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Abstract—Ternary channels can be used to model the behavior
of some memory devices, where information is stored in three
different levels. In this paper, error correcting coding for a
ternary channel where some of the error transitions are not X
allowed, is considered. The resulting channel is non-symrtr,
therefore classical linear codes are not optimal for this cannel.
We define the maximum-likelihood (ML) decoding rule for
ternary codes over this channel and show that it is complex
to compute, since it depends on the channel error probabilit
A simpler alternative decoding rule which depends only on cde
properties, calledda-decoding, is then proposed. It is shown that
da-decoding and ML decoding are equivalent, i.e.ds-decoding
is optimal, under certain conditions. Assumingda-decoding, we
characterize the error correcting capabilities of ternary codes the symmetric ternary channel using the ordinary Hamming

over the non-symmetric ternary channel. We also derive an uper  distance metric have been considered in the literaturerdefo
bound and a constructive lower bound on the size of codes, gn See, for instance, [4,5] and references therein. In thiepap

the code length and the minimum distance. The results arisip . . .
from the constructive lower bound are then compared, for shee hOWever, we consider error correcting coding for a ternary

sizes, to optimal codes (in terms of code size) found by a clig- Nnon-conventional channel.
based search. It is shown that the proposed construction miedd Recently, coding for flash memories has received some
gives good codes, and that in some cases the codes are optimal attention. See, for instance, [6-8] and references therein
Multilevel flash memory is a storage technology where the
charge level of any cell can be easily increased, but nolyeasi
decreased. In fact, the only way to decrease the charge level
Error correcting coding plays a central role in any comyf a cell is to erase the whole block (i.e., set the charge on
munication system. Since the seminal paper by Shannon, #iecells in a block to zero) and reprogram each cell. This is a
main body of research on coding theory has been devotgfle-consuming process which consumes energy and reduces
to binary linear codes. However, non-binary codes have algfe lifetime of the memory. The coding problem for flash
demonstrated remarkable performance. Among them, Re@gemories is to design modulation codes that maximize the
Solomon codes [1] are one of the most popular and widefymber of rewrites between two erasures.
used coding schemes. Recently, the interest for non-binaryn this paper, however, we look at a different memory
codes has been renewed with the rediscovery of low-densifyyice coding problem, namely coding for electrically atis
parity-check (LDPC) codes [2]. Non-binary LDPC codegrogrammable read-only memories (EEPROMSs), which are
have been shown to perform very close to capacity and de@miconductor memories that retain their data contentsiwhe
outperform binary LDPC codes in some cases [3]. power is off. They can be read and written to like standard
Most of the previous works on non-binary codes considgfaMs and are suitable for applications where storage oflsmal
a Galois Field whose order is a power of 2. On the other gmounts of data is critical and periodic writing of new data
hand, little attention has been devoted to non'binary Congr‘equired_ Typ|ca| app”cations are radio frequency tden
when ¢ is not a power of two. Indeed, for conventionatation tag, smart dust, or automotive applications incigdi
channels, binary linear codes gary codes withg being @ car audio and multimedia, chassis and safety, and power
power of two show very good performance. Ternary codes fghin. The communication channel underlying EEPROMSs can

o _ _ be suitably modeled as a binary symmetric channel (BSC).
The material in this paper was presented in part at the 20f@@nhation . .
Theory and Applications Workshop, La Jolla, CA, Februarp@0 Currently, very simple error correcting codes based on the
N. Bitouzé and A. Graell i Amat are with the Department ofwell-known Hamming codes combined with hard decoding
- 29238 Brest Cedex 3, France (e-mail: nicolas.bitouzes@oeh- . . .
bretagne.eu,alexandre.graell@telecom-bretagne.eu). RBsnes is with Howeverv neXF generation d_eV'F;_eS demand for more S_trmgem
the Selmer Center, Department of Informatics, Universitergen, N-5020 requirements in terms of reliability as well as storage dgns
Bergen, Norway (e-mail: eirik@ii.uib.no). This work wasrgally funded A syjtable modification of the physics of EEPROM memories

by a Marie Curie Intra-European Fellowship within the 6thrdhean . . . .
Community Framework Programme and by the Norwegian Rese2oaincil allows to store the information in three levels, thus higher

(NFR) under Grants 174982 and 183316. densities can be achieved. While transitions between adfac

Fig. 1. Non-symmetric ternary channel.
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Channel H — Section 1l, we outline some of the notation used in this
Symmetric Ternary Channel — paper. Then, in Section Ill, we address the computation of
o5 F 1 the channel capacity. The ML decoding rule for ternary codes
over the non-symmetric channel is given in Section IV. Akso,

04 f 1 simpler decoding rule which depends only on code properties
is derived. Section V addresses the error correcting chjedi

* S o) of ternary codes over the non-symmetric ternary channel. In
Section VI, an upper bound on the size of codes is given,
and in Section VIl a constructive lower bound is derived. An
encoding algorithm is given in Section VIII. The constrocti
method is generalized tg-ary non-symmetric channels in
Section IX, and in Section X we compare the values from the
constructive lower bound with the results of a clique-based

0 02 04 06 08 1 search. Finally, in Section XI, we draw some conclusions.
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Fig. 2. Ratio of symbols0 in the optimal input distributionp(z) that 1. NOTATION
maximizesI(X,Y) of channelX as a function ofp. .
Throughout the paper, we use capital letters to denote

random variables, e.gX, and its calligraphic versionY, to

levels are allowed, transitions from the highest level te ttflenote the alphabet of'. Also, for convenience, we denote
lowest level and from the lowest level to the highest levéie probability mass function by(z) = Pr(X = z),z € X,
are physically not possible. A simple model for the resg|tinrather than by x (x). We will write vectors in boldface letters,
channel is the discrete memoryless ternary channel withtingnd theith element of a vectoa asa;. The cardinality of a
alphabett = {0,1,2}, output alphabep) = {0,1,2}, and setS, i.e., the number of elements ifi is denoted by|S].

probability transition matrix Furthermore, g-ary codeC of lengthn is a subset ofZy,
q > 2, whereZ, = {0,...,q— 1} andZj is the set of all-
l1-p p/2 p/2 tuples overZ,. We will use subindexes to distinguish between
p(ylz) = p/2 1-p/2 0 (1) codes over alphabets of different ordefor instance, a binary
p/2 0 1—p/2 code will be denoted by, and a ternary code bgs;. A code

wherep < 2/3 and the entry in théth row and thejth column C with code lengthn containingM = |C| codewords and

denotes the conditional probability of receiving sympethen Minimum distance! shall be referred to as gn, M, d] code.
symboli was transmitted. Notice that transitiohs— 2 and 1 he Hamming weight of a vectar is denoted byw, and the

2 — 1 are not allowed. As a result, the channel defined by (fiamming distance between two vectarsindb is denoted by

is non-symmetric. The channel model is depicted in Fig. 1.91(a;b). For simplicity, we shall denote the non-symmetric
In this paper, we consider error correcting coding for thgrnary channel of Fig. 1 byt.

non-symmetric ternary channel of Fig. 1. We define the

maximume-likelihood (ML) decoding rule for ternary codes [1l. CHANNEL CAPACITY

over th_is channel and show that its implementati(_)n is corple In this Section, we derive the capacitg) for the channel

since |t_ depenc_zls on the chgnnel error_probabwtyAs an  odel of Fig. 1, defined as

alternative, a simpler decoding rule which depends only on

code properties, calleds-decoding, is proposed based on C 2 maxI(X,Y) (2)

a more appropriate distance measure. It is shown that under p(z)

certain conditions the proposed decoding rule is optinel, it wherel(X,Y) is the mutual information betweek andY.

is equivalent to ML decoding. We then address error comgctiwe denote byp,, = € {0,1,2}, the probabilityPr(X = x).

capabilities of ternary codes undég-decoding. In particular, Due to the symmetry between symbalsand 2, we can

we derive a sphere-packing bound to upper bound the sizeagbume that the input distributigr{z) = (po, p1,p2) Which

the codes assuming, -decoding. We also derive a constructivenaximizes I(X,Y) will be such thatp; = p,. Thus, the

lower bound on the size of the codes given the code lengifstributions we are interested in are entirely charapberi

and its minimum distance, which proves the existence of gopg p, and take the fornp(z) = (po, 1522, £=22). With this

codes. The construction method is based on binary blocksco@enstraint,/ (X, Y) can be written as

as basic elements. The construction method is then geredali

to a non-symmetrig-ary channel. Finally, for ternary codes I(X,)Y)=h (po + p_ §p0p) — poh(p) — (1 — po)h (2)

of small sizes, we compare the constructive lower bounds to 2 2 2

optimal codes (in terms of code size) found by a clique-based + (1 —po) (1 _ 3) logs(2)

code search. It is shown that the binary code construction 2 3)

method gives very good codes. Also, in some cases, optimal

ternary codes are obtained. whereh(t) = —tlogs(t) — (1 — t)logs(1 — ) is the ternary
The remainder of the paper is organized as follows. kntropy function.




"R ' ' ' Channel H — received noisy observation at the output of the channel. The
) Symmetric Ternary Channel —— user data is assumed to be uniformly distributed, and trags al
the codewords.
Letu, v € Z% be two ternary vectors, and define the subsets
So, S1, Sz, andSs as
Soz{ilui:’l}i:()}
04 A 82 = {Z DU # (3 A UV = O}
83 :{ZUZ¢1}Z/\UZ’01 #O}
We define the following distance measure between two ternary
vectorsu andv transmitted over channél:

08 1

06 [ ]

Channel Capacity

02 | s

oc = ” oE 08 1 Definition 1: Let u = (u1,...,u,) andv = (vi,...,v,)
P be two vectors inZj transmitted over channé{ with error
) ) ) _ probability p. The distancedpyy,(u, v) betweenu and v is
Fig. 3. Channel capacity of the ternary channel of Fig. 1 drtH@symmetric defined
ternary channel as a function of the error probabijity enned as
o0 if |83| >0
_ —|So|log(1 — p)
Let f be the functionf = 31(6);;’/), the partial derivative of dun(u,v) = —|S1|log(1 —p/2)  otherwise @)
I(X,Y) with respect top,. The zeros of the functiorf are —|S2|1og(p/2)

the values op, that maximizel (X,Y"). We denote the values

of po which maximizeI(X,Y) by pi. p; can be written as Remark 1:Notice that with some abuse of language, we

call dy, a distance measure. However, formally speaking
3 b is not a distance measure, since the identity of indisctasib

% X(p) .
Py = . 2 (4) does not hold. Also, note that for symmetric channels the

3
1-3p distinction between subsef andS; is not necessary, since

where the conditional probabilitiep(y|x) are independent of:.

h(p/2) — h(p) — (1 _ %) logs(2) Simillarly, the distinct_ion between subsefs and S; is not

Ap) = 3 . (5) required for symmetric channels.
2P We can express the ML decoding rule

The values ofpj are given in Fig. 3 as a function qf. R
Since H is not symmetric, the input distributiop(x) that x= a];gérclepr) (8)

maximizes the mutual informatiofi(X,Y") is not uniform. ) ) )
For very low values of, the best input distribution tends tol terms of the distanceyr.(x, y). By taking the logarithm
the uniform distribution. However, for increasing valudspo Of the conditional probability(y|x) we obtain:
the optimal distribution tends to favor the symbalsand 2, n
and symboD should be less used. There is a point after which —log(p(y[x)) = > —log(p(yi|z:)) = duw(x,y)  (9)
the best distribution ip(z) = (0,1/2,1/2) for some range of i=1
values ofp. This implies that symbol should not be used where the first equality is due to the assumption that the
for this range of transition error probabilities. In thaseathe channel is memoryless. Using (9), the ML decoding rule can
optimal codes are binary codes on symbpls2}. For values then be formulated as follows:
of p approaching one, the best distribution tends again to the
uniform distribution. Given a received worg, decode to the codeword
The channel capacity is depicted in Fig. 3 as a function that minimizes the distane, (x, y).
of p. For comparison purposes, the capacity of the symmetric Proof: It is sufficient to prove that for a givep, whenx

temary channel IS alrs]o glvlen. E_Ieﬁrly, the capacity of the-n varies among codeworddyr,(x,y) increases for decreasing
symmetric ternary channel is higher. values ofp(y|x). For dwur(x,y) = oo there is at least one
position: such that the transition; — y; is not permitted;

IV. ML D ECODING AND da-DECODING thereforep(y|x) = 0. Now, we consider the case where
In this Section, we give the ML decoding rule for thelmL(x,y) < oo, in which case
ternary channel of Fig. 1. We then propose an alternative
y H g prop p(ylx) = exp (—dmr(x,y)) - (10)

decoding rule, called,-decoding, which is much simpler to
compute, and show that both rules are equivalent undeiicertihen, the result follows from the monotonicity of the expo-

conditions. nential function. [ |
For later use, leC; C Z% be a ternary code of length. Notice thatd);, depends on both the code and the channel
Also, letx = (z1,...,z,) be a codeword irCs which is transition probabilityp. However, one would be interested in

transmitted over channé{, andy = (y1,...,y») € Z§ the a distance metric that depends only on the code, thus akpwin



Pmax IS depicted in Fig. 4 as a function of the code length
da-decoding and ML decoding are equivalent for all values of
s L | punder the curve. For small valuesmofda-decoding and ML
decoding are equivalent even for high valueg.ofhe range of

p for which da-decoding is optimal decreases with the block
lengthn. For instance, fom ~ 100, ds-decoding is optimal

for p < 0.1. This is by far compatible with requirements of
memory devices. Therefore, for practical purposes, dhe
decoding rule is optimal and can be considered instead of the
more complex ML decoding rule with no loss in performance.

pmax

V. ERRORCORRECTING CAPABILITIES

In the following, we analyze the distance properties and the
error correcting capabilities of ternary codes over theder
channelH under thed s -decoding rule defined in the previous
Fig. 4. Maximum value ofp, pmax, for the equivalence betweers- Section. We require the definition of another distance nreasu
decoding and ML decoding rules as a function of code length Definition 3: Let u and v be two vectors inZg. The
distancedg (u, v) betweenu andv is defined as

L L
0 50 100 150 200
n

for a simpler decoding rule. We define the following distance dg(u,v) = min (da(u,w) + da(w,v)). (14)
measure between two ternary vectorsandv: wELZ
Definition 2: Let u and v be two vectors inZy. The ) .
distanceda (u, v) betweenu andv is defined as It is easy to check thatlg is such that for two ternary
N symbolsu;, v; € Z3 the following equalities are satisfied:
da(u,v) = ZdA(ui,vi) (12) 0 if u; =y,
i=1 dB(ui,Ui) = 1 if u # v; N\ uv; =0, (15)
where 2 if u; Z#v; N uv; # 0.
0 if u; = v, Remark 3:Notice that for two binary vectorst and v,
da(ui,vi) =< 1 if w; # v A ww; =0, (12) dg(u,v) =du(u,v).
oo if w; # v A wv; # 0. We define the minimumip-distance of a ternary code,

Remark 2: Notice that in this case the identity of indis-d€noted _bydB=_rnin* as follows: o
cernibles holds. However, the triangular inequality does n_ Definition 4: Let x andx be two distinct codewords af.

hold anymore. The minimumdg-distance of cod€s is
Using the distancels (u,v) we can define the following dB.min = min dp(x,X). (16)
decoding rule which does not depend jn " xxx;f%

Given a received worg, decode to the codewoxd

that minimizes the distana (x, y). Then, assuming s -decoding, the error correcting capability

ta of a ternary code over the chann@l is given by the
In the remainder of the paper we shall refer to this decodifigllowing Proposition:

rule asd,-decoding. We denote by, the error correcting  Proposition 1: The error correcting capabilityy of a code

capability of a cod€s over the channe} underd,-decoding. Cs over the ternary channé{ is

Note that dj-decoding does not necessarily minimize the dg min — 1
probability of error. However, we can prove the following la = { - 9 J 17)
Theorem:
Theorem 1:Let Cs; be a ternary code of length, and Proof: See Appendix B. u
let # be the ternary channel of Fig. 1 with transition error
probability p. ds-decoding and ML decoding of codewords VI. A SPHEREPACKING BOUND
transmitted ovef{ are equivalent for all code®; of lengthn  The main goal when designing codes is that of achieving the
if and only if the following inequality is satisfied: largest possible minimum distance with the highest possibl
9 . E code rate. In this Section, we give a simple upper bound on
2 < ( p ) , (13) the size of codes over the ternary chanfelassumingd,-
L—p 1—p/2 decoding. In particular, we derive a sphere-packing bound.
Proof: See Appendix A. B However, its formulation is harder than for the case of sym-

Theorem 1 gives the range of values of the channel ermoetric channels. Since transitions— 2 and2 — 1 are not
probability p such thatdx-decoding is equivalent to ML possible, the ternary space we deal with is not isotropic and
decoding. We denote the maximum valuepo$uch thatd,- has the shape of a hypercube of dimensiortentered on
decoding and ML decoding are equivalentijy... The value the all-zero vector (see Fig. 5 far = 3). Therefore, spheres



221 201 211 mappings that are applied to binary codes to generate a set of

021/ 001/ 011/ codewords ofZ% that satisfies a given minimuwi-distance
Y . y dp min- FOr clarity purposes, we first summarize the proposed
121 101 111 construction method, and then formalize it.
210
010/ A. Sketch of the Construction Method
/ The proposed construction method is a two-step procedure.
120 100 110 First, we build a large amount of subspacesZgf such that
212 the dg-distance between any two subspaces is at lﬁﬁﬁﬁnl.
/ To this aim, we consider g, Ms, dp min] binary codeCs for
012 the BSC, such that each codewotd: C, defines a subspace
199 102 112/ &x of the ternary spacé; is the set of ternary words yielding

x when projected to binary words (by changing their symbols
2 into symbol 1). Notice that the cardinality of subspa€gs
iS |55c| = 2w;('

Example 1:Let x = 1100. Then,

Fig. 5. Z3 with distanceds.

have smaller volumes if they are closer to the vertices of the
hypercube. The goal here is to find how many spheres of a € = {1100, 1200, 2100, 2200}
given radius can be packed in the ternary space. Denote bé(nd|57| —92_ 4

S(u,r) = {vezy:dg(uv)<r} (18) The use of codes for the BSC comes from the fact that the

) o _ binary projection of the transmission chdin € Z3) — H —
the sphere with centar and radius- in Z%, and its volume y € Z)is (x € Z}) — H — (y € Z2), whereH is the

by |S(u,r)|. The following Proposition gives a lower boundggc.
on the value ofS(u,r)|:

Proposition 2: Let S(u,r) be a sphere with center and
radiusr in Z% of volume |S(u,r)|. It follows that

The second step of the code construction is then to select
words within every subspacé; that are distant from each
other by at leastlg min. TO this end, we considefx as a

r o Ld/2] n n— e binary spaceéZy* and use dws, My, dy min] cOdeCy™ for
|S(u,r)| > < >< > (19) the binary erasure channel (BEC), with minimum Hamming
d — 2es . dB,min
distancedy min > {TW
where the bound is attained by spheres centered on theegrtic Example 2:Let x = 1100. Then,&x is mapped tdZ3 by:
of the hypercube.
Proof: See Appendix C. [ ] 1100 — 00, 1200 — 01,

It is now possible to formulate the sphere-packing bound 2100 — 10, 2200 — 11.
for our channel.

Theorem 2:Let C; be a ternary code of length and Now, if we chooseCs = {00,11}, then the selected ternary
minimum dp-distancedp i, over the ternary channé{. It codewords infx are1100 and2200.

e
d=0 ea—0 N2

follows that Notice that ifx € & is transmitted, the received vectpr
3n might not belong tofx. If the receiver is able to determine
Gl < ta Ld/2] (20) thatx € &, ie., x = x, we know the position of the zeros
Z (”) (” 2 > of x. Therefore, only errors in the remaining positions (in the
d=0 eg—0 \€2 d = 2e; form 1 — 0 and2 — 0) must be considered. These transitions

correspond to erasures in a BEC, he@ée must be a good

Proof: See Appendlx D . " code for the BEC able to correct at leagterrors. Notice that
Note that the tightness of the upper bound in (20) WorsePs hi q P
with increasing values oflg min, Since the tightness of the or a BEC this corresponds @y min > ta +1 = 2 |

lower bound on the volume of the spheres given by Proposi-Example 3:Let x = 2200 (x = 1100). Assume thaty =

tion 2 also decays wheffis ;. increases. 0200 was received and that the receiver is able to correctly
’ estimatex = 1100. If C2 = {00,11} was chosen, thefi200
VIl. CONSTRUCTIVE LOWER BOUND is mapped t&’1 where we use symbdl to denote an erasure.

Then, the decoder of3 = {00,11} will decode?1 to 11,

In this Section, we give a constructive lower bound on ﬂ\ﬁhich corresponds to the ternary codewaad in &1
size of codes over chann@l and show the existence of good The set of ternary vectors selected within the subsp&ges

codes. Given the code lengthand the minimumig-distance . wa
dp,min, the goal is to construct am, M, dp min] codeCs for using code’y™ forms the[n, M, dp,min] ternary codeCs.

the ternary channél{ with reasonablél/ and error correctin
y 9 IHere, the distance between two non-empty suhSetand S» of a metric

Capab”.itytA given by (17)' The proposed ConStTUCtion memog)ace is defined as the minimum distance between any two eiemec S;
uses binary codes as basic elements. In particular, we definés; € S..



B. Mappings and Their Topological Properties

Proposition 5: Let u,v € Z3, and leta € Zy* andv €

Let u be a vector ofZ7 and denote byw, its Hamming Z3™ , both with no zero entries. The following inequality holds:

weight. We denote b)gu( 1) (1 < j < wy) the jth non-zero

entry of u. We define the mapping,, such that:

Yu: Z3v — %}g
- 21
a — > aeny @D

j=1

where(e;)1<i<n IS the canonical basis @4. We also callf,
the subspace df} defined by, = ¢u (Z5™).

Example 4:For u = 10011000, we haveg,(1) = 1,
gu(2) =4, gu(3) =5, and,(201) = 20001000. In general
the elements of,, are the vectors of the form00bc000 for
a,b,c € Zs.

We define another mapping that transforms a word in

(Zou{7})"

and? — 0:

Yo (Z2U{T})"

into a ternary word by mapping — 1, 1 — 2,

— Lj

b o— izﬂ(bz)e (22)
=1
where
¥(?) =0, ¥(0) =1, andy(1) = (23)

Example 5:For b = 11010717, we havey(11010717) =
22121020.

The mappings (21) and (22) have several topological prop-

erties regardingip:
Proposition 3: Let u and v be two vectors inZ%, andy
the mapping defined in (22). It follows that

dg(¥(u),¢(v)) = 2dp(u,v). (24)

Proof: Sincedp(1,2) = 2dp(0,1) anddg(a,a) = 0 for
all a € Z3, we have

)= ds((w(w)

= ZdB(ui+ 1,vi—|— 1)

dp (1 (), p(v) (¥(v))i)

(25)
1=1
= 2dp(ui, vi) = 2dp(u,v).
1=1
[ |
Proposition 4: Letu € Z3. Foru, o’ € Z3™, the following
equality holds:
dB (Sou(ﬁ)a Pu (ﬁ-l)) = dB (ﬁa ﬁl) (26)

Proof:

dB(@u(ﬁ)v pu(a ))

Wy
=dp E UjCgy(j E :u i€gu(j
j=1
Wy

= dp(i;, @) = dp (i1, &').
~ (27)

dp(pu(), ov(V)) = dp(u,v). (28)
Proof: Sinceu andv have no zero entries:
dp(pu(r), oyv(v)) > dB(‘Pu(lwu)v‘PV(lwv)) =dg(u,v)
(29)
wherel, denotes the all-one vector of length [ |

C. Construction and Lower Bound
Let C, be an[n, Ms,dp min] binary code with minimum

' Hamming distancely min = dp min and denote byA, its

weight enumerator (WE), the number of codewords of weight
d (0 < d < n). For all values ofd such thatA, # 0, let C§

be a[d, MY, dy min) binary code withdy i, > [dB “““W We
consider the following ternary code:
= |J ex (w(cy) (30)

x€Co

Proposition 6: The cardinality of cod€; satisfies:

Csl = AdlC3]. (31)
d=0

Proof: Since for allx € Ca, ¢x and ¢ are trivially

injective, it is enough to prove that the umU vz (P(C3%))

x€Ca
is disjoint.

For x,z € C, such thatx # z, let x € pz(¥(C5*)) and
z € ¢z(1(Cy#)). By Proposition 5dp(x,z) > du(%,2) > 0,
and thusx # z. [ ]
Corollary 1:

Csl = AgMy.
d=0
Proposition 7: Let x andz be two distinct codewords of
Cg. ThendB(x, Z) > dB,min-

Proof: See Appendix E. [ ]
Therefore, we have constructed an M, dp nin] ternary
codeCs, whereM = Y""_, A;MJ (see Proposition 6 above),

starting from the binary code® and {C{} (0 < d < n).

Example 6:We construct g5, 21, 3] codeC; for the chan-
nel . First, we consider the binary codig with parameters
[5,4, 3] defined by

C, = {00100, 11000, 00011, 11111}.

(32)

(33)

Its weight enumerator has three non-zero valués:= 1,
As = 2, and A5 = 1. Therefore, we require three binary
codesCi, €3, andC3 of minimum Hamming distance at least
[3] = 2. We chooseC} = {0}, C3 = {00,11}, andC3 the
code with generator matrix

0 0011
00110
0 1 100
110 0 O

The codeC; is obtained by applying (30). The construction
of C3 is represented in Fig. 6. For each codewards Cs



TABLE 1l
Cz[ 00100 11000 00011 11111 J SIZE M OF TERNARY CODES OBTAINED USING BINARY CODES FRON12]
< | — AS BASIC ELEMENTS FOR EACH LENGTHn AND SIZE Ms OF THE CODES
< C2, WE REPORT THE SIZEMmax (RESR My,in) OF THE LARGEST(RESR
Cl O*—)()()l()() OO*—) 11000 OOOOOH 11111 SMALLEST) TERNARY CODE OBTAINED, AND THE AVERAGE SIZEM. THE
2[ ]CQ 1122000 00011 — 11122 NUMBERS BETWEEN BRACKETS ARE THE NUMBER OF BINARY CODES OF
2 SIZE M>.
00110—11221 —
0010111212 n_ M | Minax  Mwmin M
00— 00011 0110012211 9 (382 120 95 106
C% 11—00022 01111+—12222 10 (174) 124 99 112
01010—12121 11 (54) 129 107 118
0100112112 12 (28) 133 115 124
11000529111 713 ) 137 125 133
11011 = 22122 14 (4 141 133 137
15 (2 145 141 143
11110+ 22221 16 (1) 149 149 149
11101+ 22212 18 (35094) | 307 246 278
1010021211 8 19 (431) 311 263 290
1011121222 20 (10) 309 293 301
1001021121 36 (38996) 835 677 776
5[ 1000121112 37 (1464) 833 745 792
2{ ) 9 38 (116) 837 777 806
39 (6) 833 809 817
Fig. 6. Example of the construction of [&,21, 3] ternary codeCs for 40 (2) 825 825 825
channel# using binary codes as basic elements. The arrewsrepresent 10 72 (1124)| 2298 2088 2204
the application of the mappings (21) and (22) to the codesvarfd’, and to 11  144(13088)| 6653 6195 6586

the codewords of the code®’™, respectively.

choice of the binary codé,, even among codes of the same
length, minimum distance, and size, can have a great impact
on the size of the ternary code generated. We observed that th
overall WE of the code was crucial; maximizing the siz&ef
may be less important than using a code with a WE adapted to
the construction. As an example, for short block lengthse
report in Table Il the best sizél{,,,.x), the worst size {/,in),

and the average sizé\{) of the ternary codes obtained by
using (non-linear) binary codes of a given size and minimum
distance3 [12] for C2. The number of codes of a given sizé,

is given between brackets in the table, and the largestatdall
value for M for a givenn is the maximum possible, i.e., the
corresponding codes are optimal. @} we used the codes
from [10, 11], since for minimum distance 2 they are optimal
(their size isMg = 29-1). Forn = 11, there exist13088
codes of optimal sizeM/> = 144). Among them, choosing a
code with a more suited WE can bring the size of the generated
(34) ternary code from\/,,;, = 6195 to My, = 6653. Forn =9,

The constructive method proposed above gives a lowigie best ternary codes are not obtained from binary codes for
bound on the cardinality of ternary codes o#rWe used this C2 ©f optimal size (1, = 40), but from a binary code of
method to construct codes using extended BCH (eBCH) codié® M2 = 38. In fact, starting from an optimal code yields
for C, and codes obtained from the tables in [10, 11]f6£}. worse results than considering codes of smaller sizes, down

Note that the proposed construction method does not rquﬁ’eM2 = 36.

full knowledge of the binary codes used as basic elementdXeémark 4:With respect to the list of codes in [12] we also
to compute the lower bound; givem and dg i, only the considered the codes obtained by adding (modulo 2) the all-

knowledge of the weight enumeratdy of C, is required. On ©N€ vector to every codeword of the code, since this changes

the other hand, for codg€4}, only the knowledge of the size the WE of the code, which may have a great impact on our

M¢ is required. The results are shown in Table I. For giuen cOnstruction.

anddg min, We report in the table the code sizé. The upper

bound on the size of codes ovarof lengthn and minimum ~ VIIl. VARIABLE-LENGTH TO FIXED-LENGTH ENCODING

dp-distancelp i IS also given in the table (numbers between The construction method proposed in the previous Section

brackets). provides codes as sets of codewords. However, finding a
The constructive lower bound is strongly dependent on tlsenple encoding from the set of messages (thought of as

binary codes selected as basic elements. Better bounds thismary words of fixed length) to the set of codewords is a

the ones in Table | can be obtained if we use, e.g., good natfifficult problem. Notice that by construction the resultin

linear binary codes instead of eBCH codes. Furthermore, ttegnary codes are non-linear. While it is always possible to

we obtain|C5*| codewords ofCs through oz (1 (C5™)). For
instance, forx = 11000 andC3 = {00, 11} we obtain|C3| =
2 codewords ofCs by applying¢i1000 t0 ¢¥(z), wherez €
{00, 11} is one of the codewords @;:
¥(00) = 11, then p11000(11) = 11000
¥(11) = 22, then ¢11000(22) = 22000
In total, C3 has A1 |C3| + A2|C3| + A5|C5| = 21 codewords.
Example 7:For a comparison with th§, 21, 3] code from
Example 6 above, we tabulate here an optifiia27, 3] code
C4 found by computer search. The code is defined by
¢, = {01112,00200,00121, 01001, 01022, 02110, 10010,
02221,10102, 11111, 11120, 11221, 12020, 12101,
12202, 12211, 20020, 20012, 11212, 20111, 21100,
21211, 21202, 22001, 22210, 22102, 22222}



TABLE |
CONSTRUCTIVE LOWER BOUND OBTAINED USING BCH CODES AS BASIC ELEMENTS AND UPPER BOUNDIN BRACKETS) ON THE SIZEM OF TERNARY
CODES FOR DIFFERENT VALUES OF THE BLOCK LENGTH, AND MINIMUM dp-DISTANCE AR min-

n

dsmnl 8 16 32 64 128

2 3281 (6561) 2.157  (4.30ET) 9.26E14 (1.85E15) 1.71E30 (3.43E30) 5.89E60 (1.17EG1)
4 241 (729) 675681  (2.5366) 1.44E13  (5.61E13) 1.34E28  (5.28E28) 2.30E58  (9.13E58)
6 5985  (281351) 2.84E10 (3.30E12) 6.55E24  (1.60E27) 2.81E54  (1.40E57)
8 17 (41) 2529  (45169)  5.33e8  (2.84E11) 5.14E22  (7.17E25) 1.09E52  (3.22E55)
10 472619 (4.23E24)  1.2048  (9.77E53)
12 2.74E6  (4.4389)  3.12E18  (3.09E23) 5.17E45  (3.68E52)
14 3.13E15  (2.68E22) 2.12E42  (1.65E51)
16 33 (253) 133057  (1.37E8)  1.00E14  (2.68E21) 8.22E39  (8.61E49)
20 3.42E35  (3.37EAT)
22 7.30E10  (5.40E18) 8.53E31  (2.4TE46)
24 6.92E10  (8.26E17) 3.20E29  (1.98E45)
28 1.07E9  (2.44E16) 1.00E26  (1.61E43)
32 65 (7817)  2.688  (9.54E14) 4.25E23  (1.74E4l)
44 1.84E19  (8.52E35)
48 115618 (2.09E34)
56 1.12E15  (2.03€31)
64 129 (5.85E6)  8.79E12  (3.39E28)
128 257 (2.47€12)

enumerate the codewords, for large valuesibfcoding and  6) Output the concatenation &f and s, and go back to

decoding become far too complex. step1 to decode the next block.

To circumvent this drawback, we can consider a variable- proposition 8: On  every packet sent wusing an
rate encoding alternative. _Con3|der the M, _dan] ternary [, M, dp min] code Cs, if less thanty = dB,n;n—lJ
codeC; constructed following the construction method of th%rrors occur, the message is correctly decode

previous Section starting from the, Ms, dg min| binary code
C> and the[d, M4, di min) binary codes{Cd} with dy yin >

dB,min
2

Proof: See Appendix F. [ ]
The first drawback of this effective transmission scheme
W- Assume also that efficient encoders and decodggsinherent to the variable-length to fixed-length settifgr
are known for these binary codes over the BSC dgrand finite messages, the length ofm will not always match the
over the BEC for the codefC4}. Let us define the messagerequired information block length of the code. In this sitom,
m to be transmitted as an infinite sequence of bits. A simpé®me dummy symbols must be appended to the message prior
way to progressively encode piecesrafby Cs is as follows: to encoding. While this is not especially a hard problem (a

1) Letu; denote the prefix of length bits of m. simple solution is to append at the end of the message the
2) Letx; denote the codeword associateditoby C», and symbol 1, and as many symbolé as needed to reach the
wg, its Hamming weight. required size, which is easy to code and to decode), it suffer

3) We consider thélUXUM;UiladH,min] binary codecg”*l from an efficiency loss that increases as the average number
With du min > [dB,min/2]. Let k,, denote the infor- of blocks sent per message decreases.
mation block length ofc, !, and letu, be the next ~ The second obvious drawback is that if more tigrerrors

k.. bits of m andx, the codeword associated tg, Occur on the same block, it is very likely that the decoder of
X1

by C;ﬂil_ C, will decode on a codeword of wrong weight, which would
4) Transmitx = ¢x, (1)(X2)) over# and remove the first result in a shift of the rest of the decoded blocks. The risk of

ki + ke, bits of m. losing such amount of data is affordable only in application
5) Go back to stefl. in which any error in the whole message compromises its use,

This encoder outputs a sequence of ternary words of Ien&t%Ch as the binaries of a software.

n that are decoded after transmission o¢erby a decoder
that works with the following pattern: IX. EXTENSION TOg-ARY CHANNELS

1) Consider the first received block efternary symbols, [N this Section, we extend the construction method of
y. Section VIl tog-ary codes for the-ary generalization of the

2) Let y, denote the word obtained by replacing ever{grnary channeh. .
occurrence of symbdt by the symboll in y. Definition 5: Forg > 3, let#, be the channel characterized

3) Let w1, denote the output of the decoder @f corre- DY input alphabett’ = {0,...,¢q — 1}, output alphabed’ =
sponding toy; (the estimate ofu;), x; the codeword {0.--.,¢—1}, and the set of conditional probabilitipgy|x)

associated tai; by C», andwy, the weight ofx;. such that forx € X andy € )
4) Letyy, =yt cp;ll (%1 * y)), wherex; *y denotes the 1—-p ifaz=y=0,

element-wise product of the two vectors. . (y|z) = 1- qfﬁ if z=y#0, (35)
5) Let Gy denote the output of the decod€s ™ corre- PyIx) = =1 if x4y andzy = 0,

sponding tays. 0 otherwise.



Let u be a vector oZ5 of Hamming weightv,,. We extend  The adaptation of the proofs of these propositions for the
the mappings defined in Section VIl to the nevary setting: ternary case to theg-ary case is straightforward, and details
are omitted for brevity.
wh Remark 5:The variable-length encoding process in Sec-
a — Zaﬂ'e-qu(i) (36) tion VIl for the ternary case can be directly adapted to the

J=1 g-ary case > 3) wheng is of the form2¢ + 1 with ¢ > 1

ou: Lyt — Ly

by reading symbols of,_; as groups of bits of the binary

and ) . T N
v: (ZgaU{?2H)" — zr input. If ¢ is of another form, this direct adaptation is still
n 37) possible but involves an efficiency loss (the number of bits
b — Z"/’(bi)ei read is the highest such that’ + 1 < n, and some symbols
i=1 of Z,—, are not used).
where

(38) X. TERNARY CODE SEARCH

P(?)=0andy(i)=i+1,0<i<g—2.
) In this Section, for small values of, we compare the
We call£¢ the subspace dt; defined byel = ¢u (Z{).  constructive lower bound on the size of ternary codes in
These extended mappings maintain the topological presertsection vii with the results of a computer-based search for

that they have for the ternary case regardifig (see Sec- 4404 ternary codes. We have conducted both an unrestricted
tion VII-B). Notice that the definition of the distancek,

anddg does not need to be changed to consider the distanggstrction from Section VII. As we will show below, in
between y_ector§ L2 . both cases, the code search reduces to the problem of finding
Proposition 9:Let u and v be two vectors inZ_;. It yeighted) cliques in an undirected (weighted) graph, Wwhic
follows that has been solved using state-of-the-art algorithms frorptgra
dp(¢(u),¥(v)) = 2dp(u, v). (39) theory. Both exhaustive algorithms (when the _code paraiete

n anddp min are small) and a greedy approximate algorithm

~ Proposition 10: Let u € Z3. Fora, u’ € Zg™, the follow- (for |arger values of the code parameters) have been used.
ing equality holds:

dp(pu(), pu () = dg(u,a’). (40) A. Unrestricted Ternary Code Search

Proposition 11:Let u,v € Z3, and leta € Z¥ andv e L&t G = G(V, E, (dpmin; Wmin, Wmax)) denote an undi-
7~ , both with no zero entries. The following inequality holdsfected graph with vertex séf and edge sefZ, where each
vertex v(a) represents a ternary vectar € Z% with Ham-

dp(pu(), pv(V)) > dp(u,v). (41)  ming weight at leastum, and at moStuy,.,. Furthermore,
Propositions 9 to 11 can be proved in the same way §§@);v(b)) € E if and only if dg(a,b) > dp,min- Then, an
Propositions 3 to 5 in Section VII-B, respectively. [n, M| ternary block code with codewords of Hamming weight

The goal is now to construct, with and minimumdg- &t [€aStwmin and at mostum,x and minimumds-distance at
distanceds min given, an(n, M, dp min] codeC, for the ¢- Ieastd_Bﬂmi,[1 corr_esponds toa clique (|.e_., a_subgraph in which
ary channelH,, with reasonablé\/, starting from elementary @l pairs of vertices are adjacent) of si2é in the graphG,

codes for the binary symmetric channel and for the 1)-ary @nd & maximum-size (or optimaly, M] ternary block code
erasure channel as basic elements. with codewords of Hamming weight at least,;,, and at most

Let C, be an[n, Ma, dp min] binary code with minimum @masx anq minimlljmdB.—distance at leasfp min cOrresponds
Hamming distancels min = dp min and denote byA, its to a maximum clique in the grapi. Thus, the code search
weight enumerator For all such thatd, # 0, letC?_, be a problem reduces to finding cliques in an undirected graph.

. 1 q_

[d, Mg_l, d/H,min] (q — 1)—ary code WithdH7min > (d/B,min/2~| .
We consider the-ary codeC, obtained as follows: B. Restricted Ternary Code Search Based on the Binary Code
c - U (1/)(6“’”‘ )) 42) Construction
o %€Ca = e Let G = G(V5E7 (dB,minawminawmax)) denote an undi-

rected weighted graph with vertex sét and edge sei,

Proposition 12: The cardinality of cod&, satisfies: where each vertex(a) represents a binary vecter € Z

n with Hamming weight at leastv,,;, and at mostwy,x.
Cql = AalC_y - (43)  Furthermore, the weight of a vertex(a) is the size of
d=0 an optimal binary code of lengtw,, where w, denotes
Corollary 2: the Hamming weight ofa, and with minimum Hamming
n distance at Ieasl{dB’—;““] Also, (v(a),v(b)) € E if and
ICql = ZAde_l- (44) only if dg(a,b) > dp min. Then, ann, M] restricted ternary
d=0

block code with codewords of Hamming weight at least;,,
Proposition 13: Let x andz be two distinct codewords of and at mostw.,,x and minimumdg-distance at leasis min
Cq. Thendp(x,z) > dp min- corresponds to a clique of weighted si&é in the graphG,

code search for ternary codes and a search based on the code
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and a maximum-size (or optimal) restrictéd, M| ternary Algorithm 1 Greedy Maximum Clique Search
block code with codewords of Hamming weight at least;,, 1: /x Find an approximate maximum clique in an arbitrary
and at mostwy,ax and minimumdg-distance at leasty min undirected grapltz = G(V, E) x/
corresponds to a maximum weighted clique in the gréph 2: Construct the complemerit = G(V, E) of G, where an
Thus, the code search problem reduces to finding (weighted) edgee € E if and only if e ¢ E.
cligues in a graph. 3: Initialize the setV with the empty set.
Finding the weights of the vertices in the graph above is a: while V' # () do
difficult problem, since they correspond to the sizes ofropti  5: if Jv € V' of degree at most then

binary codes. Obviously, we can find these weights by cagryiné: select a random vertex € V of degree at most
out several code searches in a similar fashion as described and add it toV/, i.e., letV « V U {v}
above, where the vertex set of thth graph,s = 1,...,n, 7. else
corresponds to a set of binary vectors fré@in Also, in theith & select a random vertex € V' of maximum degree
graph, (v(a), v(b)) € E if and only if dy(a, b) > [dBTm] (d>_f1) and add it toV/, i.e., letV « V U {v}.

90 endi
C. Exhaustive Search for Maximum Cliques 10 Removev and all its adjacent edges fro6G.

1: end while

2: The vertex sefi’ is an independence set in the original
undirected graptG, and it follows thatV is a clique in
the original undirected grap8'.

The problem of finding a maximum clique (or the equivaleni
problem of finding a maximum stable set) in an arbitrary
undirected graph is one of the most important NP-hard
problems in discrete mathematics and theoretical computer
science. There are several efficient algorithms for seagdior
maximum cliques in arbitrary graphs. See, for instance;-[13 ) ) )
15] and references therein. One standard approach for gindiRe size of the graph, we have, in some cases, restricted the
a maximum clique is based on the branch-and-bound mettfefle search to constant-weight codes, i.e., to codes irtwatflic
[16]. Most branch-and-bound algorithms use heuristiciiogp codewords have the same Hamming weight, = wmax =
algorithms to find an upper bound on the size of a maximutty for somew), or to nearly constant-weight codes, where
clique in the bound step. Sophisticated coloring algoritfan “min 1S larger tharD and/orwmax is less tham, andwmax —
reduce the search space significantly. For very dense graphsn iS Small compared ta. Also, when the size of the graph
(or very sparse graphs for the equivalent problem of findingﬁgﬁomeS too large, the greedy algorithm from Algorithm 1 is
maximum stable set), the branch-and-bound algorithm if [Msed instead of a much more complex exhaustive algorithm.
is one of the fastest known algorithms, and we have used thidn Table 111, the sizeM of both restricted and unrestricted
algorithm in combination with the algorithm from [13], whic ternary codes for different values of the block lengtand the

is faster when the graph is not that dense, when searching fgpimum distancels i, are presented. The numbers in the
ternary block codes. parentheses are from an unrestricted search for ternasscod

Finally, we remark that most algorithms for finding z&nd should be compared to the numbers in front that are from
maximum C”que can be Straightforward|y extended to f|nd|r@ restricted Search, as described in Section X-B. The nwsnber

a maximum weighted clique. in bold are exact values (from an exhaustive search) for non-
constant-weight codes, i.e., witlh,;, = 0 and wy.x = n.
D. Greedy Search for Maximum Cliques As can be seen from the table, in some cases, the binary code

There are numerous heuristic or approximate algorithms(frolnsmmtion gives optimal termary codes.
Notice that the output of this ternary code search is not

the literature for searching for maximum (weighted) cligue . :
g (weig ) clig urely numerical and actually yields codes as sets of code-

in an arbitrary (weighted) undirected graph. See, for imsta P

[17] and references therein. In this work, we have usedvxg)rds. While this may not always be a valuable information

very simple greedy algorithm, which is outiined below in(especially for codes with no known form of regularity), in
Algorithm 1 ' our case it provides binary codé€s that yield good or even

The greedy algorithm in Algorithm 1 is a random algorithm(,)ptImal ternary codes. It also provides the familig5 but

since there could be several verticesin line 8 that have only the size of these matier, so the problem of finding the

d - ;
maximum degree. Thus, it is beneficial to run the algorithlkﬁesw2 s the same as Fhe one .Of fmdmg the largest binary
several times. codes of lengthi, for a given minimum distance.

In the setting of a weighted graph, priority is given to the
vertex of maximum degree (as for the unweighted case), and X1. CONCLUSION
if there are several vertices with degree equal to the maximu |y this paper, coding for a non-symmetric ternary channel
degree, priority is given (in a random fashion) to the vesic here some transitions are not allowed was addressed. We

with the highest weight. derived the ML decoding rule for this channel and showed
that it is complex to compute, since it depends on the error
E. Results From a Code Search transition probability p. We then proposed an alternative

Whenn is not very small, the size of the unrestricted graptiecoding rule, called/ s-decoding, based on a more suitable
described in Section X-A becomes very large. Thus, to redudistance measure which does only depend on code properties.
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TABLE Il
CONSTRUCTIVE LOWER BOUND ON THE SIZEM OF TERNARY CODES FOR DIFFERENT VALUES OF THE BLOCK LENGTH AND MINIMUM dp-DISTANCE
dB,min WHEN USING A CONSTRUCTION BASED ON BINARY CODES COMBINED WIf A BINARY CODE SEARCH. THE NUMBERS IN THE PARENTHESES ARE
FROM AN UNRESTRICTED SEARCH FOR TERNARY CODE®ND THE NUMBERS IN BOLD ARE EXACT VALUES (EXHAUSTIVE SEARCH).

n
dBmind 5 6 7 ] 9 10 11
2 122 (122) 365 (365) 1094 (1094) 3281 (3281) 9842 (9842) 29525 88574
3 21 (27) 54 (61) 149 (168) 337 (383) 937  (990) 2306 6581
4 17 (17) 38 (40) 92  (94) 241 (272) 545 (607) 1482 3476
5 5 16 9 (14 17 (26) 25  (53) 50  (117) 106 277
6 9 (12) 17 (18) 21 (35 46  (77) 82 188
7 9 (9) 17 (A7) 21 (25) a1 77
8 17 @17 21 (21) a1 73
9 7 (11) 13 25
10 13 25
11 13

We showed that under certain conditiodg-decoding and [13] P. R. J.Ostergrd, “A fast algorithm for the maximum clique prable
ML decoding rules are equivalent. Further, we analyzedrerrg  Discrete Appl. Math.vol. 120, pp. 197-207, 2002.

. 9 biliti ? d hi y e [14] E. C. Sewell, “A branch and bound algorithm for the sligbinumber
correcting capabilities 0 ternary codes over this palgicu of a sparse graphINFORMS J. Computvol. 10, no. 4, pp. 438-447,
channel underis-decoding. We derived an upper bound and  199s8.

a constructive lower bound on the code size, showing tH&] R. Carraghan and P. M. Pardalos, “An exact algorithmitiermaximum

. . . clique problem,"Op. Research Lettersol. 9, no. 6, pp. 375-382, 1990.
existence of good codes. Following the proposed CC'nsqm"c;t[m] A. H. Land and A. G. Doig, “An automatic method of solvinijscrete

method, we found good codes for several values:adnd programming problems,Econometrica vol. 28, no. 3, pp. 497-520,
dB,min. The proposed construction method was also exten ed] 1960. PP . .
to o- lizati f the non-svmmetric ternarv chann 7] T. Etzion and P. R. JOstergard, “Greedy and heuristic algorithms for
O_q ary generaliza |0n_s 0 y y ) codes and colorings/EEE Trans. Inf. Theoryvol. 44, no. 1, pp. 382—
Finally, the constructive lower bound was compared with 388, Jan. 1998.

results from a clique-based search for optimal ternary sode

for small code lengths. It is shown that in some cases the APPENDIXA
proposed construction method gives optimal codes. PROOF OFTHEOREM 1
We prove the direct implication and its converse.
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Notice thatay satisfiesy < min{n —d, n—wy}, where
n—d is the number of symbols that are equakimndy,
andn — wy is the number of symbol8 in y. Therefore,
p(y|x), for givenn, w,,, andd, can be lower-bounded by

p(Y|X) > B_(nv Wy, d)

(B)"(1-8)" " (1 —p) if d < wy,
otherwise.

B { ()" (1—p)n—
(47)

Similarly, sinceay > max{0,n — wy — d}, for givenn,
wy, andd, p(y|x) can be upper-bounded by

p(y[x) < B*(n, wy,d)

B
(8)" (1~ By otherwise.
(48)

We now prove that if (13) holds, theB* (n, wy, d+1) <

B~ (n,wy,d) for all n, wy, andd. Thus, we prove that
the closest codeword to a received vegtas always the
most likely one. For the sake of simplicity, we will denote
these two bounds by3) , = B*(n,wy,d + 1) and
B, = B~ (n,wy,d), respectively. There are 4 subcases
depending on the value af compared tow, and to

n — Wy

d < wy
B FOI‘{ d+1 < n—wy ’

_ d wy —d n—w
{ By =(8) (1=5)"" 1 —pyy
B;—+1 _ (g) (1 _ g) y (1 _p)nfdfwyfl .
Thus,B;,, < By if and only if
p/2 1-p\*
1—p<<1—p/2> ' “o

To prove (49), it is sufficient to show that <
| 21|, because by hypothesis

n—1

p/2<<1_p>bJ (50)

1—p 1—p/2
and because 1= p .
st (51)
In this subcase of the proof
d n— -1
oot e

Therefore2d < n — 1, andd < | 251 ].
d < w- .
B For{ d+1 > n—wy
{ By =(8)" (1-9" " @a-pr,

d n—d—
B;H:(g) H(l_ g) ' :

Thus,B;,, < By if and only if

p/2 1—p \" !
1—p " (1—p/2) ' 5=

12

The proof of (53) is similar to the proof of (49): it is
sufficient to show that — wy — 1 < | 271 |. Since
in this subcase

n—wy < d+1,
{n—wy < n—d-1, (54)

we have2(n —wy) <n, andn —wy —1< § -1 <

EYN
_ =z Wy .
For d+1 < n—wy °
{B; =(®)* a-pr,

B, =(8)"(1-8)" (1 —pr eyt

Thus, B;,, < By if and only if
p/2 1-p \"™
. 55
1—p<<1—p/2> (%9

Again, to prove (55), we show that, < [Z2:1].
Now,

{wy < n—-d-2, (56)

wy < d,

so we havew, <n — 2, andwy, < |251].
d > Wy .
_For{ d+l > n—wy
_ d .
{Bd =(3)" a-p,

d+1 n—d—1
Bia=(5)" (1-%) :

Thus, B, , < By if and only if
n—d—1
p/2 1-p
. 57
1—p<<1—p/2) D

Again, to prove (57), we show that —d — 1 <
| 251 ]. As in this subcase,

{n—d < wy +1, (58)

n—d < n—uwy,

we have2(n —d) <n+1,andn—d—1< |21 ].

APPENDIXB
PROOF OFPROPOSITION1

Let x be a codeword of’; transmitted over the ternary
channel#, and lety be the received vector at the output of
the channel. If a decoder implementing tig-decoding rule
erroneously decodes to x # x, then

da(x,y) > da(%,y). (59)

Using (59) and Definition 3,

2dA(X,y) > dA(vaq +'dA(y3ﬁ) > dB(X7X)

in — 60
2dBm>2{MJ. (60)
’ 2
Therefore, we successfullys -decodey if
d mhl_'l
daxy) < |Bme=t (61)
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whereda (x,y) is the number of errors that occurred during APPENDIXD

the transmission ok. PROOF OFTHEOREM 2
Conversel;i, by Definitions 3 annd 4, there exist two code- | ot x and % be two codewords 0. Sincedp(x,%) >
wordsx andx and a vectoly € Z5 such that 2 + 1, the spheresS(x,tx) and S(X,ta) are non-
dp(x,X) = dB min intersecting. This implies that
dnx,%) = da(x,y) + da(y.%) ©2
BIX,X) = aA(X,y AlY,X).
_ U Sxta)| = D ISk ta)l
Therefore, ifda(x,y) > ta, then xeCs cCs
d da(x,y) + da(y, %) L B n— e
B,min _ CA\X, A\Y> > .
da(x,y) = B = . . (63) > 16l 2, <2> <d . 26)
—0 ea—
Thus, da(y, %) < da(x,y), and thed,-decoder may fail to (68)
decodey to x. Furthermore,
APPENDIXC U Sx,ta)] < 123 = 3™ (69)
x€C3

PROOF OFPROPOSITION2

We first prove that the smallest spheres are the ones Cente‘p&arefore, we conclude that

on words of maximum weight (the vertices of the hypercube). Ca| 3" _
Let n andr be two integers. Fow < n, letu,, be a vector N N e

of Z% of weightw. The volume ofS(u,,,r) is independent Z Z ( ) (d 9 )

from the choice oi1,,. We denote it by (n, w,r). Forn > 0, d=0 es=0 2 e

we denote byu/, the vector ofzg_l obtained by removing

the last symbol ofu,: APPENDIXE

PROOF OFPROPOSITION7
V(n,w,r) = {veZs: dg(uy,,v) <7}

= w0 :weZy ' Adp(u,w) <7}
+{wl : weZi ! Adp(u, w) <7 —1}]
+{w2 : we Zi Adp(ul,,w) <r — 1}
= V(n—-1Lwr)+2V(n—1w,r—1),

Let x andz be two distinct codewords @f;. We denote by
x the codeword of’; and byx’ the codeword ofC5* such
that x = ¢x(¥(X’)) (the unicity is proved in the proof of
Proposition 6). Likewise, we defing andz’ with respect to
(64) 2 We consider two cases:

where forw € Z; ™', w0 denotes the vector ¢t} obtained « Casex = z: In this casex’ andz’ are two different
by appending @ at the end ofw. codewords ofCy’= (otherwisex = z). Thus, by choice
Similarly, we show that foro <n — 1, of the codeCy™ it follows thatdu (X, 2") > [dB,min/2].

By Propositions 3 and 4,
V(n,w+1,r) = Vin—1wr)+V(n—-1lwr—1)

+V(n—1,w,r —2). ds(x,2) = ds(px(V(X)), ¢z(¥(2))) = ds(¥(X'), ¥ (2))
(65) =2dp(X',Z") > 2[dB min/2] > dB min-
Therefore, ifn > 0 andw <n —1, (70)
V(n,w,r) = V(n,w+1,r) « Casex # z: By choice ofC; it follows that dp(%,z) >
=Vn-Lwr—-1)-Vn-1wr—2)>0. dB.min. NOW, by Proposition 5,
66 _ _, _
OOyl = (o), 2 (W) 2 do(x.2)

From (66), it follows that the spheres of minimal volume are

the ones centered on words of maximum weight. .
Now, we give an expression fi(n, n, r). We consider the N both casesdp(x, z) > dp,min, Which concludes the proof.

all-one vectorl,,. Letv € Z%: v is in §(1,,,r) if and only if

dg(1,,v) < r. We denote byl this distance, and by, the APPENDIXF

number of positiong wherev; = 2. The number of positions PROOF OFPROPOSITION8

j where vj = 0isd —_2e2. The number of vectors that We prove that, ifi(x,y) < ta, theny is properly decoded,
match a giverd andesy is therefore: ie. (= dit, —
.., u; = u; anduz = us.

<n><n—62) e U3 =uy:

e d—2e/)" n

2. : . d(x1,y1) = Zd(i'liagli)
We conclude by summing over all possibleand es: im1

r o ld/2] =i Z1i; # g}l (72)

sarl =S5 (M) () 5) e = i+ @i # i

4= 20 —ds(xy) < ta

= dB,min-
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Therefore, sincex; is a codeword o’y which has an error with y; = 0 sincey,; =?. By assumption there are

correction capability 5, y is successfully decoded fq = u;. at mostt, coordinates such that; # y,;. Therefore,
o s = uy: we conclude that{j : g2; =7}| < ta,
Sincet; = uy, we havex; = x; andwyg, = wx, . — Notice that the casgy; # T2; andga; # 7 is not

We prove thaf, can be decoded ta, using the decoder
of codecg”*l. Consider a position), 1 < j < wg,:

- Eithergjgj = Z2j,

— Or ijaj # Ty; andya; = ?, which involves thatk; *
y has a0 at coordinatei = gz (j) (the jth non-
zero entry ofx;). Sincezy;; = 1, y; = 0. Also,
sinced; = u, thenx; = x;, which implies that
9%, (7)) = 9%, (j) = i. Thus,z; # 0 andz; # y;,

possible. Following the reasoning of the previous
case, it would involve thak andy are different but
both non-zero at a given coordinate, which is not a
possible transition in our chann@f.
Therefore, no error and at mast = % erasures
differentiatey, from x,. Since the minimum distance of
C;“*I is such that %W > ta, its decoder can correct
these at most, erasures, and successfully estimate



