α) + 1

2δ(1 − β)

)[

1

2
(1 − δ)(1 − α) +

1

2
δ(1 − β)

]

(81)

+h2

( 1
2 (1 − δ)α

1
2 (1 − δ)α + 1

2δβ

)[

1

2
(1 − δ)α +

1

2
δβ

]

(82)

+h2

( 1
2δβ

1
2δβ + 1

2 (1 − δ)α

)[

1

2
δβ +

1

2
(1 − δ)α

]

(83)

+h2

( 1
2δ(1 − β)

1
2δ(1 − β) + 1

2 (1 − δ)(1 − α)

)[

1

2
δ(1 − β) +

1

2
(1 − δ)(1 − α)

]

(84)

= h2

(

δ(1 − β)

δ(1 − β) + (1 − δ)(1 − α)

)

[δ(1 − β) + (1 − δ)(1 − α)] + h2

(

δβ

δβ + (1 − δ)α

)

[δβ + (1 − δ)α] (85)

and

H(Y (2)|X, U) (86)

= h2

( 1
2 (1 − δ)(1 − α) + 1

2δ2(1 − β)
1
2 (1 − δ)(1 − α) + 1

2δ(1 − β)

)[

1

2
(1 − δ)(1 − α) +

1

2
δ(1 − β)

]

(87)

+h2

( 1
2 (1 − δ)αδ

1
2 (1 − δ)α + 1

2δβ

)[

1

2
(1 − δ)α +

1

2
δβ

]

(88)

+h2

( 1
2δβ + 1

2 (1 − δ)2α
1
2δβ + 1

2 (1 − δ)α

)[

1

2
δβ +

1

2
(1 − δ)α

]

(89)

+h2

( 1
2 (1 − δ)(1 − β)δ

1
2δ(1 − β) + 1

2 (1 − δ)(1 − α)

)[

1

2
δ(1 − β) +

1

2
(1 − δ)(1 − α)

]

(90)

= h2

(

(1 − δ)(1 − β)δ

δ(1 − β) + (1 − δ)(1 − α)

)

[δ(1 − β) + (1 − δ)(1 − α)] + h2

(

(1 − δ)αδ

(1 − δ)α + δβ

)

[(1 − δ)α + δβ] (91)
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Figure 4: Capacity of the BSC with a rewrite option, where a rewrite with the same symbol has the same output
as in the initial writing. The upper, middle, and lower curves correspond to the capacity for the non-causal case
CCMDRW

NC , for the causal case CCMDRW
C , and the capacity of the standard BSC, as the channel crossover probability

δ ranges in [0, 1/2].

So that:

I(X, U ; Y (2)) − I(U ; Y (1)|X)

= H(Y (2)) − H(Y (1)|X) + H(Y (1)|X, U) − H(Y (2)|X, U)

= 1 − h2(δ)

+

[

h2

(

δ(1 − β)

δ(1 − β) + (1 − δ)(1 − α)

)

− h2

(

(1 − δ)(1 − β)δ

δ(1 − β) + (1 − δ)(1 − α)

)]

[δ(1 − β) + (1 − δ)(1 − α)]

+

[

h2

(

δβ

δβ + (1 − δ)α

)

− h2

(

(1 − δ)αδ

(1 − δ)α + δβ

)]

[δβ + (1 − δ)α] . (92)

Optimizing over α, β, we obtain the capacity for the case of non-causal dependence of the channel rewrite symbols

on the output symbols from the first pass:

CCMDRW
NC (93)

= 1 − h2(δ)

+ max
0≤α≤1,0≤β≤1

{[

h2

(

δ(1 − β)

δ(1 − β) + (1 − δ)(1 − α)

)

− h2

(

(1 − δ)(1 − β)δ

δ(1 − β) + (1 − δ)(1 − α)

)]

[δ(1 − β) + (1 − δ)(1 − α)]

+

[

h2

(

δβ

δβ + (1 − δ)α

)

− h2

(

(1 − δ)αδ

(1 − δ)α + δβ

)]

[δβ + (1 − δ)α]

}

. (94)

Figure 4 presents plots of CCMDRW
NC , CCMDRW

C , and the capacity of the ordinary BSC, as functions of the crossover

probability δ.
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6 The Gaussian Channel

Using standard arguments, the capacity results of the previous sections can be shown to carry over to continuous-

alphabet channels, similarly as for the original problems of coding with transmitter state information, such as in [1].

In this section, we consider the capacity of the “writing-on-clean-paper-and-then-writing-on-its-corrupted version”

channel, which has the following relations between channel inputs, channel outputs, states and actions:

Y n = Sn + Xn(M, Sn) + Nn = An(M) + Wn + Xn(M, Sn) + Nn, (95)

where

• Sn = An(M) + Wn

• Wn and Nn are independent, Wn is i.i.d.∼ N(0, σ2
W ) and Nn is i.i.d.∼ N(0, σ2

N )

• The actions are confined to

E

[

1

n

n
∑

i=1

(Ai)
2

]

≤ PA

• The subsequent channel inputs are confined to

E

[

1

n

n
∑

i=1

(Xi)
2

]

≤ PX

The continuous-alphabet extension of Theorem 3 implies that the capacity of this channel is given by

max[I(A, U ; Y ) − I(U ; S|A)], (96)

where the maximization is over all jointly distributed variables obeying:

• Y = S + X + N

• S = A + W

• W ∼ N(0, σ2
W ), N ∼ N(0, σ2

N ), W⊥N

• E[A2] ≤ PA , E[X2] ≤ PX

• X is a function of U, S, A

• U − (X, S, A) − Y

Let CG = CG(PA, PX , σ2
W , σ2

N ) denote the maximum in (96) subject to the above constraints, and under the addi-

tional requirement that (A, U, X, S, Y ) be jointly Gaussian. Specifically, consider the joint distribution formed by

taking:

• A ∼ N(0, PA)

• X = αA + γW + G, where α2PA + γ2σ2
W ≤ PX , G ∼ N(0, PX − (α2PA + γ2σ2

W ))

• U = δX + A + βW

• W, N, A, G independent of each other
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It is readily verified that this joint distribution obeys the required conditions (note that U − (X, S, A)−Y holds since

U is a function of X, S, A) and that, in fact, this is essentially (up to rescaling of variables that would not affect the

expression whose maximum we seek) the most general form of the joint distribution subject to the variables being

jointly Gaussian. We proceed to evaluate I(A, U ; Y )− I(U ; S|A) for this case, and then to obtain CG by optimizing

over α, β, γ and δ. The variances are:

σ2
A = PA (97)

σ2
Y = (1 + α)2PA + (1 + γ)2σ2

W + PX − (α2PA + γ2σ2
W ) + σ2

N (98)

σ2
U = (1 + αδ)2PA + (γδ + β)2σ2

W + δ2(PX − (α2PA + γ2σ2
W )). (99)

The covariances are:

E[AY ] = (1 + α)PA (100)

E[UA] = (1 + αδ)PA (101)

E[UY ] = (1 + α)(1 + αδ)PA + (1 + γ)(β + γδ)σ2
W + δ(PX − (α2PA + γ2σ2

W )). (102)

The conditional variances can now be computed as:

σ2
A|Y = σ2

A −
(E[AY ])2

σ2
Y

= PA −
(1 + α)2(PA)2

(1 + α)2PA + (1 + γ)2σ2
W + (PX − (α2PA + γ2σ2

W )) + σ2
N

, (103)

σ2
U|A,Y = σ2

U −
−2E[AY ]E[UA]E[UY ] + (E[UY ])2σ2

A + (E[UA])2σ2
Y

−(E[AY ])2 + σ2
Aσ2

Y

(104)

and

σ2
U|A,S = δ2σ2

G = δ2(PX − (α2PA + γ2σ2
W )). (105)

Thus

I(A, U ; Y ) − I(U ; S|A) = h(A) − h(A|Y ) − h(U |A, Y ) + h(U |A, S) (106)

=
1

2
log

(

σ2
Aσ2

U|A,S

σ2
A|Y σ2

U|A,Y

)

, (107)

where σ2
A, σ2

U|A,S , σ2
A|Y and σ2

U|A,Y are given explicitly in terms of PA, PX , σ2
W , σ2

N , α, β, γ and δ via equations (97)

through (105).

We proceed to maximize the expression in (107) with respect to α, β, γ and δ. To this end, note first that

σ2
A, σ2

U|A,S
, σ2

A|Y do not depend on β. As for σ2
U|A,Y

, substituting the relations in equations (97) through (102) into

(104) gives a quadratic expression in β which is minimized by β∗ = δ
α2PA−PX+γσ2

N
+γ2σ2

W

α2PA−PX−σ2
N

+γ2σ2
W

with the value

min
β

σ2
U|A,Y = δ2 σ2

N (PX − (α2PA + γ2σ2
W ))

σ2
N + (PX − (α2PA + γ2σ2

W ))
. (108)
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Substituting the above expressions we obtain

max
β

σ2
Aσ2

U|A,S

σ2
A|Y σ2

U|A,Y

=
PA(σ2

N + (PX − (α2PA + γ2σ2
W )))

σ2
N

(

PA − (1+α)2(PA)2

(1+α)2PA+(1+γ)2σ2
W

+(PX−(α2PA+γ2σ2
W

))+σ2
N

) (109)

=
((1 + 2α)PA + PX + σ2

N + (1 + 2γ)σ2
W )(σ2

N + (PX − (α2PA + γ2σ2
W )))

σ2
N (PX − α2PA + σ2

N + σ2
W (1 + 2γ))

(110)

=
PA(σ2

N + (PX − (α2PA + γ2σ2
W )))

σ2
N

(

PA − (1+α)2(PA)2

(1+α)2PA+(1+γ)2σ2
W

+(PX−(α2PA+γ2σ2
W

))+σ2
N

) (111)

=
[(1 + 2α)PA + PX + 1 + (1 + 2γ)σ2

W ][1 + (PX − (α2PA + γ2σ2
W ))]

[PX − α2PA + 1 + σ2
W (1 + 2γ)]

, (112)

where in the last line we have taken, without loss of generality, σ2
N = 1. We thus obtain

CG = CG(PA, PX , σ2
W , 1) (113)

=
1

2
log

(

max
(α,γ):α2PA+γ2σ2

W
≤PX

[(1 + 2α)PA + PX + 1 + (1 + 2γ)σ2
W ][1 + (PX − (α2PA + γ2σ2

W ))]

[PX − α2PA + 1 + σ2
W (1 + 2γ)]

)

.(114)

It is possible to find the maximizing (α, γ), and the value of the maximum in (114), in closed form. However, the

expressions involved are too cumbersome to specify.

It is instructive to compare CG to the following lower bounds on the capacity of this channel:

• Precancelation via X :

– When PX ≥ σ2
W , the encoder of the sequence Xn has access to Wn (as it knows Sn and M and hence also

An(M)), and so can use part of its power to cancel Wn, and the remaining power to amplify the action

sequence An. The rate achieved by this strategy is

1

2
log











1 +

(

1 +
√

PX−σ2
W

PA

)2

· PA

σ2
N











. (115)

Note that this corresponds to taking α =
√

PX−σ2
W

PA
and γ = −1 in lieu of the maximum in (114).

– When PX < σ2
W , the encoder of the sequence Xn can use all of its power to cancel as much of Wn as it

can. The encoding is done solely through the action sequence, and an effective noise power equal to σ2
N

plus the part of Wn that has not been canceled. The rate achieved by this strategy is

1

2
log






1 +

PA
(

1 −
√

PX/σ2
W

)2

σ2
W + σ2

N






. (116)

Note that this corresponds to taking α = 0 and γ = −
√

PX/σ2
W .

• Both A and X can work together to encode for a standard AWGN channel with noise power σ2
W + σ2

N . The

rate achieved is
1

2
log

(

1 +
(1 +

√

PX/PA)2PA

σ2
W + σ2

N

)

(117)

Note that this corresponds to taking α =
√

PX/PA and γ = 0.
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Figure 5: Lower bounds on the capacity of the Gaussian channel, for the case PA = PX = σ2
N = 1, as a function of

σ2
W . The red curve shows CG. The black curve shows the cancelation bounds in (115) and (116). The blue curve

shows the rate in (117), achieved when X and A cooperate to encode for a standard AWGN channel whose noise is
W + N . The green line is the standard dirty paper rate in (118). As can be expected, the first three curves coincide
at σ2

W = 0 and give the actual capacity for this case, which is the capacity of the AWGN channel at signal to noise
ratio 4. At the other extreme, as should be expected, the red curve is approaching the green one for large σ2

W since
the actual capacity approaches the dirty paper capacity in the limit of large σ2

W . For the particular case where
PX = PA, dirty paper coding achieves a better rate than precancelation when PX < σ2

W as can be seen in the graph
and by comparing (116) with (118). Whether the actual capacity is given by the red curve remains to be answered.

• The rate
1

2
log

(

1 +
PX

σ2
N

)

(118)

is always achievable, regardless of σ2
W , by standard dirty paper coding (i.e., treating Sn as interference).

Figure 5 displays a plot of CG as a function of σ2
W for the case PA = PX = σ2

N = 1, as well as its lower bounds,

the achievable rates in (115), (116), (117) and (118). Whether CG is the capacity of this channel remains to be

determined.

7 Conclusions and Future Directions

We have extended the study of channels with states known at the transmitter to the case where the formation of

the states is affected by actions taken at the encoder. The fundamental limits on reliable communication for such

channels were characterized. It was seen that such a framework covers channels with a ‘rewrite’ option based on

(noiseless or noisy) feedback from the channel output in the first writing. Examples of such channels were explored

in detail.
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Some questions and directions that our work leaves open for future exploration are:

• Can actions of the form Ai(M, Si−1) increase the capacity relative to actions that are not allowed to depend on

past states, in the setting of Section 2, where in the encoding of the channel input Xn non-causal dependence

on the state sequence is allowed ?

• For the Gaussian channel of Section 6, does a U jointly Gaussian with the remaining variables achieve the

maximum in (96), i.e., is CG = C ?

• Extension of the channel model to more than two encoding stages: In some of the motivating examples given,

it makes sense to consider problems where each memory location can be rewritten into more than once. In fact,

for some of the scenarios considered, particularly the one involving noisy feedback from the channel output

after the first writing stage, it makes sense to consider a setting where the encoder is allowed as many ‘rewrite’

attempts as it desires.
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[12] A. Somekh-Baruch, S. Shamai and S. Verdú, “Cooperative Multiple-Access Encoding with States available at

One Transmitter,” IEEE Trans. Inform. Theory, vol. IT-54, no. 10, pp. 4448–4469, October 2008.

26


