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Abstract—We examine the capacity of beamforming over a
single-user, multi-antenna link taking into account the oerhead
due to channel estimation and limited feedback of channel ate
information. Multi-input single-output (MISO) and multi- input
multi-output (MIMO) channels are considered subject to black
Rayleigh fading. Each coherence block containd, symbols, and
is spanned byT training symbols, B feedback bits, and the data
symbols. The training symbols are used to obtain a Minimum
Mean Squared Error estimate of the channel matrix. Given ths
estimate, the receiver selects a transmit beamforming veat from
a codebook containing2? i.i.d. random vectors, and sends the
corresponding B bits back to the transmitter. We derive bounds
on the beamforming capacity for MISO and MIMO channels
and characterize the optimal (rate-maximizing) training and
feedback overhead T and B) as L and the number of transmit
antennasN; both become large. The optimalV; is limited by the
coherence time, and increases a5/ log L. For the MISO channel
the optimal 7'/L and B/L (fractional overhead due to training
and feedback) are asymptotically the same, and tend to zerota
the rate 1/log N:. For the MIMO channel the optimal feedback
overhead B/L tends to zero faster (asl/log® N;).

Index Terms—BIlock fading, channel capacity, channel estima-
tion, limited feedback, multiple-input multiple-output ( MIMO).

I. INTRODUCTION

and Michael L. HonigFellow, IEEE

that takes into accourtioth imperfect channel estimation at
the receivetand limited channel state feedback.

We focus on single-user MISO and MIMO links with rank-
one precoders (beamforming), and study the achievablasate
a function of overhead for channel estimation and chana#g st
feedback. Our objective is to characterize the optimal arhou
of overhead and the associated achievable rate, and to show
how those scale with the system size (i.e., as the number of
transmit and/or receive antennas become large). Motivayed
practical systems, a pilot-based scheme for channel estima
is assumed. Given a finite coherence time, the number of
antennas that can be used effectively is limited by the chlann
estimation error and quantization error associated with th
transmit beam. We show how the optimal (rate-maximizing)
number of transmit antennas scales with the system size.

More specifically, an independent identically distributed
(i.i.d.) block Rayleigh fading channel is considered in which
the channel parameters are stationary within each coherenc
block, and are independent from block to block. The block
length L is assumed be constant, and the transmitted code-
words span many blocks, so that the maximum achievable
rate is the ergodic capacity. Each coherence block confains
training symbols and data symbols. Furthermore, we assume
that after transmission of the training symbols, the tratiem

ITH perfect channel knowledge at the transmitter andaits for the receiver to relag bits over a feedback channel,
receiver, the capacity of a multi-antenna system witlvhich specify a particular beamforming vector. This delay,
independent Rayleigh fading increases with the number of an addition to theT" training symbols, must occur within the

tennas([1],[[2]. In practice, the channel estimate at theivec coherence block, and is therefore counted as part of thespack
will not be perfect, and furthermore, this estimate must twverheadl

qguantized before it is relayed back to the transmitter. ThisWe assume that the receiver computes a Minimum Mean
has motivated work on the performance of feedback schengsuare Error (MMSE) estimate of the channel, based on
with imperfect channel knowledgée |[3]+[9], and the desigthe training symbols, and uses the noisy channel estimate to
and performance of limited feedback schemes for Multi-tnpghoose a transmit beamforming vector. The Random Vector
Multi-Output (MIMO) and Multi-Input Single-Output (MISO) Quantization (RVQ) scheme in_[14], [16], [21] is assumed in
channels (e.g., seel[9]-[17] and the recent survey pap#y. [18vhich the beamformer is selected from a codebook consisting
All of the previous work on limited feedback assumes perfeof 27 random vectors, which are independent and isotropically

channel knowledge at the receiver. Here we consider a modgdtributed, and knowa priori at the transmitter and receiver.
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The associated codebook index is relayed usihdits via

a noiseless feedback channel to the transmitter. The dgpaci
of this scheme with perfect channel estimation is analyred i
[14], [16], [17], [21], [22]. It is shown in[[14] that the RVQ
codebook is optimal (i.e., maximizes the capacity) in thigda
system limit in which number of transmit antenn&s and B

1An implicit assumption is that the transmitter cannot leta channel by
detecting a received signal in the reverse direction, aginesTime-Division
Duplex systems (e.g., see [19]). Although the feedbackimaat is counted as
part of the coherence time, a similar penalty arises withegency-Division
Duplex model [[20].
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tend to infinity with fixed ratioB = B/N;. In [14], [23], RVQ (i.e., is not the result of an optimization), and reflects the
has been observed to give essentially optimal performanrce fikelihood that the forward channel may be quite different
systems with smallV;. Furthermore, for the MISO channelfrom the reverse (feedback) channel. Also, the scaling ef th
the performance averaged over the random codebooks caroptmal overhead and capacity with system size, given a fixed
explicitly computed|[[15]. coherence time and fixed feedback rate, is not addressed in th
The capacity with MMSE channel estimates at the receivpreceding references. Similar types of overhead and dgpaci
(with or without limited feedback) is unknowthWe derive scaling results to those presented here are presented]ifof31
upper and lower bounds on the capacity with RVQ and limiteal single-user wideband multi-carrier channel and(in [32] fo
feedback, which are functions of the number of traininthe cellular downlink based on Orthogonal Frequency Divisi
symbolsT and feedback bit$3. Given a fixed block size, or Multiple Access.
coherence timd,, we then optimize the capacity bounds over The rest of the paper is organized as follows. Secfion Il
B andT. Namely, smallT" leads to a poor channel estimatedescribes the multi-antenna channel model. Bounds on the
which decreases capacity, whereas lafdeads to an accuratebeamforming capacity for the MISO channel with channel
channel estimate, but leaves few symbols in the packet festimation and limited feedback are presented in Section
transmitting the message. This trade-off has been studiedlli] along with a characterization of the optimal (capacity-
[26], [27] for MIMO channels without feedback. Here there isnaximizing) training and feedback lengths in the largeayst
also an optimal amount of feedbaék which increases with limit. Corresponding results for the MIMO channel are pre-
the training intervall’. That is, more feedback is needed t@ented in Section IV. Numerical results for finite-size MISO
guantize more accurate channel estimates. and MIMO channels are shown in Sect[oh V, and conclusions
We characterize the optimal overhead due to training aade presented in SectiGnlVI.
feedback in the large system limit as the coherence time
and number of transmit antenn&% both tend to infinity with Il. SYSTEM MODEL
fixed ratio L = L/N;. For the MIMO channel we also let the e consider a point-to-pointi.d. block fading channel

number of receiver antennag. — oo with fixed N; /N,.. This  with N, transmit antennas and, receive antennas. A rich
allows a characterization of the achievable rate as a fﬂnctlscattering environment is assumed so that the channel ga_ins
of the number of feedback bits per degree of freedom E14]corresponding to different pairs of transmit/receive antes

For both MISO and MIMO channels the optimal normalizegye independent and Rayleigh distributed. Title N, x 1
training 7' = T'/ L, which maximizes the bounds on capacityseceived vector in a particular block is given by

tends to zero at the raté/log V;. For the MISO channel _ _ . .
the normalized feedbacl® = B/L also tends to zero at r(i) = Hob(i) +n(i)  for 1<i<D 1)

this rate. Moreover, the training and feedback require thghere I7 is an N, x N, channel matrix whose elements are
same asymptotic overhead. For the MIMOQChanneI the optimabiependent, complex Gaussian random variables with zero
B = B/L tends to zero at the rate/log” N;. Hence the mean and unit variance,is an/V; x 1 unit-norm beamforming
overhead due to feedback is lower for the MIMO channel thajctor, b is the transmitted symbol with unit variance, is

for the MISO channel. This is apparently due to the additiongqgitive white Gaussian noise (AWGN) with covariancl,

degrees of freedom at the receiver, which can compensate {fg p is the number of data (information) symbols in a block.
the performance loss associated with quantization error.

For both MISO and MIMO channels, the optimal in- A. Random Vector Quantization

creases asV;/log N;, and we observe that the associated’ . i .
capacity can be achieved by activating o/ log N, an- _In prior work [14], we have analyzed the cha_mnel capac_|ty
with perfect channel knowledge at the receiver, but with

tennas (assumingy/; increases linearly witt.). Equivalently, limited ch K ed h i ically. th
for this pilot-based scheme with limited feedback, theropti !'Mt€d channel knowledge at the transmitter. Specifically, the
optimal beamformer is quantized at the receiver, and the

number of (active) transmit antennas increased. Ag L. ed o laved back h . Gi
Hence the training and feedback overhead pose afundamz%%ﬁm'ze version is relayed back to the transmitter. Given

limit on the number of antennas that can be effectively us € quantization codebook = {vi, ..., vys }, Which is also
The capacity with optimized overhead growslag N;. This

is the same as with perfect channel knowledge; howeves th
is a second-order loss term, which increase®gsog V.

nown a priori at the transmitter, and the channHl, the
é(Fceiver selects the quantized beamforming vector to miagim
the instantaneous rate,

A similar type of model for optimizing feedback overhead v(H) = arg max {log(l + PHH’UJ'HQ)} (2)
has been previously considered in1[20]. A key difference is vi€V
that here the relation between training and channel estmatwhere p = 1/¢2 is the background signal-to-noise ratio

error is explicitly taken into account. The model we prese§NR). The (uncoded) index for the rate-maximizing beam-
is also closely related to the two-way limited feedback syserming vector is relayed to the transmitter via an error-
tem considered in_[29]/[30] (see also [19]). However, hefigee feedback link. The capacity depends on the beamforming
the feedback channel is simply modeled with a fixed ratdebook) and B. With unlimited feedback 8 — o) the
2An analysis of the error rate for MIMO links with MMSE channelv_(H) that maximizes the_ capacity is the properly normalized
estimates without feedback is given M [24].[25]. eigenvector of HT H, which corresponds to the maximum
3See also the tutorial on large random matrix thebry [28]. eigenvalue.
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We will assume that the codebook vectors are independefgments ofw have zero mean and varianeg, so thatHl
and isotropically distributed over the unit sphere. It iswh has zero mean and covariande— ¢2)1.
in [14], [21] that this RVQ scheme is optimal (i.e., maxi- The varianceo? clearly decreases af increases. Fur-
mizes the achievable rate) in the large system limit in whichermore, since the beamforming vectors during trairiifig
(B, Ny, N,.) — oo with fixed normalized feedback = B/N, are knowna priori to the transmitter and receiver, those can
and N, = N,/N;. (For the MISO channelN, = 1.) be chosen to minimize the MSE. It is shown [n[26] that
Furthermore, the corresponding capacity growdcagpN;), the corresponding set of (unit-norm) beamforming vectors
which is the same order-growth as with perfect channel knovdchieves the Welch bound with equality. We therefore have
edge at the transmitter. Although strictly speaking, RVQ ihat [33]
suboptimal for a finite-size system, numerical resultsdath b
that the average performance is often indistiguishabim fitoe VpVp =TI it T > Ny, (10)
performance with optimized codebooks|[14],1[23]. VITVT =1 if T<N,. (11)

B. Channdl Etimation ,:\reglrymg (@)-(13), we obtain the variance of the estimation
In addition to limited channel information at the transmemitt ) 1— H%, T<1

here we also account for channel estimation error at the Tw = P T>1 (12)

receiver. Letting H be the estimated channel matrix, the -

receiver selects(H) assuming thaf is the actual channel,

ie., C. Ergodic Capacity

v(H) = arg max {log(l + PHFIWHQ)} : ©)) In what follows, we assume that the forward and feedback
! links are time-division multiplexed, and each block cotssis
We will assume that the receiver computes the linear MMS# 7T training symbols B feedback bits, and data symbols.

estimate of H given the received vectors corresponding tGiven that the size of each block is symbols, we have the
T training vectors. Specifically, the transmitter transniits constraint

training symbols$r(1),-- -, br(T'), where the training symbol L=T+uB+D (13)
br(i) modulates the corresponding beamforming veete(i).
For the MISO channel the row vector @f received samples wherey is a conversion factor, which relates bits to symbols.

l+p'f )

is given by Our objective is to maximize the ergodic capacity, which is
rr = hVyBr +nr (4) the maximum mutual information betweérandr,

where the channeh is a 1 x N; row vector, Vr = max {C = E[max I(r;b|H, H,v(H))]} (14)

wr(l)---vp(T)], Br = diag{br(i)}, and ny = ne pe

[n(1)---n(T)]. The channel estimate iB = r;C, where subject to [(IB), wherg, is the probability density function
theT x N, linear MMSE channel estimation filter is given by(pdf) for the transmitted symbal and the expectation is over
the channeH,, the estimation errow, and the RVQ codebook

_ : S
¢ = arng;nE[Hh—rTC’H ) (3) V. Determining the ergodic capacity of RVQ with channel
. f 2 -1 estimation appears to be intractable, so instead we depjveru
= ViBr(VpVr+o,0) (©) and lower bounds, which are functions B, B, and7'. We
The MSE then maximize both bounds ovéD, B, T'}, subject to[(IB).

- 1
2 _ 21 — T
= E[||h; — hi||"] =1 — —tracd C"RC 7
Tu L I Ny o €@ I1l. MULTI-INPUT SINGLE-OUTPUT CHANNEL
where h; and h; are ith elements ofh and h, respectively, A. Capacity Bounds

and the received covariance matrix We first consider a MISO channel with x N; channel

Ry = E[rT rr] = BrVIiVyBl + 021 8) vector h. Applying Jensen’s inequality, we obtain the upper
r r r " bound on ergodic capacity

The preceding expressions also apply to the MIMO channel S
where the estimation is for a particular rowHf. That is,C is C= E[Hﬁx I(b;r|h,v(h), h)] (15)

replaced byC;, which is applied to theth receiver antenna, - N
and used to estimate théh row of H. The MSE for each = Eflog(1 + plhv(h) 2)] (16)
1) (17)

where the maximizing pdf is Gaussian, and the expectation

|
h)|
is over h, the estima}tion errotw, and the random codebook

element ofH therefore remains the same. < log(1 + pE[|hv(h)
Because the elements &f are assumed to be compleixd.

H=-H+w (9) V. Substitutingh = h + w into the expectation i (17) and

simplifying gives

Gaussian random variables, we have

where the estimatdd and the error matrixw are indepen- . o
dent, and each contairi.d. complex Gaussian elements. The E[|lhv(h)|*] = o2 + E[|hv(h)[?]. (18)
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Since |h||? and v £ |hw(h)2/||h||* are independenf[13], whered(N,) is shown in[ZB) and the gamma functibtrn) =

[16], we have J o tmtemt dt for m > 0.
E[lhv(h)?] = BRI EW] = (1 - 02)N:ElV].  (19) ngvtpf";'_s given in AppendixJB. We note thtN:) — 0
With RVQ we have To obtain a lower bound on capacity, we substituter? =
v= s, = PR @0 - Th capecty baunds

where thev;’s arei.i.d. with pdf given in [12]. The pdf for ~ Theorem 1: The cgpacity for a MISO channel with channel
v and associated mean can be explicitly computed [16]. TR&timation variance, and normalized feedback satisfies

mean is given by c,<c<c, for B>0andN;>2 (29)
Ev]=1-2B (23, NNt 1) (21) Wwhere
t— 52 _
C;=(1—d(N))log (1 v (1-2"B)N, ), (30
where the beta functiol(m,n) = fol tm=1(1 —¢)n~1 dt for 1=t (N2)) log ( TP + po2, ( ) t) (30)
m andn > 0. We can bound?[v] as follows. 9 5
Lemma 1: For B > 0 and N; > 2, Cu =log 1+ poy, +p(1 —0y)) N
B 1+ (=127 427N 5 1+ (y—1)27B 42BN
Ey] < 1-27F4 22 1-278 .3
V] ’ N, =1 (22) X < + N, —1 (31)
E] > 1-277 (23) The gap between the two bounds tends to zer@-as0 (since

wherey = 0.5772... is the Euler constant. both C., 2and ¢y tend to zero), and a8/, — oo. With fixed
The proof is given in Appendi&IA. We note tha[y] — 5 andoy, the bounds (and the capacity) grow @glog N;)

1—2-5 as N, — oo. Substituting [IB)I22) into(17) gives3S N; — oo. Substituting [(IR) forr? gives the bounds as a

an upper bound on capacity. function of training?". _
To derive a lower bound on capacity, we use the estimationf'9-11 compares the bounds in Theorigm 1 withl (16) and the
error equatiorh — h + w to write tighter lower bound[(26). The bounds are plotted verais

A ) with parameters3/N; = 1 (one bit per antenna coefficient),
r(i) = (hv(h))b(i) + (wv(h))b(i) + n(i).  (24) &2 = 0.15, and SNRp = 5 dB. The tighter bounds, which
(i) are analytically intractable, are evaluated by Monte Carlo
) R ) ) simulation and shown ass and x’s in the figure. The plots
Sincew andh are independent, it follows tha[z(i)b(i)] =  show that the upper bound in TheorE 1 is closéTd (16) even
0. Itis shown in[[26], [34] that replacing(i) with a zero-mean o gmall v, while the lower bound in the Theorem is close
Gaussian random variable mini_mizes the mutual informatiqg (28) for much largeiV;. Since RVQ requires an exhaustive
I(r;blh,v(h)) and therefore gives a lower bound on thgearch over the codebook, and the number of entries in the
capacity with channel estimation and quantized beamfamin.ggehook grows exponentially with the number of antennas,
The lower bound is maximized wheiti) has a Gaussian pdf, sjmyation results are not shown fof, > 12. As expected,

e, both the upper and lower bounds grow at the same rafg; as
C > Elmaxmin I(r;blh, v(h))] (25) increases.
Pb Pz
ho(h)[? B. Asymptotic Behavior
=F |log|1+ M (26) b . .
2 We now study the behavior of the optimal B and D,

and the capacity a®; — oo. With D transmitted symbols
in an L-symbol packet the effective capacif/= (D/L)C
whereD = D/N; andL = L/N;. The associated bounds are
C. = (D/L)C, andC, = (D/L)C;. From Theorent]l and

wherep, ando? denote the pdf and variance for respec-
tively. We derive the following lower bound aofi by applying
the inequality in[[35].

Lemma 2 (I2), we can writeC; andC, as functions of{T, B, D} and
E {log (1 + %|ﬁv(ﬁ)|2>] optimize, i.e., for the lower bound we wish to
max C (32)
> (1—d(V)log ( 1+ = E[lhw(h)?])  (27) penDe
= t)) 208 o2 Y subjectto 7'+ uB+ D = L. (33)

2

: (1+ i) ; (1+ v ) - (1+ ﬁ) (14 2-BNo)~ w7

1
— 2
CEEEIen)

(28)
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Capacly bounds; BN, 1, = 015ip =5 4B allocation therefore balances the reductions in capaaity d

55

Lo e 1 to estimation and quantization.

0 R S PP | The preceding analysis applies if the beamforming vectors

' Lamt during training are chosen to be unit vectors. Namely, the

4 % Siwe = . . .

It Pt matrix Vr can be taken to be diagonal, which corresponds

© 350 % (-] YT S 1 i ..
g 0°° to transmitting the sequence of training symbols over the
ET . o° et : 1 transmit antennas successively one at a time. Hence the fact
O2sr 0% o7 1 that the optimall” increases asV;/log N; implies that only
R 1 N;/log N, antennas are activated. Sinte= L/N; is fixed,

15t PRy B we conclude that as the coherence timéncreases, the opti-

ower bound eq. . .

s ==+ Lower bound (Thm. 1) , mal number of transmit antennas should increasg /dsg L.

o5l * Upper bound eq.(17) (SIM) | | The training and feedback overhead therefore reduces the

. ‘ Lo mteperond (T 8 number of antennas that can be effectively used by a factor of

0 5 10 15 20 25

N, 1/log L.

Fig. 1. The capacity bounds in Theoréin 1 (bits/channel usejug number IV. MULTI-INPUT MULTI-OUTPUT CHANNEL
of transmit antennas. In this section, we let the number of receive antenivas
scale withV;. As for the MISO channel, we can bound the

Let {T¢, Be, D¢} denote the optimal values &, B, and D, capacity with limited training and feedback as follows,

respectively, and leC denote the maximized lower bound C < C, = log(1 + po? + pEn)) (39)
on capacity. Similarly, maximizing the upper bound gives )

the optimal parameter§l’?, B2, D2} and the corresponding C = Cr = (1—c(Ny))log (1 + WE[”]) (40)
boundCS. These optimized values can be easily computed o R v

numerically, and also allow us to characterize the asyrigpptoyheren = v(H)'H'Hv(H) and

behavior of theactual capacityl (V) = =2 (a1)
Theorem 2: Let{T°, B°, D°} = arg maxr 5 py C subject K 2E|n]

to (33). AsN; — oo, whereo,, is the standard deviation of.
T°log N; — L (34) We would like to express the _boun39) and] (A_fO) as
B 1. functions of 7" and B. As discussed in Sectidn Il, the variance
B°log Ny — —L (35) of the estimation error is again given Hy [12). Although it is

_ o H difficult to evaluateE[n] explicitly for finite (N, N,., B), it
and the capacity satisfies can be computed in the large system limit as the parameters

tend to infinity with fixed ratiosN, = N,/N; and B.

C* — log(pNy) + 2loglog N = ¢ (36) Specifically, sinceH hasi.i.d. elements with variance— o2,
where( is a constant bounded by we have 1
— 1— 00 )% 42
¢ —log(14+p) SC<C° 37) N () (42)
where¢* = log(L2log(2)) — log(u(1 + p~1)) — 2. in the mean square sense, where the asymptotic receive sign

The proof is given in AppendixIC. Combining (34) al@(%yom{er with RVQ1,vq is evaluated in[[14], and is a function
with (33) gives the corresponding behavior of the data se@mé)f N andB. Therefore

De B E[n] =(1- U?u)’Yrqut + ~(Ny) (43)

=1-6(Vy) (38) . -

L where k(N;)/N; — 0. Characterizingx(N;) explicitly ap-
whered(N;)log N, /2 — 1. pears to be difficult, but this is not needed to prove the
According to the theorem, a¥, becomes large, to maxi- following theorenf] Substituting [(4B) and{12) int¢ (B9) and

mize the achievable rate the fraction bfdevoted to training 40) gives upper and lower bounds on the capadityand
and feedback tends to zero, in which case the rate increaSes respectively, as functions &f and B. Maximizing both

as log(pN;) — 2loglog N;. The achievable rate with RVQ bounds overl" and B leads to the following theorem, which
and perfect channel estimation Bllog(1 + p||h||?)], which ~characterizes the asymptotic behavior of the actual cgpaci
grows aslog(pV;). Hence the loss ofloglog N; is due to ~ Theorem 3 Let{T*, B?, D°} = arg max7 5 py C subject
imperfect channel estimatithTheorem[®2 also implies thatto (33). As(N;, N;) — oo with fixed N, = N, /Ny,

.[LB/T — 1, i..e., the fraction of the packet de\_/olted to fgedback Tlog N, —s I (44)

is asymptotically the same as that for training. This equal

_ L?log?2
_ B°log® N, —s =282 (45)
“4In what follows all logarithms are assumed to be natural. 212N,
5The capacity estimate in the theorem becomes accurate Whes large B ~
enough so thaf./ log N; is small, in which case the loss teriog log N 6We will assume thak(N:) is a smooth function of” and B for all Ny,

is greater than the constant offsgt and thatx(N¢) /N converges to zero uniformly over &l and B.
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and the capacity satisfies Ne—10.p =5 B 1

5
C° — log(pN;) + loglog N — & (46) as fwemmmmmmmmmmm=====-
where 4;,/ T
& —log(l+p) <E<EF (47) ) o~ 0= =@ = 0= =90
_ 235 =0T
and¢* = log(LN,) —log(1+p~1) — 1. = o2
The proof is given in AppendikdD. Combining_(44], {45), N R
and [33B) gives the corresponding behavior of the optimized “U&’Z,S‘f
data segment 3
_ 21 mm Tx and Rx know channel
DO = = = Rx knows channel; finite B
T = L —e1(Ne) — e2(NVy) (48) 15} Fekaous chametinte &
= @= 1+ Capacity lower bound w/ { T|° B?}
wheree; (V) log Ny — 1 and 2N’“ EQ(Nt) log N; — 1. Yo a0 60 8 100 120 140 160 180 200

Theorem[B states that the optlmal training length for the LN,

MIMO channel grows asV;/log N;, which is the same as e
for the MISO channel. Hence a¥; becomes large, only
N;/log N; transmit antennas should be activated. (All receive

Fig. 2. Achievable rate versus normalized packet length

antennas are used, since this does not change the trainir 5 Capacty lover bound, N =6; /N =106; p =5 dB =1
overhead.) _ —

TheoreniB also states that the capacity with limited trainin g 25l N \\.\.“,?o — 0N, TN,
and feedback increaseslag(pN;) — log log N;. For largeN; R I '35 -==T=8
the loss in achievable rate due to training and feedbaclether £ | !s g s
fore increases deg log Ny, as opposed t@ loglog N, for the 2 | A, :
MISO channel. This gain is due to the smaller MIMO feedback < 157:; "’2-!
overhead. Namely, because of the additional antennas éor th 5 't.
MIMO channel, the optimal normalized feedback length tends 5 e : *a
to zero at the rate / log® N;, as opposed ta/log N; for the _§ : \,
MISO channel. Note, however, that the training overheakas t S o5k "’v-,
same since the same training symbols are used to estimate tt § 5 "s‘
channel gains to all receive antennas simultaneously. ¢lenc i ‘ ‘ h

0.6 0.8 1

the ratio of optimized feedback to training overhead for the % 02 °-Z‘T+B)/E
MIMO channel “B —0asl/logN;. !

Fig. 3. Lower bound on capacity versus normalized trainind teedback
V. NUMERICAL RESULTS (T + uB)/L with different allocationsT'/(uB).

Fig.[2 shows achievable rates for the MISO channel versus
normalized coherence time = L/N; with different assump-
tions about channel knowledge at the transmitter and receivelatively robust to this choice, i.e., small deviationsnfr this
Three curves are shown: (1) the optimized lower bound ¢#lue result in a relatively small performance loss, algtou
capacity C?, (2) the capacity assuming the receiver knowe performance loss increases substantially as the @msat
the channel, but with a quantized beamformer, and (3) theécome larger. Likewise, the figure also shows that there
capacity with perfect channel knowledge at the transmittisr @ significant performance degradation whBndeviates
and recevier (optimal beamforming). Parametersiére= 10, ~ significantly fromT.
p = 5dB, andy = 1 (BPSK feedback). As expected, the The optimized training, feedback, and data portions of the
gaps between the curves diminishes to zero with increasipacket (normalized by the packet lengf)) versus N, for
coherence time, albeit slowly. This reflects the fact that thhe MIMO channel are shown in Fi§] 4. These values were
training and feedback overhead tends to zera /dsg L. obtained by numerically optimizing the capacity lower bdun

Fig.[3 illustrates the sensitivity of the capacity for the3@ and are therefore denoted &y, 7°, and D¢ in the figure.
channel to different choices for training and feedback oveBystem parameters afé, = 2, L = 50, u = 1, andp = 5
head. The lower bound’ is plotted versus the fractional over-dB. As predicted by Theoreid 3, both the optiffaland B
head(T + uB)/L with different relative allocationd'/(uB). decrease to zero, with decreasing somewhat faster tHan
Parameters aré = 100, N, = 6, u = 1, andp = 5 dB. The associated capacity lower bound is shown in [Hig. 5. Also
The solid line corresponds to optimized overh&gdand By.  shown is the capacity lower bound with the heuristic choice
The capacity is zero whel¥ + B = 0, since the estimate is of parameters3 = 1 (one feedback bit per coefficient) and
uncorrelated with the channel, and whén+ B = L, since T = 1.5 (1.5 training symbols per coefficient). Fov; = 3,

= 0. With equal amounts of training and feedback the ratee bound with optimized parameters is approximately 10%
is essentially equal to that with optimized parameters. Tlygeater than that with the heuristic choice. Those results a
peak is achieved whe(i” + B)/L = 0.1. The performance is compared with the capacity with perfect channel knowledge a
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Nr/Nt =2: L/Nt =50;p=5dB N/N,=2;LIN, =50;p=5dB;p=1
1 ‘ ‘ 8 | | | | |
0 Tx and Rx
0.9F 4 7L know channel
— Rx knows %hannel;
0.8 Optimized 0data . <+ finite B|
ength D//L 6 BT il
0.7 o ‘”__—_’__Q
=] - -
g T 5 P atas -
;"% 06- g L e Capasvl/t)z_ll_%WBeE}bound
o o . 12
< ., 4

5 o0s 5T .7 < capaciy lower bound
o For < Capacity lower boun -
= 2 v’ ~= {T/%( =15,BIN=1 ___p=="" >
-§ 0.4F 1 3 ¢ aemkn
I Optimized training Optimized fgedback R e

03f length T°/L length B,/L 1 P

! 2r [N . Optimized capacity lower bound
02k 4 or MISO channel (Nr =1)[16]
1 i i i i i i
L . 1 2 4 6 8 10 12 14 16
o $- l TogIiiog '.'.-Z PE T Ny
o ‘ ‘ ‘ ‘ itttk |
2 4 6 8 10 12 14 16
N Fig. 5.  Achievable rate for MIMO channel versus number ohsrait

antennasN; with different assumptions about channel knowledge at the

_ o o ) receiver and transmitter. Also shown is the optimized cipdower bound
Fig. 4. Optimized training and feedback overhead, and ifractf data for the corresponding MISO channel

symbols{T¢ /L, B?/L, D¢ /L} versus number of transmit antennas.

Nt:9; Nr/N[:Z; L/Nt: 10;p=5dB;p=1
4.5

both the transmitter and receiver, and the capacity with perfect

channel knowledge at the receianly with By feedback bits. ~ _ “| n,x' 7

This comparison indicates how much of the loss in achievable 3 .| o34 . ; i

rate for the model considered is due to channel estimation a% jof >

the receiver (including associated overhead), and how risuch 5 ° ’." e - i

due to quantization of the precoding matrix. £ .5l L ]
The results show that faV, = 3, the capacity with perfect = VR

channel knowledge at both the transmitter and receiverdstab 8 2 4% 1

40% larger than the rate with optimized feedback and trginin %3 st 'f' , ]

lengths. Knowing the channel at the receiver achieves nfost 0 g

this gain, largely due to the elimination of associatedniraj § 4 B os@ @ N egtr |

overhead. Of course, this gap tends to zero as the block siz® 4| < g=T ]

L — oco. Also shown in the figure for comparison is the > B o,

capacity lower bound for a MISO channel with optimized 5 005 01 o015 02 o0z 03 035

training and feedback lengths. This is substantially lothen (T +uB)L

that shown for the MIMO channel. From Theoreiis 2 &hd 3
the gap between the optimized lower bounds for the Mlsﬁggr
and MIMO channels increases kg log V.

Similar to Fig.[3, Fig[ b shows the capacity lower bound
versus total overhead@ + B)/L for a MIMO channel. The
solid line corresponds to optimized parameters witk= 10,

N, =9 N, =2 =1,andp = 5 dB. The curves are
obtained by numerical optimization. For the case consitlere
these results show that the rate achieved with equal peribn We have presented bounds on the capacity of both MISO
training and feedback is close to the maximum (correspandiand MIMO block Rayleigh fading channels with beamforming,
to optimized training and feedback). Allocating the overthe assuming limited training and feedback. For a large number o
according to the asymptotic results in Theolgm 3, i.e. ki transmit antennas, we have characterized the optimal amoun
uB/T = Llog2/(2uN,log N;), performs marginally better of training and feedback as a fraction of the packet duration
than allocating equal training and feedback. The total opssuming linear MMSE estimation of the channel, and an
timized overhead in this case (& + B)/L =~ 0.2. The RVQ codebook for quantizing the beamforming vector. Our
performance degrades whéh deviates significantly fronT"  results show that the optimized training length for both RIS
(as shown by the curve corresponding B = 27). (The and MIMO channels increases &§/log N;, which can be
three curves shown are not extended(# + B)/L = 1 interpreted as the optimal number of transmit antennas to
since the simulation complexity associated with RVQ insesa activate. The ratio of optimized feedback to training oeearth
exponentially with B.) Compared with the results for thetends to one for the MISO channel, but tends to zero as
MISO channel in Fig.3, the capacity for the MIMO channel i&/ log N; for the MIMO channel, since additional receiver
somewhat more robust with respect to variations in overheaahtennas improve robustness with respect to quantization e

. 6. Lower bound on beamforming capacity for MIMO chanwetsus
malized training and feedback” + ©B)/L.

VI. CONCLUSIONS
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The loss in capacity due to overhead increasédsgleg NV, for  gives
the MIMO channel, and alog log N, for the MISO channel.

Although the pilot scheme considered is practical, it is (1+ l) e =1- 11 + 5 Ny 2%
most likely suboptimal. That is, in the absence of feedback n Ny—1n  2i(N;—1)*n
such a pilot-based scheme is strictly suboptimal, althduigh NN 1) 1 L. (54)
nearly optimal at high SNR< [26]. Computing the capacity 3I(Ny —1)3 n3
of the block fading channel considered with feedback and 1
. : . >1— —— (55)
no channel knowledge at the receiver and transmitter is an n(Ny —1)

open prqblem. Consequently, alt_hough the optimal (Capacwsince the magnitude of each term [n](54) is decreasing. We
maximizing) number of transmit antennas should still be

limited by the coherence time, the growth rate may diffenfro dso ex?and
the L/ log L growth rate shown here for the pilot scheme. (Q*B)ﬁ
The model and analysis presented here can be extended 1 5 N, —2 B
in a few different directions. A natural generalization bet =l-N = 7(1=277) = (N, —1)° (1-277)
MIMO beamforming model is to allow a general transmit (N; — 2)(2N; — 3) _
precoding matrix with rank greater than one. The additional 31N, — 1)3 (1—278) — (56)
overhead should impose a limit on both the number of beams 1 K ) )
and antennas that can effectively be used. Also, the powers > 1 — I [(1-27F)+(1-275)
allocated to the training and data portions of the coherence t i; X
block can be optimized in addition to the fraction of overthea +(1=277)P 4] (57)
symbols. Finally, feedback and training overhead becomes _ 1_ 1 (23 —1) (58)
especially important in multi-user MIMO scenarios, such as Ny —1 '
the ceIIuIar_ dOV\_/nllnk. The optl_mal ove_rhead scallng_ W'”Substituting [(5B),[(55), and (58) intb (52) yields
coherence time in those scenarios remains to be studied.
1
nB(n,1+
( Ni = 1)
B
APPENDIX >9-B(1__1T7 1— 1 o2 -1
- ( Nt—l n(Nt—l) Nt—l
A. Proof of Lemma [Tl (59)
— 1 —
—B B —B
We need to evaluat€ (21). Letting= 27, we first bound 22 [1 TN, — 1(2 —l+y+2 )} ‘ (60)
The inequality [[6D) holds foiV; > 2 and B > 0. Therefore
nB (n, 1+ )
Ne—1 Ey]=1-28B (23,1+ ! ) (61)
nl'(n)l (1 + ﬁ) N — L _
= (49) 5 14+ (y—1)2"B 4 27BN 62
P (n+1+5ts) <1-277+ N 1 . (62
_ 1 ['(n+2) To show [2B), we derive the following upper bound
=T 1+ (50)
Ny —1 (n+UFOr+L+N£J 1
) ‘ nB (n, 1+ 5 1)
__1 t—
>T(1+ +1) M1 51
> < Nt_1>(n ) (51) _F(1+ 1 > I(n+1) (63)
= N -1 1
= <1+ L > <1+l) T - B(14 i) (52) F(n+1+Nt—1)
N —1 n 1 N —ﬁ
<T(l14—— —_—t 64
8 (*Nt—1><”+2<Nt—1>) ©y

where we have useB(p, ¢) = I'(p)T'(¢) /T (p+q), the identity L

[(k+1) = kT'(k) for k € N, and the inequality'(k+1)/T'(k+  _ 1+ 1 14 Ny N1 -

x) > k7% for 0 < = < 1 [36]. SinceI'(z) is convex for Ny — 2n(Ny — 1) '

x € [1,2], for Ny > 2, (65)
The inequality [(64) is shown in_[37]. Since every factor in

1 I'(1) gl (59) is less than or equal lude th
r(1 > T(1 _1_-_ 7 53 B qual to one, we conclude that
(+Nt—1) R ) N1 ©3

1 —
nB (n,1+ N 1) <27 B, (66)
wherey = 0.5772... is the Euler constant. Expanding the e

second factor on the right-hand side [0fl(52) in a Taylor seriand combining with[{61) gives the lower bourd](23).
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B. Proof of Lemma[2
Sincelog (1 + U—lzX) is concave forX € [0,00) and

1 1
tli)rgo n log (1 + ;t) =0, (67)

z

we can apply the following inequality i [35]

E {log (1 + %X)]
> <1 _ %) log (1 + O_%E[X]) . (68)

Now setX = Av, whereA £ ||h||? andv £ |hv(h)|?/||h||%.

Since A and v are independent, and using the relation

(E|X — E[X]])* < var[X], we obtain
E|X — E[X]| var[X]
2E[X] ~ 2E[X]

1 |E[A?] E[?]
"2\ EPA B2 L (70)

(69)

Substituting [(8D) and_(51) int¢_(¥8) gives

var(v]
2 L +1*ﬁ
N-—1)\"TN 172
2
-T2 (1 )"~
(+Nt_1)(n+)

B 2
— 9 2B(l+w =) | (1
i N, -1
__2

§I‘<1+

(81)

(82)

2

D) ]

(83)

Each element irh is i.i.d. with a complex Gaussian distri- Since the second factor i_(65) is less than or equal to one,

bution. Henced is Gamma distributed so that

gg—‘?ﬁ -1+ Nit (71)
To evaluateE[v?]/E?[v] in (Z0) we first compute
B[(1-v)’]
= [[a-vrnea (12)
= [ 1 (- ey
x (L—v)N72] dv (73)

where f,(-) is the pdf forv, and is given in[[16]. Applying
the change of variableg= (1 — v)+~! gives

1
El-vf =n [ ¢¥i-gr i (74)
0
2
_nB<n,1—|—Nt_1). (75)
Therefore
var[v] = E[v?] — E?[v] (76)
_ _ _ 2
=nB <n,1—|— Nt—l) (1 - E]) (77)
— B (n1+—2 2B (n 14—
=n n, N, —1 n n, N, 1)
(78)
Applying the inequality in[[3[7], we have
2
nB (n,l—i—Nt_l)
_ <1+ 2 > I'(n+1) (79)
Ne=1 F("+1+ Nf—l)
2 1 1\ meT
< — - .
_r(1+Nt_1><n+Nt_1+2) (80)

we have

Ey]>1-T (1 + 1t 1) o Bltwi=r),  (84)

=

Finally, combining [[ZD), [(A1), [(83), and[(84) gives
E|X — E[X]|/(2E[X]) < d(NNy) in ([28), which completes
the proof.

C. Proof of Theorem[2

We first maximize the upper bound given by

D
D P — _B D
(86)
where
1+p )2 -T 1+ (y—1)2 842 BN

T(1 —2-B)N, (N, —1)(1 —2-B)

The expression for? in (I2) with T < 1 has been used
in (88), since we will show thal’ — 0 as Ny — oco. We
wish to characterize the behavior of the optimal parameters
{T°,B%,D%} asN; — .

The Lagrangian is given by

L=C,+NL—-T—uB—D) (88)

where \ is the Lagrangian multiplier. Setting the partial
derivatives ofL with respect taD, T', B, and X to zero gives
the necessary conditions

log (1 +pp_1> +log(T) + log(1 — 27 5) + log N,
+log(1+r(Ne)) —LA=0 (89)
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Q + ( D ) ‘%(Jyt) —_IA=0 (90) Following similar steps to optimize the lower bourid1(30)
T L+7(Ne)) OT gives
Dlog?2 D or(Ny) - | . _
251 (1 n r(Nt)) og =0 (O ¢ log N, —>1L, (102)
L-T—-uB—-D=0. (92) Bf log Ny — ;E. (103)

Substituting [(3D),[(92), and the expression féngV—*) into (89) (Here we must show thal(V;) in (28) tends to zero uniformly
gives over allT and B.) The optimized lower bound satisfies

C; —log(pNy) + 2loglog Ny
— log(L*log2) — 2 — log[u(1 + p~ )] — log(1 + p).

TlogNt—i-Tlog(l _1>+Tlog(1—23)

+ TlogT + Tlog(1 + r(Ny)) (104)
— (LT - uB) <1 _ (L+p71)? _ ) . (93) Since the optimized bounds grow wifi, at the same rate,
(14 7(N))(1 = 2-B)TN, the capacity must also grow at that rate. Hence we conclude

that the parameters that maximize the capacity exhibit the

1 733 70
We first observe thafl — 27 )TN, — 0o as Ny — co. asymptotic behavior stated in the theorem.

Otherwise, it easily verified from[{86) thaf’, must be

bounded by a constant. However, this is clearly suboptimal,

since if B andT are constants, thef, grows asO(log N;). D- Proof of Theorem[3

This observation implies that(V;) — 0. Similar to the proof of Theoreifn 2 in AppendiX C, we first
As N; — oo, the right-hand side of (93) convergesfio- optimize the upper bound given by

T — uB, so that [9B) impliesT’ — 0. As N; — oo, @3) b

therefore implies Cy = T log <1+7_1T'yrvq]\7t> 7 log(1+s(NV¢)) (105)

TlogN; — L — uB. (94)  where

Combining [90) and{91) gives s(N) = (L+p ) +d+ p_Dr(N) =T (106)
TVrqut ’

_ 1 log2 - 1
B= log log (1 + P T (1 n E(M))) (95) and we have substitutetf, = 1—7/(1+p~!), corresponding
to T < 1, since we will show that the optimal normalized

where training lengthT? — 0 as N, — cc.
£(N,) = T (6r(Nt) 1 Br(Nt)) (96) The Lagrangian for this optimization problem is given by
t = —_ — = .
L+r(N)\ 0T p OB L=Cy+NL—T-puB-D) (107)

SinceT — 0, and7(N;) — 0 uniformly overT and B (so
that the derivatives il {96) must also tend to zero), it foio
that £(N;) — 0. Hence for largeV; (@5) implies that

where X is the Lagrange multiplier. The first-order necessary
conditions are

. 4 log(l+ s(N,)) — LA =0 (108)
where we have used the Taylor expansiog(1 + z) = = +
O(2?) for small z. Combining [9%) and(37), it follows that Q . ( D ) Os(Ny) Ir—o (108)
T?log N, — L, (98) B T 1+ s(]\zt) or
~ 1. D \ Ovvq D 0s(Ny) -
0 1 v U _Lua=0 (110
B2 log N; — ML. (99) (vmq> 2B T (1+5(Nt)> 0B s (110)
Substituting the optimal parameters in the capacity upper L=T—-pB-D=0 (111)
bound [86) gives Substituting [T09) and {11.1) int§ (108) gives
DO DO D? 5o _ _ _
Cco— =+ 1og(pNt) - = 1og T — 7“ log(1 — 27 Bx) T'log Nt + T log (1 +p — ) + T'log(Yrvq)
= (L+p ")+ & log(1+ r(N;)) (100) + T'log(T) + Tlog(} + s(Ny))
2 — — T aS(Nt)
whereC? denotes the optimal,,. Takmg N; — oo gives =(L—-T-uB) (1 + <1 + S(Nt)> oT ) - (112)

o Using an argument analogous to that used to show that
-1 N¢) + 2loglog N, 5O\ . .
Cu —log(pNe) + _Zg o8 Nt . (I —27P)TYN, — oo as N, — oo in Appendix [T,

— log(L”log2) — 2 —log[u(1+p~")]. (101) e can show that asV, — oo, TyewqN: — o0, which
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implies that s(N;) — 0 uniformly in 7' and B, so that
(1+3T(Nt)) 2sL) 0. Taking N; — oo therefore gives

assuming thaB3? — 0, which will be proved next.
Substituting [200) intd (110) to eliminateand rearranging
gives

a"Yrvq !
Yrvq ) B

= |1+ 2
? 1+s(N,) \_ oT
SinceT — 0 ands(N;) — 0,

0 -
Yrvq ( 82(1) — 0.

T%log Ny — L — 0, (113)

l Bs(Nt)
u OB

ﬂl. (114)

(115)

For0 < B < B* it is shown in [14, Theorem 3] thaty
satisfies (after some rearrangement)

(_'Yrvq) ef'VWq/NT _ _12—B/NT
e

T

(116)

where B* is given by

_ 1 _ _ _ _
B* = (N log(v/Ny) — Ny log(1 + V/N,) + \/NT)
1og2
- o (117)
We can therefore write-7,yq/ N, = W (—21275/N-) where

W (z) is the Lamberfd function. It is straightforward to show

that

'Y 3%3(1 -t _ a[log:}/rvq] -t — Vrvq - Nr

Y\ OB OB log 2
Hence from[(I15)vq/ N, — 1 asN; — oo, and substituting
in (I18) implies thatB — 0. )

To determine the first-order rate at whidd — 0, we
combine [1T4) and (118) to write
log2 -
U,

(118)

’7qu
Ny

—1= T+ O(T?) (119)
The behavior ofy,,q for small B (equivalently;y,vq /N, close

to one) can be determined by expandigx) aroundz =

e~!. Such an expansion is given in_[38], which we rewrite[g]

as

Yevg = Ny (1 +/Cp+ <B 7243\/ +0(¢y* )
o (120)
where(g = 2(1 — 2= B/Nr) = (210g 2)(B/N,) + O(B?) for
small B. Hence we have

rv 21 2
Iva g = /G4 O(C Z82V/B+0(B). (121)
N, N,
Combining this with [[T10) gives
Bt 10825, oipey. (122)

w\ 2N,

11

and substituting fofl” from (I13), we conclude that the feed-
back overhead that maximizes the upper bound on achievable
rate satisfies

T2
po—Lloe2 1, <%> (123)
2u2N, log”® N, log™ N,
Substituting for the optimize@® and B¢ in C, gives
pLN,
°o—1 N, loglog N, 1 —_— . 124
Cy — log(pNi) + loglog Ny — log (e(p+1)) (124)

We can apply the same techniques to the lower bound
on achievable rate to determine the behavior of the optimal
parameters. (Here we must show tkéd;) in (41) tends to
zero uniformly over alll’ and B.) The training and feedback
overhead that maximize the lower bound on achievable rate
satisfy

TP log Ny — L (125)
_ L?log?2
BPlog? Ny —» =282 (126)
202N,

and substituting into the expression f gives

pL N,
) —log(1+
T 1)) og(1+p).
(127)
Since the lower and upper bounds grow at the same rate, this
establishes the theorem.

Cy —log(pNy) +1loglog Ny — log <
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