arxXiv:1007.3518v2 [cs.IT] 5 Aug 2010

IEEE Transactions on Information Theory, in revision ptiorreview for final approval.

Secret Key Generation for a Pairwise Independent Network Mode

Sirin Nitinawarat,Student Member, IEEEChunxuan YeMember, |IEEE
Alexander Barg, Prakash Naraydrellow, IEEE and Alex Reznik Member, IEEE

Abstract—We consider secret key generation for a “pairwise which terminals communicate on the same frequency. In a
independent network” model in which every pair of terminals  typical multipath environment, the wireless channel betwe
observes correlated sources that are independent of source each pair of terminals produces a random mapping between

observed by all other pairs of terminals. The terminals are hen the t itted and ved si s which is i .
allowed to communicate publicly with all such communicatiam e transmitted and received signals which is time-varying

being observed by all the terminals. The objective is to gemate location-specific. For a fixed time and location, this magpin
a secret key shared by a given subset of terminals at the large is reciprocal, i.e., effectively the same in both direcion

rate possible, with the cooperation of any remaining termirls.  Also, the mapping decorrelates over different time-cohege

Secrecy is required from an eavesdropper that has access e niarvals as well as over distances of the order of a few
public interterminal communication. A (single-letter) formula for wavelengths

secret key capacity brings out a natural connection betweethe L .
problem of secret key generation and a combinatorial problen The P'_N model is, in fact, a special case Of_ a gene_ral
of maximal packing of Steiner trees in an associated multiggph. multiterminal “source model” for secrecy generation stadi

An explicit algorithm is proposed for secret key generationbased by Csiszar and Narayaril[4]. The latter followed leading
on a maximal packing of Steiner trees in a multigraph; the investigations by Mauref [13][14] and Ahlswede and Caisz”

corresponding maximum rate of Steiner tree packing is thus a . . .
lower bound for the secret key capacity. When only two of the [1] of SK generation by two terminals from their correlated

terminals or when all the terminals seek to share a secret key Observations complemented by public communication.
the mentioned algorithm achieves secret key capacity in whh A single-letter characterization of secret key capacity —
case the bound is tight. . . o the largest rate at which secrecy can be generated — for the
Index Terms- PIN model, private key, public communication, - terminals in an arbitrary subsgtof M was provided in[[4]. A
secret key capacity, security index, spanning tree packingsteiner . o ) .
tree packing, wiretap secret key. part|cular|zat_|on of this (gen(_aral) SK capac_lty formulactor
PIN model displays the special feature that it can be exptess
in terms of a linear combination of mutual information terms
. INTRODUCTION that involve only mutually independent pairs of “reciprtica
Suppose that terminals, ..., m observe distinct but cor- random variables (fvs). Each such mutual information term
related signals with the feature that every pair of ternginai€Presents the maximum rate of an SK that can be generated
observes a corresponding pair of correlated signals tret aPI€lY by @ corresponding pair of terminals from only their
independent of all other pairs of signals. Following thes@¥N observed signals using public communicatior [13]/ [14]
observations, all the terminals can communicate interelgti [L]- This observation leads to the following question thsadur
over a public noiseless channel of unlimited capacity, witfain motivationCan an SK of optimum rate fpr the terminals
all such communication being observed by all the terminal8 < P& generated by propagating mutually independent and
The goal is to generate a secret key (SK), i.e., secret coffite-optimal SKs for pairs of terminals iM?

mon randomness, for a given subsétof the terminals in An examination of this question brings out points of contact
M= {1,....m} 'at the largest rate possible, with secrecpetween SK generation for a PIN model and a combinatorial

being required from an eavesdropper that observes thepulBioblem of tree packing in a multigraph. We propose an
interterminal communication. All the terminals i cooper- ©XPlicit algorithm for propagating pairwise SKs for pairk o

ate in generating the SK for the secrecy-seeking/set terminals inM to form a groupwide SK for the terminals ih.

This model for SK generation, called a “pairwise indel his algorithm is based on a maximal packing of Steiner trees

pendent network’ model, was introduced n[23] (see a|5(60r A) ir_1 a multigraph as_sociated with t_he I_DIN model. _Thus,
[22]). Abbreviated hereafter as the PIN model, it is motat Fhe maximum rate of Steiner tree packing in this multigraph

by practical aspects of a wireless communication network iy @ways a lower bound for SK' capacity. This bound is
shown to be tight when the secrecy-seeking 4etontains
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Xo = (Xo1, Xo3,..., Xom)
private key [4] also have been proposed. The former notion ® >
corresponds to the eavesdropper having additional acoess t >
terminal not in the secrecy-seeking setand from which too
the key must be concealed; this “wiretapped” terminal does ° 1
not cooperate in secrecy generation. A single-letter ahara
terization of the corresponding capacity remains unresblv °
in general but for partial results and bounds (cf. eld., [1],
[14], [29], [4], [@], [10], [5]). The notion of a private keysi m b
less restrictive, with the wiretapped terminal being akowo ¢
cooperate; the corresponding capacity is known [4]. We ergu X, = (X1 Xm2s - Xmym—1)
in Section IV below that for a PIN model these two notions
correspond to SK generation for a reduced PIN model, thereby Figure 1: The PIN Model
justifying our sole focus on SK capacity.

Basic concepts and definitions are presented in Secti
II. Section IIl contains statements of our results and ppo
specifically, the SK capacity for the PIN model is given i
Section IlI.A, the connection of SK capacity with Steinezer
packing is treated in Section IlIl.B, and with spanning tr
packing in Section Ill.C. Concluding remarks and pointers
a sequel paper are contained in Section IV. s(K;F) =log|K| — H(K|F)

The following basic concepts and definitions are frarn [4],
. Givene > 0, for rvs U, V, we say thatJ is e-recoverable
ri;om V if Pr{U # f(V)} < e for some functionf (V') of

. With the rvs K and F representing a secret key and the
e%avesdropper's knowledge, respectively, informatiorotatc
secrecy entails that the security ingex

be required to be small, whe#€ is the range ofK and|. |
denotes cardinality. This requirement simultaneouslydees

~ We shall be concerned throughout with a PIN model, whicly 14 pe nearly uniformly distributed and nearly independent
is a special case of a general multiterminal “source modwl” f ;¢

secrecy generation with public communication (see [14], [1
[4], [B]). Suppose that terminals,...,m, m > 2, observe
n independent and identically distributed (i.i.d.) repetis

Il. PRELIMINARIES

Definition 1: Given any setd C M of size|A| > 2, a rv
K constitutes an-secret key {-SK) for the set of terminals
A, achievable with communicatioR, if K is e-recoverable

0~fnthe vs Xl""LXm’ dgnoted by X{',..., Xy, where from (f(i",F) for eachi € A and, in addition, it satisfies the
Xr = (Xan) i€ M = {L...m} Bach oo condition

v X;, i € M, is of the form X; = (X;;, j € M\{i}) s(F;F) < e. 1)
with m — 1 components, and the “reciprocal pairs” of rvs

{(X;,X;i), 1 <i<j<m} are mutually independent. See The condition [(L) corresponds to the concept of “strong”
Figure 1. Thus, every pair of terminals i is associated Secrecy in whiche = e, = o, (1) [15], [4], [5], as distinct
with a corresponding pair of rvs that are independent #om the earlier “weak” secrecy concept which requires only
pairs of rvs associated with all the other pairs of termthate, = o(n) [14], [1].

nals. All the rvs are assumed to take their values in finite Definition 2: A numberR is an achievable SK rate for a
sets Following their observation of the random sequencest of terminalsA C M if there existe,-SKs K™ for A,

as above, the terminals iM are allowed to communicate achievable with communicatioR, such that

among themselves over a public noiseless channel of uslimit 1

capacity; all such communication, which may be interactive e — 0 and E10g|’C(n)| — R as n— oc.

and _conducted n myltlple rounds, is Qbser.ved by all th1ehe largest achievable SK rate fdris the SK capacity’(A).
terminals. A communication from a terminal, in general, can o , ;

be any function of its observed sequence as well as all puevio | "US: by definition, the SK capacity fod is the largest
public communication. The public communication of all théate of arv that_ IS recov_erable_at each terr_nlnalﬁllrﬁrqm _the
terminals will be denoted collectively b§f — F(™). information available to it, and is nearly uniformly digited

The overall goal is to generate shared secret commaﬂd effectively concealed from an eavesdropper with access

randomness for a given setC M of terminals at the largest to the public intertermipal cqmmunication; it need not. be
rate possible, with the remaining terminals (if any) coagieg  concealed from the terminals i = M\ A that cooperate in

in secrecy generation. The resulting secret key must bedhat€Crecy generation.

by every terminal inA; but it need not be accessible to the A single-letter characterization of the SK capaoftyA),
terminals not inA and nor does it need to be concealed frort € M, for a general multiterminal source model, of which
them. It must, of course, be kept secret from the eavesdropfte PIN model is a special case, is provided.in [4]. An upper
that has access to the public interterminal communicati@@und forC(A) in terms of (Kullback-Leibler) divergence is

F, but is otherwise passive, i.e., unable to tamper with thsO given therein and shown to be tight in special casesseThe
communication. results play material roles below.

1Al logarithms are to the base 2.



[1l. RESULTS randomization can serve to enhance secrecy generation for

Our main results are the following. First, we obtain, upofertain models (cf. e.g [21])

particularizing the results of [4], a (single-letter) e@psion  proof: The proof entails an application of the formula for
for C(A) for a PIN model, in terms of a linear combinationsk capacity in [[4], [5] to the PIN model. FoB € B(A),

of mutual information terms that involve only pairs of “rpei denoteX 5 = (Xz i e B). From (8, Theorem 3.1]

rocal” rvs {(X;;, X;;), 1 <14 # j < m}. Second, stemming ’ ' ’

from this observation, a connection is drawn between SK(A) =

generation for the PIN model and the combinatorial problém o B B L

maximal packing of Steiner trees in an associated multigrap (Xl, o 7Xm) - max Z ApH (XB|XBc) o
Specifically, we show that the maximum rate of Steiner tree BeB(A)

packing in the multigraph is always a lower bound for SK - ) .
capacity. Third, for the casel| = 2 (when the Steiner tree FOF the PIN model, sinceX; = (Xi;, j &€ M\{i}), we
becomes a path connecting the two verticesijrand for the ©PServe inl(#) that

caseA = M (when the Steiner tree becomes a spanning tree), f(X,,...,X,,) = H {(Xij, Xj0) hr<icj<m)
the previous lower bound is shown to be tight. This is done B I X )_( L 5
by means of an explicit algorithm, based on maximal path - Z (Xij, Xji) ®)

packing and maximal spanning tree packing, respectiviedy, t 1si<jsm

forms an SK out of independent SKs for pairs of terminals. land ~ ~
fact, the maximum rate of the SK thereby generated equals the H(Xp|Xp:) = H(Xm) — H(XBe)
previously known upper bound for SK capacity [4] mentioned

above. = Z H (X5, Xji) — Z H(Xij, Xji)
1<i<j<m 1<i<j<m,
A. SK Capacity engene
We first give the SK capacitg’(A) for the PIN model. For T Z H(Xi5)
A C M, let i€B¢,jeB

= Y HXiyXp)+ > H(XylX;). (6)
1<i<j<m, i€B, jeBC
i€B,jeB

B(A)={BC M: B#0, B A}

and B;(A) be its subset consisting of thode € B(A) that
containi, i € M. Let A(A) be the set of all collections A straightforward manipulation of{4), usingl(5)] (6), géve
A={Ag: B € B(A)} of weightsO < A\p < 1, satisfying

C(A) = min Z H (Xij,in)

> Ap=1 forall ieM. ) reAw) | £
BeEB;(A) o
) . | > s | H(Xy, X0
Proposition 3.1: For a PIN model, the SK capacity for a BEB(A):
set of terminalsd C M, with |A| > 2, is i€B,jeB
C(A) =
| X s | H(XylX;0)
BeB(A):
. i€B,jeBe
\min Z > s [ IX AX) |- (3)
1<i<j<m BeB(A):
eB.jene — | > s | H(XulXy) |-
Remark:(i) It is of interest in [3) that the SK capacity for ifgf(ji)é
a PIN model depends on the joint probability distribution of ’
the underlying rvs only through a linear combination of th&ince, by (2),
pairwise reciprocal mutual information terms. Ap =1 — Ap =1 — A
(i) We note from [4, Theorem 3] that additional independent BE%(:A): o BE%(:A), o Be%(:A): b
randomization at the terminals iM, enabled by giving i€B,jEB ieB, jeBe i€Be, jeB
them access to the mutually independent Ns, ..., M,,, we get
respectively, that are independent alsd &f*, ..., X" ), does C(A) =
not serve to enhance SK capacity. Heuristically speaking,
the mentioned independence of the randomization forces any H(Xi;, X ;i)
additional “common randomness” among the terminalsiin min Z Z g _H(%.&.i)
to be acquired only through public communication, which xeA(A4) 1<ici<m | BEB(A): —H(XjJi|XZj) ’

is observed fully by the eavesdropper. On the other hand, i€B, jeBe



thereby completing the proof. B a PIN model, consider a sequence of associated multigraphs

G — E®) ., Where E(™) i h
An upper bound had been established for SK capac% (M, ), n €N}, where » REN, is suc

Lo ate;; = nl(X;; A Xj;). We termsup,, ¢ 2u(A4,G™) as
for a general multiterminal source modell [4, Example 4 he maximum rate of Steiner tree packiig the multigraph

This bound was expressed in terms of the (Kullback-LeibIe@ — (M, E). The connection between SK generation for the
divergence between the joint distribution of the rvs defjrtime PIN model and Steiner tree packing is formalized below.
underlying correlated sources and the product of the (mafyi

distributions associated with appropriate partitionshele rvs,
thereby measuring the minimum mutual dependence amon
the latter. The bound was particularized to the PIN model in
b[@], and is restated below in a slightly different form thal C(A) > sup 1 (A, G™) (8)
e used subsequently. neN T
Let P be a partition ofM = {1,...,m}, and denote the ¢ every A C M;
number of atoms of° by |P|. T

Theorem 3.3: For a PIN model,
%) the SK capacity satisfies

(i) when |A| = 2, the SK capacity is

Lemma 3.2 [23]: The SK capacity”'(4), A C M, for the C(A) = sup 1 (A, G™)
PIN model is bounded above according to neN
= C"(A). 9)
c4) <
Remarks{i) The inequality in[[8) can be strict, as shown by
C(A) £ min < 1 > Z I(X;; A X;;)|, @aspecific example in a sequel pager [17]. See also the remark
P \IP|-1 1<icj<m following Theorem 3.4 for a heuristic explanation.
(i,7) Crossesp (i) An exact determination ofi(A, GG) is known to be NP-

) ) o o M) hard [3]. A nontrivial upper bound fqi(4, G), similar in form
where for a fixedP, a pair of indices(i, j) crossesP if i o (7), is known[[12, paragraph 5 of Section 1]. This bound can
and j are in different atoms of°. The minimization in the pg extended to yield an upper bound fap, . - L 1(A, G(™))

right side of [7) is over all partitionsP of M for which \hich, in general, is inferior to that provided lay(A) in (8).
every atom ofP intersectsA.

Proof: (i) The proof consists of two main steps. In the first
step, fix ane > 0 that is smaller than every positive
I(XijAnXji), 1 <4< j < m.Each pair of terminals, j with

. . . Xii N X s 0, generates a (pairwise) SK;; = K™ of
There exists a natural connection between SK generation ﬁcgr J i) >0, 9 (pairwise) J i

the PIN model and the combinatorial problem of tree packin 'ZGE"Z%X” /\deit)' . f)J bits, using public communication
in an associated multigraph. ij = I, and satisfying

B. SK Capacity and Steiner Tree Packing

LetG = (V, E) be a multigraph, i.e., a connected undirected s(Kij; Fij) = on(1); (10)
graph with no selfloops and with multiple edges possible be- )
tween any vertex pair, whose vertex $8t= M = {1,....m the existence of such an SK follows frorh [15]. The SK

and edge sefl = {e;; > 0, 1 < i < j < m}, where achievability _scheme in [15] consists_ of a “weak” SK gener-
ei; is the number of edges connecting the pair of vertic@¢ed by Slepian-Wolf data compression, followed by “privac
ij, 1<i<j<m. amplification” to extract a “strong” SK. Note by the definitio
of the PIN model that{(K;;, F;) }1<i<j<m are mutually
Definition 3: For A C M, a Steiner treeof G (for A) is independent.
a subgraph of~ that is a tree and whose vertex set contains |n the second step, consider the sequence of multigraphs

A. A Steiner packingf G is any collection of edge disjoint {ng) — (M EZ;)) * WwhereE(™ is such that the number
Steiner trees of7. Let (A, G) denote the maximum size of ’ n=1'_. .
of edges between any pair of verticeg equals

such a packing (cfL[11)). [n(I(X:; A Xj;) —€)]. We next show that every Steiner tree
We note that wherfA| = 2, a Steiner tree ford always in a Steiner tree packing c@ﬁ") yields one shared bit for the
contains a path connecting the two verticesdnClearly, it terminalsinA that is independent of the communication in that
suffices to takeu(A, G) to be the maximum number of edgeSteiner tree. Specifically, for edgés j) and (,5'), j # j/,
disjoint paths connecting the two terminals.n with common vertex in the Steiner tree, vertexbroadcasts
Next, assume without any loss of generality in the PIkb verticesj, ;' the binary sum of two independent SK bits
model that all pairwise reciprocal mutual information \v&du — one withj and the other withj’ — obtained from the first
I(X;; N X)), 1 <i # j < m, are rational numbers. Let step. This enables j, ;' to share any one of these two bits,
N denote the collection of positive integenssuch that the with the attribute that the shared bit is independent of the
number of edges between any pair of vertiégep is equal binary sum. This method of propagationl([4, proof of Theorem
to nI(X;; A Xj;) is integer-valued for alll < ¢ # j < m; 5]) enables all the vertices id, which are connected in the
clearly, the elements of form an arithmetic progression. ForSteiner tree, to share one bit that is independent of all the



broadcast binary sums from this tree. Therefore, the maximuo
number of such shared bits for the terminalsAnthat can

be generated by this procedure equalsd, G™). Denote @;ZE?M (number of edges that crogd3, 5°}).
these shared bits (of sizg A, GE”))) and the communication l€B, 2¢B°

messages generated by the mechanism in this second Ste%ﬂéﬂying this to (") as above, we have that for ¢ A/,
K = KMW({Kijh<icjem) and F = FO({Kjj}i<ici<m),

; 1
respectively. — (A, G(”)) —

We claim thatK constitutes an SK ford. Specifically, it "
remains to show thaf{ satisfies the secrecy conditiof] (1)
with respect to the overall communication in steps 1 and 2. To 1 .
min nl(X;; N X
this end, we denote bg( J({Kij<icj<m) all the pairwise 1 | 0£Bcm 1<i<zj:<m‘ (Xij A Xsi)
SK bits generated in the first step, that are residual from the 168, 2€B° \(, ;) crosses B,5}
maximal Steiner tree packing «ﬁﬁ") used to generat& by

means ofF". Clearly. It then follows that

1
- 1 (n)
{Kijh<icj<m = (K, F, KR). ay “@ = men 1 AGT, by (B)

Moreover, since the total number of edges in any Steiner tree

equals the sum of unifty (i.e., the_ shgred bit /§) and the _ _ min Z nI(Xy A X;0)
number of bits of public communication for that shared bit, p#BCM 1<ici<m: '
we have 168, 2€B° \(, ;) crosses B,5}

S ub

|[E(M)| = log |K| + log | F| + log |Kr], (12) = C(4), by @.
where K, F and K denote the respective ranges &f, F The last equality follows upon noting that whed| = 2, the
and K 5. Note thatlog |K| = u(A ng))' Then minimization in [T) is over only those partitions that cdnta

’ ’ two atoms, each of which includes terminal 1 and terminal 2,
s(K;{Fijhi<icj<m, F) respectively. This proves (ii). [ ]

= log|K| - H(K|{Fij}1<i<j<m, I . . .
8 Ikl = H(K|{Fij hr<icizm, F) C. SK Capacity and Spanning Tree Packing for= M

< log|K| — H(K|{Fij}i<i<j<m, F' Kr) o _
= log|K| — H(K, F, Kg|{Fij 1<ici<m) When all the terminals itV seek a shared SK, i.e., when
A = M, a Steiner tree ford is a spanning tree foM. In
+H(F, Krl{Fijhi<icj<m) this case, we show that the lower bound for SK capacity in
= log|K| — H({Kij h<icj<m|[{Fij hri<icj<m) Theorem 3.3 (i) is, in fact, tight. Specifically, we show that
+H(F, Kr|{F;j}1<i<j<m), by (@) the algorithm in the proof of Theorem 3.3 yields an SK of
maximum rate that coincides with the upper bound@gm1)
< log K+ s({Kijhi<icj<ms {Fij hi<icj<m) in Lemma 3.2.

—|EM| + H(F, Kg)

Theorem 3.4: For a PIN model, the SK capacity(M) is
s({Kijh<icj<mi {Fijhi<icj<m), by @2)

- > 8K Fy), CM) = nsgljov%u(M,G(”))

1<i<j<m ;
_omm-y = ) 13)
- Ton( )a

where the second-to-last equality is by the fact that Remark:When A C M, Steiner tree packing may not
{(Kij, F;j)}1<i<j<m are mutually independent, and theattain SK capacity. In SK generation, a helper terminaliin
last equality is by[(Z0). The maX|mum rate of the SK thuBelps link the user terminals ir in complex ways through

generated is equal tdim,,_,. X /L(AaG ) which, since Vvarious combinations of subsets af In general, an optimal
¢ > 0 was arbitrary, equalsup,, 6’;\[% (A, G™). such linkage need not be attained by Steiner tree packing.

However, when|A| = 2, the two user terminals are either

directly connected or are connected by a path through helper
(if) Suppose thatd = {1,2}, and note from the paragraphj, e photh can be accomplished by Steiner tree packing.

after Definition 3 thatu(A, G) is the maximum number of \ypon 4 — M, the mentioned complexity of a helper is
edge disjoint paths itz connecting terminald and2. It is

clear thatu(A,G™) is nondecreasing im € N, by the

definition of G(™. According to Menger’s theorem [116].1[2], Proof: The proof relies on a graph-theoretic result of Nash-
given a multigraphG = (M, E), the maximum number of Williams [18] and Tutte[[2D], that gives a min max formula for
edge disjoint paths i’ connecting terminal$ and2 is equal the maximum size of spanning tree packing in a multigraph.

nonexistent.



It is clear thati ~ (M, G™) is nondecreasing im € A/, The key must now be coqcealed from the eavesdropper’s
by the definition ofG(™). By [18], [20], given a multigraph observations ofX  ; = (Xy;y1,1,---,Xms1,n) and the
= (M, E), the maximum number of edge disjoint spanningublic communication. The notion of a WSK requires that

trees that can be packed @ is equal to terminal m + 1 not cooperate in key generation. The less
1 restrictive notion of a PK allows cooperation by terminal
min {|7’| — (number of edges that CFO%)J7 m + 1 by way of public communication. The corresponding

_ ) N capacities for the terminals id C M are defined in the usual
with the minimization being over all partition® of M. manner, and denoted t; (A) andCp(A). We remark that
Applying this toG") as above, we have that fer € A, i the context of a PIN model, terminal + 1 represents a
compromised entity.

1 n
ﬁ“(M’G( )) = One model for the wiretapped erH entails its con-
sisting of T;L mutually independent components, one
1 min {; Z nl(X;; N Xji) J . corresponding to each paffX;;, X;;), 1 < i < j < m, of
n| P LP-1 1<i<j<m: legitimate correlated signals. This model is unresolveenev
(i,j) Crossesp in the simplest case afx = 2 terminals [14], [1], [4], [9],

[10]. Instead, we consider a different model which depicts

Denoting by D the quantity m[ } above, it follows that the situation in which an erstwhile legitimate termimal+ 1

1 becomes compromised. Specifically, the model now involves
cM) > sup. —h(M, G™), by Theorem 3.3 every legitimate terminal in M observingn i.i.d. repetitions
ne of the rv (X, X m+1), while terminalm + 1 observes: i.i.d.
> sup {D- —} repetitions ofX,,+1 = (Xsn+1,5, 7 € M). We argue in the
neN following proposition that the WSK and PK capacities forsthi
PIN model are the same as the SK capacity of a reduced PIN
> mm 1 Z I(Xi A X50) mo_d_el obtaineq by (jisregarding t_erm_ir’ralj-l and with each
[P[—1 i legitimate terminal in M observing justX?.
(i,j) Crossesp N
= (M), by @. Proposition 4.1: It holds that
The assertion in(13) is now immediate. [ Cw(4) = Cp(4) = C(4).

Lastly, the following observation is of independent intdre
Given a combinatorial problem of finding the maximal packing
of Steiner trees in a multigraph, we can always associate wit Proof: We shall prove that
it a problem of SK generation for an associated PIN model. (@) ®) ©
By Theorem 3.3 (i), the SK capacity for the PIN model yields C(A) < Cw(A) < Cp(A) < C(A).
an upper bound for the maximum rate of edge disjoint Steiner
trees that can be packed in the multigraph; the upper bou
is tight both in the case of path packing by Theorem 3.3 (i
and in the case of spanning tree packing by Theorem 3.4.

inequality (b) is by definition. Next, let K =
(X7,...,X") be a SK forA achieved with communication
= F(XP,...,X") for the reduced PIN model. Thefi is
also a WSK since

IV. DISCUSSION s (K;F, (X4, jEM))

Our proofs of Theorems 3.3 and 3.4 give rise to explicit xr ,
polynomial-time schemes for forming a group-wide SK for the = log|K| - (K|F (Xt J € M))
terminals in A from the collection of optimum and mutually = s(UIGF)+ (KA (X415, J € M)F)
independent SKs for pairs of terminalsM (namely thek;;s = o,(1)

in the proof of Theorem 3.3). Whefd| = 2 or A = M,
our schemes achieve SK capacity. Specifically, the schergiacel (K, F A (X2, ;. j € M)) =0, thereby establishing
combine known polynomial-time algorithms for finding a max(@)- In order to establish (c), we claim that every achiesdt{
imal collection of edge-disjoint paths (resp. spanninggje rate is an achievable SK rate for the reduced PIN model upon
connecting the vertices inl when [A] = 2 (resp.A = M) Using randomization at the terminalsi; by remark (ii) after
[6], [7], [B] with the technique for SK propagation in eackdr Proposition 3.1, (c) then follows. SindeXy, ., ;, j € M)
as in the proof of Theorem 3.3. is independent of X7',..., X"), any terminal in M, say
For a general multiterminal source model, the notions ¢¢rminal 1, can simulat¢ X, , ;, j € M) and broadcast
wiretap secret key (WSKJ [13][]1][]4] and private key (PK)t to all the terminals. Next, each terminalin M can
[4] have also been proposed. Specifically, these notiomdvav simulate X, ., conditioned on(X}, ., j € M) =
an extra “wiretapped” terminal, say. + 1, that observes. (7}, ,, 7 € M). This second step of randomization is
i.i.d. repetitions of a rvX,,4+1 with a given joint pmf with feasible sincg X7,..., X"), X7 1 Ko, 1 are con-
(Xl,...,Xm), and to which the eavesdropper has acceddtionally mutually mdependent conditioned N " m1r JE



M) = (2,41, J € M). Thus, each terminal in M now  [3]
has access t6X", I'm+1) While the eavesdropper observes[4]
(X414 J € M), so that the reduced PIN model for SK
generation can be used to simulate a PIN model for PKe]
generation with the given underlying joint pmf. Thus, any
achievable rate of a PK foA in the given PIN model for
PK generation is an achievable rate of a PK forin the
simulatedmodel. Further, the latter PK is a fortiori an SK for ]
A in the reduced PIN model with randomization permitted a{
the terminals inM. This establishes (c). [ ] "

In the proof of achievability of SK capacity for the general
multiterminal source model in [4], an SK of optimum rate wa 9]
extracted from “omniscience,” i.e., from a reconstructipn
the terminals inA of all the signals(X?*, i € M) observed
by the terminals inM. In contrast, the scheme in Theoreni10
3.3 (ii) (resp. Theorem 3.4) for achieving SK capacity for a
PIN model with|A| = 2 (resp.A = M) neither seeks nor
attains omniscience; however, we note that omniscience dAH
be attained by letting the terminals it simply broadcast all
the residual bits left over from a maximal path packing (resf2l
maximal spanning tree packing).

We close with the observation that in the proof of Theoremmg3]
3.3, the SK bit generated by each Steiner tree in Step 2 is
exactly independent of the public communication in thag.trey, 4
Thus, if the pairwise SKs in step 1 are “perfect” with zero
security index, then so is the overall SK fdr. It transpires [15]
that for the PIN model, there is a tight connection between
“perfect secrecy generation” and “communication for petrfe
omniscience,” redolent of the asymptotic connectior(in [4] (1]

This new connection and the role of Steiner tree packing ﬂﬁ]
attaining perfect omniscience and generating perfectesgcr
are the subjects of a sequel paper [17].

(6]
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