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Abstract

The problem of simultaneous multicasting of multiple mgesawith the help of a relay terminal is
considered. In particular, a model is studied in which ayrekation simultaneously assists two transmitters
in multicasting their independent messages to two receiVidre relay may also have an independent message
of its own to multicast. As a first step to address this genmadel, referred to as the compound multiple
access channel with a relay (cMACr), the capacity regiorhefrultiple access channel with a “cognitive”
relay is characterized, including the cases of partial ate-limited cognition. Then, achievable rate regions
for the cMACr model are presented based on decode-and+for{izF) and compress-and-forward (CF)
relaying strategies. Moreover, an outer bound is deriveditie special case, called the cMACr without
cross-reception, in which each transmitter has a dire&t tinone of the receivers while the connection
to the other receiver is enabled only through the relay teamiThe capacity region is characterized for a
binary modulo additive cMACr without cross-reception, airy the optimality of binary linear block codes,
thus highlighting the benefits of physical layer network iogdand structured codes. Results are extended
to the Gaussian channel model as well, providing achievedite regions for DF and CF, as well as for a
structured code design based on lattice codes. It is shaatritth performance with lattice codes approaches
the upper bound for increasing power, surpassing the ratgswed by the considered random coding-based

techniques.
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. INTRODUCTION

Consider two non-cooperating satellites each multicgstio/TV signals to users on Earth. The cover-
age area and the quality of the transmission is generallyeldrby the strength of the direct links from the
satellites to the users. To extend coverage, to increaseitgr to improve robustness, a standard solution
is that of introducing relay terminals, which may be othdaelige stations or stronger ground stations (see
Fig.[d). The role of the relay terminals is especially catin scenarios in which some users lack a direct
link from any of the satellites. Moreover, it is noted thag tlelays might have their own multicast traffic to
transmit. A similar model applies in the case of non-coofiegebase stations multicasting to mobile users
in different cells: here, relay terminals located on theé belindaries may help each base station reach users
in the neighboring cells.

Cooperative transmission (relaying) has been extenssteigied in the case of two transmitting users,
both for a single user with a dedicated relay terminal [1],d8d for two cooperating users [3]. Extensions
to scenarios with multiple users are currently under ingasion [2], [5] - [11]. In this work, we aim at
studying the impact of cooperation in the setup of Flg. 1 deatsists of two source terminals simultaneously
multicasting independent information to two receivershie presence of a relay station. While the source
terminals cannot directly cooperate with each other, theyreerminal is able to support both transmissions
simultaneously to enlarge the multicast capacity regiotheftwo transmitters. Moreover, it is assumed that
the relay station is also interested in multicasting a lanaksage to the two receivers (see Flg. 2).

The model under study is @@empound multiple access channel with a re{ailACr) and can be seen
as an extension of several fundamental channel models, asi¢the multiple access channel (MAC), the
broadcast channel (BC) and the relay channel (RC). The nwaihaf this work is to adapt basic transmission
strategies known from these key scenarios to the channelrat &nd to identify special cases of the more
general model for which conclusive capacity results can liaioed.

Below, we summarize our contributions:

« We start our analysis by studying a simplified version of tihMACTr that consists of a MAC with

a “cognitive” relay (see Figl]3). In this scenario the cowgmitrelay is assumed to be aware of
both transmitters’ messages non-causally. We provide @pagity region for this model and several
extensions. While interesting on its own, this setup ermabketo conveniently introduce the necessary

tools to address the analysis of the cMACr. As an intermeditégp between the cognitive relay model
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Fig. 1. lllustration for an application of the compound nplk# access channel with a relay.

and the more general model of cMACr, we also consider they neith finite capacity unidirectional
links from the transmitters and provide the correspondiagacity region.

« We provide achievable rate regions for the cMACr model wigic@be-and-forward (DF) and compress-
and-forward (CF) relaying. In the CF scheme, the relayemdtof decoding the messages, quantizes
and broadcasts its received signal. This corresponds tgothe source-channel coding problem of
broadcasting a common source to two receivers, each witbwits correlated side information, in a
lossy fashion, studied in [16]. This result indicates tlet pure channel coding rate regions for certain
multi-user networks can be improved by exploiting relateititj source-channel coding techniques.

« The similarity between the underlying scenario and thesatas$ butterfly example in network coding
[12] is evident, despite the fact that we have multiple sesrand a more complicated network with
broadcasting constraints and multiple access interfereviet, we can still benefit from physical layer
coding techniques that exploit the network coding techesqun order to highlight the possibility of
physical layer network coding, we focus on a special cMACwhiich each source’s signal is received
directly by only one of the destinations, while the othertohadion is reached through the relay. This

special model is called theMACr without cross-receptioe provide an outer bound for this setting
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and show that it matches the DF achievable region, apart &oradditional sum rate constraint at the
relay terminal. This indicates the suboptimality of enfogcthe relay to decode both messages, and
motivates a coding scheme that exploits the network codapgets in the physical layer.

« Based on the observation above, we are interested in ldugrége network structure by exploiting
“structured codes”. We then focus on a modulo additive lyinarsion of the cMACT, and characterize
its capacity region, showing that it is achieved by binamgd&r block codes. In this scheme, the relay only
decodes the binary sum of the transmitters’ messages rdihie decoding each individual message.
Since the receiver (2) can decode the message of transmitt€R) directly without the help of the
relay, it is sufficient for the relay to forward only the bigagum. Similar to [17], [20], [21], this result
highlights the importance of structured codes in achievimg capacity region of certain multi-user
networks.

« Finally, we extend our results to the Gaussian case, anemrescomparison of the achievable rates
and the outer bound. Additionally, we extend the structurede approach to the Gaussian channel
setting by proposing an achievable scheme based on nettied taodes. We show that, in the case of
symmetric rates from the transmitters, nested lattice rgpdtnproves the achievable rate significantly

compared to the considered random coding schemes in theratede high power regime.

The cMACr of Fig.[2 can also been seen as a generalization afnebar of other specific channels
that have been studied extensively in the literature. Td stih, if there is no relay terminal available, our
model reduces to the compound multiple access channel vadapeeity is characterized in [4]. Moreover, if
there is only one source terminal, it reduces to the dedicatlay broadcast channel with a single common
message explored in [2], [5]: Since the capacity is not knewan for the simpler case of a relay channel
[1], the capacity for the dedicated relay broadcast charemains open as well. If we have two sources but
a single destination, the model reduces to the multiplesscosay channel model studied in [2], [25] whose
capacity region is not known in the general case either.heuntore, if we assume that transmitter 1 (and
2) has an orthogonal side channel of infinite capacity toivecel (2), then we can equivalently consider
the message of transmitter 1 (2) to be known in advance aiveece (2) and the corresponding channel
model becomes equivalent to the restricted two-way relanohbl studied in [6], [7], [22], and [23].

The cMACr model is also studied in [11], where DF and ampiifid-forward (AF) based protocols are

analyzed. Another related problem is the interferenceyrel®annel model studied in [8], [9], [10]: Note

November 7, 2018 DRAFT



Wi (1), Wa(1),Ws(1)

Wl X1
—>»| Source 1 >
Y
x cMACT » Dest. 1
W3 3
—> Relay
Y M M x 7‘/1/‘ 7‘/1/‘
5 | pyiy2, yslzL, o2, 23) o Dest 2
W Yy
2
—3»1 Source 2 3> +
Xo

Wi (2),Wa(2),Ws(2)

Fig. 2. A compound MAC with a relay (cMACr).

that, even though the interference channel setup is notnelataas a special case of our model, achievable
rate regions proposed here can serve as inner bounds fosahat as well.

Notation To simplify notation, we will sometimes use the shorteuts, = (z;)ics. We employ standard
conventions (see, e.g., [1]), where the probability disttions are defined by the arguments, upper-case
letters represent random variables and the correspondingricase letters represent realizations of the
random variables. We will follow the convention of droppiagbscripts of probability distributions if the
arguments of the distributions are lower case versionseoftiresponding random variables. The superscripts
identify the number of samples to be included in a given wecacg.,y{_l =[y11 y1-1]-

The rest of the paper is organized as follows. The system hisdetroduced in Sectiofll. In Section
[Mwe study the multiple access channel with a cognitiveaygland provide the capacity region for this
model and several extensions. The compound multiple actesmel with a relay is studied in Section 1V,
in which inner and outer bounds are provided using decodef@mvard and compress-and-forward type
relaying strategies. Sectidn] V is devoted to a special pimalditive cMACr model. For this model, we
characterize the capacity region and show that the lingaarpiblock codes can achieve any point in the
capacity region, while random coding based achievabitityesnes have suboptimal performance. In Section
VI] we analyze Gaussian channel models for both the MAC witblay setup and the general cMACr setup.
We apply lattice coding/decoding for the cMACr and show tihatproves the achievable symmetric rate
value significantly, especially for the high power regimec®n[VIl concludes the paper followed by the

appendices where we have included the details of the proofs.
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II. SYSTEM MODEL

A compound multiple access channel with relay consists m@etlchannel input alphabefs, x> and
X5 of transmitter 1, transmitter 2 and the relay, respectjvaiyl three channel output alphabgts )» and
Y5 of receiver 1, receiver 2 and the relay, respectively. Wesioar a discrete memoryless time-invariant
channel without feedback, which is characterized by thesiten probabilityp(yi, y2, ys|z1, 22, 23) (S€e
Fig.[2). Transmitte has messagl’; € W, i = 1,2, while the relay terminal also has a messéigec s
of its own, all of which need to be transmitted reliably to bboeceivers. Extension to a Gaussian model
will be considered in Se€._VI.

Definition 2.1: A (2" 2nfz 9nfs ) code for the cMACT consists of three seétg = {1,...,2"%}

for i = 1,2, 3, two encoding functiong; at the transmitters, = 1, 2,

fi e Wi — &, (1)
a set of (causal) encoding functiops at the relay; =1, ... ,n,
g W x V7 = X, (2)

and two decoding functions; at the receivers, =1, 2,

hi:yi"—>W1><W2><W3. (3)
We assume that the relay terminal is capable of full-duplgeration, i.e., it can receive and transmit at

the same time instant. The joint distribution of the randaamables factors as

n
—1
p(w{1,2,3}7x?1,273}7y?172,3} Hp w;) - p(af|wy)p x2‘w2 H ij’y:jJ, 7w3)p(y{1,2,3}j’w{1,2,3}j)- 4)

The average probability of block error for this code is dednaxs

n 1
P £ 9n(Ri+Ra+Rs) Z U {(W (i), Wa(4), Ws()) # (W1, Wa, Wa)}
(W1,Wa,W5)eEW; X Wa X W5 1=1,2

Definition 2.2: A rate triplet (R;, Ro, R3) is said to beachievablefor the cMACr if there exists a
sequence of2"f 2nfe onfs n) codes withP? — 0 asn — oo.
Definition 2.3: The capacity regionC for the cMACr is the closure of the set of all achievable rate

triplets.
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Fig. 3. MAC with a cognitive relay.

I1l. MAC wiTH A COGNITIVE RELAY

Before addressing the more general cMACr model, in thisieeowe study the simpler MAC with
a cognitive relay scenario shown in Fig. 3. This model, bediging relevant on its own, enables the
introduction of tools and techniques of interest for the dBtAThe model differs from the cMACr in that
the messageld’; and W, of the two users are assumed to be non-causally availabfe aelay terminal (in
a “cognitive” fashion [13]) and there is only one receivgs & V3 = ) and) = );). Hence, the encoding
function at the relay is now defined &s : Wi x Wy x W53 — X%, the discrete memoryless channel is
characterized by the conditional distributipfy|x1, x2, z3) and the average block error probability is defined
accordingly for a single receiver. Several extensions eftthsic model of Fid.]3 will also be considered in
this section. The next proposition provides the capaciyore for the MAC with a cognitive relay.

Proposition 3.1: For the MAC with a cognitive relay, the capacity region is ttesure of the set of all

non-negative Ry, Ry, R3) satisfying

Ry < I(X35; Y[ X1, Xo,Ur, Us, Q), (5a)
Ry + Ry < I(X1, X3;Y X2, Uz, Q), (5b)
Ry + R3 < I(X2, X3;Y[X1,Un,Q), (5¢)
and
R1+ Ra + Ry < I(X1, Xo, X3;Y[Q) (5d)

for some joint distribution of the form
p(@)p(z1, wa|qQ)p(w2, ua|q)p(ws|ur, uz, @)p(yley, x2, 23) (6)
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for some auxiliary random variabld$,, U, and Q).

Proof: A more general MAC model with three users and any combinadbftommon messages”
(i.e., messages known “cognitively” to more than one user¥tudied in Sec. VIl of [14], from which
Propositio 3.1 can be obtained as a special case. Howéwee, & proof is not provided in [14], and the
technigue developed here will be used in deriving othereagtiile regions in the paper, we provide a proof
in Appendix(. [ |

Towards the goal of accounting for non-ideal connectiortsvéen sources and relay (as in the original
cMACTr), we next consider the cases of partial and limite@-reognition (rigorously defined below). We
start with thepartial cognitionmodel, in which the relay is informed of the message of onlg ohthe two
users, say of messag# .

Proposition 3.2: The capacity region of the MAC with a partially cognitive agl(informed only of the

messagély) is given by the closure of the set of all non-negativl, R», R3) satisfying

Ry < I(X2;Y[X1, X35,Q), (7a)
Ry < I(X3;Y[X1, X2, Q), (7b)
Ry + R3 < I(X41,X3;Y[X0,Q), (7¢)
Ry + Ry < I(X2, X3;Y|X1,Q), (7d)
and
Ri + Ro + R3 < I(X1, X2, X3;Y|Q). (7e)

for an input distribution of the formp(q)p(x2|q)p(z1, z3]q).
Proof: The proof can be found in Appendix II. [ |

Remark 3.1:The capacity region characterization requires two auyilfandom variables in Proposition
3. (and in [14]), while no auxiliary random variables arguieed in the formulation of Propositidn 3.2.
This is because, in the scenario covered by Propositioh tBel relay’s codeword can depend on both
W1 and W,, and the auxiliary random variables quantify the amount epehdence on each message.
On the contrary, for Propositidn 3.2, the relay cooperatib wnly one source, and no auxiliary random
variable is needed. To further elaborate on this point, lerospecial case of the channel in Hig. 3 in

which no auxiliary random variable is necessary to achiéwe dapacity region is obtained when each
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transmitter is connected to the receiver via an orthogohahnel, i.e., we havd@ = (Y7,Y3,Y3) and
p(y1, Y2, y3|x1, T2, 23) = H;”:lp(yi\xi). In this case, unlike Propositidn 8.2, the lack of auxiliaandom
variables reflects the fact that no coherent combining gaim lme accrued via the use of the relay due to
the channels’ orthogonality. Defining; = max,,,,) I(X;;Y;), for i = 1,2,3, we obtain from Proposition
3.1 that the capacity region is given YR, R2,R3) : 0 < Ry,0 < R9,0 < R3 < C5,R; + Ry <
Ci+Cy Ry +R3 < Co+C3,Ry + Ry + Ry < Cy + Cy + C3}.

The model in Figl. B can be further generalized to a scenatiolimited-capacity cognitionin which the
sources are connected to the relay via finite-capacity gathal links, rather than having a priori knowledge
of the terminals’ messages. This channel can be seen asaméatiate step between the MAC with cognitive
relay studied above and the multiple access channel widty felr which an achievable region was derived
in [2] for the caseR3; = 0. In particular, assume that terminal 1 can communicate Wi¢hrelay, prior to
transmission, via a link of capacity; and that similarly terminal 2 can communicate with the relay a
link of capacityCs. The following proposition establishes the capacity of saathannel.

Proposition 3.3: The capacity region of the MAC with a cognitive relay conmeekto the source terminals

via (unidirectional) links of capacitie§’; andC is given by

Ry < I(X1;Y[Xo, X3,U1,U2,Q) + Ch, (8a)
Ry < I(Xo;Y[X1, X3,U1,U2,Q) + Co, (8b)
Rs < I(X3;Y| X4, X5,Up,Us,Q), (8c)
Ry + Ry < I(X1, X2: Y |X3,U1, Uz, Q) + C1 + Co, (8d)

I(X1, X3;Y| X2, U1, Us, Q) + Cy,
Ry + R3 < min (X0, X5 Y12, U1, U, Q) 1+ : (8e)
(X1, X3, Y| X2, Uz, Q)

I(X2, X3;Y|X1,U1,Us, Q) + C:
Ry + R3 < min (% X3 ¥ |21, 00, 02, Q) i (8
I(Xo, X3;Y|X1,U1, Q)

and
I(X1, X2, X3;Y|U1,Us,Q) + C1 + Oy,

(
1(Xy, Xy, X3: Y|UL, Q) + C,
Ry + Ry + R3 < min (X1, Xo, Xai VUL, Q) + O (8g)
(
(

I(X1, X2, X3;Y|Us2, Q) + Co,
1 X17X27X3;Y|Q)

November 7, 2018 DRAFT



10

for some auxiliary random variabld$,, U, and @ with joint distribution of the form[(B).
Proof: The proof is sketched in AppendixIill. [ |
Remark 3.2:Based on the results of this section, we can now make a fustiegrtowards the analysis
of the cMACr of Fig.[2 by considering theMACr with a cognitive relay This channel is given as
in Fig. [@ with the only difference that the relay here is imfed “for free” of the messaged’; and
Wy (similarly to Fig.[3) and that the signal received at the yek non-informative, e.g.), = . The
capacity of such a channel follows easily from Proposifiofi By taking the union over the distribution
p(q)p(x1,u1|q)p(z2, uslq)p(xs|ui, ug, q) p(y1,y2|x1,z2,23) Of the intersection of the two rate regions (5)
evaluated for the two outpud$ andY>. Notice that this capacity region depends on the channeksngnly

through the marginal distributions(y; |1, x2, x3) andp(ys|x1, z2, x3).

IV. INNER AND OUTER BOUNDS ON THECAPACITY REGION OF THECOMPOUND MAC WITH A RELAY

In this section, we focus on the general cMACr model illustdain Fig.[2. As stated in Sectidh I, single-
letter characterization of the capacity region for this elad open even for various special cases. Our goal
here is to provide inner and outer bounds, which are then showbe tight in certain meaningful special
scenarios.

The following inner bound is obtained by the decode-andvfod (DF) strategy [1] at the relay terminal.
The relay fully decodes both messages of both users so thdiame a MAC from the transmitters to
the relay terminal. Once the relay has decoded the mesdhgesansmission to the receivers takes place
similarly to the MAC with a cognitive relay model of Sectibhl |

Proposition 4.1: For the cMACr as seen in Figl 2, any rate trip{ét;, Rz, R3) with R; >0, j = 1,2, 3,

satisfying
Ry < I(Xy;Y3|Ur, X2, X3, Q), (9a)
Ry < I(X3;Y3|Uz, X1, X3,Q), (9b)
Ry + Ry < I(X1, Xo; Y3|U1, Uz, X3,Q), (9¢)
Ry < min{I(X3; Y1|X1, X2, U1, U2, Q), 1(X3;Y2|X1, X2, U1, U, Q)}, (9d)
Ry + Rz < min{I(X1, X3;Y1|X2,U2,Q), (X1, X3;Y2|X2,U2,Q)}, (9e)
Ry + Rz < min{I(Xz, X3; V1| X1,U1,Q), I(Xo, X3;Y2|X1,0U1,Q)} (9)
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and
Ry + Ry + Ry < min{I (X1, X2, X3; Y1|Q), I(X1, X2, X3;Y2(Q)} (99)
for auxiliary random variable#;, Us and @ with a joint distribution of the form

p(q)p(x1, ui|q)p(xe, uz|q)p(xs|ui, uz, ¢)p(y1, y2, ys|1, 2, x3) (10)

is achievable by DF.

Proof: The proof follows by combining the block-Markov transm@sistrategy with DF at the relay
studied in Sec. IV-D of [2], the joint encoding used in Prapos [3.] to handle the private relay message
and backward decoding at the receivers. Notice that camdit{9a){(9c) ensure correct decoding at the
relay, wheread (9d)-(9g) follow similarly to Propositibrll3and Remark 312 ensuring correct decoding of
the messages at both receivers. [ |

Next, we consider applying the compress-and-forward (Gfteggy [1] at the relay terminal. With CF,
the relay does not decode the source message, but fasildetoding at the destination by transmitting a
guantized version of its received signal. In quantizingréseived signal, the relay takes into consideration
the correlated received signal at the destination ternandlapplies Wyner-Ziv source compression (see [1]
for details). In the cMACr scenario, unlike the single-usglay channel, we have two distinct destinations,
each with different side information correlated with théayereceived signal. This situation is similar to
the problem of lossy broadcasting of a common source to tweivers with different side information
sequences considered in [16] (and solved in some species)casd applied to the two-way relay channel
setup in [7]. Here, for simplicity, we consider broadcagtionly a single quantized version of the relay
received signal to both receivers. The following propositstates the corresponding achievable rate region.

Proposition 4.2:For the cMACr of Fig.[2, any rate tripletR, R2, R3) with R; > 0, j = 1,2,3,

satisfying
Ry < min{I(X1;Y1, Y3 X2, X3, Q), [(X1; Y2, Y3| X2, X3,Q)}, (11)
Ry < min{I(X2;Ys, Y3 X1, X3, Q), [(X2; Y1, Y3/ X1, X3,Q)}, 12)
and
Ri + Ry < min{I(X1, X2; Y1, Y3| X3, Q), [(X1, Xo; Yo, V3| X3, Q)} (13)
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such that

Ry + I(Y3;Y3|X3,Y1,Q) < I(X3:Y1|Q) (14)
and

Ry + I(Y3;Y3|X3,Y2,Q) < I(X3;Y2|Q) (15)
for random variabled; and Q satisfying the joint distribution

(g, x1, 2, 23, Y1, Y2, Y3, U3) = p(@)p(z1|q)p(22|q)p(x3]a)p(Us|ys, 3, Q)p(y1, Y2, ys|x1, x2,23)  (16)

is achievable withts having bounded cardinality.

Proof: The proof can be found in Appendix1V. [ |
Remark 4.1:The achievable rate region given in Proposifiod 4.2 can herpially improved. Instead of
broadcasting a single quantized version of its receivedagighe relay can transmit two descriptions so that
the receiver with an overall better quality in terms of itsachel from the relay and the side information
received from its transmitter, receives a better desoriptand hence higher rates (see [16] and [7] for
details). Another possible extension which we will not ugrdere is to use the partial DF scheme together

with the above CF scheme similar to the coding technique Jin [7

We are now interested in studying the special case in which saurce terminal can reach only one of

the destination terminals directly. Assume, for examgiet there is no direct connection between source
terminal 1 and destination terminal 2, and similarly betwseurce terminal 2 and destination terminal 1.
In practice, this setup might model either a larger distalpe®veen the disconnected terminals, or some
physical constraint in between the terminals blocking thenection. Obviously, in such a case, no positive
multicasting rate can be achieved without the help of theyrednd hence, the relay is essential in providing
coverage to multicast data to both receivers. We model tesaio by the following (symbol-by-symbol)

Markov chain conditions:
Yl—(Xl, Xg) — X, and (173.)
Yo—(Xo, X3) — X1, (17b)

which state that the output at receiver 1 depends only onrthets of transmitter 1 and the reldy (17a),
and similarly, the output at receiver 2 depends only on tipaits of transmitter 2 and the reldy (17b). The

following proposition provides an outer bound for the cafyaegion in such a scenario.
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Proposition 4.3: Assuming that the Markov chain conditiois(17) hold for ahgmrnel input distribution
satisfying [(4), a rate tripletf;, R2, R3) with R; > 0, j = 1,2, 3, is achievable only if

Ry < I(Xq;Y3|Ur, X2, X3, Q), (18a)
Ry < I(X2;Y3|Usz, X1, X3, Q), (18b)
Ry < min{I(X3; Y1|X1, X2, U1, U2, Q), 1(X3;Y2|X1, Xo,U1,Us, Q)}, (18c)
Ry + Rz < min{I(X1, X3;Y1|Us, Q), I(X3;Y2|X2,Us2,Q)}, (18d)
R + Rz < min{I(X3; Y1|X1,U1,Q), 1(X2, X3;Y2|U1,Q)} (18e)
and
Ry 4+ Ro+ Rs < min{I(X1, X3; Y1|Q), (X2, X3;Y2|Q)} (18f)

for some auxiliary random variabld$;, U, and ) satisfying the joint distribution

p(q)p(w1, u1]q)p(x2, u2|q)p(w3|ut, vz, Q)p(yY1, Y2, y3|z1, 2, 3). (19)
Proof: The proof can be found in Appendix V. |
By imposing the condition[(17) on the DF achievable rate aegdf Propositior_4]1, it can be easily
seen that the only difference between the outer bolind (1@)ttae achievable region with DEJ(9) is that
the latter contains the additional constrainfl (9c), whieherally reduces the rate region. The constraift (9c)
accounts for the fact that the DF scheme leading to the aabiewvegion[(R) prescribes both messafés
and W, to be decoded at the relay terminal. The following remarkvigles two examples in which the
DF scheme achieves the outer bound (18) and thus the capeagign. In both cases, the multiple access
interference at the relay terminal is eliminated from thebpem setup so that the conditidn 9c) does not
limit the performance of DF.
Remark 4.2:In addition to the Markov conditions i (1L7), consider ogboal channels from the two
users to the relay terminal, that is, we hage= (Y31, Y32), whereYs, depends only on inputX; and X3
for k = 1,2; that is, we assumé&’; — (X, X3) — Y32 and X — (X1, X3) — Y31 form Markov chains for any
input distribution. Then, it is easy to see that the sum-catestraint at the relay terminal is redundant and
hence the outer bound in Propositionl4.3 and the achievatderegion with DF in Proposition 4.1 match,
yielding the full capacity region for this scenario. As dmait example where DF is optimal, we consider

arelay multicast channedetup, in which a single relay helps transmitter 1 to muigess messagél’; to
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both receivers, i.e.R; = R3 = 0 and X, = (). For such a setup, under the assumption fKiat- X3 — Y5
forms a Markov chain, the achievable rate with DF relayindPmoposition 4.1l and the above outer bound

match. Specifically, the capacity for this multicast relay channek given by

C = max min{I(X1;Y3]|X3), I(X1,X3;Y1), I(X3;Y2)}. (20)
Notice that, apart from spc()ﬁlggspecial cases (like the onestiited above), the achievable rate region with
DF is in general suboptimal due to the requirement of deapbioth the individual messages at the relay
terminal. In fact, this requirement may be too restrictisad simply decoding a function of the messages
at the relay might suffice. To illustrate this point, consitiee special case of the cMACr characterized by

Xi = (X;1,Xi2), Yi = (Yi1,Yi2) andY; ; = X;; for ¢ = 1,2 and the channel given as

P(y1,y2,Y3) = p(y3le1,2, ©2,2)p(Y1,1]|21,1)P(Y2,1]22,1)0(Y1,2, Y2,2|23).

In this model, each transmitter has an error-free ortholgohannel to its receiver. By further assuming
that these channels have enough capacity to transmit thespanding messages reliably (i.e., message
available at receivet), the channel at hand is seen to be a form of the two-way relagredi. In this setup,
as shown in [21], [22], [23] and [7], DF relaying is suboptimehile using a structured code achieves the
capacity in the case of finite field additive channels and owgs the achievable rate region in the case of
Gaussian channels. In the following section, we explorenalai scenario for which the outer bourld [18)

is the capacity region of the cMACTr, which cannot be achiebgaither DF or CF.

V. BINARY CMACR: ACHIEVING CAPACITY THROUGH STRUCTURED CODES

Random coding arguments have been highly successful inngdlie existence of capacity-achieving
codes for many source and channel coding problems in msdii-information theory, such as MACs, BCs,
RCs with degraded signals and Slepian-Wolf source codilogveiter, there are various multi-user scenarios
for which the known random coding-based achievability issfail to achieve the capacity, whikdructured
codescan be shown to perform optimally. The best known such exarfgrlsuch a setup is due to Korner
and Marton [17], who considered encoding the modulo sum of imary random variables. See [20] for
more examples and references.

Here, we consider a binary symmetric (BS) cMACr model andastitat structured codes achieve its

capacity, while the rate regions achievable with DF or CFesudss are both suboptimal. We model the BS
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cMACT as follows:

Yi=X19 X356 74, (213)
Yo = Xo® X3P Zy, and (Zlb)
Ys=X10 Xy Z3 (21(:)

whered denotes binary addition, and the noise compongntre independent identically distributed (i.i.d.)
witlH B(e;), i = 1,2,3, and they are independent of each other and the channekingotice that this
channel satisfies the Markov condition given [nl(17). We amsuhat the relay does not have a private
message, i.e 3 = 0. The capacity region for this BS cMACr, which can be achielgdtructured codes,
is characterized in the following proposition.

Proposition 5.1: For the binary symmetric cMACr characterizedinl(21), thpamaty region is the union
of all rate pairs(R;, Rs) satisfying

Ry <1 — Hy(es), (22a)
Ry <1-— Hb(Eg) and (22b)
Rl + RQ < min{l — Hb(El), 1-— Hb(Eg)}, (22C)

L

where H,(¢) is the binary entropy function defined &&,(c) = —cloge — (1 — ¢) log(1 — ¢).
Proof: The proof can be found in AppendixVI. |
For comparison, the rate region achievable with the DF sehgiven in [(9) is given by[(22) with the
additional constraint

Rl + R2 S 1-— Hb(€3)7

showing that the DF scheme achieves the capdcily (22) only if min{e;,e2}. The suboptimality of DF

follows from the fact that the relay terminal needs to decodly the binary sum of the messages, rather
than the individual messages sent by the source terminalict, in the achievability scheme leading to
(22), the binary sum is decoded at the relay and broadcastetaeceivers, which can then decode both

messages using this binary sum.

X ~ B(e) denotes a Bernoulli distribution for whigh X = 1) = ¢ andp(X =0) =1 —«¢.
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V1. GAUSSIAN CHANNELS

In this section, we focus on the Gaussian channel setup addHe Gaussian counterparts of the rate
regions characterized in Sectipnl Ill and Secfion 1V. We wiBo quantify the gap between the inner and
outer bounds for the capacity region of the cMACr propose&eéction[IV. As done in Se€_]ll, we first

deal with the MAC with a cognitive relay model.

A. Gaussian MAC with a Cognitive Relay
We first consider the Gaussian MAC with a cognitive relay gefthe multiple access channel at time
i, 1=1,...,n, is characterized by the relation
Yi= X1+ Xoi + X3 + Zi, (23)
where Z; is the channel noise at timg which is i.i.d. zero-mean Gaussian with unit variance. Ypdse
a separate average block power constraint on each chammgi in
1< 5
~> BIXj] <P (24)
=1

for j = 1,2,3. The capacity region for this Gaussian model can be charaetkas follows.
Proposition 6.1: The capacity region of the Gaussian MAC with a cognitive yef@3) with power
constraints[(24) is the union of all rate triplgt®;, R, R3) satisfying

1
Ry < ¢ log(1+ (1 — af — o)), (252)

1
Ri+ R3 < 5 log(l + P + (1 - Oég)Pg + 2\/0/3P1P3), (25b)

1
Ro+ R3 < 5 log(l + P + (1 - Ozé)Pg + 2\/agP2P3)) (25c¢)

and
1 / 1

Ri+Ry+ Ry < Slog(1+ P+ Py + P+ 2\/a3P1P3 n 2\/a3P2P3), (25d)

where the union is taken over all parameters o, a5 <1 andof + off < 1.
Proof: The proof can be found in Appendix VilI. [ |
Notice thata; andco in (25) represent the fraction of total power invested bydbgnitive relay to help
transmitter 1 and transmitter 2, respectively. Next, wesene the capacity region for the Gaussian partially

cognitive relay setup of{7).
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Proposition 6.2: The capacity region of the Gaussian MAC with a partially atge relay (informed

only of the messag#/;) is given by

Ry < %log(l + P), (26a)
Ry < log(1 + (1 - ) Py), (26b)
Ry + R3 < %log(l + P+ P3 +2p\/P.P3), (26¢)
Ry + By < log(14 Po 4 (1 - ) Fy) (26d)
and
Ri+ Ry + R3 < %log(l + Py + Py + Py +2p\/PP3) (26€)

with the union taken over the parametex p < 1.
Proof: The result follows straightforwardly froni](7) and the cdi@hial maximum entropy theorem
by definingp as the correlation coefficient betweéfi and Xj5. |

Notice that, the same arguments as above can also be extentleel MAC with cognition via finite-
capacity links of Proposition_3.3.

1) Numerical Examplesfor clarity of the presentation we considBg = 0. In this case, it is clear
that the choicev; + o = 1 is optimal for [25) ando = 1 is optimal in [26). Fig{% shows the capacity
regions with full or partial cognition [[(25) and (26), restieely) for P, = P, = 3 dB and for different
values of P;, namelyP; = —6 dB and3 dB. It can be observed from Figl 4 that, even with a small power
P3, a cognitive relay has the potential for significantly imgrg the achievable rate regions. Moreover, in
the partially cognitive case, this advantage is accruednbyt by the transmitter that directly benefits from
cognition (here transmitter 1) but also by the other trattem{transmitter 2), due to the fact that cognition
is able to boost the achievable sum-rate (§eel (26e)).

We now consider a typical cognitive radio scenario wheretthe “primary” users, transmitter 1 and
transmitter 2, transmit at ratg®; and R, respectively, within the standard MAC capacity regionhwiio
relay (i.e., R1, R2) satisfy [25%) withR; = 0 and P; = 0) and are oblivious to the possible presence of
a cognitive node transmitting to the same recei®yr assumption, the cognitive node can rapidly acquire
the messages of the two active primary users (exploitingbigger channel from the primary users as

compared to the receiver) and is interested in transmitinthe maximum ratg?s; that does not affect
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Fig. 4. Capacity regions of the Gaussian MAC with a cognitiglay with full or partial cognition [(25) and(26), respeety)
for P, = P, = 3 dB and for different values of’;, namelyP; = —6 dB and3 dB.

the rates achievable by the primary users. In other wordsyrdle R3 is selected so as to maximizes
under the constraint thdtR,, Ry, R3) still belongs to the capacity region (the one characterizgd25)

for full cognition and by [(2B) for partial cognition). Figl $hows such a rat&; for both full and partial
cognitive relays forP, = P, = 3dB and two different primary rate pairs, namelyy = R, = 0.3 and

R; = Ry = 0.55 (which is close to the sum-rate boundary as shown in[Rig.t5%. deen that both full and
partial cognition afford remarkable achievable rates evhan the primary users select rates at the boundary

of their allowed rates.
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1.6 ‘

_ full cognition
145 oo partial cognition pd

Fig. 5. Maximum rateRs that does not affect the rates achievable by the primarysuseand 2 forP, = P. = 3dB and
Ri1 = R> = 0.3 or R1 = Ry = 0.55 (R3 is the maximum relay rate so thaR, Rz, Rs3) still belongs to the capacity regior ({25)

for full cognition and ((2B) for partial cognition).

B. Gaussian Compound MAC with a Relay

A Gaussian cMACr satisfying the Markov conditions|(17) isegi by

Yi=X1+nXs35+ 23 (27&)
Yo =Xo +1X3+ 2> (27b)
Ys = v(X1 + Xo) + Zs, (27¢)

where~ > 0 is the channel gain from the users to the relay gn& 0 is the channel gain from the
relay to both receiver 1 and receiver 2. The noise compongpts = 1,2,3 are i.i.d. zero-mean unit
variance Gaussian random variables. We enforce the ave@ger constraints given in_(24). Considering

for simplicity the casek; = 0, we have the following result.
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Proposition 6.3: The following rate region is achievable for the Gaussian €vi&haracterized by (27)

by using the DF strategy:

1 2 Qi al
1o (1+ P (1— ))

Ry < min{ 2 & T 1maeg , (28a)
Tlog (1+ P+ n2P3(1 — o))
%log (1 + 2Py (1 - 1220‘;”,, > ,

Ry < min B (28Db)
Tlog (1+ P+ nP3(1 — af))

and

$log (1 +7%(P1 + Py) (1 - (\/ala;’i;\léfwg&)z)) ;
R; + Ry < min %log <1+P1+772P3+277\/W>’ , (28¢)
$log (1+ Py + 1Py + 20 /aral Py
with the union taken over the parametérs< o, a9, 04, a4 < 1 andaj + o < 1. Moreover, an outer
bound to the capacity region is given By {28) without the finsin-rate constraint in_(2Bc).

Proof: It is enough to prove that jointly Gaussian inputs are swfitito exhaust the DF achievable
region [9) and the outer bourld {18). This can be done simitarPropositio 6]1. Then, setting the random
variables at hand ak ([74)-(75) (see ApperdixIVIII)[ih (9) £b8) and after some algebra the result can be
derived. [ |

It is noted that, similarly to[(25), if_(28) the parametefsand «/; represent the fractions of power that
the relay uses to cooperate with transmitter 1 and 2, reispictMoreover, the first term in each of the
threemin{-} functions correspond to the condition that the relay is abldecode the two messages, while
the other terms refer to constraints on decoding at the tweivers.

Next, we characterize the achievable rate region for thes&lan setup with the CF strategy of Proposition
[4.2. Here, we assume a Gaussian quantization codebookuitteiming optimality.

Proposition 6.4: The following rate region is achievable for the Gaussian €MAZ7):

1 ’720(1P1
< =1 1 29
R < gios (1410 ) (292)
and
1 ’yzang
< =1 1 29b
o < glog (14 152 (29b)
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where

_ 1+ 72(041P1042P2 + a1 P+ CYQPQ) + min {alPl, OQPQ}

= 5 ,
n°Ps

Ny

forall0<o; <1,i=1,2.

1) Using Structured Codedn Sec[V, we have shown that for a binary additive compoundOM#ith
a relay, it is optimal to use structured (block linear) codmtber than conventional unstructured (random)
codes. The reason for this performance advantage is tresrlicodes, when received by the relay over an
additive channel, enable the latter to decode the sum of tiginal messages with no rate loss, without
requiring joint decoding of the messages. Here, in view ef dldditive structure of the Gaussian channel,
we would like to extend the considerations of Sek. V to thenade at hand. For simplicity, we focus on a
symmetric scenario wher®, = P, = P; = P, R = R, = R (and R3 = 0). Under such assumptions, the
outer bound of Proposition VIiB sets the following upper bdwn the equal rat& (obtained by setting

o =aof =az anda; = az = o in (28)):

.1 9 1 - 2aa3 1 9

< — . — —

R_Oogloz}élmm{2log (1 + 7y P< T——— >>,2log(1—|—P—|—n P(1—a3)),
Q3>

ilog(l+P(l+?72+2n\/a—ag))}, (30)

whereas the rate achievable with DF is given by the right rede [30) with an additional term imin{-}
given by1/4-log (14 2v?P (1 — 2aag)) . The rate achievable by CF can be similarly found frémi (29) by
settinga; = as; = a and maximizing ovef < o < 1.

As is well known, the counterpart of binary block codes oviraby additive channels in the case of
Gaussian channels is given by lattice codes which can aeliievGaussian channel capacity in the limit of
infinite block lengths (see [18] for further details). A laé is a discrete subgroup of the Euclidean space
R™ with the vector addition operation, and hence provides uduio sum operation at the relay terminal
similar to the binary case.

For the Gaussian cMACTr setting given [n[27), we use the samséed lattice code at both transmitters.
Similar to the transmission structure used in the binarfirggtwe want the relay terminal to decode only
the modulo sum of the messages, where the modulo operatigithigespect to a coarse lattice as in [22],
whereas the messages are mapped to a fine lattice, i.e., whausested lattice structure as in [18]. The
relay terminal then broadcasts the modulo sum of the meggages to both receivers. Each receiver decodes

the message from the transmitter that it hears directly hadriodulo sum of the messages from the relay
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as explained in Appendix' MIl. Using these two, each recedasT also decode the remaining message. We
have the following rate region that can be achieved by th@gsed lattice coding scheme.
Proposition 6.5:For the symmetric Gaussian cMACr characterized (27), quaerate R can be

achieved using a lattice encoding/decoding scheme if

R < min {% log <% + ’y2P> , %log (1 + Pmin{1,7*}), % log(1+ P(1+ 772))} . (31)
Proof: The proof can be found in Appendix VII. [ |

Remark 6.1:Achievability of (31), discussed in Appendix VIl, requiresansmission at rates correspond-
ing to symmetric rate point on the boundary of the MAC regifnoen each transmitter and the relay to
the corresponding receiver. However, here, of the two ssnoler each MAC, one sender employs lattice
coding (the sources), so that the standard joint typicaligument fails to prove achievability of these rate
points. The problem is solved by noticing that, even in tltisnario, it is straightforward to operate at the
corner points of the MAC region by using single user encoding successive decoding. Now, in general,
two different techniques are possible to achieve any bayndde point by using only transmission at the
corner-point rates, namely time-sharing and rate-gpijtf27]. In our case, it can be seen that time-sharing
would generally cause a rate reduction with respect id @d¢, to the constraint arising from decoding at
the relay. On the contrary, rate-splitting does not havé sudrawback: the relay terminal splits its message
and power into two parts and acts as two virtual users, wirlgle-user coding is applied for each virtual
relay user as well as the message from the transmitter. &ittimee coding achieves the optimal performance
for single user decoding, we can achieve any point on the derynof the MAC region.

2) Numerical examplesConsider cMACr with power$, = P, = P; = 5 dB and channel gain? = 10
from the relay to the two terminals. Figl 6 shows the achievaste region and outer bound for different
values of the channel gain from the terminals to the relageip~y? = 1 and~? = 5. It can be seen that,
if the channel to the relay is weak, then CF improves upon Déedtin parts of the rate region. However,
as~? increases, DF gets very close to the outer bound dominatiecCF rate region, since the sum rate
constraint in DF scheme becomes less restricting.

In Fig.[4, the equal rate achievable with lattice codes (319ampared with the upper bourid (30) and
the symmetric rates achievable with DF and CF+ér= 1/10 andn? = 10 versusP; = P, = P; = P. We
see that, for sufficiently larg®, the lattice-based scheme is close to optimal, whereasvialler P, CF or

DF have better performance. The performance loss of latised schemes with respect to the upper bound
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Outer bound

oL

Fig. 6. Achievable rate region and outer bound far= P, = P; = 5 dB, n*> = 10 and different values of the channel gain

from the terminals to the relay, namely = 1, 5.

is due to the fact that lattice encoding does not enable eolhgrower combining gains at the destination.
It is also noted that both DF and lattice-based schemes haveptimal multiplexing gain of /2 (in terms

of equal rate).

VIl. CONCLUSIONS

We have considered a compound multiple access channel wélaya terminal. In this model, the relay
terminal simultaneously assists both transmitters whilgtinasting its own information at the same time.
We first have characterized the capacity region for a meltgtcess channel with a cognitive relay and
related models of partially cognitive relay and cognitibrough finite capacity links. We then have used the

coding technique that achieves the capacity for these rmddgbrovide an achievable rate region with DF
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Fig. 7. Equal rate achievable with lattice codes| (31) comgawith the upper bound (B0) and the rates achievable with i2F a
CF forv% = 1/10 andn? = 10 versusP, = P» = P3 = P.

relaying in the case of a general cMACr. We have also consitiarCF based relaying scheme, in which

the relay broadcasts a compressed version of its receigadldising the received signals at the receivers as
side information. Here we have used a novel joint sourcexobiecoding scheme to improve the achievable

rate region of the underlying multi-user channel codingopem.

We then have focused on another promising approach to ireprates in certain multi-user networks,
namely using structures codes, rather than random codhenses. We have proved that the capacity can be
achieved by linear block codes in the case of finite field addithannels. Motivated by the gains achieved
through such structured coding approaches, we have thdyzadahe performance of nested lattice codes
in the Gaussian setting. Our results show that lattice @pdthieves rates higher than other random coding
schemes for a wide range of power constraints. We have aksepted the achievable rate regions with

the proposed random coding schemes, and provided a compa@sir analysis has revealed that no single
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coding scheme dominates all the others uniformly over adinciel conditions. Hence a combination of
various random coding techniques as well as structurechgadight be required to improve the achievable

rates or to meet the upper bounds in a general multi-useronletmodel.

APPENDIX |

PROOF OFPROPOSITIONS.]
A. Types and Typical Sequences

Here, we briefly review the notions of types and strong tyiticéhat will be heavily used in the proofs.
See [26] for further details. The typR,. of ann-tuple x™ is the empirical distribution

1
Pyn = EN(a|a:")

where N (a|2™) is the number of occurrences of the lettein vectorz™. The set of alln-tuplesz™ with
type @ is called the type clasQ and denoted by7). For a probability distributiopy, the set ofe-strongly
typical n-tuples according t@x is denoted byT[" ’ and is defined by

mn n 1 n
Ix). = {w €A '#V(a!w ) — px(a)

<€, Ya € X andN(a|z") = 0 whenevenpx (z) = O} .

The definitions of type and strong typicality can be extenttefbint and conditional distributions in a
similar manner [26]. The following results concerning tadisets will be used in the sequel. For any 0,
we have

1
‘5 log T2 | — H(X)\ < (32)

and

Pr(X" € Tl ) >1—¢ (33)

for sufficiently largen. Given a joint distributiorpxy, if the i.i.d. sequence&™,y") ~ p'py., where Py

and Py; aren-fold products of the marginalsx andpy, then

Pr{(l,n’yn) e T&Y}E} < 2—n(I(X;Y)—3e)'
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B. Converse

Starting from the Fano inequality, imposing the conditiBh — 0 asn — oo, we have
H(Wl,WQ,W3|Yn) § ndn (34)

with 6,, — 0 asn — oco. Then we also havél (W, Ws|Y™ Ws) < nd,. We can obtain

n(R1 + Rg) = H(Wl, Wg) = H(Wl, Wg‘Wg) § [(Wl, Wg; Yn‘Wz) + nén (35)
= H(Y;|Wo, Y1) — H(Yi|Wy, Wa, Ws, Y™™ 1) + né, (36)
=1

= H(Y;|Xoi, Wo, Y1) = H(Yi| X1, Xoi, Xgi, W1, Wa, W3, Y1) + 06, (37)
=1
= H(Yi|Xai, Uzi, Y1) = H(Yi| X1, Xoi, Xsi, Uni, Uai) + ndy, (38)
i=1
<D H(Y|Xas, Uni) = H(Y;| X15, Xoi, X33, Uty Uai) + ny, (39)
=1
= ZI(XM"U1z‘7X3z';Yz'|X2i,U2i) + nd, (40)
=1
= Z[(XliaX3i§Y;"X2i7U2i) + ndy, (41)
i=1
where in [37) we have used the fact that the codewords ardidanof the messages, il (38) we have
definedU;; = W, andUy; = W, and used the fact thaf’—!—(X1;, Xo;, X3;) — Y; forms a Markov chain,
and the last equality follows from the Markov chain relasbip (Uy;, Us;) — (X14, Xoi, X3i) — V5.

We can similarly obtain

n(Rz + R3) < Z I(Xo;, X3i; Yi| X1i, Uri) + ndy,
i=1
starting fromn(Ry + R3) < I(Wo, W3; Y"|[W71) + nd, (which follows from the Fano inequality (B4) since
it implies H(Ws, W5|Y™ W;) < nd,) and

nRy <Y I(Xsi; Yi| X14, Xoi, Uni, Uzi) + 1y,
=1
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from the inequalityn R3 < I(W3; Y™ |W1, Wa) + nd, (which follows from [34) asH (W3|Y™, Wy, Ws) <
ndy). From (34), we also have:

n(R1 + Ry + Rg) < [(Wl, Wo, Wy Yn) + néd,

H(Y;|Y'"™Y) — H(Y;|Wy, Wo, W3, Y1) + nd,
1

7

H(Y;|Y™Y) — H(Yi| X1, Xoi, X35, Wi, Wa, W3, Y1) 41,

I
NE

1

.
Il

n

H(Y;) — H(Y;| X1, Xoi, X3i) +ndp, =

IN
0

I(X14, Xoi, X34, Yi) + noy,.

I

Il
—

)

Now, introducing the time-sharing random varialdeindependent from everything else and uniformly
distributed over{1,..,n} and definingX; £ X;q for j =1,2,3, Y £ Yy andU; £ Ujq for j = 1,2, we
get [3). Notice that the joint distribution satisfi€s (6).

C. Achievability

Code ConstructionGenerate an i.i.d. sequen@& with marginalp(q) for i = 1,2, ..., n. Fix a realization
of such a sequen@” = ¢". Generat@" codewordm?(wj), w; =1,2, ..., 2"l also i.i.d. with probability
distribution [T, p(ujilg:), for j = 1,2. For each painv;, w2, generate2™: codewords i.i.d. according
to [T p(zai|uii(w), ugi(w2), ¢;), and label these codewords @$(w;, w2, ws) for ws € [1,27f]. Also
generate2"s codewordsz! (w;), j = 1,2, i.i.d. with probability distribution] [i"_; p(a;i|u;i(w;), ¢;) and
label them as’} (w;) for w; € [1,2"].

EncodersGiven (w1, ws, w3), encodey transmits;e;?(wj),j = 1,2, and encoder 3 transmii§ (w; , wa, ws3).

Decoders The decoder looks for a tripléto;, w9, w3) such that

(q", uy (1), ug (W2), 27 (1), x5 (W2), x5 (W1, W2, W3),y") € T[%Ulexlxzxgy]s-

If none or more than one such triplet is found, an error is atedl.
Error analysis: Assume (wq, w2, w3) = (1,1,1) was sent. We have an error if either the correct

codewords are not typical with the received sequence oetlsern incorrect triplet of messages whose
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corresponding codewords are typical with the received secgl Define the event (conditioned on the
transmission of wy, wy, w3) = (1,1, 1))
Ek,l,m = {(Qn7 Uln(k)v X{L(k% U2n(l)7 X;L(l), Xi?(k7 L m)? Yn) € T[TéU1U2X1X2X3Y]E}'

From the union bound, the probability of error, averaged dalre random codebooks, is found as

P =Pr(Ef 1) | Yiktmz.1.0) Brm,

<Pr(Ef )+ >, Pr(Beam)+ >, Pr(Bum)+ Y Pr(Bm).
(k,m)#(1,1),l1=1 (I,m)#(1,1),k=1 k#£1,1#1,m#1

From (33),Pr(Ef; ;) — 0 asn — co. We can also show that fak, m) # (1,1),l =1,
Pr(Ek,l,m) :Pr((q",u?(k),ug(l),w?(k),xg(l),wg(k, 17m)7yn) € CT[%UIU2X1X2X3Y]E)
<2—TL(I(X1,Ul,X3;Y|X2,U2,Q)—3E)

:2—TL(I(X1,Xg;Y'Xz,Uz,Q)—gé)'
Similarly, for (I,m) # (1,1) andk = 1, we have

P(Ek,l,m) :Pr((q",u?(l),ug(l),w?(l),x?(l),x?(l,l,m),y") € T&U1U2X1X2X3Y]€)

<2—n(I(X27X3;Y\X1,Uva)_gf) .

The third error event occurs fdr £ 1,1 # 1, m # 1, and we have if

P(Ek,l,m) :Pr((qnvu?(k)vug(”?x?(k)7xg(l)7wg(k7lvm)7yn) € T[Z)UIU2X1X2X3Y}€)

<9I (X1,X2,X5Y|Q)—4e)

Then, it follows that
Pe" < PI‘(Ef ) 1) + 2n(R1+R3)2—n(I(X1,Xg;Y|X27U2,Q)—35) + 2"(R2+R3)2—n(I(X2,X3;Y\X1,U1,Q)—gg)

4 9URa+Rao+Rs) o—n(I(X1,X2,X55Y|,Q) —4e) |

Letting e — 0 andn — oo, we have a vanishing error probability given that the inditiga in (5) are

satisfied.
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APPENDIX I

PROOF OFPROPOSITION3S.Z
A. Converse

Similar to the converse in Appendik I, we use the Fano inetyugiven in (34). Then we have

n(R1 + Rg) = H(Wl, Wg) = H(Wl, Wg‘Wg) § [(Wl, Wg; Yn‘Wg) + ndn (42)
:ZH(}Q|W2,Y"—1) — H(Y;|Wy, Wy, W3, Y1) 416, (43)

i=1
= ZH(Yi\X% W, Y1) — H(Y;| X1i, Xoi, Xai, W1, Wo, W3, Y1) +nd,,  (44)

i=1

n
<Y H(Y|Xa:) — H(Yi|X1i, Xai, X3) + n6y, (45)
i=1

=3 I(Xui, Xsi3 Yi| X24) + 1, (46)
i=1
where [45) follows from the fact that conditioning reducasepy and(Wy, Wy, W3, Y1) —(X1;, Xo;, X3;)—

Y; forms a Markov chain. The other inequalities follow simiyar

B. Achievability

Code ConstructionGenerate2"®: codewordsz? (wy), w € [1,2"%] by choosing eaclth letter i.i.d.
from probability distributionp(z;), i = 1,2,...,n. For eachw;, generate2"f* codewordsz% (w1, ws),
ws € [1,2™] ii.d. according to[[I_, p(wsi|z1;(w1)). Finally, generat@™#: codewordsr?} (ws) i.i.d. with
each letter drawn according igx2).

Encodinganderror analysisare rather standard (similar to Appendix A) and are thus tehit

APPENDIX I

PROOF OFPROPOSITION3.3
A. Converse

The converse follows from standard arguments based on the F&quality (see, e.g., Appendik I).
Here, for illustration, we derive only the first bound [0 (8g., Ry < I(X1;Y|Xs, X3,U1,Us) + C1, as

follows. Define asi; € V; andV; € V, the messages of cardinality;| < C; sent over the two links from
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the sources to the relay. Notice thigtis a function only ofl¥; and thatX?y is a function only ofi¥3, V;

and V5. Considering decoding ofi’;, from the Fano inequality
HWA Y™, Vi, Vo, Wa) < ndy,
we get
nRy = HWq|Wy) < I(W1; Y™, Vy, Vo|[Wa) + ndy,
< I(Wy; Vi[Wa) + T(Wa; Va| Vi, Wa) + T(Wh; Y[ Wa, Vi, Vo) + ndp

< nCy + I(Wy; YW, Vi, Vo) 4+ né,

=nCi+ Y HY|Y'™ Wy, Vi, Vo) — H(Y;[Y'™ Wy, Wy, V1, 14)
i=1

n
=nC; + ZH(in_l,Xzz,X?,i, Wa, Ui, Ugi) — HY; YL X14, Xog, Xai, Wi, W, Uri, Us;)
i1

n
<nCi+ Y H(Yi|Xai, Xsi, Urs, Uzi) — H(Yi| X1i, Xai, X35, Ui, Us)
i=1

=nCy + Y I(X15; Vil Xai, Xsi, Uri, Uai),
i=1
where in the third line we have used the facts that’;; V1 |[W2) < H (V1) < nCy andI(Wy; Va |V, Wa) =0
and the definitiond/;; = V; andUs; = V5. The proof is concluded similarly to Appendik |.

B. Achievability

Code ConstructionSplit the message of the terminals B§ = [W;, W; ] with j = 1,2, where WV},
stands for the “private” message sent by each terminal wititoe help of the relay andV;. for the
“common” message conveyed to the destination with the hélfhe relay. The corresponding rates are
Ry = Rip + Ri. and Ry = Ry, + Ry.. Generate a sequencg” i.i.d. usingp(q) for i = 1,2,...,n.
Fix a realization of such a sequen@¥ = ¢". Generate2"» codewordsu/ (w;c), wj. € [1,2""%] by
choosing eaclith letter independently with probability(u;|g;), i = 1,2, ...,n, for j = 1,2. For eachwj,
generate"ftir codewordsyc?(ch,wjp), J=1,2 wj €1, 2nfir] i.i.d. with each letter drawn according to
p(x;uji(wie), g;). Finally, for each paitw;., wa., generat@™ s codewordse} (wi., wa., ws), w3 € [1,2"%],

i.i.d. according top(xs|ui;(wie), ugi(wae), ;).
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Encoders Given the messages and the arbitrary rate splits at therigers (v; = [wi, wic|, w2 =
[wap wac], w3), encoder 1 and encoder 2 send the messageandws., respectively, over the finite-capacity
channels which are then known at the relay before transomsdierminal 1 and terminal 2 then transmit
:ng‘(ch,wjp), j = 1,2, and the relay transmits (w1, wac, w3).

The rest of the proof follows similarly to Appendik | by exfiiog the results in Sec. VII of [14].

APPENDIX IV

PROOF OFPROPOSITIONZ.Z

We use the classical block Markov encoding for achievabilind we assumg| = 1 for the sake of
brevity of the presentation. Generalization to arbitranjtdéi cardinalities follows from the usual techniques
(see, e.g., AppendiX ).

Codebook generationGenerate™ - i.i.d. codewords:}? from probability distributiorp(z7) = [T, p(@k;)
for k = 1,2. Label each codeword, for = 1,2, asx}(wy), wherewy, € [1,2"7%]. Generate2™(Fo+fs)
i.i.d. codewordsey from probability distributionp(z%) =[]\, p(z3;). Label each codeword as; (s, ws),
wheres € [1,2"] andws € [1,2"F]. Also, for eachz?(s,ws), generate2" iid. sequenceg? from
probability distributionp (9% |24 (s, ws)) = [1;—, p(Usi|z5 (s, ws)), where we define

p@sles) = Y ple)p(@)p(ys, ya, yslz1, 2, 23)p(ds]ys, 73).

T1,22,Y1,Y2,Y3
We label these sequences@$m|s, ws), wherem € [1,27F0], s € [1,2"%] andws € [1,2"Fs].
Encoding: Let (wy;, wa;, ws;) be the message to be transmitted in blocnd assume thzajé"(s,-\s,-_l, w3 1), Yq'(i—
1),z%(si—1,ws,;—1)) are jointly typical. Then the codewords}(w;;), x%(we;) and x%(s;, ws;) will be
transmitted in block.

Decoding: After receivingys (i), the relay finds the index; ; such that

(5 (sit1]si, ws,0), 43 (1), 25 (50, wsi)) € Ty 1 -
For large enough, there will be suchs;; with high probability if
Ry > 1(Y3; V3] X3).

We fix Ry = I(Y3;Y3|X3) + €.
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At the end of blocki, the receiverk finds indicess? andw%, such that
k ~k .
(23 (57, w3), vk (9) € Tix,v,).
and
(95 (87 i1, w3 1), 25 (i1, w3 ;1) Y (i = 1)) € T&Xzyk]é

are simultaneously satisfied, assuming tkfat, and w§7i_1 have been previously correctly estimated. Re-

ceiverk will find the correct pair(s;, ws;) with high probability provided that is large enough and that
Ry + I(Ys; V3] X3,Y5) < I(X3; ).

Assuming that this condition is satisfied so that= s} andw},; | = w§, ,; using bothgy (sF[sF |, wk, )
andyj (i), the receiverk then declares thatif, ,,w5, ;) was sent in block — 1 if

k ~k cn k) ok k : k k
(@ (@7 51), 25 (W55 1), 95 (s¢ |si_1, w3, 1), yk (0 — 1), 25 (871, w5, 1)) € T&1X2X3Y/3Yk]é'

We have(w’f,i_l,wgi_l) = (w1,—1,w2,;—1) With high probability provided that is large enough,
Ry < I(X1; Yy, 3| X5, Xs),
Ry < I(X2; Yy, 3| X3, X1), (47)

and
Ry + Ry < I(X1, Xo; Yy, V3| X3),

fork=1,2.

APPENDIXV

PrROOF OFPROPOSITIONZ.3

To simplify the presentation, here we prolel(18) foy = 0. The case withR3 > 0 follows similarly by

following the same reasoning as in Appendix]I-B. From thed-arequality, fori = 1,2,

H(W17 W2|}/;n) é n5n7
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whered,, — 0 for n — oo, from which it follows thatH (W;|Y;") < nd, and H(W>|Y;") < nd,. For the

relay terminal, we have

H(W1|W,,Y5") = H(Wh |Wa, X3, Y3", X3) (48)
< H(Wh|Xy, X3) (49)
= H(W|X3, X3, Y5") (50)
< H(Wh|Yy) (51)
< ndy, (52)

where [48) follows sinceX¥ is a function of W, and X7 is a function ofY3*; (B0) follows sinceYy* —
(X%, X%) — W, form a Markov chain based on the assumption[in (17a); (519visl since conditioning

reduces entropy; and finallfy (52) follows from the Fano ireiy Similarly, we can also show

H(W2|W1, YE;,”) < n5n

We also define the auxiliary random variablég £ W, andUs,; £ W, fori = 1,...,n. It follows that:
an = H(Wl) = H(Wl’WQ) (53)
< I(W1; Y3'|W2) + nébp (54)

T(W1; Yai|[Wa, Y1) + né,

-
Il
—

H(Yai|Yi~Y Wa) — H (Y| Wi, Wa, Yi~Y) + né,

I

.
I
—_

= Enj H(Yail Y31, Wa, Xag, Xa:) — H(Yas|[Wh, W, Y571, Xai, Xoi, Xai) + ndy (55)
=1

< Zn: H(Y3i|Wa, Xo;, X3;) — H(Y3i| X1i, Xai, X3i) + nén (56)
=1

< z": H (Y3 |Uzi, Xoi, X3i) — H(Y3i|Uzi, X1, Xoi, X3i) + ndy, (57)
=1

= Zn: I( X145 Y3i|Usi, Xai, X3;) + ndn, (58)

.
—_

where [(54) follows from[(52);,[(85) follows aX; and X,; are functions ofi¥; and W5, respectively, and

X3; is a function on?f‘l; (58) follows from the fact that conditioning reduces epfrand also the fact
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that Y, — (X714, Xo;, X3;) — (W1, W2,Y3"‘1); and again[(57) follows from the fact that conditioning redsi

entropy and the definition of auxiliary random varialblg;. Similarly, we can show that

n
nRy < ZI(Xzz;YéHUu,Xu,Xsi)- (59)
i=1
Next, we consider the bounds due to decoding at receiversusiiy on the first message and the first

receiver, we have
an = H(Wl‘Wg) § [(Wl; Yln’WQ) + TL(Sn

= H(Yyu|Wa, Y{™h) — H(Yys|[ Wi, Wa, Y{ 1) + nd,

=1
= H(Yu|Wa, Yy 1) = H(Y1s|[Wi, Wy, X14, Xoi, X33, Y7 1) + néy, (60)
=1
<> H(Yu|We) — H(Yii|X1i, Xai, X3:) + o, (61)
=1
= > H(Yy|Wa) — H(Y1i|X1i, X3;) + néy, (62)
=1
< ZH(Y12‘|U2i) — H(Y1i| X134, X3i, Uz;) + by (63)
=1
=3 I(Xui, X33 Yii|Uzi) + 1y, (64)
=1

where [[60) follows sinceX;; and X,; are functions ofl¥; and W5, respectively, andX3; is a function
of Y~!; (61) follows as conditioning reduces entropy arid — (X1, Xoi, X3;) — (W1, Wa, Y{~1) forms
a Markov chain;[(6R) follows sinc&7; — (X1;, X3;) — Xo; forms a Markov chain; and finally in (63) we
simply used the definition of/»; and the fact that conditioning reduces entropy. We can aitgibbtain

n
nRy < ZI(X%X&‘; Yo;|U1i) + noy,.
i=1
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We now focus on the first message and the second receiver. Ve ha
an = H(Wl)
< I(W1; Y5 |[Wa) + ndy,

= H(Yy|Wo, Yy b) — H(Yo;|[ Wy, Wa, Yy~ 1) +nd,

i=1

= zn: H(Yoi|Wa, Yy, Xoi) — H(Yas| Wi, Wa, X1, Xoi, X5, Yy~ ') + 16, (65)
i=1

< z": H(Y1;|Wa, Xo;) — H(Y2i| X14, X2, X3;) + ndy, (66)
i=1

= Zn: H (Yoi|Wa, Xo;) — H (Yo Xoi, X3i) + ndy, (67)
i=1

< z": H (Yo;|Us;, Xoi) — H (Yo Xoi, X3i, Ua;) + nép (68)
i—1

- Zn: I(Xsi: Yai|Ui, Xog) + 1. (69)

~.
[y

We can similarly obtain

nRy < ZI(Xgi;Yli‘Uthli) + ndnp.
=1

We also have

n(Rl + Rg) < I(Wl, WQ; Yln) + nén

H(Yyu|Y{™h) — H(Yy3| Wi, Wa, Yi71) + né,
= ZH(Yu!Yf_l) — H(Y1i| X1, Xoi, Xai, Wi, Wo, Y1) + nd,
< ZH(YM) — H(Y1;| X4, Xoi, X3i) + ndyp

< ZH(YM) — H(Y13 X4, X3i) + nop

n

= Y I(Xui, X355 Y13) + ndn,
=1
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and similarly

n(Ri+ Ry) <> I(Xyi, X3i; Yai) + nby.
=1
Now, introducing the time-sharing random variafeiniformly distributed in the seftl, 2, .., n} and defining

X; =Xjq for j =1,2,3,Y; =Yg andU; = Ujq for j = 1,2, we get [18) (forR3 = 0).

APPENDIX VI

PrROOF OFPrROPOSITIONG. ]

We first prove the converse showing thail(22) serves as anloo@d, and prove the direct part describing
a structured coding scheme that achieves the outer bound.

To prove the converse, it is sufficient to consider the outemiol given by[(118) as applied to the channel
characterized by[(21), and show that an input distribut@8) (with X, X, X5,U;,Us ~ B(1/2) and
independent of each other maximizes all the mutual infoignaterms. To this end, notice that in the outer
bound [(18) withR3 = 0 ignoring all the constraints involving auxiliary randomrizbles can only enlarge

the region, so that we have the conditions:

Ry < I(X4;Y3] X, X3,Q), (70)
Ry < I(X9; V3] X1, X3,Q) (71)

and
Ry + Ry <min{I(X1, X3;Y1|Q), [(X2, X3; Y2(Q) }- (72)

We can further write
I(X1;Y3| X2, X3,Q) = H(Y3|X2, X3,Q) — H(Y3] X1, Xo, X3,Q)
< H(Y3) — Hy(es) <1 — Hp(es),
and
I(Xy, X3:Y1|Q) = H(Y1|Q) — H(Y1[X1, X35, Q)
< H(Y1) = Hy(e1) < 1 — Hy(e1).

We can see that the inequalities hold with equality undeath@ve stated input distribution, which concludes

the proof of the converse.
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We now prove the direct part of the proposition. First, cdasR; > R». Transmission is organized into
B blocks of sizen bits. In each of the firsB — 1 blocks, say théth, the j-th transmitter,; = 1,2, sends
nR; new bits, conventionally organized intolax [nR; | vectoru;;. Moreover, encoding at the transmitters
is done using the same binary linear code characterized|mRa| x n random binary generator matr&
with i.i.d. entriesB(1/2).

Specifically, as in [23], terminal 1 transmits ;, = u; ;G and terminal 2 transmitg,;, = [0 uy|G
where the all-zero vector is of siZzex |nR;| — |[nR2] (zero-padding). Since capacity-achieving random
linear codes exist for BS channels, we assume @ha the generating matrix for such a capacity achieving
code.

We defineus = up; @ [0 uyp)]. The relay can then decode;, from the received signays, =
u3;, G + z3 sincex; ;, @ xa, is also a codeword of the code generatedGyThis occurs with vanishing
probability of error if [22h) holds (see, e.g., [24]). In thalowing (b + 1)-th block, the relay encodes
usz;, using an independent binary linear code with |[an?, | x n random binary generator matri&; as
x3p+1 = u3Gg. We use the convention that the signal sent by the relay irfitseblock isx3; = 0 or
any other known sequence.

At the end of the first blocki(= 1), where the relay sends a known signal (that can be cancgled b
both receivers), thg-th receiver can decode the currenk; bits u;; from the jth transmitter if R; <
1 — Hy(e;). Under this condition, we can now consider the second bloclkany other(b + 1)-th block,
assuming that thg-th receiver already knows; ;. In the (b + 1)-th block, the first receiver sees the signal
Yip+1 = uip1G @ uzpGs @ z;. However, sinceu; ;, is known at the first receiver, it can be canceled
from the received signal, leading 4 ,, | = 1 ,+1G ©u2 G5 S 21, whereGj is a[nRz] x n matrix that
contains the lastn Ry | rows of Gs. Due to the optimality of random linear codes over the BS MAEe(s
e.g., [24]),u; ,+1 anduy, are correctly decoded by the first receivelf + Ry < 1 — Hy(<1). Repeating

this argument for the second receiver and then considenagaseR; > R, concludes the proof.

APPENDIX VII

PROOF OFPROPOSITIONG.H

We first give a brief overview of lattice codes (see [18], [&#] further details). Am-dimensional lattice
A is defined as
A={GX: X e€Z"},
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whereG € R" is the generator matrix. For anyc R", the quantization oX mapsX to the nearest lattice

point in Euclidean distance:
Q X) £ arg min X —-qQ|.
A( ) Tngl H ||

The mod operation is defined as

X mod A =X —Qx(X).

The fundamental Voronoi regiod(A) is defined asV(A) = {X : Qa(X) = 0}, whose volume is denoted
by V(A) and is defined a¥ (A) = fV(A) dX. The second moment of lattick is given by

1
o2(A :7/ X|J?dX,
(A) V@A) Jo X1

while the normalized second moment is defined as

a?(A) 1
G) = Fasim = 7 = /v I

We use a nested lattice structure as in [19], wh&redenotes the coarse lattice ang denotes the fine

lattice and we havé. C A;. Both transmitters use the same coarse and fine lattice®fting. We consider
lattices such thaf(A.) ~ 51— andG(A) ~ 5=, whose existence is shown in [19]. In nested lattice coding,
the codewords are the lattice points of the fine lattice thatia the fundamental Voronoi region of the
coarse lattice. Moreover, we choose the coarse lattice the shaping lattice) such that(A.) = P to
satisfy the power constraint. The fine lattice is chosen tgded for channel coding, i.e., it achieves the
Poltyrev exponent [19].

We use a block Markov coding structure, that is the messagesoaed intaB blocks, and are transmitted
over B + 1 channel blocks. The relay forwards the information retatio the messages from each block
over the next channel block. The relay is kept silent in thgt fithannel block, while the transmitters are
silent in the last one. The receivers decode the messagadfimtransmitters and the relay right after each
block. Since there is no coherent combining, transmitterslsonly new messages at each channel block,
thus sequential decoding with a window size of one is suffici#/e explain the coding scheme for two
consecutive channel blocks dropping the channel blockxitilehe expressions.

Each transmitter maps its messagl/; to a fine lattice point; € Ay N V(A.), i = 1,2. Each user
employs a dither vectdyr; which is independent of the dither vectors of the other uaedsof the messages

and is uniformly distributed ove(A.). We assume all the terminals in the network know the dithetors.
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Now the transmitted codeword from transmitteis given by X; = (V; — U;) mod A.. It can be shown
that X; is also uniform ovel(A.).

At the end of each block, we want the relay to decddé (Vi +152) mod A, instead of decoding both
messages. Following [22] (with proper scaling to take cédréhe channel gainy), it is possible to show

that V' can be decoded at the relay if
1 1 1
R < " logy [Af NV(AL)] < 3 log (5 + fy2P> . (73)

Then in the next channel block, while the transmitters seavdinformation, the relay terminal broadcasts
the index of V' to both receivers. The relay uses rate-splitting [27], aaddmits each part of thg index
using a single-user random code. et and R, be the rates of the two codes the relay uses, with power
allocationd and P — g, respectively. Each receiver applies successive decpthegcodes from the relay
terminal are decoded using a single-user typicality decadaile the signal from the transmitter is decoded

by a Euclidean lattice decoder. Successful decoding isilples$

2 _
Rzgllog<1+u>j
2 Ui

where R; + R, = R. This is equivalent to having
1 1 1
R< {ilog(l—knzP),§log(1+P),Zlog(1+(1—1—?72)]3)}.

Combining this with [[7B), we obtain the rate constraint give the theorem.

APPENDIX VIII

PROOF OFPROPOSITIONG. 1

The proof follows from [15], and here we only briefly sketclk tinain arguments. The first step is to notice
that the capacity region for the Gaussian chanhnél (23) witlvgs constraints (24) is given by the region
(B) where the further constrainE[X]?] = Z;lzlp(q)E[ij\Q =q] < P; for j = 1,2,3 are imposed on the
input distribution. One then fixes a given value@f= ¢ and powersP;(q) = E[X]?\Q = ¢| and shows that,

for any given input distribution (recallX6);, Uzgs X1q: Xaq: Xsq)~ pla1, urlq)p(s, uslq)p(aslur, uz, q)
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satisfying the power constrainE[XﬂQ = ¢] < Pj(q), one can find a set of jointly Gaussian variables

Ut Us, X{

1q,ngq,ng) such that: i) the joint distribution can be factorized as inl (6)i) (the power

constraints are satisfied; anii Y all the mutual information terms i l(5) are larger than oua&qto the
corresponding values obtained with the original distiiut

Notice that, as discussed in [15], the existence of such & tofpGaussian variables does not follow
immediately from the conditional maximum entropy theordmfact, variables satisfying given Markov
constraints (as i .{6)) might have a covariance matrix foiclvka joint Gaussian distribution with the same
Markov constraints cannot be constructed. However, in agecsimilarly to [15], jointly Gaussian random
variables satisfyingi)-(iii) can be found as discussed below.

First, for a given tuplg Uiy, Uag, X14, Xog4, X34), COnstruct another tuplé/{,, Va,, X14, Xog, X34) With
Vig = E[X1|U1] — E[X1] and V,, = E[X3|Us] — E[X3]. It can be readily seen that with this new input
distribution, all the mutual information terms inl (5) aredar than or equal to the corresponding values for
(Uig, Uag, X14, X2q, X34) (property (i) above) In fact, the non-conditional term_(bd) is unchanged (due to
the fact the joint distribution o\, Xa,, X3, has not changed), while the remaining terms, which contain
conditioning with respect td7,, V24, are increased, sindg,, V>, are deterministic functions @f,, Upg, re-

spectively [15]. Now, definéU{, US, , X7

1 ngq, ng) as the zero-mean jointly Gaussian tuple with the same

covariance matrix afl’yq, Vog, X14, Xo4, X34). For this distribution the power constraints are clearlys$iad
(property (i) above). Moreover, we can show that this jointly Gaussiatrithution factorizes ag{(6) (property
(1)). This follows similarly to Lemma 6 in [15]. In factX;,, X, are independent and, sinég,, Uy,
are independent, so aré,, Va,; as a consequence, the covariance matrix@f,,Us,, X{ , X5, X§ )

2q° “* g
X§) and (U§,, X§ . X§). Now, since both

is fully defined by the subcovariance matrices (6f7 , X7 5 X5,

1q°> “*1q
submatrices satisfy the conditions of Lemma 5 of [15], we canclude that the jointly Gaussian vector

U4, Us,, X§

1g 1q,ng,ng) satisfies the desired Markov conditiofi$ (6). It finally fe#®from the conditional

maximum entropy theorem th&t{ Us A X7 X5 |

ng) is optimal for a given)) = ¢. The final step is
to use the concavity of the mutual informations at hand weétbpect to the powerB;(q) to see that time
sharing (i.e., the variabl® with non-singleton domain) is not necessary.

From the arguments sketched above, we conclude that a zzmo-jmintly Gaussian distribution is optimal,

thus we can write

Xj = \/OéijUj + \/deij (74)
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for j =1,2 and
X3 = \/OnggUl + \/angUz + v/ a3 P3S3 (75)

with 0 < ag, 09,05, 04 <1, o +aoff <1, a1 =1—aj, ag =1— g andas = 1 — af — of, and where

U; and S; are independent zero-mean and unit-variance Gaussianmavariables. The capacity regidd (5)

then reads
Ry < %log(l + asPs), (76)
Ri+ Ry < Slog(1+ 0Py +asPs + (Vi By + /o Ps)), (77)
Ro+ Ry < %log(l +oPy + asPs + (Vs Py + /o Py)?)) and (78)
Ri+Ro+ Ry < % log(1+ Py + Py + Py + 2, /a1 PLay Py + 2y foa Paay Py), (79)

where each term is clearly seen to be maximizedvpy= 1 and oy = 1. This concludes the proof.
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