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Abstract

This paper is about the design and analysis of an index-assignment (IA) based multiple-description

coding scheme for then-channel asymmetric case. We use entropy constrained lattice vector quantization

and restrict attention to simple reconstruction functions, which are given by the inverse IA function when

all descriptions are received or otherwise by a weighted average of the received descriptions. We consider

smooth sources with finite differential entropy rate and MSEfidelity criterion. As in previous designs, our

construction is based on nested lattices which are combinedthrough a single IA function. The results are

exact under high-resolution conditions and asymptotically as the nesting ratios of the lattices approach

infinity. For anyn, the design is asymptotically optimal within the class of IA-based schemes. Moreover,

in the case of two descriptions and finite lattice vector dimensions greater than one, the performance is

strictly better than that of existing designs. In the case ofthree descriptions, we show that in the limit of

large lattice vector dimensions, points on the inner bound of Pradhan et al. can be achieved. Furthermore,

for three descriptions and finite lattice vector dimensions, we show that the IA-based approach yields,

in the symmetric case, a smaller rate loss than the recently proposed source-splitting approach.
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I. INTRODUCTION

Multiple-description coding (MDC) is about (lossy) encoding of information for transmission over an

unreliablen-channel communication system. The channels may break downresulting in erasures and

a loss of information at the receiving side. The receiver knows which subset of then channels that

are working; the transmitter does not. The problem is then todesign an MDC system which, for given

channel rates, minimizes the distortions due to reconstruction of the source using information from any

subsets of the channels.

The achievable multiple-description (MD) rate-distortion function is completely known for the case of

two channels, squared-error fidelity criterion and the memoryless Gaussian source [1], [2]. An extension

to colored Gaussian sources was provided in [3]–[5]. Inner and outer bounds to then-channel quadratic

Gaussian rate-distortion region for memoryless sources was presented in [6]–[11].

Practical symmetric multiple-description lattice vectorquantization (MD-LVQ) based schemes for two

descriptions have been introduced in [12], which in the limit of infinite-dimensional source vectors and

under high-resolution assumptions, approach the symmetric MD rate-distortion bound.1 An extension to

n > 2 descriptions was presented in [13]. Asymmetric MD-LVQ was considered in [14] for the case of

two descriptions. Common for all of the designs [12]–[14] isthat a central quantizer is first applied on

the source after which anindex-assignment(IA) algorithm (also known as a labeling function) maps the

reconstruction points of the central quantizer to reconstruction points of the side quantizers, which is an

idea that was first presented in [15]. These designs are usually referred to as IA based designs.

There also exists non IA basedn-channel schemes, which are proven optimal in the two-channel

quadratic Gaussian case. In particular, the source-splitting approach of Chen et al. [16] and the delta-

sigma quantization approach of Østergaard et al. [17], [18]. In addition, the following recent work [19],

[20], provide simple constructions that are approximatelyoptimal.2

While the different designs mentioned above are able to achieve the rate-distortion bounds in the

asymptotical limit as the lattice vector quantizer dimension (L) gets arbitrarily large, there is an inherent

rate losswhen finite dimensional vector quantizers are employed.3 For example, in the two-channel

symmetric case and at high resolutions, the rate loss (per description) of the IA based schemes is given by

1The term symmetric relates to the situation where all channel rates (description rates) are equal and the distortion depends

only upon the number of working channels (received descriptions) and as such not on which of the channels that are working.

In the asymmetric case, the description rates and side distortions are allowed to be unequal.

2Note that the recent works [17]–[20] appeared after the firstsubmission of this paper.

3The termrate lossrefers to the excess rate due to using a suboptimal implementation.
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1
4 log2(G(Λ

(L))G(SL)(2πe)
2) whereG(Λ(L)) is the dimensionless normalized second moment of theL-

dimensional latticeΛ(L) andG(SL) is the dimensionless normalized second moment of anL-dimensional

hypersphere [21]. For the source-splitting approach the rate loss is 1
4 log2(G(Λ

(L))3(2πe)3) whereas

for the delta-sigma quantization approach the rate loss is1
4 log2(G(Λ

(L))2(2πe)2). SinceG(SL) ≤
G(Λ(L)),∀L > 0, it follows that the IA based approaches yield the smallest rate loss of all existing

asymptotically optimal designs.4

We will like to point out that there exist a substantial amount of different practical approaches to MDC.

For example, the work of [22] on asymmetric vector quantization, the work of [23], [24] onn-channel

scalar quantization and the transform based MDC approachespresented in [25]–[28].

In this paper, we are interested in IA based MDC. Specifically, we propose a design of an asymmetric

IA based MD-LVQ scheme for the case ofn ≥ 2 descriptions. The design uses a single labeling function

and simple reconstruction functions, which are given by theinverse IA function when all descriptions are

received or otherwise by a weighted average of the received descriptions. We consider the case of MSE

distortion and smooth sources with finite differential entropy rate.5 To the best of the authors knowledge,

the above restrictions (or even less general restriction) are also necessary for the existing IA-based designs

proposed in the literature.

The contributions of the paper are summarized below and are valid under high-resolution conditions

and asymptotically large nesting ratios:

• We provide a simple construction of the labeling function for the asymmetric case and for any number

n ≥ 2 of descriptions. The construction is optimal within the framework of IA based schemes where

only a single IA function is used and where the reconstruction rule is given as the average of the

received descriptions (or the central lattice in case all descriptions are received).

• For n = 3 and anyL ≥ 1, we provide closed-form rate-distortion expressions.

• For n = 3 and in the limit asL → ∞, the distortion points of our scheme lie on the inner bound

provided by Pradhan et al. [7], [8].

• For n = 2 and any1 < L <∞, we strictly improve the side distortions (by a constant) over that of

the asymmetric design by Diggavi et al. [14].

4By use of time-sharing, the rate loss of the source-splitting scheme can be reduced to that of the delta-sigma quantization

scheme. Moreover, in the scalar case, the rate loss can be further reduced, see [16] for details.

5For each side description, we assume that the sequence of quantized source vectors is jointly entropy coded using an arbitrarily

complex entropy coder.
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• For n = 3 and 1 ≤ L < ∞, we define a notion ofrate loss(in the symmetric case only) as the

difference between the operational rate of the scheme and the rate of the inner bound of Pradhan

et al. [7], [8]. We then show that our construction yields a smaller rate loss than that of source-

splitting [16].

This paper is organized as follows. In Section II we briefly review some lattice properties, describe

the required asymptotical conditions which we will be assuming through-out the work, and introduce the

concept of an IA function. The actual design of the MD-LVQ system, which is the main contribution of

the paper, is presented in Section III. In Section IV, we compare the proposed design to known inner

bounds and existing MD schemes. The conclusions follow in Section V and appendices are reserved for

lengthy proofs.

II. PRELIMINARIES

A. Lattice Properties

Let theL-dimensional real latticeΛ ⊂ R
L form the codewords of the lattice vector quantizerQΛ(·)

having Voronoi cells. Thus,QΛ(x) = λ if x ∈ V (λ) whereV (λ) , {x ∈ R
L : ‖x − λ‖2 ≤ ‖x −

λ′‖2, ∀λ′ ∈ Λ} is a Voronoi cell. We define〈x, x〉 , 1
Lx

tx and use‖x‖2 = 〈x, x〉. The dimensionless

normalized second-moment of inertiaG(Λ) of Λ is defined as [21]

G(Λ) ,
1

ν1+2/L

∫

V (0)
‖x‖2dx (1)

whereV (0) is the Voronoi cell around the origin andν denotes the volume ofV (0). Recall that 112 ≥
G(Λ) ≥ G(SL) ≥ 1

2πe whereG(SL) = 1
(L+2)πΓ

(
L
2 + 1

)2/L
is the dimensionless normalized second

moment of anL-dimensional hypersphere andΓ(·) is the Gamma function [21].

Let Λ be a lattice, then a sublatticeΛs ⊆ Λ is a subset of the elements ofΛ that is itself a lattice. We

say thatΛs is a coarse lattice nested within the fine latticeΛ. Let ν andνs be the volumes ofV (0) and

Vs(0), respectively, where the subscripts indicates the sublattice. Then the index valueNs of Λs with

respect toΛ is Ns = νs/ν and the nesting ratioN ′
s is given byN ′

s =
L
√
Ns.

Let {Λ(L)} be a sequence of lattices indexed by their dimensionL. Then,Λ(L) is said to be asymp-

totically good for quantization (under MSE) if and only if for any ǫ > 0 and sufficiently largeL [29]

log2(2πeG(Λ
(L))) < ǫ. (2)

October 30, 2018 DRAFT
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B. The Existence of Lattices and Sublattices for MD coding

We need a central lattice (central quantizer)Λc with Voronoi cellVc(0) of volumeνc andn sublattices

(side quantizers)Λi ⊂ Λc with Voronoi cellsVi(0) of volumesνi, wherei = 0, . . . , n − 1. Finally, we

need a sublatticeΛπ ⊂ Λi which we will refer to as a product lattice. The Voronoi cellVπ(0) of Λπ has

volumeνπ = Nπνc whereNπ is the index value ofΛπ with respect toΛc.

Previous work on two-description IA based MD coding focusedon the existence and construction of

nested lattices for a few low dimensional (root) lattices cf. [12], [14]. The techniques of [12], [14] was

extended to the case ofn descriptions for the symmetric case in [13]. While some of the root lattices

are considered to be among the best of all lattices (of the same dimensions) for quantization, they are

not good for quantization in the sense of (2). Furthermore, their index values belong to some discrete

sets of integers and since they are finite dimensional, arbitrary nesting ratios cannot be achieved.

Let us first clarify the requirements of the lattices to be used in this work:

1) The central latticeΛc ∈ R
L, is asymptotically good for quantization asL→ ∞.

2) The central latticeΛc ∈ R
L admits sublatticesΛi ⊂ Λc of arbitrary nesting ratios1 ≤ N ′

i ∈ R.

3) There exists a product latticeΛπ ⊂ Λi, i = 0, . . . , n − 1, with arbitrary nesting ratioN ′
π (with

respect toΛc) whereN ′
i < N ′

π ∈ R for all i = 0, . . . , n− 1.

That there exists a sequence of lattices which are asymptotically good for quantization was established

in [30]. It is also known that there exists nested latticesΛ(L) ⊂ Λ
(L)
c where the coarse lattice (Λ(L))

is asymptotically good for quantization and the fine lattice(Λ(L)
c ) is asymptotically good for channel

coding [31]. Moreover, in recent work [32], it has been established that there exists a sequence of nested

lattices where the coarse lattice as well as the fine lattice are simultaneously good for quantization.

Interestingly, we do not require{Λi}n−1
i=0 nor Λπ to be good for quantization. This is because we are

able to construct a labeling function which, asymptotically asNi → ∞,∀i, results in a distortion that

becomes independent of the type of sublattices being used. Furthermore,Λπ is used to provide a simple

construction of a shift invariant regionVπ(0) and its quantization performance is therefore irrelevant.

We have yet to show the existence ofΛ
(L)
π ⊂ Λ

(L)
i for i = 0, . . . , n − 1. Towards that end, we refer

to the construction of nested lattices provided in [32]. Here a coarse latticeΛ(L)
s is first fixed and then

a fine latticeΛ(L)
c is constructed such thatΛ(L)

s ⊆ Λ
(L)
c with an arbitrary nesting ratio. Without loss

of generality, letN ′
0 ≤ N ′

1 ≤ · · · ≤ N ′
n−1 < N ′

π. Moreover, let the set of integersZL form a product

lattice Λ
(L)
π . Now let Λ(L)

π be the coarse lattice and construct a fine latticeΛ
(L)
n−1 so that the nesting

ratio isN ′
π/N

′
n−1 by using the method of [32]. Next, letΛ(L)

n−1 be the coarse lattice and construct a fine

October 30, 2018 DRAFT
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lattice Λ
(L)
n−2 with a nesting ratio ofN ′

n−1/N
′
n−2. This procedure is repeated until the sublatticeΛ

(L)
0 is

constructed as the fine lattice ofΛ(L)
1 . At this point, the central latticeΛ(L)

c is finally constructed by using

Λ
(L)
0 as the coarse lattice and making sure that the nesting ratio isN ′

0. It should be clear that we end up

with a sequence of nested lattices, i.e.Λ
(L)
π ⊂ Λ

(L)
n−1 ⊆ · · · ⊆ Λ

(L)
0 ⊂ Λ

(L)
c with the desired nesting ratios

with respect toΛc, i.e.N ′
π, N

′
n−1, · · · , N ′

0. Without loss of generality, we can takeN ′
π =

∏n−1
i=0 N

′
i .

6

In the limit asL → ∞ it is guaranteed thatΛ(L)
c becomes asymptotically good for quantization.

Furthermore, the sublatticesΛ(L)
i can be shaped so that they are also good for quantization or they can,

for example, be shaped like the cubic lattice. This is not important for the design proposed in this work.

C. Lattice Asymptotics

As is common in IA based MD-LVQ, we will in this work require a number of asymptotical conditions

to be satisfied in order to guarantee the prescribed rate-distortion performance. Specifically, we require

high-resolution conditions, i.e. we will be working near the limit where the rates of the central and

side quantizers diverge towards infinity, or equivalently,in the limit where the volumes of the Voronoi

cells of the lattices in question become asymptotically small. This condition makes it possible to assume

an approximately uniform source distribution over small regions so that standard high-resolution lattice

quantization results become valid [33]. LetΛ ⊂ R
L be a real lattice and letν = det(Λ) be the volume

of a fundamental region ofΛ. Moreover, letṼ ⊂ R
L be a connected region of volumẽν. Then, the

high-resolution assumption makes it possible to approximate the number of lattice points iñV by ν̃/ν,

which is an approximation that becomes exact as the number oflattice shells withinṼ goes to infinity. To

be more specific, letS(c, r) be a sphere inRL of radiusr and centerc ∈ R
L. Then, according to Gauss’

counting principle, the numberAZ of integer lattice points in a convex bodyC in R
L equals the volume

Vol(C) of C with a small error term [34]. In fact ifC = S(c, r) then by use of a theorem due to Minkowski

it can be shown that, for anyc ∈ R
L and asymptotically asr → ∞, AZ(r) = Vol(S(c, r)) = ωLr

L,

whereωL is the volume of theL-dimensional unit sphere [35]. It is also known that the number of

lattice pointsAΛ(j) in the first j shells (i.e., thej shells nearest the origin) of the latticeΛ satisfies,

asymptotically asj → ∞, AΛ(j) = ωLj
L/2/ν [12].

In addition to the high-resolution assumption, we also require that the index values of the sublattices

become asymptotically large. With this, it follows that thenumber of central lattice points within a

6If 1 < m < n nesting ratios are identical, we keep only one of them when forming the product lattice. If all nesting ratios

are identical, we form the product lattice based on the product of any two of them, see [13] for details.
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Voronoi cell of a sublattice becomes arbitrarily large. Furthermore, to guarantee that the sublattices

satisfy the high-resolution quantization properties, we must force the volume of their Voronoi cells to

be small. In other words, we require thatNi → ∞ and νi → 0 whereνi = νNi is the volume of a

Voronoi cell of theith sublattice. We also note that, in order to avoid that some subset of the sublattices

asymptotically dominate the overall distortion, we will require that their index values grow at the same

rate, i.e.Ni/Nj = ci,j for some constantci,j ∈ R.

Finally, as mentioned in the previous section, we require the existence of good lattices for quantization.

We therefore require that the lattice vector dimensionL tends towards infinity.

We note that the above asymptotical conditions are only required to guarantee exact results. In fact,

at some point, we relax the requirement onL and provide exact results for anyL ≥ 1. Moreover, the

proof technique is constructive in the sense that in non-asymptotical situations, i.e. for finiteNi andRi,

the results are approximately true. This is interesting from a practical perspective, since, in practice, the

asymptotical conditions will never be truly satisfied.

D. Index Assignments

In the MDC scheme considered in this paper, a source vectorx is quantized to the nearest reconstruction

point λc in the central latticeΛc. Hereafter follows IAs (mappings), which uniquely map allλc’s to

reproduction points in each of the sublatticesΛi. This mapping is done through a labeling functionα,

and we denote the individual component functions ofα by αi. In other words, the functionα that maps

Λc into Λ0 × · · · × Λn−1, is given byα(λc) = (α0(λc), α1(λc), . . . , αn−1(λc)) = (λ0, λ1, . . . , λn−1),

whereαi(λc) = λi ∈ Λi and i = 0, . . . , n − 1. Eachn-tuple (λ0, . . . , λn−1) is used only once when

labeling points inΛc so thatλc can be recovered unambiguously when alln descriptions are received.

Since lattices are infinite arrays of points, we adopt the procedure first used in [12] and construct

a shift invariant labeling function, so we only need to labela finite number of points. We generalize

the approach of [14] and construct a product latticeΛπ which hasNπ central lattice points andNπ/Ni

sublattice points from theith sublattice in each of its Voronoi cells. The Voronoi cellsVπ(λπ) of the

product latticeΛπ are all similar so by concentrating on labeling only centrallattice points within one

Voronoi cell ofΛπ, the rest of the central lattice points may be labeled simplyby translating this Voronoi

cell throughoutRL. We will therefore only label central lattice points withinVπ(0), which is the Voronoi

cell of Λπ around the origin. With this we get

α(λc + λπ) = α(λc) + λπ (3)

for all λπ ∈ Λπ and allλc ∈ Λc.

October 30, 2018 DRAFT
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III. C ONSTRUCTION OF THELABELING FUNCTION

This section focuses on the labeling problem and is split into several subsections. We begin by Sec-

tion III-A which shows how to guarantee shift invariance of the labeling function. Then, in Section III-B,

we define the cost function to be minimized by an optimal labeling function. In Section III-C we show

how to construct an optimal set ofn-tuples and the assignment of then-tuples to central lattice points

follows Section III-D. We end by assessing the rate and distortion performances of the labeling function

in Section III-E and Section III-F, respectively.

A. Guaranteeing Shift Invariance of the Labeling Function

In order to ensure thatα is shift-invariant, we must make sure that ann-tuple is not assigned to more

than one central lattice pointλc ∈ Λc. Notice that twon-tuples which are translates of each other by

someλπ ∈ Λπ must not both be assigned to central lattice points located within the same regionVπ(λπ),

since this causes assignment of ann-tuple to multiple central lattice points.

The regionVπ(0) will be translated through-outRL and centered atλπ ∈ Λπ. Assume thatΛπ is clean7

with respect toΛ0. Then no points ofΛ0 will be inside more than oneVπ(λπ) region. This is the key

insight required to guarantee shift invariance. Let us now construct ann-tuple, say(λ0, λ1, . . . , λn−1),

where the first element is insideVπ(0), i.e.λ0 ∈ Vπ(0). Once we shift then-tuple by a multiple ofΛπ, the

first element of the shiftedn-tuple will never be insideVπ(0) and then-tuple is therefore shift invariant.

In other words,(λ0 + λπ) /∈ Vπ(0) for 0 6= λπ ∈ Λπ. This also means that alln-tuples (forλc ∈ Vπ(0))

have their first element (i.e.λ0) insideVπ(0). This restriction is easily removed by considering all cosets

of eachn-tuple. Let us define the coset of ann-tuple moduloΛπ to be

C̄Λπ
(λ0, . . . , λn−1) ,

{(λ′0, . . . , λ′n−1)∈Λ0× · · · ×Λn−1 : λ
′
i = λi + λπ, λπ ∈ Λπ}.

(4)

Then-tuples in a coset are equivalent moduloΛπ. So by allowing only one member from each coset to

be used when assigningn-tuples to central lattice points withinVπ(0), the shift-invariance property is

preserved.8

7A sublatticeΛs ⊂ Λ is said to be clean with respect toΛ if no points ofΛ falls on the boundary of the Voronoi cells of

Λs. In other words, the set{λ ∈ Λ : λ ∈ Vs(λs)∩ Vs(λ
′

s)} is empty for allλs 6= λ′

s ∈ Λs. We note that it is an open problem

to construct a sequence of nested lattices which are asymptotically good for quantization and where the coarse lattice is clean.

8If Λπ is not clean, a similar coset construction may be used to systematically deal with the boundary points: First, all

boundary points which are equivalent moduloΛπ are within the same coset. Second, only one member from each coset is

assigned to central lattice points.

October 30, 2018 DRAFT
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B. Defining the Cost Function for the Labeling Problem

We will treat the asymmetric problem where the individual descriptions are weighted and the distortions

due to reception of subsets of descriptions are also weighted. There are in general several ways of

receivingκ out ofn descriptions. LetL(n,κ) denote an index set consisting of all possibleκ combinations

out of {0, . . . , n − 1} so that |L(n,κ)| =
(n
κ

)
. For example, forn = 3 and κ = 2 we haveL(3,2) =

{{0, 1}, {0, 2}, {1, 2}}. Furthermore, let0 < µi ∈ R be the weight for theith description.

Recall thatα takes a single vectorλc and maps it to a set of vectors{λi}, i = 0, . . . , n − 1, where

λi ∈ Λi. The mapping is invertible so that we haveλc = α−1(λ0, . . . , λn−1). Thus, if alln descriptions

are received we reconstruct using the inverse mapα−1 and obtainλc. If no descriptions are received, we

reconstruct using the statistical mean of the source. In allother cases, we reconstruct using a weighted

average of the received elements.

We define the reconstruction formula when receiving the set of κ out of n descriptions indexed by

ℓ ∈ L(n,κ) to be

x̂ℓ ,
1

κ

∑

i∈ℓ

µiαi(λc) (5)

where1 ≤ κ < n and whereλc = Qλc
(x), i.e. x is quantized toλc ∈ Λc. The distortiondℓ due to

approximatingx by x̂ℓ is then given by

dℓ =

∥
∥
∥
∥
∥
x− 1

κ

∑

i∈ℓ

µiαi(λc)

∥
∥
∥
∥
∥

2

(6)

and the expected distortion with respect toX is given byD̄ℓ = Edℓ.

Lemma 1 ( [12]): For any1 ≤ κ < n, ℓ ∈ L(n,κ), asymptotically asνc → 0 and independently ofα

D̄ℓ =
∑

λc∈Λc

∫

Vc(λc)
fX(x) ‖X − λc‖2 dx

+
∑

λc∈Λc

∫

Vc(λc)
fX(X)

∥
∥
∥
∥
∥
λc −

1

κ

∑

i∈ℓ

µiαi(λc)

∥
∥
∥
∥
∥

2

dx.

(7)

Proof: The lemma was proved in [12] for the symmetric case and two descriptions. The extension

to the asymmetric case andn descriptions is straight forward. See [36] for details.

Notice that only the second term of (7) is affected by the labeling function. We will make use of this

fact and therefore define

Dℓ ,

∥
∥
∥
∥
∥
λc −

1

κ

∑

i∈ℓ

µiαi(λc)

∥
∥
∥
∥
∥

2

. (8)

The cost function to be minimized by the labeling function must take into account the entire set of

distortions due to reconstructing from different subsets of descriptions. With this in mind, we combine

October 30, 2018 DRAFT
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J n ,
∑

λc∈Λc

∫

Vc(λc)
fX(x)

{
n−1∑

i=0

γi

∥
∥
∥
∥
λc − µiαi(λc)

∥
∥
∥
∥

2

+

n−2∑

i=0

n−1∑

j=i+1

γi,j

∥
∥
∥
∥
λc −

µiαi(λc) + µjαj(λc)

2

∥
∥
∥
∥

2

+

n−3∑

i=0

n−2∑

j=i+1

n−1∑

k=j+1

γi,j,k

∥
∥
∥
∥
λc −

µiαi(λc) + µjαj(λc) + µkαk(λc)

3

∥
∥
∥
∥

2

+ · · ·
}

dx.

(9)

the distortions through a set of scalar (Lagrangian) weights. Specifically, letγℓ ∈ R, ℓ ∈ L(n,κ) be the

weight for the distortionDℓ due to reconstructing using the set of descriptions indexedby ℓ. With this,

we define the cost functionJ n for then-description labeling problem to be given by (9) (see top of next

page), which can be written more compactly as

J n ,
∑

λc∈Λc

∫

Vc(λc)
fX(x)

n−1∑

κ=1

∑

ℓ∈L(n,κ)

γℓDℓ dx. (10)

For example, using the fact thatλi = αi(λc), we can writeJ n for the n = 3 case as

J 3 =
∑

λc∈Λc

∫

Vc(λc)
fX(x)

2∑

i=0

γi

∥
∥
∥
∥
λc − µiλi

∥
∥
∥
∥

2

dx

+
∑

λc∈Λc

∫

Vc(λc)
fX(x)

1∑

i=0

2∑

j=i+1

γi,j

∥
∥
∥
∥
λc −

µiλi + µjλj
2

∥
∥
∥
∥

2

dx.

Since we are considering the high-resolution regime, we canmake the following simplifications

J n =
∑

λc∈Λc

n−1∑

κ=1

∑

ℓ∈L(n,κ)

γℓ

∫

Vc(λc)
fX(x)Dℓ dx (11)

=
∑

λc∈Λc

P (X ∈ Vc(λc))

n−1∑

κ=1

∑

ℓ∈L(n,κ)

γℓDℓ (12)

≈
∑

λπ∈Λπ

P (X ∈ Vπ(λπ))
Nπ

∑

λc∈Vπ(λπ)

n−1∑

κ=1

∑

ℓ∈L(n,κ)

γℓDℓ (13)

=
1

Nπ

∑

λc∈Vπ(0)

n−1∑

κ=1

∑

ℓ∈L(n,κ)

γℓDℓ (14)

whereP (X ∈ Vc(λc)) is the probability thatX will be mapped (or quantized) toλc. The approximation

follows by substitutingP (X ∈ Vc(λc)) ≈ P (X ∈ Vπ(λπ))/Nπ for λπ ∈ Λπ which becomes exact as

νi → 0. In (13), we also exploited thatα is shift invariant in order to decompose the sum
∑

λc∈Λc
into

the double sum
∑

λπ∈Λπ

∑

λc∈Vπ(λπ)
as follows from (3).

We would like to simplifyJ n even further. In order to do so, we introduce the following notation.

Let L(n,κ)
i indicate the set of allℓ ∈ L(n,κ) that contains the indexi, i.e., L(n,κ)

i = {ℓ ∈ L(n,κ) :
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i ∈ ℓ}. Similarly, L(n,κ)
i,j = {ℓ ∈ L(n,κ) : i, j ∈ ℓ}. Moreover, letγ̄(L(n,κ)) =

∑

ℓ∈L(n,κ) γℓ, γ̄(L(n,κ)
i ) =

∑

ℓ∈L(n,κ)
i

γℓ andγ̄(L(n,κ)
i,j ) =

∑

ℓ∈L(n,κ)
i,j

γℓ. Thus,γ̄(L(3,2)) = γ0,1+γ0,2+γ1,2 andγ̄(L(3,2)
1 ) = γ0,1+γ1,2.

Theorem 1:Let 1 ≤ κ < n < ∞. Given a set of distortion weights{γℓ ∈ R : ℓ ∈ L(n,κ), 1 ≤ κ ≤
n− 1}, a set of description weights{0 < µi ∈ R : i = 0, . . . , n− 1} and anyλc ∈ Λc we have

∑

ℓ∈L(n,κ)

γℓDℓ =

n−2∑

i=0

n−1∑

j=i+1

γ̂
(n,κ)
i,j

∥
∥
∥
∥
µiλi − µjλj

∥
∥
∥
∥

2

+ γ̄(L(n,κ))

∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )µiλi

∥
∥
∥
∥

2
(15)

whereλi = αi(λc) and

γ̂
(n,κ)
i,j =

1

κ2

(

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )

γ̄(L(n,κ))
− γ̄(L(n,κ)

i,j )

)

. (16)

Proof: See Appendix A.

From (15) we make the observation that wheneverλi appears, it is multiplied byµi. Without loss of

generality, we can therefore scale the latticeΛi by µi and consider the scaled latticẽΛi = µiΛi instead.

This simplifies the notation. For example,x̂ℓ =
1
κ

∑

i∈ℓ λ̃i whereλ̃i = µiλi for i = 0, . . . , n−1. Clearly,

scaling the sublattices affects the side description rates. We address this issue in Section III-E.

By use of Theorem 1 we can rewrite the cost function to be minimized by the labeling function as

J n =
1

Nπ

∑

λc∈Vπ(0)

n−1∑

κ=1

{ n−2∑

i=0

n−1∑

j=i+1

γ̂
(n,κ)
i,j

∥
∥
∥
∥
λ̃i − λ̃j

∥
∥
∥
∥

2

+ γ̄(L(n,κ))

∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥

2}
(17)

whereγ̂(n,κ)i,j is given by (16).

The following theorem allows us to simplify the construction of the labeling function:

Theorem 2:Let 1 < n ∈ N. The cost functionJ n is asymptotically separable in the sense that, as

Ni → ∞ andνi → 0,∀i, an optimal setT ∗ of Nπ distinct and shift invariantn-tuples satisfies

T ∗ = argmin
T

∑

(λ0,...,λn−1)∈T

n−1∑

κ=1

n−2∑

i=0

n−1∑

j=i+1

γ̂
(n,κ)
i,j

∥
∥
∥
∥
λ̃i − λ̃j

∥
∥
∥
∥

2

(18)

whereT = {(λ0, . . . , λn−1) ∈ Λ0× · · · ×Λn−1 : (λ0, . . . , λn−1) is shift invariant}, |T | = Nπ and where

γ̂
(n,κ)
i,j is given by (16).

Proof: See Appendix B.

Theorem 2 provides a guideline for the construction ofn-tuples. One should first find a set ofNπ

distinct and shift invariantn-tuples which satisfies (18). Thesen-tuples (or members of their cosets)
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should then be assigned to central lattice points inVπ(0) such that

∑

λc∈Vπ(0)

n−1∑

κ=1

∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥

2

(19)

is minimized.

Remark 1:Notice that we have not claimed thatT ∗ is unique. Thus, there might be several sets of

n-tuples which all satisfy (18) but yield different distortions when inserted in (19). However, Theorem 2

states that the asymptotically (asNi → ∞) dominating distortion is due to that of (18). Thus, any set of

n-tuples satisfying (18) will be asymptotically optimal. Interestingly, we show in Section III-D thatT ∗

is, in certain cases, indeed asymptotically unique (up to translations by coset members).

C. Constructingn-Tuples

In order to constructn-tuples which are shift invariant we extend the technique previously proposed

for the symmetricn-description MD problem [13].

We first center a spherẽV at all sublattice pointsλ0 ∈ Vπ(0) and constructn-tuples by combining

sublattice points from the other sublattices (i.e.Λi, i = 1, . . . , n− 1) within Ṽ (λ0) in all possible ways

and select the ones that minimize (18). For eachλ0 ∈ Vπ(0) it is possible to construct
∏n−1
i=1 Ñi n-tuples,

whereÑi is the number of sublattice points from theith sublattice within the regioñV . This gives a total

of (Nπ/N0)
∏n−1
i=1 Ñi n-tuples when allλ0 ∈ Vπ(0) are used. The number̃Ni of lattice points withinṼ

may be approximated bỹNi ≈ ν̃/νi where ν̃ is the volume ofṼ .9

SinceÑi ≈ ν̃/(νNi) and we needN0 n-tuples for eachλ0 ∈ Vπ(0) we see that

N0 ≤
n−1∏

i=1

Ñi ≈
ν̃n−1

νn−1

n−1∏

i=1

N−1
i ,

so in order to obtain at leastN0 n-tuples the volume of̃V must satisfy (asymptotically asNi → ∞)

ν̃ ≥ νc

n−1∏

i=0

N
1/(n−1)
i . (20)

For the symmetric case, i.e.N = Ni, i = 0, . . . , n− 1, we haveν̃ ≥ νcN
n/(n−1), which is in agreement

with the results obtained in [13].

The design procedure can be outlined as follows:

1) Center a spherẽV at eachλ0 ∈ Vπ(0) and construct all possiblen-tuples(λ0, λ1, . . . , λn−1) where

λi ∈ Ṽ (λ0) and i = 1, . . . , n − 1. This makes sure that alln-tuples have their first element (λ0)

insideVπ(0) and they are therefore shift-invariant.

9This approximation becomes exact in the usual asymptoticalsense ofNi → ∞ andνi → 0.
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2) Keep onlyn-tuples whose elements satisfy‖λi − λj‖2 ≤ r2/L,∀i, j ∈ 0, . . . n− 1, wherer is the

radius ofṼ .

3) Make Ṽ large enough so at leastN0 distinctn-tuples are found for eachλ0.

The restriction‖λi − λj‖2 ≤ r2/L in step 2 above, is imposed to avoid bias towards any of the

sublattices. At this point, one might wonder why we wish to avoid such bias. After all, the expression to

be minimized, i.e. (18), includes weightsγ̂(n,κ)i,j (which might not be equal) for every pair of sublattices.

In otherwords, why not use spheresṼi,j of different sizes to guarantee that‖λi − λj‖2 ≤ r2i,j/L where

the radiusri,j now depends on the particular pair of sublattices under consideration. This is illustrated

in Fig. 3 in Appendix B, whereri,j denotes the radius of the sphereṼi,j. Here we center̃V0,1 at some

λ0 ∈ Vπ(0) as illustrated in Fig. 3 by the solid circle. Then, for anyn-tuples having thisλ0 point as first

element, we only includeλ1 points which are insidẽV0,1(λ0). This guarantees that‖λ0−λ1‖2 ≤ r0,1/L.

Let us now center a spherẽV1,2 at someλ1 which is insideṼ0,1(λ0). This is illustrated by the dotted

sphere of radiusr1,2 in the figure. We then only includeλ2 points which are in the intersection ofṼ1,2(λ1)

and Ṽ0,2(λ0). This guarantees that‖λi − λj‖2 ≤ ri,j/L for all (i, j) pairs.

Clearly, the radiusri,j must grow at the same rate for any pair(i, j) so that, without loss of generality,

r0,1 = a2r0,2 = a1r1,2 for some fixeda1, a2 ∈ R. Interestingly, from Fig. 3 we see thatr0,2 cannot be

greater thanr0,1 + r1,2 which effectively upper boundsa2. Thus, the ratiori,j/rk,l cannot be arbitrary.

Furthermore, it is important to see that the asymmetry in distortions between the descriptions, is not

dictated byri,j but instead by how then-tuples are assigned to the central lattice points. Recall from (19)

that the assignment is such that the distances between the central lattice points and the weighted centroids

of the n-tuples are minimized. In other words, if we wish to reduce the distortion due to receiving

descriptioni, then we assign then-tuples so that theith element of then-tuples is closer (on average)

to the associated central lattice points. Obviously, the remaining elements of then-tuples will then be

further away from the assigned central lattice points.

In the following we first consider the case wherer = ri,j for any (i, j). We later show that this is

indeed the optimal choice in the symmetric distortion case.It is trivially also optimal in the two-channel

asymmetric case, since there is only a single weightγ̂
(2,1)
0,1 . In general, we can always scale the radii such

that
∑

(λ0,...,λn−1)∈T

n−1∑

κ=1

γ̂
(n,κ)
i,j ‖λi − λj‖2 =

∑

(λ0,...,λn−1)∈T

ck,l

n−1∑

κ=1

γ̂
(n,κ)
k,l ‖λk − λl‖2

(21)
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for any (i, j) 6= (k, l) whereT indicates the set ofNπ n-tuples andck,l ∈ R. The resulting distortions

weights (as given by (33) and (34)) should then include the additional set of scaling factors{ck,l}. This

case is treated by Lemma 2.

We now proceed to find the optimalν̃, i.e. the smallest volume which (asymptotically for largeNi)

leads to exactlyN0 tuples satisfying step 2. In order to do so, we adopt the approach of [13] and introduce

a dimensionless expansion factorψn,L. The expansion factorψn,L describe how much̃V needs to be

expanded (per dimension) from the theoretical lower bound (20), to make sure that exactlyN0 optimal

n-tuples can be constructed by combining sublattice points within a regionṼ . With this approach, we

have that

ν̃ = ψLn,Lνc

n−1∏

i=0

N
1/(n−1)
i . (22)

In practice, it is straight-forward to determineψn,L. One can simply start atψn,L = 1 and iteratively

increaseψn,L in small steps until exactlyN0 n-tuples are found which all satisfy‖λi−λj‖2 ≤ r/L. For

volumes containing a large number of lattice points, i.e. asymptotically asNi → ∞, such an approach

determinesψn,L to arbitrary accuracy. Furthermore, in this asymptotical case,ψn,L becomes independent

of the type of lattice (and alsoNi), since it then only depends on the number of lattice points within a

large volume. Thus, it should be clear that for any1 < n ∈ N and 1 ≤ L ∈ N, and asymptotically as

Ni → ∞,∀i, there exist a unique1 ≤ ψn,L ∈ R.

In general, it is complicated to find an analytical expression for ψn,L. However, we have previously

been able to do it for the symmetric MD problem in some interesting cases. It turns out that the proof

technique and solutions provided for the symmetric case, carry over to the asymmetric case. To see this,

we sketch the proof technique here for the asymmetric case and n = 3.

Recall that we seek3-tuples such that any two members of the3-tuple is distanced no more than

r2/L apart. Specifically, we require‖λi − λj‖2 ≤ r2/L where r is the radius ofṼ . Essentially, this

is a counting problem. We first center a sphereṼ at someλ0 ∈ Vπ(0) ∩ Λ0. Then we pick a single

λ1 ∈ Ṽ (λ0)∩Λ1. Finally, we center an equivalent sphereṼ at thisλ1 and count the number, say#λ1
, of

λ2 ∈ Ṽ (λ0)∩ Ṽ (λ1)∩Λ2. Thus, there is#λ1
3-tuples having the same pair(λ0, λ1) as first and second

element. The procedure is now repeatedly applied for allλ1 ∈ Ṽ (λ0) ∩ Λ1 yielding the total number of

3-tuples to be
∑

λ1∈Ṽ (λ0)
#λ1

(all having the sameλ0 as first element).

For large volumes, the number of lattice points in a regionS is given by Vol(S)/ν2 where Vol(S)

is the volume ofS and ν2 is the volume of the Voronoi cell of the sublattice pointsλ2 ∈ Λ2. Thus,

given the pair(λ0, λ1), the number ofλ2 sublattice points is approximately given by Vol(S)/ν2 where
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S = Ṽ (λ0)∩ Ṽ (λ1). It follows that we need to find the radius (or actually the volume ν̃ of Ṽ ) such that
∑

λ1∈Ṽ (λ0)
#λ1

= N0, since we need exactlyN0 3-tuples for eachλ0 ∈ Vπ(0)∩Λ0. To find the optimal

ν̃, we derive the volume of intersectingL-dimensional spheres distanced0 < b ∈ R apart. We then let

bk be a sequence of increasing distances which yields a sequence of volumes{Vol(Sk)} of the partial

intersectionsSk = Ṽ (0) ∩ Ṽ (bk). We finally form the equality
∑r

k=1#Sk
Vol(Sk)/ν2 = N0 where#Sk

denotes the number of times eachSk occurs. By solving forr, we find the unique volumẽν which leads

to exactlyN0 n-tuples. It can be shown that this procedure yields the optimal ν̃ and is asymptotically

exact for large volumes. Furthermore, it is essentially equivalent to the symmetric case the only exception

being that the index values forming the product (22) are allowed to be different in the asymmetric case.

We therefore refer the reader to [13], [36] for the rigorous proof and quote some results below.

In the case ofn = 2, it trivially follows that ψ2,L = 1 for all L. For the case ofn = 3 andL odd we

have the following theorem.

Theorem 3 ( [13, Thm. 3.2]):Let n = 3. Asymptotically asNi → ∞, νi → 0,∀i, ψ3,L for L odd is

given by

ψ3,L =

(
ωL
ωL−1

) 1

2L
(
L+ 1

2L

) 1

2L

β
− 1

2L

L (23)

whereωL denotes the volume of anL-dimensional unit-sphere andβL only depends onL and is given

by

βL =

L+1

2∑

m=0

(L+1
2

m

)

2
L+1

2
−m(−1)m

L−1

2∑

k=0

(L+1
2 )k(

1−L
2 )k

(L+3
2 )k k!

×
k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j
(
1

4

)j 1

L+m+ j

(24)

where(·)k is the Pochhammer symbol.10 N

Theorem 4 ( [13], [36]): Let n = 3. Asymptotically asNi → ∞, νi → 0,∀i, andL→ ∞

ψ3,∞ =

(
4

3

) 1

4

. (25)

N

Remark 2:The proposed construction also provides a shift invariant set of n-tuples in the non-

asymptotical case whereNi is finite. Thus, the design is useful in practice.

10The Pochhammer symbol is defined as(a)0 = 1 and (a)k = a(a+ 1) · · · (a+ k − 1) for k ≥ 1.
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D. Assigningn-Tuples to Central Lattice Points

At this point, we may assume that we have a setT containingNπ shift invariantn-tuples. These

n-tuples need to be assigned to theNπ central lattice points withinVπ(0). However, before doing so, we

first construct the coset of eachn-tuple of T . Recall that the coset of ann-tuple is given by (4).

As first observed by Diggavi et al. [14], assignment ofn-tuples (or more correctly cosets ofn-tuples)

to central lattice points, is a standard linear assignment problem where only one member from each

coset is assigned. This guarantees that the labeling function is shift invariant. The cost measure to be

minimized by the linear assignment problem is given by (19).Thus, the sum of distances between the

weighted centroids of then-tuples and the central lattice points should be minimized.

Remark 3:Notice that we have shown that there exists a set ofn-tuples and an assignment that

satisfy the desired set of distortions. However, there might exist several assignments (for the same set

of n-tuples) all yielding the same overall Lagrangian cost. Thus, in practice, when solving the bipartite

matching problem one might need to search through the complete set of solutions (assignments) in order

to find one that leads to the desired set of distortions. Alternatively, one can pick different solutions

(assignments) and use each of them a certain amount of time sothat on average the desired set of

distortions are satisfied.

Remark 4: It might appear that the shift invariance restriction enforced by using only one member

from each coset will unfairly penalizeΛ0. However, the following theorems prove that, asymptotically

asNi → ∞, there is no bias towards any of the sublattices. We will consider here the case ofn > 2 (for

n = 2 we can use similar arguments as given in [14]).

Theorem 5:Let n > 2. Asymptotically asNi → ∞,∀i, the number ofn-tuples that includes sublattice

points outsideVπ(0) becomes negligible compared to the number ofn-tuples which have all there

sublattice points insideVπ(0).

Proof: See Appendix C.

Theorem 6:Let n > 2. Asymptotically asNi → ∞,∀i, the set ofNπ n-tuples that is constructed by

centeringṼ at eachλ0 ∈ Vπ(0) ∩ Λ0 becomes identical to the set constructed by centeringṼ at each

λi ∈ Vπ(0) ∩ Λi, wherei ∈ {1, . . . , n− 1}.

Proof: See Appendix D.

Remark 5:Notice that the above theorems imply that the set ofn-tuples which satisfies (18) and is

constructed so thatri,j = ai,jr,∀(i, j) andai,c ∈ R
L, is unique (at least up to translations by members

of their cosets). The assignment of then-tuples to central lattice points, however, might not be unique.
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E. Description Rates

The single-description rateRc, i.e. the rate of the central quantizer, is given by

Rc =− 1

L

∑

λc∈Λc

(∫

Vc(λc)
fX(x)dx

)

log2

(∫

Vc(λc)
fX(x)dx

)

.

Using the fact that each Voronoi cellVc(λc) has identical volumeνc and assuming thatfX(x) is

approximately constant over Voronoi cells of the central lattice Λc, it can be shown that [33]

Rc ≈
1

L
h(X) − 1

L
log2(νc), (26)

whereh(X) is the differential entropy of a source vector and the approximation becomes asymptotically

exact in the high resolution limit whereνc → 0.

The side descriptions are based on a coarser lattice obtained by scaling the Voronoi cells of the central

lattice by a factor ofNiµi. Assuming the pdf ofX is roughly constant within a sublattice cell, the rates

of the side descriptions are given by

Ri ≈
1

L
h(X)− 1

L
log2(Niµiνc) (27)

where the approximation becomes exact asymptotically asNiνc = νi → 0 for a fixed weight0 < µi ∈ R.

The description rates are related to the single-description rate by

Ri ≈ Rc −
1

L
log2(Niµi).

It follows that, given description ratesRi and description weightsµi for i = 0, . . . , n − 1, the index

values are given by

Ni =
1

νcµi
2h(X)−LRi (28)

and the nesting ratios byN ′
i = N

1

L

i .

F. Distortions

We now provide analytical expressions for the expected distortions in the case ofn = 2 andn = 3

descriptions.

Theorem 7:Let n = 2 and1 ≤ L ∈ N. Furthermore, fix the weights0 < µi ∈ R andγi ∈ R where

i = 0, 1. Given an optimal labeling functionα, then, asymptotically asNi → ∞ andνi → 0, the expected

distortion D̄i = E‖X − X̂i‖2 whereX̂i = µiλi satisfies

D̄i =
γ2j

(γ0 + γ1)2
G(SL)ν

2/L
c (N0N1)

2/L(µ0µ1)
2/L (29)

=
γ2j

(γ0 + γ1)2
G(SL)2

2

L
h(X)22(Rc−(R0+R1)) (30)
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wherei, j ∈ {0, 1} and i 6= j.

Proof: Follows by applying the proof technique of Diggavi et al. [14] and using the fact that we are

here optimizing overL-dimensional spheres rather than Voronoi cells as was the case in [14].

Theorem 8:Let n = 3 and1 ≤ L ∈ N. Given the set of distortion weights{γℓ ∈ R : ℓ ∈ L(n,κ), 1 ≤
κ ≤ n − 1}, and set of description weights{0 < µi ∈ R : i = 0, . . . , n − 1} and an optimal labeling

function α. Then, for any1 ≤ κ < n, any ℓ ∈ L(n,κ), and asymptotically asNi → ∞ andνi → 0, the

expected distortion̄Dℓ = E‖X − X̂ℓ‖2 whereX̂ℓ =
∑

i∈ℓ µiλi is given by

D̄ℓ = γ̂ℓΦLG(SL)ν
2/L
c (µ0µ1µ2)

1/L(N0N1N2)
1/L (31)

= γ̂ℓΦLG(SL)2
2

L
h(X)2Rc−(R0+R1+R2) (32)

where the weightŝγℓ ∈ R for κ = 1 is given by

γ̂i =
γ2j + γ2k + γjγk

(γ0 + γ1 + γ2)2
(33)

and forκ = 2 by

γ̂i,j =
1

4

γ2i,k + γ2j,k + γi,kγj,k

(γ0,1 + γ0,2 + γ1,2)2
(34)

wherek 6= i, k 6= j, andj 6= i andΦL = L+2
L

β̃L

βL
ψ2
3,L whereψ3,L is given by (23),βL is given by (24)

and

β̃L =

L+1

2∑

m=0

(L+1
2

m

)

2
L+1

2
−m(−1)m

L−1

2∑

k=0

(L+1
2 )k(

1−L
2 )k

(L+3
2 )k k!

×
k∑

j=0

(
k

j

)(
1

2

)k−j

(−1)j
(
1

4

)j 1

L+m+ j + 2
.

(35)

Proof: See Appendix E.

For largeL, we can simplify the termΦL appearing in Theorem 8, which we for later reference put

into the following corollary:

Corollary 1: Asymptotically asNi → ∞ andL→ ∞, ΦL =
(
4
3

) 1

2 . N

If we in the construction of then-tuples use the additional set of weights{ci,j} as given by (21), then

γ̂ℓ is given by the following lemma:
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Lemma 2:For anyn > 1, 1 ≤ κ < n andℓ ∈ L(n,κ) we have

γ̂ℓ =
1

γ̄(L(n,κ))2κ2

(

γ̄(L(n,κ))
∑

j∈ℓ

n−1∑

i=0
i 6=j

γ̄(L(n,κ)
i )ci,j

− γ̄(L(n,κ))2
κ−2∑

i=0

κ−1∑

j=i+1

ci,j

−
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )ci,j

)

(36)

where if ci,j = 1 andn = 3, (36) reduces to (33) and (34) forκ = 1 andκ = 2, respectively.

Proof: Follows by inserting the additional weights{ci,j} in (77).

Notice also that, for anyn ≥ 1 and asymptotically asνc → 0, the expected central distortion is trivially

given by

D̄c = EDc = E‖X −QΛc
(X)‖2 = G(Λc)ν

2/L
c . (37)

We end this section by establishing an interesting result for then-channel IA based MD problem.

Corollary 2: Let n > 1 and1 ≤ L <∞. Given the set of distortion weights{γℓ ∈ R : ℓ ∈ L(n,κ), 1 ≤
κ ≤ n − 1}, and set of description weights{0 < µi ∈ R : i = 0, . . . , n − 1} and an optimal labeling

function α. Then, for any1 ≤ κ < n, any ℓ ∈ L(n,κ), and asymptotically asNi → ∞ and νi → 0,

the expected distortion̄Dℓ = E‖X − X̂ℓ‖2 whereX̂ℓ =
∑

i∈ℓ µiλi is linearly proportional toD̄ℓ′ where

ℓ′ ∈ {L(n,κ) : 1 ≤ κ < n}. In particular

D̄ℓ = γ̂ℓcℓ2
2

L
h(X)2

2

n−1
(Rc−

∑
n−1
i=0 Ri) (38)

whereγ̂ℓ is given by (36) and0 < cℓ <∞,∀ℓ.
Proof: Follows from the proof of Theorem 8.

Remark 6:We have not been able to find the set of constants{cℓ} in (38) for the case ofn > 3.

However, since0 < cℓ < ∞ it follows that, for anyn > 1, the side distortions for different subsets of

descriptions are linearly related, independently of the description rates. This observation has an interesting

consequence. Let the growth ofNπ =
∏

iNi as a function of the rates be given byNπ = 2La(n−1)
∑

i
Ri

where 0 < a < 1. Moreover, sinceRi = Rc − 1
L log2(Ni) we also have thatNπ = 2L(nRc−

∑
i
Ri).

Equating the two expressions forNπ and solving forRc yieldsRc = 1
n

∑

iRi(a(n − 1) + 1). Inserting

this into (38) and (37) leads to

lim∑
i
Ri→∞

D̄ℓ 2
2

n
(1−a)

∑
i
Ri = c′ 2

2

L
h(X) (39)
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for any ℓ ∈ L(n,κ) and

lim∑
i
Ri→∞

D̄c 2
2

n
(1+a(n−1))

∑
i
Ri = c 2

2

L
h(X), (40)

wherec′ ∈ R depends onℓ, c ∈ R is independent ofℓ and a controls the rate trade-offs between the

central and the side descriptions. Thus, the product of the central distortionD̄c (40) and an arbitrary set

of (n − 1) side distortionsD̄ℓ (39) is independent ofa. This observation agrees with the symmetric

n-channel product considered in [37].

IV. COMPARISON TOEXISTING SCHEMES

We first assess the two-channel performance. This is interesting partly because it is the only case where

the complete achievable MD rate-distortion region is knownand partly because it makes it possible to

compare the performance to that of existing schemes.

A. Two-Channel Performance

The side distortions̄D′
0 and D̄′

1 of the two-channel asymmetric MD-LVQ system presented in [14]

satisfy (under identical asymptotical conditions as that of the proposed design)

D̄′
i ≈

γ2j
(γ0 + γ1)2

G(Λπ)2
2h(X)2−2(R0+R1−Rc) (41)

wherei, j ∈ {0, 1} andi 6= j and the central distortion is given bȳD′
c ≈ G(Λc)2

2(h(X)−Rc). Notice that

the only difference between (41) and (30) is that the former depends onG(Λπ) and the latter onG(SL).

For the two dimensional case it is known thatG(S2) = 1/(4π) whereas ifΛπ is similar toZ2 we have

G(Λπ) = 1/12 which is approximately0.2 dB worse thanG(S2). Fig. 1 shows the performance when

quantizing2 ·106 zero-mean unit-variance independent Gaussian vectors constructed by blocking an i.i.d.

scalar Gaussian process into two-dimensional vectors and using theZ2 quantizer for the design of [14]

as well as for the proposed system. In this setup we have fixedR0 = 5 bit/dim. butR1 is varied in the

range5 – 5.45 bit/dim. We have fixed the ratioγ0/γ1 = 1.55 and we keep the side distortions fixed and

change the central distortion. Since the central distortion is the same for the two schemes we have not

shown it. Notice thatD̄0 (resp.D̄1) is strictly smaller (about0.2 dB) thanD̄′
0 (resp.D̄′

1).

B. Three Channel Performance

In this section we compare the rate-distortion properties of the proposed design to the inner bound

provided in [7], [8]. Thus, we restrict attention to the symmetric case. In order to do this, we first define

an MD distortion product for the three channel case. Then, weshow that by random binning one can
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Fig. 1. The side distortions are here kept fixed as the rate is increased. Notice that the numerically obtained side distortions

D̄0 and D̄1 are strictly smaller than the theoreticalD̄′

0 and D̄′

1.

further reduce the description rates. Finally, we assess the rate loss when finite-dimensional quantizers

are used but no binning.

1) Three Channel Distortion Product:To assess the performance of the three channel design it is

convenient to define the distortion productDπ which in the symmetric distortion case (i.e. for̄D0 =

D̄1 = D̄2 and D̄0,1 = D̄0,2 = D̄1,2) takes the formDπ = D̄cD̄iD̄i,j. This is similar in spirit to

Vaishampayan’s widely used symmetric two-channel distortion product [38].

Let n = 3 and consider the symmetric case whereµi = 1, γi = c1 and γi,j = c2 for i, j = 0, 1, 2

wherec1, c2 are some constants. Moreover,Ri = R andNi = N for i = 0, 1, 2. It follows from (33) that

γ̂i =
1
3 and from (34) that̂γi,j = 1

12 so that by (32) we see that the one-channel distortion is given by

D̄i =
1

3
ΦLG(SL)2

2

L
h(X)+Rc−3R (42)

and the two-channel distortion is given by

D̄i,j =
1

12
ΦLG(SL)2

2

L
h(X)+Rc−3R. (43)

We also recall that the central distortion is given by

D̄c = G(Λc)2
2

L
h(X)−2Rc . (44)

This leads to the following distortion product

Dπ =
1

36
Φ2
LG(SL)

2G(Λc)2
6

L
h(X)−6R (45)

which is independent ofRc and only depends upon the description rateR.
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Recall that in the Gaussian case,h(X) = L
2 log2(2πeσ

2
X) and forL→ ∞ we haveG(SL) = G(Λc) =

1/(2πe) and (by Corollary 1)Φ2
∞ = 4

3 so that the distortion product reduces to

Dπ =
1

27
σ6X2

−6R. (46)

The following lemma shows that the proposed design is able toachieve a distortion product based on

the inner bound of [7], [8].

Lemma 3:The high-resolution distortion productDπ of the three-channel achievable quadratic Gaus-

sian rate-distortion region of Pradhan et al. [7], [8] is identical to (46).

Proof: See Appendix F.

Remark 7:Thus, for any rate trade-offs between central and side descriptions, the distortion product

of the proposed MDLVQ achieves a distortion product based onthe inner bound of [7], [8]. This inner

bound is not always tight as shown in [39]. However, in the case where we are only interested in the one-

channel distortionDi and the central distortionDc, optimality was recently proven in [37]. In particular,

independently of our work, [37] proposed a distortion product based on the outer bound of [6]. Moreover,

it was shown that in the three-channel case, the productD2
iDc of our MDLVQ construction achieves the

distortion product of [37]. We show next that in the case where we are only interested in the two-channel

distortionDi,j and the central distortionDc, we are in fact also optimal.

2) Random Binning on the Labeling Function:It was shown in [7], [8] that the achievable rate region

can be enlarged by using random binning arguments on the random codebooks. Interestingly, we can

show that it also makes sense to apply random binning on the labeling function proposed in this work. For

example, in the case of three descriptions, we can utilize the universality of random binning so that one

can faithfully decode on reception of e.g. at least two of thethree descriptions. With such a strategy, it is

then possible to reduce the effective description rate, since the binning rate is smaller than the codebook

rate. The price to pay is that one cannot faithfully decode ife.g. only a single description is received.

In order to understand how we apply random binning on the labeling function, recall that everyλi ∈ Λi

is combined with the set ofλj ’s given byTj(λi) , {λj ∈ Λj : λi = αi(λc), λj = αj(λc), λc ∈ Λc}. The

trick is now to randomly assign members ofTj(λi) to a set of bins in such a way that it is very unlikely

that two or more members ofTj(λi) fall into the same bin. When encoding, we first apply the central

quantizerQΛc
on the source variableX in order to obtain the central lattice pointλc = QΛc

(X). We

then map the givenλc to the triplet (λ0, λ1, λ2) = α(λc). We finally find and transmit the bin indices

of λi, i = 0, 1, 2, rather than their codebook indices. On reception of at least (any) two bin indices, we

search through all the elements in the two bins in order to finda pair of sublattice points which are
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elements of the samen-tuple. If the binning rate is large enough, there will (withhigh probability) be

only one such pair of sublattice points for any two bin indices.

Theorem 9:Let n = 3 and letα be an optimal labeling function. Moreover, assume we apply random

binning on the labeling function such that one can faithfully (and uniquely) decode on reception of any

two descriptions. Then, asymptotically, asNi → ∞, νi → 0, andL → ∞, the binning rateRb must

satisfy

Rb >
1

2
R+

1

2
log2(ψ3,L

√
N ′) (47)

whereR is the description rate.

Proof: The proof is essentially similar to the technique presentedin [7].11

We can further show that the binning rate, as given by (47), coincide with that of [7] for this particular

case where we can only decode on reception of at least two out of three descriptions. To show this, note

that when we get arbitrarily close to the binning rate in (47), it follows that

R = 2Rb −
1

2
log2(ψ

2
3,L)−

1

2
log2(N

′). (48)

In this case, the two-channel distortion̄Di,j, as given by (43), can be written as

D̄i,j =
1

12
ΦLG(SL)2

2

L
h(X)2Rc−3R

(a)
=

1

12
ψ2
3,∞2Rc−3R

(b)
=
N ′

12
ψ2
3,∞2−2R

(c)
=

(N ′)2

12
ψ4
3,∞2−4Rb (49)

where(a) is valid for (unit-variance) Gaussian sources, in the limitasL→ ∞ so thatΦ∞ = ψ2
3,∞ and

2
2

L
h(X) = G(SL)

−1. (b) follows sinceRc = R + log2(N
′) and (c) follows by inserting (48). Similarly,

in the limit asL→ ∞, the three-channel distortion (central distortionDc) is given by

Dc = 2−Rc (50)

=
1

N ′
ψ2
3,∞2−4Rb . (51)

On the other hand, from [7], see also Appendix F, it follows that the two-channel distortionD′
i,j of

Pradhan et al., is given by

D′
i,j =

1

2
σ2q(1 + ρ) (52)

11The complete proof for the asymmetric case can be found in [36].
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whereρ is defined in Appendix F and

σ2q = 2(1− ρ)−1/3(1 + 2ρ)−2/32−4Rb . (53)

Moreover, the three-channel distortionD′
i,j,k is given by

D′
i,j,k =

1

3
σ2q (1 + 2ρ). (54)

Let us equate the pair of two-channel distortions, i.e.D̄i,j = D′
i,j, from which we obtain

(1 + 2ρ)1/3 =

(
1

12
ψ4
3,∞(N ′)2

)−1/2

(1 + ρ)1/2(1− ρ)−1/6. (55)

Inserting (55) and (53) into (54) yields

D′
i,j,k =

2

3

(
1

12
ψ4
3,∞(N ′)2

)−1/2

(1 + ρ)1/2(1− ρ)−1/22−4Rb (56)

=
1

N ′

(
4

3

) 1

2

2−4Rb (57)

where the last equality follows by insertingψ2
3,∞ =

(
4
3

) 1

2 and lettingρ → −1
2 , which corresponds to

the asymptotical case whereN ′ → ∞. It follows that the resulting two and three-channel distortions are

identical (the ratio of (51) and (57) is one) for the the proposed design and the bounds of Pradhan et

al. [7].

3) Rate Loss:Let us define a rate loss for the symmetric case asRloss, R− Rinn (per description),

whereRinn denotes the rate obtained from the inner bound of Pradhan et al. With this, the rate loss can

easily be derived from the distortion product by isolating the rates in (45) and (46) and forming their

difference, that is

Rloss=
1

6
log2(Φ

2
L) +

1

6
log2

(
3

4

)

+
1

6
log2(G(SL)

2G(Λc)(2πe)
3)

(58)

which clearly goes to zero for largeL sinceΦ2
∞ = 4

3 . With this definition of rate loss, the scalar rate loss

(i.e. for L = 1) is Rloss= 0.2358 bit/dim. whereas forL = 3 and using the BCC lattice, the rate loss is

0.1681 bit/dim. Furthermore, we have numerically evaluated the terms log2(G(SL)2πe) and log2(Φ
2
L
3
4 )

for 1 ≤ L ≤ 21 (andL odd) as shown in Fig. 2. It may be noticed thatlog2(Φ
2
L
3
4) is strictly smaller than

log2(G(SL)2πe). It follows that, at least for this range of dimensions, the overall description rate loss,

as given by (58), is less than the space-filling loss of the lattice in question. This is in contrast to, for

example, the MD scheme presented in [16] where the description rate loss is larger than the space-filling

loss of the lattices being used. At high dimensions, the rateloss vanishes for both schemes.
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) in the range shown.

V. CONCLUSIONS

We proposed a simple method for constructing IA basedn-channel asymmetric MD-LVQ schemes.

For the class of IA based schemes using a single IA function and averaging reconstruction rules, the

design was shown to be asymptotical optimal for any number ofdescriptions. For two descriptions, the

rate loss was smaller than that of existing IA based designs whereas for three descriptions, the rate

loss (when compared to the inner-bound of Pradhan et al. and restricted to the case of symmetric rates

and distortions) was smaller than that of source splitting.It was finally shown that the rate-distortion

performance achieves points on the inner bound proposed by Pradhan et al.

APPENDIX A

PROOF OFTHEOREM 1

To prove Theorem 1 we need the following results.

Lemma 4:For 1 ≤ κ ≤ n and anyi ∈ {0, . . . , n − 1} we have

n−1∑

j=0
j 6=i

γ̄(L(n,κ)
j ) = κγ̄(L(n,κ))− γ̄(L(n,κ)

i ).

Proof: Since|L(n,κ)
j | =

(
n−1
κ−1

)
the sum

∑n−1
j=0 γ̄(L

(n,κ)
j ) containsn

(
n−1
κ−1

)
terms. However, the number

of distinct terms is|L(n,κ)| =
(
n
κ

)
and each term is then usedκ times, since

n
(
n−1
κ−1

)

(n
κ

) = κ.
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Subtracting the terms forj = i proves the lemma.

Lemma 5:For 1 ≤ κ ≤ n and anyi, j ∈ {0, . . . , n − 1} we have
n−1∑

j=0

γ̄(L(n,κ)
i,j ) = κγ̄(L(n,κ)

i ).

Proof: It is true thatL(n,κ)
i,i = L(n,κ)

i and since|L(n,κ)
i | =

(
n−1
κ−1

)
and |L(n,κ)

i,j | =
(
n−2
κ−2

)
the sum

∑n−1
j=0 γ̄(L

(n,κ)
i,j ) contains(n− 1)

(n−2
κ−2

)
+
(n−1
κ−1

)
terms. However, the number of distinctl ∈ L(n,κ)

i terms

is |L(n,κ)
i | =

(n−1
κ−1

)
and each term is then usedκ times, since

(n − 1)
(
n−2
κ−2

)
+
(
n−1
κ−1

)

(
n−1
κ−1

) = κ.

Lemma 6:For 1 ≤ κ ≤ n we have

∑

ℓ∈L(n,κ)

γℓ

〈

λc,
∑

i∈ℓ

λi

〉

=

〈

λc,

n−1∑

i=0

λiγ̄(L(n,κ)
i )

〉

.

Proof: Follows immediately sinceL(n,κ)
i denotes the set of allℓ-terms that contains the indexi.

Lemma 7:For 1 ≤ κ ≤ n we have
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )‖λi − λj‖2

=

n−1∑

i=0

γ̄(L(n,κ)
i )

(

κγ̄(L(n,κ))− γ̄(L(n,κ)
i )

)

‖λi‖2

− 2

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )〈λi, λj〉.

Proof: We have that
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )‖λi − λj‖2

=

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )(‖λi‖2 + ‖λj‖2)

− 2

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )〈λi, λj〉.

Furthermore, it follows that
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )(‖λi‖2 + ‖λj‖2)

=

n−2∑

i=0

γ̄(L(n,κ)
i )‖λi‖2

n−1∑

j=i+1

γ̄(L(n,κ)
j )
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+

n−1∑

j=1

γ̄(L(n,κ)
j )‖λj‖2

j−1
∑

i=0

γ̄(L(n,κ)
i )

=

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2

n−1∑

j=i+1

γ̄(L(n,κ)
j )

︸ ︷︷ ︸

0 for i=n−1

+

n−1∑

j=0

γ̄(L(n,κ)
j )‖λj‖2

j−1
∑

i=0

γ̄(L(n,κ)
i )

︸ ︷︷ ︸

0 for j=0

=

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2





i−1∑

j=0

γ̄(L(n,κ)
j ) +

n−1∑

j=i+1

γ̄(L(n,κ)
j )





=

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2

n−1∑

j=0
j 6=i

γ̄(L(n,κ)
j )

=

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2

(

κγ̄(L(n,κ))− γ̄(L(n,κ)
i )

)

,

where the last equality follows by use of Lemma 4.

Lemma 8:For 1 ≤ κ ≤ n we have
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )‖λi − λj‖2 = (κ− 1)

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2

− 2

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )〈λi, λj〉.

Proof: We have that
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )‖λi − λj‖2

=

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )(‖λi‖2 + ‖λj‖2)

− 2

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )〈λi, λj〉.

Furthermore, it follows that
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )(‖λi‖2 + ‖λj‖2)

=

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )‖λi‖2 +

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )‖λj‖2
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=

n−2∑

i=0

‖λi‖2
n−1∑

j=i+1

γ̄(L(n,κ)
i,j ) +

n−1∑

j=1

j−1
∑

i=0

γ̄(L(n,κ)
i,j )‖λj‖2

=

n−1∑

i=0

‖λi‖2
n−1∑

j=i+1

γ̄(L(n,κ)
i,j )

︸ ︷︷ ︸

0 for i=n−1

+

n−1∑

j=0

‖λj‖2
j−1
∑

i=0

γ̄(L(n,κ)
i,j )

︸ ︷︷ ︸

0 for j=0

=

n−1∑

i=0

‖λi‖2




i−1∑

j=0

γ̄(L(n,κ)
i,j ) +

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )





=

n−1∑

i=0

‖λi‖2




n−1∑

j=0

γ̄(L(n,κ)
i,j )− γ̄(L(n,κ)

i )





(a)
=

n−1∑

i=0

‖λi‖2
(

κγ̄(L(n,κ)
i )− γ̄(L(n,κ)

i )
)

= (κ− 1)

n−1∑

i=0

‖λi‖2γ̄(L(n,κ)
i ),

where(a) follows by use of Lemma 5.

Lemma 9:For 1 ≤ κ ≤ n we have

∑

ℓ∈L(n,κ)

γℓ

∥
∥
∥
∥
∥

∑

i∈ℓ

λi

∥
∥
∥
∥
∥

2

= κ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2

−
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )‖λi − λj‖2.

Proof: The set of all elementsℓ of L(n,κ) that contains the indexi is denoted byL(n,κ)
i . Similar the

set of all elements that contains the indicesi andj is denoted byL(n,κ)
i,j . From this we see that

∑

ℓ∈L(n,κ)

γℓ

∥
∥
∥
∥
∥

∑

i∈ℓ

λi

∥
∥
∥
∥
∥

2

=
∑

ℓ∈L(n,κ)

γℓ




∑

i∈ℓ

‖λi‖2 + 2

κ−2∑

i=0

κ−1∑

j=i+1

〈λli , λlj 〉





=

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2 + 2

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )〈λi, λj〉.
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By use of Lemma 8 it follows that

∑

ℓ∈L(n,κ)

γℓ

∥
∥
∥
∥
∥

∑

i∈ℓ

λi

∥
∥
∥
∥
∥

2

=

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2

+(κ− 1)

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2−

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )‖λi − λj‖2

= κ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2 −

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )‖λi − λj‖2

We are now in a position to prove the following result:

Lemma 10:For 1 ≤ κ ≤ n we have

∑

ℓ∈L(n,κ)

γℓ

∥
∥
∥
∥
∥
λc −

1

κ

∑

i∈ℓ

λi

∥
∥
∥
∥
∥

2

= γ̄(L(n,κ))

∥
∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λi

∥
∥
∥
∥
∥

2

+
1

κ2

n−2∑

i=0

n−1∑

j=i+1

(
γ̄(L(n,κ)

i )γ̄(L(n,κ)
j )

γ̄(L(n,κ))
− γ̄(L(n,κ)

i,j )

)

‖λi − λj‖2.

(59)

Proof: Expansion of the norm on the left-hand-side in (59) leads to
∑

ℓ∈L(n,κ)

γℓ

∥
∥
∥
∥
λc −

1

κ

∑

i∈ℓ

λi

∥
∥
∥
∥

2

=
∑

ℓ∈L(n,κ)

γℓ



‖λc‖2 − 2

〈

λc,
1

κ

∑

i∈ℓ

λi

〉

+
1

κ2

∥
∥
∥
∥
∥

∑

i∈ℓ

λi

∥
∥
∥
∥
∥

2




(a)
= γ̄(L(n,κ))‖λc‖2 − 2

〈

λc,
1

κ

n−1∑

i=0

γ̄(L(n,κ)
i )λi

〉

+
1

κ2

∑

ℓ∈L(n,κ)

γℓ

∥
∥
∥
∥
∥

∑

i∈ℓ

λi

∥
∥
∥
∥
∥

2

= γ̄(L(n,κ))

∥
∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λi

∥
∥
∥
∥
∥

2

− 1

κ2γ̄(L(n,κ))

∥
∥
∥
∥
∥

n−1∑

i=0

γ̄(L(n,κ)
i )λi

∥
∥
∥
∥
∥

2

+
∑

ℓ∈L(n,κ)

γℓ
κ2

∥
∥
∥
∥
∥

∑

i∈ℓ

λi

∥
∥
∥
∥
∥

2

= γ̄(L(n,κ))

∥
∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λi

∥
∥
∥
∥
∥

2

+
∑

ℓ∈L(n,κ)

γℓ
κ2

∥
∥
∥
∥
∥

∑

i∈ℓ

λi

∥
∥
∥
∥
∥

2

− 1

κ2γ̄(L(n,κ))

( n−1∑

i=0

γ̄(L(n,κ)
i )2‖λi‖2
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+ 2

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )〈λi, λj〉
)

(b)
= γ̄(L(n,κ))

∥
∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λi

∥
∥
∥
∥
∥

2

+
1

κ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λi‖2−

1

κ2

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i,j )‖λi − λj‖2

− 1

κ2γ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )2‖λi‖2

+

n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )

κ2γ̄(L(n,κ))
‖λi − λj‖2

− 1

κ2γ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )(κγ̄(L(n,κ))− γ̄(L(n,κ)

i ))‖λi‖2

= γ̄(L(n,κ))

∥
∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λi

∥
∥
∥
∥
∥

2

+
1

κ2

n−2∑

i=0

n−1∑

j=i+1

(
γ̄(L(n,κ)

i )γ̄(L(n,κ)
j )

γ̄(L(n,κ))
− γ̄(L(n,κ)

i,j )

)

‖λi − λj‖2,

where(a) follows by use of Lemma 6 and(b) by use of Lemmas 7 and 9.

APPENDIX B

PROOF OFTHEOREM 2

Without loss of generality, letµi = 1,∀i. Furthermore, let

f =
∑

λc∈Vπ(0)

n−1∑

κ=1

n−2∑

i=0

n−1∑

j=i+1

γ̂
(n,κ)
i,j

∥
∥
∥
∥
λi − λj

∥
∥
∥
∥

2

(60)

and

g =
∑

λc∈Vπ(0)

n−1∑

κ=1

∥
∥
∥
∥
λc −

1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λi

∥
∥
∥
∥

2

. (61)

We prove the theorem by constructing a labeling function which lower boundsf independently ofg. We

then show that with this choice off we havef → ∞ andg → ∞ but g/f → 0 asNi → ∞, νi → 0,∀i.
Furthermore, we show that this holds for any admissible choice of g. SinceJ n = c0f + c1g for some

constantsc0, c1 ∈ R it follows that in order to minimizeJ n an optimal labeling function must jointly

minimizef andg. However, a jointly optimal labeling function can never improve upon the lower bound

on f which occur whenf is independently minimized. Furthermore,g can only be reduced if taking
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into account during the optimization. Thus, for any optimallabeling function we must haveg/f → 0. It

follows thatf is asymptotically dominating and therefore must be minimized in order to minimizeJ n.

Let T denote the set ofn-tuples assigned to central lattice points inVπ(0) so that|T | = Nπ and let

Ti be the set ofith elements (i.e. a set of sublattice points all fromΛi). Moreover, letT (λi) be the set

of n-tuples containing a specificλi as theith element. Finally, letTj(λi) be the set ofλj ∈ Λj sublattice

points which are thejth elements in then-tuples that has the specificλi as theith element. With this, for

any fixedλ0 ∈ T0, the sum
∑

λ1∈T1(λ0)
‖λ0 − λ1‖2 runs over the set ofλ1 points which are in the same

n-tuples as the givenλ0. Notice that this sum can be written as
∑

λ1∈T u
1 (λ0)

#λ1
‖λ0 − λ1‖2 where the

superscriptu denotes the uniqueλ1 elements ofT1(λ0) and#λ1
denotes the number of times the given

λ1 is used. Clearly, this sum is minimized if the uniqueλ1 points are as close as possible to the given

λ0. In other words, for any given “distribution”{#λ1
}, the sum is minimized if theλ1’s are contained

within the smallest possible sphere aroundλ0. In fact, this holds for anyλ0 ∈ T0. On the other hand,

keeping the set ofλ1’s fixed we can also seek the minimizing distribution{#λj
}. A good choice appears

to be that theλj points that are closer to the givenλ0 should be used more frequently than those further

way.

We pause to make the following observation. Due to the shift-invariance property of the labeling

function, we can restrict attention to then-tuples which are assigned to central lattice points within

Λπ(0). Thus, we have a total ofNπ n-tuples. Recall that we guarantee the shift-invariance property by

restrictingλ0 to be insideVπ(0) (a restriction which we later relax by considering cosets).Furthermore,

to avoid possible bias towards anyλ0 ∈ Vπ(0), we require that eachλ0 is used an equal amount of times.

Since there areNπ/N0 distinct λ0 points inVπ(0) it follows that eachλ0 must be usedN0 times.

Let us for the moment being consider the case ofn = 3, i.e. we need to construct a set ofNπ triplets

T = {(λ0, λ1, λ2)}. If we fix someλ0, we can construct a set of pairs of sublattice points by centering

a sphereṼ at λ0 and forming the set of distinct pairsS = {(λ0, λ1) : λ1 ∈ Ṽ (λ0) ∩ Λ1}. For each pair

(λ′0, λ
′
1) ∈ S we can form a triplet(λ′0, λ

′
1, λ2) by combining the given pair with someλ2. It is important

that λ2 is close toλ′0 as well asλ′1 in order to reduce the distances‖λ′0 − λ2‖2 and‖λ′1 − λ2‖2. This

can be done by guaranteeing thatλ2 ∈ Ṽ (λ0) andλ2 ∈ Ṽ (λ1). In other words,λ2 ∈ Ṽ (λ0) ∩ Ṽ (λ1).

With this strategy, fix someλ0 ∈ Vπ(0) and start by using some “small”̃V in order to construct the

set of pairsS̃ = {(λ0, λ1) : λ1 ∈ Ṽ (λ0) ∩ Λ1}. Then for each pairs ∈ S̃ we construct the set of

triplets {(s, λ2) : λ2 ∈ Ṽ (λ0) ∩ Ṽ (λ1)}. Recall that we needN0 triplets for eachλ0. However, sincẽV

was chosen “small” we end up with too few triplets. The trick is now to increase the volume of̃V in

small steps until we end up with exactlyN0 triplets (keep in mind that for largeN0 we work with large
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Ṽ0,1
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Fig. 3. Different sizes of the spheres.

volumes).

In the n-description case, we require thatλk ∈ Ṽ (λ0) ∩ Ṽ (λ1) ∩ · · · ∩ Ṽ (λk−1). If we let r be the

radius ofṼ , then with the above procedure it is guaranteed that‖λi − λj‖2 ≤ r2/L for all (i, j) where

i, j = 0, . . . , n− 1.

Notice thatf , i.e. the expression to be minimized as given by (60), includes weightsγ̂(n,κ)i,j (which

might not be equal) for every pair of sublattices. In otherwords, we might use spheres̃Vi,j of different

sizes to guarantee that‖λi − λj‖2 ≤ r2i,j/L where the radiusri,j now depends on the particular pair of

sublattices under consideration. This is illustrated in Fig. 3 whereri,j denotes the radius of the sphere

Ṽi,j. Here we center̃V0,1 at someλ0 ∈ Vπ(0) as illustrated in Fig. 3 by the solid circle. Then, for any

n-tuples having thisλ0 point as first element, we only includeλ1 points which are insidẽV0,1(λ0). This

guarantees that‖λ0−λ1‖2 ≤ r0,1/L. Let us now center a spherẽV1,2 at someλ1 which is insideṼ0,1(λ0).

This is illustrated by the dotted sphere of radiusr1,2 in the figure. We then only includeλ2 points which

are in the intersection of̃V1,2(λ1) and Ṽ0,2(λ0). This guarantees that‖λi − λj‖2 ≤ ri,j/L for all (i, j)

pairs. Interestingly, from Fig. 3 we see thatr0,2 cannot be greater thanr0,1 + r1,2. Thus, the radiusri,j

must grow at the same rate for any pair(i, j) so that, without loss of generality,r0,1 = a2r0,2 = a1r1,2

for some fixeda1, a2 ∈ R.

Recall that, the number̃Ni of lattice points ofΛi within a connected regioñV of R
L may be

approximated byÑi ≈ ν̃/νi whereν̃ is the volume ofṼ . Moreover, the number ofλ0 points withinVπ(0)

is given by#λ0
≈ Vol(Vπ(0))/ν0 = νcNπ/ν0. Since we need to construct a total ofNπ n-tuples to label

theNπ central lattice points, it follows that eachλ0 is usedNπ/#λ0
= N0 times. Let us now center a

sphereṼ of volumeν̃ at someλ0 ∈ Λ0. The number ofλi points inside this sphere is asymptotically given

by ν̃/νi. Thus, the number of distinctn-tuples we can construct by forming all combinations of sublattice
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points fromΛi, i = 1, . . . , n − 1 within Ṽ and usingλ0 as first element is given bỹνn−1/(
∏n−1
i=1 νi).

Recall that we needN0 n-tuples for eachλ0. Thus, we obtainN0 = ν̃n−1/(
∏n−1
i=1 νi) from which we

see that the volume of the sphereṼ must satisfy

ν̃ ≥ νc

n−1∏

i=0

N
1

n−1

i . (62)

We previously argued that we need to makeṼ large enough so as to be able to create exactlyN0 n-tuples

for eachλ0 which satisfy‖λi−λj‖2 ≤ r2/L. Having equality in (62) guarantees that‖λ0−λj‖2 ≤ r2/L

for j = 1, . . . , n − 1 but then we must have‖λi − λj‖2 > r2/L for somei 6= 0. However, since we

are aiming at lower boundingf we may indeed proceed by assuming that‖λi − λj‖2 ≤ r2/L for all

i. Furthermore, the different radiiri,j are related through a multiplicative constant which will not affect

the rate of growth of the volumes of̃Vi,j asNi → ∞. Thus, we proceed by assumingri,j = r so that

Ṽi,j = Ṽ .

We are now in a position to evaluate the following sum
∑

λj∈Tj(λi)

‖λi − λj‖2
(a)
=

∑

λj∈Tj(0)

‖λj‖2 (63)

=
∑

λj∈T u
j (0)

#λj‖λj‖2. (64)

The volume of the spherẽV is independent of which sublattice point it is centered at, so we may take

λi = 0 from which (a) follows. Notice that for a fixedλ0 and forn > 2, the setTj(λi) contains several

identicalλj elements. We therefore use the notationT u
j (λi) to indicate the unique set ofλj elements.

Furthermore, we use the notation#λj
to indicate the number of times the givenλj is used. Since

∑

λj∈Tu
j (0)#λj

= N0 it follows that
∑

λj∈Tu
j (0)minj{#λj

} ≤ N0 so thatminj{#λj
} ≤ N0/

∑

λj∈Tu
j (0).

Moreover, |λj ∈ T uj (0)| = ν̃/νj which implies that
∑

λj∈Tu
j (0) = ν̃/νj and we therefore have that

minj{#λj
} ≤ N0νj/ν̃. By similar reasoning it is easy to show thatmaxj{#λj

} ≥ N0νj/ν̃.

We have previously shown that the intersection of any numberof (large) spheres of equal radiir which

are distanced no further apart thanr, is positively bounded away from zero [13]. In fact, the volume of

the smallest intersection can be lower bounded by the volumeof a regularL-simplex having side lengths

r [13]. Recall that the volume Vol(S) of a regularL-simplexS with side lengthr is given by [40]

Vol(S) =
rL

L!

√

L+ 1

2L
= cLr

L (65)

wherecL is constant for fixedL. It follows that, in the three channel case,#λj
is lower bounded by

cLr
L/νk whereνk is the volume of sublattice with the largest index value. Moreover, forn ≥ 3 we have

that#λj
is lower bounded by(cLrL/νk)n−2.
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Interestingly,#λj
is obviously upper bounded by(ωLrL/νk′)n−2, i.e. ratio of the volume of anL-

dimensional sphere of radiusr and the volume of a Voronoi cell ofΛk′ , wherek′ denotes the sublattice

with the smallest index value. Notice that the lower bound isproportional to the upper bound and we

have the following sandwhich
(
ωLr

L

νk′

)n−2

≥ max
j

{#λj
} ≥ N0νj/ν̃

≥ min
j

{#λj
} ≥

(
cLr

L

νk

)n−2
(66)

where the left and right hand sides of (66) differ by a constant for anyn which implies that there exists

a positive constantc > 0 such thatminj{#λj
} ≥ cN0νj/ν̃.

Using the above in (64) leads to

∑

λj∈Tj(λi)

‖λi − λj‖2νj >
cNiνj
ν̃

∑

λj∈T u
j (0)

‖λj‖2νj

(a)
≈ cNiνj

ν̃

∫

x∈Ṽ
‖x‖2dx

=
cNiνj
ν̃

LG(SL)ν̃
1+2/L

= cNiνjLG(SL)ν
2/L
c

n−1∏

i=0

N
2

(n−1)L

i

whereG(SL) is the dimensionless normalized second moment of anL-dimensional hypersphere and

(a) follows by replacing the sum by an integral (standard Riemann approximation). This approximations

becomes exact asymptotically asNi → ∞ andνi → 0.

We finally see that

1

L

∑

λc∈Vπ(0)

∥
∥
∥
∥
λi − λj

∥
∥
∥
∥

2

=
1

L

∑

λi∈Ti

∑

λj∈Tj(λi)

‖λi − λj‖2

=
1

L

Nπ

Ni

∑

λj∈Tj(λi)

‖λi − λj‖2

> cG(SL)Nπν
2/L
c

n−1∏

i=0

N
2

(n−1)L

i

so that

f = Ω

(

Nπν
2/L
c

n−1∏

i=0

N
2

(n−1)L

i

)

. (67)

We now upper boundg. Notice thatg describes the sum of distances between the central lattice points

and the weighted average of their associatedn-tuples. By construction, these weighted averages will
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Fig. 4. Vπ(0) is a Voronoi cell ofΛπ . A is a scaled and centered version ofVπ(0) andB is the “strip” surroundingA, i.e.,

B = Vπ(0)\A.

be distributed evenly through-outVπ(0). Thus, the distance of a central lattice point and the weighted

average of its associatedn-tuple can be upper bounded by the covering radius of the sublattice with the

largest index value, sayNk. This is a conservative upper bound but will do for the proof.12 The rate of

growth of the covering radius of thekth sublattice is proportional toν1/Lk = (Nkνc)
1/L. Thus

g = O
(

Nπν
2/L
c N

2/L
k

)

. (68)

It follows that
g

f
= Θ




N

2/L
k

∏n−1
i=0 N

2

(n−1)L

i



 = Θ

(

N
− 2

L(n−1)

k

)

(69)

where the last equality follows since the index values are growing at the same rate so thatNi = Nk/bi

for some constantbi ∈ R. The theorem is proved by noting thatN
− 2

L(n−1)

k → 0 asNk → ∞.

APPENDIX C

PROOF OFTHEOREM 5

We restrict attention to the case whereVπ(0) is the Voronoi cell of a product lattice generated by the

approach outlined in Section II-B. In this case, the shape ofVπ(0) can be either hyper cubic, or as the

dimension increases, the shape can become more and more spherical.

12The worst case situation occur if the weighted centroids aredistributed such that the minimal distance between any two

centroids is maximized. Notice that the weighted centroidsform convex combinations of the sublattice points. Since the weights

are less than one, the worst case situation occurs if the weighted centroids are distributed on a lattice with an index value equal

to the sublattice with the maximum index value (and therefore also the maximum covering radius). Thus, the bound is indeed

valid for an arbitrary set ofn-tuples and not tied to the specific construction ofn-tuples used so far in the proof.
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Let us first assume that thatVπ(0) forms a hyper cube having side lengthss as shown in Fig. 4. The

n-tuples are constructed by centering a sphereṼ of volume ν̃ around eachλ0 ∈ Vπ(0) and taking all

combinations of lattice points within this region (keepingλ0 as first coordinate). From Fig. 4 it may be

seen that anyλ0 which is contained in the region denotedA will always be combined with sublattice

points that are also contained inVπ(0). On the other hand, anyλ0 which is contained in regionB will

occasionally be combined with points outsideVπ(0). Therefore, we need to show that the volumeVA of

A approaches the volume ofVπ(0) asNπ → ∞ or similarly that the ratio ofVB/VA → 0 asNπ → ∞,

whereVB denotes the volume of the regionB.

Let A be the centered hyper cube having side lengthss′ = s − 2r̃ where r̃ is the radius ofṼ , see

Fig. 4. Since the volume ofVπ(0) is νπ = νNπ it follows that s = ν
1/L
π = (νNπ)

1/L. Moreover, the

volumeVA of A is

VA = (s′)L

=

(

s− 2r̃

)L

=

(

ν1/Lπ − 2

(
ν̃

ωL

)1/L)L

=

(

(νNπ)
1/L − 2

(

ψLn,LνN
1/(n−1)
π

ωL

)1/L)L

= ν

(

N1/L
π − 2

(

ψLn,L
ωL

)1/L

N1/L(n−1)
π

)L

,

where ν̃ = ψLL,nνN
1/(n−1)
π is the volume ofṼ and r̃ = (ν̃/ωL)

1/L, whereωL is the volume of an

L-dimensional unit sphere. Since the volumeVB of B is given byVB = νπ − VA we find the ratio

lim
Nπ→∞

VB
VA

= lim
Nπ→∞

Nπ
(

N
1/L
π − 2

(
ψL

n,L

ωL

)1/L
N

1/L(n−1)
π

)L
− 1

= 0,

where the second equality follows sincen > 2.

At this point, we note that the hyper cubic region as used above is actually the worst shape to consider.

Specifically, it is the one that yields the minimumVA and thus the maximumVB, sinceνπ is constant.

To see this, note that we can always pick the regionA to be a centered scaled version ofVπ(0). Thus,
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since the boundary of the inscribed regionA will be farthest away from the boundary ofVπ(0) at corner

points it follows that the more sphericalVπ(0), the largerVA compared toνπ. This proves the claim.

APPENDIX D

PROOF OFTHEOREM 6

We only prove it forΛ0 andΛ1. Then by symmetry it must hold for any pair. Define the setSλ0
as

the set ofn-tuples constructed by centering̃V at someλ0 ∈ Vπ(0) ∩ Λ0. Hence,s ∈ Sλ0
hasλ0 as

first coordinate and the distance between any two elements ofs is less thanr, the radius ofṼ . We will

assume13 thatSλ0
6= ∅,∀λ0.

Similarly, define the setSλ1
6= ∅ by centeringṼ at someλ1 ∈ Vπ(0) ∩ Λ1. Recall from Theorem 5

that, asymptotically asNi → ∞,∀i, all elements of then-tuples are inVπ(0). Then it must hold that

for any s ∈ Sλ1
we haves ∈ ⋃

λ0∈Vπ(0)∩Λ0
Sλ0

. But it is also true that for anys′ ∈ Sλ0
we have

s′ ∈ ⋃λ1∈Vπ(0)∩Λ1
Sλ1

. Hence, since then-tuples in
⋃

λ0∈Vπ(0)∩Λ0
Sλ0

are distinct and then-tuples in
⋃

λ1∈Vπ(0)∩Λ1
Sλ1

are also distinct, it follows that the two sets
⋃

λ0∈Vπ(0)∩Λ0
Sλ0

and
⋃

λ1∈Vπ(0)∩Λ1
Sλ1

must be equivalent.

APPENDIX E

PROOF OFTHEOREM 8

We notice from Lemma 1 and (13) that̄Dℓ = E‖X − X̂ℓ‖2 can be written as

D̄ℓ =
1

Nπ

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
λc −

1

κ

∑

i∈ℓ

µiαi(λc)

∥
∥
∥
∥
∥

2

+

{
∑

λc∈Λc

∫

Vc(λc)
fX(x)‖X − λc‖2 dx

} (70)

13This is always the case ifr ≥ maxi r(Λi) wherer(Λi) is the covering radius of theith sublattice. The covering radius

depends on the lattice and is maximized ifΛi is geometrically similar toZL, in which case we have [21]

r(Λi) =
1

2

√
2ν1/LN

1/L
i .

Sincer = ψn,Lν
1/LN

1/L(n−1)
π /ω

1/L
L it follows that in order to make sure thatSλ0 6= ∅ the index values must satisfy

Ni ≤ (
√
2ψn,L)

LωLN
1/(n−1)
π , i = 0, . . . , n− 1. (*)

Through-out this work we therefore require (and implicitlyassume) that (*) is satisfied.
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where from (37) we know that the last term isG(Λc)ν
2/L
c . In the following we therefore focus on finding

a closed-form solution to the first term in (70). This we do by taking the following three steps (which

are valid in the usual asymptotical sense):

1) We first show, by Proposition 1, that

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

λc −
1

κ

∑

j∈ℓ

λ̃j

∥
∥
∥
∥
∥
∥

2

=
∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥
∥
∥

2

.

2) Then, by Lemma 14, we show that

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥
∥
∥

2

=
∑

λc∈Vπ(0)

∑

k

nk−2∑

i=0

nk−1∑

i=0

ck‖λ̃i − λ̃j‖2

for someck ∈ R andnk ≤ n.

3) Finally, we show by Proposition 2 that for the case ofn = 3, we have

∑

λc∈Vπ(0)

‖λ̃i − λ̃j‖2 = cν2/Lc Nπ

2∏

m=0

N1/L
m (71)

for somec ∈ R.

In order to establish step 1, we need the following results.

Lemma 11:For any1 ≤ κ < n andℓ ∈ L(n,κ) we have

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥
∥
∥

= O
(

ν1/Lc Nπ

n−1∏

m=0

N1/L(n−1)
m

)

.

Proof: Recall that the sublattice pointsλi andλj satisfy‖λi − λj‖ ≤ r/
√
L, wherer = (ν̃/ωL)

1/L

is the radius ofṼ . Without loss of generality, we let̃λj = r and λ̃i = 0, which leads to

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥
∥
∥

≤ c
rNπ√
L

= O
(

ν1/Lc Nπ

n−1∏

m=0

N1/L(n−1)
m

)
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where0 < c ∈ R and ν̃ = ψLn,Lνc
∏n−1
m=0N

1/(n−1)
m .

Proposition 1: For 1 ≤ κ < n, ℓ ∈ L(n,κ), Ni → ∞ andνi → 0 we have

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j − λc

∥
∥
∥
∥
∥
∥

2

=
∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥
∥
∥

2

whereλ̃j = µjαj(λc).

Proof: Let λ̄ = 1
γ̄(L(n,κ))κ

∑n−1
i=0 γ̄(L

(n,κ)
i )λ̃i andλ′ = 1

κ

∑

j∈ℓ λ̃j. After some manipulations similar

to [14, Eqs. (67) – (72)] we obtain the following inequalities:
(

1− 2

∑

λc∈Vπ(0)
‖λ′ − λ̄‖‖λ̄− λc‖

∑

λc∈Vπ(0)
‖λ′ − λ̄‖2

)
∑

λc∈Vπ(0)

‖λ′ − λ̄‖2

≤
∑

λc∈Vπ(0)

‖λc − λ′‖2 (72)

≤
(

∑

λc∈Vπ(0)

‖λ′ − λ̄‖2
)

×
(

1 +

∑

λc∈Vπ(0)
‖λ̄− λc‖2

∑

λc∈Vπ(0)
‖λ′ − λ̄‖2

. + 2

∑

λc∈Vπ(0)
‖λ′ − λ̄‖‖λ̄− λc‖

∑

λc∈Vπ(0)
‖λ′ − λ̄‖2

)

(73)

We now use the fact that‖λ̄−λc‖ = O(Nkνc)
1/L, i.e. we can upper this distance by the covering radius

of the sublattice with the largest index value, sayNk. By use of Lemma 11, it is possible to upper bound

the numerator of the fraction in the l.h.s. of (72) by
∑

λc∈Vπ(0)

‖λ′ − λ̄‖‖λ̄ − λc‖

= O
(

(Nkνc)
1/LNπν

1/L
c

n−1∏

m=0

N1/L(n−1)
m

)

.

(74)

At this point we recall that the growth of the denominator in the l.h.s. of (72) is at least as great as (67),

which leads to the following lower bound

∑

λc∈Vπ(0)

‖λ′ − λ̄‖2 = Ω

(

ν2/Lc Nπ

n−1∏

m=0

N2/L(n−1)
m

)

. (75)

By comparing (74) to (75), it follows that the fractions in (72) and (73) go to zero asymptotically as

Ni → ∞. It follows that
∑

λc∈Vπ(0)

‖λc − λ′‖2 =
∑

λc∈Vπ(0)

‖λ′ − λ̄‖2 (76)
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which completes the proof.

In order to establish step 2, we need the following results.

Lemma 12:For 1 ≤ κ < n and anyℓ ∈ L(n,κ) we have
∥
∥
∥
∥
∥
∥

∑

j∈ℓ

λ̃j

∥
∥
∥
∥
∥
∥

2

= κ
∑

j∈ℓ

‖λ̃j‖2 −
κ−2∑

i=0

κ−1∑

j=i+1

‖λ̃lj − λ̃li‖2.

Proof: We expand the norm as follows
∥
∥
∥
∥
∥
∥

∑

j∈ℓ

λ̃j

∥
∥
∥
∥
∥
∥

2

=
∑

j∈ℓ

‖λ̃j‖2 + 2

κ−2∑

i=0

κ−1∑

j=i+1

〈λ̃lj , λ̃li〉

= κ
∑

j∈ℓ

‖λ̃j‖2 −
κ−2∑

i=0

κ−1∑

j=i+1

‖λ̃lj − λ̃li‖2.

Lemma 13:For 1 ≤ κ < n and anyℓ ∈ L(n,κ) we have

2

〈
∑

j∈ℓ

λ̃j,

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

〉

= γ̄(L(n,κ))κ
∑

j∈l

‖λ̃j‖2

+ κ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃i‖2 −

∑

j∈l

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃j − λ̃i‖2.

Proof:

2

〈
∑

j∈ℓ

λ̃j ,

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

〉

= 2
∑

j∈ℓ

n−1∑

i=0

γ̄(L(n,κ)
i )〈λ̃j , λ̃i〉

= −
∑

j∈ℓ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃j − λ̃i‖2

+
∑

j∈ℓ

n−1∑

i=0

γ̄(L(n,κ)
i )

(

‖λ̃j‖2 + ‖λ̃i‖2
)

= −
∑

j∈ℓ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃j − λ̃i‖2

+ κγ̄(L(n,κ))
∑

j∈ℓ

‖λ̃j‖2 + κ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃i‖2

where the last equality follows from Lemma 4.
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Lemma 14:For any1 ≤ κ < n andℓ ∈ L(n,κ) we have
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥

2

=
1

γ̄(L(n,κ))2κ2

(

γ̄(L(n,κ))
∑

j∈ℓ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃j − λ̃i‖2

− γ̄(L(n,κ))2
κ−2∑

i=0

κ−1∑

j=i+1

‖λ̃li − λ̃lj‖2

−
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )‖λ̃i − λ̃j‖2
)

.

Proof: We have that
∥
∥
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

κγ̄(L(n,κ))

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥
∥
∥

2

=
1

γ̄(L(n,κ))2κ2

(

γ̄(L(n,κ))2

∥
∥
∥
∥
∥
∥

∑

j∈ℓ

λ̃j

∥
∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥
∥

2

− 2γ̄(L(n,κ))

〈
∑

j∈ℓ

λ̃j ,

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

〉)

which by use of Lemmas 12 and 13 leads to
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥

2

=
1

γ̄(L(n,κ))2κ2

(

γ̄(L(n,κ))2κ
∑

j∈ℓ

‖λ̃j‖2 (77)

− γ̄(L(n,κ))2
κ−2∑

i=0

κ−1∑

j=i+1

‖λ̃li − λ̃lj‖2

+ γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃i‖2

−
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )‖λ̃i − λ̃j‖2

− γ̄(L(n,κ))2κ
∑

j∈ℓ

‖λ̃j‖2 − γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃i‖2

+ γ̄(L(n,κ))
∑

j∈ℓ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃j − λ̃i‖2

)
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=
1

γ̄(L(n,κ))2κ2

(

γ̄(L(n,κ))
∑

j∈ℓ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃j − λ̃i‖2

− γ̄(L(n,κ))2
κ−2∑

i=0

κ−1∑

j=i+1

‖λ̃li − λ̃lj‖2 (78)

−
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )‖λ̃i − λ̃j‖2
)

.

In order to establish step 3, we extend the proof technique previously used to findψn,L in [13]. Let am

denote the number ofλ1 points at distancem from someλ0 ∈ Vπ(0). It follows that a fixedλ0 ∈ Vπ(0) is

paired witham distinctλ1 points when forming theNπ n-tuples. Furthermore, letbm denote the number

of λ2 points which are paired with a fixed(λ0, λ1) tuple. The total number ofn-tuples (havingλ0 as first

element) is given by
∑r

m=1 ambm wherer is the radius ofṼ . It was shown in [13] that this procedure

is asymptotically exact for large index values (and therebylarger).

For a givenλ0 ∈ Vπ(0), we seek to find an expression for
∑

λj∈Tj(λi)
‖λi − λj‖2 whereTj(λi) was

previously defined in the proof of Theorem 2 to be the set ofλj ∈ Λj which is in n-tuples having the

specificλi as theith element.

Proposition 2: For n = 3, any1 ≤ L ∈ N, and asymptotically asNi → ∞, νi → 0,∀i, we have
∑

λ0∈Vπ(0)

∑

λj∈Tj(λi)

‖λi − λj‖2

=
L+ 2

L
G(SL)ψ

2
3,Lν

2/L
c N1/L

π Nπ
β̃L
βL

(79)

whereβ̃L is given by (35),βL by (24) andψ3,L by (23).

Proof: Without loss of generality, we letλ0 = 0 so that

∑

λj∈Tj(λi)

‖λi − λj‖2 =
∑

λj∈Tj(0)

‖λj‖2

=
1

L

r∑

m=1

ambmm
2

where we used the fact thatm2 = ‖λj‖2/L.

The first part of the proof follows now by results of [13]. Specifically, from (65) in [13] (see also [36,

(H.43)]) it follows that
1

L

r∑

m=1

ambm = 2
ωLωL−1

ν1ν2

1

L+ 1
β̃Lr

2L (80)
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where it is easy to show that we can replaceambm by ambmm2 and obtain

1

L

r∑

m=1

ambmm
2 = 2

ωLωL−1

ν1ν2

1

L+ 1
β̃Lr

2L+2

(a)
= 2

ωLωL−1

ν1ν2

1

L+ 1
β̃Lν̃

2/Lν̃2
1

ω
2+2/L
L

(b)
=

1

L

1

ω
2/L
L

ν̃2/LN0
β̃L
βL

(c)
=
L+ 2

L
G(SL)ν̃

2/LN0
β̃L
βL

=
L+ 2

L
G(SL)ψ

2
n,Lν

2/L
c N1/L

π N0
β̃L
βL

where(a) follows by use of (22), i.e.̃ν = ωLr
L = ψLn,Lνc

√
Nπ and(b) follows by use of (23). Finally,

(c) follows sinceω−2/L
L = (L+ 2)G(SL).

The proof now follows by using the fact that (80) is independent of λ0 so that, since there areNπ/N0

distinct λ0’s in Vπ(0), we get

1

L

∑

λ0∈Vπ(0)

r∑

m=1

ambmm
2

=
L+ 2

L
G(SL)ψ

2
n,Lν

2/L
c N1/L

π Nπ
β̃L
βL
.

We are now in a position to prove the theorem.

Proof of Theorem 8:Let λ̃i = µiαi(λc), then asymptotically asNi → ∞, νi → 0,∀i, we have that

1

Nπ

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
λc −

1

κ

∑

i∈ℓ

λ̃i

∥
∥
∥
∥
∥

2

(a)
=

1

Nπ

∑

λc∈Vπ(0)

∥
∥
∥
∥
∥
∥

1

κ

∑

j∈ℓ

λ̃j −
1

γ̄(L(n,κ))κ

n−1∑

i=0

γ̄(L(n,κ)
i )λ̃i

∥
∥
∥
∥
∥
∥

2

(b)
=

1

Nπ

∑

λc∈Vπ(0)

1

γ̄(L(n,κ))2κ2

(

γ̄(L(n,κ))
∑

j∈ℓ

n−1∑

i=0

γ̄(L(n,κ)
i )‖λ̃j − λ̃i‖2

− γ̄(L(n,κ))2
κ−2∑

i=0

κ−1∑

j=i+1

‖λ̃li − λ̃lj‖2
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−
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )‖λ̃i − λ̃j‖2
)

(c)
=

1

γ̄(L(n,κ))2κ2

(

γ̄(L(n,κ))
∑

j∈ℓ

n−1∑

i=0
i 6=j

γ̄(L(n,κ)
i )

− γ̄(L(n,κ))2
(
κ

2

)

−
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )

)

× L+ 2

L
G(SL)ψ

2
3,Lν

2/L
c N1/L

π

β̃L
βL

=
1

γ̄(L(n,κ))2κ2

(

κ2γ̄(L(n,κ))2 − γ̄(L(n,κ))
∑

j∈ℓ

γ̄(L(n,κ)
j )

− γ̄(L(n,κ))2
(
κ

2

)

−
n−2∑

i=0

n−1∑

j=i+1

γ̄(L(n,κ)
i )γ̄(L(n,κ)

j )

)

× L+ 2

L
G(SL)ψ

2
3,Lν

2/L
c N1/L

π

β̃L
βL

where(a) follows by Proposition 1,(b) follows by Lemma 14, and(c) follows by Proposition 2. The

proof now follows by observing that the second term of (70) isnegligible compared to the first term

of (70).

APPENDIX F

PROOF OFLEMMA 3

We consider a zero-mean and unit-variance Gaussian sourceX and define three random variables

Yi , X + Qi, i = 0, 1, 2 where theQi’s are identically distributed jointly Gaussian random variables

(independent ofX) with varianceσ2q and covariance matrixQ given by

Q = σ2q








1 ρ ρ

ρ 1 ρ

ρ ρ 1








where the correlation coefficient satisfies−1
2 < ρ ≤ 1

2 . It is easy to show that the MMSE when estimating

X from any set ofm Yi’s is given by [6], [7]

MMSEm =
σ2q(1 + (m− 1)ρ)

m+ σ2q (1 + (m− 1)ρ)
.

In the high-resolution case whereσ2q ≪ 1 it follows that we have

MMSE1 = σ2q
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MMSE2 =
1

2
σ2q (1 + ρ)

and

MMSE3 =
1

3
σ2q(1 + 2ρ).

It was shown in [7] that, the description rateR is given by

R =
1

2
log2

(

1 + σ2q
σ2q(1− ρ)

)(
1− ρ

1 + 2ρ

) 1

3

so that

σ2q =

(

(1− ρ)22R
(
1 + 2ρ

1− ρ

) 1

3

− 1

)−1

≈ (1− ρ)−
2

3 (1 + 2ρ)−
1

3 2−2R

where the approximation becomes exact at high resolution (i.e. for R ≫ 1). We can now form the

high-resolution distortion product

Dπ =
σ6q
6
(1 + ρ)(1 + 2ρ)

=
1

6
(1 + ρ)(1− ρ)−22−6R

=
1

27
2−6R

where the last inequality follows by insertingρ→ −1
2 which corresponds to having a high side-to-central

distortion ratio, i.e. it resembles the asymptotical condition of lettingNi → ∞ in the IA based approach.

This proves the lemma.
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