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Abstract

The problem of simultaneous multicasting of multiple messages with the help of a relay terminal is

considered. In particular, a model is studied in which a relay station simultaneously assists two transmitters

in multicasting their independent messages to two receivers. The relay may also have an independent message

of its own to multicast. As a first step to address this generalmodel, referred to as the compound multiple

access channel with a relay (cMACr), the capacity region of the multiple access channel with a “cognitive”

relay is characterized, including the cases of partial and rate-limited cognition. Then, achievable rate regions

for the cMACr model are presented based on decode-and-forward (DF) and compress-and-forward (CF)

relaying strategies. Moreover, an outer bound is derived for the special case, called the cMACr without

cross-reception, in which each transmitter has a direct link to one of the receivers while the connection

to the other receiver is enabled only through the relay terminal. The capacity region is characterized for a

binary modulo additive cMACr without cross-reception, showing the optimality of binary linear block codes,

thus highlighting the benefits of physical layer network coding and structured codes. Results are extended

to the Gaussian channel model as well, providing achievablerate regions for DF and CF, as well as for a

structured code design based on lattice codes. It is shown that the performance with lattice codes approaches

the upper bound for increasing power, surpassing the rates achieved by the considered random coding-based

techniques.
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I. INTRODUCTION

Consider two non-cooperating satellites each multicasting radio/TV signals to users on Earth. The cover-

age area and the quality of the transmission is generally limited by the strength of the direct links from the

satellites to the users. To extend coverage, to increase capacity or to improve robustness, a standard solution

is that of introducing relay terminals, which may be other satellite stations or stronger ground stations (see

Fig. 1). The role of the relay terminals is especially critical in scenarios in which some users lack a direct

link from any of the satellites. Moreover, it is noted that the relays might have their own multicast traffic to

transmit. A similar model applies in the case of non-cooperating base stations multicasting to mobile users

in different cells: here, relay terminals located on the cell boundaries may help each base station reach users

in the neighboring cells.

Cooperative transmission (relaying) has been extensivelystudied in the case of two transmitting users,

both for a single user with a dedicated relay terminal [1], [2] and for two cooperating users [3]. Extensions

to scenarios with multiple users are currently under investigation [2], [5] - [11]. In this work, we aim at

studying the impact of cooperation in the setup of Fig. 1 thatconsists of two source terminals simultaneously

multicasting independent information to two receivers in the presence of a relay station. While the source

terminals cannot directly cooperate with each other, the relay terminal is able to support both transmissions

simultaneously to enlarge the multicast capacity region ofthe two transmitters. Moreover, it is assumed that

the relay station is also interested in multicasting a localmessage to the two receivers (see Fig. 2).

The model under study is acompound multiple access channel with a relay(cMACr) and can be seen

as an extension of several fundamental channel models, suchas the multiple access channel (MAC), the

broadcast channel (BC) and the relay channel (RC). The main goal of this work is to adapt basic transmission

strategies known from these key scenarios to the channel at hand and to identify special cases of the more

general model for which conclusive capacity results can be obtained.

Below, we summarize our contributions:

• We start our analysis by studying a simplified version of the cMACr that consists of a MAC with

a “cognitive” relay (see Fig. 3). In this scenario the cognitive relay is assumed to be aware of

both transmitters’ messages non-causally. We provide the capacity region for this model and several

extensions. While interesting on its own, this setup enables us to conveniently introduce the necessary

tools to address the analysis of the cMACr. As an intermediate step between the cognitive relay model



3

Fig. 1. Illustration for an application of the compound multiple access channel with a relay.

and the more general model of cMACr, we also consider the relay with finite capacity unidirectional

links from the transmitters and provide the corresponding capacity region.

• We provide achievable rate regions for the cMACr model with decode-and-forward (DF) and compress-

and-forward (CF) relaying. In the CF scheme, the relay, instead of decoding the messages, quantizes

and broadcasts its received signal. This corresponds to thejoint source-channel coding problem of

broadcasting a common source to two receivers, each with itsown correlated side information, in a

lossy fashion, studied in [16]. This result indicates that the pure channel coding rate regions for certain

multi-user networks can be improved by exploiting related joint source-channel coding techniques.

• The similarity between the underlying scenario and the classical butterfly example in network coding

[12] is evident, despite the fact that we have multiple sources and a more complicated network with

broadcasting constraints and multiple access interference. Yet, we can still benefit from physical layer

coding techniques that exploit the network coding techniques. In order to highlight the possibility of

physical layer network coding, we focus on a special cMACr inwhich each source’s signal is received

directly by only one of the destinations, while the other destination is reached through the relay. This

special model is called thecMACr without cross-reception. We provide an outer bound for this setting

November 7, 2018 DRAFT
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and show that it matches the DF achievable region, apart froman additional sum rate constraint at the

relay terminal. This indicates the suboptimality of enforcing the relay to decode both messages, and

motivates a coding scheme that exploits the network coding aspects in the physical layer.

• Based on the observation above, we are interested in leveraging the network structure by exploiting

“structured codes”. We then focus on a modulo additive binary version of the cMACr, and characterize

its capacity region, showing that it is achieved by binary linear block codes. In this scheme, the relay only

decodes the binary sum of the transmitters’ messages, rather than decoding each individual message.

Since the receiver1 (2) can decode the message of transmitter1 (2) directly without the help of the

relay, it is sufficient for the relay to forward only the binary sum. Similar to [17], [20], [21], this result

highlights the importance of structured codes in achievingthe capacity region of certain multi-user

networks.

• Finally, we extend our results to the Gaussian case, and present a comparison of the achievable rates

and the outer bound. Additionally, we extend the structuredcode approach to the Gaussian channel

setting by proposing an achievable scheme based on nested lattice codes. We show that, in the case of

symmetric rates from the transmitters, nested lattice coding improves the achievable rate significantly

compared to the considered random coding schemes in the moderate to high power regime.

The cMACr of Fig. 2 can also been seen as a generalization of a number of other specific channels

that have been studied extensively in the literature. To start with, if there is no relay terminal available, our

model reduces to the compound multiple access channel whosecapacity is characterized in [4]. Moreover, if

there is only one source terminal, it reduces to the dedicated relay broadcast channel with a single common

message explored in [2], [5]: Since the capacity is not knowneven for the simpler case of a relay channel

[1], the capacity for the dedicated relay broadcast channelremains open as well. If we have two sources but

a single destination, the model reduces to the multiple access relay channel model studied in [2], [25] whose

capacity region is not known in the general case either. Furthermore, if we assume that transmitter 1 (and

2) has an orthogonal side channel of infinite capacity to receiver 1 (2), then we can equivalently consider

the message of transmitter 1 (2) to be known in advance at receiver 1 (2) and the corresponding channel

model becomes equivalent to the restricted two-way relay channel studied in [6], [7], [22], and [23].

The cMACr model is also studied in [11], where DF and amplify-and-forward (AF) based protocols are

analyzed. Another related problem is the interference relay channel model studied in [8], [9], [10]: Note
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Relay

Source 1

Source 2

Dest. 1

Dest. 2

cMACr

Fig. 2. A compound MAC with a relay (cMACr).

that, even though the interference channel setup is not obtained as a special case of our model, achievable

rate regions proposed here can serve as inner bounds for thatsetup as well.

Notation: To simplify notation, we will sometimes use the shortcut:x{S} = (xi)i∈S . We employ standard

conventions (see, e.g., [1]), where the probability distributions are defined by the arguments, upper-case

letters represent random variables and the corresponding lower-case letters represent realizations of the

random variables. We will follow the convention of droppingsubscripts of probability distributions if the

arguments of the distributions are lower case versions of the corresponding random variables. The superscripts

identify the number of samples to be included in a given vector, e.g.,yj−1
1 = [y1,1 · · · y1,j−1].

The rest of the paper is organized as follows. The system model is introduced in Section II. In Section

III we study the multiple access channel with a cognitive relay, and provide the capacity region for this

model and several extensions. The compound multiple accesschannel with a relay is studied in Section IV,

in which inner and outer bounds are provided using decode-and-forward and compress-and-forward type

relaying strategies. Section V is devoted to a special binary additive cMACr model. For this model, we

characterize the capacity region and show that the linear binary block codes can achieve any point in the

capacity region, while random coding based achievability schemes have suboptimal performance. In Section

VI, we analyze Gaussian channel models for both the MAC with arelay setup and the general cMACr setup.

We apply lattice coding/decoding for the cMACr and show thatit improves the achievable symmetric rate

value significantly, especially for the high power regime. Section VII concludes the paper followed by the

appendices where we have included the details of the proofs.

November 7, 2018 DRAFT
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II. SYSTEM MODEL

A compound multiple access channel with relay consists of three channel input alphabetsX1, X2 and

X3 of transmitter 1, transmitter 2 and the relay, respectively, and three channel output alphabetsY1, Y2 and

Y3 of receiver 1, receiver 2 and the relay, respectively. We consider a discrete memoryless time-invariant

channel without feedback, which is characterized by the transition probabilityp(y1, y2, y3|x1, x2, x3) (see

Fig. 2). Transmitteri has messageWi ∈ Wi, i = 1, 2, while the relay terminal also has a messageW3 ∈ W3

of its own, all of which need to be transmitted reliably to both receivers. Extension to a Gaussian model

will be considered in Sec. VI.

Definition 2.1: A (2nR1 , 2nR2 , 2nR3 , n) code for the cMACr consists of three setsWi = {1, . . . , 2nRi}
for i = 1, 2, 3, two encoding functionsfi at the transmitters,i = 1, 2,

fi : Wi → X n
i , (1)

a set of (causal) encoding functionsgj at the relay,j = 1, . . . , n,

gj : W3 ×Yj−1
3 → X3, (2)

and two decoding functionshi at the receivers,i = 1, 2,

hi : Yn
i → W1 ×W2 ×W3. (3)

We assume that the relay terminal is capable of full-duplex operation, i.e., it can receive and transmit at

the same time instant. The joint distribution of the random variables factors as

p(w{1,2,3}, x
n
{1,2,3}, y

n
{1,2,3}) =

3
∏

i=1

p(wi) · p(xn1 |w1)p(x
n
2 |w2)

n
∏

j=1

p(x3j |yj−1
3 , w3)p(y{1,2,3}j |x{1,2,3}j). (4)

The average probability of block error for this code is defined as

Pn
e ,

1

2n(R1+R2+R3)

∑

(W1,W2,W3)∈W1×W2×W3

Pr





⋃

i=1,2

{(Ŵ1(i), Ŵ2(i), Ŵ3(i)) 6= (W1,W2,W3)}



 .

Definition 2.2: A rate triplet (R1, R2, R3) is said to beachievablefor the cMACr if there exists a

sequence of(2nR1 , 2nR2 , 2nR3 , n) codes withPn
e → 0 asn → ∞.

Definition 2.3: The capacity regionC for the cMACr is the closure of the set of all achievable rate

triplets.

November 7, 2018 DRAFT



7

PSfrag replacements

W1

W2

W3

X1

X2

X3

Y1

Y2

Y3

p(y1, y2, y3|x1, x2, x3)
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Fig. 3. MAC with a cognitive relay.

III. MAC WITH A COGNITIVE RELAY

Before addressing the more general cMACr model, in this section we study the simpler MAC with

a cognitive relay scenario shown in Fig. 3. This model, beside being relevant on its own, enables the

introduction of tools and techniques of interest for the cMACr. The model differs from the cMACr in that

the messagesW1 andW2 of the two users are assumed to be non-causally available at the relay terminal (in

a “cognitive” fashion [13]) and there is only one receiver (Y2 = Y3 = ∅ andY = Y1). Hence, the encoding

function at the relay is now defined asf3 : W1 × W2 × W3 → X n
3 , the discrete memoryless channel is

characterized by the conditional distributionp(y|x1, x2, x3) and the average block error probability is defined

accordingly for a single receiver. Several extensions of the basic model of Fig. 3 will also be considered in

this section. The next proposition provides the capacity region for the MAC with a cognitive relay.

Proposition 3.1:For the MAC with a cognitive relay, the capacity region is theclosure of the set of all

non-negative(R1, R2, R3) satisfying

R3 ≤ I(X3;Y |X1,X2, U1, U2, Q), (5a)

R1 +R3 ≤ I(X1,X3;Y |X2, U2, Q), (5b)

R2 +R3 ≤ I(X2,X3;Y |X1, U1, Q), (5c)

and

R1 +R2 +R3 ≤ I(X1,X2,X3;Y |Q) (5d)

for some joint distribution of the form

p(q)p(x1, u1|q)p(x2, u2|q)p(x3|u1, u2, q)p(y|x1, x2, x3) (6)

November 7, 2018 DRAFT
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for some auxiliary random variablesU1, U2 andQ.

Proof: A more general MAC model with three users and any combinationof “common messages”

(i.e., messages known “cognitively” to more than one user) is studied in Sec. VII of [14], from which

Proposition 3.1 can be obtained as a special case. However, since a proof is not provided in [14], and the

technique developed here will be used in deriving other achievable regions in the paper, we provide a proof

in Appendix I.

Towards the goal of accounting for non-ideal connections between sources and relay (as in the original

cMACr), we next consider the cases of partial and limited-rate cognition (rigorously defined below). We

start with thepartial cognitionmodel, in which the relay is informed of the message of only one of the two

users, say of messageW1.

Proposition 3.2:The capacity region of the MAC with a partially cognitive relay (informed only of the

messageW1) is given by the closure of the set of all non-negative(R1, R2, R3) satisfying

R2 ≤ I(X2;Y |X1,X3, Q), (7a)

R3 ≤ I(X3;Y |X1,X2, Q), (7b)

R1 +R3 ≤ I(X1,X3;Y |X2, Q), (7c)

R2 +R3 ≤ I(X2,X3;Y |X1, Q), (7d)

and

R1 +R2 +R3 ≤ I(X1,X2,X3;Y |Q). (7e)

for an input distribution of the formp(q)p(x2|q)p(x1, x3|q).
Proof: The proof can be found in Appendix II.

Remark 3.1:The capacity region characterization requires two auxiliary random variables in Proposition

3.1 (and in [14]), while no auxiliary random variables are required in the formulation of Proposition 3.2.

This is because, in the scenario covered by Proposition 3.1,the relay’s codeword can depend on both

W1 and W2, and the auxiliary random variables quantify the amount of dependence on each message.

On the contrary, for Proposition 3.2, the relay cooperates with only one source, and no auxiliary random

variable is needed. To further elaborate on this point, another special case of the channel in Fig. 3 in

which no auxiliary random variable is necessary to achieve the capacity region is obtained when each

November 7, 2018 DRAFT
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transmitter is connected to the receiver via an orthogonal channel, i.e., we haveY = (Y1, Y2, Y3) and

p(y1, y2, y3|x1, x2, x3) =
∏3

i=1 p(yi|xi). In this case, unlike Proposition 3.2, the lack of auxiliaryrandom

variables reflects the fact that no coherent combining gain can be accrued via the use of the relay due to

the channels’ orthogonality. DefiningCi = maxp(xi) I(Xi;Yi), for i = 1, 2, 3, we obtain from Proposition

3.1 that the capacity region is given by{(R1, R2, R3) : 0 ≤ R1, 0 ≤ R2, 0 ≤ R3 ≤ C3, R1 + R2 ≤
C1 + C2, R2 +R3 ≤ C2 + C3, R1 +R2 +R3 ≤ C1 + C2 + C3}.

The model in Fig. 3 can be further generalized to a scenario with limited-capacity cognition, in which the

sources are connected to the relay via finite-capacity orthogonal links, rather than having a priori knowledge

of the terminals’ messages. This channel can be seen as an intermediate step between the MAC with cognitive

relay studied above and the multiple access channel with relay for which an achievable region was derived

in [2] for the caseR3 = 0. In particular, assume that terminal 1 can communicate withthe relay, prior to

transmission, via a link of capacityC1 and that similarly terminal 2 can communicate with the relayvia a

link of capacityC2. The following proposition establishes the capacity of sucha channel.

Proposition 3.3:The capacity region of the MAC with a cognitive relay connected to the source terminals

via (unidirectional) links of capacitiesC1 andC2 is given by

R1 ≤ I(X1;Y |X2,X3, U1, U2, Q) + C1, (8a)

R2 ≤ I(X2;Y |X1,X3, U1, U2, Q) + C2, (8b)

R3 ≤ I(X3;Y |X1,X2, U1, U2, Q), (8c)

R1 +R2 ≤ I(X1,X2;Y |X3, U1, U2, Q) + C1 +C2, (8d)

R1 +R3 ≤ min







I(X1,X3;Y |X2, U1, U2, Q) + C1,

I(X1,X3;Y |X2, U2, Q)







, (8e)

R2 +R3 ≤ min







I(X2,X3;Y |X1, U1, U2, Q) + C2

I(X2,X3;Y |X1, U1, Q)







(8f)

and

R1 +R2 +R3 ≤ min































I(X1,X2,X3;Y |U1, U2, Q) + C1 + C2,

I(X1,X2,X3;Y |U1, Q) + C1,

I(X1,X2,X3;Y |U2, Q) + C2,

I(X1,X2,X3;Y |Q)































(8g)
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for some auxiliary random variablesU1, U2 andQ with joint distribution of the form (6).

Proof: The proof is sketched in Appendix III.

Remark 3.2:Based on the results of this section, we can now make a furtherstep towards the analysis

of the cMACr of Fig. 2 by considering thecMACr with a cognitive relay. This channel is given as

in Fig. 2 with the only difference that the relay here is informed “for free” of the messagesW1 and

W2 (similarly to Fig. 3) and that the signal received at the relay is non-informative, e.g.,Y2 = ∅. The

capacity of such a channel follows easily from Proposition 3.1 by taking the union over the distribution

p(q)p(x1, u1|q)p(x2, u2|q)p(x3|u1, u2, q) p(y1, y2|x1, x2, x3) of the intersection of the two rate regions (5)

evaluated for the two outputsY1 andY2. Notice that this capacity region depends on the channel inputs only

through the marginal distributionsp(y1|x1, x2, x3) andp(y2|x1, x2, x3).

IV. I NNER AND OUTER BOUNDS ON THECAPACITY REGION OF THECOMPOUND MAC WITH A RELAY

In this section, we focus on the general cMACr model illustrated in Fig. 2. As stated in Section I, single-

letter characterization of the capacity region for this model is open even for various special cases. Our goal

here is to provide inner and outer bounds, which are then shown to be tight in certain meaningful special

scenarios.

The following inner bound is obtained by the decode-and-forward (DF) strategy [1] at the relay terminal.

The relay fully decodes both messages of both users so that wehave a MAC from the transmitters to

the relay terminal. Once the relay has decoded the messages,the transmission to the receivers takes place

similarly to the MAC with a cognitive relay model of Section III.

Proposition 4.1:For the cMACr as seen in Fig. 2, any rate triplet(R1, R2, R3) with Rj ≥ 0, j = 1, 2, 3,

satisfying

R1 ≤ I(X1;Y3|U1,X2,X3, Q), (9a)

R2 ≤ I(X2;Y3|U2,X1,X3, Q), (9b)

R1 +R2 ≤ I(X1,X2;Y3|U1, U2,X3, Q), (9c)

R3 ≤ min{I(X3;Y1|X1,X2, U1, U2, Q), I(X3;Y2|X1,X2, U1, U2, Q)}, (9d)

R1 +R3 ≤ min{I(X1,X3;Y1|X2, U2, Q), I(X1,X3;Y2|X2, U2, Q)}, (9e)

R2 +R3 ≤ min{I(X2,X3;Y1|X1, U1, Q), I(X2,X3;Y2|X1, U1, Q)} (9f)

November 7, 2018 DRAFT
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and

R1 +R2 +R3 ≤ min{I(X1,X2,X3;Y1|Q), I(X1,X2,X3;Y2|Q)} (9g)

for auxiliary random variablesU1, U2 andQ with a joint distribution of the form

p(q)p(x1, u1|q)p(x2, u2|q)p(x3|u1, u2, q)p(y1, y2, y3|x1, x2, x3) (10)

is achievable by DF.

Proof: The proof follows by combining the block-Markov transmission strategy with DF at the relay

studied in Sec. IV-D of [2], the joint encoding used in Proposition 3.1 to handle the private relay message

and backward decoding at the receivers. Notice that conditions (9a)-(9c) ensure correct decoding at the

relay, whereas (9d)-(9g) follow similarly to Proposition 3.1 and Remark 3.2 ensuring correct decoding of

the messages at both receivers.

Next, we consider applying the compress-and-forward (CF) strategy [1] at the relay terminal. With CF,

the relay does not decode the source message, but facilitates decoding at the destination by transmitting a

quantized version of its received signal. In quantizing itsreceived signal, the relay takes into consideration

the correlated received signal at the destination terminaland applies Wyner-Ziv source compression (see [1]

for details). In the cMACr scenario, unlike the single-userrelay channel, we have two distinct destinations,

each with different side information correlated with the relay received signal. This situation is similar to

the problem of lossy broadcasting of a common source to two receivers with different side information

sequences considered in [16] (and solved in some special cases), and applied to the two-way relay channel

setup in [7]. Here, for simplicity, we consider broadcasting only a single quantized version of the relay

received signal to both receivers. The following proposition states the corresponding achievable rate region.

Proposition 4.2:For the cMACr of Fig. 2, any rate triplet(R1, R2, R3) with Rj ≥ 0, j = 1, 2, 3,

satisfying

R1 ≤ min{I(X1;Y1, Ŷ3|X2,X3, Q), I(X1;Y2, Ŷ3|X2,X3, Q)}, (11)

R2 ≤ min{I(X2;Y2, Ŷ3|X1,X3, Q), I(X2;Y1, Ŷ3|X1,X3, Q)}, (12)

and

R1 +R2 ≤ min{I(X1,X2;Y1, Ŷ3|X3, Q), I(X1,X2;Y2, Ŷ3|X3, Q)} (13)
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such that

R3 + I(Y3; Ŷ3|X3, Y1, Q) ≤ I(X3;Y1|Q) (14)

and

R3 + I(Y3; Ŷ3|X3, Y2, Q) ≤ I(X3;Y2|Q) (15)

for random variableŝY3 andQ satisfying the joint distribution

p(q, x1, x2, x3, y1, y2, y3, ŷ3) = p(q)p(x1|q)p(x2|q)p(x3|q)p(ŷ3|y3, x3, q)p(y1, y2, y3|x1, x2, x3) (16)

is achievable withŶ3 having bounded cardinality.

Proof: The proof can be found in Appendix IV.

Remark 4.1:The achievable rate region given in Proposition 4.2 can be potentially improved. Instead of

broadcasting a single quantized version of its received signal, the relay can transmit two descriptions so that

the receiver with an overall better quality in terms of its channel from the relay and the side information

received from its transmitter, receives a better description, and hence higher rates (see [16] and [7] for

details). Another possible extension which we will not pursue here is to use the partial DF scheme together

with the above CF scheme similar to the coding technique in [7].

We are now interested in studying the special case in which each source terminal can reach only one of

the destination terminals directly. Assume, for example, that there is no direct connection between source

terminal 1 and destination terminal 2, and similarly between source terminal 2 and destination terminal 1.

In practice, this setup might model either a larger distancebetween the disconnected terminals, or some

physical constraint in between the terminals blocking the connection. Obviously, in such a case, no positive

multicasting rate can be achieved without the help of the relay, and hence, the relay is essential in providing

coverage to multicast data to both receivers. We model this scenario by the following (symbol-by-symbol)

Markov chain conditions:

Y1−(X1,X3)−X2 and (17a)

Y2−(X2,X3)−X1, (17b)

which state that the output at receiver 1 depends only on the inputs of transmitter 1 and the relay (17a),

and similarly, the output at receiver 2 depends only on the inputs of transmitter 2 and the relay (17b). The

following proposition provides an outer bound for the capacity region in such a scenario.
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Proposition 4.3:Assuming that the Markov chain conditions (17) hold for any channel input distribution

satisfying (4), a rate triplet (R1, R2, R3) with Rj ≥ 0, j = 1, 2, 3, is achievable only if

R1 ≤ I(X1;Y3|U1,X2,X3, Q), (18a)

R2 ≤ I(X2;Y3|U2,X1,X3, Q), (18b)

R3 ≤ min{I(X3;Y1|X1,X2, U1, U2, Q), I(X3;Y2|X1,X2, U1, U2, Q)}, (18c)

R1 +R3 ≤ min{I(X1,X3;Y1|U2, Q), I(X3;Y2|X2, U2, Q)}, (18d)

R2 +R3 ≤ min{I(X3;Y1|X1, U1, Q), I(X2,X3;Y2|U1, Q)} (18e)

and

R1 +R2 +R3 ≤ min{I(X1,X3;Y1|Q), I(X2,X3;Y2|Q)} (18f)

for some auxiliary random variablesU1, U2 andQ satisfying the joint distribution

p(q)p(x1, u1|q)p(x2, u2|q)p(x3|u1, u2, q)p(y1, y2, y3|x1, x2, x3). (19)

Proof: The proof can be found in Appendix V.

By imposing the condition (17) on the DF achievable rate region of Proposition 4.1, it can be easily

seen that the only difference between the outer bound (18) and the achievable region with DF (9) is that

the latter contains the additional constraint (9c), which generally reduces the rate region. The constraint (9c)

accounts for the fact that the DF scheme leading to the achievable region (9) prescribes both messagesW1

andW2 to be decoded at the relay terminal. The following remark provides two examples in which the

DF scheme achieves the outer bound (18) and thus the capacityregion. In both cases, the multiple access

interference at the relay terminal is eliminated from the problem setup so that the condition (9c) does not

limit the performance of DF.

Remark 4.2:In addition to the Markov conditions in (17), consider orthogonal channels from the two

users to the relay terminal, that is, we haveY3 , (Y31, Y32), whereY3k depends only on inputsXk andX3

for k = 1, 2; that is, we assumeX1− (X2,X3)−Y32 andX2− (X1,X3)−Y31 form Markov chains for any

input distribution. Then, it is easy to see that the sum-rateconstraint at the relay terminal is redundant and

hence the outer bound in Proposition 4.3 and the achievable rate region with DF in Proposition 4.1 match,

yielding the full capacity region for this scenario. As another example where DF is optimal, we consider

a relay multicast channelsetup, in which a single relay helps transmitter 1 to multicast its messageW1 to
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both receivers, i.e.,R2 = R3 = 0 andX2 = ∅. For such a setup, under the assumption thatX1 −X3 − Y2

forms a Markov chain, the achievable rate with DF relaying inProposition 4.1 and the above outer bound

match. Specifically, the capacityC for this multicast relay channelis given by

C = max
p(x1,x3)

min{I(X1;Y3|X3), I(X1,X3;Y1), I(X3;Y2)}. (20)

Notice that, apart from some special cases (like the once illustrated above), the achievable rate region with

DF is in general suboptimal due to the requirement of decoding both the individual messages at the relay

terminal. In fact, this requirement may be too restrictive,and simply decoding a function of the messages

at the relay might suffice. To illustrate this point, consider the special case of the cMACr characterized by

Xi = (Xi,1,Xi,2), Yi = (Yi,1, Yi,2) andYi,1 = Xi,1 for i = 1, 2 and the channel given as

p(y1, y2, y3) = p(y3|x1,2, x2,2)p(y1,1|x1,1)p(y2,1|x2,1)p(y1,2, y2,2|x3).

In this model, each transmitter has an error-free orthogonal channel to its receiver. By further assuming

that these channels have enough capacity to transmit the corresponding messages reliably (i.e., messagei is

available at receiveri), the channel at hand is seen to be a form of the two-way relay channel. In this setup,

as shown in [21], [22], [23] and [7], DF relaying is suboptimal while using a structured code achieves the

capacity in the case of finite field additive channels and improves the achievable rate region in the case of

Gaussian channels. In the following section, we explore a similar scenario for which the outer bound (18)

is the capacity region of the cMACr, which cannot be achievedby either DF or CF.

V. B INARY CMACR: ACHIEVING CAPACITY THROUGH STRUCTURED CODES

Random coding arguments have been highly successful in proving the existence of capacity-achieving

codes for many source and channel coding problems in multi-user information theory, such as MACs, BCs,

RCs with degraded signals and Slepian-Wolf source coding. However, there are various multi-user scenarios

for which the known random coding-based achievability results fail to achieve the capacity, whilestructured

codescan be shown to perform optimally. The best known such example for such a setup is due to Körner

and Marton [17], who considered encoding the modulo sum of two binary random variables. See [20] for

more examples and references.

Here, we consider a binary symmetric (BS) cMACr model and show that structured codes achieve its

capacity, while the rate regions achievable with DF or CF schemes are both suboptimal. We model the BS
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cMACr as follows:

Y1 = X1 ⊕X3 ⊕ Z1, (21a)

Y2 = X2 ⊕X3 ⊕ Z2, and (21b)

Y3 = X1 ⊕X2 ⊕ Z3 (21c)

where⊕ denotes binary addition, and the noise componentsZi are independent identically distributed (i.i.d.)

with1 B(εi), i = 1, 2, 3, and they are independent of each other and the channel inputs. Notice that this

channel satisfies the Markov condition given in (17). We assume that the relay does not have a private

message, i.e.,R3 = 0. The capacity region for this BS cMACr, which can be achievedby structured codes,

is characterized in the following proposition.

Proposition 5.1:For the binary symmetric cMACr characterized in (21), the capacity region is the union

of all rate pairs(R1, R2) satisfying

R1 ≤ 1−Hb(ε3), (22a)

R2 ≤ 1−Hb(ε3) and (22b)

R1 +R2 ≤ min{1 −Hb(ε1), 1−Hb(ε2)}, (22c)

whereHb(ε) is the binary entropy function defined asHb(ε) , −ε log ε− (1− ε) log(1− ε).

Proof: The proof can be found in Appendix VI.

For comparison, the rate region achievable with the DF scheme given in (9) is given by (22) with the

additional constraint

R1 +R2 ≤ 1−Hb(ε3),

showing that the DF scheme achieves the capacity (22) only ifε3 ≤ min{ε1, ε2}. The suboptimality of DF

follows from the fact that the relay terminal needs to decodeonly the binary sum of the messages, rather

than the individual messages sent by the source terminals. In fact, in the achievability scheme leading to

(22), the binary sum is decoded at the relay and broadcast to the receivers, which can then decode both

messages using this binary sum.

1X ∼ B(ε) denotes a Bernoulli distribution for whichp(X = 1) = ε andp(X = 0) = 1− ε.
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VI. GAUSSIAN CHANNELS

In this section, we focus on the Gaussian channel setup and find the Gaussian counterparts of the rate

regions characterized in Section III and Section IV. We willalso quantify the gap between the inner and

outer bounds for the capacity region of the cMACr proposed inSection IV. As done in Sec. III, we first

deal with the MAC with a cognitive relay model.

A. Gaussian MAC with a Cognitive Relay

We first consider the Gaussian MAC with a cognitive relay setup. The multiple access channel at time

i, i = 1, . . . , n, is characterized by the relation

Yi = X1i +X2i +X3i + Zi, (23)

whereZi is the channel noise at timei, which is i.i.d. zero-mean Gaussian with unit variance. We impose

a separate average block power constraint on each channel input:

1

n

n
∑

i=1

E[X2
ji] ≤ Pj (24)

for j = 1, 2, 3. The capacity region for this Gaussian model can be characterized as follows.

Proposition 6.1:The capacity region of the Gaussian MAC with a cognitive relay (23) with power

constraints (24) is the union of all rate triplets(R1, R2, R3) satisfying

R3 ≤
1

2
log(1 + (1− α′

3 − α′′
3)P3), (25a)

R1 +R3 ≤
1

2
log(1 + P1 + (1− α′′

3)P3 + 2
√

α′
3P1P3), (25b)

R2 +R3 ≤
1

2
log(1 + P2 + (1− α′

3)P3 + 2
√

α′′
3P2P3)) (25c)

and

R1 +R2 +R3 ≤
1

2
log(1 + P1 + P2 + P3 + 2

√

α′
3P1P3 + 2

√

α′′
3P2P3), (25d)

where the union is taken over all parameters0 ≤ α′
3, α

′′
3 ≤ 1 andα′

3 + α′′
3 ≤ 1.

Proof: The proof can be found in Appendix VIII.

Notice thatα′
3 andα′′

3 in (25) represent the fraction of total power invested by thecognitive relay to help

transmitter 1 and transmitter 2, respectively. Next, we present the capacity region for the Gaussian partially

cognitive relay setup of (7).
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Proposition 6.2:The capacity region of the Gaussian MAC with a partially cognitive relay (informed

only of the messageW1) is given by

R2 ≤
1

2
log(1 + P2), (26a)

R3 ≤
1

2
log(1 + (1− ρ2)P3), (26b)

R1 +R3 ≤
1

2
log(1 + P1 + P3 + 2ρ

√

P1P3), (26c)

R2 +R3 ≤
1

2
log(1 + P2 + (1− ρ2)P3) (26d)

and

R1 +R2 +R3 ≤
1

2
log(1 + P1 + P2 + P3 + 2ρ

√

P1P3) (26e)

with the union taken over the parameter0 ≤ ρ ≤ 1.

Proof: The result follows straightforwardly from (7) and the conditional maximum entropy theorem

by definingρ as the correlation coefficient betweenX1 andX3.

Notice that, the same arguments as above can also be extendedto the MAC with cognition via finite-

capacity links of Proposition 3.3.

1) Numerical Examples:For clarity of the presentation we considerR3 = 0. In this case, it is clear

that the choiceα′
3 + α′′

3 = 1 is optimal for (25) andρ = 1 is optimal in (26). Fig. 4 shows the capacity

regions with full or partial cognition ((25) and (26), respectively) for P1 = P2 = 3 dB and for different

values ofP3, namelyP3 = −6 dB and3 dB. It can be observed from Fig. 4 that, even with a small power

P3, a cognitive relay has the potential for significantly improving the achievable rate regions. Moreover, in

the partially cognitive case, this advantage is accrued notonly by the transmitter that directly benefits from

cognition (here transmitter 1) but also by the other transmitter (transmitter 2), due to the fact that cognition

is able to boost the achievable sum-rate (see (26e)).

We now consider a typical cognitive radio scenario where thetwo “primary” users, transmitter 1 and

transmitter 2, transmit at ratesR1 andR2, respectively, within the standard MAC capacity region with no

relay (i.e., (R1, R2) satisfy (25) withR3 = 0 andP3 = 0) and are oblivious to the possible presence of

a cognitive node transmitting to the same receiver. By assumption, the cognitive node can rapidly acquire

the messages of the two active primary users (exploiting thebetter channel from the primary users as

compared to the receiver) and is interested in transmittingat the maximum rateR3 that does not affect
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Fig. 4. Capacity regions of the Gaussian MAC with a cognitiverelay with full or partial cognition ((25) and (26), respectively)

for P1 = P2 = 3 dB and for different values ofP3, namelyP3 = −6 dB and3 dB.

the rates achievable by the primary users. In other words, the rateR3 is selected so as to maximizeR3

under the constraint that(R1, R2, R3) still belongs to the capacity region (the one characterizedby (25)

for full cognition and by (26) for partial cognition). Fig. 5shows such a rateR3 for both full and partial

cognitive relays forP1 = P2 = 3dB and two different primary rate pairs, namelyR1 = R2 = 0.3 and

R1 = R2 = 0.55 (which is close to the sum-rate boundary as shown in Fig. 5). It is seen that both full and

partial cognition afford remarkable achievable rates evenwhen the primary users select rates at the boundary

of their allowed rates.
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R1 = R2 = 0.3 or R1 = R2 = 0.55 (R3 is the maximum relay rate so that(R1, R2, R3) still belongs to the capacity region ((25)

for full cognition and ( 26) for partial cognition).

B. Gaussian Compound MAC with a Relay

A Gaussian cMACr satisfying the Markov conditions (17) is given by

Y1 = X1 + ηX3 + Z1 (27a)

Y2 = X2 + ηX3 + Z2 (27b)

Y3 = γ(X1 +X2) + Z3, (27c)

where γ ≥ 0 is the channel gain from the users to the relay andη ≥ 0 is the channel gain from the

relay to both receiver 1 and receiver 2. The noise componentsZi, i = 1, 2, 3 are i.i.d. zero-mean unit

variance Gaussian random variables. We enforce the averagepower constraints given in (24). Considering

for simplicity the caseR3 = 0, we have the following result.
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Proposition 6.3:The following rate region is achievable for the Gaussian cMACr characterized by (27)

by using the DF strategy:

R1 ≤ min







1
2 log

(

1 + γ2P1

(

1− α1α′

3

1−α2α′′

3

))

,

1
2 log

(

1 + P1 + η2P3(1− α′′
3)
)







, (28a)

R2 ≤ min







1
2 log

(

1 + γ2P2

(

1− α2α′′

3

1−α1α′

3

))

,

1
2 log

(

1 + P2 + η2P3(1− α′
3)
)







(28b)

and

R1 +R2 ≤ min























1
2 log

(

1 + γ2(P1 + P2)

(

1− (
√

α1α′

3
P1+

√
α2α′′

3
P2)2

P1+P2

))

,

1
2 log

(

1 + P1 + η2P3 + 2η
√

α1α′
3P1P3

)

,

1
2 log

(

1 + P2 + η2P3 + 2η
√

α1α′′
3P2P3

)























, (28c)

with the union taken over the parameters0 ≤ α1, α2, α
′
3, α

′′
3 ≤ 1 andα′

3 + α′′
3 ≤ 1. Moreover, an outer

bound to the capacity region is given by (28) without the firstsum-rate constraint in (28c).

Proof: It is enough to prove that jointly Gaussian inputs are sufficient to exhaust the DF achievable

region (9) and the outer bound (18). This can be done similarly to Proposition 6.1. Then, setting the random

variables at hand as (74)-(75) (see Appendix VIII) in (9) and(18) and after some algebra the result can be

derived.

It is noted that, similarly to (25), in (28) the parametersα′
3 andα′′

3 represent the fractions of power that

the relay uses to cooperate with transmitter 1 and 2, respectively. Moreover, the first term in each of the

threemin{·} functions correspond to the condition that the relay is ableto decode the two messages, while

the other terms refer to constraints on decoding at the two receivers.

Next, we characterize the achievable rate region for the Gaussian setup with the CF strategy of Proposition

4.2. Here, we assume a Gaussian quantization codebook without claiming optimality.

Proposition 6.4:The following rate region is achievable for the Gaussian cMACr (27):

R1 ≤
1

2
log

(

1 +
γ2α1P1

1 +Nq

)

(29a)

and

R2 ≤
1

2
log

(

1 +
γ2α2P2

1 +Nq

)

(29b)
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where

Nq =
1 + γ2(α1P1α2P2 + α1P1 + α2P2) + min {α1P1, α2P2}

η2P3
,

for all 0 ≤ αi ≤ 1, i = 1, 2.

1) Using Structured Codes:In Sec. V, we have shown that for a binary additive compound MAC with

a relay, it is optimal to use structured (block linear) codesrather than conventional unstructured (random)

codes. The reason for this performance advantage is that linear codes, when received by the relay over an

additive channel, enable the latter to decode the sum of the original messages with no rate loss, without

requiring joint decoding of the messages. Here, in view of the additive structure of the Gaussian channel,

we would like to extend the considerations of Sec. V to the scenario at hand. For simplicity, we focus on a

symmetric scenario whereP1 = P2 = P3 = P , R1 = R2 = R (andR3 = 0). Under such assumptions, the

outer bound of Proposition VI-B sets the following upper bound on the equal rateR (obtained by setting

α′
3 = α′′

3 = α3 andα1 = α2 = α in (28)):

R ≤ max
0≤α≤1
0≤α3≤1

min

{

1

2
log

(

1 + γ2P

(

1− 2αα3

1− αα3

))

,
1

2
log

(

1 + P + η2P (1− α3)
)

,

1

4
log

(

1 + P
(

1 + η2 + 2η
√
αα3

))

}

, (30)

whereas the rate achievable with DF is given by the right handside (30) with an additional term inmin{·}
given by1/4 · log

(

1 + 2γ2P (1− 2αα3)
)

. The rate achievable by CF can be similarly found from (29) by

settingα1 = α2 = α and maximizing over0 ≤ α ≤ 1.

As is well known, the counterpart of binary block codes over binary additive channels in the case of

Gaussian channels is given by lattice codes which can achieve the Gaussian channel capacity in the limit of

infinite block lengths (see [18] for further details). A lattice is a discrete subgroup of the Euclidean space

R
n with the vector addition operation, and hence provides us a modulo sum operation at the relay terminal

similar to the binary case.

For the Gaussian cMACr setting given in (27), we use the same nested lattice code at both transmitters.

Similar to the transmission structure used in the binary setting, we want the relay terminal to decode only

the modulo sum of the messages, where the modulo operation iswith respect to a coarse lattice as in [22],

whereas the messages are mapped to a fine lattice, i.e., we usethe nested lattice structure as in [18]. The

relay terminal then broadcasts the modulo sum of the messagepoints to both receivers. Each receiver decodes

the message from the transmitter that it hears directly and the modulo sum of the messages from the relay
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as explained in Appendix VII. Using these two, each receivercan also decode the remaining message. We

have the following rate region that can be achieved by the proposed lattice coding scheme.

Proposition 6.5:For the symmetric Gaussian cMACr characterized by (27), an equal rateR can be

achieved using a lattice encoding/decoding scheme if

R ≤ min

{

1

2
log

(

1

2
+ γ2P

)

,
1

2
log

(

1 + P min{1, η2}
)

,
1

4
log(1 + P (1 + η2))

}

. (31)

Proof: The proof can be found in Appendix VII.

Remark 6.1:Achievability of (31), discussed in Appendix VII, requirestransmission at rates correspond-

ing to symmetric rate point on the boundary of the MAC regionsfrom each transmitter and the relay to

the corresponding receiver. However, here, of the two senders over each MAC, one sender employs lattice

coding (the sources), so that the standard joint typicalityargument fails to prove achievability of these rate

points. The problem is solved by noticing that, even in this scenario, it is straightforward to operate at the

corner points of the MAC region by using single user encodingand successive decoding. Now, in general,

two different techniques are possible to achieve any boundary rate point by using only transmission at the

corner-point rates, namely time-sharing and rate-splitting [27]. In our case, it can be seen that time-sharing

would generally cause a rate reduction with respect to (31),due to the constraint arising from decoding at

the relay. On the contrary, rate-splitting does not have such a drawback: the relay terminal splits its message

and power into two parts and acts as two virtual users, while single-user coding is applied for each virtual

relay user as well as the message from the transmitter. Sincelattice coding achieves the optimal performance

for single user decoding, we can achieve any point on the boundary of the MAC region.

2) Numerical examples:Consider cMACr with powersP1 = P2 = P3 = 5 dB and channel gainη2 = 10

from the relay to the two terminals. Fig. 6 shows the achievable rate region and outer bound for different

values of the channel gain from the terminals to the relay, namely γ2 = 1 andγ2 = 5. It can be seen that,

if the channel to the relay is weak, then CF improves upon DF atcertain parts of the rate region. However,

asγ2 increases, DF gets very close to the outer bound dominating the CF rate region, since the sum rate

constraint in DF scheme becomes less restricting.

In Fig. 7, the equal rate achievable with lattice codes (31) is compared with the upper bound (30) and

the symmetric rates achievable with DF and CF forγ2 = 1/10 andη2 = 10 versusP1 = P2 = P3 = P . We

see that, for sufficiently largeP , the lattice-based scheme is close to optimal, whereas for smallerP , CF or

DF have better performance. The performance loss of lattice-based schemes with respect to the upper bound
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Ŵ1, Ŵ2, Ŵ3
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Fig. 6. Achievable rate region and outer bound forP1 = P2 = P3 = 5 dB, η2 = 10 and different values of the channel gain

from the terminals to the relay, namelyγ2 = 1, 5.

is due to the fact that lattice encoding does not enable coherent power combining gains at the destination.

It is also noted that both DF and lattice-based schemes have the optimal multiplexing gain of1/2 (in terms

of equal rate).

VII. C ONCLUSIONS

We have considered a compound multiple access channel with arelay terminal. In this model, the relay

terminal simultaneously assists both transmitters while multicasting its own information at the same time.

We first have characterized the capacity region for a multiple access channel with a cognitive relay and

related models of partially cognitive relay and cognition through finite capacity links. We then have used the

coding technique that achieves the capacity for these models to provide an achievable rate region with DF
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Fig. 7. Equal rate achievable with lattice codes (31) compared with the upper bound (30) and the rates achievable with DF and

CF for γ2 = 1/10 andη2 = 10 versusP1 = P2 = P3 = P .

relaying in the case of a general cMACr. We have also considered a CF based relaying scheme, in which

the relay broadcasts a compressed version of its received signal using the received signals at the receivers as

side information. Here we have used a novel joint source-channel coding scheme to improve the achievable

rate region of the underlying multi-user channel coding problem.

We then have focused on another promising approach to improve rates in certain multi-user networks,

namely using structures codes, rather than random coding schemes. We have proved that the capacity can be

achieved by linear block codes in the case of finite field additive channels. Motivated by the gains achieved

through such structured coding approaches, we have then analyzed the performance of nested lattice codes

in the Gaussian setting. Our results show that lattice coding achieves rates higher than other random coding

schemes for a wide range of power constraints. We have also presented the achievable rate regions with

the proposed random coding schemes, and provided a comparison. Our analysis has revealed that no single
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coding scheme dominates all the others uniformly over all channel conditions. Hence a combination of

various random coding techniques as well as structured coding might be required to improve the achievable

rates or to meet the upper bounds in a general multi-user network model.

APPENDIX I

PROOF OFPROPOSITION3.1

A. Types and Typical Sequences

Here, we briefly review the notions of types and strong typicality that will be heavily used in the proofs.

See [26] for further details. The typePxn of ann-tuple xn is the empirical distribution

Pxn =
1

n
N(a|xn)

whereN(a|xn) is the number of occurrences of the lettera in vectorxn. The set of alln-tuplesxn with

typeQ is called the type classQ and denoted byT n
Q. For a probability distributionpX , the set ofǫ-strongly

typical n-tuples according topX is denoted byT n
[X]ǫ

and is defined by

T n
[X]ǫ

=

{

x ∈ X n :

∣

∣

∣

∣

1

n
N(a|xn)− pX(a)

∣

∣

∣

∣

≤ ǫ, ∀a ∈ X andN(a|xn) = 0 wheneverpX(x) = 0

}

.

The definitions of type and strong typicality can be extendedto joint and conditional distributions in a

similar manner [26]. The following results concerning typical sets will be used in the sequel. For anyǫ > 0,

we have
∣

∣

∣

∣

1

n
log |T n

[X]ǫ
| −H(X)

∣

∣

∣

∣

≤ ǫ (32)

and

Pr(Xn ∈ T n
[X]ǫ

) ≥ 1− ǫ (33)

for sufficiently largen. Given a joint distributionpXY , if the i.i.d. sequences(xn, yn) ∼ pnXpnY , wherePn
X

andPn
Y aren-fold products of the marginalspX andpY , then

Pr{(xn, yn) ∈ T n
[XY ]ǫ

} ≤ 2−n(I(X;Y )−3ǫ).
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B. Converse

Starting from the Fano inequality, imposing the conditionPn
e → 0 asn → ∞, we have

H(W1,W2,W3|Y n) ≤ nδn (34)

with δn → 0 asn → ∞. Then we also haveH(W1,W3|Y n,W2) ≤ nδn. We can obtain

n(R1 +R3) = H(W1,W3) = H(W1,W3|W2) ≤ I(W1,W3;Y
n|W2) + nδn (35)

=

n
∑

i=1

H(Yi|W2, Y
i−1)−H(Yi|W1,W2,W3, Y

i−1) + nδn (36)

=

n
∑

i=1

H(Yi|X2i,W2, Y
i−1)−H(Yi|X1i,X2i,X3i,W1,W2,W3, Y

i−1) + nδn (37)

=

n
∑

i=1

H(Yi|X2i, U2i, Y
i−1)−H(Yi|X1i,X2i,X3i, U1i, U2i) + nδn (38)

≤
n
∑

i=1

H(Yi|X2i, U2i)−H(Yi|X1i,X2i,X3i, U1i, U2i) + nδn (39)

=
n
∑

i=1

I(X1i, U1i,X3i;Yi|X2i, U2i) + nδn (40)

=
n
∑

i=1

I(X1i,X3i;Yi|X2i, U2i) + nδn (41)

where in (37) we have used the fact that the codewords are function of the messages, in (38) we have

definedU1i , W1 andU2i , W2 and used the fact thatY i−1−(X1i,X2i,X3i)− Yi forms a Markov chain,

and the last equality follows from the Markov chain relationship (U1i, U2i)− (X1i,X2i,X3i)− Yi.

We can similarly obtain

n(R2 +R3) ≤
n
∑

i=1

I(X2i,X3i;Yi|X1i, U1i) + nδn

starting fromn(R2 +R3) ≤ I(W2,W3;Y
n|W1) + nδn (which follows from the Fano inequality (34) since

it implies H(W2,W3|Y n,W1) ≤ nδn) and

nR3 ≤
n
∑

i=1

I(X3i;Yi|X1i,X2i, U1i, U2i) + nδn
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from the inequalitynR3 ≤ I(W3;Y
n|W1,W2) + nδn (which follows from (34) asH(W3|Y n,W1,W2) ≤

nδn). From (34), we also have:

n(R1 +R2 +R3) ≤ I(W1,W2,W3;Y
n) + nδn

=
n
∑

i=1

H(Yi|Y i−1)−H(Yi|W1,W2,W3, Y
i−1) + nδn

=
n
∑

i=1

H(Yi|Y i−1)−H(Yi|X1i,X2i,X3i,W1,W2,W3, Y
i−1) + nδn

≤
n
∑

i=1

H(Yi)−H(Yi|X1i,X2i,X3i) + nδn =

=
n
∑

i=1

I(X1i,X2i,X3i;Yi) + nδn.

Now, introducing the time-sharing random variableQ independent from everything else and uniformly

distributed over{1, .., n} and definingXj , XjQ for j = 1, 2, 3, Y , YQ andUj , UjQ for j = 1, 2, we

get (5). Notice that the joint distribution satisfies (6).

C. Achievability

Code Construction: Generate an i.i.d. sequenceQn with marginalp(q) for i = 1, 2, ..., n. Fix a realization

of such a sequenceQn = qn. Generate2nRj codewordsunj (wj), wj = 1, 2, ..., 2nRj also i.i.d. with probability

distribution
∏n

i=1 p(uji|qi), for j = 1, 2. For each pairw1, w2, generate2nR3 codewords i.i.d. according

to
∏n

i=1 p(x3i|u1i(w1), u2i(w2), qi), and label these codewords asxn3 (w1, w2, w3) for w3 ∈ [1, 2nR3 ]. Also

generate2nRj codewordsxnj (wj), j = 1, 2, i.i.d. with probability distribution
∏n

i=1 p(xji|uji(wj), qi) and

label them asxnj (wj) for wj ∈ [1, 2nRj ].

Encoders: Given (w1, w2, w3), encoderj transmitsxnj (wj), j = 1, 2, and encoder 3 transmitsxn3 (w1, w2, w3).

Decoders: The decoder looks for a triplet(w̃1, w̃2, w̃3) such that

(qn, un1 (w̃1), u
n
2 (w̃2), x

n
1 (w̃1), x

n
2 (w̃2), x

n
3 (w̃1, w̃2, w̃3), y

n) ∈ T n
[QU1U2X1X2X3Y ]ǫ

.

If none or more than one such triplet is found, an error is declared.

Error analysis: Assume(w1, w2, w3) = (1, 1, 1) was sent. We have an error if either the correct

codewords are not typical with the received sequence or there is an incorrect triplet of messages whose
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corresponding codewords are typical with the received sequence. Define the event (conditioned on the

transmission of(w1, w2, w3) = (1, 1, 1))

Ek,l,m , {(Qn, Un
1 (k),X

n
1 (k), U

n
2 (l),X

n
2 (l),X

n
3 (k, l,m), Y n) ∈ T n

[QU1U2X1X2X3Y ]ǫ
}.

From the union bound, the probability of error, averaged over the random codebooks, is found as

Pn
e =Pr(Ec

1,1,1)
⋃

∪(k,l,m)6=(1,1,1)Ek,l,m,

≤Pr(Ec
1,1,1) +

∑

(k,m)6=(1,1),l=1

Pr(Ek,1,m) +
∑

(l,m)6=(1,1),k=1

Pr(E1,l,m) +
∑

k 6=1,l 6=1,m6=1

Pr(Ek,l,m).

From (33),Pr(Ec
1,1,1) → 0 asn → ∞. We can also show that for(k,m) 6= (1, 1), l = 1,

Pr(Ek,1,m) =Pr((qn, un1 (k), u
n
2 (1), x

n
1 (k), x

n
2 (1), x

n
3 (k, 1,m), yn) ∈ T n

[QU1U2X1X2X3Y ]ǫ
)

≤2−n(I(X1,U1,X3;Y |X2,U2,Q)−3ǫ)

=2−n(I(X1,X3;Y |X2,U2,Q)−3ǫ).

Similarly, for (l,m) 6= (1, 1) andk = 1, we have

P (Ek,1,m) =Pr((qn, un1 (1), u
n
2 (l), x

n
1 (1), x

n
2 (l), x

n
3 (1, l,m), yn) ∈ T n

[QU1U2X1X2X3Y ]ǫ
)

≤2−n(I(X2,X3;Y |X1,U1,Q)−3ǫ).

The third error event occurs fork 6= 1, l 6= 1,m 6= 1, and we have if

P (Ek,l,m) =Pr((qn, un1 (k), u
n
2 (l), x

n
1 (k), x

n
2 (l), x

n
3 (k, l,m), yn) ∈ T n

[QU1U2X1X2X3Y ]ǫ
)

≤2−n(I(X1,X2,X3;Y |Q)−4ǫ).

Then, it follows that

Pn
e ≤Pr(Ec

1,1,1) + 2n(R1+R3)2−n(I(X1,X3;Y |X2,U2,Q)−3ǫ) + 2n(R2+R3)2−n(I(X2,X3;Y |X1,U1,Q)−3ǫ)

+ 2n(R1+R2+R3)2−n(I(X1,X2,X3;Y |,Q)−4ǫ).

Letting ǫ → 0 and n → ∞, we have a vanishing error probability given that the inequalities in (5) are

satisfied.
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APPENDIX II

PROOF OFPROPOSITION3.2

A. Converse

Similar to the converse in Appendix I, we use the Fano inequality given in (34). Then we have

n(R1 +R3) = H(W1,W3) = H(W1,W3|W2) ≤ I(W1,W3;Y
n|W2) + nδn (42)

=
n
∑

i=1

H(Yi|W2, Y
i−1)−H(Yi|W1,W2,W3, Y

i−1) + nδn (43)

=
n
∑

i=1

H(Yi|X2i,W2, Y
i−1)−H(Yi|X1i,X2i,X3i,W1,W2,W3, Y

i−1) + nδn (44)

≤
n
∑

i=1

H(Yi|X2i)−H(Yi|X1i,X2i,X3i) + nδn (45)

=
n
∑

i=1

I(X1i,X3i;Yi|X2i) + nδn (46)

where (45) follows from the fact that conditioning reduces entropy and(W1,W2,W3, Y
i−1)−(X1i,X2i,X3i)−

Yi forms a Markov chain. The other inequalities follow similarly.

B. Achievability

Code Construction: Generate2nR1 codewordsxn1 (w1), w1 ∈ [1, 2nR1 ] by choosing eachi-th letter i.i.d.

from probability distributionp(x1), i = 1, 2, ..., n. For eachw1, generate2nR3 codewordsxn3 (w1, w3),

w3 ∈ [1, 2nR3 ], i.i.d. according to
∏n

i=1 p(x3i|x1i(w1)). Finally, generate2nR2 codewordsxn2 (w2) i.i.d. with

each letter drawn according top(x2).

Encodinganderror analysisare rather standard (similar to Appendix A) and are thus omitted.

APPENDIX III

PROOF OFPROPOSITION3.3

A. Converse

The converse follows from standard arguments based on the Fano inequality (see, e.g., Appendix I).

Here, for illustration, we derive only the first bound in (8),i.e., R1 ≤ I(X1;Y |X2,X3, U1, U2) + C1, as

follows. Define asV1 ∈ V1 andV2 ∈ V2 the messages of cardinality|Vi| ≤ Ci sent over the two links from
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the sources to the relay. Notice thatVi is a function only ofWi and thatXn
3 is a function only ofW3, V1

andV2. Considering decoding ofW1, from the Fano inequality

H(W1|Y n, V1, V2,W2) ≤ nδn,

we get

nR1 = H(W1|W2) ≤ I(W1;Y
n, V1, V2|W2) + nδn

≤ I(W1;V1|W2) + I(W1;V2|V1,W2) + I(W1;Y
n|W2, V1, V2) + nδn

≤ nC1 + I(W1;Y
n|W2, V1, V2) + nδn

= nC1 +

n
∑

i=1

H(Yi|Y i−1,W2, V1, V2)−H(Yi|Y i−1,W1,W2, V1, V2)

= nC1 +
n
∑

i=1

H(Yi|Y i−1,X2i,X3i,W2, U1i, U2i)−H(Yi|Y i−1,X1i,X2i,X3i,W1,W2, U1i, U2i)

≤ nC1 +

n
∑

i=1

H(Yi|X2i,X3i, U1i, U2i)−H(Yi|X1i,X2i,X3i, U1i, U2i)

= nC1 +

n
∑

i=1

I(X1i;Yi|X2i,X3i, U1i, U2i),

where in the third line we have used the facts thatI(W1;V1|W2) ≤ H(V1) ≤ nC1 andI(W1;V2|V1,W2) = 0

and the definitionsU1i = V1 andU2i = V2. The proof is concluded similarly to Appendix I.

B. Achievability

Code Construction: Split the message of the terminals asWj = [Wjp Wjc] with j = 1, 2, whereWjp

stands for the “private” message sent by each terminal without the help of the relay andWjc for the

“common” message conveyed to the destination with the help of the relay. The corresponding rates are

R1 = R1p + R1c and R2 = R2p + R2c. Generate a sequenceQn i.i.d. using p(q) for i = 1, 2, ..., n.

Fix a realization of such a sequenceQn = qn. Generate2nRjc codewordsunj (wjc), wjc ∈ [1, 2nRjc ] by

choosing eachith letter independently with probabilityp(uj|qi), i = 1, 2, ..., n, for j = 1, 2. For eachwjc,

generate2nRjp codewordsxnj (wjc, wjp), j = 1, 2, wjp ∈ [1, 2nRjp ], i.i.d. with each letter drawn according to

p(xj|uji(wjc), qi). Finally, for each pairw1c, w2c, generate2nR3 codewordsxn3 (w1c, w2c, w3), w3 ∈ [1, 2nR3 ],

i.i.d. according top(x3|u1i(w1c), u2i(w2c), qi).
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Encoders: Given the messages and the arbitrary rate splits at the transmitters (w1 = [w1p w1c], w2 =

[w2p w2c], w3), encoder 1 and encoder 2 send the messagesw1c andw2c, respectively, over the finite-capacity

channels which are then known at the relay before transmission. Terminal 1 and terminal 2 then transmit

xnj (wjc, wjp), j = 1, 2, and the relay transmitsxn3 (w1c, w2c, w3).

The rest of the proof follows similarly to Appendix I by exploiting the results in Sec. VII of [14].

APPENDIX IV

PROOF OFPROPOSITION4.2

We use the classical block Markov encoding for achievability, and we assume|Q| = 1 for the sake of

brevity of the presentation. Generalization to arbitrary finite cardinalities follows from the usual techniques

(see, e.g., Appendix I).

Codebook generation:Generate2nRk i.i.d. codewordsxnk from probability distributionp(xnk) =
∏n

i=1 p(xki)

for k = 1, 2. Label each codeword, fork = 1, 2, asxnk(wk), wherewk ∈ [1, 2nRk ]. Generate2n(R0+R3)

i.i.d. codewordsxn3 from probability distributionp(xn3 ) =
∏n

i=1 p(x3i). Label each codeword asxn3 (s,w3),

wheres ∈ [1, 2nR0 ] andw3 ∈ [1, 2nR3 ]. Also, for eachxn3 (s,w3), generate2nR0 i.i.d. sequenceŝyn3 from

probability distributionp(ŷn3 |xn3 (s,w3)) =
∏n

i=1 p(ŷ3i|xn3 (s,w3)), where we define

p(ŷ3|x3) =
∑

x1,x2,y1,y2,y3

p(x1)p(x2)p(y1, y2, y3|x1, x2, x3)p(ŷ3|y3, x3).

We label these sequences asŷ3(m|s,w3), wherem ∈ [1, 2nR0 ], s ∈ [1, 2nR0 ] andw3 ∈ [1, 2nR3 ].

Encoding: Let (w1i, w2i, w3i) be the message to be transmitted in blocki, and assume that(Ŷ n
3 (si|si−1, w3,i−1), Y

n
3 (i−

1), xn3 (si−1, w3,i−1)) are jointly typical. Then the codewordsxn1 (w1i), xn2 (w2i) and xn3 (si, w3i) will be

transmitted in blocki.

Decoding: After receivingŷn3 (i), the relay finds the indexsi+1 such that

(ŷn3 (si+1|si, w3,i), y
n
3 (i), x

n
3 (si, w3i)) ∈ T n

[Ŷ3Y3X3]ǫ
.

For large enoughn, there will be suchsi+1 with high probability if

R0 > I(Y3; Ŷ3|X3).

We fix R0 = I(Y3; Ŷ3|X3) + ǫ.
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At the end of blocki, the receiverk finds indicesŝki and ŵk
3i such that

(xn3 (ŝ
k
i , ŵ

k
3i), y

n
k (i)) ∈ T n

[X3Yk]ǫ

and

(ŷn3 (ŝ
k
i |ski−1, w

k
3,i−1), x

n
3 (s

k
i−1, w

k
3,i−1), y

n
k (i− 1)) ∈ T n

[Ŷ3X2Yk]ǫ

are simultaneously satisfied, assuming thatski−1 andwk
3,i−1 have been previously correctly estimated. Re-

ceiverk will find the correct pair(si, w3i) with high probability provided thatn is large enough and that

R3 + I(Y3; Ŷ3|X3, Yk) < I(X3;Yk).

Assuming that this condition is satisfied so thatŝki = ski andŵk
3,i−1 = wk

3,i−1; using bothŷn3 (s
k
i |ski−1, w

k
3,i−1)

andynk (i), the receiverk then declares that(ŵk
1,i−1, ŵ

k
2,i−1) was sent in blocki− 1 if

(xn1 (ŵ
k
1,i−1), x

n
2 (ŵ

k
2,i−1), ŷ

n
3 (s

k
i |ski−1, w

k
3,i−1), y

n
k (i− 1), xn3 (s

k
i−1, w

k
3,i−1)) ∈ T n

[X1X2X3Ŷ3Yk]ǫ
.

We have(ŵk
1,i−1, ŵ

k
2,i−1) = (w1,i−1, w2,i−1) with high probability provided thatn is large enough,

R1 < I(X1;Yk, Ŷ3|X3,X2),

R2 < I(X2;Yk, Ŷ3|X3,X1), (47)

and

R1 +R2 < I(X1,X2;Yk, Ŷ3|X3),

for k = 1, 2.

APPENDIX V

PROOF OFPROPOSITION4.3

To simplify the presentation, here we prove (18) forR3 = 0. The case withR3 > 0 follows similarly by

following the same reasoning as in Appendix I-B. From the Fano inequality, fori = 1, 2,

H(W1,W2|Y n
i ) ≤ nδn,
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whereδn → 0 for n → ∞, from which it follows thatH(W1|Y n
i ) ≤ nδn andH(W2|Y n

i ) ≤ nδn. For the

relay terminal, we have

H(W1|W2, Y
n
3 ) = H(W1|W2,X

n
2 , Y

n
3 ,Xn

3 ) (48)

≤ H(W1|Xn
2 ,X

n
3 ) (49)

= H(W1|Xn
2 ,X

n
3 , Y

n
2 ) (50)

≤ H(W1|Y n
2 ) (51)

≤ nδn, (52)

where (48) follows sinceXn
2 is a function ofW2 andXn

3 is a function ofY n
3 ; (50) follows sinceY n

2 −
(Xn

2 ,X
n
3 ) − W1 form a Markov chain based on the assumption in (17a); (51) follows since conditioning

reduces entropy; and finally (52) follows from the Fano inequality. Similarly, we can also show

H(W2|W1, Y
n
3 ) ≤ nδn.

We also define the auxiliary random variablesU1i , W1 andU2i , W2, for i = 1, . . . , n. It follows that:

nR1 = H(W1) = H(W1|W2) (53)

≤ I(W1;Y
n
3 |W2) + nδn (54)

=

n
∑

i=1

I(W1;Y3i|W2, Y
i−1
3 ) + nδn

=

n
∑

i=1

H(Y3i|Y i−1
3 ,W2)−H(Y3i|W1,W2, Y

i−1
3 ) + nδn

=
n
∑

i=1

H(Y3i|Y i−1
3 ,W2,X2i,X3i)−H(Y3i|W1,W2, Y

i−1
3 ,X1i,X2i,X3i) + nδn (55)

≤
n
∑

i=1

H(Y3i|W2,X2i,X3i)−H(Y3i|X1i,X2i,X3i) + nδn (56)

≤
n
∑

i=1

H(Y3i|U2i,X2i,X3i)−H(Y3i|U2i,X1i,X2i,X3i) + nδn (57)

=

n
∑

i=1

I(X1i;Y3i|U2i,X2i,X3i) + nδn, (58)

where (54) follows from (52); (55) follows asX1i andX2i are functions ofW1 andW2, respectively, and

X3i is a function ofY i−1
3 ; (56) follows from the fact that conditioning reduces entropy and also the fact
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thatY3i− (X1i,X2i,X3i)− (W1,W2, Y
i−1
3 ); and again (57) follows from the fact that conditioning reduces

entropy and the definition of auxiliary random variableU2i. Similarly, we can show that

nR2 ≤
n
∑

i=1

I(X2i;Y3i|U1i,X1i,X3i). (59)

Next, we consider the bounds due to decoding at receivers. Focusing on the first message and the first

receiver, we have

nR1 = H(W1|W2) ≤ I(W1;Y
n
1 |W2) + nδn

=

n
∑

i=1

H(Y1i|W2, Y
i−1
1 )−H(Y1i|W1,W2, Y

i−1
1 ) + nδn

=

n
∑

i=1

H(Y1i|W2, Y
i−1
1 )−H(Y1i|W1,W2,X1i,X2i,X3i, Y

i−1
1 ) + nδn (60)

≤
n
∑

i=1

H(Y1i|W2)−H(Y1i|X1i,X2i,X3i) + nδn (61)

=

n
∑

i=1

H(Y1i|W2)−H(Y1i|X1i,X3i) + nδn (62)

≤
n
∑

i=1

H(Y1i|U2i)−H(Y1i|X1i,X3i, U2i) + nδn (63)

=
n
∑

i=1

I(X1i,X3i;Y1i|U2i) + nδn (64)

where (60) follows sinceX1i and X2i are functions ofW1 and W2, respectively, andX3i is a function

of Y i−1
3 ; (61) follows as conditioning reduces entropy andY1i − (X1i,X2i,X3i) − (W1,W2, Y

i−1
1 ) forms

a Markov chain; (62) follows sinceY1i − (X1i,X3i) −X2i forms a Markov chain; and finally in (63) we

simply used the definition ofU2i and the fact that conditioning reduces entropy. We can similarly obtain

nR2 ≤
n
∑

i=1

I(X2i,X3i;Y2i|U1i) + nδn.
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We now focus on the first message and the second receiver. We have

nR1 = H(W1)

≤ I(W1;Y
n
2 |W2) + nδn

=

n
∑

i=1

H(Y2i|W2, Y
i−1
2 )−H(Y2i|W1,W2, Y

i−1
2 ) + nδn

=

n
∑

i=1

H(Y2i|W2, Y
i−1
2 ,X2i)−H(Y2i|W1,W2,X1i,X2i,X3i, Y

i−1
2 ) + nδn (65)

≤
n
∑

i=1

H(Y1i|W2,X2i)−H(Y2i|X1i,X2i,X3i) + nδn (66)

=
n
∑

i=1

H(Y2i|W2,X2i)−H(Y2i|X2i,X3i) + nδn (67)

≤
n
∑

i=1

H(Y2i|U2i,X2i)−H(Y2i|X2i,X3i, U2i) + nδn (68)

=

n
∑

i=1

I(X3i;Y2i|U2i,X2i) + nδn. (69)

We can similarly obtain

nR2 ≤
n
∑

i=1

I(X3i;Y1i|U1i,X1i) + nδn.

We also have

n(R1 +R2) ≤ I(W1,W2;Y
n
1 ) + nδn

=

n
∑

i=1

H(Y1i|Y i−1
1 )−H(Y1i|W1,W2, Y

i−1
1 ) + nδn

=
n
∑

i=1

H(Y1i|Y i−1
1 )−H(Y1i|X1i,X2i,X3i,W1,W2, Y

i−1
1 ) + nδn

≤
n
∑

i=1

H(Y1i)−H(Y1i|X1i,X2i,X3i) + nδn

≤
n
∑

i=1

H(Y1i)−H(Y1i|X1i,X3i) + nδn

=

n
∑

i=1

I(X1i,X3i;Y1i) + nδn,
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and similarly

n(R1 +R2) ≤
n
∑

i=1

I(X2i,X3i;Y2i) + nδn.

Now, introducing the time-sharing random variableQ uniformly distributed in the set{1, 2, .., n} and defining

Xj = XjQ for j = 1, 2, 3, Yj = YjQ andUj = UjQ for j = 1, 2, we get (18) (forR3 = 0).

APPENDIX VI

PROOF OFPROPOSITION5.1

We first prove the converse showing that (22) serves as an outer bound, and prove the direct part describing

a structured coding scheme that achieves the outer bound.

To prove the converse, it is sufficient to consider the outer bound given by (18) as applied to the channel

characterized by (21), and show that an input distribution (19) with X1,X2,X3, U1, U2 ∼ B(1/2) and

independent of each other maximizes all the mutual information terms. To this end, notice that in the outer

bound (18) withR3 = 0 ignoring all the constraints involving auxiliary random variables can only enlarge

the region, so that we have the conditions:

R1 ≤ I(X1;Y3|X2,X3, Q), (70)

R2 ≤ I(X2;Y3|X1,X3, Q) (71)

and

R1 +R2 ≤ min{I(X1,X3;Y1|Q), I(X2,X3;Y2|Q)}. (72)

We can further write

I(X1;Y3|X2,X3, Q) = H(Y3|X2,X3, Q)−H(Y3|X1,X2,X3, Q)

≤ H(Y3)−Hb(ε3) ≤ 1−Hb(ε3),

and

I(X1,X3;Y1|Q) = H(Y1|Q)−H(Y1|X1,X3, Q)

≤ H(Y1)−Hb(ε1) ≤ 1−Hb(ε1).

We can see that the inequalities hold with equality under theabove stated input distribution, which concludes

the proof of the converse.
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We now prove the direct part of the proposition. First, considerR1 ≥ R2. Transmission is organized into

B blocks of sizen bits. In each of the firstB − 1 blocks, say thebth, thej-th transmitter,j = 1, 2, sends

nRj new bits, conventionally organized into a1×⌊nRj⌋ vectoruj,b. Moreover, encoding at the transmitters

is done using the same binary linear code characterized by a⌊nR1⌋×n random binary generator matrixG

with i.i.d. entriesB(1/2).
Specifically, as in [23], terminal 1 transmitsx1,b = u1,bG and terminal 2 transmitsx2,b = [0 u2,b]G

where the all-zero vector is of size1 × ⌊nR1⌋ − ⌊nR2⌋ (zero-padding). Since capacity-achieving random

linear codes exist for BS channels, we assume thatG is the generating matrix for such a capacity achieving

code.

We defineu3,b , u1,b ⊕ [0 u2,b]. The relay can then decodeu3,b from the received signaly3,b =

u3,bG+ z3 sincex1,b ⊕ x2,b is also a codeword of the code generated byG. This occurs with vanishing

probability of error if (22a) holds (see, e.g., [24]). In thefollowing (b + 1)-th block, the relay encodes

u3,b using an independent binary linear code with an⌊nR1⌋ × n random binary generator matrixG3 as

x3,b+1 = u3,bG3. We use the convention that the signal sent by the relay in thefirst block isx3,1 = 0 or

any other known sequence.

At the end of the first block (b = 1), where the relay sends a known signal (that can be canceled by

both receivers), thej-th receiver can decode the currentnRj bits uj,1 from the jth transmitter ifRj ≤
1 − Hb(εj). Under this condition, we can now consider the second block, or any other(b + 1)-th block,

assuming that thej-th receiver already knowsuj,b. In the (b+1)-th block, the first receiver sees the signal

y1,b+1 = u1,b+1G ⊕ u3,bG3 ⊕ z1. However, sinceu1,b is known at the first receiver, it can be canceled

from the received signal, leading toy′
1,b+1 = u1,b+1G⊕u2,bG

′
3⊕ z1, whereG′

3 is a ⌊nR2⌋×n matrix that

contains the last⌊nR2⌋ rows ofG3. Due to the optimality of random linear codes over the BS MAC (see,

e.g., [24]),u1,b+1 andu2,b are correctly decoded by the first receiver ifR1 +R2 ≤ 1−Hb(ε1). Repeating

this argument for the second receiver and then considering the caseR1 ≥ R2 concludes the proof.

APPENDIX VII

PROOF OFPROPOSITION6.5

We first give a brief overview of lattice codes (see [18], [22]for further details). Ann-dimensional lattice

Λ is defined as

Λ = {GX : X ∈ Z
n},
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whereG ∈ Rn is the generator matrix. For anyx ∈ R
n, the quantization ofX mapsX to the nearest lattice

point in Euclidean distance:

QΛ(X) , argmin
Q∈Λ

‖X −Q‖.

The mod operation is defined as

X mod Λ = X −QΛ(X).

The fundamental Voronoi regionV(Λ) is defined asV(Λ) = {X : QΛ(X) = 0}, whose volume is denoted

by V (Λ) and is defined asV (Λ) =
∫

V(Λ) dX. The second moment of latticeΛ is given by

σ2(Λ) =
1

nV (Λ)

∫

V(Λ)
‖X‖2dX,

while the normalized second moment is defined as

G(Λ) =
σ2(Λ)

V (Λ)1/n
= σ2(Λ) =

1

nV (Λ)

∫

V(Λ)
‖X‖2dX.

We use a nested lattice structure as in [19], whereΛc denotes the coarse lattice andΛf denotes the fine

lattice and we haveΛc ⊆ Λf . Both transmitters use the same coarse and fine lattices for coding. We consider

lattices such thatG(Λc) ≈ 1
2πe andG(Λf ) ≈ 1

2πe , whose existence is shown in [19]. In nested lattice coding,

the codewords are the lattice points of the fine lattice that are in the fundamental Voronoi region of the

coarse lattice. Moreover, we choose the coarse lattice (i.e., the shaping lattice) such thatσ2(Λc) = P to

satisfy the power constraint. The fine lattice is chosen to begood for channel coding, i.e., it achieves the

Poltyrev exponent [19].

We use a block Markov coding structure, that is the messages are coded intoB blocks, and are transmitted

overB + 1 channel blocks. The relay forwards the information relating to the messages from each block

over the next channel block. The relay is kept silent in the first channel block, while the transmitters are

silent in the last one. The receivers decode the messages from the transmitters and the relay right after each

block. Since there is no coherent combining, transmitters send only new messages at each channel block,

thus sequential decoding with a window size of one is sufficient. We explain the coding scheme for two

consecutive channel blocks dropping the channel block index in the expressions.

Each transmitteri maps its messageWi to a fine lattice pointVi ∈ Λf ∩ V(Λc), i = 1, 2. Each user

employs a dither vectorUi which is independent of the dither vectors of the other usersand of the messages

and is uniformly distributed overV(Λc). We assume all the terminals in the network know the dither vectors.
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Now the transmitted codeword from transmitteri is given byXi = (Vi − Ui) mod Λc. It can be shown

thatXi is also uniform overV(Λc).

At the end of each block, we want the relay to decodeV , (V1+V2) mod Λc instead of decoding both

messages. Following [22] (with proper scaling to take care of the channel gainγ), it is possible to show

thatV can be decoded at the relay if

R ≤ 1

n
log2 |Λf ∩ V(Λc)| <

1

2
log

(

1

2
+ γ2P

)

. (73)

Then in the next channel block, while the transmitters send new information, the relay terminal broadcasts

the index ofV to both receivers. The relay uses rate-splitting [27], and transmits each part of theV index

using a single-user random code. LetR1 andR2 be the rates of the two codes the relay uses, with power

allocationδ andP − δ, respectively. Each receiver applies successive decoding; the codes from the relay

terminal are decoded using a single-user typicality decoder, while the signal from the transmitter is decoded

by a Euclidean lattice decoder. Successful decoding is possible if

R1 ≤
1

2
log

(

1 + η2δ
)

,

R ≤ 1

2
log

(

1 +
P

1 + η2δ

)

and

R2 ≤
1

2
log

(

1 +
η2(P − δ)

1 + η2δ + P

)

,

whereR1 +R2 = R. This is equivalent to having

R ≤
{

1

2
log

(

1 + η2P
)

,
1

2
log (1 + P ) ,

1

4
log

(

1 + (1 + η2)P
)

}

.

Combining this with (73), we obtain the rate constraint given in the theorem.

APPENDIX VIII

PROOF OFPROPOSITION6.1

The proof follows from [15], and here we only briefly sketch the main arguments. The first step is to notice

that the capacity region for the Gaussian channel (23) with power constraints (24) is given by the region

(5) where the further constraintsE[X2
j ] =

∑4
q=1 p(q)E[X2

j |Q = q] ≤ Pj for j = 1, 2, 3 are imposed on the

input distribution. One then fixes a given value ofQ = q and powersPj(q) , E[X2
j |Q = q] and shows that,

for any given input distribution (recall (6)) (U1q, U2q,X1q,X2q ,X3q)∼ p(x1, u1|q)p(x2, u2|q)p(x3|u1, u2, q)
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satisfying the power constraintsE[X2
j |Q = q] ≤ Pj(q), one can find a set of jointly Gaussian variables

(UG
1q, U

G
2q,X

G
1q,X

G
2q,X

G
3q) such that: (i) the joint distribution can be factorized as in (6); (ii ) the power

constraints are satisfied; and (iii ) all the mutual information terms in (5) are larger than or equal to the

corresponding values obtained with the original distribution.

Notice that, as discussed in [15], the existence of such a tuple of Gaussian variables does not follow

immediately from the conditional maximum entropy theorem.In fact, variables satisfying given Markov

constraints (as in (6)) might have a covariance matrix for which a joint Gaussian distribution with the same

Markov constraints cannot be constructed. However, in our case, similarly to [15], jointly Gaussian random

variables satisfying (i)-(iii ) can be found as discussed below.

First, for a given tuple(U1q, U2q,X1q,X2q,X3q), construct another tuple (V1q, V2q,X1q,X2q,X3q) with

V1q = E[X1|U1] − E[X1] andV2q = E[X2|U2] − E[X2]. It can be readily seen that with this new input

distribution, all the mutual information terms in (5) are larger than or equal to the corresponding values for

(U1q, U2q,X1q,X2q,X3q) (property (iii ) above). In fact, the non-conditional term (5d) is unchanged (due to

the fact the joint distribution ofX1q,X2q,X3q has not changed), while the remaining terms, which contain

conditioning with respect toV1q, V2q, are increased, sinceV1q, V2q are deterministic functions ofU1q, U2q, re-

spectively [15]. Now, define(UG
1q, U

G
2q,X

G
1q,X

G
2q,X

G
3q) as the zero-mean jointly Gaussian tuple with the same

covariance matrix as(V1q, V2q,X1q,X2q,X3q). For this distribution the power constraints are clearly satisfied

(property (ii ) above). Moreover, we can show that this jointly Gaussian distribution factorizes as (6) (property

(i)). This follows similarly to Lemma 6 in [15]. In fact,X1q,X2q are independent and, sinceU1q, U2q

are independent, so areV1q, V2q; as a consequence, the covariance matrix of(UG
1q, U

G
2q,X

G
1q,X

G
2q,X

G
3q)

is fully defined by the subcovariance matrices of(UG
1q,X

G
1q,X

G
3q) and (UG

2q,X
G
2q,X

G
3q). Now, since both

submatrices satisfy the conditions of Lemma 5 of [15], we canconclude that the jointly Gaussian vector

(UG
1q, U

G
2q,X

G
1q,X

G
2q,X

G
3q) satisfies the desired Markov conditions (6). It finally follows from the conditional

maximum entropy theorem that(UG
1q, U

G
2q,X

G
1q,X

G
2q,X

G
3q) is optimal for a givenQ = q. The final step is

to use the concavity of the mutual informations at hand with respect to the powersPj(q) to see that time

sharing (i.e., the variableQ with non-singleton domain) is not necessary.

From the arguments sketched above, we conclude that a zero-mean jointly Gaussian distribution is optimal,

thus we can write

Xj =
√

αjPjUj +
√

ᾱjPjSj (74)
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for j = 1, 2 and

X3 =
√

α′
3P3U1 +

√

α′′
3P3U2 +

√

ᾱ3P3S3 (75)

with 0 ≤ α1, α2, α
′
3, α

′′
3 ≤ 1, α′

3 + α′′
3 ≤ 1, ᾱ1 = 1 − α1, ᾱ2 = 1− α2 and ᾱ3 = 1− α′

3 − α′′
3 , and where

Ui andSi are independent zero-mean and unit-variance Gaussian random variables. The capacity region (5)

then reads

R3 ≤
1

2
log(1 + ᾱ3P3), (76)

R1 +R3 ≤
1

2
log(1 + ᾱ1P1 + ᾱ3P3 + (

√

α1P1 +
√

α′
3P3)

2)), (77)

R2 +R3 ≤
1

2
log(1 + ᾱ2P2 + ᾱ3P3 + (

√

α2P2 +
√

α′′
3P3)

2)) and (78)

R1 +R2 +R3 ≤
1

2
log(1 + P1 + P2 + P3 + 2

√

α1P1α′
3P3 + 2

√

α2P2α′′
3P3), (79)

where each term is clearly seen to be maximized byα1 = 1 andα2 = 1. This concludes the proof.
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