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Abstract—The focus of this work is on the analysis of transmit
beamforming schemes with a low-rate feedback link in wireless
sensor/relay networks, where nodes in the network need to
implement beamforming in a distributed manner. Specifically,
the problem of distributed phase alignment is considered, where
neither the transmitters nor the receiver has perfect channel
state information, but there is a low-rate feedback link from
the receiver to the transmitters. In this setting, a framework
is proposed for systematically analyzing the performance of
distributed beamforming schemes. To illustrate the advantage
of this framework, a simple adaptive distributed beamform-
ing scheme that was recently proposed by Mudambai et al.
is studied. Two important properties for the received signal
magnitude function are derived. Using these properties andthe
systematic framework, it is shown that the adaptive distributed
beamforming scheme converges both in probability and in mean.
Furthermore, it is established that the time required for the
adaptive scheme to converge in mean scales linearly with respect
to the number of sensor/relay nodes.

Index Terms—Array signal processing, convergence of nu-
merical methods, detectors, distributed algorithms, feedback
communication, networks, relays.

I. I NTRODUCTION

The problem of distributed beamforming arises quite natu-
rally in wireless sensor/relay networks. In a sensor network,
sensors make estimates of a common observed phenomenon
and reach a consensus using a local message passing algo-
rithm. In a relay network, a source node intends to communi-
cate with the destination node by passing the message to all re-
lay nodes. In both settings, the sensor/relay nodes then serve as
distributed transmitters and seek to convey a common message
to the intended receiver. To preserve energy in this stage, trans-
mit beamforming has emerged as a promising scheme due to
its potential array gain and low-complexity. However, perfect
channel state information (CSI) at the transmitter is required
by conventional transmit beamforming schemes to generate
beamforming coefficients and achieve phase alignment at the
receiver end. This requirement and the distributed nature of

This research was supported in part by the NSF awards #CCF 0431088
and #CNS 0831670, and ITMANET DARPA #RK 2006-07284 through the
University of Illinois, and by a Vodafone Foundation Graduate Fellowship.
Any opinions, findings, and conclusions or recommendationsexpressed in this
material are those of the authors and do not necessarily reflect the views of
NSF or DARPA.

Che Lin is with Institute of Communication Engineering, National Tsing
Hua University, Hsinchu, 30013, Taiwan (e-mail: clin@ee.nthu.edu.tw).

Venugopal V. Veeravalli and Sean Meyn are with Coordinated Science
Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801,
USA (e-mail: {vvv, meyn}@illinois.edu).

wireless sensor/relay networks make it difficult to implement
transmit beamforming schemes in practice. Although obtaining
perfect CSI may be too expensive from a practical point-of-
view, partial CSI can be made available via a low-rate feedback
link from the receiver to the transmitters. As a consequence,
there has been increased interest in designing efficient schemes
that achieve distributed phase alignment in the presence of
a low-rate feedback link [1], [2], [4], [5]. In this work, our
goal is to provide a framework for systematically analyzing
the performance of a general set of distributed beamforming
schemes with such low-rate feedback.

To illustrate the advantages of our framework, we focus
on the analysis of a recently proposed training scheme for
distributed beamforming [1], [2]. The proposed scheme is
a simple adaptive algorithm using one bit of feedback in-
formation, and is attractive in practice since it is simple to
implement. Naturally, one would expect a tradeoff in energy
consumption due to possible slow convergence of distributed
beamforming, but surprisingly, the scheme proposed in [1]
converges rapidly and hence utilizes energy efficiently. The
scheme adjusts its phases for all sensors simultaneously in
each time slot to achieve phase alignment. This reduces the
overhead significantly compared with direct channel estima-
tion between each source node and the destination node. In
fact, the convergence time of the scheme scales linearly with
the number of nodes.

Although the scheme of [1] has many desirable features, the
fundamental reasons behind the effectiveness of the scheme
are unclear from previous work. In [2], the analyses of the
convergence and linear scalability of distributed beamforming
schemes have been based on model approximations, which
may be loose for some cases. Assuming the stepsize ap-
proaches zero, stochastic approximation is used in [3] to
show the convergence of the one-bit scheme in distribution.
Furthermore, the authors proposed two more algorithms: the
signed algorithm and theρ % solution algorithm and proved
the convergence of both algorithms via the same technique.
A discrete version of the problem has been solved in [4], [5]
by considering a simplified model with a binary channel and
binary signaling.

In this work, instead of focusing on the convergence of
a particular algorithm for a particular function, we seek a
fundamental understanding into the convergence of distributed
beamforming schemes more generally by studying them within
the framework of local random search algorithms. Through
this framework, we are able to provide a more comprehensive
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analysis of the fast convergence and linear scalability of the
scheme proposed in [1]. In particular, our analysis does not
involve approximation of any sort and hence makes statements
on convergence and linear scalability in [2], [3] more rigorous.
Our result is also stronger than that in [3] in the sense that
convergence in probability is proved instead of convergence in
distribution. Further, we show that due to the special structure
of the objective function considered in this problem,anyadap-
tive distributed beamforming scheme that can be reformulated
as a random search algorithm converges in probability. This
broad set of algorithms also includes the signed and theρ %
solution algorithms proposed in [3] and makes our analysis
more general and rigorous than existing work in the literature.

We organize the paper as follows: In Section II, we in-
troduce the system model and the received signal magnitude
function, which is used as our metric to measure the beam-
forming array gain throughout the paper. In Section III, we
propose a framework that allows for a systematic analysis of
a general set of adaptive distributed beamforming schemes.
Specifically, we reformulate this set of adaptive distributed
beamforming schemes as random search algorithms via a
general framework. This reformulation provides insights into
the necessary condition for the convergence of the scheme
proposed in [1]. These insights lead us to investigate the
properties of the received signal magnitude function in Section
IV. We further use these properties to prove the convergenceof
the local random search algorithm in probability and in mean,
and provide simulations to validate our analysis. In Section V,
we show that the time required for the algorithm to converge
in mean scales linearly with the number of nodes. We also
provide numerical results that validate our analysis. Finally,
we conclude the paper in Section VI and suggest directions
for future research.

II. SYSTEM SETUP

We consider the problem of distributed beamforming, where
ns transmitters seek to beamform a common message to
one receiver in a distributed manner. We assume that each
transmitter and the receiver is equipped with one antenna, and
that the channels from the transmitters to the receiver experi-
ence frequency-flat, slow fading. The discrete-time, complex
baseband system model over a coherence interval is given by

y[t] =

ns
∑

i=1

higi[t]s[t]+w[t] =

ns
∑

i=1

aibi[t]e
j(φi+ψi[t])s[t]+w[t]

(1)
wheres[t] ∈ C is the transmitted common message,y[t] ∈ C is
the received signal, andw[t] ∼ CN (0, σ2) corresponds to the
additive white Gaussian noise. For transmitteri, we denote the
channel fading gains byhi = aie

jφi ∈ C and beamforming
coefficients bygi[t] = bi[t]e

jψi[t] ∈ C. Note thatai ≥ 0,
bi[t] ≥ 0, and φi ∈ [0, 2π], ψi[t] ∈ [0, 2π] for all i and t
since they are the corresponding magnitudes and phases ofhi
andgi, respectively. Moreover,ai andφi are considered to be
constant with time over the coherence interval due to the slow
fading assumption. We assume an average power constraint on
s[t] given byE[|s[t]|2] ≤ P for all t.

We assume a noncoherent communication model, where the
realization of the channel is unknown at both the transmitters
and receiver. There is, however, an error-free, zero-delayfeed-
back link of finite capacity from the receiver to all transmitters
conveying low-rate partial channel state information (CSI) in
each time step.

The goal of distributed beamforming is to pick the beam-
forming coefficients{gi[t] = bi[t]e

jψi[t]} to maximize the
receivedSNR. In a noncoherent setting and with a low-rate
feedback link, beamforming can only be achieved adaptively
through training. Without loss of generality, we assume that the
signals[t] is constant during the training stage. Furthermore,
we make the following two simplifications. First, we assume
that each transmitter utilizes the same amount of energy for
each transmission, i.e., thatbi[t] = 1 for all i and t, i.e., we
do not optimize the beamforming gains, and we therefore set
s[t] =

√
P . This assumption is justified for situations where

the transmitters rely on a limited energy source (battery) and
allowing them use different amounts of energy would cause
some nodes to use up their energy before others. Secondly,
we assume that the receiver can estimate the magnitude of
the signal component1 at the receiver (without the noise term
w[t] in (1)). We therefore use received signal magnitude as
the metric for optimizing the beamforming phases.

The received signal magnitude can be expressed as

Mag(θ1[t], · · · , θns
[t]) =

√
P

∣

∣

∣

∣

∣

ns
∑

i=1

aie
jθi[t]

∣

∣

∣

∣

∣

(2)

whereθi[t] = φi + ψi[t] is the total received phase for sensor
i.

It is easy to see thatMag(·) is maximized when the phases
{θi[t]} are aligned, i.e., they are equal to each other (modulo
2π). Our goal is to studyadaptive distributed beamforming
schemesthat achieve this phase alignment through the use of
a low-rate feedback link from the receiver.

III. A F RAMEWORK FOR SYSTEMATIC ANALYZING

ADAPTIVE DISTRIBUTED BEAMFORMING SCHEMES

In this section, we introduce a framework for analyzing
a general class of adaptive distributed beamforming schemes
that can be reformulated as random search algorithms. Random
search algorithms are well studied in the literature [6], [7],
[8] as methods to maximize an unknown function via random
sampling. Once an adaptive distributed beamforming scheme
can be successfully reformulated as a random search algo-
rithm, a systematic study of the convergence of such adaptive
scheme is possible.

A. Reformulation of Adaptive Distributed Beamforming
Schemes as Random Search Algorithms

Adaptive distributed beamforming algorithms introduced in
Section II seek to maximizeMag(·) given in (2) with the help
of a low-rate feedback link. At each step of the adaptation, the

1A good estimate of the received signal magnitude can be obtained directly
when the noise is small, or by averaging over several time slots when the noise
is not negligible.



3

signal magnitude at the receiver is a sample of the function
Mag(·) . Thus, from the receiver point of view, the problem
of distributed phase alignment can be considered under the
setting of the following problem:

Problem 1: Given a unknown functionf : Θ → R,Θ ⊆
Rn, where only samples off(θ) are available for arbitrary
θ ∈ Θ, find the global maxima off .

It is important to note thatProblem 1is a global maximiza-
tion problem in general if no special structure is assumed for
the objective functionf . To solve the maximization inProblem
1, one may be tempted to use gradient-based algorithms that
are well-developed in the literature. Since it is possible for f
to possess local maxima, conventional gradient-ascent methods
would fail in general. Besides, acquiring the gradient of the
function f may be infeasible especially when the function
itself is unknown. Hence, random search techniques [6], [7],
[8] are more appropriate in this setting and can be described
as follows:

A Random Search Algorithm:

• Step zero: Initialize the algorithm by choosingθ[0] ∈ Θ.
• Step one: Generate a random perturbationδ[t] from the

sample space(Rn,B, µt), where B is a Borel set on
Rn andµt is a probability measure that could be time-
varying.

• Step two: Update the search point byθ[t] = D(θ[t −
1], δ[t]), where the mapD satisfies the condition
f(D(θ[t− 1], δ[t])) ≥ f(θ[t− 1]).

Clearly, for a random search algorithm, we require only
function evaluations and control over the probability measure
µt, which is used to sample the function. Any adaptive dis-
tributed beamforming scheme can be reformulated as a random
search algorithm if each distributed transmitter initializes its
phase as inStep zero, generates a random perturbation of phase
as in Step one, and updates its new phase by the mapD as
in Step two. The low-rate feedback link is used to guarantee
the conditionf(D(θ[t−1], δ[t])) ≥ f(θ[t−1]). Note that the
unknown functionf can be any objective function that we find
fit for the distributed transmitters to optimize. This suggests
that our framework can be used to analyze a more general
function optimization problem over distributed networks.Note
further that the probability measureµt for the sampling can
be time-varying in general. The time-varying nature of the
probability measure can be thought of as “adaptive stepsize”
for distributed algorithms in the most general sense. In this
sense, our framework can be used to analyze a large set of
adaptive distributed algorithms.

B. One-bit Adaptive Distributed Beamforming Scheme

To illustrate the advantage of our framework, we now
analyze a one-bit adaptive distributed beamforming scheme
recently proposed in [1]. Specifically, we reformulate this
scheme as a local random search algorithm, which allows for
its systematic analysis. We begin by describing the one-bit
adaptive distributed beamforming scheme as follows:

A One-bit Adaptive Distributed Beamforming
Scheme [1]:

• Step zero:Referring to (2) and noting that thei-th trans-
mitter controls its beamforming phaseψi[t], the algorithm
is initialized by settingψi[0] = 0, and henceθi[0] = φi
for transmitteri.

• Step one:In this step, a random perturbationδi[t] is gen-
erated at each distributed transmitter such that{δi[t]}ns

i=1

are i.i.d. uniform random variables in[−δ0, δ0] across
time and transmitters, whereδ0 is a constant parameter.
The random perturbation is added to the total phase of
each transmitter. The distributed transmitters then use the
perturbed total phases as their new total phases to transmit
the training symbol.

• Step two:After receiving the training symbols, the re-
ceiver measures the received signal magnitude and com-
pares it with the signal magnitude received in the previous
time slot. If the newly received signal magnitude is
larger, the receiver feeds back a “keep” beacon to the
transmitters. Otherwise, a “discard” beacon is sent to the
transmitters. Note that the beacon is a broadcast from
the receiver to all transmitters. Clearly, this feedback
scheme only requires one bit of feedback information per
time step. When a “keep” is received at the transmitters,
each transmitter selects and keeps its newly updated total
phase. Otherwise, the old phase is selected and the new
phase discarded. This selection process is determined by
whether the random perturbation increases or decreases
the array gain for the adaptive distributed beamforming
scheme. Specifically, the evolution ofθ[t] is given by

θ[t] =

{

θ[t− 1] + δ[t], if δ[t] ∈ K
θ[t− 1], if δ[t] /∈ K (3)

where θ[t] = [θ1[t], · · · , θns
[t]]T , δ[t] =

[δ1[t], · · · , δns
[t]]T , and K = {δ[t]‖Mag(θ[t − 1] +

δ[t]) >Mag(θ[t− 1])}.
Matching the steps of the above one-bit adaptive scheme

and those of a random search algorithm introduced in Sec-
tion III-A, it is clear that the one-bit adaptive distributed
beamforming algorithm can be regarded as a special case of
the random search algorithm by setting

f = Mag(·) (4)

n = ns (5)

Θ = [0, 2π]ns (6)

µt = µ (7)

D(θ[t− 1], δ[t]) = θ[t− 1] + 1{δ[t]∈K}δ[t] (8)

where 1{·} is the indicator function andµ is uniform on
[−δ0, δ0]ns , which is ans-dimensional hypercube. Note that
(8) is the same as the evolution described by (3).

Since the probability measureµ is non-zero only within
a hypercube, with sides of length2δ0 and centered around
θ[t− 1], the one-bit adaptive distributed beamforming scheme
can be reformulated as alocal random search algorithm. We
emphasize again that we can use this framework to study
more general adaptive distributed beamforming schemes. For
example, the probability measure for sampling may be time-
varying and with a support that spans the entire spaceΘ. We
can also study adaptive distributed beamforming schemes with
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more than one bit of feedback information. It is also interesting
to note the connection between this local random search
algorithm and simulated annealing [9]. Simulated annealing is
a generic probabilistic algorithm that approximates the global
optimal solution of a given function in a large search space.
The algorithm uses a parameterT called thetemperatureto
control the acceptance probability, i.e., the probabilitythat the
current state of the algorithm transitions to a new state. Ifwe
let T → 0 and assume that the current state is only allowed to
move to neighboring states, the simulated annealing procedure
reduces to a local random search algorithm.

A local random search algorithm, however, does not nec-
essarily converge in general. For example, if the unknown
function possesses local maxima (that are not global maxima),
the sequence{θ[t]}∞t=0 is likely to be trapped in a local
maximum if the local perturbationδ0 is not large enough.
Thus, a necessary condition for the convergence of local
random search algorithms for arbitraryδ0 is that there is
no local maximum point forMag(·). With these in mind,
two questions arise naturally:a) Does the reformulated local
random search algorithm even converge?b) If it does, is
there a fundamental reason behind the convergence? In the
following section, we investigate properties of the function
Mag(·) towards the goal of addressing these questions.

IV. CONVERGENCE OF THEDISTRIBUTED BEAMFORMING

SCHEME

A. Properties of Received Signal Magnitude Function

The properties of the received signal magnitude function
Mag(·) do not depend on the time evolution of its arguments.
We hence ignore the time dependence ofθ[t] in this section.
The following proposition states the first property ofMag(·).

Proposition 1: For the received signal magnitude function
Mag(·) defined in (2), all local maxima are global maxima.

Proof: To facilitate analysis, we introduce a change of
variables

xi :=

[

xRi
xIi

]

=

[

cos θi
sin θi

]

Eqn. (2) can be rewritten as

Mag(x1, · · · ,xns) =
√
P

∥

∥

∥

∥

∥

ns
∑

i=1

aixi

∥

∥

∥

∥

∥

where‖xi‖2 = 1 for all i = 1, · · · , ns. The maximization of
Mag(·) can be rewritten as

max
‖xi‖2=1,i=1,··· ,ns

∥

∥

∥

∥

∥

ns
∑

i=1

aixi

∥

∥

∥

∥

∥

2

(9)

In the following, we will show that all local maxima of this
objective function correspond to complete phase alignmentfor
all transmitters. That is, all local maximum points are global
maximum points.

By relaxing the equality constraints to inequality constraints,
the optimization problem in (9) is equivalent to

max
‖xi‖2≤1,i=1,··· ,ns

∥

∥

∥

∥

∥

ns
∑

i=1

aixi

∥

∥

∥

∥

∥

2

(10)

This equivalence can be seen as follows: ifx
∗ is a local

maximum with an inactive constraint‖x∗
k‖2 < 1, by fixing

all other variables{x∗
j}j 6=k, we obtain

∥

∥

∥

∥

∥

ns
∑

i=1

aix
∗
i

∥

∥

∥

∥

∥

2

= ‖akx∗
k + c‖2 = (akx

∗
k
R+cR)2+(akx

∗
k
I+cI)2

wherec = [cRcI ]T is a constant vector depending on{x∗
j}j 6=k.

Obviously, the above function can be improved by appropri-
ately perturbing‖x∗

k‖ according to the signs ofcR and cI .
This contradicts the fact thatx∗ is a maximum. Thus, all
constraints are active ifx∗ is a maximum point. This shows
that the optimization problems (9) and (10) are equivalent.

Focusing on the optimization problem with relaxed con-
straints, the Lagrangian of (10) reads

L(x,λ) = −‖w‖2 +
ns
∑

i=1

λi(‖xi‖2 − 1)

wherex = [xT1 , · · · ,xTns
]T , λ = [λ1, · · · , λns

]T , λi ≥ 0 for
all i = 1, · · · , ns, and w =

∑ns

i=1 aixi. By the Lagrange
Multiplier Theorem, all local maxima satisfy

∇xi
L(x,λ) = −2aiw

T + 2λix
T
i = 0

T (11)
ns
∑

i=1

λi(‖xi‖2 − 1) = 0 (12)

‖xi‖2 − 1 ≤ 0 (13)

for all i = 1, · · · , ns. Let x∗ be a local maximum andλ∗ be
the corresponding Lagrange multipliers. Ifλ∗i = 0, Eqn. (11)
implies thatw = 0 since2 ai > 0. In this case,Mag (x∗) = 0
and this contradicts the fact thatx∗ is a local maximum, since
we can always improveMag(·) by lettingx∗

i = [ξ 0]T , ξ ≤ 1,
andxj = 0 for all j 6= i. This leads toλi > 0 for all i. We
hence have

x
∗
i =

ai
λ∗i

w (14)

λ∗i = ai‖w‖ (15)

The optimal solutions described by (14) and (15), however,
also satisfy

Mag(x∗) =
√
P

∥

∥

∥

∥

∥

ns
∑

i=1

ai
w

‖w‖

∥

∥

∥

∥

∥

=
√
P

ns
∑

i=1

ai

and hence are global maxima. This completes our proof.

Proposition1 implies that the local random search algorithm
cannot be trapped in a suboptimal local maximum since all
local maxima are global maxima. Furthermore, it also suggests
that the necessary condition for the convergence of random
search algorithms is satisfied. While it is intuitively clear that
the local random search algorithm should converge according
to Proposition 1, it is to be noted that the condition is
only necessary and may not be sufficient. We will provide a
rigorous proof of the convergence of the local random search

2Note that the case whereai = 0 is not interesting since we can always
reduce the dimension of the problem by ignoringxi
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algorithm later. Now, we explore an additional property of
Mag(·) that explains the efficiency of the algorithm.

Another interesting property ofMag(·) is that it is invariant
under a common phase shift to all transmitters. That is,

Mag(θ + θce) =
√
P

∣

∣

∣

∣

∣

ns
∑

i=1

aie
j(θi+θc)

∣

∣

∣

∣

∣

=
√
P

∣

∣

∣

∣

∣

ejθc
ns
∑

i=1

aie
jθi

∣

∣

∣

∣

∣

= Mag(θ)

wheree is a ns × 1 vector with all elements equal to one,
andθc is a common phase shift that can depend on{θi}ns

i=1.
One possible choice for the common phase shift is to let
θc(θ1, · · · , θns

) be such that the imaginary part within the
modulus function is canceled, i.e.,

Mag(θ) = Mag(θ + θc(θ1, · · · , θns
)e)

=
√
P

ns
∑

i=1

ai cos (θi + θc(θ1, · · · , θns
))

=
√
P

ns
∑

i=1

ai cos θ
′
i = Mag(θ′)

whereθ′ = [θ′1, · · · , θ′ns
]T . Note that in the shiftedθ′ domain,

the global maxima occur only whenθ′i = 0 or 2kπ for all i,
wherek is any integer. The shift-invariant property results in
multiple global maxima for the functionMag(·). In fact, all
global maxima form a one-dimensional “ridge” since ifθ∗

is a global maximum,̄θ with θ̄i = θ∗i + θc is also a global
maximum. This property leads to the rapid convergence of
the local random search algorithm since converging to any of
these global maximum points is adequate.

We conclude this section by summarizing these two impor-
tant properties ofMag(·) as follows:

1) all local maxima are global maxima, and
2) a common shift to its arguments does not change its

value.

B. Proof of Convergence

Intuitively, Property 1 guarantees the convergence of any
local random search algorithm. To make this precise, we
introduce anǫ-convergence region

Rǫ = {θ ∈ Θ : Mag(θ) > Mag (θ∗)− ǫ} (16)

whereθ∗ is the optimal total phase and satisfiesMag(θ∗) =√
P
∑ns

i=1 ai. We define the convergence of a random search
algorithm in probability as follows:

Definition 1: A sequence{θ[t]}∞t=0 generated by a random
search algorithm is said to be convergent in probability if,
given ǫ > 0,

lim
t→∞

Pr[θ[t] ∈ Rǫ] = 1

In other words,Mag(θ[t]) converges toMag(θ∗) in probabil-
ity.

For the proof of convergence, we futher derive a proposition
stating that for anyθ outside ofRǫ, there is a non-zero prob-
ability of improvingMag(·) by applying a local perturbation
to θ.

Proposition 2: For any givenθ ∈ Θ \Rǫ andδ0 > 0, there
correspondγ > 0 and0 < η ≤ 1 such that

Pr[Mag(θ + δ)−Mag(θ) ≥ γ] ≥ η

where δ is a random vector with i.i.d. elements uniformly
distributed over[−δ0, δ0].

Proof: From Proposition 1, all local maxima are global
maxima for the functionMag(·). This implies that for allθ /∈
Rǫ and allδ0 > 0, there exists a pointθu ∈ Sθ and a constant
γ(θ) > 0 such that

Mag(θu)−Mag(θ) ≥ 2γ(θ) (17)

where the setSθ is a hypercube of length2δ0 centered around
θ given by

Sθ = {ω ∈ Θ : ω = θ + δ, δ ∈ [−δ0, δ0]ns}

The continuity ofMag(·) implies that there existsσ(θu) > 0
such that for allξ ∈ T := {ω ∈ Θ : ‖ω‖ ≤ σ(θu)}, we have

|Mag(θu + ξ)−Mag(θu)| ≤ γ(θ) (18)

Combining (17) and (18), we arrive at a lower bound

Mag(θu + ξ)−Mag(θ) = Mag(θu + ξ)−Mag(θu)

+ Mag(θu)−Mag(θ)

≥ −γ(θ) + 2γ(θ) = γ(θ)

Referring to (4) for the definition ofµ, the above lower bound
leads to

Pr[Mag(θ + δ)−Mag(θ) ≥ γ(θ)] ≥ µ (T ) =: η(θ)

Note thatµ(T ) is a function ofθ, sinceθu is a function of
θ. We complete the proof of the proposition by letting

γ = inf
θ∈Θ\Rǫ

γ(θ)

η = inf
θ∈Θ\Rǫ

η(θ)

Note that the proof of this proposition can easily be gener-
alized for any local random perturbationδ. Since before the
sequence reaches theǫ-convergence region, there is always a
non-zero probability of improvingMag(·) for each time step,
the convergence of the sequence is to be expected. A simple
deterministic analogue is the convergence of a monotonically
non-decreasing function. The probabilistic nature of the algo-
rithm complicates the proof. This will become clear in the
proof of our next theorem.

Theorem 1:For the functionMag(·) defined in (2), let
{θ[t]}∞t=1 be a sequence generated by the local random search
algorithm described in Eqn. (4)-(8). Then the resulting se-
quence converges in probability, i.e., givenǫ > 0,

lim
t→∞

Pr[θ[t] ∈ Rǫ] = 1

Proof: By Proposition2, we know that given any timet

Pr[{Mag(θ[t− 1] + δ[t])−Mag(θ[t− 1]) ≥ γ} or {θ ∈ Rǫ}] ≥ η̄
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where η̄ = min {Pr[θ ∈ Rǫ], η}. Since Θ is compact and
Mag(·) is continuous, there always exists a positive integer
p such that

pγ >Mag(θ1)−Mag(θ2), ∀θ1, θ2 ∈ Θ

The probability that the sequence lies inRǫ afterp time steps
is hence lower bounded by

Pr[θ[p] ∈ Rǫ] ≥ η̄p

since {δ[t]}∞t=0 are independent across time. This leads to
Pr[θ[p] /∈ Rǫ] ≤ 1− η̄p and

Pr[θ[pm] ∈ Rǫ] = 1− Pr[θ[pm] /∈ Rǫ] ≥ 1− (1 − η̄p)m

for all m = 1, 2, · · · . The lower bound is still valid if we let
the sequence progressℓ time steps further, i.e.,

Pr[θ[pm+ ℓ] ∈ Rǫ] ≥ 1− (1 − η̄p)m

for all m = 1, 2, · · · , ℓ = 0, · · · , p−1. We complete the proof
by lettingm→ ∞.

Theorem 1states that the local random search algorithm
in (4)-(8) converges in probability, and hence also provides
a proof of convergence for the one-bit adaptive distributed
beamforming scheme in (3). In particular,Theorem 1implies
the convergence of the sequence{Mag(θ[t])}∞t=0 in proba-
bility. Since the sequence is non-negative and monotonically
non-decreasing, we can conclude that{Mag(θ[t])}∞t=0 also
converges in mean by the Monotone Convergence Theo-
rem [10]. Further, by properly generalizingProposition 2,
it is straightforward to show thatany adaptive distributed
beamforming scheme that can be reformulated a local random
search algorithm and seeks to maximizeanyobjective function
that satisfiesProperty1 converges in probability.
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Fig. 1. Evolutions of sequences generated by the adaptive distributed
beamforming scheme.

In Fig. 1, we illustrate the evolution of the sequences
generated by the local random search algorithm from different
initial points. The initial points are generated randomly from
a uniform distribution overΘ. Only three sample paths of
the sequence are included in the figure since similar behaviors

can be observed for other sample paths. For each iteration, the
random perturbationδi for theith transmitter is a uniform ran-
dom variable over[−δ0, δ0], whereδ0 = π/30. Note that we
use the same channel coefficients to generate these sequences
since the focus here is on the effect of different initial points.
In particular, the channel coefficients are randomly generated
from i.i.d. CN (0, 1) in the beginning of the simulation, and
remain fixed afterwards.

From the figure, we observe the rapid convergence of the
local random search algorithm, irrespective of where it is ini-
tialized. We emphasize again that the fast convergence results
follow from the two important properties for the function
Mag(·) as discussed in Section IV-A.Property 1 guarantees
the convergence of the local search algorithm;Property 2
results in multiple global maxima for the functionMag(·) and
hence the fast convergence of the algorithm. The simulations
provide a partial validation of our proof since we would expect
the convergence to fail from some initial points if there were
non-optimal local maxima forMag(·). It is to be noted that
the convergence of the local random search algorithm does
not guarantee that it is the most efficient scheme in terms
of the number of function evaluations, and hence the most
efficient scheme in terms of energy. However, the algorithm
does have a desirable scaling property, i.e., the time required
for the algorithm to converge in mean scales linearly with
the number of transmitters. This is the topic of the following
section.

V. SCALING LAW

Due to the probabilistic nature of the local random search
algorithm, we defined convergence in probability in Section
IV-B and showed that the local random search algorithm
converges. For the analysis of the scaling law, however, we can
only show convergence in mean, which is defined as follows:

Definition 2: A sequence{θ[t]} generated by a random
search algorithm is said to converge in mean if there exists
tN ≥ 0 such that

E{δ[τ ]}t

τ=0
|a,θ[0] [Mag (θ[t])] > Mag (θ∗)−ǫ =

√
P

ns
∑

i=1

ai−ǫ

for all t ≥ tN , wherea = [a1, · · · , ans
]T . That is,Mag(θ[t])

converges toMag(θ∗) in mean.
In this section, our goal is to find the time required for the

local random search algorithm to converge in mean, starting
from any initial point. In other words, we are interested in
finding the hitting time3 of the random search algorithm,
and determining its behavior as a function of the number of
transmitters. Specifically, we derive an upper bound on the
hitting time of the local random search algorithm as a function
of ns. Note that the study of the hitting time makes sense
only if the sequence indeed converges in mean, which we
established in Section IV-B.

3The hitting time in this work is defined as the time required for the
algorithm to converge in mean.
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To facilitate analysis, we define the increment function of
Mag(·) at timeτ as

I[τ ] = [Mag (θ[τ ]) −Mag (θ[τ − 1])]
+

= [Mag(θ[τ − 1] + δ[τ ]) −Mag(θ[τ − 1]]
+ (19)

where[x]+ = max(x, 0). We then rewrite the received signal
magnitude function at any given timek0ns as

Mag (θ[k0ns]) =

k0ns
∑

τ=1

I[τ ] + Mag (θ[0]) =:

k0ns
∑

τ=1

I[τ ] + c0

(20)
wherek0 is a positive integer andc0 ≥ 0.

From Proposition 2we have that for any givenτ such that
θ[τ − 1] /∈ Rǫ and any local random perturbationδ[τ ], there
correspondγ > 0 and0 < η ≤ 1 such that

Pr[Mag(θ[τ − 1] + δ[τ ]) −Mag(θ[τ − 1]) ≥ γ] ≥ η

Thus, we have

Eδ[τ ]|a,θ[τ−1] [I[τ ]]

≥ γPr[Mag(θ[τ − 1] + δ[τ ])−Mag(θ[τ − 1]) ≥ γ]

≥ γη > 0

for any τ such thatθ[τ − 1] /∈ Rǫ. Referring to (19)-(20), we
obtain

E{δ[τ ]}k0ns

τ=0
|a,θ[0] [Mag (θ[k0ns])]

=

k0ns
∑

τ=1

Eδ[τ ]|a,θ[τ−1] [I[τ ]] + c0 ≥ k0nsγη + c0 ≥
√
P

ns
∑

i=1

ai

where the last inequality follows by choosingk0 =
⌈√

P maxi{ai}
γη

⌉

. This implies that the hitting time for the local
random search algorithm is at mostk0ns, from any initial
point. Hence, the hitting time for the algorithm scales linearly
with the number of transmitters.
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Fig. 2. Hitting time for the adaptive distributed beamforming scheme with
different values ofα.

In our simulations, we say that the sequence converges
to the α fraction of the global maxima ifMag(θ[t]) ≥
αMag(θ∗). We assume that channel coefficients are i.i.d.
complex Gaussian variablesCN (0, 1), and use the origin as
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Fig. 3. Average convergence time for the adaptive distributed beamforming
scheme with different values ofα.

our initial point. We setδ0 = π/90 for all our simulations.
Fig. 2 demonstrates the hitting time required for the adaptive
distributed beamforming scheme to converge in a relative
sense whenα = 0.5, 0.7, and 0.9. It is clear that the
hitting time increases asα increases. The scaling law for
the hitting time with respect tons, however, is the same
for all values ofα. Indeed, we observe linear scaling for all
values ofα. This observation confirms our theoretical analysis.
Fig. 3 shows the average convergence time for the adaptive
distributed beamforming scheme to within a fraction of the
globally maximum valueαMag(θ∗), for different values of
α. It is important to note the difference between the hitting
time and the average convergence time. Since our algorithm
is probabilistic in nature, the convergence time is essentially
a random variable and each run of the algorithm provides
a sample for this random variable. Fixing the number of
transmittersns, we obtain the average convergence time by
averaging over a hundred samples of this random variable,
while the hitting time is obtained by comparingE[Mag(θ[t])]
with αMag(θ∗). From Fig. 3, we observe the same linear
scaling behavior for the average convergence time. We expect
this property for the average convergence time can be shown
in a similar manner.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have proposed a framework that allows
for a systematic analysis of adaptive distributed beamforming
schemes in sensor/relay networks. We used this framework to
study the convergence and scaling law of a recently proposed
one-bit adaptive distributed beamforming scheme [1]. We first
reformulated the one-bit adaptive scheme as a local random
search algorithm. This reformulation provided insights into the
convergence of the one-bit adaptive scheme, and led us to
investigate the fundamental properties for the received signal
magnitude functionMag(·). We identified two important prop-
erties of the function that contribute to the rapid convergence
of the algorithm. First, all local maxima are global maxima.
This prevents any local random search algorithm from being
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trapped in non-optimal local maximum points. Secondly, the
Mag(·) function is invariant under a common shift to its
arguments. This property results in multiple global maximum
points for Mag(·) and hence the rapid convergence of the
algorithm. Based on these properties, we have shown the
convergence of the algorithm, both in probability and in mean.
We further provided an upper bound on the hitting time of
the algorithm, and demonstrated that the hitting time scales
linearly with the number of sensor/relay nodes. This linear
scaling is desirable, especially when the network is densely
populated. We have also provided simulations that validate
our analysis.

It is important to note that the effectiveness of the one-bit
adaptive distributed beamforming scheme depends critically
on the properties of the functionMag(·). MaximizingMag(·)
is equivalent to maximizing the receivedSNR if there is no
error in obtaining the common message, which is true in
the training stage since the common message is simply fixed
and known to the receiver. On the other hand if adaptation
is being performed blindly (without training) it would be
necessary to consider the possibility of errors in common
message. The corresponding objective function may then not
possess the same desirable properties asMag(·), e.g., the
objective function may possess local maxima that are not
global maxima. Much work needs to be done to understand
how our results can be applied in this more complicated
scenario. One thing that is clear, however, is that we will need
to develop new algorithms that exploit the global structure
of the new objective function since local algorithms can be
trapped in local maxima. Our general framework for studying
adaptive beamforming algorithms is even more useful in this
context since it connects the problem to a well-studied field
of global optimization algorithms.
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