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Abstract—Ternary channels can be used to model the behavior
of some memory devices, where information is stored in three
different levels. In this paper, error correcting coding for a
ternary channel where some of the error transitions are not
allowed, is considered. The resulting channel is non-symmetric,
therefore classical linear codes are not optimal for this channel.
We define the maximum-likelihood (ML) decoding rule for
ternary codes over this channel and show that it is complex
to compute, since it depends on the channel error probability.
A simpler alternative decoding rule which depends only on code
properties, calleddA-decoding, is then proposed. It is shown that
dA-decoding and ML decoding are equivalent, i.e.,dA-decoding
is optimal, under certain conditions. AssumingdA-decoding, we
characterize the error correcting capabilities of ternary codes
over the non-symmetric ternary channel. We also derive an upper
bound and a constructive lower bound on the size of codes, given
the code length and the minimum distance. The results arising
from the constructive lower bound are then compared, for short
sizes, to optimal codes (in terms of code size) found by a clique-
based search. It is shown that the proposed construction method
gives good codes, and that in some cases the codes are optimal.

I. I NTRODUCTION

Error correcting coding plays a central role in any com-
munication system. Since the seminal paper by Shannon, the
main body of research on coding theory has been devoted
to binary linear codes. However, non-binary codes have also
demonstrated remarkable performance. Among them, Reed-
Solomon codes [1] are one of the most popular and widely
used coding schemes. Recently, the interest for non-binary
codes has been renewed with the rediscovery of low-density
parity-check (LDPC) codes [2]. Non-binary LDPC codes
have been shown to perform very close to capacity and to
outperform binary LDPC codes in some cases [3].

Most of the previous works on non-binary codes consider
a Galois Field whose orderq is a power of 2. On the other
hand, little attention has been devoted to non-binary codes
when q is not a power of two. Indeed, for conventional
channels, binary linear codes orq-ary codes withq being a
power of two show very good performance. Ternary codes for
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Fig. 1. Non-symmetric ternary channel.

the symmetric ternary channel using the ordinary Hamming
distance metric have been considered in the literature before.
See, for instance, [4, 5] and references therein. In this paper,
however, we consider error correcting coding for a ternary
non-conventional channel.

Recently, coding for flash memories has received some
attention. See, for instance, [6–8] and references therein.
Multilevel flash memory is a storage technology where the
charge level of any cell can be easily increased, but not easily
decreased. In fact, the only way to decrease the charge level
of a cell is to erase the whole block (i.e., set the charge on
all cells in a block to zero) and reprogram each cell. This is a
time-consuming process which consumes energy and reduces
the lifetime of the memory. The coding problem for flash
memories is to design modulation codes that maximize the
number of rewrites between two erasures.

In this paper, however, we look at a different memory
device coding problem, namely coding for electrically erasable
programmable read-only memories (EEPROMs), which are
semiconductor memories that retain their data contents when
power is off. They can be read and written to like standard
RAMs and are suitable for applications where storage of small
amounts of data is critical and periodic writing of new data
is required. Typical applications are radio frequency identifi-
cation tag, smart dust, or automotive applications including
car audio and multimedia, chassis and safety, and power
train. The communication channel underlying EEPROMs can
be suitably modeled as a binary symmetric channel (BSC).
Currently, very simple error correcting codes based on the
well-known Hamming codes combined with hard decoding
are implemented on-chip to correct single bit errors [9].
However, next generation devices demand for more stringent
requirements in terms of reliability as well as storage density.
A suitable modification of the physics of EEPROM memories
allows to store the information in three levels, thus higher
densities can be achieved. While transitions between adjacent

http://arxiv.org/abs/0911.1072v1
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Fig. 2. Ratio of symbols0 in the optimal input distributionp(x) that
maximizesI(X, Y ) of channelH as a function ofp.

levels are allowed, transitions from the highest level to the
lowest level and from the lowest level to the highest level
are physically not possible. A simple model for the resulting
channel is the discrete memoryless ternary channel with input
alphabetX = {0, 1, 2}, output alphabetY = {0, 1, 2}, and
probability transition matrix

p(y|x) =





1− p p/2 p/2
p/2 1− p/2 0
p/2 0 1− p/2



 (1)

wherep ≤ 2/3 and the entry in theith row and thejth column
denotes the conditional probability of receiving symbolj when
symbol i was transmitted. Notice that transitions1 → 2 and
2→ 1 are not allowed. As a result, the channel defined by (1)
is non-symmetric. The channel model is depicted in Fig. 1.

In this paper, we consider error correcting coding for the
non-symmetric ternary channel of Fig. 1. We define the
maximum-likelihood (ML) decoding rule for ternary codes
over this channel and show that its implementation is complex,
since it depends on the channel error probabilityp. As an
alternative, a simpler decoding rule which depends only on
code properties, calleddA-decoding, is proposed based on
a more appropriate distance measure. It is shown that under
certain conditions the proposed decoding rule is optimal, i.e., it
is equivalent to ML decoding. We then address error correcting
capabilities of ternary codes underdA-decoding. In particular,
we derive a sphere-packing bound to upper bound the size of
the codes assumingdA-decoding. We also derive a constructive
lower bound on the size of the codes given the code length
and its minimum distance, which proves the existence of good
codes. The construction method is based on binary block codes
as basic elements. The construction method is then generalized
to a non-symmetricq-ary channel. Finally, for ternary codes
of small sizes, we compare the constructive lower bounds to
optimal codes (in terms of code size) found by a clique-based
code search. It is shown that the binary code construction
method gives very good codes. Also, in some cases, optimal
ternary codes are obtained.

The remainder of the paper is organized as follows. In

Section II, we outline some of the notation used in this
paper. Then, in Section III, we address the computation of
the channel capacity. The ML decoding rule for ternary codes
over the non-symmetric channel is given in Section IV. Also,a
simpler decoding rule which depends only on code properties
is derived. Section V addresses the error correcting capabilities
of ternary codes over the non-symmetric ternary channel. In
Section VI, an upper bound on the size of codes is given,
and in Section VII a constructive lower bound is derived. An
encoding algorithm is given in Section VIII. The construction
method is generalized toq-ary non-symmetric channels in
Section IX, and in Section X we compare the values from the
constructive lower bound with the results of a clique-based
search. Finally, in Section XI, we draw some conclusions.

II. N OTATION

Throughout the paper, we use capital letters to denote
random variables, e.g.,X , and its calligraphic version,X , to
denote the alphabet ofX . Also, for convenience, we denote
the probability mass function byp(x) = Pr(X = x), x ∈ X ,
rather than bypX(x). We will write vectors in boldface letters,
and theith element of a vectora asai. The cardinality of a
set S, i.e., the number of elements inS is denoted by|S|.
Furthermore, aq-ary codeC of length n is a subset ofZn

q ,
q ≥ 2, whereZq = {0, . . . , q − 1} andZn

q is the set of alln-
tuples overZq. We will use subindexes to distinguish between
codes over alphabets of different orderq. For instance, a binary
code will be denoted byC2 and a ternary code byC3. A code
C with code lengthn containingM = |C| codewords and
minimum distanced shall be referred to as an[n,M, d] code.
The Hamming weight of a vectora is denoted bywa and the
Hamming distance between two vectorsa andb is denoted by
dH(a, b). For simplicity, we shall denote the non-symmetric
ternary channel of Fig. 1 byH.

III. C HANNEL CAPACITY

In this Section, we derive the capacity (C) for the channel
model of Fig. 1, defined as

C , max
p(x)

I(X,Y ) (2)

whereI(X,Y ) is the mutual information betweenX andY .
We denote bypx, x ∈ {0, 1, 2}, the probabilityPr(X = x).
Due to the symmetry between symbols1 and 2, we can
assume that the input distributionp(x) = 〈p0, p1, p2〉 which
maximizesI(X,Y ) will be such thatp1 = p2. Thus, the
distributions we are interested in are entirely characterized
by p0 and take the formp(x) =

〈

p0,
1−p0

2 , 1−p0

2

〉

. With this
constraint,I(X,Y ) can be written as

I(X,Y ) = h

(

p0 +
p

2
−

3

2
p0p

)

− p0h(p)− (1− p0)h
(p

2

)

+ (1 − p0)
(

1−
p

2

)

log3(2)

(3)

whereh(t) = −t log3(t) − (1 − t) log3(1 − t) is the ternary
entropy function.
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Fig. 3. Channel capacity of the ternary channel of Fig. 1 and of the symmetric
ternary channel as a function of the error probabilityp.

Let f be the functionf = ∂I(X,Y )
∂p0

, the partial derivative of
I(X,Y ) with respect top0. The zeros of the functionf are
the values ofp0 that maximizeI(X,Y ). We denote the values
of p0 which maximizeI(X,Y ) by p∗0. p∗0 can be written as

p∗0 =

3λ(p)

1+3λ(p) −
p
2

1− 3
2p

(4)

where

λ(p) =
h(p/2)− h(p)−

(

1− p
2

)

log3(2)

1− 3
2p

. (5)

The values ofp∗0 are given in Fig. 3 as a function ofp.
SinceH is not symmetric, the input distributionp(x) that
maximizes the mutual informationI(X,Y ) is not uniform.
For very low values ofp, the best input distribution tends to
the uniform distribution. However, for increasing values of p
the optimal distribution tends to favor the symbols1 and 2,
and symbol0 should be less used. There is a point after which
the best distribution isp(x) = 〈0, 1/2, 1/2〉 for some range of
values ofp. This implies that symbol0 should not be used
for this range of transition error probabilities. In that case, the
optimal codes are binary codes on symbols{1, 2}. For values
of p approaching one, the best distribution tends again to the
uniform distribution.

The channel capacity is depicted in Fig. 3 as a function
of p. For comparison purposes, the capacity of the symmetric
ternary channel is also given. Clearly, the capacity of the non-
symmetric ternary channel is higher.

IV. ML D ECODING AND dA-DECODING

In this Section, we give the ML decoding rule for the
ternary channelH of Fig. 1. We then propose an alternative
decoding rule, calleddA-decoding, which is much simpler to
compute, and show that both rules are equivalent under certain
conditions.

For later use, letC3 ⊂ Z
n
3 be a ternary code of lengthn.

Also, let x = (x1, . . . , xn) be a codeword inC3 which is
transmitted over channelH, andy = (y1, . . . , yn) ∈ Z

n
3 the

received noisy observation at the output of the channel. The
user data is assumed to be uniformly distributed, and thus also
the codewords.

Let u,v ∈ Z
n
3 be two ternary vectors, and define the subsets

S0, S1, S2, andS3 as

S0 = {i : ui = vi = 0}

S1 = {i : ui = vi 6= 0}

S2 = {i : ui 6= vi ∧ uivi = 0}

S3 = {i : ui 6= vi ∧ uivi 6= 0} .

(6)

We define the following distance measure between two ternary
vectorsu andv transmitted over channelH:

Definition 1: Let u = (u1, . . . , un) andv = (v1, . . . , vn)
be two vectors inZn

3 transmitted over channelH with error
probability p. The distancedML(u,v) betweenu and v is
defined as

dML(u,v) =















∞ if |S3| > 0
−|S0| log(1− p)
−|S1| log(1− p/2)
−|S2| log(p/2)

otherwise
(7)

Remark 1:Notice that with some abuse of language, we
call dML a distance measure. However, formally speakingdML

is not a distance measure, since the identity of indiscernibles
does not hold. Also, note that for symmetric channels the
distinction between subsetsS0 andS1 is not necessary, since
the conditional probabilitiesp(y|x) are independent ofx.
Similarly, the distinction between subsetsS2 and S3 is not
required for symmetric channels.

We can express the ML decoding rule

x̂ = argmax
x∈C3

p(y|x) (8)

in terms of the distancedML(x,y). By taking the logarithm
of the conditional probabilityp(y|x) we obtain:

− log(p(y|x)) =
n
∑

i=1

− log(p(yi|xi)) = dML(x,y) (9)

where the first equality is due to the assumption that the
channel is memoryless. Using (9), the ML decoding rule can
then be formulated as follows:

Given a received wordy, decode to the codewordx
that minimizes the distancedML(x,y).

Proof: It is sufficient to prove that for a giveny, whenx
varies among codewords,dML(x,y) increases for decreasing
values ofp(y|x). For dML(x,y) = ∞ there is at least one
position i such that the transitionxi → yi is not permitted;
thereforep(y|x) = 0. Now, we consider the case where
dML(x,y) <∞, in which case

p(y|x) = exp (−dML(x,y)) . (10)

Then, the result follows from the monotonicity of the expo-
nential function.

Notice thatdML depends on both the code and the channel
transition probabilityp. However, one would be interested in
a distance metric that depends only on the code, thus allowing
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Fig. 4. Maximum value ofp, pmax, for the equivalence betweendA-
decoding and ML decoding rules as a function of code lengthn.

for a simpler decoding rule. We define the following distance
measure between two ternary vectorsu andv:

Definition 2: Let u and v be two vectors inZn
3 . The

distancedA(u,v) betweenu andv is defined as

dA(u,v) =

n
∑

i=1

dA(ui, vi) (11)

where

dA(ui, vi) =







0 if ui = vi,
1 if ui 6= vi ∧ uivi = 0,
∞ if ui 6= vi ∧ uivi 6= 0.

(12)

Remark 2:Notice that in this case the identity of indis-
cernibles holds. However, the triangular inequality does not
hold anymore.

Using the distancedA(u,v) we can define the following
decoding rule which does not depend onp:

Given a received wordy, decode to the codewordx
that minimizes the distancedA(x,y).

In the remainder of the paper we shall refer to this decoding
rule asdA-decoding. We denote bytA the error correcting
capability of a codeC3 over the channelH underdA-decoding.
Note that dA-decoding does not necessarily minimize the
probability of error. However, we can prove the following
Theorem:

Theorem 1:Let C3 be a ternary code of lengthn, and
let H be the ternary channel of Fig. 1 with transition error
probability p. dA-decoding and ML decoding of codewords
transmitted overH are equivalent for all codesC3 of lengthn
if and only if the following inequality is satisfied:

p/2

1− p
<

(

1− p

1− p/2

)⌊n−1
2 ⌋

. (13)

Proof: See Appendix A.
Theorem 1 gives the range of values of the channel error

probability p such thatdA-decoding is equivalent to ML
decoding. We denote the maximum value ofp such thatdA-
decoding and ML decoding are equivalent bypmax. The value

pmax is depicted in Fig. 4 as a function of the code lengthn.
dA-decoding and ML decoding are equivalent for all values of
p under the curve. For small values ofn, dA-decoding and ML
decoding are equivalent even for high values ofp. The range of
p for which dA-decoding is optimal decreases with the block
lengthn. For instance, forn ≈ 100, dA-decoding is optimal
for p < 0.1. This is by far compatible with requirements of
memory devices. Therefore, for practical purposes, thedA-
decoding rule is optimal and can be considered instead of the
more complex ML decoding rule with no loss in performance.

V. ERROR CORRECTINGCAPABILITIES

In the following, we analyze the distance properties and the
error correcting capabilities of ternary codes over the ternary
channelH under thedA-decoding rule defined in the previous
Section. We require the definition of another distance measure:

Definition 3: Let u and v be two vectors inZn
3 . The

distancedB(u,v) betweenu andv is defined as

dB(u,v) = min
w∈Z

n
3

(dA(u,w) + dA(w,v)) . (14)

It is easy to check thatdB is such that for two ternary
symbolsui, vi ∈ Z3 the following equalities are satisfied:

dB(ui, vi) =







0 if ui = vi,
1 if ui 6= vi ∧ uivi = 0,
2 if ui 6= vi ∧ uivi 6= 0.

(15)

Remark 3:Notice that for two binary vectorsu and v,
dB(u,v) = dH(u,v).

We define the minimumdB-distance of a ternary code,
denoted bydB,min, as follows:

Definition 4: Let x andx̃ be two distinct codewords ofC3.
The minimumdB-distance of codeC3 is

dB,min = min
x,x̃∈C3

x 6=x̃

dB(x, x̃). (16)

Then, assumingdA-decoding, the error correcting capability
tA of a ternary code over the channelH is given by the
following Proposition:

Proposition 1: The error correcting capabilitytA of a code
C3 over the ternary channelH is

tA =

⌊

dB,min − 1

2

⌋

. (17)

Proof: See Appendix B.

VI. A SPHERE-PACKING BOUND

The main goal when designing codes is that of achieving the
largest possible minimum distance with the highest possible
code rate. In this Section, we give a simple upper bound on
the size of codes over the ternary channelH assumingdA-
decoding. In particular, we derive a sphere-packing bound.
However, its formulation is harder than for the case of sym-
metric channels. Since transitions1 → 2 and 2 → 1 are not
possible, the ternary space we deal with is not isotropic and
has the shape of a hypercube of dimensionn centered on
the all-zero vector (see Fig. 5 forn = 3). Therefore, spheres
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have smaller volumes if they are closer to the vertices of the
hypercube. The goal here is to find how many spheres of a
given radius can be packed in the ternary space. Denote by

S(u, r) = {v ∈ Z
n
3 : dB(u,v) ≤ r} (18)

the sphere with centeru and radiusr in Z
n
3 , and its volume

by |S(u, r)|. The following Proposition gives a lower bound
on the value of|S(u, r)|:

Proposition 2: Let S(u, r) be a sphere with centeru and
radiusr in Z

n
3 of volume |S(u, r)|. It follows that

|S(u, r)| ≥
r

∑

d=0

⌊d/2⌋
∑

e2=0

(

n

e2

)(

n− e2
d− 2e2

)

(19)

where the bound is attained by spheres centered on the vertices
of the hypercube.

Proof: See Appendix C.
It is now possible to formulate the sphere-packing bound

for our channel.
Theorem 2:Let C3 be a ternary code of lengthn and

minimum dB-distancedB,min over the ternary channelH. It
follows that

|C3| ≤
3n

tA
∑

d=0

⌊d/2⌋
∑

e2=0

(

n

e2

)(

n− e2
d− 2e2

)

. (20)

Proof: See Appendix D.
Note that the tightness of the upper bound in (20) worsens

with increasing values ofdB,min, since the tightness of the
lower bound on the volume of the spheres given by Proposi-
tion 2 also decays whendB,min increases.

VII. C ONSTRUCTIVE LOWER BOUND

In this Section, we give a constructive lower bound on the
size of codes over channelH and show the existence of good
codes. Given the code lengthn and the minimumdB-distance
dB,min, the goal is to construct an[n,M, dB,min] codeC3 for
the ternary channelH with reasonableM and error correcting
capabilitytA given by (17). The proposed construction method
uses binary codes as basic elements. In particular, we define

mappings that are applied to binary codes to generate a set of
codewords ofZn

3 that satisfies a given minimumdB-distance
dB,min. For clarity purposes, we first summarize the proposed
construction method, and then formalize it.

A. Sketch of the Construction Method

The proposed construction method is a two-step procedure.
First, we build a large amount of subspaces ofZ

n
3 such that

thedB-distance between any two subspaces is at leastdB,min
1.

To this aim, we consider an[n,M2, dB,min] binary codeC2 for
the BSC, such that each codewordx̄ ∈ C2 defines a subspace
Ex̄ of the ternary space.Ex̄ is the set of ternary words yielding
x̄ when projected to binary words (by changing their symbols
2 into symbol 1). Notice that the cardinality of subspacesEx̄
is |Ex̄| = 2wx̄ .

Example 1:Let x̄ = 1100. Then,

Ex̄ = {1100, 1200, 2100, 2200}

and |Ex̄| = 22 = 4.
The use of codes for the BSC comes from the fact that the

binary projection of the transmission chain(x ∈ Z
n
3 )→ H→

(y ∈ Z
n
3 ) is (x̄ ∈ Z

n
2 ) → H̄ → (ȳ ∈ Z

n
2 ), whereH̄ is the

BSC.
The second step of the code construction is then to select

words within every subspaceEx̄ that are distant from each
other by at leastdB,min. To this end, we considerEx̄ as a
binary spaceZwx̄

2 and use a[wx̄,M
wx̄

2 , dH,min] codeCwx̄

2 for
the binary erasure channel (BEC), with minimum Hamming
distancedH,min ≥

⌈

dB,min

2

⌉

.

Example 2:Let x̄ = 1100. Then,Ex̄ is mapped toZ2
2 by:

1100 → 00, 1200 → 01,

2100 → 10, 2200 → 11.

Now, if we chooseC22 = {00, 11}, then the selected ternary
codewords inEx̄ are1100 and2200.

Notice that ifx ∈ Ex̄ is transmitted, the received vectory
might not belong toEx̄. If the receiver is able to determine
that x ∈ Ex̄, i.e., ˆ̄x = x̄, we know the position of the zeros
of x. Therefore, only errors in the remaining positions (in the
form 1→ 0 and2→ 0) must be considered. These transitions
correspond to erasures in a BEC, henceCwx̄

2 must be a good
code for the BEC able to correct at leasttA errors. Notice that
for a BEC this corresponds todH,min ≥ tA + 1 =

⌈

dB,min

2

⌉

.

Example 3:Let x = 2200 (x̄ = 1100). Assume thaty =
0200 was received and that the receiver is able to correctly
estimateˆ̄x = 1100. If C22 = {00, 11} was chosen, then0200
is mapped to?1 where we use symbol? to denote an erasure.
Then, the decoder ofC22 = {00, 11} will decode ?1 to 11,
which corresponds to the ternary codeword2200 in E1100.

The set of ternary vectors selected within the subspacesEx̄
using codesCwx̄

2 forms the[n,M, dB,min] ternary codeC3.

1Here, the distance between two non-empty subsetsS1 andS2 of a metric
space is defined as the minimum distance between any two elements s1 ∈ S1

ands2 ∈ S2.
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B. Mappings and Their Topological Properties

Let u be a vector ofZn
2 and denote bywu its Hamming

weight. We denote bygu(j) (1 ≤ j ≤ wu) the jth non-zero
entry ofu. We define the mappingϕu such that:

ϕu : Z
wu

3 −→ Z
n
3

a 7−→
wu
∑

j=1

ajegu(j)
(21)

where(ei)1≤i≤n is the canonical basis ofZn
3 . We also callEu

the subspace ofZn
3 defined byEu = ϕu (Zwu

3 ).
Example 4:For u = 10011000, we have gu(1) = 1,

gu(2) = 4, gu(3) = 5, andϕu(201) = 20001000. In general,
the elements ofEu are the vectors of the forma00bc000 for
a, b, c ∈ Z3.

We define another mappingψ that transforms a word in
(Z2 ∪ {?})

n into a ternary word by mapping0 → 1, 1 → 2,
and?→ 0:

ψ : (Z2 ∪ {?})n −→ Z
n
3

b 7−→
n
∑

i=1

ψ(bi)ei
(22)

where
ψ(?) = 0, ψ(0) = 1, andψ(1) = 2. (23)

Example 5:For b = 11010?1?, we haveψ(11010?1?) =
22121020.

The mappings (21) and (22) have several topological prop-
erties regardingdB:

Proposition 3: Let u andv be two vectors inZn
2 , andψ

the mapping defined in (22). It follows that

dB(ψ(u), ψ(v)) = 2dB(u,v). (24)

Proof: SincedB(1, 2) = 2dB(0, 1) anddB(a, a) = 0 for
all a ∈ Z3, we have

dB(ψ(u), ψ(v)) =

n
∑

i=1

dB((ψ(u))i, (ψ(v))i)

=

n
∑

i=1

dB(ui + 1, vi + 1)

=
n
∑

i=1

2dB(ui, vi) = 2dB(u,v).

(25)

Proposition 4: Let u ∈ Z
n
2 . For ũ, ũ′ ∈ Z

wu

3 , the following
equality holds:

dB(ϕu(ũ), ϕu(ũ
′)) = dB(ũ, ũ

′). (26)

Proof:

dB(ϕu(ũ), ϕu(ũ
′)) = dB





wu
∑

j=1

ũjegu(j),

wu
∑

j=1

ũ′jegu(j)





=

wu
∑

j=1

dB(ũj , ũ
′
j) = dB(ũ, ũ

′).

(27)

Proposition 5: Let u,v ∈ Z
n
2 , and let ũ ∈ Z

wu

3 and ṽ ∈
Z
wv

3 , both with no zero entries. The following inequality holds:

dB(ϕu(ũ), ϕv(ṽ)) ≥ dB(u,v). (28)

Proof: Sinceũ and ṽ have no zero entries:

dB(ϕu(ũ), ϕv(ṽ)) ≥ dB(ϕu(1wu
), ϕv(1wv

)) = dB(u,v)
(29)

where1x denotes the all-one vector of lengthx.

C. Construction and Lower Bound

Let C2 be an [n,M2, dB,min] binary code with minimum
Hamming distancedH,min = dB,min and denote byAd its
weight enumerator (WE), the number of codewords of weight
d (0 ≤ d ≤ n). For all values ofd such thatAd 6= 0, let Cd2
be a[d,Md

2 , dH,min] binary code withdH,min ≥
⌈

dB,min

2

⌉

. We
consider the following ternary code:

C3 =
⋃

x̄∈C2

ϕx̄ (ψ(C
wx̄

2 )) . (30)

Proposition 6: The cardinality of codeC3 satisfies:

|C3| =
n
∑

d=0

Ad|C
d
2 |. (31)

Proof: Since for all x̄ ∈ C2, ϕx̄ and ψ are trivially
injective, it is enough to prove that the union

⋃

x̄∈C2

ϕx̄ (ψ(C
wx̄

2 ))

is disjoint.
For x̄, z̄ ∈ C2 such thatx̄ 6= z̄, let x ∈ ϕx̄(ψ(C

wx̄

2 )) and
z ∈ ϕz̄(ψ(C

wz̄

2 )). By Proposition 5,dB(x, z) ≥ dH(x̄, z̄) > 0,
and thusx 6= z.

Corollary 1:

|C3| =
n
∑

d=0

AdM
d
2 . (32)

Proposition 7: Let x and z be two distinct codewords of
C3. ThendB(x, z) ≥ dB,min.

Proof: See Appendix E.
Therefore, we have constructed an[n,M, dB,min] ternary

codeC3, whereM =
∑n

d=0AdM
d
2 (see Proposition 6 above),

starting from the binary codesC2 and{Cd2} (0 ≤ d ≤ n).
Example 6:We construct a[5, 21, 3] codeC3 for the chan-

nelH. First, we consider the binary codeC2 with parameters
[5, 4, 3] defined by

C2 = {00100, 11000, 00011, 11111}. (33)

Its weight enumerator has three non-zero values:A1 = 1,
A2 = 2, and A5 = 1. Therefore, we require three binary
codesC12 , C22 , andC52 of minimum Hamming distance at least
⌈

3
2

⌉

= 2. We chooseC12 = {0}, C22 = {00, 11}, andC52 the
code with generator matrix









0 0 0 1 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0









.

The codeC3 is obtained by applying (30). The construction
of C3 is represented in Fig. 6. For each codewordx̄ ∈ C2
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00100 11000 00011 11111C2

0 7→00100C12 00 7→11000
11 7→22000C22

00 7→00011
11 7→00022C22

00000 7→11111
00011 7→11122
00110 7→11221
00101 7→11212
01100 7→12211
01111 7→12222
01010 7→12121
01001 7→12112
11000 7→22111
11011 7→22122
11110 7→22221
11101 7→22212
10100 7→21211
10111 7→21222
10010 7→21121
10001 7→21112C52

Fig. 6. Example of the construction of a[5, 21, 3] ternary codeC3 for
channelH using binary codes as basic elements. The arrows ’7→’ represent
the application of the mappings (21) and (22) to the codewords of C2 and to
the codewords of the codesCwx̄

2
, respectively.

we obtain|Cwx̄

2 | codewords ofC3 throughϕx̄(ψ(C
wx̄

2 )). For
instance, for̄x = 11000 andC22 = {00, 11} we obtain|C22 | =
2 codewords ofC3 by applyingϕ11000 to ψ(z), wherez ∈
{00, 11} is one of the codewords ofC22 :

ψ(00) = 11, then ϕ11000(11) = 11000

ψ(11) = 22, then ϕ11000(22) = 22000.

In total, C3 hasA1|C12 |+A2|C22 |+A5|C52 | = 21 codewords.
Example 7:For a comparison with the[5, 21, 3] code from

Example 6 above, we tabulate here an optimal[5, 27, 3] code
C′3 found by computer search. The code is defined by

C′3 = {01112, 00200, 00121, 01001, 01022, 02110, 10010,

02221, 10102, 11111, 11120, 11221, 12020, 12101,

12202, 12211, 20020, 20012, 11212, 20111, 21100,

21211, 21202, 22001, 22210, 22102, 22222}.
(34)

The constructive method proposed above gives a lower
bound on the cardinality of ternary codes overH. We used this
method to construct codes using extended BCH (eBCH) codes
for C2 and codes obtained from the tables in [10, 11] for{Cd2}.
Note that the proposed construction method does not require
full knowledge of the binary codes used as basic elements
to compute the lower bound; givenn and dB,min, only the
knowledge of the weight enumeratorAd of C2 is required. On
the other hand, for codes{Cd2}, only the knowledge of the size
Md

2 is required. The results are shown in Table I. For givenn
anddB,min, we report in the table the code sizeM . The upper
bound on the size of codes overH of lengthn and minimum
dB-distancedB,min is also given in the table (numbers between
brackets).

The constructive lower bound is strongly dependent on the
binary codes selected as basic elements. Better bounds than
the ones in Table I can be obtained if we use, e.g., good non-
linear binary codes instead of eBCH codes. Furthermore, the

TABLE II
SIZE M OF TERNARY CODES OBTAINED USING BINARY CODES FROM[12]
AS BASIC ELEMENTS. FOR EACH LENGTHn AND SIZE M2 OF THE CODES
C2 , WE REPORT THE SIZEMmax (RESP. Mmin) OF THE LARGEST(RESP.

SMALLEST) TERNARY CODE OBTAINED, AND THE AVERAGE SIZEM̄ . THE

NUMBERS BETWEEN BRACKETS ARE THE NUMBER OF BINARY CODES OF

SIZEM2 .

n M2 Mmax Mmin M̄

7

9 (382) 120 95 106
10 (174) 124 99 112
11 (54) 129 107 118
12 (28) 133 115 124
13 (8) 137 125 133
14 (4) 141 133 137
15 (2) 145 141 143
16 (1) 149 149 149

8
18 (35094) 307 246 278
19 (431) 311 263 290
20 (10) 309 293 301

9

36 (38996) 835 677 776
37 (1464) 833 745 792
38 (116) 837 777 806
39 (6) 833 809 817
40 (2) 825 825 825

10 72 (1124) 2298 2088 2204
11 144 (13088) 6653 6195 6586

choice of the binary codeC2, even among codes of the same
length, minimum distance, and size, can have a great impact
on the size of the ternary code generated. We observed that the
overall WE of the code was crucial; maximizing the size ofC2
may be less important than using a code with a WE adapted to
the construction. As an example, for short block lengthsn we
report in Table II the best size (Mmax), the worst size (Mmin),
and the average size (̄M ) of the ternary codes obtained by
using (non-linear) binary codes of a given size and minimum
distance3 [12] for C2. The number of codes of a given sizeM2

is given between brackets in the table, and the largest tabulated
value forM2 for a givenn is the maximum possible, i.e., the
corresponding codes are optimal. For{Cd2} we used the codes
from [10, 11], since for minimum distance 2 they are optimal
(their size isMd

2 = 2d−1). For n = 11, there exist13088
codes of optimal size (M2 = 144). Among them, choosing a
code with a more suited WE can bring the size of the generated
ternary code fromMmin = 6195 toMmax = 6653. Forn = 9,
the best ternary codes are not obtained from binary codes for
C2 of optimal size (M2 = 40), but from a binary code of
sizeM2 = 38. In fact, starting from an optimal code yields
worse results than considering codes of smaller sizes, down
to M2 = 36.

Remark 4:With respect to the list of codes in [12] we also
considered the codes obtained by adding (modulo 2) the all-
one vector to every codeword of the code, since this changes
the WE of the code, which may have a great impact on our
construction.

VIII. V ARIABLE -LENGTH TO FIXED-LENGTH ENCODING

The construction method proposed in the previous Section
provides codes as sets of codewords. However, finding a
simple encoding from the set of messages (thought of as
binary words of fixed length) to the set of codewords is a
difficult problem. Notice that by construction the resulting
ternary codes are non-linear. While it is always possible to
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TABLE I
CONSTRUCTIVE LOWER BOUND OBTAINED USING EBCH CODES AS BASIC ELEMENTS AND UPPER BOUND(IN BRACKETS) ON THE SIZEM OF TERNARY

CODES FOR DIFFERENT VALUES OF THE BLOCK LENGTHn AND MINIMUM dB -DISTANCEdB,min .

n

dB,min ↓ 8 16 32 64 128

2 3281 (6561) 2.15E7 (4.30E7) 9.26E14 (1.85E15) 1.71E30 (3.43E30) 5.89E60 (1.17E61)
4 241 (729) 675681 (2.53E6) 1.44E13 (5.61E13) 1.34E28 (5.28E28) 2.30E58 (9.13E58)
6 5985 (281351) 2.84E10 (3.30E12) 6.55E24 (1.60E27) 2.81E54 (1.40E57)
8 17 (41) 2529 (45169) 5.33E8 (2.84E11) 5.14E22 (7.17E25) 1.09E52 (3.22E55)
10 4.72E19 (4.23E24) 1.29E48 (9.77E53)
12 2.74E6 (4.43E9) 3.12E18 (3.09E23) 5.17E45 (3.68E52)
14 3.13E15 (2.68E22) 2.12E42 (1.65E51)
16 33 (253) 133057 (1.37E8) 1.00E14 (2.68E21) 8.22E39 (8.61E49)
20 3.42E35 (3.37E47)
22 7.30E10 (5.40E18) 8.53E31 (2.47E46)
24 6.92E10 (8.26E17) 3.20E29 (1.98E45)
28 1.07E9 (2.44E16) 1.00E26 (1.61E43)
32 65 (7817) 2.68E8 (9.54E14) 4.25E23 (1.74E41)
44 1.84E19 (8.52E35)
48 1.15E18 (2.09E34)
56 1.12E15 (2.03E31)
64 129 (5.85E6) 8.79E12 (3.39E28)
128 257 (2.47E12)

enumerate the codewords, for large values ofM coding and
decoding become far too complex.

To circumvent this drawback, we can consider a variable-
rate encoding alternative. Consider the[n,M, dB,min] ternary
codeC3 constructed following the construction method of the
previous Section starting from the[n,M2, dB,min] binary code
C2 and the[d,Md

2 , dH,min] binary codes{Cd2} with dH,min ≥
⌈

dB,min

2

⌉

. Assume also that efficient encoders and decoders
are known for these binary codes over the BSC forC2 and
over the BEC for the codes{Cd2}. Let us define the message
m to be transmitted as an infinite sequence of bits. A simple
way to progressively encode pieces ofm by C3 is as follows:

1) Let u1 denote the prefix of lengthk bits of m.
2) Let x̄1 denote the codeword associated tou1 by C2, and

wx̄1
its Hamming weight.

3) We consider the[wx̄1
,M

wx̄1
2 , dH,min] binary codeC

wx̄1
2

with dH,min ≥ ⌈dB,min/2⌉. Let kwx̄1
denote the infor-

mation block length ofC
wx̄1
2 , and letu2 be the next

kwx̄1
bits of m and x̄2 the codeword associated tou2

by C
wx̄1
2 .

4) Transmitx = ϕx̄1
(ψ(x̄2)) overH and remove the first

k + kwx̄1
bits of m.

5) Go back to step1.

This encoder outputs a sequence of ternary words of length
n that are decoded after transmission overH by a decoder
that works with the following pattern:

1) Consider the first received block ofn ternary symbols,
y.

2) Let ȳ1 denote the word obtained by replacing every
occurrence of symbol2 by the symbol1 in y.

3) Let û1 denote the output of the decoder ofC2 corre-
sponding toȳ1 (the estimate ofu1), ˆ̄x1 the codeword
associated tôu1 by C2, andwˆ̄x1

the weight ofˆ̄x1.

4) Let ȳ2 = ψ−1
(

ϕ−1
ˆ̄x1

(ˆ̄x1 ∗ y)
)

, whereˆ̄x1 ∗y denotes the
element-wise product of the two vectors.

5) Let û2 denote the output of the decoderC
wˆ̄x1

2 corre-
sponding toȳ2.

6) Output the concatenation of̂u1 and û2, and go back to
step1 to decode the next block.

Proposition 8: On every packet sent using an
[n,M, dB,min] code C3, if less than tA =

⌊

dB,min−1
2

⌋

errors occur, the message is correctly decoded.
Proof: See Appendix F.

The first drawback of this effective transmission scheme
is inherent to the variable-length to fixed-length setting.For
finite messagesm, the length ofm will not always match the
required information block length of the code. In this situation,
some dummy symbols must be appended to the message prior
to encoding. While this is not especially a hard problem (a
simple solution is to append at the end of the message the
symbol 1, and as many symbols0 as needed to reach the
required size, which is easy to code and to decode), it suffers
from an efficiency loss that increases as the average number
of blocks sent per message decreases.

The second obvious drawback is that if more thantA errors
occur on the same block, it is very likely that the decoder of
C2 will decode on a codeword of wrong weight, which would
result in a shift of the rest of the decoded blocks. The risk of
losing such amount of data is affordable only in applications
in which any error in the whole message compromises its use,
such as the binaries of a software.

IX. EXTENSION TOq-ARY CHANNELS

In this Section, we extend the construction method of
Section VII toq-ary codes for theq-ary generalization of the
ternary channelH.

Definition 5: Forq ≥ 3, letHq be the channel characterized
by input alphabetX = {0, . . . , q − 1}, output alphabetY =
{0, . . . , q− 1}, and the set of conditional probabilitiesp(y|x)
such that forx ∈ X andy ∈ Y:

p(y|x) =















1− p if x = y = 0,
1− p

q−1 if x = y 6= 0,
p

q−1 if x 6= y andxy = 0,
0 otherwise.

(35)
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Let u be a vector ofZn
2 of Hamming weightwu. We extend

the mappings defined in Section VII to the newq-ary setting:

ϕu : Z
wu

q −→ Z
n
q

a 7−→
wu
∑

j=1

ajegu(j)
(36)

and
ψ : (Zq−1 ∪ {?})n −→ Z

n
q

b 7−→
n
∑

i=1

ψ(bi)ei
(37)

where

ψ(?) = 0 andψ(i) = i + 1, 0 < i ≤ q − 2. (38)

We callEq
u

the subspace ofZn
q defined byEq

u
= ϕu

(

Z
wu

q

)

.
These extended mappings maintain the topological properties
that they have for the ternary case regardingdB (see Sec-
tion VII-B). Notice that the definition of the distancesdA
anddB does not need to be changed to consider the distance
between vectors inZn

q .
Proposition 9: Let u and v be two vectors inZn

q−1. It
follows that

dB(ψ(u), ψ(v)) = 2dB(u,v). (39)

Proposition 10: Let u ∈ Z
n
2 . For ũ, ũ′ ∈ Z

wu

q , the follow-
ing equality holds:

dB(ϕu(ũ), ϕu(ũ
′)) = dB(ũ, ũ

′). (40)

Proposition 11: Let u,v ∈ Z
n
2 , and letũ ∈ Z

wu

q and ṽ ∈
Z
wv

q , both with no zero entries. The following inequality holds:

dB(ϕu(ũ), ϕv(ṽ)) ≥ dB(u,v). (41)

Propositions 9 to 11 can be proved in the same way as
Propositions 3 to 5 in Section VII-B, respectively.

The goal is now to construct, withn and minimumdB-
distancedB,min given, an [n,M, dB,min] codeCq for the q-
ary channelHq with reasonableM , starting from elementary
codes for the binary symmetric channel and for the(q−1)-ary
erasure channel as basic elements.

Let C2 be an [n,M2, dB,min] binary code with minimum
Hamming distancedH,min = dB,min and denote byAd its
weight enumerator. For alld such thatAd 6= 0, let Cdq−1 be a
[d,Md

q−1, dH,min] (q−1)-ary code withdH,min ≥ ⌈dB,min/2⌉.
We consider theq-ary codeCq obtained as follows:

Cq =
⋃

x̄∈C2

ϕx̄

(

ψ(Cwx̄

q−1)
)

. (42)

Proposition 12: The cardinality of codeCq satisfies:

|Cq| =
n
∑

d=0

Ad|C
d
q−1|. (43)

Corollary 2:

|Cq| =
n
∑

d=0

AdM
d
q−1. (44)

Proposition 13: Let x andz be two distinct codewords of
Cq. ThendB(x, z) ≥ dB,min.

The adaptation of the proofs of these propositions for the
ternary case to theq-ary case is straightforward, and details
are omitted for brevity.

Remark 5:The variable-length encoding process in Sec-
tion VIII for the ternary case can be directly adapted to the
q-ary case (q > 3) when q is of the form2ℓ + 1 with ℓ > 1
by reading symbols ofZq−1 as groups ofℓ bits of the binary
input. If q is of another form, this direct adaptation is still
possible but involves an efficiency loss (the number of bits
read is the highestℓ such that2ℓ +1 ≤ n, and some symbols
of Zq−1 are not used).

X. TERNARY CODE SEARCH

In this Section, for small values ofn, we compare the
constructive lower bound on the size of ternary codes in
Section VII with the results of a computer-based search for
good ternary codes. We have conducted both an unrestricted
code search for ternary codes and a search based on the code
construction from Section VII. As we will show below, in
both cases, the code search reduces to the problem of finding
(weighted) cliques in an undirected (weighted) graph, which
has been solved using state-of-the-art algorithms from graph
theory. Both exhaustive algorithms (when the code parameters
n anddB,min are small) and a greedy approximate algorithm
(for larger values of the code parameters) have been used.

A. Unrestricted Ternary Code Search

Let G = G(V,E, (dB,min, wmin, wmax)) denote an undi-
rected graph with vertex setV and edge setE, where each
vertex v(a) represents a ternary vectora ∈ Z

n
3 with Ham-

ming weight at leastwmin and at mostwmax. Furthermore,
(v(a), v(b)) ∈ E if and only if dB(a, b) ≥ dB,min. Then, an
[n,M ] ternary block code with codewords of Hamming weight
at leastwmin and at mostwmax and minimumdB-distance at
leastdB,min corresponds to a clique (i.e., a subgraph in which
all pairs of vertices are adjacent) of sizeM in the graphG,
and a maximum-size (or optimal)[n,M ] ternary block code
with codewords of Hamming weight at leastwmin and at most
wmax and minimumdB-distance at leastdB,min corresponds
to a maximum clique in the graphG. Thus, the code search
problem reduces to finding cliques in an undirected graph.

B. Restricted Ternary Code Search Based on the Binary Code
Construction

Let G = G(V,E, (dB,min, wmin, wmax)) denote an undi-
rected weighted graph with vertex setV and edge setE,
where each vertexv(a) represents a binary vectora ∈ Z

n
2

with Hamming weight at leastwmin and at mostwmax.
Furthermore, the weight of a vertexv(a) is the size of
an optimal binary code of lengthwa, where wa denotes
the Hamming weight ofa, and with minimum Hamming
distance at least

⌈

dB,min

2

⌉

. Also, (v(a), v(b)) ∈ E if and

only if dB(a, b) ≥ dB,min. Then, an[n,M ] restricted ternary
block code with codewords of Hamming weight at leastwmin

and at mostwmax and minimumdB-distance at leastdB,min

corresponds to a clique of weighted sizeM in the graphG,
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and a maximum-size (or optimal) restricted[n,M ] ternary
block code with codewords of Hamming weight at leastwmin

and at mostwmax and minimumdB-distance at leastdB,min

corresponds to a maximum weighted clique in the graphG.
Thus, the code search problem reduces to finding (weighted)
cliques in a graph.

Finding the weights of the vertices in the graph above is a
difficult problem, since they correspond to the sizes of optimal
binary codes. Obviously, we can find these weights by carrying
out several code searches in a similar fashion as described
above, where the vertex set of theith graph,i = 1, . . . , n,
corresponds to a set of binary vectors fromZi

2. Also, in theith

graph,(v(a), v(b)) ∈ E if and only if dH(a, b) ≥
⌈

dB,min

2

⌉

.

C. Exhaustive Search for Maximum Cliques

The problem of finding a maximum clique (or the equivalent
problem of finding a maximum stable set) in an arbitrary
undirected graph is one of the most important NP-hard
problems in discrete mathematics and theoretical computer
science. There are several efficient algorithms for searching for
maximum cliques in arbitrary graphs. See, for instance, [13–
15] and references therein. One standard approach for finding
a maximum clique is based on the branch-and-bound method
[16]. Most branch-and-bound algorithms use heuristic coloring
algorithms to find an upper bound on the size of a maximum
clique in the bound step. Sophisticated coloring algorithms can
reduce the search space significantly. For very dense graphs
(or very sparse graphs for the equivalent problem of finding a
maximum stable set), the branch-and-bound algorithm in [14]
is one of the fastest known algorithms, and we have used this
algorithm in combination with the algorithm from [13], which
is faster when the graph is not that dense, when searching for
ternary block codes.

Finally, we remark that most algorithms for finding a
maximum clique can be straightforwardly extended to finding
a maximum weighted clique.

D. Greedy Search for Maximum Cliques

There are numerous heuristic or approximate algorithms in
the literature for searching for maximum (weighted) cliques
in an arbitrary (weighted) undirected graph. See, for instance,
[17] and references therein. In this work, we have used a
very simple greedy algorithm, which is outlined below in
Algorithm 1.

The greedy algorithm in Algorithm 1 is a random algorithm,
since there could be several verticesv in line 8 that have
maximum degree. Thus, it is beneficial to run the algorithm
several times.

In the setting of a weighted graph, priority is given to the
vertex of maximum degree (as for the unweighted case), and
if there are several vertices with degree equal to the maximum
degree, priority is given (in a random fashion) to the vertices
with the highest weight.

E. Results From a Code Search

Whenn is not very small, the size of the unrestricted graph
described in Section X-A becomes very large. Thus, to reduce

Algorithm 1 Greedy Maximum Clique Search

1: /∗ Find an approximate maximum clique in an arbitrary
undirected graphG = G(V,E) ∗/

2: Construct the complement̄G = Ḡ(V, Ē) of G, where an
edgee ∈ Ē if and only if e 6∈ E.

3: Initialize the setṼ with the empty set.
4: while V 6= ∅ do
5: if ∃v ∈ V of degree at most1 then
6: select a random vertexv ∈ V of degree at most1

and add it toṼ , i.e., let Ṽ ← Ṽ ∪ {v}
7: else
8: select a random vertexv ∈ V of maximum degree

(> 1) and add it toṼ , i.e., let Ṽ ← Ṽ ∪ {v}.
9: end if

10: Removev and all its adjacent edges from̄G.
11: end while
12: The vertex setṼ is an independence set in the original

undirected graph̄G, and it follows thatṼ is a clique in
the original undirected graphG.

the size of the graph, we have, in some cases, restricted the
code search to constant-weight codes, i.e., to codes in which all
codewords have the same Hamming weight (wmin = wmax =
w, for somew), or to nearly constant-weight codes, where
wmin is larger than0 and/orwmax is less thann, andwmax−
wmin is small compared ton. Also, when the size of the graph
becomes too large, the greedy algorithm from Algorithm 1 is
used instead of a much more complex exhaustive algorithm.

In Table III, the sizeM of both restricted and unrestricted
ternary codes for different values of the block lengthn and the
minimum distancedB,min are presented. The numbers in the
parentheses are from an unrestricted search for ternary codes,
and should be compared to the numbers in front that are from
a restricted search, as described in Section X-B. The numbers
in bold are exact values (from an exhaustive search) for non-
constant-weight codes, i.e., withwmin = 0 andwmax = n.
As can be seen from the table, in some cases, the binary code
construction gives optimal ternary codes.

Notice that the output of this ternary code search is not
purely numerical and actually yields codes as sets of code-
words. While this may not always be a valuable information
(especially for codes with no known form of regularity), in
our case it provides binary codesC2 that yield good or even
optimal ternary codes. It also provides the familiesCd2 , but
only the size of these matter, so the problem of finding the
bestCd2 is the same as the one of finding the largest binary
codes of lengthd, for a given minimum distance.

XI. CONCLUSION

In this paper, coding for a non-symmetric ternary channel
where some transitions are not allowed was addressed. We
derived the ML decoding rule for this channel and showed
that it is complex to compute, since it depends on the error
transition probability p. We then proposed an alternative
decoding rule, calleddA-decoding, based on a more suitable
distance measure which does only depend on code properties.
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TABLE III
CONSTRUCTIVE LOWER BOUND ON THE SIZEM OF TERNARY CODES FOR DIFFERENT VALUES OF THE BLOCK LENGTHn AND MINIMUM dB -DISTANCE

dB,min WHEN USING A CONSTRUCTION BASED ON BINARY CODES COMBINED WITH A BINARY CODE SEARCH. THE NUMBERS IN THE PARENTHESES ARE
FROM AN UNRESTRICTED SEARCH FOR TERNARY CODES, AND THE NUMBERS IN BOLD ARE EXACT VALUES (EXHAUSTIVE SEARCH).

n

dB,min ↓ 5 6 7 8 9 10 11

2 122 (122) 365 (365) 1094 (1094) 3281 (3281) 9842 (9842) 29525 88574
3 21 (27) 54 (61) 149 (168) 337 (383) 937 (990) 2306 6581
4 17 (17) 38 (40) 92 (94) 241 (272) 545 (607) 1482 3476
5 5 (7) 9 (14) 17 (26) 25 (53) 50 (117) 106 277
6 9 (12) 17 (18) 21 (35) 46 (77) 82 188
7 9 (9) 17 (17) 21 (25) 41 77
8 17 (17) 21 (21) 41 73
9 7 (11) 13 25
10 13 25
11 13

We showed that under certain conditionsdA-decoding and
ML decoding rules are equivalent. Further, we analyzed error
correcting capabilities of ternary codes over this particular
channel underdA-decoding. We derived an upper bound and
a constructive lower bound on the code size, showing the
existence of good codes. Following the proposed constructive
method, we found good codes for several values ofn and
dB,min. The proposed construction method was also extended
to q-ary generalizations of the non-symmetric ternary channel.
Finally, the constructive lower bound was compared with
results from a clique-based search for optimal ternary codes
for small code lengths. It is shown that in some cases the
proposed construction method gives optimal codes.
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Sloane, “Bounds on mixed binary/ternary codes,”IEEE Trans. Inf. The-
ory, vol. 44, no. 1, pp. 140–161, Jan. 1998.

[6] V. Bohossian, A. Jiang, and J. Bruck, “Floating codes forjoint
information storage in write asymmetric memories,” inProc. IEEE
Int. Symp. Inf. Theory (ISIT), Nice, France, Jun. 2007, pp. 1166–1170.

[7] P. H. Siegel, E. Yaakobi, A. Vardy, and J. K. Wolf, “Multidimensional
flash codes,” inProc. 46th Annual Allerton Conf. Commun., Control,
and Computing, Monticello, IL, Sep. 2008, pp. 1166–1170.

[8] A. Jiang, M. Schwartz, and J. Bruck, “Error-correcting codes for rank
modulation,” inProc. IEEE Int. Symp. Inf. Theory (ISIT), Toronto, ON,
Jul. 2008, pp. 1736–1740.

[9] T. J. Ting, T. Chang, T. Lin, C. S. Jenq, and K. K. C. Naiff, “A 50-
ns CMOS 256k EEPROM,”IEEE J. Solid-St. Circ., vol. 23, no. 5, pp.
1164–1170, Oct. 1988.

[10] M. Grassl, “Searching for linear codes with large minimum distance,” in
Discovering Mathematics with Magma — Reducing the Abstractto the
Concrete, ser. Algorithms and Computation in Mathematics, W. Bosma
and J. Cannon, Eds. Heidelberg: Springer-Verlag, 2006, vol. 19, pp.
287–313.

[11] ——, “Bounds on the minimum distance of linear codes and quantum
codes,” 2007. [Online]. Available: http://www.codetables.de
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APPENDIX A
PROOF OFTHEOREM 1

We prove the direct implication and its converse.
• Direct implication:

We assume that (13) does not hold. Forn odd, we write
n = 2m+1. Consider the codeC = {0n,1n} consisting
of two codewords, the all-zero codeword and the all-
one codeword, and the received vectory = 0m+11m

consisting ofm + 1 zeros andm ones. Clearly,dA-
decoding decodesy to the all-zero codeword0n. On the
other hand,

p(y|0n) = (1− p)m+1(p/2)m ,

p(y|1n) = (p/2)m+1(1− p/2)m.
(45)

Using the hypothesis, we obtainp(y|0n) ≤ p(y|1n).
Therefore, ML decoding will not necessarily decode to
0n.
If n is even, we use the same argument considering the
same vectors with an extra zero appended at the end.

• Converse:
We consider a wordy ∈ Z

n
3 of weight wy. For a

given d and a codewordx such thatdA(x,y) = d, the
conditional probability thaty was received knowing that
x was transmitted is

p(y|x) =
n
∏

i=1

p(yi|xi)

=
(p

2

)d

(1− p)α0

(

1−
p

2

)n−d−α0

(46)

whereα0 = |{i : xi = yi = 0}|.
Because1−p ≤ 1− p

2 , if x varies withn, wy, andd fixed,
the probability (46) decreases for increasing values ofα0.
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Notice thatα0 satisfiesα0 ≤ min{n−d, n−wy}, where
n−d is the number of symbols that are equal inx andy,
andn−wy is the number of symbols0 in y. Therefore,
p(y|x), for givenn, wy, andd, can be lower-bounded by

p(y|x) ≥ B−(n,wy, d)

=

{

(

p
2

)d (
1− p

2

)wy−d
(1 − p)n−wy if d < wy,

(

p
2

)d
(1− p)n−d otherwise.

(47)

Similarly, sinceα0 ≥ max{0, n− wy − d}, for givenn,
wy, andd, p(y|x) can be upper-bounded by

p(y|x) ≤ B+(n,wy, d)

=

{

(

p
2

)d (
1− p

2

)wy

(1− p)n−wy−d if d < n− wy,
(

p
2

)d (
1− p

2

)n−d
otherwise.

(48)

We now prove that if (13) holds, thenB+(n,wy, d+1) <
B−(n,wy, d) for all n, wy, andd. Thus, we prove that
the closest codeword to a received vectory is always the
most likely one. For the sake of simplicity, we will denote
these two bounds byB+

d+1 = B+(n,wy, d + 1) and
B−

d = B−(n,wy, d), respectively. There are 4 subcases
depending on the value ofd compared towy and to
n− wy:

– For

{

d < wy

d+ 1 < n− wy

:

{

B−
d =

(

p
2

)d (

1− p
2

)wy−d
(1− p)n−wy ,

B+
d+1=

(

p
2

)d+1(
1− p

2

)wy

(1− p)n−d−wy−1 .

Thus,B+
d+1 < B−

d if and only if

p/2

1− p
<

(

1− p

1− p/2

)d

. (49)

To prove (49), it is sufficient to show thatd ≤
⌊

n−1
2

⌋

, because by hypothesis

p/2

1− p
<

(

1− p

1− p/2

)⌊n−1
2 ⌋

(50)

and because
1− p

1− p/2
≤ 1. (51)

In this subcase of the proof
{

d < n− wy − 1,
d < wy.

(52)

Therefore,2d < n− 1, andd ≤
⌊

n−1
2

⌋

.

– For

{

d < wy

d+ 1 ≥ n− wy

:

{

B−
d =

(

p
2

)d (

1− p
2

)wy−d
(1− p)n−wy ,

B+
d+1 =

(

p
2

)d+1(
1− p

2

)n−d−1
.

Thus,B+
d+1 < B−

d if and only if

p/2

1− p
<

(

1− p

1− p/2

)n−wy−1

. (53)

The proof of (53) is similar to the proof of (49): it is
sufficient to show thatn− wy − 1 ≤

⌊

n−1
2

⌋

. Since
in this subcase

{

n− wy ≤ d+ 1,
n− wy ≤ n− d− 1,

(54)

we have2(n−wy) ≤ n, andn−wy− 1 ≤ n
2 − 1 ≤

⌊

n−1
2

⌋

.

– For

{

d ≥ wy

d+ 1 < n− wy

:

{

B−
d =

(

p
2

)d
(1 − p)n−d ,

B+
d+1 =

(

p
2

)d+1(
1− p

2

)wy

(1 − p)n−d−wy−1 .

Thus,B+
d+1 < B−

d if and only if

p/2

1− p
<

(

1− p

1− p/2

)wy

. (55)

Again, to prove (55), we show thatwy ≤
⌊

n−1
2

⌋

.
Now,

{

wy ≤ n− d− 2,
wy ≤ d,

(56)

so we have2wy ≤ n− 2, andwy ≤
⌊

n−1
2

⌋

.

– For

{

d ≥ wy

d+ 1 ≥ n− wy

:

{

B−
d =

(

p
2

)d
(1− p)n−d ,

B+
d+1 =

(

p
2

)d+1(
1− p

2

)n−d−1
.

Thus,B+
d+1 < B−

d if and only if

p/2

1− p
<

(

1− p

1− p/2

)n−d−1

. (57)

Again, to prove (57), we show thatn − d − 1 ≤
⌊

n−1
2

⌋

. As in this subcase,
{

n− d ≤ wy + 1,
n− d ≤ n− wy,

(58)

we have2(n− d) ≤ n+1, andn− d− 1 ≤
⌊

n−1
2

⌋

.

APPENDIX B
PROOF OFPROPOSITION1

Let x be a codeword ofC3 transmitted over the ternary
channelH, and lety be the received vector at the output of
the channel. If a decoder implementing thedA-decoding rule
erroneously decodesy to x̂ 6= x, then

dA(x,y) ≥ dA(x̂,y). (59)

Using (59) and Definition 3,

2dA(x,y) ≥ dA(x,y) + dA(y, x̂) ≥ dB(x, x̂)

≥ dB,min > 2

⌊

dB,min − 1

2

⌋

.
(60)

Therefore, we successfullydA-decodey if

dA(x,y) ≤

⌊

dB,min − 1

2

⌋

, (61)
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wheredA(x,y) is the number of errors that occurred during
the transmission ofx.

Conversely, by Definitions 3 and 4, there exist two code-
wordsx and x̂ and a vectory ∈ Z

n
3 such that

dB(x, x̂) = dB,min

dB(x, x̂) = dA(x,y) + dA(y, x̂).
(62)

Therefore, ifdA(x,y) > tA, then

dA(x,y) ≥
dB,min

2
=
dA(x,y) + dA(y, x̂)

2
. (63)

Thus,dA(y, x̂) ≤ dA(x,y), and thedA-decoder may fail to
decodey to x.

APPENDIX C
PROOF OFPROPOSITION2

We first prove that the smallest spheres are the ones centered
on words of maximum weight (the vertices of the hypercube).

Let n andr be two integers. Forw ≤ n, let uw be a vector
of Zn

3 of weight w. The volume ofS(uw, r) is independent
from the choice ofuw. We denote it byV(n,w, r). Forn > 0,
we denote byu′

w the vector ofZn−1
3 obtained by removing

the last symbol ofuw:

V(n,w, r) = |{v ∈ Z
n
3 : dB(uw,v) ≤ r}|

= |{w0 : w ∈ Z
n−1
3 ∧ dB(u′

w,w) ≤ r}|
+|{w1 : w ∈ Z

n−1
3 ∧ dB(u′

w,w) ≤ r − 1}|
+|{w2 : w ∈ Z

n−1
3 ∧ dB(u′

w,w) ≤ r − 1}|
= V(n− 1, w, r) + 2V(n− 1, w, r − 1),

(64)
where forw ∈ Z

n−1
3 , w0 denotes the vector ofZn

3 obtained
by appending a0 at the end ofw.

Similarly, we show that forw ≤ n− 1,

V(n,w + 1, r) = V(n− 1, w, r) + V(n− 1, w, r − 1)
+V(n− 1, w, r − 2).

(65)
Therefore, ifn > 0 andw ≤ n− 1,

V(n,w, r) − V(n,w + 1, r)

= V(n− 1, w, r − 1)− V(n− 1, w, r − 2) ≥ 0.
(66)

From (66), it follows that the spheres of minimal volume are
the ones centered on words of maximum weight.

Now, we give an expression forV(n, n, r). We consider the
all-one vector1n. Let v ∈ Z

n
3 : v is in S(1n, r) if and only if

dB(1n,v) ≤ r. We denote byd this distance, and bye2 the
number of positionsi wherevi = 2. The number of positions
j where vj = 0 is d − 2e2. The number of vectorsv that
match a givend ande2 is therefore:

(

n

e2

)(

n− e2
d− 2e2

)

.

We conclude by summing over all possibled ande2:

|S(1n, r)| =

r
∑

d=0

⌊d/2⌋
∑

e2=0

(

n

e2

)(

n− e2
d− 2e2

)

. (67)

APPENDIX D
PROOF OFTHEOREM 2

Let x and x̃ be two codewords ofC3. SincedB(x, x̃) ≥
2tA + 1, the spheresS(x, tA) and S(x̃, tA) are non-
intersecting. This implies that

∣

∣

∣

∣

∣

⋃

x∈C3

S(x, tA)

∣

∣

∣

∣

∣

=
∑

x∈C3

|S(x, tA)|

≥ |C3|
tA
∑

d=0

⌊d/2⌋
∑

e2=0

(

n

e2

)(

n− e2
d− 2e2

)

.

(68)
Furthermore,

∣

∣

∣

∣

∣

⋃

x∈C3

S(x, tA)

∣

∣

∣

∣

∣

≤ |Zn
3 | = 3n. (69)

Therefore, we conclude that

|C3| ≤
3n

tA
∑

d=0

⌊d/2⌋
∑

e2=0

(

n

e2

)(

n− e2
d− 2e2

)

.

APPENDIX E
PROOF OFPROPOSITION7

Let x andz be two distinct codewords ofC3. We denote by
x̄ the codeword ofC2 and by x̄′ the codeword ofCwx̄

2 such
that x = ϕx̄(ψ(x̄

′)) (the unicity is proved in the proof of
Proposition 6). Likewise, we definēz and z̄′ with respect to
z. We consider two cases:

• Case x̄ = z̄: In this case,x̄′ and z̄′ are two different
codewords ofCwx̄

2 (otherwisex = z). Thus, by choice
of the codeCwx̄

2 it follows thatdH(x̄′, z̄′) ≥ ⌈dB,min/2⌉.
By Propositions 3 and 4,

dB(x, z) = dB(ϕx̄(ψ(x̄
′)), ϕz̄(ψ(z̄

′))) = dB(ψ(x̄
′), ψ(z̄′))

= 2dB(x̄
′, z̄′) ≥ 2⌈dB,min/2⌉ ≥ dB,min.

(70)

• Casex̄ 6= z̄: By choice ofC2 it follows that dB(x̄, z̄) ≥
dB,min. Now, by Proposition 5,

dB(x, z) = dB(ϕx̄(ψ(x̄
′)), ϕz̄(ψ(z̄

′))) ≥ dB(x̄, z̄)

= dB,min.
(71)

In both cases,dB(x, z) ≥ dB,min, which concludes the proof.

APPENDIX F
PROOF OFPROPOSITION8

We prove that, ifd(x,y) ≤ tA, theny is properly decoded,
i.e., û1 = u1 and û2 = u2.

• û1 = u1:

d(x̄1, ȳ1) =

n
∑

i=1

d(x̄1i, ȳ1i)

= |{i : x̄1i 6= ȳ1i}|

= |{i : xi 6= yi}|

= dB(x,y) ≤ tA

(72)
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Therefore, sincēx1 is a codeword ofC2 which has an error
correction capabilitytA, y is successfully decoded tôu1 = u1.

• û2 = u2:
Sinceû1 = u1, we haveˆ̄x1 = x̄1 andwˆ̄x1

= wx̄1
.

We prove that̄y2 can be decoded tou2 using the decoder
of codeC

wx̄1
2 . Consider a positionj, 1 ≤ j ≤ wx̄1

:

– Either ȳ2j = x̄2j ,
– Or ȳ2j 6= x̄2j and ȳ2j =?, which involves that̂̄x1 ∗

y has a0 at coordinatei = gˆ̄x1
(j) (the jth non-

zero entry of ˆ̄x1). Since ˆ̄x1i = 1, yi = 0. Also,
since û1 = u1, then ˆ̄x1 = x̄1, which implies that
gˆ̄x1

(j) = gx̄1
(j) = i. Thus,xi 6= 0 and xi 6= yi,

with yi = 0 since ȳ2j =?. By assumption there are
at mosttA coordinates such thatxi 6= yi. Therefore,
we conclude that|{j : ȳ2j =?}| ≤ tA,

– Notice that the casēy2j 6= x̄2j and ȳ2j 6=? is not
possible. Following the reasoning of the previous
case, it would involve thatx andy are different but
both non-zero at a given coordinate, which is not a
possible transition in our channelH.

Therefore, no error and at mosttA =
⌊

dB,min−1
2

⌋

erasures
differentiateȳ2 from x̄2. Since the minimum distance of
C
wx̄1
2 is such that

⌈

dB,min

2

⌉

> tA, its decoder can correct
these at mosttA erasures, and successfully estimateu2.


