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Abstract

The problem of joint source-channel coding in transmitimdependent sources over interference channels
with correlated receiver side information is studied. Wkeath receiver has side information correlated with
its own desired source, it is shown that source-channel sedaration is optimal. When each receiver has side
information correlated with the interfering source, suéfit conditions for reliable transmission are provided
based on a joint source-channel coding scheme using thepagitéeon encoding and partial decoding idea of
Han and Kobayashi. When the receiver side information istardenistic function of the interfering source,
source-channel code separation is again shown to be opthea special case, for a class of Z-interference
channels, when the side information of the receiver facimgrference is a deterministic function of the

interfering source, necessary and sufficient conditiomsrétiable transmission are provided in the form of
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single letter expressions. As a byproduct of these jointc@ahannel coding results, the capacity region of a

class of Z-channels with degraded message sets is alsalptbvi

Index terms:Interference channel, joint source-channel coding, veceside information, source-

channel separation theorem
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. INTRODUCTION

The wireless medium is shared by multiple communicatiomesys operating simultaneously, which
leads to interference among users transmitting over thes seequency band. In the simple scenario
of two transmitter-receiver pairs, the interference clefbh] models two simultaneous transmissions
interfering with each other. In the classical interfereratennel model, the sources intended for
each receiver are independent of each other, and the rexalezode based only on their own
received signals. On the other hand, in applications suckeasor networks, it is reasonable to
assume that the receivers have access to their own codebgervations about the underlying source
sequences as well. These correlated observations at th&veex can be exploited to improve the
system performance.

Even in the absence of side information, a finite letter exgiom for the capacity region of an inter-
ference channel in the general case is unknown. We have plagitaregion in the case of interference
channels with statistically equivalent outputs [2]-[4isatete additive degraded interference channels
[5], a class of deterministic interference channels [Gipraf interference channels [7]-[11], a class
of degraded interference channels [12], and more receotlq Class of Z-interference channels [13].
The best known achievable rate region is due to Han and Kebay8], a simplification of which is
given in [14].

In a point-to-point scenario, the availability of corredtside information at the receiver is con-
sidered in [15]. It is shown that the source-channel sejmaraheorem applies in this simple setting
and, moreover, that Slepian-Wolf source coding followeddmannel coding is optimal. With the
availability of side information at the receiver, we cannBmit the source reliably over a channel
with smaller capacity than the one required when there isegeiver side information. However, it
is known that the source-channel separation theorem ddegemeralize to multi-user channels [1],
[16], and necessary and sufficient conditions for reliakld@gmission in the case of correlated sources
and correlated receiver side information are not known inegal. In [17], necessary and sufficient
conditions are characterized for broadcasting a commornceaw multiple receivers with different
correlated side information. An alternative achievapiitheme for the setup of [17] is given in [18].
In [19], the results of [17] are extended to broadcast chianwéh degraded message sets in which
the receivers have access to parts of the underlying messAgailability of messages or message
parts at the receivers of broadcast channels from the chaodéng perspective is studied also in
[20]-[22]. In [23], broadcasting a pair of correlated sasgavith correlated receiver side information

is studied.



The interference channel with correlated sources is censilin [24], and a sufficient condition
for reliable transmission is given. In [25], an interfererchannel with independent sources, in which
each receiver has access to side information correlatelu té interfering transmitter’s source, is
considered. Necessary and sufficient conditions for thispsare characterized under the strong
source-channel interference conditions, which generdhe usual strong interference conditions by
considering correlated side information as well. The restu]25] shows that interference cancellation
is optimal even when the underlying channel interferenasotsstrong, as long as the overall source-
channel interference is.

In this paper, we extend the scenario studied in [25] to meretal interference channels. We first
consider the case in which each receiver has side informatorelated with the source sequence it
wants to decode. We prove the optimality of source-chanoeé separation in this situation; that is,
the optimal performance can be achieved by first compressaoh of the sources using Slepian-Wolf
coding with respect to the correlated receiver side infdiona and then transmitting the compressed
bits over the channel using an optimal interference chacoet.

Next, we consider the scenario in which each receiver has isibrmation correlated with the
interfering transmitter’s source. As an example of such a@e&hand to illustrate the benefits of side
information about the interfering source, consider theesmre case in which each receiver has access
to the message of the interfering transmitter. Note that sietup is equivalent to the restricted two-
way channel model of Shannon, whose capacity is charaetkiiz [1]. In this case, each receiver
can excise the interference from the undesired transinditece its message is exactly known at the
receiver. Here, we consider the more general case of agbit@relation between the receiver side
information and the interfering source, and propose a jstnirce-channel coding scheme similar to
that of Han and Kobayashi [9] taking the side informatioriatcount. Later, we consider the case in
which the side information is a deterministic function oé timterfering source, and show that source-
channel code separation is again optimal. Finally, we ctamsa special class of interference channels
called Z-interference channels, in which only one recefaees interference. Further focusing on a
special class of Z-interference channels satisfying cedanditions (which will be stated later), and
the case in which the side information is a deterministictiom of the interfering source, we are able
to characterize necessary and sufficient conditions faabig transmission in the form of single letter
expressions. This setting also constitutes an example fichathe general sufficiency conditions we
provide are also necessary, proving their tightness fdarespecial cases.

The rest of the paper is organized as follows. In Sediibn lpvesent the system model. In Section



[Twe prove the optimality of source-channel code separatvhen the side information is correlated
with the desired source. The case in which the side infoomais correlated with the interfering
source is considered in Sectignl V. In Section IV-A, we pdavisufficient conditions for reliable
transmission, while in Sectidn IViB, we prove the optimalif source-channel code separation when
the side information is a deterministic function of the nféeing source. In Sectidn IVAC we show that,
for a special source and channel model, the sufficient camgitfor reliable transmission proposed in
Section IV-A are also necessary, and hence we give a singé¥ leharacterization of the necessary
and sufficient conditions for this model. In Sectioh V we cterize the capacity region of a class

of Z-channels with degraded message sets. This is followecbhclusions in Section VI.

II. SYSTEM MODEL

An interference channel is composed of two transmitteeiver pairs. The underlying discrete
memoryless channel is characterized by the transitionghitity p(y1,y2|z1,x2) from finite input
alphabetY; x X to finite output alphabed; x ),. Transmitterk has access to the source sequence
{Uki}2,, k = 1,2. Consider side information sequencgs, ;}:°,, where the source and the side
information sequences are independent and identicaltyilwlised (i.i.d.) and are drawn according to
joint distributionp(us, v1)p(usg, v2) over a finite alphabet; x V; x Uy x Vs; that is, the two source-side
information pairs are independent of each other.

For k = 1,2, Transmitterk observed/; and wishes to transmit it noiselessly to Receivesvern

uses of the cham&lThe encoding function at Transmitteris
iUy — X

We assume that the side informatidff,, is available at receivek, wheren(-) is a permutation
of {1,2}. Depending on the scenario, we will specify whether the siftermation is correlated with
the desired source or with the interfering source.

The decoding function at receivérreconstructs its estimaté,, from its channel output and side

information vector using the decoding function

IHere we use the notatiotl;’ = (U1, ..., Uk,n), and similar notation for other length-sequences.
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Fig. 1. Interference channel model in which the receivergeh@ccess to side information correlated with the sourcg went to

receive.

The probability of error for this system is defined as

Pr = PH{(UUR) # (U, UM},

e

= > put )P {(07,05) # (i up)| (U7, U) = (uup) |
(ul ul ) eup xug

Definition 1: We say that a source pdit/;, Us) can be reliably transmitted over a given interference
channel if there exist a sequence of encoders and decodergy, g7, g5) such thatP — 0 as
n — 0Q.

In the following sections, we consider two cases in paréiculn the first case, each receiver has

side information correlated with its desired source, i€¢k) = k, k = 1,2. In the second case, each
receiver has side information correlated with the inténgrsource, i.e.;r(1) = 2 and 7(2) = 1.
In both cases, we want to exploit the availability of cortethside information at the receivers. In
the first case, each transmitter needs to transmit lessmiattton to its intended receiver due to the
availability of correlated side information. In the lattesse, the side information is used to mitigate
the effects of interference.

For notational convenience, we drop the subscripts on jibttyadistributions unless the arguments

of the distributions are not lower case versions of the spwading random variables.

IIl. SIDE INFORMATION CORRELATED WITH THE DESIRED SOURCE

In this section, we consider an interference channel in wlgiach receiver has side information
correlated with the source it wants to decode, i.e., recéivkeas access to side informatidf (see
Fig. ). For this special case, we prove that the sourcer@iaseparation theorem applies; that is,

it is optimal for the transmitters first to apply Slepian-Wesburce coding to compress their sources
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Fig. 2. Interference channel model in which the receiversteccess to side information correlated with the sourcéeirterfering

transmitter.

conditioned on the side information at the correspondirgiver, and then to transmit the compressed
bits over the channel using an optimal interference chacodé¢. Note that, in the general case, we do
not have a single-letter characterization of the capaeityan of the interference channel, yet we can
still prove the optimality of source-channel code sepamatin the proof, we use the-letter expression
for the capacity region, which was also used in [26] to prdwe @ptimality of source-channel code
separation for a multiple access channel with receiver isitemation and feedback. The main result
of this section is the following theorem.

Theorem 1:SourceslU; and U, can be transmitted reliably to their respective receivessr dhe
discrete memoryless interference chanwief, y»|z1, z2) with side informationV, at receiverk, k =
1,2, if

(H (U1|V1), H(U2|V2)) € int(C) (1)

whereint(-) denotes thenterior, andC denotes the capacity region of the underlying interference
channel.
Conversely, if(H(U,|V}), H(Us|V3)) ¢ C, then source$/; and U, cannot be transmitted reliably.
Proof: A proof of Theorenill is given in AppendiX . [ |

V. SIDE INFORMATION CORRELATED WITH THE INTERFERING SOURCE

In this section we consider the case in which Receiver 1 hassactol, while Receiver 2 has
access to/, i.e., each receiver has side information about the intedetransmitter's source (see
Fig.[2). We investigate how the side information about therfierence helps in decoding the desired

information.



A. Sufficient Conditions for Reliable Transmission

We first provide sufficient conditions for reliable transsis of the sources. In the spirit of the
Han-Kobayashi scheme for the classical interference alawe propose a joint source-channel coding
scheme that requires the receivers to decode part of theferdece with the help of their side
information. In the Han-Kobayashi scheme, each transm#pdits its message into two pieces to
allow the non-intended receiver to decode part of the iaterfce. In our scheme, each transmitter
enables a quantized version of its source to be decoded by reotivers, where the unintended
receiver uses its correlated side information as well aschannel output to decode the interference
corresponding to this quantized part. Sufficient conddiéor reliable transmission in this setup are
given in the following theorem.

Theorem 2:Sourced/; andU, can be transmitted reliably over the interference chapfigl y»|z1, z2)
with side informationV; at Receiver 2 and’; at Receiver 1 if there exist random variablés and
W, such that

H(UL) <I(Xy: Va, Yi|Wa, Q), @

H(Uy) <I(X2; V1, Ya|[W1,Q), (3)

H(Uy) <I(Wy, X1; Vo, Y1|Q) — I(Uz; W|Q), (4)

H(Up) <I(Wy, X3 V1, Y2|Q) — I(Uy; W1Q), (5)

H(U1) + H(Us) <I(Xy; Vo, Ya[Wh, W2, Q) + (W1, Xo; Vi, Y2|Q), (6)
H(Ur) + H(Us) <I(X2; V1, Ya|W1, W2, Q) + I(W2, X1; V2, Y1(Q), (7)
H(Uy) + H(Us) <I(W1, Xo; V1, Y2[Wa, Q) + I(Wa, X1; Vo, Vi[W1, Q), (8)
H(Uy) + H(Uz) <I(Wa, X15 V2, Y1|Q) + I(W1, Xo; V1, Ya|Wa, Q) — 1(Ur; W1 |Q), 9)
H(Uy) + H(Uz) <I(Wr, X2; V1, Y2|Q) + T(W2, X35 V2, Y1[Wh, Q) — 1(Uz; W2|Q), (10)
2H(Uy) + H(Uy) <I(Wa, X1; Vo, Y1|Q) + I(Xy; Va, Yi[Wi, Wa, Q) + T(Wh, Xa; Vi, Ya[Wa, Q), (11)
H(Uy) + 2H (Us) <I(Wy, Xa; V1, Ya|Q) + 1(Xo; Vi, Ya|[ Wi, Wa, Q) + I(Wo, Xy; Vo, YV1[Wh, Q), (12)

for somep(q), p(w1, z1|u1, q), andp(ws, z2|us, ¢), where the entropies and mutual information terms

are evaluated using the joint distribution

p(CI;Ul,U1,U27U2,w1,w2,$1,$2,y17y2) = p(q)p(ul,vl)p(uz,vg)p(wl,x1|u1,q)p(wg,x2|u2,q)

p(yl,y2|x1,x2). (13)



Proof: A proof of Theorenmi R is given in AppendixIl. [ |

We remark here that the achievability scheme in the prooft@ofeni2 uses joint source-channel
coding and hence, similarly to [16] and [27], the expressimvolve joint distribution of the source
and channel variables, which potentially increases theeaahle rate region by enlarging the set
of possible joint distributions. Below in Corollafy 1, wegeide a sufficient condition for reliable
transmission based on separate source and channel codes spitit of “operational separation” as
in [17], [25], which can be obtained as a special case of Tdra@. Note that operational separation
is different from the classical (“informational”) sepdaat, in which each source is first assigned to
an index and then these indices are transmitted using amalpthannel code for the underlying
channel. Operational separation corresponds to separatithe source and the channel variables as
in Corollary[1 without using the optimal source or the chdrooeles (see [25] for further details and
examples).

Corollary 1: Sourced/; andU, can be transmitted reliably over the interference chapfigl y»|x1, 22)
with side informationV; at Receiver 2 and; at Receiver 1 if there exist random variabWsl,Wl
and W,, W, such that

H(Uy) <I(Xy;Y1|Wa, Q), (14)
H(UL) + I(W 33 UV, Q) <I(Xy, Was Y11Q), (15)
H(Us) <I(Xa; Ya| W1, Q), (16)
H(Uy) + I(Wy; Ur Vi, Q) <I(Xa, Wy; Ya|Q), (17)

H(Uy) + H(Us) — I(W1; V1|Q) <I(X1;K|W1,W27Q) +I(W17X2;Y2|Q)a (18)
H(Uy) + H(Us) — I(Wa; Va| Q) <I(Xa: Ya| Wy, Wa, Q) + I(Wa, X1;11Q), (19)

H(U)) + H(Us) — I(W; i|Q) — T(Wa; Va|Q) <I(Wy, X Ya|Wa, Q) + I(Wa, X1; V1|1, Q),
(20)

H(Uy) + H(U) + I(W; Uy [ V1, Q) — T(Wo; V2| Q) <I(va2,X1;§/i‘Q) + I(W1,X2;H|W2>Q)a (21)
H(UY) + H(Us) + I(Wa; U| Vo, Q) — I(W 13 VA|Q) <I(Wh, X3 Ya|Q) + I(Wa, X1: V1|1, Q), (22)
2H(UY) + H(Us) — I(W 15 Vi|Q) — I(Wo; Va|Q) <I(Wa, X3 Yi|Q) + 1(Xy; Y| Wi, Wh, Q)

+ I(W1, Xy Y2|Wa, Q) and (23)



H(Uy) + 2H(Uy) — I(W1; V1|Q) — I(Wa; V2| Q) <I(W17X2;Y2|Q) + I(Xo; 3@|va27%17 Q)
+](/VI72,X1;Y1|W1,Q), (24)

for somep(q), p(w;|u1, q), p(wWa|us, q), p(wy, z1|q) and p(ws, z2|q), where the entropies and mutual

information terms are evaluated using joint distribution

p(q, u1, V1, Ug, Vo, Wy, Wa, W1, Wa, T1, T2, Y1, Y2) = P(q)p(u1, v1)p(W1 |u1, q)p(ug, v2)

p(Wa|ug, q)p(wi, 21|q)p(Wa, T2|q)p(y1, yo|r1, 22).
(25)
Proof: Corollary[1 follows directly from Theorer| 2 by letting’, = (W, W}) and fixing the
distributions ap(wy, zx|ug, q) = p(Wk|uk, ¢)p(wWk, xx|q), for k=1, 2. n
The sufficient conditions in Corollafyl 1 are looser than thas Theoreni 2. However, it is not clear
whether they are strictly looser.

Remark 1:1n the special case of no receiver side information, \&.= V, = 0, by fixing W, =
W, = 0, and definingR, = H(U,) and R, = H(U,), the sufficiency conditions in Corollafy 1 boils
down to the Han-Kobayashi rate region in the form expressgd4, Theorem 2].

We do not know whether the sufficient conditions for reliatstlnsmission provided in Theorem 2
are too strong, leading to pessimistic results in generalvé¥er, in Section IV-C, we show that for
some special cases, the sufficient conditions obtainedigiwseparate source and channel coding in

Corollary[1 are also necessary, which shows that at leasteidain special cases, Theoréin 2 is tight.

B. Deterministic Side Information

In this subsection, we focus on the special case in whichitteeisformation sequencdg andV;

are deterministic functions of the sourdés and U, respectively, i.e.,
Vii = he(Ug), k=1,2, 1=1,2,--- (26)

for some deterministic functions, and h,, or equivalently we havéf (Vj|Uy) = 0 for k =1, 2.

The main result of this subsection is that when the side méion is a deterministic function
of the interfering source, the source-channel separatienrem applies; that is, it is optimal to first
perform source coding and encoll¢ into messagél;, and the remaining part df;’, denoted by
Up|Vr, into messagély,, k = 1,2, and then to transmit these messages optimally over thelyirde
interference channel(y,, y2|x1, z2) with side informationi¥;; at Receiver 2, and side information
W,, at Receiver 1.
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Fig. 3. Interference channel with message side informatiotine receivers.

First, we define the capacity region of the interference nhhwith message side information at
the receivers (see Figl 3). In this communication scendiiansmitterk has two messagdd/,, and
Wiy, Of ratesRy, and Ry, respectively, to transmit with negligible probability ofrer to Receivert,

k = 1,2, while Receiver2 has access tdl’;,, and Receiver 1 has accessiig,. All messages are

independent. A2 2nfi onfas ok p) code for this channel consists of two encoding functions,
fird1,2, -0 2nhe o 12 L0 onfe) Ly A (27)
and
fa 1,2, 2me ) s {12 onfe) (28)
and two decoding functions
gr Y x {1,220} 5 {102 00 2Rl s {12, 20 e (29)
and
gy Yy x 1,2, ... onfel s £ 9 L. onfee) g 9 L. onfiae) (30)

The average probability of error for th@"= 2nfiw onfe: onfn ) code is defined as

onRys gnfip gnRos gnliop

k= 2n<R15+R111)+R25+R2,,> DD D D P (Y way) # (wng,wiy)

wi1s=1 wip=1wos=1 wop=1

or gy (V5" wis) # (was, wap )| (Wis, Wip, Was, wop) is sen.  (31)

Definition 2: A rate quadrupletR, s, R1,, Ras, Ro,) is said to be achievable if there exists a sequence
of (2nfhs gnfie gnfle: 9nfp ) codes for whichP? — 0 asn — oco. The capacity region is defined

as the closure of the set of achievable rate quadruplets R;,, R.s, Rs,), and is denoted by;.

10



In order to show the optimality of source-channel code sajmar, similarly to Theorerhl1, we will

use then-letter characterization af; provided in the next lemma. Defing" as

1 1

g" = { (Rlsa Rlp; Ry, R2p) :Rlp < EI(X{L7 }/1”|S{st Sgs)v Ris + Rlil’ < EI<X1n’ }/1”‘5;3)’
1 1

Ry < 1(X30V7150, 830, B+ oy < L1037,

mmwm%W@mwwwwwﬁﬁ (32)

Lemma 1:The capacity region of the interference channel with messade informationid;, at

Receiver 2, and message side informati@k, at Receiver 1 is

Cr=lim g" (33)

n—o0
where the limit of the region is as defined in [1, Theorem 5].

Proof: A proof of Lemma[l is given in Appendixlil. u
Now that we have the-letter characterization of the capacity region of intesfece channels with
message side information at the receivers, we are readyow #iat the source-channel separation
theorem holds when the receivers’ side information seqeerare deterministic functions of the

interfering sources.
Theorem 3:Sourced/; andU; can be transmitted reliably to their respective receivees the dis-
crete memoryless interference chanp@);, y»|x1, z2) with side informationl; = h,(U;) at Receiver

2, and side informatiorV, = hy(U,) at Receiver 1, if
(H(V1), H(Ux[V1), H(V2), H(Us|V2)) € int(Cr), (34)

whereC; denotes the capacity region of the interference channdl mikssage side information at
receivers.

Conversely, if(H (V1), H(U1|V1), H(Vs), H(Us|V3)) ¢ C;p, then source$/; and U, cannot be trans-
mitted reliably.

Proof: A proof of TheoreniB is given in Appendix]V. u
The benefits of considering the side information samples edsrhinistic functions of the source
samples are two-fold. Firstly, the transmitters also knbe side information and they can use this
knowledge to minimize the amount of interference they caDse to this fact, we are able to achieve
any point in the capacity region of the interference chamvitd message side information. Secondly,

encoding the information o}, £ = 1,2 into the codebook at Transmittérnot only helps reduce the

11



interference at the other receiver, but also does not plagesgatra burden on Receivérto decode
Vi, asV, is a deterministic function of/,. This fact enables the converse proof of the source-channel

separation theorem.

C. Necessary and Sufficient Conditions for Reliable Trassioin for a Special Case

In Sectior IV-B, we have shown that source-channel semeraioptimal when the side information
is a deterministic function of the interfering source. Thios these cases, if the single-letter characteri-
zation of the capacity region of the corresponding interiee channel with message side information,
i.e., Cr, is known, we would have necessary and sufficient conditfongeliable transmission in a
single-letter form. However, a single-letter characteian of C; is not known in general as it is a
generalization of the capacity region of the classicalrfetence channel.

In this subsection, we consider the class of interferen@mdls studied in [13]. We show that
the Han-Kobayashi scheme is capacity-achieving for tlasscbf interference channels [13] when the
receivers have message side information, and we obtairgéedetter characterization of the capacity
region. Hence, we conclude that, for this class of interfeeechannels, when the side information is
a deterministic function of the interfering source, thefisignt conditions provided in Theorelm 2 are
also necessary, yielding a single-letter characterimatibthe necessary and sufficient conditions for
reliable transmission. This means that the achievabiisult presented in Theordm 2 is tight in some
special cases.

The special class of interference channels we focus on $rstitdsection is a class of Z-interference
channels. For the Z-interference channgl;, y»|z1, x2) can be written ag(ys|z1, x2) - p(y1|x1), i.€.,
the channel betwee; andY; is a single user channel characterizedpy, |x1). This corresponds
to an interference channel in which only the second tranemiéceiver pair faces interference. In
particular, the members of the class of Z-interference shlBnwe consider satisfy the following
conditions:

1) For any positive integer, H(Y;'| X3 = z%), when evaluated with the distributioEm? p(zh)

p(yy|zt, 2%), is independent ot} for any p(x7).

2) Definer as

7= max H(Ys). (35)

p(z1)p(x2)

Then there exists @*(z) such thatf (Y2), when evaluated with the distribution,, . p(z1)

p*(x2)p(y2|x1, 22), IS equal tor for any p(z;).

12



Please refer to [13] for intuition behind these conditiond axamples of Z-interference channels that
satisfy these two conditions.

In the next lemma, we provide a single-letter charactaomaof C;, i.e., the capacity region of
this class of Z-interference channels with message sidenrdtion. Since Receiver 1 does not face
interference, there is no benefit to having access to theisfdemation 17,,. Hence, without loss of
generality, we assumag,, = 0.

Lemma 2:The capacity region of Z-interference channels satisfy@unditions 1 and 2, with

message side informatidiy;, at Receiver 2, is characterized by

R1p+Rls S I(X17}/1>7 (36)
Ry < I(W, Xy; Y3) and (37)

for some p(w)p(z;|w), where the mutual informations and entropies are evaluaiitil the joint

distribution of the form

p(w, z1, T2, Y1, Y2) = p(w)p(x1|w)p™(z2)p(y1|21)p(Y2 |1, 22).

Proof: A proof of Lemma2 is given in Appendix]V. u
The proof of Lemmd]2 indicates that superposition encodind partial decoding is capacity-
achieving. More specifically, the codebook at Transmittes such that the inner codebook carries
the side information at Receiver 2, i.8)/;;, and part ofl};,, and the outer codebook carries the

remaining part ofit’,,.

Comparing these results in the case of side information atréteiver with the traditional Z-
interference channel [13], the rate Bf;, takes the place ofl;, which means that the message that
causes interference is reduced fréi to IW;,. Due to the fact thatl;, is available at Receiver 2,
W1, does not cause any interference and therefore its rate caratle as large as possible within the
constraint of the capacity of the channgl, |z,) depicted by[(36).

Having established the capacity region of this specialsotdsZ-interference channels with message
side information at the receiver, we next consider the jemiirce-channel coding problem for this
channel model with the assumption that each side informatanpleV; ; is a deterministic function
of the corresponding source sample;, i.e., Vi ; = hy(Uy;), fori=1,2,.-- for some deterministic
function h;. Since the first transmitter-receiver pair is interferefree, without loss of generality, we

assumé/, = 0.
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Since source-channel separation is shown to be optimal EpofBmn[8 for the source and side
information structure under consideration, we are ablehtiracterize necessary and sufficient condi-
tions for the reliable transmission of the sources in thelshhetter form using the capacity region
characterization given in Lemnha 2.

Corollary 2: For Z-interference channels satisfying Conditions 1 andrn2l side informatior/; =

h,(Uy) at Receiver 2, necessary and sufficient conditions forblditransmission are

H(U,) <I(Xy;11) (39)
H(Us) <I(W, X Ys) and (40)
H(Uy Vi) + H(Us) <I(W, Xo;Ya) + I(Xy; Y1[W) (41)

for somep(w)p(x1|w), where the mutual informations and entropies are evaluattd p(u,, vy, us,
w, T1, T2, Y1, Y2) = p(ur, v1)p(uz)p(w)p(z1|w)p*(x2)p(y1|z1)p(ye|z1, 22).
Proof: Corollary[2 follows directly from combining Theoreim 3 andrimal2. [ |

In Corollary[d, specifyV, = 0, chooseWs, = Wy = 0, W, = V4, Q = 0 and p(xs) = p*(z2).
RenamingV; asW; and using Condition 2 and the fact tha(U,) — H(V;) = H(U;|V4), we obtain a
sufficient condition which is the same as the necessary affidisnt condition specified in Corollary
[2. Hence, we conclude that in this special case, the sufficamditions described in Corollary 1 based
on separate source and channel coding are also necesseryshbws that the conditions presented
in TheorenT? are also necessary at least in certain scenarios

Corollary[2 shows how the side informatidf = h,(U;) about the interferencE; helps in reliable
transmission, and determines the most efficient way of u#mg side information: Transmitter 1
performs a separation-based encoding scheme. It firss sgitsourcel/T into V" and a remaining
part using entropy-achieving data compression technjcues thus obtains two messagé§» and
Wynvn. Then, it further splits messagé’y, v, into two parts Wipner and Woue, at ratesy and
H(U1|V1) — 1, respectively. Next, it performs superposition encodimgnsmittingWy.» and Wigner
through the inner code at raté(1;) + ~, and Woyer through the outer code at rafé(U;|V;) — .
Transmitter 2 performs separation-based source-chamukhg, first mappingU; into a message
W, and then mappindV, into a codeword of an i.i.d. codebook generated with digtidn p*(x5).
Receiver 1 decodes both the inner and the outer codes. Re&knows the side informatiovi” and
hence sees an inner codebook at an effective rate afly. It decodes the inner codeword and the
codeword of Transmitter 2 jointly using the received sigaatl the available side information about

the interference.
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The intuition obtained from the special case derived in $hissection is that one should put as much
information as possible about the side information withie inner codebook, in order to minimize

the impact of interference when the side information abbatinterference is available at the receiver.

V. Z-CHANNEL WITH DEGRADED MESSAGESETS

The result in [(36)E(38) is directly related to the capaciggion of the Z-channel with degraded
message sets, based on the intuition gained from the prodhebrem 3 in [19]. The intuition in
[19] is that when the receiver has some side information atfmiundesired message, we can set up
a new scenario in which the receiver does not have accese twidh information, and is required to
decode it. Then, when we remove the rate constraint asedomth decoding of the side information
at the receiver in the capacity region of the new scenariogetethe capacity results of the original
scenario. Therefore, the solution given [inl(36)}(38) rasles the solution of the following problem.

The channel is described by two transition probabilitiés, |x,) and p(y.|z1,x2), and satisfies
both Conditions 1 and 2. There are three independent mesBagelV,, andW,. Transmitter 1 has
messages$l;. andWW;, and Transmitter 2 has messddg. 1V, needs to be decoded at both receivers,
while W;, and W, need to be decoded only at Receiver 1 and Receiver 2, resggcti

This channel model includes the Z-interference channel sy3eaial case, when the rate 6f;.. is
zero. Compared to the definition of the Z-channel in [28],. is not only intended for Receiver 2, but
also for Receiver 1. Therefore, we call this channel modeha<Z-channel with degraded message
sets

Then the capacity region for the Z-channel satisfying Cohowlé 1 and 2, with degraded message

sets can be characterized as follows:

Ry, < I(X1; Ya|[W) +7, (42)
Ry + Ry < I(X1; Y1), (43)
Ry < I(W;Y5|X,) —~ and (44)
Ry + Rie <7 — H(Y2|W, X3) — 7, (45)

for somep(w)p(z;|w) and~y > 0 where the mutual informations and entropies are evaluasetju
plw, w1, 22,41, y2) = pw)p(asw)p* (22)p(yr]1)p(y2|21, 72). The proof of this result follows from
arguments very similar to those used in the scenario of mgessale information at the receiver

considered in Lemm@ 2.
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VI. CONCLUSIONS

We have studied the problem of joint source-channel codirigterference channels with correlated
receiver side information. In the case when the receiver sitbrmation is correlated with its desired
source, we have shown that separate design of source andethaodes is optimal. In order to
minimize the interference to the other transmitter-regepair, the transmitters should transmit only
the part of their sources that is not already known by thefresponding receivers.

For the case in which the receiver side information is catesl with the interfering source, we
have provided sufficient conditions for reliable transnaisy proposing a joint source-channel coding
scheme based on the idea of superposition encoding andlpdetoding of Han and Kobayashi. As
a special case, we have focused on the scenario in which dleeirdiormation at the receiver is a
deterministic function of the interfering source, and weéhahown that source-channel separation is
optimal for this situation as well. In both cases for whiclk thptimality of source-channel separation
is established, we have used tihvetter expression for the capacity region as a singlefetxpression
is not available in general.

Finally, for a class of Z-interference channels for whicpewposition encoding and partial decoding
is optimal in the absence of receiver side information, whies receiver facing interference has
access to a deterministic function of the interfering seuvee have shown that the provided sufficient

conditions are also necessary. Hence, the sufficient donditre tight at least in some special cases.

APPENDIX |

PROOF OFTHEOREM[I

The achievability part of the proof is straightforward. [)(holds, then there exists a rate pair
(R1, Rs) in the interior ofC such thatH (U|Vi) < Ry for k = 1,2. Each transmitter compresses its
source with respect to the side information at its own resreiVhis can be done at rafe, due to the
Slepian-Wolf theorem. Then the compressed bits can benitesl reliably over the channel since
(R1, R») is in the capacity region of the underlying interferencercie.

To prove the converse, we first provide an infinite letter egpion for the capacity region of the

interference channel given in [2]. We define

1 1
B2 L (10 ), 2100559) ) st o) = platlote) (46)
Then
C = lim E,, (47)
n—o0
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where the limit is defined as in [1, Theorem B]is a closed convex set in the Euclidean plane.

From Fano’s inequality [29], we have, far=1, 2,
H(UMUY) < nd(P), (48)

whered(z) is a non-negative function approaching zeraras 0.

Next, we write the following chain of inequalities:

LI 2 I (49)
(G ED (50)
> 1YV 1)
— ~[HEIVY) - HOTVE V) 52)
> H(U\|Vi) - H(UY|OY) 53)
> H(Uy|Vi) — 6(Pr) (54)

where [(49) follows sincé/]' — X7 — Y{* form a Markov chain, similarly[(50) follows sincg” —
U — Y]" form a Markov chain, and finally_(54) follows from Fano’s ingdity. Similarly, we can
also show

1

SIXEYE) = H(U|Va) - 6(PY), (55)
where the joint probability distribution factors agz!)p(z%).

From the capacity region given i0_(47), we see theE(U,|Vi) — (P2), H(Us|Va) — 6(P2)) € C
for all n. Then, sincej(P?) — 0 asn — oo, and from the compactness of the capacity region, we

can conclude tha?’!* — 0 implies that(H (U,|V4), H(Ux|V2)) € C. This completes the proof.

APPENDIX Il

PROOF OFTHEOREM[2

We first briefly review the notions of types and strong typtgathat will be used in the proof.
Given a distributiorp(z), the typeP,» of ann-tuple 2™ is the empirical distribution

1
Pxn == _N "
N (ala")

where N (a|z™) is the number of occurrences of the lettein ™. The set of alln-tuplesz™ with

type @ is called the type clas§ and is denoted by ™ (Q). The set ofé-strongly typicaln-tuples
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according top(z) is denoted by’ (X) and is defined by
TMX) = {x" ex":

€

N (als") ~ pla)

< 0,Ya € X and N(a|z") = 0 whenevermnp(z) = 0} :

The definitions of type and strong typicality can be extentepbint and conditional distributions

in a similar manner [30]. We have

1

~log |T7(X)| — H(X)| < (56)

for sufficiently largen. Given a joint distributiorp(x, y), if (z",y") ~ p™(z)p™(y), wherep™(z) and
p"(y) aren-fold products of the marginalg(z) and p(y), then

Pr{(z",y") € TM(XY)} < 27 nU(X:¥)=30) (57)

Now, we start the achievability proof. Fix a joint distribrt as in [18), where(uq, v1), p(us, v2),
p(y1,y2|r1,22) are given while we are free to choose(q), p(wi,zi|u,q) and
p(wa, 22|ug, q).

Codebook generatiorfFirst, generate one randomsequence;” in an i.i.d. fashion according to
p(q)-

Next, for Transmitter 1, generate a codebook of dizewith %log Ly > I(Uy; W4]Q), in which the
codewords are generated i.i.d. with distributie(,|q). This codebook is denoted Ig3}.

For each possible source outptt, count the number of codewords @, that are jointly typical
with u?. If there are at leask, 2~/ (V:W1@)=2n¢ codewords inC, jointly typical with «7?, choose one
uniformly at random, and call w7 (u?). If there are fewer thaid,, 2"/ (V1:W11Q)=2n¢ codewords o},
jointly typical with «7, randomly choose one codeword frafy to be w?(u}). The reason why we
require the number of codewords jointly typical witfj to be large is to benefit the probability of
error calculation later on in the proof. In a similar fashiove generate’?.

Define F'(u},uy) as the event that the number of € C! jointly typical with «} is larger than
L2~ (UsW1l@)=2ne and the number aby € C2 jointly typical with u3 is larger thanl,2 "1 (V2:W2l@)=2ne,
Next, we will show that

PHE (U, U3)} < 3, (58)

where ‘¢” denotes the complement.
For each(q", ut, uy) € T(QU,U,), define the random variable(i, u}) as follows:v (i, u}) is 1 if

the i-th codeword ofC! is jointly typical with v} and 0 otherwise. Then,
IO < Blu(i, uf)lg"] = Prv(i,uf) = 1lg"}y < 27 (59)

Viv(i,ut)ld"] < E*v(i,u)lq"] < Elv(i,u})] (60)
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where E and V denote the expectation and variance, respectively. FudbBne random variable

N(u}) as the number of codewords dfj, that are jointly typical withu?, i.e.,

L
N(up) =Y vli,uf). (61)
=1
Then, from [59) and (60), we have
L
L2 MW@ <BIN(uf)|q"] = > Elv(i,uf)|g"] < L2~ itilQ)tne (62)
=1
VIN(u7)lq"] ZV v(i,ut)]q"] < E[N(uf)|q"]. (63)
=1
Hence, we have
Pr{N(U?) §L12—nI(U1;W1|Q)—2nE‘qn}
= Pr{E[N(u})|q"] = N(uf) > E[N(u})[q"] — L2~ WlQ)=2ne|gny (64)

< PrH{E[N(u})|g"] = N(uf) > L2~ O¥i@mne — [ gmnlEllil@=2ne(qny - (65)

< Pr{[BIN(u)[q"] — N(up)| = Ly2 O [l Cii@)=2oc|n) - (g6)

< VIN(ut)|q"] -
>~ (L12—nI(U1;W1\Q)—nE _ L12—nI(U1;W1|Q)—2nE)2
E[N (u?)]q"] -
(L12 nI(Uy;W1|Q)— L 9—nl(Ur;W1|Q)— 2ne)2

L12 nI(U1;W1|Q)+ne

: (69)
~ (L2-nI(UiWh|Q)—ne _ L12—HI(U1;W1|Q)—2ne)2

<e€ (70)

where [65) and[(69) follows from (62), (67) follows from Clyshev’s inequality,[(88) follows from
(63), and [(7D) is true when is large enough. The same analysis appliesufpr
Hence, we have proved that

PH{F?(uf, u})lq"} = Pr{N(u}) < 1,2 UWAIQ=20¢ or N(ug) < 1,27 I(UaVai)2ne g

< 2e¢ (71)
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for all (¢",u},ul) € T*(QU,Us) and all sufficiently large:. This means that

PHF(UT, U} = Y PHE(UT, Up)|(UT, U5, Q") = (uf,uf, q")}

qn7u’iL 7ug

PR(UT, Uy, Q") = (uf,uy, ")} (72)

= > PH{FE(UT, U |(UF, U, Q™) = (u,u, q")}

(g™ ut,uz)ETH(QULU?)

-P{(UT, Uy, Q") = (uff, uz, ¢")}

+ > PH{F (UL, UN|(UT, U, Q") = (uf, u3, q")}
(g™ uf,uf)ETr(QULU2)
PH(UT,UZ, QM) = (uf,u3, q")} (73)
<%+ P{(Q"UT,U}) ¢ T (QU\UA)} (74)
<3e (75)

where [[74) follows from[(71), and_(¥5) follows whenis large enough from the asymptotic equipar-
tition property (AEP) [29].

This means that with large probability, the number of segasnointly typical withU* and U3 in
codebooks’!, andC? are larger thanl,2 "/ (ViW1lQ)=2ne gnd [,2-1 (U2:W2lQ)=2ne " regpectively. This
fact will be used in the probability of error calculation.

Codebook generatiorfFor each possible! sequence, generate onf sequence in an i.i.d. fashion,
conditioned onw?(u}), u} and ¢, according top(x;|ui,wq,q). This 2} sequence is denoted by
7 (uf, wi(ut)). The collection of allz? sequences will be denoted as the codeb@pkSimilarly, we
generate the codebodk.

Encoding When Transmitter 1 observes the sequemitat transmitsz! (uf, wi(ut)). Similarly for
Transmitter 2.

Decoding Receiver 1 finds the unique pafuy, wy), u} € U, wy € C2, such that(u?, wi(u}),

P (uf, wi(uy)), wh, yt,vy) are jointly typical and declares the first component of the pa the
transmitted source. If there are more than one pair, and itecbmponent of the pairs are the same,
then the decoder declares the transmitted source to be shedmponent. If there are more than one
pair, and the first component of the pairs are not the sametranis declared. Also, if no such pair
exists, an error is declared. Similarly for Receiver 2.

Probability of error calculation Denote by E(uf,w?) the event(u}, wi(ul), X7 (u}, w}(u})),
wy, Y V) € THU W X WoYi Valg™) for (ul,wh) € UP x C2. Further denote byw(uf, uy) the

20



event(u?, ul, wi(uy), w(uy)) € TH(UUsW1Wal|q").
Then, the probability of error at Receiver 1 conditioned@h= ¢", denoted byP!, is given by

Pr{E® (U}, wy(Us)) or | E(u’&w@} (76)

(ufr wh):up AU

SPF{EC(U{L,wSL(U@) or F*(Uy,Uy) or G*(Uy, Ug) or [ E(U?,w@} (77)

(uf wh)up AU

<Pr{E(Ul", w3 (U3)) or F(UT', Uy) or G(UT', Ug)}

+Pr{ U E(uf,w)
(

ult,wh ) uy#Up

EanG} (78)
<Pr{F°(UT, UM} + Pr{G(UI", UN|F} + Pr{E(U", w(UP))|F N G}

+E{ > MHMﬁw@EﬁFﬁm}, (79)

(ulwh):up AU
where we have used the short-hafd /' and G to denote event& (U7, wy(Uy)), F(U,UY) and
G(Uy, Uy), respectively.

The first term in[(7B) is bounded B¢ as shown by[(75). From the achievability results of multi-

terminal rate-distortion theory [31], the second term[ifl)(& bounded by for sufficiently largen.
The third term in[(7B) is bounded hyfor sufficiently largen based on the AEP [29]. Hence, from
now on, we will concentrate on the fourth term [n(79).

The fourth term in[(79) may be upper bounded by the sum of thewilmg four terms, which will
be denoted by, A,, A3, and A4, respectively:

p

A2 S° Pr{E(},wi(Us)|ENFNG) (80)
L i (ul) # wi(U7)

( )

A, 2E ST Pr{E(},wy)|ENFNG) (81)
up # U7

wy (uf) # wi(UT)

\ w3 F wy (U3') )
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A 2E Y Pr{E(}, wi(UR)ENFNG) (82)
up # U7
wf (uf) = wi (UF)

and
( )
Ay 2E ST Pr{E@},w})|ENFNG}y. (83)
up # U7
wi(u}) = wiH(UT)
L ws #wi(U3) )

First, we upper boundi;. Define the set
By = {uf e U - uy # U, wi(uy) # wi'(U7), (uf, wi(uf)) € T (ULWAY" Vo' w3 (U3)q")}. (84)
Then, we have

E {|Bl| ‘E NFN G} < onH(U1[Y1,V2,W2,Q)+negnH (W1 |U1,Y1,V2,W2,Q)+neg—nH(W1|U1,Q)+ne (85)

Hence, we may write

A =ES Y Pr{E(u},w}(U}))|ENF NG} (86)
uf€B1
< E{|Bl| max Pr{E(u’;,wg(UngmmG}} (87)

B8 s PR 0f () € T2 (Xl () (UPYIVPOIEN FOGY (@9

< E{ |Bl| max 2nH(X1\U17W1,W27Y1,V27Q)+"52_"H(X1‘Ulel’Q)—i_ne‘E NEFN G} (89)
- uteBy

< onH(U1)g—nI(Us Wi, X1:Y1,Va|Wa,Q)+5ne (90)
< onH(U1)g—nI(X1:Y1,Va|Wa,Q)+5ne (91)

where [91) follows because the distribution[inl(13) satsfiee Markov chain relationshig@/;, W) —
(X1, Wo, Q) — (V3,Y7). Next, we upper bound\,. Define the set

By = {u} € Uy, wy € Cy uf # Ut wi(uf) # wi(U7), wy # wy (Uy),
(uy, wi (uf), wy) € TH(ULWLW2|Y{"V5'q") ) (92)
Then, we have
E{|B,|} SQnH(Wz|Y1,Vz,Q)+n62—nH(W2\Q)+ne(L2 —1)

27LH(U1 ‘WQ,Yl,VQ,Q)-‘FTLEQTLH(Wl|U17W2,Y17V2,Q)+77/E2—TLH(W1|U17Q)+TLE. (93)
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Similarly to (86)-[90), we may write

A, =ES > Pr{E(u},w})|ENFNG} (94)
(ul,wh)€EB2

< 2nH(U1)L22—nI(U1,W1,X1,WQ;VQ,Yl\Q)—i—?ne (95)

— 2nH(U1)L22—nI(X1,Wg;Vg,Yl\Q)—i—?ne (96)

where [[96) follows from the same reason [ad (91). Next, we uppend A;. Define the set
Bs = {uy €li : uf # Uy, wi(uy) = wi(U7), vy € T2 (Ur|wy (U7)Y)"V5'w3 (U3)q") }- (97)

Then, we have

1

nH(U1|W1,Y1,V2,Wa2,Q)+ne
E {|83HE N F N G} S 2 HL AL 2 T2 2—nI(U1;W1‘Q)—2n6L1

(98)

which follows from the fact that we always choose randombnfrat least, 2"/ (V:W1lQ)=2n¢ chojces

to getw?(u?}). Similarly to (86)-[90), we may write

As=E{ Y Pr{E@W], wi(U3))|[ENF NG} (99)
ul€Bs
27LH(U1)
< 2—7LI(U1,X1;Y1,V2|VV1,‘/V27Q)"‘5”E (100)
S
o 2 i VW, W2, @) e (101)
S

where [101) follows from the same reason[ad (91). Finallyumeer boundA,. Define the set
By = {uf € Uy, wy € Cy xuf # Up i (uf) = i (U7), wy # wy (U3),
(u} wh) € THULWalwl (UP)YVEg")}. (102)
Then, we have

E {|B4| ‘E NFN G} §2nH(W2\Y1,V2,W1,Q)+ne2—nH(W2\Q)+ne(L2 . 1)

1
nH Uy |W1,W2,Y1,V2,Q)+ne
Qe L (103)

Similarly to (86)-[90), we may write

Ay=ES > [E@}w})|ENFNG] (104)
(u},wg)EBy
< EQnH(Ul)2—nI(U1,X17W2;Y17V2\leQ)‘”"E (105)
1
< Ly onH(Ur)9—nl (X1,W2;¥1,Va|W1,Q)+7ne (106)

1
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where [106) follows from the same reason[ad (91).

We have similar probability of error calculations at Reeei2. Since

P" < Eg.[P! + P2, (107)
for this achievability scheme, as long as the following emumes are satisfied,

H(Uy) < I(Xy; Vo, Y1[Wa, Q), (108)
H(Ur) —log Ly < I(X1; Va, Y1 Wi, W, Q), (109)

H(Uy) +log Ly < I(Ws, Xy; Vo, Y1]Q),
H(Uy) +log Ly — log Ly < I(Wo, Xy; Vo, Y1|W1, Q), (110)

H(Uz) < I(Xa; V1, Yo W1, Q),
H(Us) — log Ly < I(Xy; Vi, Ya|[Wi, Wa, Q), (111)

H(Us) +1log Ly < I(Wy, Xo; V1, Y5|Q),
(

H(Uy) +1log Ly — log Ly < I(Wh, Xo; V1, Ya| W, Q), (112)
log Ly > I(Uy; W1|Q) and (113)
log Ly > I(Uz; W2|Q), (114)

for somep(q), p(wy, z1]ui, q), and p(ws, z2|us, q), the probability of error is arbitrarily small for
sufficiently largen.

By Fourier-Motzkin elimination, we obtain the sufficientrahitions given in Theorernl 2.

APPENDIX |11

PROOF OFLEMMA [1]

We first start with the proof of achievability. Fix distriboinsp(s1s), p(z1|s1s), p(s2s) andp(za|sas)-
For codebook at Transmittér, ¥ = 1,2, we generate an inner codebook2f?+s i.i.d. codewords of
length N with probability Hiilp(sksﬂ-). Then, for each codeword of the inner codebook, we generate
an outer codebook ofN%» i.i.d. codewords of lengthV with probability [T, p(y.:|sks:). FoOr
Wis = wis and Wy, = wy,,, Transmitterk sends thewy,-th codeword of theu,,-th outer codebook.
For decoding, Receiver 1 finds the codeword in all possibkerocodebooks that is jointly typical
with the received sequence and thg-th codeword of the inner codebook of Transmitter 2. Sinylar

for Receiver 2. The probability of error analysis followsHrn standard arguments [29], and we can
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show that the probability of error can be driven to zeroNas—+ oo, as long as the rates satisfy the

following conditions:

Rip < (X413 Y1515, Sas), (115)
Ris + Rip < I(Xy;Y7]S9s), (116)
Ry, < I(X5;Ya|Sis, Sas) and (117)
Ras + Rop < I(Xo;Ya[Shs). (118)

For eachn, similarly to [1, Theorem 5], by treating the interferendeannel p" (v}, y5|zt, %),
which is a product channel of(yi, yo|z1, z2), a5 a memoryless channel, we conclude that the rates

satisfying the following conditions are achievable for any

Rip < SI(X{:V7ISE.0 S3), (119)
Ruvt Buyp < S 1(X5V7ISE), (120)
Rop < “1(X3: Y7157, 55,) and (121)
Rout Ry < ~1(X3;Y7157,), (122)

i.e., any rate quadrupleiR,,, R,,, R2s, Ro,) € G is achievable. By the definition of the capacity
region, the limiting points off* are also achievable, and thus, we have proved the achigyatsigll
the points inC;.

We next prove the converse. For aiy /i, 2nfiw 2nf2: 9nf ) code, denote its input to the

channel as random variablé§" and X and the output of the channel as random variablgsY;".

. . A . AN
Arbitrarily choosel;, = 2"+ n-letter sequences;®, us®, - - - ,ug; all in X7, and My, = 2"Hs
n-letter sequences?®, u®, - - - ,u?@s all in A7'. Form a one-to-one correspondence betwidgn s

and S7,, S%., respectively by

1 ifur=wls | w,y=12-- M;

P (ST, = u Wiy = wy,) = b (123)
0 otherwise
1 ifu”:ufus, Wos = 1,2, Mo,

P (Sy, = u"|Was = wo,) = 2 (124)
0 otherwise
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By Fano’s inequality [29], we have

nRy, = HWy,) = H(Wip|Wis, Wa) (125)
= I(Wip; YT Wi, Was) + H(Wip|Y]", Wi, W) (126)
< T (W Y1 Wi, Wag) 4 H (W [Y7", W) (127)
< T (Whp; Y [Whs, Was) +nd(PL) (128)
< (XT3 YT (Wi, Was) + nd(P) (129)
= (X1 Y7"|S1, 55,) + nd(PY) (130)

whered(z) in (128) is a non-negative function approaching zere as 0, (129) follows from data pro-
cessing inequality [29] because the distributions factos @(wi,)p(wis)p(z]|wip, wis)
P(wap)p(was ) p(xh |way, was)p(yy|xt, %) and satisfy the Markov chain relationshig’,,, Wis) — (X7, Was) —
Y;", and [130) follows from the definitions of the sequenggsandSy, in (123) and[(1214), respectively.

We also have

nRis +nRy, = HWi,, Wiy) = H(Wig, Wi, [ W) (131)
= L(Whs, Wap; Y1 [Was) + H (Wi, Wiy [Y7", Way) (132)
< I(Wh, Wip; YT | Wag) + nd(PP) (133)
< I(XT5Y("|Was) + nd(F) (134)
= [(XT5Y"[55) +nd(FY) (135)

where [13%) follows from the same reason[as129), and (I8®Ws from the same reason &s (1.30).

Similarly, we have
nly, < I(X35Y5'|SY,, S5) +nd(F)) (136)
nRys + nRyy < I(X33Y5'[S1,) + nd (). (137)
Hence, we have proved that for all
(Ris = 6(F7), Rup — 0(F), Ros — 6(PY), Rap — 6(F;")) € G, (138)
Since the regior®; as defined in[(33) containg” for everyn [1, Theorem 5], we have

(Bus = 6(PY), Bip = 0(P), Ros = 0(F), Ryp — 0(PL')) € Cr (139)
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for all n. For codes wheré’? — 0 asn — oo, we have
(Ris; Rip, Ros, Rap) € Cp (140)

since(; is closed [1, Theorem 5]. This concludes the converse paitieoproof.

APPENDIX IV

PROOF OFTHEOREM[3

The achievability part of the proof is straightforward.[3#() holds, then there exists a rate quadruplet
(Ris, Rip, Ras, Rop) in the interior ofC such thatH (V) < Ry, and H(Ui|Vi) < Ry, for k = 1, 2.
Transmitterk first compresse$/, into index Wy, with rate H(V}), and thenU; |V, = v into index
Wip(vr) into rate H(Uyx| Vi), for all vy in the typical set. Then the indices can be transmittedbilia
over the channel sincéR;,, Ry,, Ras, Ra,) is in the capacity region of the underlying interference
channel with message side informatidn, at Receiver 2 andl,, at Receiver 1.

To prove the converse, we write

H(Uy|Vi) = H(UT V") = H(UP V", Vs') (141)
= (U YV Vah) + H(UT Y Vi, Vy') (142)

< U YV Veh) + H(UT Y, Vs (143)

< (U YV, V3') + nd (P) (144)

< TXT YV V') 4+ nd (BY) (145)

where [(144) follows from Fano’s inequality andz) is a non-negative function approaching zero as
x — 0, and [145) follows from the data processing inequality, timeo words, from the Markov chain

relationship(U7, Vi*) — (X7, V5') — Y{*. We can also write

nH(Vi) +nH(Uy|Vi) = nH(Uy, V1) (146)
= nH(Uy) (147)
— H(U) (148)
= H(UTVy') (149)
= I(U; Y |V5') + H(UT YY", Vy') (150)
< (U Y'|Vy') +no(P) (151)
< I(XT; Y [VS') 4+ nd(P) (152)
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where [14V) follows becaus¥, is a deterministic function ot/;, and [151) follows from Fano’s
inequality, and[(152) follows from the same reasoning adiegpo (14%). Similarly, we have
ntl (Us|Va) < I(X35 Y3 |VY', V3') + nd(F) and (153)

nH(Va) + nH(Uy|Va) < I(X3; Yo' V") + nd(P). (154)

Hence, from [(145),[(152)[(153) and (154), we have
(H(V1) = o(P), H(UW|VA) — 0(FY), H(V2) = 6(F), H(U2|V2) = 6(F;")) € G" (155)

which by the same reasoning as applied to [139) (140xddes where”?* — 0 asn — oo, we

have
(H(V1), H(Ui|V1), H(Va), H(U2|V2)) € Cr (156)

which concludes the proof.

APPENDIX V

PROOF OFLEMMA

Due to the fact that the proof of this lemma is very similar he proof of the capacity region in
[13], we omit certain details. For notational conveniengenote the channel qf(y;|z,) asV; and

the channep(ys|z1, z,) as Vs, where
‘71(a|b) = PH{Y; = a|X; = b}, (157)
and

Va(c|b, d) = PH{Ys = ¢| X, = b, X, = d}. (158)

A. Converse Result

The converse result derived in this subsection is valid foy Z-interference channel satisfying
Condition 1. The tool that we are using comes from the follmpiemma.
Lemma 3: [30, page 314, egn (3.34)]

For anyn, and any random variablés” and Z" and W, we have

H(Zn|W)_H(Yn|W) = Z(H(ZZ|YZ_17 Zi+17 Zi+27 e 7Zn7 W)

i=1

—H(Y;|YZ_1,ZH_1,ZZ+2, 7ZnaW)) (159)

28



Since the rate triplet6R,,, R, R2,) is achievable, there exist two sequences of codebooks 1,and 2
denoted byC" andCy, of rate Ry + Ry, and R,,, and probability of error less thaf), whereP" — 0
asn — oo. Let us defineX] and X7 be uniformly distributed on codebooks 1 and 2, respectively
Let Y* be connected vid" to X7, Y;* be connected Vvid,* to X" and X7.

We start the converse with Fano’s inequality [29],

nRyy = H(W,) (160)
< I(Wipy YY) + nd(P) (161)
< LWy YY) 4 nd(P) 162)
— H(Y W) — HY Wi, Wap XE) £ nd(P) 163)
— H(YP W) — HOYPIXD) 4 nd(P2) (164)
—HYPW) — Y HYX) + (P (165)

i=1

where [(16P) follows from the fact that’,, and1¥/,, are independent, (163) follows from the fact that
without loss of generality, we may consider deterministicagers, [(164) follows from the Markov
chain relationshigWy,, Wy,) — X3 — Y7", and [165) follows from the memoryless naturelgf.

We also have

ans + anp = H(Wlp, Wls) (166)
< I(Wap, Wi YT") + nd(P) (167)
< (XT3 YY) +nd(Pr) (168)
<Y I(Xyi; Yag) + no(P)) (169)

=1
where [(168) follows from the data processing inequality] [Purthermore, we have

Ry = H(Way) = H(Way|Wiy) (170)
< I(Way VP IW) + n6(PR) ar)
< I(X3; Yy [Why) + nd (Pl (172)
— HOZIWh,) — HOPIXE, Wh,) +nd(PY) (173)
< 3" H(Ya) — HOIXE. Wha) + nd(P) (174)
=1
< nr — HYPIXP, Wh,) + nd(PY) (175)
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where [170) follows from the independenceldt, and W, (172) follows from the Markov chain
relationshipWs,, — (X7, Wis) — Y5', (I74) follows from the fact that conditioning reduces epfr,
and [I175) follows from the definition of in (35).

Let us define another channél, : X; — ), as
%(ﬂxl) = Va(t|zy, To), (176)

wherez, is an arbitrary element itk’,. Further, let us define another sequence of random varjables
T™, which is connected via72", the memoryless chann&l, usedn times, to X7, e, T, — Xy; —
Tiye, Xaqye, X3, Y, Y5t Also definez; as then-sequence witlt, repeatedh times. It is easy to see
that

27LR18

H(Yy'| X5, W) = Z Z WQ”T%H(YQ | Xy = a5, Wiy = w) (177)

zyeCy w=1
27LR18

1 —n
= Z onRis H(%n‘X;L = Zg, Wls = U)) (178)

w=1
27LR18 1
=) S H (T Wi = w) (179)

w=1

= H(T"|Wy,) (180)

where [[178) follows from the fact that the channel under weration satisfies conditidd 1, arfd (179)
follows from the definition ofl™.

By applying Lemmad13, we have
H(T" (W) =H(Y|Wi,) = Y H(GY, ™ Ty, o, T W)

i=1

- H(}/liD/li_lviri-‘rl)j—‘i-i-Qv e 7Tn7WlS)' (181)
Furthermore, since conditioning reduces entropy, we catewr

HY{"|Wi,) = ZH(YMYf_l, Wis) > ZH(YMYf_la Tiv1: Tigoy -+ s T Whs). (182)
i=1 =1
Define the following auxiliary random variables,

m:ni_laﬂ+laﬂ+27"' 7Tn7W187 Z:1727 , . (183)
Further define) as a random variable that is uniform on the $&t2,--- ,n} and independent of
everything else. Also, define the following auxiliary rantl@ariables:

W = (WQ,Q), Xl :XlQ, Yi ZHQ and T:TQ (184)
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Then, from [(1811) and (182), we have
T (H(TWh,) — H(Y[Why)) = H(T|W) — H(Y,|W) and (185)
nTLH (Y W) = H(Y W), (186)
Due to the memoryless nature Bf* and VQ” the fact that() is independent of everything else, and

the Markov chain relationshifg; — X;; — Y3;, fori =1,2,---  n, the joint distribution ofiV/, X;,

Y:, T satisfies
p(w, z1,y1,t) = p(w)p(z1|w)Vi(yi|z1) Valt|z1, T2). (187)

From [185) and[{186), we may conclude that there exists a rumb 0 such that

1 1
H(TMW,) = HTIW) +9, —H(Y?[Wh,) = HOG[IV) + . (188)

By combining [16b), [(169),[(175)[(1B0), (187), arid (18&)dallowingn — oo, we obtain the

following converse result: for any Z-interference charthelt satisfies Condition 1 and the case where

Receiver 2 has side informatidir;;, the achievable rate triplets?,;, R1,, R2,) must satisfy

R, + Ry, < I(Xy; V) and (190)
Ry < 7 — H(T|W) — 7, (191)

for some numbery > 0 and distributionp(w)p(z,|w), where the mutual informations and entropies

are evaluated using(w, x1,y1,t) = p(w)p(@1|w)Vi(yi|21)Va(t|z1, Zo).

B. Achievability Result

The achievability result derived in this subsection isdddir any Z-interference channel. We design
a codebook at Transmitter 1 such that the inner codebooiesdhe side information at the Receiver 2,
i.e., Wi, and part ofi?;,,, and the outer codebook carries the remaining paitgf More specifically,
the inner codebook is of ratB;, + v, and the outer codebook is of raig, — v. Then, we have the

achievable rate region as the union overzglb)p(z|w)p(z2) of

Ry, < HYi|W) + v — H(Y1| X)) (192)
Ris + Ry < (X33 Y3) (193)
Ry < 1(X5;Ya|W) and (194)
Ryp < I(W, X33 Y3) — 7, (195)
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where the mutual informations are evaluated using

p(w7$17$27y1ay2) = p(w)p(wl|w)p(m2)‘/1(y1\x1)‘/2(y2\x1,xg).

C. Capacity Region

Making use of Conditions 1 and 2 in the exact same way as in $E8tion V], we can show
that the converse result ih_(189)-(191) and the achiewghiéisult in [192){(195) are the same for
Z-interference channels satisfying Conditions 1 and 2, lagnice the capacity regiaty in this case
is given in LemmaR2.
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