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Abstract

The problem of joint source-channel coding in transmittingindependent sources over interference channels

with correlated receiver side information is studied. Wheneach receiver has side information correlated with

its own desired source, it is shown that source-channel codeseparation is optimal. When each receiver has side

information correlated with the interfering source, sufficient conditions for reliable transmission are provided

based on a joint source-channel coding scheme using the superposition encoding and partial decoding idea of

Han and Kobayashi. When the receiver side information is a deterministic function of the interfering source,

source-channel code separation is again shown to be optimal. As a special case, for a class of Z-interference

channels, when the side information of the receiver facing interference is a deterministic function of the

interfering source, necessary and sufficient conditions for reliable transmission are provided in the form of

single letter expressions. As a byproduct of these joint source-channel coding results, the capacity region of a

class of Z-channels with degraded message sets is also provided.
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I. INTRODUCTION

The wireless medium is shared by multiple communication systems operating simultaneously, which

leads to interference among users transmitting over the same frequency band. In the simple scenario

of two transmitter-receiver pairs, the interference channel [1] models two simultaneous transmissions

interfering with each other. In the classical interferencechannel model, the sources intended for

each receiver are independent of each other, and the receivers decode based only on their own

received signals. On the other hand, in applications such assensor networks, it is reasonable to

assume that the receivers have access to their own correlated observations about the underlying source

sequences as well. These correlated observations at the receivers can be exploited to improve the

system performance.

Even in the absence of side information, a finite letter expression for the capacity region of an inter-

ference channel in the general case is unknown. We have the capacity region in the case of interference

channels with statistically equivalent outputs [2]–[4], discrete additive degraded interference channels

[5], a class of deterministic interference channels [6], strong interference channels [7]–[11], a class

of degraded interference channels [12], and more recently for a class of Z-interference channels [13].

The best known achievable rate region is due to Han and Kobayashi [9], a simplification of which is

given in [14].

In a point-to-point scenario, the availability of correlated side information at the receiver is con-

sidered in [15]. It is shown that the source-channel separation theorem applies in this simple setting

and, moreover, that Slepian-Wolf source coding followed bychannel coding is optimal. With the

availability of side information at the receiver, we can transmit the source reliably over a channel

with smaller capacity than the one required when there is no receiver side information. However, it

is known that the source-channel separation theorem does not generalize to multi-user channels [1],

[16], and necessary and sufficient conditions for reliable transmission in the case of correlated sources

and correlated receiver side information are not known in general. In [17], necessary and sufficient

conditions are characterized for broadcasting a common source to multiple receivers with different

correlated side information. An alternative achievability scheme for the setup of [17] is given in [18].

In [19], the results of [17] are extended to broadcast channels with degraded message sets in which

the receivers have access to parts of the underlying messages. Availability of messages or message

parts at the receivers of broadcast channels from the channel coding perspective is studied also in

[20]–[22]. In [23], broadcasting a pair of correlated sources with correlated receiver side information

is studied.
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The interference channel with correlated sources is considered in [24], and a sufficient condition

for reliable transmission is given. In [25], an interference channel with independent sources, in which

each receiver has access to side information correlated with the interfering transmitter’s source, is

considered. Necessary and sufficient conditions for this setup are characterized under the strong

source-channel interference conditions, which generalize the usual strong interference conditions by

considering correlated side information as well. The result of [25] shows that interference cancellation

is optimal even when the underlying channel interference isnot strong, as long as the overall source-

channel interference is.

In this paper, we extend the scenario studied in [25] to more general interference channels. We first

consider the case in which each receiver has side information correlated with the source sequence it

wants to decode. We prove the optimality of source-channel code separation in this situation; that is,

the optimal performance can be achieved by first compressingeach of the sources using Slepian-Wolf

coding with respect to the correlated receiver side information, and then transmitting the compressed

bits over the channel using an optimal interference channelcode.

Next, we consider the scenario in which each receiver has side information correlated with the

interfering transmitter’s source. As an example of such a model and to illustrate the benefits of side

information about the interfering source, consider the extreme case in which each receiver has access

to the message of the interfering transmitter. Note that this setup is equivalent to the restricted two-

way channel model of Shannon, whose capacity is characterized in [1]. In this case, each receiver

can excise the interference from the undesired transmitter, since its message is exactly known at the

receiver. Here, we consider the more general case of arbitrary correlation between the receiver side

information and the interfering source, and propose a jointsource-channel coding scheme similar to

that of Han and Kobayashi [9] taking the side information into account. Later, we consider the case in

which the side information is a deterministic function of the interfering source, and show that source-

channel code separation is again optimal. Finally, we consider a special class of interference channels

called Z-interference channels, in which only one receiverfaces interference. Further focusing on a

special class of Z-interference channels satisfying certain conditions (which will be stated later), and

the case in which the side information is a deterministic function of the interfering source, we are able

to characterize necessary and sufficient conditions for reliable transmission in the form of single letter

expressions. This setting also constitutes an example for which the general sufficiency conditions we

provide are also necessary, proving their tightness for certain special cases.

The rest of the paper is organized as follows. In Section II wepresent the system model. In Section
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III we prove the optimality of source-channel code separation when the side information is correlated

with the desired source. The case in which the side information is correlated with the interfering

source is considered in Section IV. In Section IV-A, we provide sufficient conditions for reliable

transmission, while in Section IV-B, we prove the optimality of source-channel code separation when

the side information is a deterministic function of the interfering source. In Section IV-C we show that,

for a special source and channel model, the sufficient conditions for reliable transmission proposed in

Section IV-A are also necessary, and hence we give a single letter characterization of the necessary

and sufficient conditions for this model. In Section V we characterize the capacity region of a class

of Z-channels with degraded message sets. This is followed by conclusions in Section VI.

II. SYSTEM MODEL

An interference channel is composed of two transmitter-receiver pairs. The underlying discrete

memoryless channel is characterized by the transition probability p(y1, y2|x1, x2) from finite input

alphabetX1 × X2 to finite output alphabetY1 × Y2. Transmitterk has access to the source sequence

{Uk,i}
∞
i=1, k = 1, 2. Consider side information sequences{Vk,i}

∞
i=1, where the source and the side

information sequences are independent and identically distributed (i.i.d.) and are drawn according to

joint distributionp(u1, v1)p(u2, v2) over a finite alphabetU1×V1×U2×V2; that is, the two source-side

information pairs are independent of each other.

For k = 1, 2, Transmitterk observesUn
k and wishes to transmit it noiselessly to Receiverk overn

uses of the channel1. The encoding function at Transmitterk is

fn
k : Un

k → X n
k .

We assume that the side informationV n
π(k) is available at receiverk, whereπ(·) is a permutation

of {1, 2}. Depending on the scenario, we will specify whether the sideinformation is correlated with

the desired source or with the interfering source.

The decoding function at receiverk reconstructs its estimatêUk from its channel output and side

information vector using the decoding function

gnk : Yn
k × Vn

π(k) → Un
k .

1Here we use the notationUn
k = (Uk,1, . . . , Uk,n), and similar notation for other length-n sequences.
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X1 X2

Y1 Y2

U1 U2

Û1 Û2

V1 V2

Tx1 Tx2

Rx1 Rx2

p(u1, v1) p(u2, v2)p(y1, y2|x1, x2)

Fig. 1. Interference channel model in which the receivers have access to side information correlated with the source they want to

receive.

The probability of error for this system is defined as

P n
e = Pr{(Un

1 , U
n
2 ) 6= (Ûn

1 , Û
n
2 )},

=
∑

(un
1
,un

2
)∈Un

1
×Un

2

p(un
1 , u

n
2 )P

{
(Ûn

1 , Û
n
2 ) 6= (un

1 , u
n
2 )
∣∣(Un

1 , U
n
2 ) = (un

1 , u
n
2)
}
.

Definition 1: We say that a source pair(U1, U2) can be reliably transmitted over a given interference

channel if there exist a sequence of encoders and decoders(fn
1 , f

n
2 , g

n
1 , g

n
2 ) such thatP n

e → 0 as

n → ∞.

In the following sections, we consider two cases in particular. In the first case, each receiver has

side information correlated with its desired source, i.e.,π(k) = k, k = 1, 2. In the second case, each

receiver has side information correlated with the interfering source, i.e.,π(1) = 2 and π(2) = 1.

In both cases, we want to exploit the availability of correlated side information at the receivers. In

the first case, each transmitter needs to transmit less information to its intended receiver due to the

availability of correlated side information. In the lattercase, the side information is used to mitigate

the effects of interference.

For notational convenience, we drop the subscripts on probability distributions unless the arguments

of the distributions are not lower case versions of the corresponding random variables.

III. SIDE INFORMATION CORRELATED WITH THE DESIRED SOURCE

In this section, we consider an interference channel in which each receiver has side information

correlated with the source it wants to decode, i.e., receiver k has access to side informationVk (see

Fig. 1). For this special case, we prove that the source-channel separation theorem applies; that is,

it is optimal for the transmitters first to apply Slepian-Wolf source coding to compress their sources
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Fig. 2. Interference channel model in which the receivers have access to side information correlated with the source of the interfering

transmitter.

conditioned on the side information at the corresponding receiver, and then to transmit the compressed

bits over the channel using an optimal interference channelcode. Note that, in the general case, we do

not have a single-letter characterization of the capacity region of the interference channel, yet we can

still prove the optimality of source-channel code separation. In the proof, we use then-letter expression

for the capacity region, which was also used in [26] to prove the optimality of source-channel code

separation for a multiple access channel with receiver sideinformation and feedback. The main result

of this section is the following theorem.

Theorem 1:SourcesU1 and U2 can be transmitted reliably to their respective receivers over the

discrete memoryless interference channelp(y1, y2|x1, x2) with side informationVk at receiverk, k =

1, 2, if

(H(U1|V1), H(U2|V2)) ∈ int(C) (1)

where int(·) denotes theinterior, and C denotes the capacity region of the underlying interference

channel.

Conversely, if(H(U1|V1), H(U2|V2)) /∈ C, then sourcesU1 andU2 cannot be transmitted reliably.

Proof: A proof of Theorem 1 is given in Appendix I.

IV. SIDE INFORMATION CORRELATED WITH THE INTERFERING SOURCE

In this section we consider the case in which Receiver 1 has access toV2 while Receiver 2 has

access toV1, i.e., each receiver has side information about the interfering transmitter’s source (see

Fig. 2). We investigate how the side information about the interference helps in decoding the desired

information.
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A. Sufficient Conditions for Reliable Transmission

We first provide sufficient conditions for reliable transmission of the sources. In the spirit of the

Han-Kobayashi scheme for the classical interference channel, we propose a joint source-channel coding

scheme that requires the receivers to decode part of the interference with the help of their side

information. In the Han-Kobayashi scheme, each transmitter splits its message into two pieces to

allow the non-intended receiver to decode part of the interference. In our scheme, each transmitter

enables a quantized version of its source to be decoded by both receivers, where the unintended

receiver uses its correlated side information as well as thechannel output to decode the interference

corresponding to this quantized part. Sufficient conditions for reliable transmission in this setup are

given in the following theorem.

Theorem 2:SourcesU1 andU2 can be transmitted reliably over the interference channelp(y1, y2|x1, x2)

with side informationV1 at Receiver 2 andV2 at Receiver 1 if there exist random variablesW1 and

W2 such that

H(U1) <I(X1;V2, Y1|W2, Q), (2)

H(U2) <I(X2;V1, Y2|W1, Q), (3)

H(U1) <I(W2, X1;V2, Y1|Q)− I(U2;W2|Q), (4)

H(U2) <I(W1, X2;V1, Y2|Q)− I(U1;W1|Q), (5)

H(U1) +H(U2) <I(X1;V2, Y1|W1,W2, Q) + I(W1, X2;V1, Y2|Q), (6)

H(U1) +H(U2) <I(X2;V1, Y2|W1,W2, Q) + I(W2, X1;V2, Y1|Q), (7)

H(U1) +H(U2) <I(W1, X2;V1, Y2|W2, Q) + I(W2, X1;V2, Y1|W1, Q), (8)

H(U1) +H(U2) <I(W2, X1;V2, Y1|Q) + I(W1, X2;V1, Y2|W2, Q)− I(U1;W1|Q), (9)

H(U1) +H(U2) <I(W1, X2;V1, Y2|Q) + I(W2, X1;V2, Y1|W1, Q)− I(U2;W2|Q), (10)

2H(U1) +H(U2) <I(W2, X1;V2, Y1|Q) + I(X1;V2, Y1|W1,W2, Q) + I(W1, X2;V1, Y2|W2, Q), (11)

H(U1) + 2H(U2) <I(W1, X2;V1, Y2|Q) + I(X2;V1, Y2|W1,W2, Q) + I(W2, X1;V2, Y1|W1, Q), (12)

for somep(q), p(w1, x1|u1, q), andp(w2, x2|u2, q), where the entropies and mutual information terms

are evaluated using the joint distribution

p(q, u1, v1, u2, v2, w1, w2, x1, x2, y1, y2) = p(q)p(u1, v1)p(u2, v2)p(w1, x1|u1, q)p(w2, x2|u2, q)

p(y1, y2|x1, x2). (13)
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Proof: A proof of Theorem 2 is given in Appendix II.

We remark here that the achievability scheme in the proof of Theorem 2 uses joint source-channel

coding and hence, similarly to [16] and [27], the expressions involve joint distribution of the source

and channel variables, which potentially increases the achievable rate region by enlarging the set

of possible joint distributions. Below in Corollary 1, we provide a sufficient condition for reliable

transmission based on separate source and channel codes in the spirit of “operational separation” as

in [17], [25], which can be obtained as a special case of Theorem 2. Note that operational separation

is different from the classical (“informational”) separation, in which each source is first assigned to

an index and then these indices are transmitted using an optimal channel code for the underlying

channel. Operational separation corresponds to separation of the source and the channel variables as

in Corollary 1 without using the optimal source or the channel codes (see [25] for further details and

examples).

Corollary 1: SourcesU1 andU2 can be transmitted reliably over the interference channelp(y1, y2|x1, x2)

with side informationV1 at Receiver 2 andV2 at Receiver 1 if there exist random variablesW 1, W̃1

andW 2, W̃2 such that

H(U1) <I(X1; Y1|W̃2, Q), (14)

H(U1) + I(W 2;U2|V2, Q) <I(X1, W̃2; Y1|Q), (15)

H(U2) <I(X2; Y2|W̃1, Q), (16)

H(U2) + I(W 1;U1|V1, Q) <I(X2, W̃1; Y2|Q), (17)

H(U1) +H(U2)− I(W 1;V1|Q) <I(X1; Y1|W̃1, W̃2, Q) + I(W̃1, X2; Y2|Q), (18)

H(U1) +H(U2)− I(W 2;V2|Q) <I(X2; Y2|W̃1, W̃2, Q) + I(W̃2, X1; Y1|Q), (19)

H(U1) +H(U2)− I(W 1;V1|Q)− I(W 2;V2|Q) <I(W̃1, X2; Y2|W̃2, Q) + I(W̃2, X1; Y1|W̃1, Q),

(20)

H(U1) +H(U2) + I(W 1;U1|V1, Q)− I(W 2;V2|Q) <I(W̃2, X1; Y1|Q) + I(W̃1, X2; Y2|W̃2, Q), (21)

H(U1) +H(U2) + I(W 2;U2|V2, Q)− I(W 1;V1|Q) <I(W̃1, X2; Y2|Q) + I(W̃2, X1; Y1|W̃1, Q), (22)

2H(U1) +H(U2)− I(W 1;V1|Q)− I(W 2;V2|Q) <I(W̃2, X1; Y1|Q) + I(X1; Y1|W̃1, W̃2, Q)

+ I(W̃1, X2; Y2|W̃2, Q) and (23)
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H(U1) + 2H(U2)− I(W 1;V1|Q)− I(W 2;V2|Q) <I(W̃1, X2; Y2|Q) + I(X2; Y2|W̃2, W̃1, Q)

+ I(W̃2, X1; Y1|W̃1, Q), (24)

for somep(q), p(w1|u1, q), p(w2|u2, q), p(w̃1, x1|q) and p(w̃2, x2|q), where the entropies and mutual

information terms are evaluated using joint distribution

p(q, u1, v1, u2, v2, w1, w2, w̃1, w̃2, x1, x2, y1, y2) = p(q)p(u1, v1)p(w1|u1, q)p(u2, v2)

p(w2|u2, q)p(w̃1, x1|q)p(w̃2, x2|q)p(y1, y2|x1, x2).

(25)

Proof: Corollary 1 follows directly from Theorem 2 by lettingWk = (W k, W̃k) and fixing the

distributions asp(wk, xk|uk, q) = p(wk|uk, q)p(w̃k, xk|q), for k = 1, 2.

The sufficient conditions in Corollary 1 are looser than those in Theorem 2. However, it is not clear

whether they are strictly looser.

Remark 1: In the special case of no receiver side information, i.e.,V1 = V2 = ∅, by fixing W 1 =

W 2 = ∅, and definingR1 = H(U1) andR2 = H(U2), the sufficiency conditions in Corollary 1 boils

down to the Han-Kobayashi rate region in the form expressed in [14, Theorem 2].

We do not know whether the sufficient conditions for reliabletransmission provided in Theorem 2

are too strong, leading to pessimistic results in general. However, in Section IV-C, we show that for

some special cases, the sufficient conditions obtained through separate source and channel coding in

Corollary 1 are also necessary, which shows that at least forcertain special cases, Theorem 2 is tight.

B. Deterministic Side Information

In this subsection, we focus on the special case in which the side information sequencesV1 andV2

are deterministic functions of the sourcesU1 andU2, respectively, i.e.,

Vk,i = hk(Uk,i), k = 1, 2, i = 1, 2, · · · (26)

for some deterministic functionsh1 andh2, or equivalently we haveH(Vk|Uk) = 0 for k = 1, 2.

The main result of this subsection is that when the side information is a deterministic function

of the interfering source, the source-channel separation theorem applies; that is, it is optimal to first

perform source coding and encodeV n
k into messageWks, and the remaining part ofUn

k , denoted by

Un
k |V

n
k , into messageWkp, k = 1, 2, and then to transmit these messages optimally over the underlying

interference channelp(y1, y2|x1, x2) with side informationW1s at Receiver 2, and side information

W2s at Receiver 1.

9
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Fig. 3. Interference channel with message side informationat the receivers.

First, we define the capacity region of the interference channel with message side information at

the receivers (see Fig. 3). In this communication scenario,Transmitterk has two messagesWks and

Wkp, of ratesRks andRkp respectively, to transmit with negligible probability of error to Receiverk,

k = 1, 2, while Receiver2 has access toW1s, and Receiver 1 has access toW2s. All messages are

independent. A
(
2nR1s , 2nR1p, 2nR2s, 2nR2p, n

)
code for this channel consists of two encoding functions,

fn
1 :{1, 2, · · · , 2nR1s} × {1, 2, · · · , 2nR1p} → X n

1 (27)

and

fn
2 :{1, 2, · · · , 2nR2s} × {1, 2, · · · , 2nR2p} → X n

2 (28)

and two decoding functions

gn1 :Yn
1 × {1, 2, · · · , 2nR2s} → {1, 2, · · · , 2nR1s} × {1, 2, · · · , 2nR1p} (29)

and

gn2 :Yn
2 × {1, 2, · · · , 2nR1s} → {1, 2, · · · , 2nR2s} × {1, 2, · · · , 2nR2p}. (30)

The average probability of error for the
(
2nR1s, 2nR1p, 2nR2s , 2nR2p, n

)
code is defined as

P n
e =

1

2n(R1s+R1p+R2s+R2p)

2nR1s∑

w1s=1

2nR1p∑

w1p=1

2nR2s∑

w2s=1

2nR2p∑

w2p=1

Pr{gn1 (Y
n
1 , w2s) 6= (w1s, w1p)

or gn2 (Y
n
2 , w1s) 6= (w2s, w2p)|(w1s, w1p, w2s, w2p) is sent}. (31)

Definition 2: A rate quadruplet(R1s, R1p, R2s, R2p) is said to be achievable if there exists a sequence

of
(
2nR1s , 2nR1p, 2nR2s , 2nR2p, n

)
codes for whichP n

e → 0 asn → ∞. The capacity region is defined

as the closure of the set of achievable rate quadruplets(R1s, R1p, R2s, R2p), and is denoted byCI .
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In order to show the optimality of source-channel code separation, similarly to Theorem 1, we will

use then-letter characterization ofCI provided in the next lemma. DefineGn as

Gn =

{
(R1s, R1p, R2s, R2p) :R1p ≤

1

n
I(Xn

1 ; Y
n
1 |S

n
1s, S

n
2s), R1s +R1p ≤

1

n
I(Xn

1 ; Y
n
1 |S

n
2s),

R2p ≤
1

n
I(Xn

2 ; Y
n
2 |S

n
1s, S

n
2s), R2s +R2p ≤

1

n
I(Xn

2 ; Y
n
2 |S

n
1s),

for any pn(sn1s)p
n(sn2s)p

n(xn
1 |s

n
1s)p

n(xn
2 |s

n
2s)

}
(32)

Lemma 1:The capacity region of the interference channel with message side informationW1s at

Receiver 2, and message side informationW2s at Receiver 1 is

CI = lim
n→∞

Gn (33)

where the limit of the region is as defined in [1, Theorem 5].

Proof: A proof of Lemma 1 is given in Appendix III.

Now that we have then-letter characterization of the capacity region of interference channels with

message side information at the receivers, we are ready to show that the source-channel separation

theorem holds when the receivers’ side information sequences are deterministic functions of the

interfering sources.

Theorem 3:SourcesU1 andU2 can be transmitted reliably to their respective receivers over the dis-

crete memoryless interference channelp(y1, y2|x1, x2) with side informationV1 = h1(U1) at Receiver

2, and side informationV2 = h2(U2) at Receiver 1, if

(H(V1), H(U1|V1), H(V2), H(U2|V2)) ∈ int(CI), (34)

whereCI denotes the capacity region of the interference channel with message side information at

receivers.

Conversely, if(H(V1), H(U1|V1), H(V2), H(U2|V2)) /∈ CI , then sourcesU1 andU2 cannot be trans-

mitted reliably.

Proof: A proof of Theorem 3 is given in Appendix IV.

The benefits of considering the side information samples as deterministic functions of the source

samples are two-fold. Firstly, the transmitters also know the side information and they can use this

knowledge to minimize the amount of interference they cause. Due to this fact, we are able to achieve

any point in the capacity region of the interference channelwith message side information. Secondly,

encoding the information ofVk, k = 1, 2 into the codebook at Transmitterk not only helps reduce the

11



interference at the other receiver, but also does not place any extra burden on Receiverk to decode

Vk, asVk is a deterministic function ofUk. This fact enables the converse proof of the source-channel

separation theorem.

C. Necessary and Sufficient Conditions for Reliable Transmission for a Special Case

In Section IV-B, we have shown that source-channel separation is optimal when the side information

is a deterministic function of the interfering source. Thus, for these cases, if the single-letter characteri-

zation of the capacity region of the corresponding interference channel with message side information,

i.e., CI , is known, we would have necessary and sufficient conditionsfor reliable transmission in a

single-letter form. However, a single-letter characterization of CI is not known in general as it is a

generalization of the capacity region of the classical interference channel.

In this subsection, we consider the class of interference channels studied in [13]. We show that

the Han-Kobayashi scheme is capacity-achieving for this class of interference channels [13] when the

receivers have message side information, and we obtain a single-letter characterization of the capacity

region. Hence, we conclude that, for this class of interference channels, when the side information is

a deterministic function of the interfering source, the sufficient conditions provided in Theorem 2 are

also necessary, yielding a single-letter characterization of the necessary and sufficient conditions for

reliable transmission. This means that the achievability result presented in Theorem 2 is tight in some

special cases.

The special class of interference channels we focus on in this subsection is a class of Z-interference

channels. For the Z-interference channels,p(y1, y2|x1, x2) can be written asp(y2|x1, x2) ·p(y1|x1), i.e.,

the channel betweenX1 andY1 is a single user channel characterized byp(y1|x1). This corresponds

to an interference channel in which only the second transmitter-receiver pair faces interference. In

particular, the members of the class of Z-interference channels we consider satisfy the following

conditions:

1) For any positive integern, H(Y n
2 |X

n
2 = xn

2 ), when evaluated with the distribution
∑

xn
1

p(xn
1 )

p(yn2 |x
n
1 , x

n
2 ), is independent ofxn

2 for any p(xn
1 ).

2) Defineτ as

τ = max
p(x1)p(x2)

H(Y2). (35)

Then there exists ap∗(x2) such thatH(Y2), when evaluated with the distribution
∑

x1,x2
p(x1)

p∗(x2)p(y2|x1, x2), is equal toτ for any p(x1).
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Please refer to [13] for intuition behind these conditions and examples of Z-interference channels that

satisfy these two conditions.

In the next lemma, we provide a single-letter characterization of CI , i.e., the capacity region of

this class of Z-interference channels with message side information. Since Receiver 1 does not face

interference, there is no benefit to having access to the sideinformationW2s. Hence, without loss of

generality, we assumeR2s = 0.

Lemma 2:The capacity region of Z-interference channels satisfyingConditions 1 and 2, with

message side informationW1s at Receiver 2, is characterized by

R1p +R1s ≤ I(X1; Y1), (36)

R2p ≤ I(W,X2; Y2) and (37)

R1p +R2p ≤ I(X1; Y1|W ) + I(W,X2; Y2) (38)

for somep(w)p(x1|w), where the mutual informations and entropies are evaluatedwith the joint

distribution of the form

p(w, x1, x2, y1, y2) = p(w)p(x1|w)p
∗(x2)p(y1|x1)p(y2|x1, x2).

Proof: A proof of Lemma 2 is given in Appendix V.

The proof of Lemma 2 indicates that superposition encoding and partial decoding is capacity-

achieving. More specifically, the codebook at Transmitter 1is such that the inner codebook carries

the side information at Receiver 2, i.e.,W1s, and part ofW1p, and the outer codebook carries the

remaining part ofW1p.

Comparing these results in the case of side information at the receiver with the traditional Z-

interference channel [13], the rate ofW1p takes the place ofW1, which means that the message that

causes interference is reduced fromW1 to W1p. Due to the fact thatW1s is available at Receiver 2,

W1s does not cause any interference and therefore its rate can bemade as large as possible within the

constraint of the capacity of the channelp(y1|x1) depicted by (36).

Having established the capacity region of this special class of Z-interference channels with message

side information at the receiver, we next consider the jointsource-channel coding problem for this

channel model with the assumption that each side information sampleV1,i is a deterministic function

of the corresponding source sampleU1,i, i.e., V1,i = h1(U1,i), for i = 1, 2, · · · for some deterministic

functionh1. Since the first transmitter-receiver pair is interference-free, without loss of generality, we

assumeV2 = ∅.

13



Since source-channel separation is shown to be optimal in Theorem 3 for the source and side

information structure under consideration, we are able to characterize necessary and sufficient condi-

tions for the reliable transmission of the sources in the single-letter form using the capacity region

characterization given in Lemma 2.

Corollary 2: For Z-interference channels satisfying Conditions 1 and 2,and side informationV1 =

h1(U1) at Receiver 2, necessary and sufficient conditions for reliable transmission are

H(U1) <I(X1; Y1) (39)

H(U2) <I(W,X2; Y2) and (40)

H(U1|V1) +H(U2) <I(W,X2; Y2) + I(X1; Y1|W ) (41)

for somep(w)p(x1|w), where the mutual informations and entropies are evaluatedwith p(u1, v1, u2,

w, x1, x2, y1, y2) = p(u1, v1)p(u2)p(w)p(x1|w)p
∗(x2)p(y1|x1)p(y2|x1, x2).

Proof: Corollary 2 follows directly from combining Theorem 3 and Lemma 2.

In Corollary 1, specifyV2 = ∅, chooseW 2 = W̃2 = ∅, W 1 = V1, Q = ∅ and p(x2) = p∗(x2).

Renaming̃W1 asW1 and using Condition 2 and the fact thatH(U1)−H(V1) = H(U1|V1), we obtain a

sufficient condition which is the same as the necessary and sufficient condition specified in Corollary

2. Hence, we conclude that in this special case, the sufficient conditions described in Corollary 1 based

on separate source and channel coding are also necessary. This shows that the conditions presented

in Theorem 2 are also necessary at least in certain scenarios.

Corollary 2 shows how the side informationV1 = h1(U1) about the interferenceU1 helps in reliable

transmission, and determines the most efficient way of usingthis side information: Transmitter 1

performs a separation-based encoding scheme. It first splits its sourceUn
1 into V n

1 and a remaining

part using entropy-achieving data compression techniques, and thus obtains two messagesWV n
1

and

WUn
1
|V n

1
. Then, it further splits messageWUn

1
|V n

1
into two partsWinner and Wouter, at ratesγ and

H(U1|V1) − γ, respectively. Next, it performs superposition encoding,transmittingWV n
1

and Winner

through the inner code at rateH(V1) + γ, andWouter through the outer code at rateH(U1|V1) − γ.

Transmitter 2 performs separation-based source-channel coding, first mappingUn
2 into a message

W2 and then mappingW2 into a codeword of an i.i.d. codebook generated with distribution p∗(x2).

Receiver 1 decodes both the inner and the outer codes. Receiver 2 knows the side informationV n
1 and

hence sees an inner codebook at an effective rate ofγ only. It decodes the inner codeword and the

codeword of Transmitter 2 jointly using the received signaland the available side information about

the interference.

14



The intuition obtained from the special case derived in thissubsection is that one should put as much

information as possible about the side information within the inner codebook, in order to minimize

the impact of interference when the side information about the interference is available at the receiver.

V. Z-CHANNEL WITH DEGRADED MESSAGESETS

The result in (36)-(38) is directly related to the capacity region of the Z-channel with degraded

message sets, based on the intuition gained from the proof ofTheorem 3 in [19]. The intuition in

[19] is that when the receiver has some side information about the undesired message, we can set up

a new scenario in which the receiver does not have access to the side information, and is required to

decode it. Then, when we remove the rate constraint associated with decoding of the side information

at the receiver in the capacity region of the new scenario, weget the capacity results of the original

scenario. Therefore, the solution given in (36)-(38) resembles the solution of the following problem.

The channel is described by two transition probabilitiesp(y1|x1) and p(y2|x1, x2), and satisfies

both Conditions 1 and 2. There are three independent messages W1c, W1p andW2. Transmitter 1 has

messagesW1c andW1p and Transmitter 2 has messageW2. W1c needs to be decoded at both receivers,

while W1p andW2 need to be decoded only at Receiver 1 and Receiver 2, respectively.

This channel model includes the Z-interference channel as aspecial case, when the rate ofW1c is

zero. Compared to the definition of the Z-channel in [28],W1c is not only intended for Receiver 2, but

also for Receiver 1. Therefore, we call this channel model asthe Z-channel with degraded message

sets.

Then the capacity region for the Z-channel satisfying Conditions 1 and 2, with degraded message

sets can be characterized as follows:

R1p ≤ I(X1; Y1|W ) + γ, (42)

R1c +R1p ≤ I(X1; Y1), (43)

R1c ≤ I(W ; Y2|X2)− γ and (44)

R2 +R1c ≤ τ −H(Y2|W,X2)− γ, (45)

for somep(w)p(x1|w) and γ ≥ 0 where the mutual informations and entropies are evaluated using

p(w, x1, x2, y1, y2) = p(w)p(x1|w)p
∗(x2)p(y1|x1)p(y2|x1, x2). The proof of this result follows from

arguments very similar to those used in the scenario of message side information at the receiver

considered in Lemma 2.
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VI. CONCLUSIONS

We have studied the problem of joint source-channel coding in interference channels with correlated

receiver side information. In the case when the receiver side information is correlated with its desired

source, we have shown that separate design of source and channel codes is optimal. In order to

minimize the interference to the other transmitter-receiver pair, the transmitters should transmit only

the part of their sources that is not already known by their corresponding receivers.

For the case in which the receiver side information is correlated with the interfering source, we

have provided sufficient conditions for reliable transmission by proposing a joint source-channel coding

scheme based on the idea of superposition encoding and partial decoding of Han and Kobayashi. As

a special case, we have focused on the scenario in which the side information at the receiver is a

deterministic function of the interfering source, and we have shown that source-channel separation is

optimal for this situation as well. In both cases for which the optimality of source-channel separation

is established, we have used then-letter expression for the capacity region as a single-letter expression

is not available in general.

Finally, for a class of Z-interference channels for which superposition encoding and partial decoding

is optimal in the absence of receiver side information, whenthe receiver facing interference has

access to a deterministic function of the interfering source, we have shown that the provided sufficient

conditions are also necessary. Hence, the sufficient conditions are tight at least in some special cases.

APPENDIX I

PROOF OFTHEOREM 1

The achievability part of the proof is straightforward. If (1) holds, then there exists a rate pair

(R1, R2) in the interior ofC such thatH(Uk|Vk) ≤ Rk for k = 1, 2. Each transmitter compresses its

source with respect to the side information at its own receiver. This can be done at rateRk due to the

Slepian-Wolf theorem. Then the compressed bits can be transmitted reliably over the channel since

(R1, R2) is in the capacity region of the underlying interference channel.

To prove the converse, we first provide an infinite letter expression for the capacity region of the

interference channel given in [2]. We define

En ,

{(
1

n
I(Xn

1 ; Y
n
1 ),

1

n
I(Xn

2 ; Y
n
2 )

)
: p(xn

1 , x
n
2 ) = p(xn

1 )p(x
n
2 )

}
. (46)

Then

C = lim
n→∞

En, (47)
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where the limit is defined as in [1, Theorem 5].C is a closed convex set in the Euclidean plane.

From Fano’s inequality [29], we have, fork = 1, 2,

H(Un
k |Û

n
k ) ≤ nδ(P n

e ), (48)

whereδ(x) is a non-negative function approaching zero asx → 0.

Next, we write the following chain of inequalities:

1

n
I(Xn

1 ; Y
n
1 ) ≥

1

n
I(Un

1 ; Y
n
1 ) (49)

=
1

n
I(Un

1 , V
n
1 ; Y

n
1 ) (50)

≥
1

n
I(Un

1 ; Y
n
1 |V

n
1 ) (51)

=
1

n
[H(Un

1 |V
n
1 )−H(Un

1 |V
n
1 , Y

n
1 )] (52)

≥ H(U1|V1)−H(Un
1 |Û

n
1 ) (53)

≥ H(U1|V1)− δ(P n
e ) (54)

where (49) follows sinceUn
1 → Xn

1 → Y n
1 form a Markov chain, similarly (50) follows sinceV n

1 →

Un
1 → Y n

1 form a Markov chain, and finally (54) follows from Fano’s inequality. Similarly, we can

also show

1

n
I(Xn

2 ; Y
n
2 ) ≥ H(U2|V2)− δ(P n

e ), (55)

where the joint probability distribution factors asp(xn
1 )p(x

n
2 ).

From the capacity region given in (47), we see that(H(U1|V1) − δ(P n
e ), H(U2|V2) − δ(P n

e )) ∈ C

for all n. Then, sinceδ(P n
e ) → 0 asn → ∞, and from the compactness of the capacity region, we

can conclude thatP n
e → 0 implies that(H(U1|V1), H(U2|V2)) ∈ C. This completes the proof.

APPENDIX II

PROOF OFTHEOREM 2

We first briefly review the notions of types and strong typicality that will be used in the proof.

Given a distributionp(x), the typePxn of an n-tuple xn is the empirical distribution

Pxn =
1

n
N(a|xn)

whereN(a|xn) is the number of occurrences of the lettera in xn. The set of alln-tuplesxn with

type Q is called the type classQ and is denoted byT n(Q). The set ofδ-strongly typicaln-tuples
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according top(x) is denoted byT n
ǫ (X) and is defined by

T n
ǫ (X) =

{
xn ∈ X n :

∣∣∣∣
1

n
N(a|xn)− p(a)

∣∣∣∣ ≤ δ, ∀a ∈ X andN(a|xn) = 0 wheneverp(x) = 0

}
.

The definitions of type and strong typicality can be extendedto joint and conditional distributions

in a similar manner [30]. We have∣∣∣∣
1

n
log |T n

ǫ (X)| −H(X)

∣∣∣∣ ≤ δ (56)

for sufficiently largen. Given a joint distributionp(x, y), if (xn, yn) ∼ pn(x)pn(y), wherepn(x) and

pn(y) aren-fold products of the marginalsp(x) andp(y), then

Pr{(xn, yn) ∈ T n
ǫ (XY )} ≤ 2−n(I(X;Y )−3δ). (57)

Now, we start the achievability proof. Fix a joint distribution as in (13), wherep(u1, v1), p(u2, v2),

p(y1, y2|x1, x2) are given while we are free to choosep(q), p(w1, x1|u1, q) and

p(w2, x2|u2, q).

Codebook generation: First, generate one randomn-sequenceqn in an i.i.d. fashion according to

p(q).

Next, for Transmitter 1, generate a codebook of sizeL1 with 1
n
logL1 > I(U1;W1|Q), in which the

codewords are generated i.i.d. with distributionp(w1|q). This codebook is denoted byC1
w.

For each possible source outputun
1 , count the number of codewords inC1

w that are jointly typical

with un
1 . If there are at leastL12

−nI(U1;W1|Q)−2nǫ codewords inC1
w jointly typical with un

1 , choose one

uniformly at random, and call itwn
1 (u

n
1 ). If there are fewer thanL12

−nI(U1;W1|Q)−2nǫ codewords ofC1
w

jointly typical with un
1 , randomly choose one codeword fromC1

w to bewn
1 (u

n
1 ). The reason why we

require the number of codewords jointly typical withun
1 to be large is to benefit the probability of

error calculation later on in the proof. In a similar fashion, we generateC2
w.

DefineF (un
1 , u

n
2) as the event that the number ofwn

1 ∈ C1
w jointly typical with un

1 is larger than

L12
−nI(U1;W1|Q)−2nǫ and the number ofwn

2 ∈ C2
w jointly typical withun

2 is larger thanL22
−nI(U2;W2|Q)−2nǫ.

Next, we will show that

Pr{F c(Un
1 , U

n
2 )} ≤ 3ǫ, (58)

where “c” denotes the complement.

For each(qn, un
1 , u

n
2) ∈ T n

ǫ (QU1U2), define the random variableν(i, un
1 ) as follows:ν(i, un

1 ) is 1 if

the i-th codeword ofC1
w is jointly typical with un

1 and0 otherwise. Then,

2−nI(U1;W1|Q)−nǫ ≤ E[ν(i, un
1 )|q

n] = Pr{ν(i, un
1 ) = 1|qn} ≤ 2−nI(U1;W1|Q)+nǫ (59)

V[ν(i, un
1 )|q

n] ≤ E
2[ν(i, un

1 )|q
n] ≤ E[ν(i, un

1 )] (60)
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whereE and V denote the expectation and variance, respectively. Further define random variable

N(un
1 ) as the number of codewords inC1

w that are jointly typical withun
1 , i.e.,

N(un
1 ) =

L1∑

i=1

ν(i, un
1 ). (61)

Then, from (59) and (60), we have

L12
−nI(U1;W1|Q)−nǫ ≤ E[N(un

1)|q
n] =

L1∑

i=1

E[ν(i, un
1 )|q

n] ≤ L12
−nI(U1;W1|Q)+nǫ (62)

V[N(un
1)|q

n] =
L1∑

i=1

V[ν(i, un
1 )|q

n] ≤ E[N(un
1 )|q

n]. (63)

Hence, we have

Pr
{
N(un

1 ) ≤L12
−nI(U1;W1|Q)−2nǫ|qn

}

= Pr
{
E[N(un

1 )|q
n]−N(un

1 ) ≥ E[N(un
1)|q

n]− L12
−nI(U1;W1|Q)−2nǫ|qn

}
(64)

≤ Pr
{
E[N(un

1)|q
n]−N(un

1 ) ≥ L12
−nI(U1;W1|Q)−nǫ − L12

−nI(U1;W1|Q)−2nǫ|qn
}

(65)

≤ Pr
{∣∣E[N(un

1 )|q
n]−N(un

1 )
∣∣ ≥ L12

−nI(U1;W1|Q)−nǫ − L12
−nI(U1;W1|Q)−2nǫ

∣∣qn
}

(66)

≤
V[N(un

1)|q
n]

(L12−nI(U1;W1|Q)−nǫ − L12−nI(U1;W1|Q)−2nǫ)
2 (67)

≤
E[N(un

1 )|q
n]

(L12−nI(U1;W1|Q)−nǫ − L12−nI(U1;W1|Q)−2nǫ)
2 (68)

≤
L12

−nI(U1;W1|Q)+nǫ

(L12−nI(U1;W1|Q)−nǫ − L12−nI(U1;W1|Q)−2nǫ)
2 (69)

≤ ǫ (70)

where (65) and (69) follows from (62), (67) follows from Chebyshev’s inequality, (68) follows from

(63), and (70) is true whenn is large enough. The same analysis applies forun
2 .

Hence, we have proved that

Pr{F c(un
1 , u

n
2 )|q

n} = Pr
{
N(un

1 ) ≤ L12
−nI(U1;W1|Q)−2nǫ or N(un

2 ) ≤ L22
−nI(U2;W2|Q)−2nǫ|qn

}

≤ 2ǫ (71)
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for all (qn, un
1 , u

n
2 ) ∈ T n

ǫ (QU1U2) and all sufficiently largen. This means that

Pr{F c(Un
1 , U

n
2 )} =

∑

qn,un
1
,un

2

Pr{F c(Un
1 , U

n
2 )|(U

n
1 , U

n
2 , Q

n) = (un
1 , u

n
2 , q

n)}

· Pr{(Un
1 , U

n
2 , Q

n) = (un
1 , u

n
2 , q

n)} (72)

=
∑

(qn,un
1
,un

2
)∈Tn

ǫ (QU1U2)

Pr{F c(Un
1 , U

n
2 )|(U

n
1 , U

n
2 , Q

n) = (un
1 , u

n
2 , q

n)}

· Pr{(Un
1 , U

n
2 , Q

n) = (un
1 , u

n
2 , q

n)}

+
∑

(qn,un
1
,un

2
)/∈Tn

ǫ (QU1U2)

Pr{F c(Un
1 , U

n
2 )|(U

n
1 , U

n
2 , Q

n) = (un
1 , u

n
2 , q

n)}

· Pr{(Un
1 , U

n
2 , Q

n) = (un
1 , u

n
2 , q

n)} (73)

≤2ǫ+ Pr{(QnUn
1 , U

n
2 ) /∈ T n

ǫ (QU1U2)} (74)

≤3ǫ (75)

where (74) follows from (71), and (75) follows whenn is large enough from the asymptotic equipar-

tition property (AEP) [29].

This means that with large probability, the number of sequences jointly typical withUn
1 andUn

2 in

codebooksC1
w andC2

w are larger thanL12
−nI(U1;W1|Q)−2nǫ andL22

−nI(U2;W2|Q)−2nǫ, respectively. This

fact will be used in the probability of error calculation.

Codebook generation: For each possibleun
1 sequence, generate onexn

1 sequence in an i.i.d. fashion,

conditioned onwn
1 (u

n
1 ), un

1 and qn, according top(x1|u1, w1, q). This xn
1 sequence is denoted by

xn
1 (u

n
1 , w

n
1 (u

n
1)). The collection of allxn

1 sequences will be denoted as the codebookC1
x. Similarly, we

generate the codebookC2
x.

Encoding: When Transmitter 1 observes the sequenceun
1 , it transmitsxn

1 (u
n
1 , w

n
1 (u

n
1)). Similarly for

Transmitter 2.

Decoding: Receiver 1 finds the unique pair(un
1 , w

n
2 ), u

n
1 ∈ Un

1 , wn
2 ∈ C2

w, such that(un
1 , w

n
1 (u

n
1),

xn
1 (u

n
1 , w

n
1 (u

n
1)), w

n
2 , yn1 , v

n
2 ) are jointly typical and declares the first component of the pair as the

transmitted source. If there are more than one pair, and the first component of the pairs are the same,

then the decoder declares the transmitted source to be the first component. If there are more than one

pair, and the first component of the pairs are not the same, an error is declared. Also, if no such pair

exists, an error is declared. Similarly for Receiver 2.

Probability of error calculation: Denote byE(un
1 , w

n
2 ) the event(un

1 , w
n
1 (u

n
1 ), X

n
1 (u

n
1 , w

n
1 (u

n
1)),

wn
2 , Y

n
1 , V

n
2 ) ∈ T n

ǫ (U1W1X1W2Y1V2|q
n) for (un

1 , w
n
2 ) ∈ Un

1 × C2
w. Further denote byG(un

1 , u
n
2 ) the
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event(un
1 , u

n
2 , w

n
1 (u

n
1 ), w

n
2 (u

n
2)) ∈ T n

ǫ (U1U2W1W2|q
n).

Then, the probability of error at Receiver 1 conditioned onQn = qn, denoted byP 1
e , is given by

Pr{Ec (Un
1 , w

n
2 (U

n
2 )) or

⋃

(un
1
,wn

2
):un

1
6=Un

1

E(un
1 , w

n
2 )



 (76)

≤Pr

{
Ec(Un

1 , w
n
2 (U

n
2 )) or F c(Un

1 , U
n
2 ) or Gc(Un

1 , U
n
2 ) or

⋃

(un
1
,wn

2
):un

1
6=Un

1

E(un
1 , w

n
2 )

}
(77)

≤Pr{Ec(Un
1 , w

n
2 (U

n
2 )) or F c(Un

1 , U
n
2 ) or Gc(Un

1 , U
n
2 )}

+ Pr





⋃

(un
1
,wn

2
):un

1
6=Un

1

E(un
1 , w

n
2 )

∣∣∣∣E ∩ F ∩G



 (78)

≤Pr{F c(Un
1 , U

n
2 )}+ Pr{Gc(Un

1 , U
n
2 )|F}+ Pr{Ec(Un

1 , w
n
2 (U

n
2 ))|F ∩G}

+ E





∑

(un
1
,wn

2
):un

1
6=Un

1

Pr{E(un
1 , w

n
2 )|E ∩ F ∩G}



 , (79)

where we have used the short-handE, F andG to denote eventsE(Un
1 , w

n
2 (U

n
2 )), F (Un

1 , U
n
2 ) and

G(Un
1 , U

n
2 ), respectively.

The first term in (79) is bounded by3ǫ as shown by (75). From the achievability results of multi-

terminal rate-distortion theory [31], the second term in (79) is bounded byǫ for sufficiently largen.

The third term in (79) is bounded byǫ for sufficiently largen based on the AEP [29]. Hence, from

now on, we will concentrate on the fourth term in (79).

The fourth term in (79) may be upper bounded by the sum of the following four terms, which will

be denoted byA1, A2, A3, andA4, respectively:

A1
△
=E





∑

un
1
6= Un

1

wn
1
(un

1
) 6= wn

1
(Un

1
)

Pr{E(un
1 , w

n
2 (U

n
2 ))|E ∩ F ∩G}





(80)

A2
△
=E





∑

un
1
6= Un

1

wn
1
(un

1
) 6= wn

1
(Un

1
)

wn
2
6= wn

2
(Un

2
)

Pr{E(un
1 , w

n
2 )|E ∩ F ∩G}





(81)
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A3
△
=E





∑

un
1
6= Un

1

wn
1
(un

1
) = wn

1
(Un

1
)

Pr{E(un
1 , w

n
2 (U

n
2 ))|E ∩ F ∩G}





(82)

and

A4
△
=E





∑

un
1
6= Un

1

wn
1
(un

1
) = wn

1
(Un

1
)

wn
2
6= wn

2
(Un

2
)

Pr{E(un
1 , w

n
2 )|E ∩ F ∩G}





. (83)

First, we upper boundA1. Define the set

B1 = {un
1 ∈ Un

1 : un
1 6= Un

1 , w
n
1 (u

n
1) 6= wn

1 (U
n
1 ), (u

n
1 , w

n
1 (u

n
1)) ∈ T n

ǫ (U1W1|Y
n
1 V

n
2 w

n
2 (U

n
2 )q

n)}. (84)

Then, we have

E
{
|B1|

∣∣E ∩ F ∩G
}
≤2nH(U1|Y1,V2,W2,Q)+nǫ2nH(W1|U1,Y1,V2,W2,Q)+nǫ2−nH(W1|U1,Q)+nǫ. (85)

Hence, we may write

A1 = E





∑

un
1
∈B1

Pr{E(un
1 , w

n
2 (U

n
2 ))|E ∩ F ∩G}



 (86)

≤ E

{
|B1| max

un
1
∈B1

Pr{E(un
1 , w

n
2 (U

n
2 ))|E ∩ F ∩G}

}
(87)

= E

{
|B1| max

un
1
∈B1

Pr{Xn
1 (u

n
1 , w

n
1 (u

n
1)) ∈ T n

ǫ (X1|u
n
1w

n
1 (u

n
1 )w

n
2 (U

n
2 )Y

n
1 V

n
2 q

n)|E ∩ F ∩G}

}
(88)

≤ E

{
|B1| max

un
1
∈B1

2nH(X1|U1,W1,W2,Y1,V2,Q)+nǫ2−nH(X1|U1,W1,Q)+nǫ
∣∣E ∩ F ∩G

}
(89)

≤ 2nH(U1)2−nI(U1,W1,X1;Y1,V2|W2,Q)+5nǫ (90)

≤ 2nH(U1)2−nI(X1;Y1,V2|W2,Q)+5nǫ (91)

where (91) follows because the distribution in (13) satisfies the Markov chain relationship(U1,W1) →

(X1,W2, Q) → (V2, Y1). Next, we upper boundA2. Define the set

B2 = {un
1 ∈ Un

1 , w
n
2 ∈ C2

w : un
1 6= Un

1 ,w
n
1 (u

n
1 ) 6= wn

1 (U
n
1 ), w

n
2 6= wn

2 (U
n
2 ),

(un
1 , w

n
1 (u

n
1), w

n
2 ) ∈ T n

ǫ (U1W1W2|Y
n
1 V

n
2 q

n)}. (92)

Then, we have

E{|B2|} ≤2nH(W2|Y1,V2,Q)+nǫ2−nH(W2|Q)+nǫ(L2 − 1)

2nH(U1|W2,Y1,V2,Q)+nǫ2nH(W1|U1,W2,Y1,V2,Q)+nǫ2−nH(W1|U1,Q)+nǫ. (93)
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Similarly to (86)-(90), we may write

A2 = E





∑

(un
1
,wn

2
)∈B2

Pr{E(un
1 , w

n
2 )|E ∩ F ∩G}



 (94)

≤ 2nH(U1)L22
−nI(U1,W1,X1,W2;V2,Y1|Q)+7nǫ (95)

= 2nH(U1)L22
−nI(X1,W2;V2,Y1|Q)+7nǫ (96)

where (96) follows from the same reason as (91). Next, we upper boundA3. Define the set

B3 = {un
1 ∈Un

1 : un
1 6= Un

1 , w
n
1 (u

n
1) = wn

1 (U
n
1 ), u

n
1 ∈ T n

ǫ (U1|w
n
1 (U

n
1 )Y

n
1 V

n
2 w

n
2 (U

n
2 )q

n)}. (97)

Then, we have

E
{
|B3|

∣∣E ∩ F ∩G
}
≤ 2nH(U1|W1,Y1,V2,W2,Q)+nǫ 1

2−nI(U1;W1|Q)−2nǫL1
(98)

which follows from the fact that we always choose randomly from at leastL12
nI(U1;W1|Q)−2nǫ choices

to getwn
1 (u

n
1 ). Similarly to (86)-(90), we may write

A3 = E





∑

un
1
∈B3

Pr{E(un
1 , w

n
2 (U

n
2 ))|E ∩ F ∩G}



 (99)

≤
2nH(U1)

L1
2−nI(U1,X1;Y1,V2|W1,W2,Q)+5nǫ (100)

≤
2nH(U1)

L1
2−nI(X1;Y1,V2|W1,W2,Q)+5nǫ (101)

where (101) follows from the same reason as (91). Finally, weupper boundA4. Define the set

B4 = {un
1 ∈ Un

1 , w
n
2 ∈ C2

w : un
1 6= Un

1 ,w
n
1 (u

n
1 ) = wn

1 (U
n
1 ), w

n
2 6= wn

2 (U
n
2 ),

(un
1 , w

n
2 ) ∈ T n

ǫ (U1W2|w
n
1 (U

n
1 )Y

n
1 V

n
2 q

n)}. (102)

Then, we have

E
{
|B4|

∣∣E ∩ F ∩G
}
≤2nH(W2|Y1,V2,W1,Q)+nǫ2−nH(W2|Q)+nǫ(L2 − 1)

2nH(U1|W1,W2,Y1,V2,Q)+nǫ 1

2−nI(U1;W1|Q)−2nǫL1
. (103)

Similarly to (86)-(90), we may write

A4 = E





∑

(un
1
,wn

2
)∈B4

[E(un
1 , w

n
2 )|E ∩ F ∩G]



 (104)

≤
L2

L1
2nH(U1)2−nI(U1,X1,W2;Y1,V2|W1,Q)+7nǫ (105)

≤
L2

L1
2nH(U1)2−nI(X1,W2;Y1,V2|W1,Q)+7nǫ (106)
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where (106) follows from the same reason as (91).

We have similar probability of error calculations at Receiver 2. Since

P n
e ≤ EQn[P 1

e + P 2
e ], (107)

for this achievability scheme, as long as the following equations are satisfied,

H(U1) ≤ I(X1;V2, Y1|W2, Q), (108)

H(U1)− logL1 ≤ I(X1;V2, Y1|W1,W2, Q), (109)

H(U1) + logL2 ≤ I(W2, X1;V2, Y1|Q),

H(U1) + logL2 − logL1 ≤ I(W2, X1;V2, Y1|W1, Q), (110)

H(U2) ≤ I(X2;V1, Y2|W1, Q),

H(U2)− logL2 ≤ I(X2;V1, Y2|W1,W2, Q), (111)

H(U2) + logL1 ≤ I(W1, X2;V1, Y2|Q),

H(U2) + logL1 − logL2 ≤ I(W1, X2;V1, Y2|W2, Q), (112)

logL1 ≥ I(U1;W1|Q) and (113)

logL2 ≥ I(U2;W2|Q), (114)

for somep(q), p(w1, x1|u1, q), and p(w2, x2|u2, q), the probability of error is arbitrarily small for

sufficiently largen.

By Fourier-Motzkin elimination, we obtain the sufficient conditions given in Theorem 2.

APPENDIX III

PROOF OFLEMMA 1

We first start with the proof of achievability. Fix distributionsp(s1s), p(x1|s1s), p(s2s) andp(x2|s2s).

For codebook at Transmitterk, k = 1, 2, we generate an inner codebook of2NRks i.i.d. codewords of

lengthN with probability
∏N

i=1 p(sks,i). Then, for each codeword of the inner codebook, we generate

an outer codebook of2NRkp i.i.d. codewords of lengthN with probability
∏N

i=1 p(xk,i|sks,i). For

Wks = wks andWkp = wkp, Transmitterk sends thewkp-th codeword of thewks-th outer codebook.

For decoding, Receiver 1 finds the codeword in all possible outer codebooks that is jointly typical

with the received sequence and thew2s-th codeword of the inner codebook of Transmitter 2. Similarly

for Receiver 2. The probability of error analysis follows from standard arguments [29], and we can

24



show that the probability of error can be driven to zero asN → ∞, as long as the rates satisfy the

following conditions:

R1p ≤ I(X1; Y1|S1s, S2s), (115)

R1s +R1p ≤ I(X1; Y1|S2s), (116)

R2p ≤ I(X2; Y2|S1s, S2s) and (117)

R2s +R2p ≤ I(X2; Y2|S1s). (118)

For eachn, similarly to [1, Theorem 5], by treating the interference channelpn(yn1 , y
n
2 |x

n
1 , x

n
2 ),

which is a product channel ofp(y1, y2|x1, x2), as a memoryless channel, we conclude that the rates

satisfying the following conditions are achievable for anyn:

R1p ≤
1

n
I(Xn

1 ; Y
n
1 |S

n
1s, S

n
2s), (119)

R1s +R1p ≤
1

n
I(Xn

1 ; Y
n
1 |S

n
2s), (120)

R2p ≤
1

n
I(Xn

2 ; Y
n
2 |S

n
1s, S

n
2s) and (121)

R2s +R2p ≤
1

n
I(Xn

2 ; Y
n
2 |S

n
1s), (122)

i.e., any rate quadruplet(R1s, R1p, R2s, R2p) ∈ Gn is achievable. By the definition of the capacity

region, the limiting points ofGn are also achievable, and thus, we have proved the achievability of all

the points inCI .

We next prove the converse. For any
(
2nR1s , 2nR1p, 2nR2s , 2nR2p, n

)
code, denote its input to the

channel as random variablesXn
1 andXn

2 and the output of the channel as random variablesY n
1 , Y n

2 .

Arbitrarily chooseM1s
△
= 2nR1s n-letter sequencesu1s

1 , u1s
2 , · · · , u1s

M1s
all in X n

1 , andM2s
△
= 2nR2s

n-letter sequencesu2s
1 , u2s

2 , · · · , u2s
M2s

all in X n
2 . Form a one-to-one correspondence betweenW1s, W2s

andSn
1s, S

n
2s, respectively by

pn(Sn
1s = un|W1s = w1s) =





1 if un = u1s
w1s

, w1s = 1, 2, · · · ,M1s

0 otherwise
(123)

pn(Sn
2s = un|W2s = w2s) =





1 if un = u2s
w2s

, w2s = 1, 2, · · · ,M2s

0 otherwise
(124)
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By Fano’s inequality [29], we have

nR1p = H(W1p) = H(W1p|W1s,W2s) (125)

= I(W1p; Y
n
1 |W1s,W2s) +H(W1p|Y

n
1 ,W1s,W2s) (126)

≤ I(W1p; Y
n
1 |W1s,W2s) +H(W1p|Y

n
1 ,W2s) (127)

≤ I(W1p; Y
n
1 |W1s,W2s) + nδ(P n

e ) (128)

≤ I(Xn
1 ; Y

n
1 |W1s,W2s) + nδ(P n

e ) (129)

= I(Xn
1 ; Y

n
1 |S

n
1s, S

n
2s) + nδ(P n

e ) (130)

whereδ(x) in (128) is a non-negative function approaching zero asx → 0, (129) follows from data pro-

cessing inequality [29] because the distributions factor as p(w1p)p(w1s)p(x
n
1 |w1p, w1s)

p(w2p)p(w2s)p(x
n
2 |w2p, w2s)p(y

n
1 |x

n
1 , x

n
2 ) and satisfy the Markov chain relationship(W1p,W1s) → (Xn

1 ,W2s) →

Y n
1 , and (130) follows from the definitions of the sequencesSn

1s andSn
2s in (123) and (124), respectively.

We also have

nR1s + nR1p = H(W1s,W1p) = H(W1s,W1p|W2s) (131)

= I(W1s,W1p; Y
n
1 |W2s) +H(W1s,W1p|Y

n
1 ,W2s) (132)

≤ I(W1s,W1p; Y
n
1 |W2s) + nδ(P n

e ) (133)

≤ I(Xn
1 ; Y

n
1 |W2s) + nδ(P n

e ) (134)

= I(Xn
1 ; Y

n
1 |S

n
2s) + nδ(P n

e ) (135)

where (134) follows from the same reason as (129), and (135) follows from the same reason as (130).

Similarly, we have

nR2p ≤ I(Xn
2 ; Y

n
2 |S

n
1s, S

n
2s) + nδ(P n

e ) (136)

nR2s + nR2p ≤ I(Xn
2 ; Y

n
2 |S

n
1s) + nδ(P n

e ). (137)

Hence, we have proved that for alln,

(R1s − δ(P n
e ), R1p − δ(P n

e ), R2s − δ(P n
e ), R2p − δ(P n

e )) ∈ Gn. (138)

Since the regionCI as defined in (33) containsGn for everyn [1, Theorem 5], we have

(R1s − δ(P n
e ), R1p − δ(P n

e ), R2s − δ(P n
e ), R2p − δ(P n

e )) ∈ CI (139)
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for all n. For codes whereP n
e → 0 asn → ∞, we have

(R1s, R1p, R2s, R2p) ∈ CI (140)

sinceCI is closed [1, Theorem 5]. This concludes the converse part ofthe proof.

APPENDIX IV

PROOF OFTHEOREM 3

The achievability part of the proof is straightforward. If (34) holds, then there exists a rate quadruplet

(R1s, R1p, R2s, R2p) in the interior ofC such thatH(Vk) ≤ Rks andH(Uk|Vk) ≤ Rkp for k = 1, 2.

Transmitterk first compressesVk into indexWks with rateH(Vk), and thenUk|Vk = vk into index

Wkp(vk) into rateH(Uk|Vk), for all vk in the typical set. Then the indices can be transmitted reliably

over the channel since(R1s, R1p, R2s, R2p) is in the capacity region of the underlying interference

channel with message side informationW1s at Receiver 2 andW2s at Receiver 1.

To prove the converse, we write

nH(U1|V1) = H(Un
1 |V

n
1 ) = H(Un

1 |V
n
1 , V

n
2 ) (141)

= I(Un
1 ; Y

n
1 |V

n
1 , V

n
2 ) +H(Un

1 |Y
n
1 , V

n
1 , V

n
2 ) (142)

≤ I(Un
1 ; Y

n
1 |V

n
1 , V

n
2 ) +H(Un

1 |Y
n
1 , V

n
2 ) (143)

≤ I(Un
1 ; Y

n
1 |V

n
1 , V

n
2 ) + nδ(P n

e ) (144)

≤ I(Xn
1 ; Y

n
1 |V

n
1 , V

n
2 ) + nδ(P n

e ) (145)

where (144) follows from Fano’s inequality andδ(x) is a non-negative function approaching zero as

x → 0, and (145) follows from the data processing inequality, in other words, from the Markov chain

relationship(Un
1 , V

n
1 ) → (Xn

1 , V
n
2 ) → Y n

1 . We can also write

nH(V1) + nH(U1|V1) = nH(U1, V1) (146)

= nH(U1) (147)

= H(Un
1 ) (148)

= H(Un
1 |V

n
2 ) (149)

= I(Un
1 ; Y

n
1 |V

n
2 ) +H(Un

1 |Y
n
1 , V

n
2 ) (150)

≤ I(Un
1 ; Y

n
1 |V

n
2 ) + nδ(P n

e ) (151)

≤ I(Xn
1 ; Y

n
1 |V

n
2 ) + nδ(P n

e ) (152)
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where (147) follows becauseV1 is a deterministic function ofU1, and (151) follows from Fano’s

inequality, and (152) follows from the same reasoning as applied to (145). Similarly, we have

nH(U2|V2) ≤ I(Xn
2 ; Y

n
2 |V

n
1 , V

n
2 ) + nδ(P n

e ) and (153)

nH(V2) + nH(U2|V2) ≤ I(Xn
2 ; Y

n
2 |V

n
1 ) + nδ(P n

e ). (154)

Hence, from (145), (152), (153) and (154), we have

(H(V1)− δ(P n
e ), H(U1|V1)− δ(P n

e ), H(V2)− δ(P n
e ), H(U2|V2)− δ(P n

e )) ∈ Gn (155)

which by the same reasoning as applied to (139) and (140), forcodes whereP n
e → 0 asn → ∞, we

have

(H(V1), H(U1|V1), H(V2), H(U2|V2)) ∈ CI (156)

which concludes the proof.

APPENDIX V

PROOF OFLEMMA 2

Due to the fact that the proof of this lemma is very similar to the proof of the capacity region in

[13], we omit certain details. For notational convenience,denote the channel ofp(y1|x1) as V̄1 and

the channelp(y2|x1, x2) as V̄2, where

V̄1(a|b) = Pr{Y1 = a|X1 = b}, (157)

and

V̄2(c|b, d) = Pr{Y2 = c|X1 = b,X2 = d}. (158)

A. Converse Result

The converse result derived in this subsection is valid for any Z-interference channel satisfying

Condition 1. The tool that we are using comes from the following lemma.

Lemma 3: [30, page 314, eqn (3.34)]

For anyn, and any random variablesY n andZn andW , we have

H(Zn|W )−H(Y n|W ) =

n∑

i=1

(H(Zi|Y
i−1, Zi+1, Zi+2, · · · , Zn,W )

−H(Yi|Y
i−1, Zi+1, Zi+2, · · · , Zn,W )). (159)
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Since the rate triplets(R1s, R1p, R2p) is achievable, there exist two sequences of codebooks 1 and 2,

denoted byCn
1 andCn

2 , of rateR1s+R1p andR2p, and probability of error less thanǫn, whereP n
e → 0

asn → ∞. Let us defineXn
1 andXn

2 be uniformly distributed on codebooks 1 and 2, respectively.

Let Y n
1 be connected viāV n

1 to Xn
1 , Y n

2 be connected viāV n
2 to Xn

1 andXn
2 .

We start the converse with Fano’s inequality [29],

nR1p = H(W1p) (160)

≤ I(W1p; Y
n
1 ) + nδ(P n

e ) (161)

≤ I(W1p; Y
n
1 |W1s) + nδ(P n

e ) (162)

= H(Y n
1 |W1s)−H(Y n

1 |W1s,W1p, X
n
1 ) + nδ(P n

e ) (163)

= H(Y n
1 |W1s)−H(Y n

1 |X
n
1 ) + nδ(P n

e ) (164)

= H(Y n
1 |W1s)−

n∑

i=1

H(Y1i|X1i) + nδ(P n
e ) (165)

where (162) follows from the fact thatW1s andW1p are independent, (163) follows from the fact that

without loss of generality, we may consider deterministic encoders, (164) follows from the Markov

chain relationship(W1s,W1p) → Xn
1 → Y n

1 , and (165) follows from the memoryless nature ofV̄ n
1 .

We also have

nR1s + nR1p = H(W1p,W1s) (166)

≤ I(W1p,W1s; Y
n
1 ) + nδ(P n

e ) (167)

≤ I(Xn
1 ; Y

n
1 ) + nδ(P n

e ) (168)

≤
n∑

i=1

I(X1i; Y1i) + nδ(P n
e ) (169)

where (168) follows from the data processing inequality [29]. Furthermore, we have

nR2p = H(W2p) = H(W2p|W1s) (170)

≤ I(W2p; Y
n
2 |W1s) + nδ(P n

e ) (171)

≤ I(Xn
2 ; Y

n
2 |W1s) + nδ(P n

e ) (172)

= H(Y n
2 |W1s)−H(Y n

2 |X
n
2 ,W1s) + nδ(P n

e ) (173)

≤
n∑

i=1

H(Y2i)−H(Y n
2 |X

n
2 ,W1s) + nδ(P n

e ) (174)

≤ nτ −H(Y n
2 |X

n
2 ,W1s) + nδ(P n

e ) (175)
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where (170) follows from the independence ofW2p andW1s, (172) follows from the Markov chain

relationshipW2p → (Xn
1 ,W1s) → Y n

2 , (174) follows from the fact that conditioning reduces entropy,

and (175) follows from the definition ofτ in (35).

Let us define another channel,V̂2 : X1 → Y2, as

V̂2(t|x1) = V2(t|x1, x̄2), (176)

where x̄2 is an arbitrary element inX2. Further, let us define another sequence of random variables,

T n, which is connected viâV n
2 , the memoryless channel̂V2 usedn times, toXn

1 , i.e., Ti → X1i →

T{i}c , X1{i}c , X
n
2 , Y

n
1 , Y

n
2 . Also definex̄n

2 as then-sequence with̄x2 repeatedn times. It is easy to see

that

H(Y n
2 |X

n
2 ,W1s) =

∑

xn
2
∈Cn

2

2nR1s∑

w=1

1

2nR1s

1

2nR2p
H(Y n

2 |X
n
2 = xn

2 ,W1s = w) (177)

=

2nR1s∑

w=1

1

2nR1s
H(Y n

2 |X
n
2 = x̄n

2 ,W1s = w) (178)

=

2nR1s∑

w=1

1

2nR1s
H(T n|W1s = w) (179)

= H(T n|W1s) (180)

where (178) follows from the fact that the channel under consideration satisfies condition 1, and (179)

follows from the definition ofT n.

By applying Lemma 3, we have

H(T n|W1s)−H(Y n
1 |W1s) =

n∑

i=1

H(Ti|Y
i−1
1 , Ti+1, Ti+2, · · · , Tn,W1s)

−H(Y1i|Y
i−1
1 , Ti+1, Ti+2, · · · , Tn,W1s). (181)

Furthermore, since conditioning reduces entropy, we can write

H(Y n
1 |W1s) =

n∑

i=1

H(Y1i|Y
i−1
1 ,W1s) ≥

n∑

i=1

H(Y1i|Y
i−1
1 , Ti+1, Ti+2, · · · , Tn,W1s). (182)

Define the following auxiliary random variables,

Wi = Y i−1
1 , Ti+1, Ti+2, · · · , Tn,W1s, i = 1, 2, · · · , n. (183)

Further defineQ as a random variable that is uniform on the set{1, 2, · · · , n} and independent of

everything else. Also, define the following auxiliary random variables:

W = (WQ, Q), X1 = X1Q, Y1 = Y1Q and T = TQ. (184)
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Then, from (181) and (182), we have

n−1 (H(T n|W1s)−H(Y n
1 |W1s)) = H(T |W )−H(Y1|W ) and (185)

n−1H(Y n
1 |Ws) ≥ H(Y1|W ). (186)

Due to the memoryless nature ofV̄ n
1 and V̂ n

2 , the fact thatQ is independent of everything else, and

the Markov chain relationshipTi → X1i → Y1i, for i = 1, 2, · · · , n, the joint distribution ofW , X1,

Y1, T satisfies

p(w, x1, y1, t) = p(w)p(x1|w)V1(y1|x1)V2(t|x1, x̄2). (187)

From (185) and (186), we may conclude that there exists a number γ ≥ 0 such that

1

n
H(T n|W1s) = H(T |W ) + γ,

1

n
H(Y n

1 |W1s) = H(Y1|W ) + γ. (188)

By combining (165), (169), (175), (180), (187), and (188), and allowing n → ∞, we obtain the

following converse result: for any Z-interference channelthat satisfies Condition 1 and the case where

Receiver 2 has side informationW1s, the achievable rate triplets(R1s, R1p, R2p) must satisfy

R1p ≤ H(Y1|W ) + γ −H(Y1|X1), (189)

R1s +R1p ≤ I(X1; Y1) and (190)

R2p ≤ τ −H(T |W )− γ, (191)

for some numberγ ≥ 0 and distributionp(w)p(x1|w), where the mutual informations and entropies

are evaluated usingp(w, x1, y1, t) = p(w)p(x1|w)V1(y1|x1)V2(t|x1, x̄2).

B. Achievability Result

The achievability result derived in this subsection is valid for any Z-interference channel. We design

a codebook at Transmitter 1 such that the inner codebook carries the side information at the Receiver 2,

i.e.,W1s, and part ofW1p, and the outer codebook carries the remaining part ofW1p. More specifically,

the inner codebook is of rateR1s + γ, and the outer codebook is of rateR1p − γ. Then, we have the

achievable rate region as the union over allp(w)p(x1|w)p(x2) of

R1p ≤ H(Y1|W ) + γ −H(Y1|X1) (192)

R1s +R1p ≤ I(X1; Y1) (193)

R2p ≤ I(X2; Y2|W ) and (194)

R2p ≤ I(W,X2; Y2)− γ, (195)
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where the mutual informations are evaluated using

p(w, x1, x2, y1, y2) = p(w)p(x1|w)p(x2)V1(y1|x1)V2(y2|x1, x2).

C. Capacity Region

Making use of Conditions 1 and 2 in the exact same way as in [13,Section V], we can show

that the converse result in (189)-(191) and the achievability result in (192)-(195) are the same for

Z-interference channels satisfying Conditions 1 and 2, andhence the capacity regionCI in this case

is given in Lemma 2.
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