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Norm-Product Belief Propagation: Primal-Dual
Message-Passing for Approximate Inference

Tamir Hazan and Amnon Shashua

Abstract—Inference problems in graphical models can be rep-
resented as a constrained optimization of a free energy function.
In this paper we treat both forms of probabilistic inference,
estimating marginal probabilities of the joint distribution and
finding the most probable assignment, through a unified message-
passing algorithm architecture. In particular we generalize the
Belief Propagation (BP) algorithms of sum-product and max-
product and tree-rewaighted (TRW) sum and max product algo-
rithms (TRBP) and introduce a new set of convergent algorithms
based on ”convex-free-energy” and Linear-Programming (LP)
relaxation as a zero-temprature of a convex-free-energy. The main
idea of this work arises from taking a general perspective on the
existing BP and TRBP algorithms while observing that they all
are reductions from the basic optimization formula of f +

∑
i hi

where the function f is an extended-valued, strictly convex but
non-smooth and the functions hi are extended-valued functions
(not necessarily convex). We use tools from convex duality to
present the ”primal-dual ascent” algorithm which is an extension
of the Bregman successive projection scheme and is designed to
handle optimization of the general type f +

∑
i hi. We then map

the fractional-free-energy variational principle for approximate
inference onto the optimization formula above and introduce
the ”norm-product” message-passing algorithm. Special cases of
the norm-product include sum-product and max-product (BP
algorithms), TRBP and NMPLP algorithms. When the fractional-
free-energy is set to be convex (convex-free-energy) the norm-
product is globally convergent for the estimation of marginal
probabilities and for approximating the LP-relaxation. We also
introduce another branch of the norm-product which arises
as the ”zero-temerature” of the convex-free-energy which we
refer to as the ”convex-max-product”. The convex-max-product
is convergent (unlike max-product) and aims at solving the LP-
relaxation.

Index Terms—Approximate inference, Bethe free energy, Breg-
man projection, convex free energy, dual block ascent, Fenchel
duality, graphical models, linear programming (LP) relaxation,
Markov random fields (MRF), maximum a posteriori proba-
bility (MAP) estimation, max-product algorithm, sum-product
algorithm,

I. INTRODUCTION

PROBABISITIC graphical models present a convenient
and popular tool for reasoning about complex distri-

butions. The graphical model reflects the way the complex
distribution p(x1, ..., xn) factors into a product of potential
functions, each defined over a small number of variables,
and referred to as factors. A graphical model, which defined
in terms of factor graphs, represents the incidence between
factors and the variables by a bipartite graph with one set of
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nodes corresponding to the variables of the joint distribution
and another set of nodes standing for the factors. An edge
exists between a variable node and a factor node if the variable
is contained in the set of variables represented by the factor.
In many applications of interest the factor graph is sparse. In
other words, in the modeling of the joint behavior of a set of
interacting variables it is often the case that only a small subset
of variables interact directly. For example, in the domain of
image processing, if we think of each pixel as a variable in
a joint distribution over all image pixels then, typically the
intensity value of a single pixel will depend most strongly
on neighboring pixels in the image, rather than on those at a
distant location. Without the local interaction assumption, i.e.,
if each variable interacts directly with all other variables, then
the inference of the joint behavior would be a hopeless task.

Problems involving inference using graphical models comes
up in a wide range of applications covering a variety of disci-
plines. Those include digital communications (error correcting
codes [13]), computer vision [55], medical diagnosis [25],
protein folding [68], computer graphics [14], [9], clustering
[49], as well as other broad disciplines which include signal
processing, artificial intelligence and statistical physics [15],
[27].

Probabilistic inference comes in two distinct forms and
typically involve two slightly different algorithmic thrusts. One
form of inference task is to obtain one global state of the
joint distribution that is most probable, i.e., find the values
of x1, ..., xn which maximizes p(x1, ..., xn). This form of
inference is typically referred to as the maximal a-posteriori
assignment, or in its abbreviated form, the MAP assignment.
The second type of inference has the objective of obtaining
marginal probabilities for some subset of variables given
evidence (value of) about other variables. For example, if
xi ∈ {1, ..., ni} then p(xi) comes out of summing exponen-
tially many elements

∑
{x1,...,xn}\xi p(x1, ..., xn) resulting in

the likelihood of xi to obtain each of its possible ni values.
In this paper, we will focus on both inference problems with
the objective of introducing a unifying algorithmic thrust.

Exact inference is NP-hard [50], thus introducing the need
to derive algorithms for approximate inference. One of the
most popular class of methods for inference over (factor)
graphs are message-passing algorithms which pass messages
along the edges of the factor graph until convergence is
reached. The belief-propagation (BP) algorithms [44] come
in two variations: the sum-product algorithm for computing
marginal probabilities and the max-product algorithm for
computing the MAP assignment. Citing [69], the centrality
of inference using graphical models and the utility of the
BP algorithms for solving them is reflected in the fact that
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equivalent or very similar message-passing algorithms have
been independently derived under different disciplines. Those
include the Viterbi algorithm [59], Gallager’s sum-product
algorithm for decoding low-density parity check codes [16],
the turbo-decoding algorithm [3], the Kalman filter for signal
processing [28], and the transfer-matrix approach in statistical
mechanics [1].

The BP algorithms are exact, i.e., the resulting marginal
probabilities and the MAP assignments are the correct ones,
when the factor graph is free of cycles — a state of affairs that
considerably limits the application of those algorithms to solve
real world problems. Nevertheless, an intriguing feature of BP,
which most likely is the source for its great popularity, is that it
is well-defined and often gives surprisingly good approximate
results for graphical models with cycles. However, in this
context there are no convergence guarantees (except under
some special cases [56], [41]) and the algorithms fail to
converge in many cases of interest.

During the past decade there has been much progress
in putting forward a framework for approximate inference
using variational principles. It has been shown that the fixed-
points of the sum-product algorithm (for estimating marginal
probabilities) correspond to the fixed-points of a constrained
energy function called the Bethe free energy [69]. The free
energy arises from the expansion of the KL-divergence be-
tween the input distribution and its product form. The Bethe
approximation replaces the entropy term in the free energy by
the Bethe entropy. The investigation of the stationary points
of the Bethe free energy yields conditions for convergence
of BP [20], and lower bounds for the free energy in some
special cases [54]. These lower bounds are based on the loop
calculus framework which considers the Bethe free energy
as a first order approximation for the free energy [8]. The
Bethe free energy is exact for factor graphs without cycles,
as well as convex over the set of constraints (representing
validity of marginals). When the factor graph has cycles the
Bethe energy is non-convex and the BP algorithms may fail
to converge. Although it is possible to derive convergent
algorithms to a local minima of the Bethe function [70],
[22] the computational cost is large and thus has not gained
popularity.

To overcome the difficulty with the non-convexity of the
Bethe approximation, several authors have introduced a class
of approximations known as convex free energies which are
convex over the set of constraints for any factor graph. An
important member of this class is the tree-reweighted (TRW)
free energy which consists of a linear combination of free
energies defined on spanning trees of the factor graph [61]. It is
notable that for this specific member of convex free energies a
convergent message-passing algorithm, applicable to pairwise
factors only, has been recently introduced [17]. However, a
convergent message passing algorithm for the general class of
convex free energies is still lacking. The existing algorithms
either employ damping heuristics to ensure convergence in
practice [62] or focus on a sub-class of free energies where
the entropy term is a positive combination of joint entropies
[22].

The MAP assignment problem has been shown to be ap-

proximated by a Linear-Programming (LP) relaxation scheme
[63] with message-passing algorithmic attempts as a solution
[31], [65], [18], [66], [37]. Some of these attempts guarantee
convergence only under special cases (such as binary vari-
ables), [31], [65]. Others, such as [18], arises as a special
case of our algorithm. We refer to [37] for detailed account on
the connections between these message-passing algorithms. A
double-loop of message passing using a proximal minimiza-
tion technique proposed recently by [45] is convergent but
at a considerable computational expense. Dual decomposition
techniques were recently proposed [30], [33], which are related
to dual subgradient methods for the LP relaxation.

In this paper, we derive a class of approximate infer-
ence message-passing algorithms, which we call norm-product
algorithms, using the notion of free-energy approximation.
The norm-product is an inference engine covering both the
estimation of marginal probabilities and the MAP assignment.
When the Bethe free energy is used as a substitution for
the free-energy, the norm-product reduces to the sum-product
and max-product algorithms where the latter emerges as a
”zero temperature” version of the former. When a convex-free-
energy is used the norm-product becomes a convergent family
of algorithms along three strains: (i) a globally convergent
algorithm, which we call convex-sum-product, for estimating
marginal probabilities, (ii) a locally convergent algorithm
emerging as a zero-temperature version of the former strain,
we call convex-max-product, for estimating the MAP assign-
ment, and (iii) a globally convergent algorithm for the LP-
relaxation problem.

The convex-sum-product algorithm was published in [19]
with only a brief sketch of the detailed derivation. In this
paper we have chosen to put a large amount of material in
appendices. Due to the complexity of the presented material
and the extensive use of modern optimization infrastructure,
the body of the paper contains the main ”storyline”, statements
and algorithms whereas the detailed proofs and the required
mathematical infrastructure are contained in appendices.

II. NOTATIONS, PROBLEM SETUP AND BACKGROUND

Let x1, ..., xn be the realizations of n discrete random
variables where the range of the i′th random variable is
{1, ..., ni}, i.e., xi ∈ {1, ..., ni}. We consider a joint distri-
bution p(x1, ..., xn) and assume that it factors into a product
of non-negative functions (potentials):

p(x1, ..., xn) =
1

Z

n∏
i=1

φi(xi)

m∏
α=1

ψα(xα), (1)

where the functions φi(xi) represent ”local evidence” or prior
data on the states of xi, and the functions ψα(xα) have argu-
ments xα that are some subset of {x1, ..., xn} and Z is a nor-
malization constant, typically referred as the partition function.
For example, p(x1, x2, x3) = (1/Z)ψ23(x2, x3)ψ13(x1, x3)
has two factors with indices α1 = {2, 3}, α2 = {1, 3} and
xα1

= {x2, x3},xα2
= {x1, x3}, and uniform local evidence

φi(xi) = 1 for every i = 1, 2, 3 and every xi.
The factorization structure above defines a hypergraph

whose nodes represent the n random variables and the subsets
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of variables xα correspond to its hyperedges. For example, if
all factor functions are defined on pairs of random variables
then the factorization is represented by a graph. A convenient
way to represent hypergraphs is by a bipartite graph with
one set of nodes corresponding to the original nodes of the
hypergraph and the other set corresponds to its hyperedges.
In the context of graphical models such a bipartite graph
representation is referred to as a factor graph [35] with
variable nodes representing φi(xi) and a factor node for each
function ψα(xα). An edge connects a variable node i with
factor node α if and only if xi ∈ xα, i.e., xi is an argument
of ψα. We adopt the terminology where N(i) stands for all
factor nodes that are neighbors of variable node i, i.e., all the
nodes α for which xi ∈ xα, and N(α) stands for all variable
nodes that are neighbors of factor node α.

We shall focus on the two inference tasks of computing
marginal probabilities and maximum a-priori (MAP) assign-
ment. The computation of the marginal probabilities p(xi) =∑

x\xi p(x) and p(xα) =
∑

x\xα p(x), requires the summa-
tion over the states of all the variable nodes not in xi or
xα respectively. This computation is generally hard because it
may require summing up exponentially large number of terms
— thus one seeks efficient ways or approximate solutions for
the marginals. The MAP assignment is the task of finding a
state for each xi that brings the maximal value to the joint
probability p(x1, ..., xn).

The belief-propagation (BP) algorithms, known as sum-
product and max-product, are two algorithms for computing
marginal probability and MAP assignment, respectively, that
can be described in terms of operations on a factor graph. As
already mentioned in the introduction, the BP algorithms will
deliver the correct inference, i.e. are exact, if the factor graph
has no cycles, but are still well defined and often provide good
approximate results when the factor graph has cycles.

The BP algorithms are defined in terms of messages be-
tween variable and factor nodes. The message mα→i(xi) from
factor node α to variable node i, and the opposite direction
message ni→α(xi), is a vector over the states of xi. In the
sum-product algorithm those have the following form:

mα→i(xi) =
∑

xα\xi

ψα(xα)
∏

j∈N(α)\i

nj→α(xj)

ni→α(xi) ∝ φi(xi)
∏

β∈N(i)\α

mβ→i(xi)

The ∝ indicates that one can normalize the vector. The
messages ni→α(xi) are usually initialized to the uniform
vector. Upon convergence of the message-passing scheme the
marginal probabilities p(xi) and p(xα) can be expressed in
terms of a ”pseudo-distribution”, also known as beliefs, bi(xi)
and bα(xα) defined below:

bi(xi) ∝ φi(xi)
∏

α∈N(i)

mα→i(xi)

bα(xα) ∝ ψα(xα)
∏

j∈N(α)

nj→α(xj)

When the factor graph has no cycles the messages converge
and the beliefs correspond to the marginal probabilities. When

the factor graph has cycles there is no convergence guarantee
and, regardless of convergence, the recovered beliefs provide
only an approximation to the marginal probabilities.

In the max-product algorithm the messages mα→i(xi) are
slightly altered:

mα→i(xi) = max
xα\xi

ψα(xα)
∏

j∈N(α)\i

nj→α(xj)

 ,

while ni→α(xi) remain as in the sum-product algorithm. The
MAP assignment can be recovered from the beliefs bi(xi)
when the factor graph is a tree. In such a case, the MAP
assignment of xi corresponds to the index of highest entry of
bi(xi). In general convergence is not guaranteed, and the MAP
assignment can be recovered only for specific problems, [64],
[2], [24], [47].

A. Inference using a Variational Principle

The BP algorithms apply to tree-structured factor graphs
yet are well defined for general factor graphs but without
convergence or accuracy guarantees. The variational principle
approach, described below, is a decade long effort at providing
an extended platform from which old, i.e., BP algorithms, and
new (preferably convergent) algorithms can emerge.

The variational approach seeks a distribution p(x1, ..., xn)
that is as close as possible, in relative entropy terms, to the
product potentials φi(xi) and ψα(xα). Expanding the KL-
divergence D(p || q) =

∑
x p(x) ln(p(x)/q(x)) between two

nonnegative vectors results in:

D(p ||
∏
i

φi
∏
α

ψα) = F (p),

where F (p) is the so called Gibbs-Helmholtz free-energy:

F (p) =
∑
i,xi

θi(xi)p(xi) +
∑
α,xα

θα(xα)p(xα)−H(p)

= E(p)−H(p) (2)

The term H(p) = −
∑

x p(x) ln p(x) is the entropy and θi =
− lnφi and θα = − lnψα. The linear term E(p) is often
referred to as the energy term. By minimizing F (p) over the
probability simplex P = {p : p ≥ 0,

∑
x p(x) = 1} we

get back the probability distribution defined in eqn. 1, as the
optimal argument p∗ = argminp∈PF (p), and minus the log
of the normalization, or equivalently the partition function, as
the value at the minimum:

p∗ =
1

Z

n∏
i=1

φi(xi)

m∏
α=1

ψα(xα), − lnZ = F (p∗).

Since F (p) is strictly convex and the simplex constraints are
convex, the minimum is unique. So far we have not gained
anything because the entropy H(p) is computationally in-
tractable since its evaluation is exponential in n, and satisfying
the probability simplex constraints is intractable as well. The
variational methods are based on a tractable approximation to
the free-energy F (p) by (i) approximating the entropy term
H(p) by a combination of local entropies over marginal proba-
bilities p(xi), p(xα), and (ii) by approximating the probability
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simplex constraints by the so called ”marginal consistency”
constraints.

In approximate inference, the true marginal distributions
p(xi) and p(xα) are replaced by ”beliefs” bi(xi) and bα(xα)
which form a ”pseudo distribution” in the sense that the beliefs
might not necessarily arise as marginals of some distribution
p(x1, ..., xn). The probability simplex constraints are replaced
by marginal consistency constraints L(G) defined below:

L(G) =

b = {bi,bα} :

∑
xα\xi

bα(xα) = bi(xi) ∀i, α ∈ N(i)

bα(xα) ≥ 0,
∑

xα
bα(xα) = 1 ∀α

The entropy approximation H̃(b) as a function of the beliefs
is known as fractional entropy and has the form:∑

α

c̄αH(bα) +
∑
i

c̄iH(bi), (3)

where the joint entropy H(bα) = −
∑

xα
bα(xα) ln bα(xα)

and the local entropy H(bi) = −
∑
xi
b(xi) ln b(xi).

For factor-graphs without cycles, the setting of c̄α = 1
and c̄i = 1 − di where di is the degree of the variable
node associated with xi in the factor graph, renders the
approximation H̃ to be exact and equal1 to the entropy H .
Such an approximation is known as the Bethe entropy:

Hbethe(b)
def
=
∑
α

H(bα) +
∑
i

(1− di)H(bi).

Moreover, in the case of a tree, the marginal consistency con-
straints L(G) are equal to the probability simplex constraints,
thus making the constrained Bethe free energy problem

min
b∈L(G)

∑
i,xi

θi(xi)bi(xα) +
∑
α,xα

θα(xα)bα(xα)−Hbethe(b),

a convex optimization producing the true marginals bi(xi) =
p(xi) and bα(xα) = p(xα). The constrained optimization is
defined in terms of beliefs only and is therefore computation-
ally tractable. However, if the factor graph has cycles, the
minimizer of the constrained Bethe free energy is not guaran-
teed to correspond to the true marginals p(xi), p(xα), and not
even realizable as a true distribution. Therefore, for general
factor graphs, the Bethe free energy optimization approach
finds an approximation to the true marginal probabilities. From
the optimization point of view, the Bethe free energy is strictly
convex in the intersection of constraints when the factor graph
is a tree. When the factor graph has cycles the Bethe energy
is non-convex and although it is possible to derive convergent
algorithms to local minima of the Bethe function [70], [22] the
computational cost is large and thus has not gained popularity.

What makes the Bethe free energy optimization interesting
is the observation, first elucidated by [69], that when the sum-
product algorithm converges then it does so to a stationary
point of the constrained Bethe free energy, i.e., fixed-points of
the algorithm correspond to stationary points of the variational
problem. This does not mean that the sum-product algorithm

1in this case the joint probability can be expressed solely in terms of the
marginals: p(x1, ..., xn) =

∏
α p(xα)/

∏
i p(xi)

di−1. Expanding H(p)
produces the Bethe entropy approximation.

descends on the Bethe free energy (in fact it does not), but that
near a fixed point things start to behave well. The significance
of the observation is that it ties the popular sum-product
algorithm with a specific variational principle and moreover
it suggests a framework for seeking natural generalizations
of the Bethe approximation with their associated message-
passing algorithms.

Generalizations of the Bethe free energy move along two
thrusts. The first employs better (higher-order) approxima-
tions to the entropy and higher-order constraints beyond the
marginal consistency constraints to better approximate the full
probability simplex constraints. This effort includes Kikuchi
free energy, region graphs and other hyper-graph based meth-
ods [69], [29]. The second thrust looks for convergence guar-
anteed message-passing algorithms by extending the Bethe
free energy to form a wider class of functions, known as
convex free energies, which are convex in the intersection of
marginal consistency constraints. In this paper we focus on the
second thrust. The inclusion of Kikuchi approximations and
region graphs is a natural extension to the results we introduce
in this paper but for the sake of clarity we leave it outside the
current scope.

The fractional entropy eqn. 3 can be set to form a family of
concave approximations. The set of sufficient conditions for
an entropy approximation of the type of eqn. 3 to be concave
over the set of constraints was introduced in [21], [65] and
take the following form:

Definition 1 (Concave Entropy Approximation): An
approximate entropy term of the form eqn. 3 is strictly concave
over the set of marginal consistency constraints if there exists
ci, ciα ≥ 0 and cα > 0 such that c̄α = cα +

∑
i∈N(α) ciα

and c̄i = ci −
∑
α∈N(i) ciα. The approximate entropy H̃(b)

becomes:

∑
α

cαH(bα)+
∑
i

ciH(bi)+
∑

i,α∈N(i)

ciα(H(bα)−H(bi)). (4)

The entropy approximation H̃(b) includes the Bethe approx-
imation when cα = 1, ci = 1 − di and ciα = 0 but it is
guaranteed to be strictly concave for any setting of the param-
eters where ci, ciα ≥ 0 and cα > 0. An important member
of this class is the ”tree-reweighted” (TRW) approximation
[62] where c̄α is equal to a weighted combination of spanning
trees of the original graph (all factors are pairwise and thus α
represents an edge) which pass through α. In Appendix D we
describe a number of concave settings of H̃ including TRW
and other heuristic settings. The convex-free-energy variational
program becomes:

min
b∈L(G)

∑
i,xi

bi(xi)θi(xi) +
∑
α,xα

θα(xα)bα(xα)− H̃(b). (5)

The global minimizer b∗ of the convex-free-energy program
above is an approximation to the marginal probabilities due
to (i) the term H̃ is an approximation to the entropy of the
distribution and its quality depends on how the parameters
cα, ci, ciα are set and on the structure of the factor graph, and
(ii) due to the fact that the marginal consistency constraints
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L(G) approximate the probability simplex constraints, there
is no guarantee that in general b∗ form a distribution, i.e., the
marginal estimations b∗α(xα) and b∗i (xi) might not arise from
any probability distribution over x1, ..., xn.

The only guarantees we have is that if the factor graph has
no cycles then the marginal probabilities are exact and if H̃
is strictly concave then it should be possible to generate a
convergent message-passing algorithm (unlike BP algorithms
which are not generally convergent).

We move next to the MAP assignment task where one seeks
a vector x∗ which maximizes the product of potentials, or
equivalently minimizes the energy

argmax
x

∏
i

φi(xi)
∏
α

ψα(xα) = argmin
x

∑
i

θi(xi)+
∑
α

θα(xα).

Described as a variational principle program, the MAP
assignment problem is equivalent to the linear program whose
variables corresponds to distribution p(x1, ..., xn) with expo-
nential many elements:

min
p(x)≥0,

∑
x p(x)=1

∑
i,xi

θi(xi)p(xi) +
∑
α,xα

θα(xα)p(xα).

The optimization of a linear function over the probability
simplex yields an optimal solution p∗ in an extreme point of
the probability simplex, namely p∗ is a zero-one distribution.
In particular p∗(x∗) = 1 and for every x 6= x∗ holds
p∗(x) = 0.

An approximation can be obtained by approximating the
marginal probabilities p(xi) and p(xα) with beliefs bi(xi)
and bα(xα) which are not guaranteed to correspond to a true
distribution over x1, ..., xn.

min
bi,bα∈L(G)

∑
i,xi

θi(xi)bi(xi) +
∑
α,xα

θα(xα)bα(xα) (6)

If the minimizer of the LP-relaxation problem comes out
without ties, i.e., the marginal vectors bi(xi) have a single
maximal entry, then the MAP assignment readily emerges
from the LP-relaxed solution. This LP-relaxed problem can
be solved using off-the-shelf LP solvers but the key problem
with standard LP solvers, however, is that they do not use the
graph structure explicitly and thus are sub-optimal in terms
of computational efficiency. An empirical study found the
message-passing LP-solvers, e.g. max-TRBP, to be superior to
the CPLEX solver, a commercial LP solver that implements
different techniques for solving LP, such as primal and dual
simplex solvers, network solvers, primal-dual barrier solver for
sparse problem, and sifting techniques executing sequences of
LP subproblems [67].

The relaxed LP problem of eqn. 6 has been widely studied
in the literature in the context of message-passing algorithms.
Special cases of these LP-relaxations were used for constraints
satisfaction [48], [34]. The general form in eqn. 6 was studied
using tree decompositions in [63], [30], as well as dual de-
composition [32], [33], and dual block coordinate ascent [66],
[18], [52]. A general framework for these recent developments
is described in [37]. Since the LP energy is not strictly convex,
convergence to the global minimum is a challenge, since eqn.

6 usually corresponds to a non-smooth dual. In this case a
dual block coordinate ascent can lead to a corner in the dual
objective, which is a non-optimal stationary point.

An alternative class of methods are based on a (strictly)
convex relaxation approach. There are two notable recent
examples in this class: one using a proximal minimization
technique where the convex term is a weighted KL-divergence
measure between the sought-after belief vector and the one
from the previous iteration [45]. The proximal minimization
approach involves a double-loop of message passing iterations
and is guaranteed to converge to the global optimum of eqn. 6.
The second approach, the one we follow in this paper, is to
make eqn. 6 the ”zero temperature” of the perturbed problem:

min
b∈L(G)

∑
i,xi

θi(xi)bi(xi) +
∑
α,xα

θα(xα)bα(xα)− εH̃(b), (7)

by taking ε → 0. This approach was used in decoding
low-density parity-check codes [60]. It was also used for
LP-relaxations, to derive a non-convergent max-product like
algorithm [65], and for applying an iterative proportional
fitting type algorithm [26].

This concludes the necessary background to inference
within the framework of variational principle. The variational
problem we will work on next is eqn. 7. We will derive a con-
vergent message-passing algorithm called the norm-product.
When the parameters of H̃ are set to the Bethe approximation
the algorithm reduces to the sum-product (when ε = 1) or the
max-product (when ε = 0). When H̃ is concave and ε = 1
the norm-product becomes a globally convergent message-
passing algorithm, referred to as convex-sum-product, for
approximating marginal probabilities. When ε = 0 we obtain a
convergent form of max-product we call convex-max-product
and when ε → 0 we obtain an approximation (with proven
bounds) to the LP-relaxation solution.

III. THE NORM-PRODUCT BELIEF PROPAGATION
ALGORITHM

We seek an algorithm for minimizing the inference varia-
tional eqn. 7 with the following properties: (i) if the entropy
approximation term H̃ is strictly concave, i.e., eqn. 7 is
a convex-free-energy, the algorithm will be convergent for
all ε ≥ 0 and will converge to the global optimum when
ε > 0, (ii) the algorithm will remain well defined when H̃
is non-convex (such as Bethe-free-energy and other fractional
entropy approximations) and exhibit the property that fixed
points of the algorithm coincide with stationary points of
eqn. 7, and (iii) the algorithm uses the graph structure inherent
sparseness, i.e., is defined by a message-passing architecture
on the underlying factor-graph. In other words, like the BP-
algorithms, our scheme should be sending messages between
variable and factor nodes of the factor graph.

We will first take a detour and derive a general framework
for minimizing problems of the type

min
b
f(b) +

n∑
i=1

hi(b) (8)

f(b) is a strictly convex, non-smooth, extended-valued func-
tion of the type f(b) = f̂(b) + δB(b) where f̂ is essentially
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smooth and δB is the indicator function of the affine set
B = {b : Ab = c}, namely, δB(b) = 0 if b ∈ B and ∞
otherwise. The functions hi(b) are convex extended-valued
functions (see Appendix A on mathematical background).
In Appendix B we derive the following ”primal-dual” block
ascent algorithm which is guaranteed to converge to the global
minimizer of eqn. 8:

Algorithm 1 (Primal-Dual Ascent): Let f(b) = f̂(b) +
δB(b) where f̂(b) is strictly convex, essentially smooth
extended-valued function, and let hi(b) be convex extended-
valued functions. Initialize λ1 = 0, ...,λn = 0.

1) Repeat until convergence:
2) For i = 1, ...n:

a) µi =
∑
j 6=i λj

b) b∗ = argmin
b∈dom(hi)∩dom(f)

{
f(b) + hi(b) + b>µi

}
c) λi = −µi−∇f̂(b∗) +A>σ where σ is arbitrary.

Output b∗.

The vectors λi and µi are messages passed along edges of
a bipartite graph with n (function) nodes corresponding to the
n functions hi(b) and m (variable) nodes corresponding to the
dimension of b. Function node i sends the m coordinates of
vector λi to the m variable nodes. Variable node j sends the
j’th coordinate of vectors µ1, ...,µn to the n functions nodes.
The algorithm iteratively optimizes with respect to the indexes
i ∈ {1, ..., n}, stopping when it does not change the beliefs b∗,
thus the network proceeds in an almost cyclic update policy.
The algorithm fits well with a graphical model architecture in
the sense that if hi(b) depends only on a small subset N(i)
of coordinates from b, then λiβ = 0 for every β 6∈ N(i) (and
therefore need not be updated):

Claim 1: Assume variables b are indexed by {1, ...,m} and
hi(b) depends only on small subset of variables indexed by
N(i) ⊂ {1, ...,m} and let λi = {λi,α}. Then, λi,β = 0 for
all β 6∈ N(i).
The claim and its proof can be found in Appendix B. For those
familiar with successive projection schemes, in the particular
case when f(b) = f̂(b), i.e., is strictly convex and essentially
smooth, and hi(b) = δCi(b) (the indicator function of convex
set Ci), the update step (b) for Algorithm 1 is a ”Bregman”
projection [6] of the vector µi onto the convex set Ci. In
that case, following some algebraic manipulations (such as
eliminating µi among other manipulations) the scheme (with
A = 0) reduces to the well known Dykstra [12] (also goes
under different names such as Hildreth, Bregman, Csiszar,
Han) successive projection algorithm which has its origins in
the work of Von-Neumann [43]. Further historical details can
be found in Appendix B.

Another useful property of the algorithm that it is well
defined for non-convex primal energies. Specifically, we can
establish the following result:

Claim 2: Consider Algorithm 1 for Legendre-type function
f(b) and non-convex continuously differentiable functions
hi(b) restricted to the affine domain {b : Aib = ci}, and
assume b∗ in step (c) is in the interior of dom(f). Then, fixed-
points of the algorithm coincide with stationary points of the

non-convex program f(b) +
∑
i hi(b).

The proof can be found in Appendix B-A. The result states
that when hi are non-convex but defined over an affine domain
the algorithm is no longer convergent, but if it does converge
it will do so to a stationary point of the optimization problem.
This property of the algorithm extends the result of [69] about
the behavior of the sum-product algorithm: if it converges, then
it converges to a stationary point of the Bethe free-energy.

The inference variational problem presented in eqn. 7 is
embedded into the general template of eqn. 8 as follows:

min
b
fε(b) +

n∑
i=1

hε,i(b) (9)

where fε(b) = f̂ε(b) + δS(b) with S being the set of {b =
{bα} : bα(xα) ∈ P} where P is the probability simplex
(arrays that are non-negative and sum to one), and f̂ε is defined
below:

f̂ε(bα) =
∑
α,xα

θα(xα)bα(xα)−
∑
α

εcαH(bα) (10)

Note that dom(fε) include all b ∈ S, i.e., fε(b) = ∞ for
b 6∈ S. The functions hε,i are defined below:

hε,i(b) =
∑
xi

θi(xi)bi(xi)−εciH(bi)−
∑

α∈N(i)

εciα(H(bα)−H(bi)),

(11)

where dom(hε,i) is the affine set consisting of bα for
every α ∈ N(i), which live in the probability simplex, i.e.
dom(hε,i) ⊂ dom(fε), and satisfy the marginal consistency
constraints

∑
xα\xi bα(xα) = bi(xi). Note that bi are not

explicitly included in b = {bα}, but they are described by
the values of which all bα in the domain of hε,i agree upon.

Given the sparse structure of hε,i then, following Claim 1,
we present the entries of λi according to the factor-graph
structure by setting λi = {λi,α(xα)} (and likewise µi). Step
(b) of Algorithm 1 is reduced to finding b∗α for all α ∈ N(i)
and step (c) updates λi,α by the rule:

λi,α(xα) = −µi,α(xα)−∇f̂ε(b∗α(xα)) + σα1,

for an arbitrary σα. If instead of updating λi,α we would
update ni→α(xα) = exp(−λi,α(xα)) the additive degree of
freedom inherent in the choice of σ turns into a scaling choice
of ni→α.

The derivation process required for embedding the defini-
tions above into the primal dual Algorithm 1 is described in
detail in Appendix C. The resulting algorithm, we call norm-
product, is presented in Fig. 1.

Just as in the BP algorithms, the message mα→i(xi) from
the factor node α to the variable node i is a vector over all
possible states of xi. The message ni→α(xα) from the variable
node i to the factor node α is an array over all possible states
of xα. The beliefs bi(xi), which are the approximations to the
marginal probability p(xi) when ε = 1, can be computed from
the messages mα→i:

bi(xi) ∝

φi(xi) ∏
α∈N(i)

mα→i(xi)

1/εĉi

, (12)
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Algorithm 2 (Norm-Product Belief Propagation): We are given nonnegative local evidence φi(xi), and nonnegative arrays
ψα(xα), where α ⊂ {1, ..., n}. Let ĉiα = cα + ciα and ĉi = ci +

∑
α∈N(i) cα.

1) Set ni→α(xα) = 1 for all i = 1, ..., n, α ∈ N(i) and xα.
2) For t = 1, 2, ...

a) For i = 1, ...n do:

∀xi ∀α ∈ N(i) mα→i(xi) =

 ∑
xα\xi

ψα(xα)
∏

j∈N(α)\i

nj→α(xα)

1/(εĉiα)

εĉiα

∀α ∈ N(i) ∀xα ni→α(xα) ∝


φ

1/ĉi
i (xi)

∏
β∈N(i)

m
1/ĉi
β→i(xi)

m
1/ĉiα
α→i (xi)


cα ψα(xα)

∏
j∈N(α)\i

nj→α(xα)

−ciα/ĉiα

Fig. 1. The norm-product belief propagation algorithm, where the messages mα→i(xi) are computed with respect to the L1/εĉiα
norm. For cα = 1, ci =

1−di, ciα = 0 it reduces to the belief propagation algorithms, sum-product when ε = 1 and max-product when ε = 0. Whenever cα is the weighted number
of spanning trees through edge α, and ci = 1−

∑
α∈N(i) cα and ciα = 0 it reduces to the tree-reweighted belief propagation algorithms (sum-TRBP and

max-TRBP). Whenever cα > 0, ci, ciα ≥ 0 the norm-product is guaranteed to converge, and if also ε > 0 it converges to the global optimum of the program
in eqn. 7.

where ĉi is defined in Fig. 1. The joint beliefs bα(xα) can be
computed from the messages ni→α:

bα(xα) ∝

ψα(xα)
∏

i∈N(α)

ni→α(xα)

1/εcα

. (13)

The norm-product algorithm includes the BP algorithms
(sum-product and max-product), as well as sum-TRBP [62],
max-TRBP [63], and NMPLP [18] as particular cases. These
algorithms relate to the simpler form of the norm-product al-
gorithm, when ciα = 0. In this setting the messages ni→α(xα)
depend solely on the local potentials φi(xi) and the messages
mβ→i(xi). Therefore the messages ni→α(xα) can be written
in the compact form ni→α(xi), replacing xα with xi. In this
case the norm-product algorithm in Fig. 1 takes the form:

mα→i(xi) =

 ∑
xα\xi

ψα(xα) ∏
j∈N(α)\i

nj→α(xα)

1/εcα

εcα

ni→α(xi) ∝

φi(xi) ∏
β∈N(i)\α

mβ→i(xi)

cα/ĉi

mα→i(xi)

When using the norm-product with the Bethe entropy approx-
imation ciα = 0, cα = 1, ci = 1 − di there holds ĉi = 1 and
the algorithm reduces to

mα→i(xi) =

 ∑
xα\xi

ψα(xα) ∏
j∈N(α)\i

nj→α(xα)

1/ε

ε

ni→α(xi) ∝ φi(xi)
∏

β∈N(i)\α

mβ→i(xi)

which is the sum-product algorithm for ε = 1 and the max-
product algorithm for ε = 0.

When the factors corresponds to pairwise interactions α =
(i, j) the messages of norm-product algorithm mα→i and

ni→α can be written by the shorthand notation mj→i and
ni→j . The messages mj→i of the norm-product algorithm
in Fig. 1 depends on a single message nj→i and whenever
ciα = 0 the message nj→i depends only on the messages
mk→j for every {k, j} ∈ N(j), which we abbreviate by
k ∈ N(j). Substituting the value of nj→i into mj→i we obtain
the pairwise norm-product, whose update rule consists only of
the messages mk→j . When ε = 1 the pairwise norm-product
algorithm with ciα = 0 takes the form

m
1/cij
j→i (xi) ∝

∑
xj

ψ
1/cij
ij (xi, xj)

φ
1/ĉj
j (xj)

∏
k∈N(j)m

1/ĉj
k→j(xj)

m
1/cij
i→j (xj)

.

The sum-TRBP [62] is a special case. The sum-TRBP sets cij
as the relative number of spanning trees of the graph which
include the edge (i, j), and sets ci = 1 −

∑
j∈N(i) cij . As a

result ĉi = 1 and by substitution Mij(xi)
def
= m

1/cij
j→i (xi) we

obtain the sum-TRBP update rule as originally introduced in
([62], eqn. 39):

Mij(xi) ∝
∑
xj

ψ
1/cij
ij (xi, xj)

φj(xj)
∏
k∈N(j)M

cjk
jk (xj)

Mji(xj)
.

When ε = 0 the pairwise norm-product algorithm with
ciα = 0 takes the form

mj→i(xi) ∝ max
xj

ψij(xi, xj)
φ
cij/ĉj
j (xj)

∏
k∈N(j)m

cij/ĉj
k→j (xj)

mi→j(xj)
.

The max-TRBP [63] and NMPLP [18] are special cases, de-
rived as follows: With max-TRBP, we have cij and ci defined
by the tree-reweighted setting which results in ĉi = 1, and
the Max-TRBP ([63], eqn. 50) follows from the substitution
Mij(xi)

def
= m

1/cij
j→i (xi). The NMPLP is another recent max-

product-like algorithm where messages γji(xi) are defined as
follows:

γji(xi) = max
xj

θij(xi, xj)− γij(xj) + wj
∑

k∈N(j)

γkj(xj)
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Algorithm 3 (Sum-Product Belief Propagation type): We are given nonnegative local evidence φi(xi), and nonnegative
arrays ψα(xα), where α ⊂ {1, ..., n}. Let ĉiα = cα + ciα and ĉi = ci +

∑
α∈N(i) cα.

1) Set ni→α(xα) = 1 for all i = 1, ..., n, α ∈ N(i) and xα.
2) For t = 1, 2, ...

a) For i = 1, ...n do:

∀xi ∀α ∈ N(i) mα→i(xi) =

 ∑
xα\xi

ψα(xα)
∏

j∈N(α)\i

nj→α(xα)

1/ĉiα

ĉiα

∀α ∈ N(i) ∀xα ni→α(xα) ∝


φ

1/ĉi
i (xi)

∏
β∈N(i)

m
1/ĉi
β→i(xi)

m
1/ĉiα
α→i (xi)


cα ψα(xα)

∏
j∈N(α)\i

nj→α(xα)

−ciα/ĉiα

Fig. 2. Sum-product belief propagation type algorithm, attained from the norm-product belief propagation when ε = 1, where the messages mα→i(xi) are
computed with the L1/ĉiα

norm. For cα = 1, ci = 1 − di, ciα = 0 it reduces to the sum-product belief propagation algorithms, and whenever cα is the
weighted number of spanning trees through edge α, and ci = 1−

∑
α∈N(i) cα and ciα = 0 it reduces to sum-TRBP. If cα > 0, ci, ciα ≥ 0 it reduces to

the convex-sum-product algorithm, which is guaranteed to reach the global optimum of the convex free energy.

where wj = 2/(dj + 1). The pairwise norm-product message
mj→i(xi) with the setting cj = (1 − dj)/2 and cij = 1 for
every (i, j) gives rise to cij/ĉj = 2/(dj + 1). Thus with the
substitution γji(xi)

def
= lnmj→i(xi) and unit local potentials

(φi(xi) = 1) we obtain the NMPLP message above.
The result of having the BP, TRBP and NMPLP algo-

rithms arise as special cases of the norm-product algorithm
underscores the generality of our derivation. However, the
more interesting potential in the norm-product algorithm is
the emergence of new message-passing schemes which are
guaranteed to converge (unlike the BP and TRBP algorithms)
corresponding to the setting of H̃ as a concave function
(cα > 0, ci, ciα ≥ 0). Three classes of algorithms emerge:

• The convex-sum-product corresponding to the setting
ε = 1 in the norm-product algorithm. The convex-sum-
product is guaranteed to converge to the global optimum
of the primal function eqn. 7. This includes the tree-
reweighted free-energy in particular and other settings of
convex-free-energy which are detailed in Appendix D.

• The approximate LP-relaxation corresponding to the set-
ting ε → 0 (but ε > 0) in the norm-product algorithm.
It provides an approximate solution to the LP-relaxation
whose distance from the true solution is governed by an
upper-bound we derive. The approximate LP-relaxation
is guaranteed to converge to the global optimum of the
primal function eqn. 7.

• The convex-max-product corresponding to the setting
ε = 0 in the norm-product algorithm. Unlike the max-
product, the convex-max-product is convergence guaran-
teed. However, there is no guarantee that the recovered
solution corresponds to the desired LP-relaxation solu-
tion. The advantage of convex-max-product is efficiency
(introduced by L∞ instead of L1/ε) and very good
empirical performance. In fact, the convex-max-product
is a convergent form of max-product.

These message-passing algorithms, which are collectively re-
ferred to as convex-BP algorithms, are discussed in the next

section.

IV. THE CONVEX BELIEF PROPAGATION ALGORITHMS

Eqn. 7 represents the free-energy approximation when ε =
1, the LP relaxation when ε = 0, and a perturbation of the
LP-relaxation for MAP estimation when ε → 0. When the
entropy approximation term H̃ is the Bethe approximation
(setting cα = 1, ci = 1 − di, ciα = 0 in eqn. 4) the sum-
product (ε = 1) and max-product (ε = 0) arise as special cases
of the norm-product algorithm. Since in both cases the free-
energy approximation is non-convex (for factor graphs with
cycles) the convergence guarantees of those algorithms are
weak. For the sum-product we have the guarantee that if the
algorithm convergence then it will reach a stationary point of
the free-energy approximation (see Claim 2 and [69]). With
the max-product we have weaker guarantees (Claim 2 does
not apply because fε is not strictly convex when ε = 0) where
specifically, even if the algorithm does converge the marginal
consistency constraints might not be satisfied.

We focus now on the family of convex-free-energies which
arise with the setting cα > 0, ci, ciα ≥ 0. The convex-sum-
product arises from the setting ε = 1 is described next.

A. Convex-sum-product Algorithm

As a free-energy approximation (ε = 1), eqn. 7 is strictly
convex and, in turn, the norm-product algorithm is guaranteed
to converge to the global optimum. We refer to the specializa-
tion of the norm-product algorithm with cα > 0, ci, ciα ≥ 0
and ε = 1 as convex-sum-product summarized in Fig. 2.

The beliefs bi(xi), which are the approximations to the
marginal probability p(xi), and the joint beliefs bα(xα), which
are the approximation to the marginal probability p(xα), are
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computed from:

bi(xi) ∝

φi(xi) ∏
α∈N(i)

mα→i(xi)

1/ĉi

,

bα(xα) ∝

ψα(xα)
∏

j∈N(α)

nj→α(xα)

1/cα

.

Note that the algorithm has a much simpler form if ciα = 0.
The message ni→α(xα) depends only on xi and becomes:

ni→α(xi) ∝

φi(xi) ∏
β∈N(i)

mβ→i(xi)

cα/ĉi

mα→i(xi)
. (14)

The convex-sum-product is globally convergent for any con-
cave setting of the entropy approximation H̃ , i.e., when
cα > 0, ci, ciα ≥ 0. In particular, when the underlying factor-
graph arises from a graph, i.e., the local interaction forms
pairwise relations only, there is a setting that corresponds
to TRW free-energy as described in Appendix D. We also
describe there additional parameter settings corresponding to
other heuristic convex approximations of the entropy term H̃ .

We describe next the use of the norm-product algorithm as
an approximation to the LP-relaxation for the MAP problem
by taking ε→ 0.

B. LP-relaxation Bounds

For ε > 0, let the global optimum of eqn. 7 (with concave
H̃) denoted by bε and let the solution of the LP relaxation
eqn. 6 denoted by b∗. Let θ stand for the concatenated
functions θi(xi) and θα(xα), i.e., θ>b =

∑
i,xi

θi(xi)bi(xi)+∑
α,xα

θα(xα)bα(xα). We wish to upper-bound the difference
θ>bε − θ>b∗ ≤ δ where δ is a function of ε, cα, ci and ciα,
described below:

Proposition 1: Let cα > 0, ci, ciα ≥ 0 describe a convex-
free-energy eqn. 7. Let ni stand for the cardinality of xi and
nα =

∏
i∈N(α) ni be the cardinality of xα. Then,

0 ≤ θ>bε − θ>b∗ ≤ δ,

where

δ = ε

∑
α

cα lnnα +
∑
i

ci lnni +
∑
i

∑
α∈N(i)

ciα ln
nα
ni

 .

Proof: The sets of beliefs b∗,bε are both in the local polytope
L(G) whereas the beliefs b∗ are the optimal ones with respect
to the original linear program eqn. 6, therefore θ>b∗ ≤ θ>bε.
On the other hand the beliefs bε are optimal for the perturbed
program eqn. 7, hence θ>bε ≤ θ>b∗ + ε(H̃(bε) − H̃(b∗))
where H̃(b) is described in eqn. 4.

Using Jensen’s inequality we obtain:

H(bi) =
∑
xi

bi(xi) ln
1

bi(xi)
≤ ln

∑
xi

bi(xi)

bi(xi)
= lnni,

and likewise H(bα) ≤ lnnα. Substituting in eqn. 4 and noting
that H̃(b∗) ≥ 0 we obtain:

H̃(bε)− H̃(b∗) ≤
∑
α

cα lnnα+
∑
i

ci lnni+
∑
i,α

ciα ln
nα
ni
.

As a result, in the ideal world, one could generate the solu-
tion bε arbitrarily close to the relaxed LP solution b∗. There
are, however, numerical accuracy limitations which in practice
limit the size of ε ≥ ε0 > 0. The assumption in Proposition 1 is
that the output bn.p.ε of the norm-product algorithm, as defined
in eqns. 12,13, is equal to bε the solution to the ε-perturbed
LP-relaxation eqn. 7. This is indeed true when ε > 0 but
not when ε = 0. As we shall see in more details in the next
section, the norm-product algorithm is guaranteed to converge
when ε = 0 but not necessarily to the minimal primal value.
Therefore, from a numerical perspective there exists ε0 such
that when ε < ε0 the underlying assumption bn.p.ε = bε
ceases to hold. Moreover, the value of ε0 depends on the
graph structure and the potential functions ψα and therefore
is unlikely to have a simple and useful form.

C. Convex-max-product Algorithm

We saw that for the setting of ε = 0 and when H̃ equals the
Bethe entropy approximation then the norm-product becomes
the max-product algorithm. We now explore the convex-free-
energy setting cα > 0, ci, ciα ≥ 0 while ε = 0 and refer
to the resulting family of algorithms as convex-max-product
summarized in Fig. 3.

Note that when ciα = 0 we obtain a much simpler form of
the algorithm where the message ni→α(xα) depends only on
xi described in eqn. 14:

Algorithm 5 (Convex-Max-Product when ciα = 0): Repeat
until convergence:

1) For i = 1, ...n and for all α ∈ N(i) do:

mα→i(xi) = max
xα\xi

ψα(xα)
∏

j∈N(α)\i

nj→α(xj)



ni→α(xi) ∝

φi(xi) ∏
β∈N(i)

mβ→i(xi)

cα/ĉi

mα→i(xi)

The desired output vector bi(xi) is recovered from computing
the vector φ1/ĉi

i (xi)
∏
α∈N(i)m

1/ĉi
α→i(xi) as follows. If there

are no ties, bi(xi) is determined by setting the highest value
to 1 and all remaining entries to 0. If the highest value of the
vector is shared among ri > 1 entries, i.e., there exist ties, then
those entries receive the value 1/ri. If there are no ties, i.e.,
ri = 1 for i = 1, ..., n, then the result is the MAP solution.

The setting ε = 0 raises two issues (i) if the algorithm
converges, can one obtain from them the optimal LP-relaxation
solution?, and (ii) is there a convergence guarantee of the
convex-max-product family? The answer to the first question
is generally negative. In a nutshell, the primal function fε=0

is convex but no longer strictly convex and therefore the dual
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Algorithm 4 (Max-Product Belief Propagation type): We are given nonnegative local evidence φi(xi), and nonnegative
arrays ψα(xα), where α ⊂ {1, ..., n}. Let ĉiα = cα + ciα and ĉi = ci +

∑
α∈N(i) cα.

1) Set ni→α(xα) = 1 for all i = 1, ..., n, α ∈ N(i) and xα.
2) For t = 1, 2, ...

a) For i = 1, ...n do:

∀xi ∀α ∈ N(i) mα→i(xi) = max
xα\xi

ψα(xα)
∏

j∈N(α)\i

nj→α(xα)


∀α ∈ N(i) ∀xα ni→α(xα) ∝


φ

1/ĉi
i (xi)

∏
β∈N(i)

m
1/ĉi
β→i(xi)

m
1/ĉiα
α→i (xi)


cα ψα(xα)

∏
j∈N(α)\i

nj→α(xα)

−ciα/ĉiα

Fig. 3. Max-product belief propagation type algorithm, attained from the norm-product belief propagation when ε = 0, where the messages mα→i(xi) are
computed with the L∞ norm. For cα = 1, ci = 1− di, ciα = 0 it reduces to the max-product belief propagation algorithms. Whenever cα is the weighted
number of spanning trees through edge α, and ci = 1 −

∑
α∈N(i) cα and ciα = 0 it reduces to max-TRBP. For cα = 1, ci = (1 − di)/2, ciα = 0 it

reduces to the NMPLP algorithm. If cα > 0, ci, ciα ≥ 0 it reduces to the convex-max-product algorithm, which is a convergent max-product type algorithm
for LP-relaxations.

function is no longer differentiable. A dual ascent approach on
a non-differentiable dual function can get stuck at ”corners”.
The implication of getting stuck at a corner of the energy
landscape is that the recovered primal solution bε=0 might
not correspond to the lowest primal energy and furthermore
might not satisfy the marginal consistency constraints. More
details can be found in Appendix B-B.

We consider now the the second question of whether the
dual ascent creates a converging sequence? The answer is
positive, i.e., the convex-max-product algorithm is convergent
(unlike max-product on general graphs).

Theorem 1 (Convergence, Convex-max-product): The
norm-product algorithm with the parameter setting of ε = 0
and cα > 0, ci, ciα ≥ 0 is convergent.
Proof: Let qε(λ1, ...,λn) represent the conjugate dual
eqn. 21:

qε(λ1, ...,λn) = −f∗ε (−
∑
i

λi)−
n∑
i=1

h∗ε,i(λi),

and let q0(λ1, ...,λn) be the limit of qε as ε→ 0. The explicit
form of the conjugate duals f∗ε and h∗ε,i are:

f∗ε (λ) =
∑
α

ln ‖ψα(xα) exp(λα(xα))‖1/εcα (15)

h∗ε,i(λ) = ln

∥∥∥∥∥∥φi(xi)
∏

α∈N(i)

‖xα\xi exp(λα(xα))‖1/εciα

∥∥∥∥∥∥
1/εci

,(16)

where ‖xα\xiz(xα)‖pp =
∑

xα\xi |zα(xα)|p. The functions

f∗0
def
= f∗ε→0 and h∗0,i

def
= h∗ε→0,i are well defined and thus,

q0(λ1, ..., λn) = −f∗0 (−
∑
i

λi)−
n∑
i=1

h∗0,i(λi),

is well defined as well. By definition of the block ascent
scheme, let λε,i ∈ argmaxλiqε(λ1, ...,λn). We note that
λ0,i = limε→0 λε,i is well defined because ε appears as a
norm in the definition of the message ni→α.

We use the shorthand qε(λε,i) instead of
qε(λ1, ...,λi−1,λε,i,λi+1, ...,λn). We wish to show that
λ0,i ∈ argmaxλi

q0(λ1, ...,λn).
Assume to the contrary that λ0,i 6∈ argmaxλi

q0(·) and let in-
stead λ̂0,i ∈ argmaxλi

q0(·), thus making q0(λ̂0,i) > q0(λ0,i).
Since q0 = limε→0 qε, there exists ε0 such that for all ε ≤ ε0
we have qε(λ̂0,i) > q0(λ0,i) as well. Likewise, using the
limit argument on the right-hand side, qε(λ̂0,i) > qε(λ0,i).
Finally, since λ0,i = limε→0 λε,i, and qε is continuous, we
have qε(λ̂0,i) > qε(λε,i) which contradicts the fact that
λε,i ∈ argmaxλi

qε(·).

We conclude that the convex-max-product, unlike max-
product, is convergence guaranteed, since it iteratively im-
proves the dual objective which is bounded by the primal
objective. The convex max-product is guaranteed to recover
the MAP assignment if its beliefs are integral. However, in
many cases we can use the rounding scheme for the max-
product type algorithms which guarantees the MAP if the
beliefs recovered from the messages are without ties [65].

V. EXPERIMENTS

In our experiments we first evaluated the quality of the
max-product type algorithms for solving a linear program with
pairwise interactions and binary variables

min
bi,bi,j∈L(G)

∑
i,xi∈{0,1}

θi(xi)bi(xi)+
∑

(i,j)∈E,xi,xj∈{0,1}

θi,j(xi, xj)bi,j(xi, xj)

The max-product type algorithms differ from each other by
their approximated entropy coefficients cα, ci, ciα, but since
the linear program has no entropy terms, all these algorithms
aim at producing the same result. We distinguish between three
families of max-product type algorithms:
• The first family corresponds to non-concave entropy

approximation, such as the Bethe free energy whose
coefficients cα = 0, ci = 1 − di and ciα = 0 produce
the max-product algorithm. These algorithms are not
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guaranteed to converge and even if they converge there
are no guarantees on their solution.

• The second family corresponds to concave entropy ap-
proximations with positive cα, negative ci and ciα = 0.
The notable member of this family is the max-TRBP
algorithm [63], whose cα is the weighted number of
spanning trees which pass through the edge α and ci =
1−

∑
α∈N(i) cα. These max-product type algorithms are

not guaranteed to converge, but whenever they converge
one can extract an optimal solution for a pairwise linear
program with binary variables, cf. [31] theorem 4 and
[38] corollary 2.

• The third family corresponds to concave entropy ap-
proximation with cα, ci, ciα ≥ 0. These convex-max-
product algorithms are guaranteed to converge to the
global optimum for a pairwise linear program with binary
variables, cf. [38] corollary 2 and [18] proposition 3.

We used the implementation of the max-product type algo-
rithm described in Algorithm 4, while each algorithm differs in
its appropriate cα, ci, ciα. To evaluate the performance of the
algorithms we generated 100 samples of 10× 10 grids, where
θi and θi,j were sampled from zero mean Gaussians with
standard deviation of one. We set the local evidence according
to θi(xi) = θi(−1)xi , and for the pairwise interactions
θi,j(xi, xj) we set the value θi,j on their diagonal and −θi,j
on their off-diagonal.

First we investigated the convergence properties of three
representatives of the max-product families described above:
The max-product algorithm, the max-TRBP described in [63],
and the convex max-product with the same tree-reweighted
free energy, represented by cα, ci, ciα ≥ 0 as described in Ap-
pendix D. The convergence criterion for the max-product and
max-TRBP algorithms was measured with respect to change
in their messages, whereas the convergence criterion for the
convex-max-product was measured with respect to change
in its dual function. The max-product algorithm converged
for 25% of the runs, the max-TRBP converged for 90% of
the runs, and as expected from Theorem 1 the convex-max-
product always converged. However, the convex max-product
was slower than max-TRBP, while we measured the primal
values obtained by both algorithms during their runs. Over
the runs the max-TRBP converged in average number of 430
iterations compared to an average of 6400 of the convex-max-
product with tree-reweighted parameters.

Next we compared the run-time of three representatives of
the converging max-product: The convex-max-product with
tree-reweighted free energy, the NMPLP of [18] and the
convex-max-product with cα = 1, ci = 0, ciα = 0 which
was referred as ”trivial convex-max-product” by [65]. We
measured their convergence with respect to the change in their
dual objective: The NMPLP converged in average number of
200 iterations, the trivial convex-max-product converged in
average of 260 iterations, and the convex-max-product with
tree-reweighted free energy converged in average of 6400
iterations.

To conclude, for linear programs with pairwise interactions
and binary variables the convex-max-product algorithms im-
prove upon previous max-product type algorithms: They are

guaranteed to converge to the global optimum. However the
convex-max-product algorithms differ from each other in their
memory requirements and run-time. Among those algorithms,
the ones with ciα = 0 requires less memory, as their messages
ni→α depend only on xi, and have a faster run-time.

The norm-product family of algorithms can also solve linear
program using the perturbation method for a small value of
ε, as described in Proposition 1. However the convex-max-
product algorithms are computationally more efficient, and
guaranteed converge to the global optimum of linear program
with pairwise interactions and binary variables. Therefore we
evaluate the convex-norm-product type algorithms over linear
programs with non-binary variables

min
bi,bi,j∈L(G)

∑
i,xi∈{1,2,3}

θi(xi)bi(xi) +
∑

(i,j)∈E,xi,xj∈{1,2,3}

θi,j(xi, xj)bi,j(xi, xj)

For these programs the convex-norm-product algorithms are
guaranteed to converge to the global optimum, whereas the
convex-max-product can converge to non-optimal stationary
point. To evaluate the performance of the convex-norm-
product we generated 100 samples of 10 × 10 grid where
θi(xi) and θi,j were sampled from zero mean Gaussians with
standard deviation of one, and θi,j(xi, xj) were given the value
θi,j on their diagonal and −θi,j on their off-diagonal.

We measured how often the convex-max-product algorithm
converges to non-optimal stationary points, comparing to the
convex-norm-product which always achieves its optimum as
described in Claim 8. To indicate these events we compared
the dual value of the linear program, which is evaluated by the
convex-max-product stationary messages and by the convex-
norm-product messages, setting ε = 0.001 and cα = 1, ci =
0, ciα = 0. For 60% of the runs, the dual values attained by
the convex-max-product and the convex-norm-product were
0.01 close to each other, indicating both algorithms reached
the maximal dual value. On the other hand, for 25% of the
runs the dual value of the linear program attained by the
convex-max-product messages was 0.1 lower than the one
attained by the convex-norm-product messages, indicating the
convex-max-product reached a non-maximal dual value. This
fact has important practical implications: Only from the dual
optimal solution one can recover the optimal beliefs that solve
the primal linear program, while non-optimal dual messages
always relate to non-consistent beliefs. In particular for the
25% of the runs the convex-max-product did not produce
beliefs which agree on their marginal probabilities, whereas
the convex-norm-product always recover beliefs which satisfy
the primal linear program constraints.

In our experiments we also evaluated the sum-product type
algorithms for approximating the marginal probabilities of
distribution p(x) of the form

p(x) ∝ exp

∑
i,xi

θi(xi) +
∑
α,xα

θα(xα)


The variational framework for approximating marginal prob-
abilities, described in Section II-A, suggests that the approx-
imated entropy term affects the quality of the approximated
marginal probabilities. Although we do not have a theoretical
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guarantee for setting the best approximation, in these exper-
iments we show how the different approximations behave in
practice. We consider two types of free energy approximations:
• Non-convex free energy approximations, represented by

the Bethe approximation which corresponds to cα =
1, ci = 1− di, ciα = 0. The sum-product algorithm aims
at finding a local minimum for the Bethe free energy
approximation, but it is not guaranteed to converge. In
cases where it does not converge we used the double
loop algorithm [22] in libDAI [40], which is guaranteed
to converge to a stationary point of the Bethe free energy.

• Free energy approximations which are convex in the
intersection of the marginalization constraints. These ap-
proximations are appealing since their stationary points
are their global minimum. We address the tree-reweighted
free energy approximations whose cα, ci, ciα correspond
to spanning trees in the graph, and also to L2 convex free
energy approximation heuristic described in Appendix D.
We note that whenever cα, ci, ciα ≥ 0 the corresponding
convex-sum-product algorithms are guaranteed to con-
verge to the global optimum.

We used the implementation of the sum-product type algo-
rithm described in Algorithm 3, while each algorithm differs
in its appropriate cα, ci, ciα. Following [62] We generated
100 samples of 10 × 10 grids with binary variables xi ∈
{0, 1}, where θi were uniformly chosen from the interval
[−0.05, 0.05], and θi,j were either chosen uniformly from the
attractive interval [0, ω] or the mixed interval [−ω, ω]. We ran
the simulations with edge strength ω ranging from 0 to 2.
We set the local evidence to θi(xi) = θi(−1)xi , and for the
pairwise interactions θi,j(xi, xj) we set the value θi,j on their
diagonal and −θi,j on their off-diagonal.

We compared to true marginal probabilities with the ap-
proximated marginal probabilities recovered from the Bethe
free energy approximation, tree-rewighted free energy ap-
proximation, and the L2 convex-free-energy heuristic. Fig.
4 shows the average L1 error in the marginal probabilities

1
100

∑
i |p(alg)(xi = 1)− p(true)(xi = 1)|.

We conclude from this experiment that the convex ap-
proximations are better than the Bethe approximation for the
attractive settings, when θij ≥ 0. However, the Bethe approx-
imation is slightly better in the mixed settings for ω < 1 and
considerably worse for ω > 1. Moreover, in the mixed settings
the sum-product did not converge for ω > 1 and we used
the double-loop algorithm instead which is computationally
more expensive. We also conclude that the L2 convex free
energy settings produce comparable results to tree-rewiehted
free energy for grids.

We also compared the tree-reweighted and L2 convex free
energy approximated marginal probabilities on the complete
graph, i.e. every two vertices are connected with an edge. We
generated 100 samples of complete graphs with 10 vertices
with binary variables, where θi were uniformly chosen from
the interval [−0.05, 0.05], and θi,j were chosen uniformly from
the interval [0, ω], for ω ranging from 0 to 2. Fig. 5 shows
the average L1 error in marginal probability, suggesting that
in the case of complete graph, whose structure is far from
a tree, the L2 convex approximation heuristic is better than

Fig. 4. Comparison of error in marginal probabilities, estimated by
Bethe free energy, tree-reweighted free energy and L2 convex free en-
ergy described in Appendix D. We computed the Bethe approximation
by applying the sum-product when converged, and the double-loop
algorithm otherwise. The other free energy approximations are convex
and the convex-sum-product algorithm is guaranteed to converge to
their optimum. The graphs present the average error over 100 random
trials

Fig. 5. Comparison of error in marginal probabilities on a complete
graph, estimated by tree-reweighted free energy approximation and
L2 convex free energy approximation. The graphs present the average
error over 100 random trials

the tree-reweighted approximation for marginal probabilities
estimation.

Generally, the same convex free energy can be represented
by different coefficients cα, ci, ciα. In particular, the tree-
reweighted free energy can be described by positive cα, which
correspond to the weighted number of spanning trees that go
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Fig. 6. Run-time (in seconds) comparisons of convex-sum-product
against a conditional gradient descent solver (running on convex-
L2 free energy). The algorithms were applied to n × n grids with
n = 2, 3..., 10. Mean is shown for 10 random trials.

through the edges α, and negative ci = 1 −
∑
α∈N(i) cα and

ciα = 0. However, the same tree-rewieghted free energy can
be represented by cα, ci, ciα ≥ 0, as explained in Appendix D.
These representations affect their corresponding sum-product
type algorithms: The first representation corresponds to the
sum-TRBP algorithm which is not guaranteed to converge,
whereas the second representation corresponds to the convex-
sum-product which is guaranteed to converge. However, the
convex-sum-product was slower than sum-TRBP, while we
measured the primal values obtained by both algorithms during
their runs. Similar results were reported in [17].

Fig. 6 compares the running time of the convex-sum-product
algorithm with a general convex solver performing conditional
gradient descent on the primal energy function [4] which uses
linear programming to find feasible search directions. We ran
the algorithms on n × n grids where n = 2, 3, ..., 10. The
stopping criteria for all algorithms was the same and based on
a primal energy difference of 10−5. For a 10 × 10 grid, for
instance, the general convex solver was slower by a factor of
20 (e.g., 306 seconds compared to 15.2). For a 2 × 2 grid,
on the other hand, convex-sum-product took 0.15 seconds
compared 1.41 seconds for the general convex solver. We
conclude that the sum-product type algorithms converge faster
than a general convex solver, since they exploit the structure
of the graph.

VI. DISCUSSION

We have presented a single unified message-passing frame-
work for approximate inference covering both marginal prob-
abilities estimation and the MAP assignment problem through
LP-relaxation. We took a general perspective on the existing
BP and TRBP algorithms and noted that all are reductions
from the basic optimization formula of f +

∑
i hi where the

function f is an extended-valued, strictly convex but non-
smooth and the functions hi are extended-valued functions
(not necessarily convex). We used tools from convex duality
to present the ”primal-dual ascent” algorithm which is an ex-
tension of the Bregman successive projection scheme. Most of
the details of this part of the paper was pushed to Appendix B

in order to reduce the overall technical load for the main-body
presentation.

We then mapped the fractional-free-energy variational prin-
cipal for approximate inference onto the optimization struc-
ture f +

∑
i hi and introduced the ”norm-product” message-

passing algorithm. Special cases of the norm-product include
sum-product and max-product (BP algorithms), TRBP and
NMPLP algorithms. When the fractional-free-energy is set to
be convex (convex-free-energy) the norm-product is globally
convergent for the estimation of marginal probabilities (the
convex-sum-product branch corresponding to ε = 1) and
for approximating the LP-relaxation (ε → 0). We have also
introduced another branch of the norm-product which arises
as the ”zero-temperature” of the convex-free-energy (ε = 0)
which we referred to as the convex-max-product. The convex-
max-product is a convergent solver to the LP-relaxation (un-
like max-product) but is not guaranteed to reach the global
optimum.

As a general statement, the convex-free-energies provide a
way for obtaining approximate inference over general graphs.
There are two main issues in this regard: the first is how
to obtain a guaranteed globally convergent message-passing
algorithm for the general class of convex free energies, and
secondly, how to tune the energy parameters ci, ciα, cα to a
specific graph?

As for the first issue, we have provided a complete treatment
which also encompasses the existing BP and TRBP algorithms
(though they do not arise from a convex-free-energy but
from a non-convex fractional-free-energy). As for the second
issue, we provided a simple algorithm for converting the
conventional TRW-free-energy settings to the convex-free-
energy framework and have also proposed a heuristic principle
where among all admissible parameters we choose the one
most closest to the Bethe free energy (Appendix D). Empirical
results show that for certain graphs, like a grid, we obtain very
close marginal probability estimation results to those obtained
by the TRW free energy. For complete graphs we obtain a
very different free energy from TRW and superior accuracy
of marginal probability estimation. The results suggest that our
heuristic for setting up the convex free energy satisfies what
we were after, i.e., to get approximations similar to BP but in
guaranteed (globally) convergent framework.

In this work we limited the scope to factor graphs where
the neighborhoods of every pair of factor nodes have at most a
single intersection to give a clear description of the mathemat-
ical details presented in this work. However, the techniques
presented here can also be used as a basis to a convex
and non-convex generalized belief propagation [69]. Different
algorithms were recently developed for tightening the LP-
relaxation [51], [53], [32] using intersections of increasingly
larger clusters in order to recover the MAP assignment. We
believe similar techniques can be applied to convex free
energies in order to tighten the bound on the log-partition
function.

We did not discuss the parallel implementation of the norm-
product algorithm, but as every message-passing algorithm it
can be parallelized: One can distribute to the different parallel
units an independent set of vertices, i.e. vertices which are
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not connected to each other in the graph. This mechanism
preserves the convergence and optimal guarantees of the
algorithm. The norm-product can also be made fully parallel,
as it is a generalization of the belief propagation algorithm,
but in this case convergence is no longer guaranteed. This can
be fixed by methods described in [19].

The convergence rate and the complexity analysis of the
norm-product algorithm were not addressed in this work. Since
the convex norm-product algorithm performs a dual block
ascent it has a linear convergence rate, whenever ε, cα, ci >
0, ciα = 0 (cf. [36] Theorem 5.1), i.e. it achieves a δ-optimal
solution in O(log(1/δ)) steps. However, this notation does not
capture the true complexity of the algorithm as O(log(1/δ))
depends on unknown constants which can be very large.
For this purpose complexity bound were recently introduced,
where it was proved that the dual gradient ascent attains linear
complexity, (cf. [42] Theorem 2.1.13, [57] Theorem 5.1).
Although the convex norm-product can be modified to achieve
linear complexity its step size depends on ε, cα, ci and the
modified algorithm is inefficient compared to the convex norm-
product. We believe this due to the fact that the convex norm-
product finds the optimal dual assignment λi in each step,
unlike the gradient methods. Generally, a complexity bound for
block coordinate ascent algorithms such as the convex norm-
product is an open problem.

Future work is also required for obtaining a firmer theo-
retical understanding about how to set the concave entropy
approximation, in order to guarantee a good approximation for
the marginal probabilities. For example, how tight is the TRW-
entropy bound, and whether one can find a family of trees
which guarantees the best bound? Clearly, these theoretical
guarantees must consider the potentials functions, since for
every graph its TRW-entropy can be made arbitrary close to
the true entropy for some potentials.

APPENDIX A
MATHEMATICAL BACKGROUND ON CONJUGATE DUALITY

We consider the n-dimensional Euclidean space Rn and
denote vectors in bold face, e.g. x ∈ Rn. We start with a
brief review of basic concepts of sets. A set S is said to be
closed if every of its limit points is contained the set. A set S is
called open if its complement Rn\S is closed. The interior of
a set S, denoted by int(S), is the largest open set contained
in S. The closure of a set, cl(S), is the smallest closed set
containing S. A point x is a boundary point of S if x ∈ cl(S)
and x 6∈ int(S) or equivalently if every neighborhood of x
contains at least one point of S and at least one point not of
S. A set C is called convex if it contains the line-segment
between any two points x and y in the set. That is, for every
0 ≤ λ ≤ 1 the point λx + (1− λ)y ∈ C.

For our purposes, since we deal with low-dimensional sets
placed in higher-dimensional spaces, we use the concept of
relative interior denoted by ri(S) which, defined intuitively,
contains all points which are not on the ”edge” of the set,
relative to the smallest affine subspace in which this set lies.
For example, for a convex set C, x ∈ ri(C) if and only if
∀y ∈ C there exists z ∈ C and 0 < λ < 1 such that x =
λz + (1− λ)y.

The graph of a function f(x) is the curve {(x, f(x)) : x ∈
Rn}, and define the epigraph of a function f(x), denoted
by epi(f), as the set above its graph, namely {(x, r) : x ∈
Rn, r ≥ f(x)}. A functions is called closed if its epigraph is
a closed set. A function is said to be convex if its epigraph is
a convex set. A function is called strictly convex if any line
segment in its epigraph intersects with its relative interior. A
twice differentiable function is convex if its matrix of second
derivatives, called the Hessian, is positive semidefinite, and
strictly convex if its Hessian is positive definite.

In this paper we work with functions that can take the value
of infinity and as such are non-differentiable. Such functions
are known as extended-valued:

Definition 2 (Extended-Valued, Proper): A function f(x)
is said to be extended real-valued if −∞ ≤ f(x) ≤ ∞.
The effective domain of f(x) is denoted by dom(f) =
{x : f(x) < ∞}. A function is said to be proper if
−∞ < f(x) ≤ ∞, and it obtains at least one finite value.

Proper functions typically arise when constraints are embed-
ded into finite valued functions. For example, the indica-
tor function associated with a convex set C is defined by
δC(x) = 0 when x ∈ C and δC(x) = ∞ otherwise. A
possible use of the indicator function is to constrain a finite
valued function f̂ with the set convex set S to define a proper
function f = f̂ + δS . We define next the type of smoothness
used throughout this paper:

Definition 3 (Essentially Smooth): Let f be a proper and
convex function differentiable throughout the non-empty set
C = int(dom(f)). Then f is called essentially smooth if
limk→∞ ‖∇f(xk)‖ = ∞ whenever xk is a sequence in C
converging to a boundary point x in C.

Necessary and sufficient conditions for a function to be
essentially smooth are described in the following theorem:

Theorem 2 (Legendre type): A closed and proper convex
function f(x) is essentially smooth if and only if it is differ-
ential in its interior C = int(dom(f)), i.e. ∂f(x) = ∇f(x)
for every x ∈ C, while ∂f(x) = ∅ when x 6∈ C. If f(x)
is also strictly convex on C it is called a convex function of
Legendre type, and its gradient mapping ∇f : C → Rn is
continuous and one-to-one, and ∇f∗ = (∇f)−1.

Proof: [46], Theorem 26.1 and Theorem 26.5

The sets {x : a>x ≥ b} and {x : a>x ≤ b}, are called the
closed half-spaces associated with the hyperplane {x : a>x =
b}. We say that two sets C1, C2 are separated by a hyperplane
if each set lies in a different closed halfspace associated with
the hyperplane. If a vector x̄ is a boundary point of a set
C, then a hyperplane that contains the singleton {x̄} and one
of its halfspaces contains C is said to be supporting C at
x̄. In other words, a supporting hyperplane is a hyperplane
that ”just touches” the set C. If C is a convex set then there
exists a supporting hyperplane for every point on its boundary.
Supporting hyperplanes play a role in the definition of the sub-
gradient of a non-differentiable function. A vector λ is called
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a subgradient of a convex proper function f at x if

∀z f(z) ≥ f(x) + λ>(z− x). (17)

This condition has a simple geometric meaning: it says that
the affine function h(z) = f(x) + λ>(z − x) is a (non-
vertical) supporting hyperplane to the convex set epi(f) at the
point (x, f(x)). Consequently, the set of subgradients λ at x,
called the subdifferential of f at x and is denoted by ∂f(x),
consists of the supporting hyperplanes to the convex set epi(f)
at the point (x, f(x)). When f is differentiable at x then the
supporting hyperplane is unique and ∂f(x) = ∇f(x).

Definition 4: The sub-differential of a function f at a point
x is denoted by ∂f(x) and consists of all the supporting
hyperplanes of epi(f) at the point x, namely

∂f(x) = {λ : ∀z f(z) ≥ f(x) + λ>(z− x)}

The following claim describes the sub-differential of the
indicator function associated with affine sets (a useful result
which will serve us later):

Claim 3: Let A be k×n matrix and consider the affine set
B = {x : Ax = c} and its indicator function

δB(x) =

{
0 Ax = c
∞ otherwise

Then ∂δB = {A>σ : σ ∈ Rk}.
Proof: This claim results as a special case of [4] example
7.1.4. For the sake of clarity we provide a direct proof. We
describe the sub-differential ∂δB(x) for every point x in the
domain of δB, i.e., δB(x) = 0. To prove the direction ∂δB ⊇
{A>σ : σ ∈ Rk} we must show that δB(z) ≥ δB(x) +
σ>A(z− x) for every z. For every z satisfying Az = c this
relation holds since δB(z) = 0 and A(z − x) = 0. For every
z with Az 6= c this relation holds since δB(z) =∞.

To prove the other direction ∂δB ⊆ {A>σ : σ ∈ Rk} we
must show that δB(z) ≥ δB(x)+λ>(z−x) only if λ = A>σ
holds for every z. First we note that the set {z−x : Az = c}
is orthogonal to {A>σ : σ ∈ Rk}, therefore if we assume
on the contrary that λ 6= A>σ there must be a vector z0 − x
with non-vanishing angle with λ, namely λ>(z0 − x) > 0
therefore Definition 4 does not hold for λ.

Claim 4: Consider a function f whose domain is contained
in the affine set B = {x : Ax = c}. Then whenever λ ∈
∂f(x) there holds (λ +A>σ) ∈ ∂f(x) for every σ.
Proof: f(x) can be equivalently written as f(x)+δB(x) where
δB is the indicator functions of the affine set B, therefore ∂f =
∂(f + δB). From the linearity of the sub-differential, cf. [4]
Theorem 4.2.4, there holds ∂(f(x)+δB(x)) = ∂f(x)+∂δB(x)
and the claim follows since λ ∈ ∂f(x) by assumptions, and
A>σ ∈ ∂δB(x) from Claim 3.

A supporting hyperplane at x with λ-slope must satisfy
Definition 4, namely

∀z f(z)− λ>z ≥ f(x)− λ>x,

therefore it must hold that the λ-slope hyperplane supports the
epigraph at (x, f(x)) where x ∈ argmin{f(z) − λ>z}. This
leads to the definition of the conjugate function:

Definition 5: The Fenchel-Legendre conjugate is:

f∗(λ) = max
x∈dom(f)

{(λ>x− f(x)}.

The conjugate f∗(λ) describes the offset of the λ-
hyperplane that supports the epigraph of f . Note that regard-
less of the structure of f(x) its conjugate function f∗(λ) is
closed and convex, since it is the pointwise maximum of a
collection of affine (closed) functions. Furthermore, if f is
convex then the conjugate of its conjugate returns back f , i.e.,
f∗∗ = f (cf. [4], Theorem 7.1.1). The following claim is a
useful result which shall serve us later:

Claim 5: Let g∗(λ) = f∗(λ−µ), then g(x) = f(x)+µ>x

Proof: The definition of the Fenchel-Legendre conjugate of
g(x) = f(x) + µ>x takes the form g∗(λ) = maxx{λ>x −
µ>x − f(x)} which has the form in the claim since λ>x −
µ>x = (λ− µ)>x

The convex conjugate plays an important role in duality.
Consider contrained minimization under linear constraints
Ax = 0, i.e., a>1 x = 0, ...,a>k x = 0 with a>i being the i’th row
vector of A. The statement about the existence of Lagrange
multiplier for non-differentiable functions is described next:

Theorem 3: (Lagrange multipliers)
Let f(x) be a proper convex function and consider the convex

program

min
x∈dom(f)

f(x) subject to Ax = 0.

Assume ri(dom(f)) intersect the linear constraints Ax = 0
and that the optimal value of the program is finite. Then there
exists Lagrange multipliers λ∗1, ..., λ

∗
k satisftying

x∗ ∈ argmin
x∈dom(f)

{f(x) +
∑
i

λ∗i ai} (18)

Proof: The assumptions 6.4.1 in [4] hold in this case and
following the Nonlinear Farkas lemma, as done in Theorem
6.4.2 in [4], completes the proof.

The duality theorem using the conjugate f∗ is described
below:

Theorem 4: (Strong Duality) Let f be a convex proper
function and ri(dom(f)) intersects with the constraints Ax =
0, and that the optimal value of the program is finite. The
following form a primal-dual pair:

(primal) min
x∈domain(f)

f(x) s.t. Ax = 0 (19)

(dual) max
λ=λ1,...,λk

−f∗(−A>λ) (20)

Then there is no duality gap and there exists primal-dual
optimal pair. Moreover, the vectors (x∗,λ∗) form a primal-
dual optimal pair f(x∗) = −f∗(−A>λ∗) if and only if the
following ”algorithmic certificate” for optimality hold:

x∗ ∈ dom(f) (feasibility)
0 ∈ ∂{f(x∗) +A>λ∗} (optimality)

Proof: The existence of primal-dual optimal pair follows from
Theorem 3. The rest follows from [4], Theorem 6.2.5
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Note that due to the linearity of the sub-differential ∂(f +
g) = ∂f + ∂g, the optimality condition above is equivalent to
−A>λ∗ ∈ ∂f(x∗).

To see the connection to Lagrangian duality, note that by
definition of f∗ we have:

−f∗(−A>λ∗) = min
x∈dom(f)

{f(x) +A>λ∗},

which in turn means that the primal-dual pair (x∗,λ∗) satisfy
x∗ ∈ argminx{f(x)+A>λ∗} where the right-hand side is the
Lagrangian L(x,λ) = f(x) + A>λ and the dual problem is
maxλ q(λ) where q(λ) = minx L(x,λ).

A proper convex function f(x) is essentially strictly convex
if it is strictly convex on every convex subset in dom(∂f). We
note below that in order for the dual function to be smooth
the primal must be strictly convex. A smooth dual is necessary
for a dual ascent scheme (described later).

Theorem 5: (strict primal ⇐⇒ smooth dual)
A closed proper convex function is essentially strictly convex

if and only if its conjugate it essentially smooth.
Proof: [46], Theorem 26.3

We describe below two Fenchel duality theorems which
are the functional form of the Lagrange duality where the
constraints are implicit in the functions domains:

Theorem 6: Basic Fenchel Duality I
Let g(x), h(x) be proper closed and convex functions and
ri(dom(g)) ∩ ri(dom(h)) 6= ∅, and the value of the program
is finite. The following are primal and dual programs:

Primal: min
x
g(x) + h(x)

Dual: max
λ
−g∗(−λ)− h∗(λ)

Then there is no duality gap, and there exists primal-dual
optimal pair. Moreover, the vectors (x∗,λ∗) are primal-dual
optimal pair if and only if −λ∗ ∈ ∂g(x∗) and λ∗ ∈ ∂h(x∗).
Conversely, by reversing the roles of primal and dual, the
vectors (x∗,λ∗) are primal-dual optimal pair if and only if
x∗ ∈ ∂g∗(−λ∗) and x∗ ∈ ∂h∗(λ∗). In particular, if g(x) is
essentially strictly convex and g∗(λ) is finite, then the optimal
x∗ is determined by x∗ ∈ ∇g∗(−λ∗).
Proof: We reduce Fenchel duality to Lagrange duality in The-
orem 4, where we consider a decomposed version of the primal
function f(xg,xh) = g(xg) + h(xh) subject to the linear
consistency constraints xg = xh. Note that the vector equality
constraint is composed from m equality constraints where m
is the length of the vectors xg and xh, therefore we expect to
use Lagrange multipliers vector λ of length n. The Lagrangian
L(xg,xh,λ) takes the form g(xg)+h(xh)+λ>(xg−xh) and
using the conjugate notation in Definition. 5 the dual function
q(λ) = minxg,xh L() takes the form in the theorem above.
Following Theorem 4 there exists primal-dual optimal pair
which must satisfy the feasibility condition, i.e. x∗g = x∗h,
and the optimality condition, namely −λ∗ ∈ ∂g(x∗g) and
λ∗ ∈ ∂h(x∗h). The theorem follows as the optimal x∗ must
equal x∗g as well as x∗h. Reversing the roles of primal and
dual are allowed by convexity whereby g∗∗ = g, h∗∗ = h.
Furthermore, since g∗(λ) is finite Theorem 5 determines

g∗(λ) to be smooth, and whenever x∗ ∈ ∂g∗(−λ∗) there
must hold x∗ ∈ ∇g∗(−λ∗).

The next theorem is generalizes the Fenchel duality theorem
above:

Theorem 7: Basic Fenchel Duality II
Let f(x), h1(x), ..., hn(x) be proper, closed and convex

functions and ri(dom(f))∩ri(dom(hi)) 6= ∅ and the optimal
value of the program is finite. The following are primal and
dual programs:

Primal: min
x
f(x) +

n∑
i=1

hi(x)

Dual: max
λ
{−f∗(−

n∑
i=1

λi)−
n∑
i=1

h∗i (λ)} (21)

Then there is no duality gap, and there exists prima-dual
optimal pair. Moreover, the vectors (x∗,λ∗i ) are primal-dual
optimal pair if and only if −

∑n
i=1 λ

∗
i ∈ ∂f(x∗) and λ∗i ∈

∂hi(x
∗). Also, if f(x) is essentially strictly convex and f∗(λ)

is finite, then x∗ = ∇f∗(−
∑
i λ
∗
i ).

Proof: The proof closely follows the one of Theorem 6 where
we consider a decomposed version of the primal function
f(xf )+

∑
i hi(xi) subject to the linear consistency constraints

xf = xi. The Lagrangian L() takes the form f(xf ) +∑
i hi(xi)+

∑
i λ
>
i (xf−xi) and the dual function q(λi) takes

the form in the theorem above. Following the Lagrange duality
in Theorem 4 there exists primal-dual optimal pair which must
be primal feasible, i.e., x∗f = x∗i , and satisfy the optimality
condition −

∑n
i=1 λ

∗ ∈ ∂f(x∗f ) and λ∗i ∈ ∂hi(x∗i ). Whenever
f(x) is essentially strictly convex and f∗(λ) is finite, repeating
the primal-dual reversing argument of Theorem 6 shows that
x∗ = ∇f∗(−

∑
i λ
∗
i ).

Algorithmically, minimizing the primal program f(x) +∑n
i=1 hi(x) requires to take into account the domains of f and

hi simultaneously. Therefore, it is algorithmically appealing to
solve the primal program in a piece-meal fashion using dual
block ascent, while iteratively improving a single vector λi.
This way one need to consider only sub-problems that consists
of f∗ and a single h∗i . After we recover the optimal λ∗i one
can recover efficiently the primal optimal x∗ by using the
smoothness of f∗ as describes in Theorem 7:

Algorithm 6 (Dual Block Coordinate Ascent): Initialize
λ1 = 0, ...,λn = 0.

1) Repeat until convergence:
2) For i = 1, ...n:

a) µi ←
∑
j 6=i λj

b) λi ← argmax
λi

{−f∗(−λi − µi)− h∗i (λi)}

Output x∗ = ∇f∗(−
∑
i λ
∗
i ).

The dual block ascent algorithm iteratively improves the dual
objective therefore is guaranteed to converge. Whenever f(x)
is strictly convex in its domain its conjugate is essentially
smooth and the dual block ascent is guaranteed to converge
to the global optimum, as formally described below:
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Theorem 8: (Dual Block Ascent) Let f, hi be closed con-
vex functions and assume the relative interior of their domains
intersect. In addition, assume hi are continuous over their
domains and f is strictly convex over its domain and f∗ is
finite. Then, the dual block ascent algorithm converges to the
dual and primal optimum.

In particular, if the dual sequence is bounded then every of
its limit points is an optimal dual solution λ∗1, ...,λ

∗
n. Also,

consider the primal sequence generated by ∇f∗(−
∑
i λi)

computed from the dual sequence, then this primal sequence
is bounded and its limit point is the optimal solution x∗.
Proof: [36].

APPENDIX B
THE PRIMAL-DUAL BLOCK ASCENT ALGORITHM

We describe an algorithm for solving programs of the form

f(b) +
∑
i

hi(b)

while solving sub-problems which consists of f(b) and a
single function hi(b). In our framework we include convex as
well as non-convex optimization, but for now we describe the
convex settings, and later describe the necessary conditions for
this optimization scheme for non-convex programs. The dual
block ascent method, described in Algorithm 6 decomposes
the optimization program to sub-problems which solve a
dual function which requires the explicit computation of the
conjugate functions f∗(λ) and h∗i (λ) — a task which is often
algorithmically unattractive or unfeasible. Instead, one can
recover λi in Algorithm 6 by solving its primal program and
using the primal-dual optimality condition in Theorem 6 as
follows. Set h(b)← hi(b) and g(b)← f(b) +b>µi and re-
call Claim 5 from which we obtain g∗(−λi) = f∗(−λi−µi),
and solve the primal program:

b∗ = argmin
b∈dom(f)∩dom(hi)

{
f(b) + b>µi + hi(b)

}
(22)

If the pair of functions f(b) and hi(b) satisfy the assump-
tions of Theorem 6 then the functions g(b)← f(b) + b>µi
and hi(b) satisfy these assumptions as well and, hence, λi
can be recovered from the optimality conditions of Theorem
6:

λ∗i ∈ {−µi − ∂f(b∗)} ∩ ∂hi(b∗) (23)

Taken together, one obtains the primal form of the dual
block ascent algorithm, in which one need not compute the
conjugate functions:

Algorithm 7 (Primal-Dual Vanilla): Let the functions f(b)
and hi(b) satisfy the conditions of Theorem 8. Initialize λ1 =
0, ...,λn = 0.

1) Repeat until convergence:
2) For i = 1, ...n:

a) µi ←
∑
j 6=i λj

b) b∗ ← argmin
b∈dom(f)∩dom(hi)

{
f(b) + hi(b) + b>µi

}
.

c) Recover λi ∈ {−µi − ∂f(b∗)} ∩ ∂hi(b∗)

Output b∗.

A useful property of the primal-dual algorithm (and its
special cases described in the sequel) is that the sparseness
structure of λi conforms to the local structure of the functions
hi in the following sense: assume the variables b are indexed
by 1, ...,m, and the function hi(b) depends on small subset
of variables indexed by N(i) ⊂ {1, ...,m}, then λ∗i,α contains
information only for α ∈ N(i) and the remaining entries
vanish.

Claim 6 (Locality of Dual Variables): Assume variables b
are indexed by {1, ...,m} and hi(b) depends only on a subset
of variables indexed by N(i) ⊂ {1, ...,m}, then the following
hold:

λ ∈ ∂hi(b) =⇒ ∀β 6∈ N(i) λβ = 0

Proof: Consider the decomposition of b to two parts
b = (bN(i),bN̄(i)), where N̄(i) is the complement
{1, ...,m} \N(i), and likewise for the sub-gradient λ. Fol-
lowing Definition 4 if λ ∈ ∂h(b) then

hi(b̂) ≥ hi(b) + λ>(b̂− b) ∀b̂. (24)

The linear term λ>(b̂ − b) decomposes to the sum of
λ>N(i)(b̂N(i) − bN(i)) and λ>N̄(i)(b̂N̄(i) − bN̄(i)). Since b̂ is
arbitrary we can choose b̂ = (b̂N(i), b̂N̄(i)) where b̂N(i) is set
to b̂N̄(i) = r(λN̄(i) − bN̄(i)) for some arbitrary scalar r > 0,
and b̂N̄(i) is arbitrary. Eqn. 24 then becomes:

hi(b̂) ≥ hi(b) + λ>N(i)(b̂N(i) − bN(i)) + rλ>N̄(i)λN̄(i),

for all r > 0. If we assume to the contrary that λN̄(i) 6= 0 then
we can increase the value of r and thus make the righ-hand
side of the equation arbitrarily high, while not effecting the
left hand side since hi(b̂) is independent of r by the claim
assumption (as hi depends only on the variables indexed by
N(i)) - in contradiction to λ ∈ ∂h(b).

The primal-dual algorithm is still unattractive as it requires
the evaluation of the sub-differentials of ∂f and ∂hi which
could be as difficult as the computation of the conjugate
functions. Our setting, however, is more constrained than the
setting described in Theorem 8. In particular, the function f =
f̂+δB where f̂ is essentially smooth and B = {b : Ab = c}
is an affine set. Since f is non-differentiable the dual is not
strictly convex, and thus we cannot expect λi to be uniquely
defined. Nevertheless, we show below that λi has a convenient
and simple form.

Claim 7: Let f(b) = f̂(b) + δB(b) where f̂ is essentially
smooth and B = {b : Ab = c} and assume that dom(hi) ⊆
dom(f). Assume the functions g(b) ← f(b) + b>µi and
h(b)← hi(b) satisfy the assumptions of Theorem 6. Then for
every real vector σ the sub-gradient λ∗i = −µi −∇fs(b∗) +
A>σ is optimal dual, i.e. satisfies Eqn. 23
Proof: Theorem 6 ensures the existence of a primal-dual pair
(b∗,λ∗) which satisfy Eqn. 23. The domains of f(b) and
hi(b) are contained in B by assumption, therefore by Claim
4

∀σ λ∗i +A>σ ∈ {−µi − ∂f(b∗)} ∩ ∂hi(b∗),
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meaning that for every σ the sub-gradient (λ∗i + A>σ) is
dual optimal. From linearity of the sub-differential we have
∂f(b∗) = ∇f̂(b∗) + ∂δB. Following Claim 3 the sub-
differential δB is represented by vectors in the linear subspace
spanned by the columns of A>, denoted by A>σ0. Using
again the linearity of the sub-differential we deduce

∀σ (λ∗i +A>σ) = −µi −∇f̂(b∗) +A>(σ − σ0)

is a dual optimal sub-gradient. The claim follows by replacing
λ∗i ← (λ∗i +A>σ).

Algorithm 8 (Primal-Dual Ascent): Let the functions f(b)
and hi(b) satisfy the conditions of Theorem 8 where in
addition let f(b) = f̂(b) + δB(b) where f̂(b) is essentially
smooth, B = {b : Ab = c} and dom(hi) ⊆ dom(f).
Initialize λ1 = 0, ...,λn = 0.

1) Repeat until convergence:
2) For i = 1, ...n:

a) µi ←
∑
j 6=i λj

b) b∗ ← argmin
b∈dom(f)∩dom(hi)

{
f(b) + hi(b) + b>µi

}
c) λi ← −µi −∇f̂(b∗) +A>σ

Output b∗.

Claim 8 (Convergence): Algorithm 8 converges to the dual
and primal optimum. Moreover, its primal sequence converges
to the primal optimal point b∗ and whenever its dual sequence
is bounded every of its limit point is an optimal dual solution
λ∗1, ...,λ

∗
n.

Proof: Algorithm 8 implicitly performs dual block ascent and
the dual sequence it generates is identical to the dual sequence
generated by Algorithm 6 therefore inherits the features de-
scribed in Theorem 8. Theorem 6 relates b∗ with the primal
sequence describe in Theorem 8 by b∗ = ∇f∗(−λi − µi)

The special case of Algorithm 8 when hi = δCi , where
Ci is a convex set, and f is essentially smooth, i.e., A =
0, can be mapped (by eliminating step 2(a)) to a successive
Bregman projection algorithm [6], [7] which is also known
under the names of Dykstra, Hildreth, Han and Csiszar. This
class of iterative projection schemes has a long history starting
from Von-Neumann in the 50s [43] who introduced the case
where f(b) = ‖b− b0‖2 and Ci are affine sets. In that case
the primal solution is to find the projection of b0 onto the
intersection of the affine sets C1∩...∩Cn and the sub-problem
in Eqn. 22 corresponds to the projection of µi onto the affine
set Ci. Hildreth [23] extended the problem with open half
spaces Ci = {x | a>i x ≤ bi}. Bregman [5] extended Hildreth’s
problem setup by including any strictly convex function f . The
special case of Entropy projections was introduced later by
Csiszar [10], as I-projections. Dykstra [12], [11] was the first
to introduce general convex sets Ci (i.e., going beyond affine
sets or half-spaces) but limited the treatment to f representing
the Euclidean norm and the KL divergence. The view of the
algorithm with general essentially smooth f and convex sets
Ci as performing successive Bregman projections is due to
[7], [6].

Algorithm 8 extends the body of iterative schemes men-
tioned above along three directions: (i) f is extended to

non-smooth functions which in turn makes λi non-uniquely
defined, (ii) as a result λi is defined up to an additive term
which in the context of the message-passing norm-product
algorithm (and its special cases) translates to the normalization
of the messages ni→α, and (iii) our algorithm has two auxiliary
variables, µi and λi, which allows a straightforward mapping
onto a message-mapping framework and complies with the
local structure of the underlying graph (Claim 1).

A. The non-convex case

So far both f and hi were convex, yet Algorithm 8 is
still well defined when the functions hi are non-convex. The
purpose of this section is to clarify what can be guaranteed
under such conditions. We will show that indeed there is no
convergence guarantees, but if the algorithm does converge
then it will do so to a stationary point of the primal program.

To minimize the program f(b) +
∑
i hi(b) one must in-

troduce Lagrange multipliers λ1, ...,λn. Whenever f(b) and
hi(b) are convex the Lagrange multipliers are the arguments
of the dual function, and recovering λ∗i amounts to improving
the dual objective with its best λi-arguments, therefore this
procedure is guaranteed to converge. When hi are non-convex
the Lagrange multipliers do not correspond to a dual function,
and thus recovering λ∗i amounts to finding a stationary point
with respect to a sub-problem involving f(b) and a single
hi(b), and convergence cannot be guaranteed in general.
Nevertheless, in each iteration we recover Lagrange multipliers
for a stationary point of a related sub-problem, therefore,
intuitively, if this method converges, it reaches a stationary
point of the non-convex program f(b) +

∑
i hi(b).

We consider programs with non-convex smooth functions
hi(b) restricted to the affine domain {b : Aib = ci}, and
Legendre-type function f(b), whose conjugate function is
finite. Recall Theorem 2, describing Legendre-type function
as an essentially smooth function which is strictly convex
in its interior and satisfies ∇f∗ = (∇f)−1. For this type
of non-convex programs we show in the following claim,
that if Algorithm 8 converges, it reaches a local-minimum of
f(b) +

∑
i hi(b):

Claim 9: Consider Algorithm 8 with A = 0 for Legendre-
type function f(b) and non-convex continuously differentiable
functions hi(b) restricted to the affine domain {b : Aib =
ci}, and assume b∗ in Eqn. 22 is in the interior of dom(f)
relative to the affine set dom(hi). Then if the algorithm
converges it reaches a stationary point of the non-convex
program f(b) +

∑
i hi(b).

Proof: The optimization

b∗,(i) = argmin
b∈dom(hi)

{
f(b) + b>µi + hi(b)

}
satisfies the conditions of the Lagrange multiplier Theorem 4
with respect to the affine set dom(hi), therefore if algorithm
converges there holds

(∗) ∀i ∇f(b∗,(i)) + µi +∇hi(b∗,(i)) +A>i ν
∗
i = 0

From steps 2a and 2c, for every i there must hold∑n
j=1 λj = −∇f(b∗,(i)). The conjugate of Legendre-type
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min
bi,bα,α∈N(i)

−∑
xi

bi(xi) lnφi(xi)−
∑

α∈N(i)

∑
xα

bα(xα) ln ψ̂i,α(xα)− εĉiH(bi)−
∑

α∈N(i)

εĉiα(H(bα)−H(bi))

 (25)

subject to :∑
xα

bα(xα) = 1,
∑

xα\xi

bα(xα) = bi(xi), ∀xα, α ∈ N(i)

Fig. 7. The local sub-problem of in step (b) of Algorithm 1 (min fε(b) + b>µi + hε,i(b)) solved by the norm-product algorithm.

function satisfies ∇f∗ = (∇f)−1 by Theorem 2, therefore for
every i holds b∗,(i) = ∇f∗(−

∑
j λi). This implies that the

local primal arguments b∗,(i) are the same for every i, and we
denote them by b∗. Summing up the relations in (*) we get

∑
i

∇hi(b∗) + n∇f(b∗) +

n∑
i=1

µi +

n∑
i=1

Aiν
∗
i = 0.

Substituting µi = −λi − ∇f(b∗) (from step 2c) we obtain
the stationary condition for b∗, i.e. ∇f(b∗) +

∑
i∇hi(b∗) +∑n

i=1Aiν
∗
i = 0.

B. The non-strictly convex case

The case ε = 0 in eqn. 7 corresponds to having a non-
strictly convex function fε in eqn. 10. This situation can be
analyzed in greater generality by observing the behavior of
Algorithm 7 when the function f is convex but not strictly
convex.

For convex f(b) and hi(b) the primal program in Eqn.
19 upper bounds the dual function in Eqn. 20, and the dual
block ascent optimization scheme which iteratively improves
the dual function must converge. If the function f(b) is not
strictly convex its conjugate is not smooth and the dual block
ascent is not guaranteed to reach the global optimum. We
describe, in a nutshell, where things go wrong in the Algorithm
7: Assume the algorithm converges, then for every i we obtain
the primal solution

b∗,(i) = argmin
b∈dom(f)∩dom(hi)

{
f(b) + b>µ∗i + hi(b)

}
Recovering the dual variables corresponds to finding λ∗i ∈
{−µ∗i − ∂f(b∗,(i))}. Recall that µ∗i =

∑
j 6=i λ

∗
j , then the

primal-dual relation boils down to −
∑
j λ
∗
j = ∂f(b∗,(i)) for

every i. If f was strictly convex it would have imply that all
the b∗,(i) are in fact the same b∗ and it would have ensure
optimality. Since f(b) is not strictly convex it means that the
algorithm might converge in the dual domain but we cannot
recover a consistent b∗.

APPENDIX C
THE NORM-PRODUCT ALGORITHM

We embed the function definitions of fε and hε,i into the
primal-dual Algorithm 1. Given the sparse structure of hε,i
then, following Claim 1, we present the entries of λi according

to the factor-graph structure by setting λi = {λi,α(xα)} (and
likewise µi,α). We first define few short-cut notations:

ψ̂i,α(xα)
def
= ψα(xα) exp(−µi,α(xα)), (27)

ĉiα
def
= cα + ciα,

ĉi
def
= ci +

∑
α∈N(i)

cα

Step (b) of Algorithm 1 is reduced to finding b∗α for all α ∈
N(i), described in eqn. 25 in Fig. 7:

We will derive the optimal b∗α and show it has a closed-form
solution. In the process we will be relying on the following
observation which we present as a Lemma, without a proof:

Lemma 1: Let ψ be a non-negative array and p∗ be the op-
timal probability array for the following optimization problem:

p∗ = argmin
p(x)≥0,

∑
x p(x)=1

{
−
∑
x

p(x) lnψ(x)−H(p)

}
,

then,

p∗(x) =
1∑

y ψ(y)
ψ(x) (28)

− ln
∑
x

ψ(x) = −
∑
x

p∗(x) lnψ(x)−H(p∗) (29)

We will be repeatedly using Lemma 1 in the derivation
of b∗α, as follows. Let bα|i(xα|xi) and H(bα|i) be defined
below:

bα|i(xα|xi)
def
=

bα(xα)

bi(xi)

H(bα|i)
def
= −

∑
xα\xi

bα(xα)

bi(xi)
ln
bα(xα)

bi(xi)
.

Note that the constraint bα|i(xα|xi) ∈ P , i.e., that bα|i
lives in the probability simplex, is equivalent to the marginal
consistency constraint

∑
xα\xi bα(xα) = b(xi) as well. We

can use H(bα|i) to simplify the conditional entropy term
H(bα)−H(bi) by the following Lemma:

Lemma 2:

H(bα)−H(bi) =
∑
xi

bi(xi)H(bα|i)

Proof: The Lemma is based on the definition of con-
ditional entropy H(X | Y ) = H(X,Y ) − H(Y ) =∑
y p(y)H(X | Y = y) for random variables X,Y . In our
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min
bi(xi)∈P


−
∑
xi

bi(xi) lnφi(xi)− εĉiH(bi) +
∑
xi

bi(xi)
∑

α∈N(i)

εĉiα

 min
bα|i∈P

−
∑

xα\xi

bα|i(xα|xi) ln ψ̂
1/(εĉiα)
i,α (xα)−H(bα|i)︸ ︷︷ ︸

(∗)


︸ ︷︷ ︸

(∗∗)


(26)

Fig. 8. Reducing the local sub-problem in Fig. 7 to a series of normalizations by introducing conditional entropies.

terms we have H(xα \ xi | xi) = H(bα) − H(bi) =∑
xi
bi(xi)H(bα|i).

With the definitions above, the optimization problem of step
(b) as described in eqn. 25, can be broken down to a cascade
of two steps, described in eqn. 26 in Fig. 8.

From Lemma 1 (eqn. 29) we obtain the solution for the
inner optimization block (∗):

(∗) = − ln
∑

xα\xi

ψ̂i,α(xα)1/(εĉiα).

We make the following definition:

mα→i(xi)
def
=

 ∑
xα\xi

ψ̂i,α(xα)1/(εĉiα)

εĉiα

(30)

Therefore, the inner-block denoted by (∗∗) takes the form:

(∗∗) = − ln
∏

α∈N(i)

mα→i(xi).

Substituting (∗∗) back into eqn. 26 we obtain:

min
bi(xi)∈P

εĉi

−H(bi)−
∑
xi

bi(xi) lnφ
1/εĉi
i (xi)

∏
α∈N(i)

m
1/εĉi
α→i (xi)


and from Lemma 1 (eqn. 28) we obtain a closed-form solution
for b∗i (xi):

b∗i (xi) ∝

φi(xi) ∏
α∈N(i)

mα→i(xi)

1/εĉi

. (31)

Finally, b∗α(xα) = b∗α|i(xα|xi)b
∗
i (xi) takes the form:

b∗α(xα) =
b∗i (xi)

m
1/εĉiα
α→i (xi)

ψ̂i,α(xα)1/(εĉiα) (32)

Next we evaluate step (c) of Algorithm 1, i.e.,

λ∗i,α(xα) = −µi,α(xα)−∇f̂ε(b∗α(xα)) + σα1, (33)

where σα is an arbitrary scalar and f̂ε is defined in eqn. 10.
Define ni→α(xα) as follows:

ni→α(xα)
def
= exp(−λi,α(xα)) (34)

We note, therefore, that the additive constant freedom in the
definition of λi,α becomes a scaling choice in the definition

of ni→α. Without loss of generality we choose the scale such
that ni→α(xα) ∈ P . The claim below sets the value of ni→α:

Proposition 2:

ni→α(xα) ∝

(
b∗i (xi)

m
1/εĉiα
α→i (xi)

)εcα
ψ̂i,α(xα)−ciα/ĉiα (35)

Proof: From definition of ni→α and from eqn. 33 we have:

ni→α(xα) ∝ exp(µi,α(xα)) exp(∇f̂ε(b∗α(xα))).

Substituting the value of ∇f̂ε(b∗α(xα)):

∇f̂ε(b∗α(xα)) = − lnψα(xα) + εcα(ln b∗α(xα) + 1),

and the value of b∗α(xα) from eqn. 32 we obtain:

ni→α(xα) ∝ exp(µi,α(xα)− lnψα(xα))(b∗α(xα))εcα

= ψ̂−1
i,α(xα)

(
b∗i (xi)

m
1/εĉiα
α→i (xi)

)εcα
ψ̂
cα/ĉiα
i,α (xα)

=

(
b∗i (xi)

m
1/εĉiα
α→i (xi)

)εcα
ψ̂
cα/ĉiα−1
i,α (xα)

and following substitution of ĉiα = cα + ciα we obtain what
we set out to prove.

Substituting µi,α =
∑
j∈N(α)\i λj,α into the definition of

ψ̂i,α (eqn. 27) we obtain:

ψ̂i,α(xα) = ψα(xα)
∏

j∈N(α)\i

exp(−λj,α(xα))

= ψα(xα)
∏

j∈N(α)\i

nj→α(xα) (36)

Substituting eqn. 36 into eqn. 30 we obtain the update rule for
mα→i:

mα→i(xi) =

 ∑
xα\xi

ψα(xα)
∏

j∈N(α)\i

nj→α(xα)

1/εĉiα

εĉiα

.

(37)
Substituting eqn. 36 into eqn. 35 we obtain:

ni→α(xα) ∝

(
b∗i (xi)

m
1/εĉiα
α→i (xi)

)εcα ψα(xα) ∏
j∈N(α)\i

nj→α(xα)


−ciα
ĉiα

,
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and substituting b∗i in eqn. 31 we obtain the update rule for
ni→α.

APPENDIX D
CONVEX-FREE-ENERGY PARAMETER SETTINGS

The fractional entropy approximation of eqn. 3∑
α

c̄αH(bα) +
∑
i

c̄iH(bi),

is strictly convex if it can be written as eqn. 4∑
α

cαH(bα) +
∑
i

ciH(bi) +
∑

i,α∈N(i)

ciα(H(bα)−H(bi)),

in terms of cα > 0, ci, ciα ≥ 0. In this section we will
introduce a number entropy approximations which fall into
the convex-free-energy class. We will start with the Tree-re-
weighted (TRW) entropy approximation [61] and then intro-
duce other approximations.

There are two ways, introduced in the literature so far, to
set parameters for the TRW entropy approximation — both
of which do not belong the required setup of a convex-free-
energy. In the first version, the TRW-free-energy corresponds
to the setting of cα > 0, ci = 1 −

∑
α∈N(i) cα and ciα = 0,

where the setting of cα corresponds to the relative number
of spanning trees (or hyper-trees) of the graph which include
the edge (hyperedge) α. The problem with this setting is that
ci < 0, thus, even though the fractional entropy approximation
is convex, the functions hi (defined in terms of ci and ciα)
are not convex.

The second version, introduced by [17], sets ci as the
relative number of spanning trees that have node i as a root,
and for an edge α = (i, j), ciα is the relative number of
trees that include the directed edge j → i. It is possible to
find such edge probabilities for the uniform distribution over
all spanning trees by employing a variant of the matrix tree
theorem for directed trees, [17], [58] p.141. In this formulation
ci, ciα > 0 but cα = 0. The problem with cα = 0 is that the
function f is no longer strictly convex.

In the claim below we show how to convert a TRW setting
according to the second version, i.e., where ci, ciα > 0, cα = 0
to the convex-free-energy setting c′α > 0, c′i, c

′
iα ≥ 0:

Claim 10: Assume an approximated entropy∑
α c̄αH(bα) +

∑
i c̄iH(bi) is described by ci, ciα > 0 and

cα = 0, i.e. c̄α = cα+
∑
i∈N(α) ciα and c̄i = ci−

∑
α∈N(i) ciα.

Then there exists c′α, c
′
i, c
′
iα > 0 which agree on the

approximated entropy, namely c̄α = c′α +
∑
i∈N(α) c

′
iα and

c̄i = c′i −
∑
α∈N(i) c

′
iα

Proof: We describe an efficient algorithm for constructing the
desired convex free energy: Initialize c′α = 0, c′i = 0, c′iα = 0.
For every i = 1, ..., n and every α ∈ N(i) consider the entropy
combination

ciα(H(bα)−H(bi)) +
ci
di
H(bi)

and divide it to two cases:

1) ciα ≤ ci/di, then the entropy can be equivalently written
by the entropy

ciαH(bα) +

(
ci
di
− ciα

)
H(bi)

therefore perform
a) c′α ← c′α + ciα
b) c′i ← c′i + ( cidi − ciα).

2) ciα > ci/di, then the entropy can be equivalently
presented as:

ci
di
H(bα) +

(
ciα −

ci
di

)
(H(bα)−H(bi)),

therefore perform
a) c′α ← c′α + ci

di
b) c′iα ← c′iα + (ciα − ci

di
).

Since ci, ciα are positive we obtain an equivalent entropy
approximation with c′α > 0 and c′i, c

′
iα ≥ 0. A straight

forward bookkeeping ensures that c̄α and c̄i do not
change.

Another concave approximation is to seek a setting of pa-
rameters cα > 0, ci, ciα ≥ 0 such that the approximation H̃ is
as close as possible to the non-convex Bethe approximation2.
Given the equations in Definition 1 connecting the parameters
cα, ci, ciα to c̄α and c̄i, the space of admissible solutions must
satisfy the following equations:

ci +
∑

α∈N(i)

(cα +
∑

j∈N(α)\i

cjα) = 1, i = 1, ..., n

ci, ciα ≥ 0, cα > 0.

Among all possible admissible solutions we choose the one in
which c̄α is as uniform as possible, i.e., we apply Laplace’s
principle of insufficient reasoning. The criterion function,
therefore, minimizes:

min
ci,ciα,cα∈admissible

∑
α

(cα +
∑

i∈N(α)

ciα − 1)2, (38)

which is a least-squares criteria for uniformity of c̄α. We
refer to the two least-squares scheme as L2 convex free
energy approximation. In an earlier work [19], we also used
the maximum entropy approach where the criterion function
minimizes

∑
α c̄α ln c̄α. Further investigation for constructing

good convex free energy approximations can be found in [39].
The desire towards uniformity, besides being used exten-

sively in probabilistic settings, is motivated by the success of
the Bethe free energy where c̄α = 1. The Bethe free energy is
non-convex for factor graphs with cycles, thus is not a member
of the convex free energies, but empirical evidence suggest that
when BP converges the marginals are surprisingly good. For
Bethe free energy c̄α = 1 over all factor nodes α — hence our
proposal to strive for uniformity over the space of admissible
solutions. In some sense we are attempting to ”convexify” the
Bethe free energy, although this is not being done directly.

2A similar idea was independently derived by Nir Friedman and his
collaborators — personal communication.
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APPENDIX E
INCORPORATING ZERO POTENTIALS

A particularly important class of factors are those with zero
potentials. These type of potentials are used, for example,
in defining error-correcting codes. Note that if one or more
of the factor potentials ψα(xα) or local potentials φ(xi) are
equal to zero, then the overall probability of states which
contain these configurations is zero, namely p(xα) = 0
or p(xi) = 0 respectively. This restriction on the marginal
probabilities implicitly appears in the variational programs
using the convention 0 ln 0 = 0 and −x ln 0 =∞ for x > 0.

Recall that the variational approach seeks a distribution
p(x1, ..., xn) which is as close as possible, in relative entropy
terms, to the product

∏
i φi(xi)

∏
α ψα(xα). Expanding the

relative entropy produces the free energy:

g(p) =
∑
α,xα

θα(xα)p(xα) +
∑
i,xi

θi(xi)p(xi)−H(p),

where θα = − lnψα, θi = − lnφi, and p(xα), p(xi) are
the marginal probabilities, and H(p) is the entropy function.
Since −x ln 0 = ∞ whenever x > 0, the zero potential
ψα(xα) = 0 constraints p ∈ dom(g) if and only if p(xα) = 0,
Likewise, φi(xi) = 0 constrains p ∈ dom(g) whenever
p(xi) = 0. Following the above, the inference program which
corresponds to the free energy minimization is well defined
for zero potentials when we consider the domain of the free
energy, and takes the form minp∈dom(g) g(p). In spite the
mathematical difficulty introduced by using zero potentials,
it makes no difference from algorithmic perspective, since the
optimal distribution p∗ is the normalization of the product
of potentials, p∗ ∝

∏
i φi

∏
α ψα and it respects the domain

constraint.
The same behavior appears in the variational approach for

MAP assignment, where one seeks vector x∗ which maximize
the energy

∏
i φi(xi)

∏
α ψα(xα). This task is described by

the linear function

g(p) =
∑
α,xα

θα(xα)p(xα) +
∑
i,xi

θi(xi)p(xi),

whereas the zero potentials of the form φi(xi) = 0 or
ψα(xα) = 0 constraints p ∈ dom(g) if and only if p(xi) = 0
or p(xα) = 0 respectively. Again, this mathematical nuance
makes no difference from algorithmic perspective, since the
optimal distribution p∗ is the a zero-one distribution, i.e.
p∗(x∗) = 1 and for every x 6= x∗ holds p∗(x) = 0.

The framework of incorporating zero potentials in the
domain of the optimized program also corresponds to the
approximate inference and LP-relazation described by the
minimization of the function

g(b) =
∑
i,xi

θi(xi)bi(xi) +
∑
α,xα

θα(xα)bα(xα)− εH̃(b),

whose domain is constrained by zero potentials, namely
φi(xi) = 0 or ψα(xα) = 0 constraints b ∈ dom(g) if and
only if bi(xi) = 0 or bα(xα) = 0 respectively. The domain
constrains are inherited by the norm-product algorithm where
we represent g(b) in the form fε(b)+

∑
i hε,i(b) described in

eqns. 10, 11. In particular, b ∈ dom(fε) only if bα(xα) = 0

whenever ψα(xα) = 0, and b ∈ dom(hε,i) only if bi(xi) = 0
whenever φi(xi) = 0. This domain constraint do not affect the
norm-product algorithm whose optimal beliefs are a (power)
normalization of the potentials multiplied by the messages,
described in eqn. 31 and eqn. 32. Therefore, in the norm-
product optimization framework, zero potential ψα(xα) = 0
or φi(xi) = 0 induces optimal beliefs satisfying b∗α(xα) = 0
or b∗i (xi) = 0 respectively.
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