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Abstract—The focus of this work is on the analysis of transmit wireless sensor/relay networks make it difficult to impleme
beamforming schemes with a low-rate feedback link in wirelss transmit beamforming schemesin practice_ A|th0ugh oh‘[gin
sensor/relay networks, where nodes in the network need 1o horfact CS| may be too expensive from a practical point-of-
implement beamforming in a distributed manner. Specificaly, . tial CSI b d ilable vi | te feeklb
the problem of distributed phase alignment is considered, Wwere Y'eW' partia C"?m € made aval a_ € Via a low-rate feedba
neither the transmitters nor the receiver has perfect chanel link from the receiver to the transmitters. As a consequence
state information, but there is a low-rate feedback link from there has been increased interest in designing efficierhses
the receiver to the transmitters. In this setting, a framewask that achieve distributed phase alignment in the presence of
is proposed for systematically analyzing the performance 0 4 oy rate feedback link [1],12],[14],[15]. In this work, our
distributed beamforming schemes. To illustrate the advarage lis t id f K f t ticall vz
of this framework, a simple adaptive distributed beamform- goal IS to provide a framework tor Sy§ ema Ically ana yzmg
ing scheme that was recently proposed by Mudambai et al. the performance of a general set of distributed beamforming
is studied. Two important properties for the received signh schemes with such low-rate feedback.
magnitude function are derived. Using these properties andhe To illustrate the advantages of our framework, we focus
systematic framework, it is shown that the adaptive distriuted on the analysis of a recently proposed training scheme for

beamforming scheme converges both in probability and in mea S . ) .
Furthermore, it is established that the time required for the distributed beamforming_[1],L[2]. The proposed scheme is

adaptive scheme to converge in mean scales linearly with reect @ Simple adaptive algorithm using one bit of feedback in-
to the number of sensor/relay nodes. formation, and is attractive in practice since it is simpbe t

Index Terms—Array signal processing, convergence of nu- implemen_t. Naturally, one would expect a tradeoff in_ energy
merical methods, detectors, distributed algorithms, feedack Consumption due to possible slow convergence of distribute
communication, networks, relays. beamforming, but surprisingly, the scheme proposed_in [1]
converges rapidly and hence utilizes energy efficientlye Th
scheme adjusts its phases for all sensors simultaneously in
each time slot to achieve phase alignment. This reduces the

The problem of distributed beamforming arises quite natgyerhead significantly compared with direct channel estima
rally in wireless sensor/relay networks. In a sensor nétwotion between each source node and the destination node. In
sensors make estimates of a common observed phenomefef the convergence time of the scheme scales linearly wit
and reach a consensus using a local message passing al®number of nodes.
rithm. In a relay network, a source node intends to communi- Although the scheme of [1] has many desirable features, the
cate with the destination node by passing the message ®-allfindamental reasons behind the effectiveness of the scheme
lay nodes. In both settings, the sensor/relay nodes thee &sr are unclear from previous work. If][2], the analyses of the
distributed transmitters and seek to convey a common messggnvergence and linear scalability of distributed beamfog
to the intended receiver. To preserve energy in this sta@ést schemes have been based on model approximations, which
mit beamforming has emerged as a promising scheme duey{gy be loose for some cases. Assuming the stepsize ap-
its potential array gain and low-complexity. However, petf proaches zero, stochastic approximation is used[in [3] to
channel state information (CSI) at the transmitter is resfii show the convergence of the one-bit scheme in distribution.
by conventional transmit beamforming schemes to genergtgrthermore, the authors proposed two more algorithms: the
beamforming coefficients and achieve phase alignment at g]gned algorithm and the % solution algorithm and proved
receiver end. This requirement and the distributed natdire ge convergence of both algorithms via the same technique.

_ _ A discrete version of the problem has been solved in [4], [5]
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analysis of the fast convergence and linear scalabilityhef t We assume a noncoherent communication model, where the
scheme proposed inl[1]. In particular, our analysis does nelization of the channel is unknown at both the transnsitte
involve approximation of any sort and hence makes statesneand receiver. There is, however, an error-free, zero-dekeg-
on convergence and linear scalabilityin [2], [3] more rigws. back link of finite capacity from the receiver to all transtmis
Our result is also stronger than that id [3] in the sense thatnveying low-rate partial channel state information (O8I
convergence in probability is proved instead of convergenc each time step.
distribution. Further, we show that due to the special stmec ~ The goal of distributed beamforming is to pick the beam-
of the objective function considered in this probleanyadap- forming coefficients{g;[t] = b;[t]e’*[!1} to maximize the
tive distributed beamforming scheme that can be reforredlatreceivedSNR. In a noncoherent setting and with a low-rate
as a random search algorithm converges in probability. THeedback link, beamforming can only be achieved adaptively
broad set of algorithms also includes the signed andothie through training. Without loss of generality, we assumé tiea
solution algorithms proposed inl[3] and makes our analysignal s[t] is constant during the training stage. Furthermore,
more general and rigorous than existing work in the liteatu we make the following two simplifications. First, we assume
We organize the paper as follows: In Sectioh II, we inthat each transmitter utilizes the same amount of energy for
troduce the system model and the received signal magnitueeh transmission, i.e., thaft] = 1 for all + andt, i.e., we
function, which is used as our metric to measure the beans not optimize the beamforming gains, and we therefore set
forming array gain throughout the paper. In Secfioh I, we[t] = +/P. This assumption is justified for situations where
propose a framework that allows for a systematic analysis e transmitters rely on a limited energy source (batteng) a
a general set of adaptive distributed beamforming schemaliowing them use different amounts of energy would cause
Specifically, we reformulate this set of adaptive distrédglit some nodes to use up their energy before others. Secondly,
beamforming schemes as random search algorithms viave assume that the receiver can estimate the magnitude of
general framework. This reformulation provides insight®i the signal componédhtt the receiver (without the noise term
the necessary condition for the convergence of the schemg] in (). We therefore use received signal magnitude as
proposed in[[1]. These insights lead us to investigate thige metric for optimizing the beamforming phases.
properties of the received signal magnitude function inti®ac  The received signal magnitude can be expressed as
V] We further use these properties to prove the convergehce n.
Z a;el? (]
i=1

the local random search algorithm in probability and in mean Mag(01]t],--- ,0n.[t]) = VP (2)
[t] = ¢; + v [t] is the total received phase for sensor

and provide simulations to validate our analysis. In Sedtb
we show that the time required for the algorithm to convequeh

) . . eref;
in mean scales linearly with the number of nodes. We also
provide numerical results that validate our analysis. Ijina b
we conclude the paper in Sectibn] VI and suggest directio
for future research.

It is easy to see thatlag(-) is maximized when the phases
?&i[t]} are aligned, i.e., they are equal to each other (modulo
27). Our goal is to studyadaptive distributed beamforming
schemeghat achieve this phase alignment through the use of
[l. SYSTEM SETUP a low-rate feedback link from the receiver.

We consider the problem of distributed beamforming, where
ns transmitters seek to beamform a common message to !!l- A FRAMEWORK FORSYSTEMATIC ANALYZING
one receiver in a distributed manner. We assume that each ADAPTIVE DISTRIBUTED BEAMFORMING SCHEMES
transmitter and the receiver is equipped with one antermh, a In this section, we introduce a framework for analyzing
that the channels from the transmitters to the receiverrexpea general class of adaptive distributed beamforming scheme
ence frequency-flat, slow fading. The discrete-time, c@xplthat can be reformulated as random search algorithms. Rando
baseband system model over a coherence interval is givendaarch algorithms are well studied in the literature [6], [7
. . [8] as methods to maximize an unknown function via random
ylt] = Z higi[t]s[t] +wt] = Zaibi[t]ej(¢i+¢i[t])s[t] +wl[t] sampling. Once an adaptive distributed beamforming scheme
= = can be successfully reformulated as a random search algo-
(1) rithm, a systematic study of the convergence of such adaptiv
wheres|t] € C is the transmitted common messagle} € Cis scheme is possible.
the received signal, and|t] ~ CA/(0,0?) corresponds to the

additive Wh't.e Gau_55|an noise. F%r, transmitawe denote Fhe A. Reformulation of Adaptive Distributed Beamforming
channel fading gains b¥; = a;e’? € C and beamforming

coefficients byg;[t] = b;[t]e’¥:l) € C. Note thata; > 0, Scheme§ as _Ra.ndom Search A'Qo“thms _ _ _
bi[t] > 0, and¢; € [0,27], ¥;[t] € [0,27] for all i and ¢ Adaptive distributed beamforming algorithms introduced i
since they are the corresponding magnitudes and phaggs opectiorLll seek to maximizklag(-) given in [2) with the help
constant with time over the coherence interval due to the slo | _ N _ ,

A good estimate of the received signal magnitude can beradutadirectly

fading assumption. We assume an average power ConStrainM?Qn the noise is small, or by averaging over several tints slben the noise
s[t] given by E[|s[t]|?] < P for all t. is not negligible.



signal magnitude at the receiver is a sample of the functione. Step zeroReferring to [2) and noting that theth trans-
Mag(-) . Thus, from the receiver point of view, the problem  mitter controls its beamforming phasg[t], the algorithm
of distributed phase alignment can be considered under the is initialized by settingy;[0] = 0, and hence),;[0] = ¢;

setting of the following problem: for transmitter:.

Problem 1: Given a unknown functiof: ® — R,© C « Step onein this step, a random perturbatiéyjt] is gen-
R™, where only samples of(#) are available for arbitrary erated at each distributed transmitter such {idait]};*,
6 < O, find the global maxima of. are i.i.d. uniform random variables if-do, dg] across

It is important to note thaProblemlis a global maximiza- time and transmitters, wherg is a constant parameter.
tion problem in general if no special structure is assumed fo  The random perturbation is added to the total phase of
the objective functiory. To solve the maximization iRroblem each transmitter. The distributed transmitters then use th
[ one may be tempted to use gradient-based algorithms that perturbed total phases as their new total phases to transmit
are well-developed in the literature. Since it is possilole ff the training symbol.

to possess local maxima, conventional gradient-ascemtadst ~ « Step two:After receiving the training symbols, the re-
would fail in general. Besides, acquiring the gradient af th ~ ceiver measures the received signal magnitude and com-
function f may be infeasible especially when the function  pares it with the signal magnitude received in the previous
itself is unknown. Hence, random search techniqles [6], [7] time slot. If the newly received signal magnitude is
[8] are more appropriate in this setting and can be described larger, the receiver feeds back &etf beacon to the
as follows: transmitters. Otherwise, aliscard’ beacon is sent to the

A Random Search Algorithm: transmitters. Note that the beacon is a broadcast from
the receiver to all transmitters. Clearly, this feedback
scheme only requires one bit of feedback information per
time step. When aKeep is received at the transmitters,
each transmitter selects and keeps its newly updated total
phase. Otherwise, the old phase is selected and the new
. Step two Update the search point b§[f] — D(6[t — phase discarded. This selectio_n process is determined by

1],8[¢)), where the mapD satisfies the condition whether the _random perturb.atlon. increases or decre_ases

f(’D(O[t —11,8[) > f (B[t — 1]). the array galn_f_or the adaptive _d|str|but_ed _beamformlng

’ - scheme. Specifically, the evolution 8ft] is given by

« Step zerolnitialize the algorithm by choosing[0] € ©.

» Step oneGenerate a random perturbatiéft] from the
sample spaceéR", B, u:), where B is a Borel set on
R™ and y; is a probability measure that could be time-
varying.

Clearly, for a random search algorithm, we require only

function evaluations and control over the probability megas 0[t] = { o[t — 1] + a[t], }f o[t € K 3)
1, which is used to sample the function. Any adaptive dis- o[t — 1], if oft] ¢ K

tributed beamforming scheme can be reformulated as a random where 9]¢] = 04[], -, 0n. [T, B[t] =
search algorithm if each distributed transmitter initiaB its [01[t], -+ 60, [t]]T, and K = {&[t]|Mag(@]t — 1] +

phase as iiStep zerpgenerates a random perturbation of phase  §[¢]) > Mag ([t — 1])}.

as inStep oneand updates its new phase by the Miam@s  \atching the steps of the above one-bit adaptive scheme
in Step two The low-rate feedback link is used to guarantegq those of a random search algorithm introduced in Sec-
the conditionf (D (6]t — 1], 8[¢])) > f(6[t —1]). Note that the s [T-A] it is clear that the one-bit adaptive distribdte

unknown functionf can be any objective function that we ﬁ“doeamforming algorithm can be regarded as a special case of
fit for the distributed transmitters to optimize. This susiSe ihe random search algorithm by setting

that our framework can be used to analyze a more general

function optimization problem over distributed networkiate f = Mag() 4)
further that the probability measuye for the sampling can n = ng (5)
be time-varying in general. The time-varying nature of the o = [0,21]" (6)
probability measure can be thought of aslaptive stepsiZe

for distributed algorithms in the most general sense. Is thi peo = H )
sense, our framework can be used to analyze a large set of D(O[t —1],8[t])) = 6[t — 1]+ 1ispexyolt]  (8)
adaptive distributed algorithms. where 1, is the indicator function and. is uniform on

[—d0, do]™=, which is ans-dimensional hypercube. Note that
(@) is the same as the evolution described[By (3).

Since the probability measure is non-zero only within

To illustrate the advantage of our framework, we now hypercube, with sides of length, and centered around
analyze a one-bit adaptive distributed beamforming schem®g — 1], the one-bit adaptive distributed beamforming scheme
recently proposed in[[1]. Specifically, we reformulate thisan be reformulated aslacal random search algorithm. We
scheme as a local random search algorithm, which allows femphasize again that we can use this framework to study
its systematic analysis. We begin by describing the one-hifore general adaptive distributed beamforming schemes. Fo
adaptive distributed beamforming scheme as follows: example, the probability measure for sampling may be time-

A One-bit Adaptive Distributed Beamforming varying and with a support that spans the entire sgaceé/e
Scheme [[1]: can also study adaptive distributed beamforming schenibs wi

B. One-bit Adaptive Distributed Beamforming Scheme



more than one bit of feedback information. It is also intérgs This equivalence can be seen as followsxif is a local
to note the connection between this local random seanstaximum with an inactive constrairitx;|*> < 1, by fixing
algorithm and simulated annealirig [9]. Simulated anngdbn all other variablegx; };.x, we obtain

a generic probabilistic algorithm that approximates thabgl

. : . o . 2
optimal solution of a given function in a large search spacﬂi )
a;X;

The algorithm uses a parametBrcalled thetemperatureto = llaxxi; + c|* = (aray, “+e™)*+(apay +c')*
control the acceptance probability, i.e., the probabilitgt the
current state of the algorithm transitions to a new statevelf wherec = [cfc!]” is a constant vector depending g’ } ;4.
let 7" — 0 and assume that the current state is only allowed @bviously, the above function can be improved by appropri-
move to neighboring states, the simulated annealing ptoeedately perturbing||x;|| according to the signs of’ and c.
reduces to a local random search algorithm. This contradicts the fact that* is a maximum. Thus, all

A local random search algorithm, however, does not necenstraints are active i¢* is a maximum point. This shows
essarily converge in general. For example, if the unknowhat the optimization problemg](9) arld110) are equivalent.
function possesses local maxima (that are not global mgxima Focusing on the optimization problem with relaxed con-
the sequence@[t]},, is likely to be trapped in a local straints, the Lagrangian df {1L0) reads
maximum if the local perturbatiod, is not large enough. .
Thus, a necessary condition for the convergence of local L(x,A) = —|\W|\2+Z/\i(|\xi||2 —1)
random search algorithms for arbitraty is that there is =1
no local maximum point fortMag(-). With these in mind, . - .
two questions arise naturally) Does the reformulated local Wherex = [xi,---,x, I", A = L)fla e An [T A > 0 for
random search algorithm even converdg?If it does, is alli = 1,---,ng, andw = 37, a;x;. By the Lagrange
there a fundamental reason behind the convergence? In Midtiplier Theorem, all local maxima satisfy
following section, we investigate properties of the_ fuonti Vi L, A) = —2a;w? +2)0x7 =07 (11)
Mag(-) towards the goal of addressing these questions.

i=1

> AllxllP-1) = 0 (12)

IV. CONVERGENCE OF THEDISTRIBUTED BEAMFORMING i=1
SCHEME [x>-1 < 0 (13)
A. Properties of Received Signal Magnitude Function foralli=1,--- n.. Letx* be a local maximum and* be

The properties of the received signal magnitude functiqfe corresponding Lagrange multipliers.Nf = 0, Eqn. [11)
Mag(-) do not depend on the time evolution of its argumentgyplies thatw = 0 sinc@ a; > 0. In this caseMag (x*) =0
We hence ignore the time dependencefgf in this section. and this contradicts the fact that is a local maximum, since
The following proposition states the first propertyMbg(-). e can always improvalag(-) by lettingx? = [¢ 0], ¢ < 1,

Proposition 1: For the received signal magnitude functioqmdxj = 0 for all j # 4. This leads to\; > 0 for all i. We
Mag(-) defined in[(2), all local maxima are global maxima. hence have

Proof: To facilitate analysis, we introduce a change of

variables X; = wV (14)
o CCZR | cosb; i
*i= zl | 7| siné; A= a|w| (15)
Eqgn. [2) can be rewritten as The optimal solutions described Hy {14) ahdl(15), however,

also satisfy
Mag(x1,*+ ,Xpns) = VP

Ns
E ;X
i=1

Ng Ns
Mag(x*)z\/ﬁ Zail :\/ﬁZai
where||x;||? =1 for all i = 1,--- ,n,. The maximization of i=1 vl i=1
Mag(-) can be rewritten as and hence are global maxima. This completes our proof.
ne 2 |
max Z aix; 9) Propositioril] impli_es that the I(_)cal random segrch alg_orithm
lIxil|2=1,4=1, ns || — cannot be trapped in a suboptimal local maximum since all

local maxima are global maxima. Furthermore, it also suigges
that the necessary condition for the convergence of random
search algorithms is satisfied. While it is intuitively ale¢hat

the local random search algorithm should converge accgrdin
to Proposition[d], it is to be noted that the condition is
only necessary and may not be sufficient. We will provide a
rigorous proof of the convergence of the local random search

In the following, we will show that all local maxima of this
objective function correspond to complete phase alignrfognt
all transmitters. That is, all local maximum points are glbb
maximum points.

By relaxing the equality constraints to inequality conistis
the optimization problem if{9) is equivalent to

Ng 2
E ;X
i=1

(20) 2Note that the case wherg = 0 is not interesting since we can always
reduce the dimension of the problem by ignorixg

max
lIx:[I2<1,i=1,- ;ns




algorithm later. Now, we explore an additional property of Proposition 2: For any giverd € ©\ R, andd, > 0, there

Mag(-) that explains the efficiency of the algorithm. correspondy > 0 and0 < i < 1 such that
Another interesting property dflag(-) is that it is invariant
under a common phase shift to all transmitters. That is, Pr[Mag(6 + &) — Mag(0) =] > n

T (0:46.) where § is a random vector with i.i.d. elements uniformly

Z aze’ ™" e distributed over—do, do).

i=1 Proof: From Proposition[], all local maxima are global
maxima for the functioMag(-). This implies that for alp ¢
R, and alléy > 0, there exists a poird,, € Sp and a constant

N
eife Z a;e’%
, = v(8) > 0 such that
wheree is an, x 1 vector with all elements equal to one,

Mag(@ +0.e) = P

= VP = Mag(0)

andé. is a common phase shift that can depend{6s};,. Mag(0,,) — Mag(6) > 2v(0) a7)
One possible choice for the common phase shift is to let _
0.(61,--- ,6,.) be such that the imaginary part within théNhgre the seby is a hypercube of lengt®, centered around
modulus function is canceled, i.e., 6 given by
Mag(0) = Mag(0 + 0.(01,---,0,.)e) So={weB:w=0+4§, d €[-dy,d]™}
= \/ﬁiai cos (0; + 0.(61,- - ,60,.)) The continuity ofMag(-) implies that there exists(8,) > 0
im1 such that for alé € T := {w € O : ||w| < 0(6,)}, we have
= \/FZ a; cos 0, = Mag (@) [Mag(6., + &) — Mag(6.)| < v(0) (18)
=1
Combinin and[(18), we arrive at a lower bound
whered’ = [0}, --- .6/, ]*. Note that in the shifte@" domain, 0 [) and18)
the global maxima occur only wheff = 0 or 2k7 for all i,  Mag(0, + &) — Mag(6) = Mag(0, + &) — Mag(8,,)
whtla.trelk isI atr:yI integer. Tfhe tshhiftf—inva:_riahr;t propTrt); retsulhs in + Mag(6.,) — Mag(6)
multiple global maxima for the functioblag(-). In fact, a > —(8) +2+(8) = 1(0)

global maxima form a one-dimensional “ridge” since6f
is a global maximum@ with 6; = 67 + 0. is also a global Referring to [%) for the definition ofi, the above lower bound
maximum. This property leads to the rapid convergence gisds to

the local random search algorithm since converging to any of

these global maximum points is adequate. Pr[Mag(8 + &) — Mag(0) > v(0)] > . (T) =: n(0)

We conclude this section by summarizing these two impor- , . . . .
tant properties obMag(-) as follows: Note thatyu(T') is a function of@, since@, is a function of

1) all local maxima are global maxima, and 6. We complete the proof of the proposition by letting

2) a common shift to its arguments does not change its v = inf ~(0)
value. 6€O\R,

= inf (0

0ddlr,"®)

B. Proof of Convergence

Intuitively, Property 1 guarantees the convergence of any
local random search algorithm. To make this precise,
introduce are-convergence region

]

Note that the proof of this proposition can easily be gener-
Wized for any local random perturbati@n Since before the
sequence reaches theconvergence region, there is always a

R. = {0 € © : Mag(0) > Mag (0*) — €} (16) non-zero probability of improving/lag(-) for each time step,

v , ) . the convergence of the sequence is to be expected. A simple

Whefe‘,?q is the optimal total phase and salisflélaig(6”) =  jaterministic analogue is the convergence of a monotdpical
\/ﬁziél a;. \We define the convergence of a random Sear?1’?5n-decreasing function. The probabilistic nature of tlyw-a

algorit_h_m_ in probability as fO"OWOi: rithm complicates the proof. This will become clear in the
Definition 1: A sequencg8[t]},_, generated by a randomPromc of our next theorem

search algorithm is said to be convergent in probability if, Theorem 1:For the functionMag(-) defined in [2), let

givene >0, lim Priofl e R — 1 {0[t]},2, be a sequence generated by the local random search
00 e[ € Re] = algorithm described in Eqn[(4}d(8). Then the resulting se-

In other wordsMag(8[t]) converges tdiag(8”) in probabil- 9dUENCe converges in probability, i.e., given- 0,

y. lim Prg[f] € R.] = 1
For the proof of convergence, we futher derive a proposition 300 o1] d
stating that for any outside ofR,, there is a non-zero prob- Proof: By Proposition2, we know that given any time

ability of improving Mag(-) by applying a local perturbation
to 6. Pr[{Mag(6[t — 1] + 8[t]) — Mag ([t — 1]) >~} or {6 € R.}] > 7



where ; = min {P1[@ € R.],n}. Since ©® is compact and can be observed for other sample paths. For each iteralien, t
Mag(+) is continuous, there always exists a positive integeandom perturbatiot; for theith transmitter is a uniform ran-
p such that dom variable ovef—dy, dg], wheredy = 7/30. Note that we
use the same channel coefficients to generate these seguence
py > Mag(81) — Mag(62), v01,62 € © since the focus here is on the effect of different initialmpsi
The probability that the sequence liesi afterp time steps In particular, the channel coefficients are randomly geteera
is hence lower bounded by from i.i.d. CN(0,1) in the beginning of the simulation, and
~ remain fixed afterwards.
Prio[p] € Re] = 1" From the figure, we observe the rapid convergence of the
since {4[t]}2°, are independent across time. This leads {gcal random search algorithm, irrespective of where inis i
Pr0[p] ¢ R <1 —i” and tialized. We emphasize again that the fast convergencésesu
follow from the two important properties for the function
Pr@[pm] € R]=1—Pr[@[pm] ¢ R] >1—(1—-7")"  Mag(-) as discussed in Sectién [V-ARroperty 1 guarantees
if we let the convergence of the Iocgl search aIgorit_HPrloperty 2
results in multiple global maxima for the functiddag(-) and
hence the fast convergence of the algorithm. The simulgtion
Pri@[pm +/¢ € R]>1— (1 —-7")" provide a partial validation of our proof since we would esipe
the convergence to fail from some initial points if there ser
non-optimal local maxima foMag(-). It is to be noted that
the convergence of the local random search algorithm does

Theoremistates that the local random search algorith fiot guarantee that it 1S the most.efﬁuent scheme in terms
of the number of function evaluations, and hence the most

in (@-{@) converges in probability, and_ hence_also_pr(_md(-:é icient scheme in terms of energy. However, the algorithm
a proof of convergence for the one-bit adaptive distribute : . . : :
) X . L oes have a desirable scaling property, i.e., the time redui
beamforming scheme inl(3). In particuldiheorenilimplies . ) ) )
o for the algorithm to converge in mean scales linearly with
the convergence of the sequenfelag(0]t])}2, in proba- : o : ;
- . . ; .__the number of transmitters. This is the topic of the follogvin
bility. Since the sequence is non-negative and monotdwcaﬁ .
X section.
non-decreasing, we can conclude tHaflag(0[t])}22, also
converges in mean by the Monotone Convergence Theo-
rem [10]. Further, by properly generalizingroposition 2, V. SCALING LAW
it is straightforward to show thaany adaptive distributed o
beamforming scheme that can be reformulated a local randorPue to the probabilistic nature of the local random search
search algorithm and seeks to maximézgyobjective function @lgorithm, we defined convergence in probability in Section
that satisfiesProperty 1 converges in probability. [V-Bl and showed that the local random search algorithm
converges. For the analysis of the scaling law, however,ame c
only show convergence in mean, which is defined as follows:

for all m = 1,2,---. The lower bound is still valid
the sequence progresgime steps further, i.e.,

forallm=1,2,--- ,£=0,--- ,p—1. We complete the proof
by letting m — oc.

1 Definition 2: A sequence{0]t]} generated by a random
] search algorithm is said to converge in mean if there exists
ty > 0 such that

Ersryt_ Ja0i0) [Mag (8[t])] > Mag (0") —e = \/J_DZ a;—€
=1

for all t > ¢y, wherea = [ay, - - ,a,,]T. That is,Mag(0[t])
converges tdMlag(6*) in mean.

In this section, our goal is to find the time required for the
local random search algorithm to converge in mean, starting
5 o 10 1 20 20 390 3t0 a0 from any initial point. In other words, we are interested in

time finding the hitting timél of the random search algorithm,
and determining its behavior as a function of the number of
Fig. 1.  Evolutions of sequences generated by the adaptistimited transmitters. Specifically, we derive an upper bound on the
beamforming scheme. hitting time of the local random search algorithm as a fuorcti
of ns. Note that the study of the hitting time makes sense

In Fig. [, we illustrate the evolution O.f the Sequ_ence&nly if the sequence indeed converges in mean, which we
generated by the local random search algorithm from dﬂfereestablished in Sectidi TB

initial points. The initial points are generated randonrignfi
a uniform d|5tr|bUF|0n overQ. Onl}’ three_ samplg paths Of 3The hitting time in this work is defined as the time required foe
the sequence are included in the figure since similar betgvialgorithm to converge in mean.

Received signal magnitude




To facilitate analysis, we define the increment function ¢
Mag(-) at time T as

8000

Ilr] = [Mag(0[r]) — Mag (8[r — 1])]" Eog
= [Mag(0[r — 1] + &[r]) — Mag(6[r — 1]]* (19) 6000

o
o
S
=}

where[z]T = max(z,0). We then rewrite the received signal
magnitude function at any given tinign, as

Average convergence time
IN
o
=]
=]

]C()’ﬂ,s ]C()’ﬂ,s 3000
Mag (8[kons]) = Y I[r] + Mag (8[0]) =: > I[r] +co
=1 =1 2000y
(20) ]
wherek, is a positive integer and, > 0. 1oo0F
From Proposition[2we have that for any given such that . ‘ ‘ ‘ ‘ ‘ ‘
0|t — 1] ¢ R. and any local random perturbatidir], there A A
correspondy > 0 and0 < n < 1 such that
_ _ _ > > Fig. 3. Average convergence time for the adaptive disteihlseamforming
Pr[Mag(@[T 1] + 6[7]) Mag(@[T 1]) - 7] =N scheme with different values @f.
Thus, we have
Esirjaorr— L[] our initial point. We sety, = /90 for all our simulations.
> yPr[Mag(@[r — 1] + é[7]) — Mag(0[r — 1]) > 7] Fig.[2 demonstrates the hitting time required for the adapti
>y >0 distributed beamforming scheme to converge in a relative

. sense whenoe = 0.5, 0.7, and 0.9. It is clear that the
for any 7 such thaB[r — 1] ¢ R.. Referring to [(IP)i(20), we hitting time increases as& increases. The scaling law for

obtain the hitting time with respect tms, however, is the same
E kons

{8[7]}50" |a,0[0] [Mag (6[kon])] for all values ofa. Indeed, we observe linear scaling for all
kom.s ne values ofa. This observation confirms our theoretical analysis.
= Z Esir)ja.oir—1) L[] + co > konsyn + co > \/I_DZCLZ- F_ig. [3 shows the average convergence t.ime for the adaptive
—1 i1 distributed beamforming scheme to within a fraction of the

globally maximum valuenMag(6*), for different values of
}]_ This implies that the hitting time for the local™ It is important to note the differer_lce be'_tween the hitti_ng
7 . . ... time and the average convergence time. Since our algorithm
rar_ldom search a'g.o.”th”? Is at mokgn., from any |n|_t|al is probabilistic in nature, the convergence time is esabyti
pqnt. Hence, the hitting ““?e for the algorithm scales dirg a random variable and each run of the algorithm provides
with the number of transmitters. a sample for this random variable. Fixing the number of
transmittersn,, we obtain the average convergence time by
1000 averaging over a hundred samples of this random variable,
while the hitting time is obtained by comparidgfMag(0]t])]
with aMag(0*). From Fig.[B, we observe the same linear
scaling behavior for the average convergence time. We éxpec
this property for the average convergence time can be shown
in a similar manner.

where the last inequality follows by choosingg
\/ﬁmaxi{ai

Hitting time

VI. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have proposed a framework that allows
for a systematic analysis of adaptive distributed beamifogm
schemes in sensor/relay networks. We used this framework to
100 ‘ ‘ ‘ ‘ ‘ ‘ study the convergence and scaling law of a recently proposed

e T T one-bit adaptive distributed beamforming scheime [1]. W fir
reformulated the one-bit adaptive scheme as a local random
Fig. 2. Hitting time for the adaptive distributed beamfongischeme with search algorithm. This reformulation provided insights ithe
different values of. convergence of the one-bit adaptive scheme, and led us to
investigate the fundamental properties for the receivgdadi

In our simulations, we say that the sequence convergesgnitude functiodag(-). We identified two important prop-
to the o fraction of the global maxima ifMag(@[t]) > erties of the function that contribute to the rapid converge
aMag(0*). We assume that channel coefficients are i.i.@f the algorithm. First, all local maxima are global maxima.
complex Gaussian variablgs\'(0, 1), and use the origin as This prevents any local random search algorithm from being




trapped in non-optimal local maximum points. Secondly, t

Mag(-) function is invariant under a common shift to itg

arguments. This property results in multiple global maximu

points for Mag(-) and hence the rapid convergence of th

algorithm. Based on these properties, we have shown

convergence of the algorithm, both in probability and in mea|
We further provided an upper bound on the hitting time ¢
the algorithm, and demonstrated that the hitting time sca
linearly with the number of sensor/relay nodes. This line@fiq fellowship award
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