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Abstract

This paper considers the problem of the multiple-input multiple-output (MIMO)
Gaussian broadcast channel with two receivers (receivers 1 and 2) and two messages: a
common message intended for both receivers and a confidential message intended only
for receiver 1 but needing to be kept asymptotically perfectly secure from receiver 2.
A matrix characterization of the secrecy capacity region is established via a channel
enhancement argument. The enhanced channel is constructed by first splitting receiver
1 into two virtual receivers and then enhancing only the virtual receiver that decodes
the confidential message. The secrecy capacity region of the enhanced channel is char-
acterized using an extremal entropy inequality previously established for characterizing
the capacity region of a degraded compound MIMO Gaussian broadcast channel.

1 Introduction

Understanding the fundamental limits of multiple-input multiple-output (MIMO) secrecy
communication is an important research topic in wireless physical layer security. A basic
model of MIMO secrecy communication is a MIMO Gaussian broadcast channel with two
receivers, for which the channel outputs at time index m are given by

Yk[m] = HkX[m] + Zk[m], k = 1, 2 (1)

where Hk is the (real) channel matrix of size rk × t for receiver k, and {Zk[m]}m is an
independent and identically distributed (i.i.d.) additive vector Gaussian noise process with
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USA (e-mail: {hungly,tieliu}@tamu.edu). Yingbin Liang is with the Department of Electrical Engineering,
University of Hawaii, Honolulu, HI 96822, USA (e-mail: yingbinl@hawaii.edu).
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Figure 1: MIMO Gaussian broadcast channel with common and confidential messages.

zero mean and identity covariance matrix. The channel input {X[m]}m is subject to an
average total power constraint:

1

n

n
∑

m=1

‖X[m]‖2 ≤ P. (2)

The transmitter has a set of two independent messages (W0,W1), where W0 is a common
message intended for both receivers 1 and 2, and W1 is a confidential message intended for
receiver 1 but needing to be kept secret from receiver 2. The confidentiality of message W1

at receiver 2 is measured using the information-theoretic criterion [1, 2]:

1

n
I(W1;Y

n
2 ) → 0 (3)

where Yn
2 := (Y2[1], . . . ,Y2[n]), and the limit is taken as the blocklength n → ∞. An illus-

tration of this communication scenario is shown in Figure 1(a). The goal is to characterize
the entire rate region Cs(H1,H2, P ) that includes all rate pairs (R0, R1) that can be achieved
by any coding scheme. In this paper, we term Cs(H1,H2, P ) as the secrecy capacity region
despite the fact that W0 is not a confidential message.

In their seminar work [2], Csiszár and Körner considered the discrete memoryless case of
the problem. A single-letter expression of the secrecy capacity region was given as the set of
nonnegative rate pairs (R0, R1) satisfying

R0 ≤ min [I(U ; Y1), I(U ; Y2)]
R1 ≤ I(V ; Y1|U)− I(V ; Y2|U)

(4)
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for some p(u, v, x, y1, y2) = p(u)p(v|u)p(x|v)p(y1, y2|x), where p(y1, y2|x) is the transition
probability of the discrete memoryless broadcast channel. Thus, in principle, the secrecy
capacity region Cs(H1,H2, P ) can be computed by evaluating the Csiszár-Körner region (4)
for the MIMO Gaussian broadcast channel (1).

However, directly evaluating (4) for the MIMO Gaussian broadcast channel (1) appears
difficult due to the presence of the auxiliary variables U and V . Consider, for example, the
special case where the common message W0 is absent, i.e., R0 = 0. Let U be deterministic
in (4). Then, the maximum of R1 can be determined by solving the optimization program

max
p(x,v)

[I(V ; Y1)− I(V ; Y2)] . (5)

In literature, the problem of communicating a confidential message over a MIMO Gaussian
broadcast channel is termed as the MIMO Gaussian wiretap channel problem. Characterizing
the secrecy capacity of the MIMO Gaussian wiretap channel has been an active area of
research in recent years. However, despite intensive effort [3, 4, 5, 6, 7], determining the
secrecy capacity of the MIMO Gaussian wiretap channel via directly solving the optimization
program (5) remains intractable.

Recently, Khisti and Wornell [5] and Oggier and Hassibi [6] studied the MIMO Gaus-
sian wiretap channel problem and proposed an indirect approach to solve the optimization
program (5). The main idea was to compute an upper bound on the secrecy capacity by
considering a fictitious MIMO Gaussian wiretap channel in which the legitimate receiver has
access to both received signals {Y1[m]}m and {Y2[m]}m. For any fixed correlation between
the additive noise Z1[m] and Z2[m], Khisti and Wornell [5] and Oggier and Hassibi [6] showed
that Gaussian random binning without prefix coding is optimal for the fictitious channel.
Comparing the upper bound (minimized over all possible correlations between Z1[m] and
Z2[m]) with the achievable secrecy rate by choosing a Gaussian V = X in the objective func-
tion of (5) established an exact matrix characterization of the secrecy capacity. However,
matching the upper and lower bounds requires complicated matrix analysis, which makes the
approach difficult to extend to the more general scenario with both common and confidential
messages.

More recently, Liu and Shamai [7] presented an alternative, simpler characterization of
the secrecy capacity of the MIMO Gaussian wiretap channel. Compared with the work of
[5] and [6], there are two key differences in the argument of [7]

1. Instead of the average total power constraint (2), [7] considered the more general matrix
power constraint:

1

n

n
∑

m=1

(

X[m]XT[m]
)

� S (6)

where S is a positive semidefinite matrix, and “�” denotes “less than or equal to” in
the positive semidefinite ordering between real symmetric matrices.

2. Different from the Sato-like [8] argument of [5] and [6], the upper bound on the secrecy
capacity in [7] was obtained by considering an enhanced MIMO Gaussian wiretap
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channel that has the same secrecy capacity as the original wiretap channel. Channel-
enhancement argument was first introduced by Weingarten et al. [9] to characterize
the private message capacity region of the MIMO Gaussian broadcast channel; [7] was
the first to apply this argument to MIMO secrecy communication problems.

The main goal of this paper is to adapt the channel-enhancement argument of [7] to
the more general problem of MIMO Gaussian broadcast channel with both common and
confidential messages. Our main result is that for the MIMO Gaussian broadcast channel
(1), a jointly Gaussian (U, V,X) with V = X is optimal for the Csiszár-Körner region
(4). This establishes a matrix characterization of the secrecy capacity region of the MIMO
Gaussian broadcast channel under a matrix power constraint.

The rest of the paper is organized as follows. In Section 2, we summarize the main results
of the paper. In Section 3, we consider the special case of the MIMO Gaussian broadcast
channel (1) in which the channel matrices H1 and H2 are square and invertible, and use a
channel-enhancement argument to characterize the secrecy capacity region. In Section 4, we
broaden the result of Section 3, via a limiting argument, to the general case, and characterize
the secrecy capacity region of the general MIMO Gaussian broadcast channel. Finally, in
Section 5, we provide some numerical examples to illustrate the main results of the paper.

2 Main Results

The following theorem summarizes the secrecy capacity region of the MIMO Gaussian broad-
cast channel with common and confidential messages under a matrix power constraint.

Theorem 1. The secrecy capacity region Cs(H1,H2,S) of the MIMO Gaussian broadcast
channel (1) with messages W0 (intended for both receivers 1 and 2) and W1 (intended for
receiver 1 but needing to be kept asymptotically perfectly secret from receiver 2) under the
matrix power constraint (6) is given by the set of all nonnegative rate pairs (R0, R1) satisfying

R0 ≤ min
(

1
2
log
∣

∣

∣

H1SH
T

1
+Ir1

H1BHT

1
+Ir1

∣

∣

∣
, 1
2
log
∣

∣

∣

H2SH
T

2
+Ir2

H2BHT

2
+Ir2

∣

∣

∣

)

R1 ≤ 1
2
log
∣

∣H1BHT
1 + Ir1

∣

∣− 1
2
log
∣

∣H2BHT
2 + Ir2

∣

∣

(7)

for some 0 � B � S. Here, Irk denotes the identity matrix of size rk × rk.

As mentioned previously, the MIMO Gaussian wiretap channel problem can be considered
as a special case here with the common rate R0 = 0. We have thus recovered the main result
of [7], restated below as a corollary.

Corollary 2 ([7]). The secrecy capacity Cs(H1,H2,S) of the MIMO Gaussian broadcast
channel (1) with a confidential message messages W (intended for receiver 1 but needing to
be kept asymptotically perfectly secret from receiver 2) under the matrix power constraint (6)
is given by

Cs(H1,H2,S) = max
0�B�S

(

1

2
log
∣

∣H1BHT
1 + Ir1

∣

∣−
1

2
log
∣

∣H2BHT
2 + Ir2

∣

∣

)

. (8)
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In engineering practice, it is particularly relevant to consider the average total power
constraint. The following corollary summarizes the secrecy capacity region of the MIMO
Gaussian broadcast channel with common and confidential messages under an average total
power constraint. The result is a simple consequence of [9, Lemma 1].

Corollary 3. The secrecy capacity region Cs(H1,H2, P ) of the MIMO Gaussian broadcast
channel (1) with messages W0 (intended for both receivers 1 and 2) and W1 (intended for
receiver 1 but needing to be kept asymptotically perfectly secret from receiver 2) under the
average total power constraint (2) is given by the set of all nonnegative rate pairs (R0, R1)
satisfying

R0 ≤ min
[

1
2
log
∣

∣

∣

H1(B1+B2)HT

1
+Ir1

H1B1H
T

1
+Ir1

∣

∣

∣
, 1
2
log
∣

∣

∣

H2(B1+B2)HT

2
+Ir2

H2B1H
T

2
+Ir2

∣

∣

∣

]

R1 ≤ 1
2
log
∣

∣H1B1H
T
1 + Ir1

∣

∣− 1
2
log
∣

∣H2B1H
T
2 + Ir2

∣

∣

(9)

for some positive semidefinite matrices B1 and B2 with Tr(B1 +B2) ≤ P .

The achievability proof of Theorem 1 follows from the Csiszár-Körner region (4) by
letting U be a t-dimensional Gaussian vector with zero mean and covariance matrix S −B

and V = X = U + G, where G is a t-dimensional Gaussian vector with zero mean and
covariance matrix B and is independent of U . Note that prefix coding is not needed in
communicating the confidential message W1 even though the corresponding eavesdropper
channel may not be degraded with respect to the legitimate receiver channel.

The converse of Theorem 1 follows from an adaptation of the channel-enhancement ar-
gument of [7] with the following two new ingredients:

1. To obtain an enhanced MIMO Gaussian broadcast channel that has the same weighted
secrecy sum-capacity as the original channel, we need to split receiver 1 into two virtual
receivers: one as the legitimate receiver for the confidential message W1, and the other
as one of the intended receivers for the common message W0. Only the legitimate
receiver for the confidential message W1 is enhanced in the proof.

2. With only a confidential message, in [7], the matrix characterization of the secrecy
capacity of the enhanced channel was obtained via the worst noise result of Diggavi
and Cover [13]. With both common and confidential messages, characterizing the
secrecy capacity region of the enhanced channel becomes more involved. In our proof,
we resort to an extremal entropy inequality which was first proved by Weingarten et al.
[12] for characterizing the capacity region of a degraded compound MIMO Gaussian
broadcast channel.

The details of the proof are provided in the next two sections.

3 Aligned MIMO Gaussian Broadcast Channel

In this section, we prove Theorem 1 for the special case where the channel matrices H1 and
H2 are square and invertible. In this case, multiplying both sides of (1) by H−1

k , the channel
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model can be equivalently written as

Yk[m] = X[m] + Zk[m], k = 1, 2 (10)

where {Zk[m]}m is an i.i.d. additive vector Gaussian noise process with zero mean and
covariance matrix

Nk = H−1
k H−T

k .

Following [9], we will term the channel model (10) as the aligned MIMO Gaussian broadcast
channel (see Figure 1(b)) and (1) as the general MIMO Gaussian broadcast channel. The
main result of this section is summarized in the following theorem.

Theorem 4. The secrecy capacity region Cs(N1,N2,S) of the aligned MIMO Gaussian broad-
cast channel (10) with messages W0 (intended for both receivers 1 and 2) and W1 (intended
for receiver 1 but needing to be kept asymptotically perfectly secret from receiver 2) under
the matrix power constraint (6) is given by the set of all nonnegative rate pairs (R0, R1)
satisfying

R0 ≤ min
(

1
2
log
∣

∣

∣

S+N1

B+N1

∣

∣

∣
, 1
2
log
∣

∣

∣

S+N2

B+N2

∣

∣

∣

)

R1 ≤ 1
2
log
∣

∣

∣

B+N1

N1

∣

∣

∣
− 1

2
log
∣

∣

∣

B+N2

N2

∣

∣

∣

(11)

for some 0 � B � S.

Proof. Let G be a t-dimensional Gaussian vector with zero mean and covariance matrix
B. Then, the achievability of (11) can be obtained from the Csiszár-Körner region (4) by
letting U be a t-dimensional Gaussian vector with zero mean and covariance matrix S−B and
V = X = U +G, where U and G are assumed to be independent. We therefore concentrate
on proving the converse result.

To show that any achievable secrecy rate pair (R0, R1) for the aligned MIMO Gaussian
broadcast channel (10) must satisfy (11) for some 0 � B � S, we may assume, without
loss of generality, that the matrix power constraint S ≻ 0. For the case where S � 0 but
|S| = 0, let θ = Rank(S) < t. We can define an equivalent aligned MIMO Gaussian broadcast
channel with θ transmit and receive antennas and a new covariance matrix power constraint
that is strictly positive definite. Hence, we can convert the case where S � 0, |S| = 0 to
the case where S ≻ 0 with the same secrecy capacity region. See [9, Lemma 2] for a formal
presentation of this argument.

For the case where S ≻ 0, we shall consider proof by contradiction as follows. Assume
that (Ro

0, R
o
1) is an achievable secrecy rate pair for the aligned MIMO Gaussian broadcast

channel (10) that lies outside the rate region (11). Since (Ro
0, R

o
1) is achievable, Ro

0 can be
bounded from above as

Ro
0 ≤ min

(

1

2
log

∣

∣

∣

∣

S+N1

N1

∣

∣

∣

∣

,
1

2
log

∣

∣

∣

∣

S+N2

N2

∣

∣

∣

∣

)

= Rmax
0 . (12)

Moreover, if Ro
1 = 0, then Rmax

0 can be achieved by letting B = 0 in (11). Therefore, we can
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write Ro
1 = R∗

1 + δ for some δ > 0, where R∗
1 is given by

maxB
1
2
log
∣

∣

∣

B+N1

N1

∣

∣

∣
− 1

2
log
∣

∣

∣

B+N2

N2

∣

∣

∣

subject to 1
2
log
∣

∣

∣

S+N1

B+N1

∣

∣

∣
≥ Ro

0

1
2
log
∣

∣

∣

S+N2

B+N2

∣

∣

∣
≥ Ro

0

0 � B � S.

(13)

The above optimization program can be rewritten in the following standard form:

minB
1
2
log
∣

∣

∣

B+N2

N2

∣

∣

∣
− 1

2
log
∣

∣

∣

B+N1

N1

∣

∣

∣

subject to Ro
0 −

1
2
log
∣

∣

∣

S+N1

B+N1

∣

∣

∣
≤ 0

Ro
0 −

1
2
log
∣

∣

∣

S+N2

B+N2

∣

∣

∣
≤ 0

−B � 0
B− S � 0

(14)

which has one semidefinite variable, B, constrained by both scalar and semidefinite inequal-
ities. This is in fact an optimization problem with generalized constraints in the form of
semidefinite inequalities [14, p. 267]. Therefore, the Karush-Kuhn-Tucker (KKT) condition
states that the derivative of the Lagrangian

L =
(

1
2
log
∣

∣

∣

B+N2

N2

∣

∣

∣
− 1

2
log
∣

∣

∣

B+N1

N1

∣

∣

∣

)

+
∑2

k=1 µk

(

Ro
0 −

1
2
log
∣

∣

∣

S+Nk

B+Nk

∣

∣

∣

)

+

Tr ((−B)M1) + Tr ((B− S)M2)
(15)

must vanish at an optimal solution B∗.1 Here, Mk, k = 1, 2, are positive semidefinite
matrices such that

B∗M1 = 0 (16)

(S−B∗)M2 = 0 (17)

and µk ≥ 0, k = 1, 2, with equality if

1

2
log

∣

∣

∣

∣

S+Nk

B∗ +Nk

∣

∣

∣

∣

> Ro
0.

We immediately have

µkR
o
0 =

µk

2
log

∣

∣

∣

∣

S+Nk

B∗ +Nk

∣

∣

∣

∣

, k = 1, 2. (18)

Taking derivative of the Lagrangian in (15) over B, the KKT condition can be written as

∇B

(

1

2
log

∣

∣

∣

∣

B+N2

N2

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

B+N1

N1

∣

∣

∣

∣

+
2
∑

k=1

µk

(

Ro
0 −

1

2
log

∣

∣

∣

∣

S+Nk

B+Nk

∣

∣

∣

∣

)

)

−M1 +M2 = 0

1As this optimization problem is not necessarily convex, a set of constraint qualifications (CQs) should
be verified to make sure that the KKT conditions indeed hold. The CQs stated in [9, Appendix D] hold in
a trivial manner for this optimization program.
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which gives

1

2
(B∗ +N1)

−1 +M1 =
µ1

2
(B∗ +N1)

−1 +
µ2 + 1

2
(B∗ +N2)

−1 +M2. (19)

By (13) and (18), we have

Ro
1+(µ1+µ2)R

o
0 =

1

2
log

∣

∣

∣

∣

B∗ +N1

N1

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

B∗ +N2

N2

∣

∣

∣

∣

+
2
∑

k=1

(

µk

2
log

∣

∣

∣

∣

S+Nk

B∗ +Nk

∣

∣

∣

∣

)

+ δ. (20)

Next, we shall find a contradiction to (20) by showing that for any achievable secrecy
rate pair (R0, R1),

R1 + (µ1 + µ2)R0 ≤
1

2
log

∣

∣

∣

∣

B∗ +N1

N1

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

B∗ +N2

N2

∣

∣

∣

∣

+

2
∑

k=1

(

µk

2
log

∣

∣

∣

∣

S+Nk

B∗ +Nk

∣

∣

∣

∣

)

.

We divide our proof into three steps.
Step 1: Split receiver 1 into two virtual receivers.

Consider the following aligned MIMO Gaussian broadcast channel with three receivers:

Y1a[m] = X[m] + Z1a[m]
Y1b[m] = X[m] + Z1b[m]
Y2[m] = X[m] + Z2[m]

(21)

where {Z1a[m]}m, {Z1b[m]}m and {Z2[m]}m are i.i.d. additive vector Gaussian noise pro-
cesses with zero means and covariance matrices N1, N1 and N2, respectively. Suppose that
the transmitter has two independent messages W0 and W1, where W0 is intended for both re-
ceivers 1b and 2 andW1 is intended for receiver 1a but needs to be kept secret from receiver 2.
The confidentiality of message W1 at receiver 2 is measured using the information-theoretic
criterion (3). See Figure 2(a) for an illustration of this communication scenario.

Note that both receivers 1a and 1b in the aligned MIMO Gaussian broadcast channel
(21) have the same noise covariance matrices as receiver 1 in the aligned MIMO Gaussian
broadcast channel (10), and receiver 2 in the aligned MIMO Gaussian broadcast channel (21)
has the same noise covariance matrix as receiver 2 in the aligned MIMO Gaussian broadcast
channel (10). Therefore, any achievable secrecy rate pair (R0, R1) for the aligned MIMO
Gaussian broadcast channel (21) can also be achieved by the same coding scheme for the
aligned MIMO Gaussian broadcast channel (10), and vice versa. Thus, the aligned MIMO
Gaussian broadcast channel (21) has the same secrecy capacity region as the aligned MIMO
Gaussian broadcast channel in (10) under the same power constraints.

Step 2: Construct an enhanced channel.

Let Ñ1 be a real symmetric matrix satisfying

1

2
(B∗ + Ñ1)

−1 =
1

2
(B∗ +N1)

−1 +M1. (22)

Following [9, Lemma 11], we have
0 ≺ Ñ1 � N1 (23)
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(b) The enhanced channel

Figure 2: Enhanced MIMO Gaussian broadcast channel with common and confidential mes-
sages.

and
∣

∣

∣

∣

∣

B∗ + Ñ1

Ñ1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

B∗ +N1

N1

∣

∣

∣

∣

. (24)

Moreover, substitute (22) into (19) and we have

1

2
(B∗ + Ñ1)

−1 =
µ1

2
(B∗ +N1)

−1 +
µ2 + 1

2
(B∗ +N2)

−1 +M2. (25)

Note that (B∗ +N1)
−1, (B∗ +N2)

−1 and M2 are all positive semidefinite so we have

1

2
(B∗ + Ñ1)

−1 �
1

2
(B∗ +N2)

−1

and hence
Ñ1 � N2. (26)
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Now consider the following enhanced MIMO Gaussian broadcast channel (see Figure 2(b)):

Ỹ1a[m] = X[m] + Z̃1a[m]
Y1b[m] = X[m] + Z1b[m]
Y2[m] = X[m] + Z2[m]

(27)

where {Z̃1a[m]}m, {Z1b[m]}m and {Z2[m]}m are i.i.d. additive vector Gaussian noise pro-
cesses with zero mean and covariance matrix Ñ1, N1 and N2, respectively. Note from (23)
that Ñ1 � N1. We conclude that the secrecy capacity region of the enhanced MIMO Gaus-
sian broadcast channel (27) is at least as large as the secrecy capacity region of the aligned
MIMO Gaussian broadcast channel (21) under the same power constraints.

Step 3: Bound from above the weighted secrecy sum-capacity of the enhanced

channel.

Note from (23) and (26) that

0 ≺ Ñ1 � {N1,N2}. (28)

Thus, in the enhanced MIMO Gaussian broadcast channel (27), the received signals Y1b[m]
and Y2[m] are (stochastically) degraded with respect to the received signal Y1a[m]. In the
following proposition, we shall consider the discrete memoryless case of the enhanced channel
(27) and provide a single-letter characterization of the secrecy capacity region.

Proposition 1. Consider a discrete memoryless broadcast channel with transition probability
p(ỹ1a, y1b, y2|x) and messages W0 (intended for both receivers 1b and 2) and W1 (intended
for receiver 1a but needs to be kept confidential from receiver 2). If both

X → Ỹ1a → Y1b and X → Ỹ1a → Y2

form Markov chains in their respective order, then the secrecy capacity region of this channel
is given by the set of nonnegative rate pairs (R0, R1) satisfying

R0 ≤ min [I(U ; Y1b), I(U ; Y2)]

R1 ≤ I(X ; Ỹ1a|U)− I(X ; Y2|U)
(29)

for some p(u, x, ỹ1a, y1b, y2) = p(u)p(x|u)p(ỹ1a, y1b, y2|x).

Proof. The achievability of (29) follows from a coding scheme that combines superposition
coding [11] and random binning [1]. The converse proof follows from the steps similar to
those in the converse proof in [2]. The details of the converse proof are provided in the
Appendix.

Remark 1. Prefix coding is no longer needed due to the preexisting Markov relation X →
Ỹ1a → Y2.

Next, to evaluate the single-letter expression (29) for the enhanced MIMO Gaussian
broadcast channel (27), we shall recall an extremal entropy inequality which is a special case
of [12, Corollary 4].
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Proposition 2 ([12]). Let Z̃1a, Z1b and Z2 be t-dimensional Gaussian vectors with zero
means and covariance matrices Ñ1, N1 and N2, respectively. Assume that Ñ1, N1 and N2

are ordered as in (28). Let S be a t × t positive definite matrix. If there exists a t × t real
symmetric matrix B∗ such that 0 � B∗ � S and satisfying

1
2
(B∗ + Ñ1)

−1 = µλ

2
(B∗ +N1)

−1 + µ(1−λ)
2

(B∗ +N2)
−1 +M2

(S−B∗)M2 = 0

for some positive semidefinite matrix M2 and real scalars µ ≥ 0 and 0 ≤ λ ≤ 1, then

h(X+Z̃1a|U)− µλh(X+ Z1b|U)− µ(1− λ)h(X+ Z2|U)

≤
1

2
log |2πe(B∗ + Ñ1)| −

µλ

2
log |2πe(B∗ +N1)| −

µ(1− λ)

2
log |2πe(B∗ +N2)|

for any (X, U) independent of (Z̃1a,Z1b,Z2) such that E[XXT] � S.

We are now ready to bound from above the weighted secrecy sum-capacity of the enhanced
channel (27). By Proposition 1, for any achievable secrecy rate pair (R0, R1) for the enhanced
channel (27) we have

R1 + (µ1 + µ2)R0 ≤ I(X; Ỹ1a|U)− I(X;Y2|U) + (µ1 + µ2)min [I(U ;Y1b), I(U ;Y2)]

≤ I(X; Ỹ1a|U)− I(X;Y2|U) + [µ1I(U ;Y1b) + µ2I(U ;Y2)]

= h(Z2)− h(Z̃1a) + µ1h(X+ Z1b) + µ2h(X+ Z2)

+
[

h(X+ Z̃1a|U)− µ1h(X+ Z1b|U)− (µ2 + 1)h(X+ Z2|U)
]

≤
1

2
log |2πeN2| −

1

2
log
∣

∣

∣
2πeÑ1

∣

∣

∣
+

2
∑

k=1

[µk

2
log |2πe(S+Nk)|

]

+
[

h(X+ Z̃1a|U)− µ1h(X+ Z1b|U)− (µ2 + 1)h(X+ Z2|U)
]

(30)

where the last inequality follows from the facts that

h(Z̃1a) =
1

2
log
∣

∣

∣
2πeÑ1

∣

∣

∣
,

h(Z2) =
1

2
log |2πeN2| ,

h(X+ Z1b) ≤
1

2
log |2πe(S+N1)| ,

and

h(X+ Z2) ≤
1

2
log |2πe(S+N2)| .

Let µ = µ1 + µ2 + 1 and λ = µ1/(µ1 + µ2 + 1). We obtain from (25) (and Proposition 2)

h(X+Z̃1a|U)− µ1h(X+ Z1b|U)− (µ2 + 1)h(X+ Z2|U)

≤
1

2
log
∣

∣

∣
2πe(B∗ + Ñ1)

∣

∣

∣
−

µ1

2
log |2πe(B∗ +N1)| −

µ2 + 1

2
log |2πe(B∗ +N2)| . (31)

11



Substituting (31) into (30), we have

R1 + (µ1 + µ2)R0 ≤
1

2
log |2πeN2| −

1

2
log
∣

∣

∣
2πeÑ1

∣

∣

∣
+

2
∑

k=1

[µk

2
log |2πe(S+Nk)|

]

+

[

1

2
log
∣

∣

∣
2πe(B∗ + Ñ1)

∣

∣

∣
−

µ1

2
log |2πe(B∗ +N1)|

−
µ2 + 1

2
log |2πe(B∗ +N2)|

]

=
1

2
log

∣

∣

∣

∣

∣

B∗ + Ñ1

Ñ1

∣

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

B∗ +N2

N2

∣

∣

∣

∣

+
2
∑

k=1

[

µk

2
log

∣

∣

∣

∣

S+Nk

B∗ +Nk

∣

∣

∣

∣

]

=
1

2
log

∣

∣

∣

∣

B∗ +N1

N1

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

B∗ +N2

N2

∣

∣

∣

∣

+
2
∑

k=1

[

µk

2
log

∣

∣

∣

∣

S+Nk

B∗ +Nk

∣

∣

∣

∣

]

(32)

for any achievable secrecy rate pair (R0, R1) for the enhanced MIMO Gaussian broadcast
channel (27). Here, the last equality follows from (24).

Finally, combining Steps 1 and 2, we conclude that any achievable secrecy rate pair for the
original aligned MIMO Gaussian broadcast channel (10) is also achievable for the enhanced
MIMO Gaussian broadcast channel (27). Thus, (32) holds for any achievable secrecy rate
pair (R0, R1) for the original aligned MIMO Gaussian broadcast channel (10). Since δ > 0,
this contradicts (20). Therefore, any achievable secrecy rate pair (R0, R1) for the aligned
MIMO Gaussian broadcast channel (10) must satisfy (11) for some 0 � B � S. This is the
desired converse result, which completes the proof of the theorem.

4 General MIMO Gaussian Broadcast Channel

In this section, we Theorem 1 by extending the secrecy capacity result of Theorem 4 on
the aligned MIMO Gaussian broadcast channel to the general MIMO broadcast channel.
As mentioned in Section 1, the achievability of the rate region (7) can be obtained from
the Csiszár-Körner region (4) with proper choice of input and auxiliary variables (U, V,X).
We therefore concentrate on proving the converse part of the theorem. Also as mentioned
previously, the case when both channel matrices H1 and H2 are square and invertible can
be easily transformed into an aligned MIMO Gaussian broadcast channel and thus has been
proved by Theorem 4. Our goal next is to approximate a general MIMO Gaussian broadcast
channel with an aligned MIMO Gaussian broadcast channel.

Without loss of generality, we assume that the channel matrices H1 and H2 are square
(but not necessarily invertible). If that is not the case, we can apply singular value decom-
position (SVD) to show that there exists an equivalent channel that has t× t square channel
matrices and the same secrecy capacity region as the original channel [9, Section V-B].

Using SVD, we can write the channel matrices as

Hk = UkΛkV
T
k , k = 1, 2

12



where Uk and Vk are t × t unitary matrices, and Λk is diagonal. We now define a new
MIMO Gaussian broadcast channel:

Yk[m] = HkX[m] + Zk[m] k = 1, 2 (33)

where
Hk = Uk(Λk + αIt)V

T
k

for some α > 0. Note that the MIMO Gaussian broadcast channel (33) does have invertible
channel matrices. By Theorem 4, the secrecy capacity, Cs(H1,H2,S), under the matrix
power constraint (6) is given by the set of all nonnegative rate pairs (R0, R1) satisfying

R0 ≤ min

(

1
2
log

∣

∣

∣

∣

H1SH
T

1 +Ir1

H1BH
T

1 +Ir1

∣

∣

∣

∣

, 1
2
log

∣

∣

∣

∣

H2SH
T

2 +Ir2

H2BH
T

2 +Ir2

∣

∣

∣

∣

)

R1 ≤ 1
2
log
∣

∣

∣
H1BH

T

1 + Ir1

∣

∣

∣
− 1

2
log
∣

∣

∣
H2BH

T

2 + Ir2

∣

∣

∣

for some 0 � B � S.
Further note that we can write Hk = DkHk where

Dk = UkΛk(Λk + αIt)
−1UT

k .

Since D2
k ≺ It, we have [12, Definition 1]

X → Yk → Yk (34)

forms a Markov chain for k = 1, 2. Therefore, both receivers 1 and 2 receive a better signal in
the new channel (33) than in the original channel (1). Note that receiver 2 also plays the role
of an eavesdropper for the confidential message W1. Therefore, unlike the private message
problem considered in [9], enhancing both receivers in the channel does not necessarily lead
to an increase in the secrecy capacity region. In the following, however, we show that

Cs(H1,H2,S) ⊆ Cs(H1,H2,S) +O(H2,H2,S) (35)

where

O(H2,H2,S) :=

{

(0, R1) : 0 ≤ R1 ≤
1

2
log
∣

∣

∣
H2SH

T

2 + It

∣

∣

∣
−

1

2
log
∣

∣H2SH
T
2 + It

∣

∣

}

Let (R0, R1) be an achievable secrecy rate pair for the MIMO Gaussian broadcast channel
(1). By the result of Csiszár and Körner [2], there exists a collection of input and auxiliary
variables (U, V,X) satisfying the Markov relation U → V → X such that

R0 ≤ min [I(U ;Y1), I(U ;Y2)]
R1 ≤ I(V ;Y1|U)− I(V ;Y2|U).

Also by the result of Csiszár and Körner [2], the secrecy rate pair (R0, R1) given by

R0 = min
[

I(U ;Y1), I(U ;Y2)
]

R1 = I(V ;Y1|U)− I(V ;Y2|U)

13



is achievable for the MIMO Gaussian broadcast channel (33). By the Markov relation (34),
we have

I(U ;Yk) ≤ I(U ;Yk),

I(V ;Yk|U) ≤ I(V ;Yk|U),

and
I(X;Yk|U, V ) ≤ I(X;Yk|U, V )

for k = 1, 2. Hence, we have

R0 − R0 ≤ min [I(U ;Y1), I(U ;Y2)]−min
[

I(U ;Y1), I(U ;Y2)
]

≤ 0 (36)

and

R1 −R1 ≤ I(V ;Y1|U)− I(V ;Y2|U)−
[

I(V ;Y1|U)− I(V ;Y2|U)
]

= I(V ;Y2|U)− I(V ;Y2|U)−
[

I(V ;Y1|U)− I(V ;Y1|U)
]

≤ I(V ;Y2|U)− I(V ;Y2|U)

= I(U, V ;Y2)− I(U, V ;Y2)−
[

I(U ;Y2)− I(U ;Y2)
]

≤ I(U, V ;Y2)− I(U, V ;Y2)

= I(X;Y2)− I(X;Y2)−
[

I(X;Y2|U, V )− I(X;Y2|U, V )
]

≤ I(X;Y2)− I(X;Y2)

= I(X;Y2|Y2) (37)

≤ max
0�B�S

(

1

2
log
∣

∣

∣
H2BH

T

2 + It

∣

∣

∣
−

1

2
log
∣

∣H2BHT
2 + It

∣

∣

)

(38)

=
1

2
log
∣

∣

∣
H2SH

T

2 + It

∣

∣

∣
−

1

2
log
∣

∣H2SH
T
2 + It

∣

∣ (39)

where (37) follows from the Markov relation (34), (38) follows from a well-known inequal-

ity due to Thomas [15, Lemma 1], and (39) follows from the fact that HT
2H2 ≺ H

T

2H2.
Combining (36) and (39) established the set relationship (35).

Finally, let α ↓ 0 on both sides of (35). Note that Hk → Hk for k = 1, 2, so Cs(H1,H2,S)
converges to the rate region (7) and O(H2,H2,S) → {(0, 0)}. We thus have proved the
desired converse result and completed the proof of the theorem.

5 Numerical Examples

In this section, we illustrate the results of Theorem 1 and Corollary 3 by numerical exam-
ples. Note that finding the boundaries of the secrecy capacity regions Cs(H1,H2,S) and
Cs(H1,H2, P ) as expressed in (7) and (9) involves solving nonconvex optimization programs
and hence is nontrivial. Following the work in [10], we can rewrite the expressions (7)
and (9) such that the optimization program for finding the boundaries of Cs(H1,H2,S) and
Cs(H1,H2, P ) become tractable for the case where each of the receivers is equipped with
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only one receive antenna, i.e., rk = 1 for k = 1, 2. As we limit the discussion in this section
to the single receive antenna case, the channel matrices Hk become the 1× t channel vectors
hk, k = 1, 2.

To compute the secrecy capacity region Cs(h1,h2,S), consider re-parameterizing (R0, R1)
using (α, γ0) as

R0 = 1
2
log(1 + αγ0)

R1 = 1
2
log(1 + α(1− γ0)).

(40)

Thus, to see whether a particular secrecy rate pair (R0, R1) is inside Cs(h1,h2,S) as expressed
in (7), one may check, instead, whether there exists a positive semidefinite matrix B which
satisfies the set of constraints:

h1(S−B)hT
1 ≥ αγ0(h1BhT

1 + 1)
h2(S−B)hT

2 ≥ αγ0(h2BhT
2 + 1)

h1BhT
1 − h2BhT

2 ≥ α(1− γ0)(h2BhT
2 + 1)

B � S.

(41)

Note that all the constraints in (41) are linear in B. Hence, whether there exists a feasible
solution can be examined using standard semidefinite programming techniques (i.e., CVX, a
package for specifying and solving convex programs [16]). Note from (40) that both R0 and
R1 increase as α increases. Therefore, for a fixed γ0, a boundary point of Cs(h1,h2,S) can
be found by searching over the maximum α such that the set of constraints in (41) admits
a feasible solution. Sweeping over γ0 ∈ [0, 1] gives all the boundary points of Cs(h1,h2,S).

Similarly, to compute the secrecy capacity region Cs(h1,h2, P ), we consider the set of
constraints for a pair of positive semidefinite matrices (B1,B2):

h1B2h
T
1 ≥ αγ0(h1B1h

T
1 + 1)

h2B2h
T
2 ≥ αγ0(h2B1h

T
2 + 1)

h1B1h
T
1 − h2B1h

T
2 ≥ α(1− γ0)(h2B1h

T
2 + 1)

Tr(B1 +B2) ≤ P.

(42)

Again, all the constraints in (42) are linear in (B1,B2) so whether there exists a feasible
solution can be examined using standard semidefinite programming techniques [16]. There-
fore, for a fixed γ0, a boundary point of Cs(h1,h2, P ) can be found by searching over the
maximum α such that the set of constraints in (42) admits a feasible solution. Sweeping
over γ0 ∈ [0, 1] gives all the boundary points of Cs(h1,h2, P ).

Figure 3 plots the secrecy capacity regions Cs(h1,h2,S) and Cs(h1,h2, P ) for the channel
vectors h1 = [2 0.4] and h2 = [0.4 1] and power constraints

S =

[

3.3333 1.2346
1.2346 1.6667

]

and P = Tr(S) = 5. For comparison, in Figure 3, we have also plotted the capacity regions
of the same MIMO Gaussian broadcast channel with a common message W0 intended for
both receiver 1 and 2 and a private message W1 intended only for receiver 1 (but without any

15



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

Cs(h1,h2,S)

C(h1,h2,S)

R
0
 (bits)

R
1 (

bi
ts

)

(a) The matrix power constraint
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(b) The average total power constraint

Figure 3: An illustration of the secrecy capacity regions of the MIMO Gaussian broadcast
channel with common and confidential messages.

secrecy constraints). This problem is known as the MIMO Gaussian broadcast channel with
degraded message sets [10, 17]. As shown in [10], the capacity region, C(h1,h2,S), under the
matrix power constraint (6) is given by2

C(h1,h2,S) = R1(h1,S) ∩ R2(h1,h2,S)

where R1(h1,S) is given by the nonnegative rate pairs (R0, R1) satisfying

R0 +R1 ≤
1

2
log(h1Sh

T
1 + 1),

and R2(h1,h2,S) is given by the nonnegative rate pairs (R0, R1) satisfying

R0 ≤ 1
2
log
(

h2Sh
T

2
+1

h2Bh
T

2
+1

)

R1 ≤ 1
2
log(h1BhT

1 + 1)

for some 0 � B � S. Similarly, the capacity region, C(h1,h2, P ), under the average total
power constraint (2) is given by

C(h1,h2, P ) = R1(h1, P ) ∩ R2(h1,h2, P )

where R1(h1, P ) is given by the nonnegative rate pairs (R0, R1) satisfying

R0 +R1 ≤
1

2
log(P‖h1‖

2 + 1),

2As shown in [10], this result holds for the general MIMO Gaussian broadcast channel, not just for the
single receive antenna case.
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and R2(h1,h2, P ) is given by the nonnegative rate pairs (R0, R1) satisfying

R0 ≤ 1
2
log
(

h2(B1+B2)hT

2
+1

h2B1h
T

2
+1

)

R1 ≤ 1
2
log(h1B1h

T
1 + 1)

for some B1 � 0, B2 � 0 and Tr(B1 + B2) ≤ P . The boundaries of the rate regions
R2(h1,h2,S) and R2(h1,h2, P ) can be computed similarly to those of Cs(h1,h2,S) and
Cs(h1,h2, P ), respectively. As expected, for any given common rateR0, the maximum secrecy
rate is less than (or equal to) the maximum private rate due to the additional secrecy
constraint at receiver 2.

A Proof of the Converse Part of Proposition 1

In this proof, we use Xj
i to denote the vector (X [i], X [i+ 1], . . . , X [j]), and when i = 1, we

further simplify the notation by using Xj to denote the vector (X [1], X [2], . . . , X [j]). We
also use Xi to denote X [i].

We consider a
(

2nR0, 2nR1, n
)

code with the average block error probability P
(n)
e . Then

we have the following joint probability distribution

p(w0, w1, x
n, ỹn1a, y

n
1b, y

n
2 ) = p(w0)p(w1)p(x

n|w0w1)

n
∏

i=1

[p(ỹ1ai|xi)p(y1biy2i|ỹ1ai)]. (43)

By Fano’s inequality, we have

H(W0|Y
n
1b) ≤ nR0P

(n)
e + 1 := nδ1n (44)

H(W0|Y
n
2 ) ≤ nR0P

(n)
e + 1 := nδ1n (45)

H(W1|Ỹ
n
1a) ≤ nR1P

(n)
e + 1 := nδ2n (46)

where δ1n, δ2n → 0 if P
(n)
e → 0.

We define the following auxiliary random variable:

Ui := (W0, Ỹ
i−1
1a ) (47)

which satisfies the Markov chain relationship

Ui → Xi → (Ỹ1ai, Y1bi, Y2i).
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We first bound R0 as follows.

nR0 = H(W0) ≤ I(W0; Y
n
1b) + nδ1n (48)

=
n
∑

i=1

I(W0; Y1bi|Y
i−1
1b ) + nδ1n

≤
n
∑

i=1

I(W0, Ỹ
i−1
1a ; Y1bi|Y

i−1
1b ) + nδ1n

≤
n
∑

i=1

I(W0, Ỹ
i−1
1a , Y i−1

1b ; Y1bi) + nδ1n

≤
n
∑

i=1

I(W0, Ỹ
i−1
1a ; Y1bi) + nδ1n (49)

≤
n
∑

i=1

I(Ui; Y1bi) + nδ1n (50)

where (48) follows from Fano’s inequality (44), and (49) follows from the degradedness
condition, i.e., (W0, Y1bi) → Ỹ i−1

1a → Y i−1
1b . We can follow the steps similar to those in

(48)-(50) with Y1b being replaced by Y2, and obtain the following bound

nR0 ≤
n
∑

i=1

I(Ui; Y2i) + nδ1n. (51)
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We now bound nR1 and obtain

nR1 = H(W1|Y
n
2 ) (52)

= H(W1|W0, Y
n
2 ) + I(W1;W0|Y

n
2 )

≤ H(W1|W0, Y
n
2 ) + nδ1n

= I(W1; Ỹ
n
1a|W0, Y

n
2 ) +H(W1|W0, Y

n
2 , Ỹ

n
1a) + nδ1n

≤ I(W1; Ỹ
n
1a|W0, Y

n
2 ) + nδ2n + nδ1n (53)

≤ I(W1, X
n; Ỹ n

1a|W0, Y
n
2 ) + nδ2n + nδ1n

= I(Xn; Ỹ n
1a|W0, Y

n
2 ) + nδ2n + nδ1n (54)

= H(Xn|W0, Y
n
2 )−H(Xn|W0, Y

n
2 , Ỹ

n
1a) + nδ2n + nδ1n

= H(Xn|W0, Y
n
2 )−H(Xn|W0, Ỹ

n
1a) + nδ2n + nδ1n (55)

= I(Xn; Ỹ n
1a|W0)−H(Xn; Y n

2 |W0) + nδ2n + nδ1n

=
n
∑

i=1

[

I(Xn; Ỹ1ai|Ỹ
i−1
1a ,W0)− I(Xn; Y2i|Y

i−1
2 ,W0)

]

+ nδ2n + nδ1n

=

n
∑

i=1

[

H(Ỹ1ai|Ỹ
i−1
1a ,W0)−H(Ỹ1ai|Ỹ

i−1
1a ,W0, X

n)

−H(Y2i|Y
i−1
2 ,W0) +H(Y2i|Y

i−1
2 ,W0, X

n)
]

+ nδ2n + nδ1n

≤
n
∑

i=1

[

H(Ỹ1ai|Ỹ
i−1
1a ,W0)−H(Ỹ1ai|Ỹ

i−1
1a ,W0, Xi)

−H(Y2i|Ỹ
i−1
1a , Y i−1

2 ,W0) +H(Y2i|Y
i−1
2 ,W0, Xi)

]

+ nδ2n + nδ1n (56)

≤
n
∑

i=1

[

H(Ỹ1ai|Ỹ
i−1
1a ,W0)−H(Ỹ1ai|Ỹ

i−1
1a ,W0, Xi)

−H(Y2i|Ỹ
i−1
1a ,W0) +H(Y2i|Ỹ

i−1
1a ,W0, Xi)

]

+ nδ2n + nδ1n (57)

=
n
∑

i=1

[

I(Xi; Ỹ1ai|Ui)− I(Xi; Y2i|Ui)
]

+ nδ2n + nδ1n (58)

where (52) follows from perfect secrecy condition, (53) follows from Fano’s inequality, (54)
follows from the Markov chain (W0,W1) → (Xn, Y n

2 ) → Ỹ n
1a, (55) follows from the degraded-

ness condition, i.e., (Xn,W0) → Ỹ n
1a → Y n

2 , (56) follows from the Markov chain relationship
(Ỹ i−1

1a ,W0, X
n) → Xi → Ỹ1ai and conditioning does not increase entropy, and (57) follows

from the Markov chain relationships (Y2i,W0) → Ỹ i−1
1a → Y i−1

2 and (Y i−1
2 , Ỹ i−1

1a ,W0) → Xi →
Y2i.

The single-letter outer bound can be obtained by letting J be a time-sharing variable
uniformly distributed over {1, . . . , n}, and define U = (UJ , J), X = XJ , Ỹ1a = Ỹ1aJ , Y1b =
Y1bJ , and Y2 = Y2J .
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