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Abstract—We consider secret key generation for a “pairwise
independent network” model in which every pair of terminals
observes correlated sources that are independent of sources
observed by all other pairs of terminals. The terminals are then
allowed to communicate publicly with all such communication
being observed by all the terminals. The objective is to generate
a secret key shared by a given subset of terminals at the largest
rate possible, with the cooperation of any remaining terminals.
Secrecy is required from an eavesdropper that has access to the
public interterminal communication. A (single-letter) formula for
secret key capacity brings out a natural connection betweenthe
problem of secret key generation and a combinatorial problem
of maximal packing of Steiner trees in an associated multigraph.
An explicit algorithm is proposed for secret key generationbased
on a maximal packing of Steiner trees in a multigraph; the
corresponding maximum rate of Steiner tree packing is thus a
lower bound for the secret key capacity. When only two of the
terminals or when all the terminals seek to share a secret key,
the mentioned algorithm achieves secret key capacity in which
case the bound is tight.

Index Terms– PIN model, private key, public communication,
secret key capacity, security index, spanning tree packing, Steiner
tree packing, wiretap secret key.

I. I NTRODUCTION

Suppose that terminals1, . . . ,m observe distinct but cor-
related signals with the feature that every pair of terminals
observes a corresponding pair of correlated signals that are
independent of all other pairs of signals. Following these
observations, all the terminals can communicate interactively
over a public noiseless channel of unlimited capacity, with
all such communication being observed by all the terminals.
The goal is to generate a secret key (SK), i.e., secret com-
mon randomness, for a given subsetA of the terminals in
M = {1, . . . ,m} at the largest rate possible, with secrecy
being required from an eavesdropper that observes the public
interterminal communication. All the terminals inM cooper-
ate in generating the SK for the secrecy-seeking setA.

This model for SK generation, called a “pairwise inde-
pendent network” model, was introduced in [23] (see also
[22]). Abbreviated hereafter as the PIN model, it is motivated
by practical aspects of a wireless communication network in
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which terminals communicate on the same frequency. In a
typical multipath environment, the wireless channel between
each pair of terminals produces a random mapping between
the transmitted and received signals which is time-varyingand
location-specific. For a fixed time and location, this mapping
is reciprocal, i.e., effectively the same in both directions.
Also, the mapping decorrelates over different time-coherence
intervals as well as over distances of the order of a few
wavelengths.

The PIN model is, in fact, a special case of a general
multiterminal “source model” for secrecy generation studied
by Csiszár and Narayan [4]. The latter followed leading
investigations by Maurer [13], [14] and Ahlswede and Csisz´ar
[1] of SK generation by two terminals from their correlated
observations complemented by public communication.

A single-letter characterization of secret key capacity –
the largest rate at which secrecy can be generated – for the
terminals in an arbitrary subsetA of M was provided in [4]. A
particularization of this (general) SK capacity formula toour
PIN model displays the special feature that it can be expressed
in terms of a linear combination of mutual information terms
that involve only mutually independent pairs of “reciprocal”
random variables (rvs). Each such mutual information term
represents the maximum rate of an SK that can be generated
solely by a corresponding pair of terminals from only their
own observed signals using public communication [13], [14],
[1]. This observation leads to the following question that is our
main motivation:Can an SK of optimum rate for the terminals
in A be generated by propagating mutually independent and
rate-optimal SKs for pairs of terminals inM?

An examination of this question brings out points of contact
between SK generation for a PIN model and a combinatorial
problem of tree packing in a multigraph. We propose an
explicit algorithm for propagating pairwise SKs for pairs of
terminals inM to form a groupwide SK for the terminals inA.
This algorithm is based on a maximal packing of Steiner trees
(for A) in a multigraph associated with the PIN model. Thus,
the maximum rate of Steiner tree packing in this multigraph
is always a lower bound for SK capacity. This bound is
shown to be tight when the secrecy-seeking setA contains
only two terminals or when it consists of all the terminals. In
these situations, our algorithm is capacity-achieving. Itis of
independent interest to note that given a combinatorial problem
of determining the maximum rate of Steiner tree packing forA

in a multigraph, the SK capacity of an associated PIN model
provides, in reciprocity, an upper bound for the mentioned
rate, which is tight for the case|A| = 2 as well as for the
spanning tree caseA = M.

In the study of secrecy generation for a multiterminal source
model, the notions of wiretap SK [13], [14], [1], [4] and
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private key [4] also have been proposed. The former notion
corresponds to the eavesdropper having additional access to a
terminal not in the secrecy-seeking setA and from which too
the key must be concealed; this “wiretapped” terminal does
not cooperate in secrecy generation. A single-letter charac-
terization of the corresponding capacity remains unresolved
in general but for partial results and bounds (cf. e.g., [1],
[14], [19], [4], [9], [10], [5]). The notion of a private key is
less restrictive, with the wiretapped terminal being allowed to
cooperate; the corresponding capacity is known [4]. We argue
in Section IV below that for a PIN model these two notions
correspond to SK generation for a reduced PIN model, thereby
justifying our sole focus on SK capacity.

Basic concepts and definitions are presented in Section
II. Section III contains statements of our results and proofs;
specifically, the SK capacity for the PIN model is given in
Section III.A, the connection of SK capacity with Steiner tree
packing is treated in Section III.B, and with spanning tree
packing in Section III.C. Concluding remarks and pointers to
a sequel paper are contained in Section IV.

II. PRELIMINARIES

We shall be concerned throughout with a PIN model, which
is a special case of a general multiterminal “source model” for
secrecy generation with public communication (see [14], [1],
[4], [5]). Suppose that terminals1, . . . ,m, m ≥ 2, observe
n independent and identically distributed (i.i.d.) repetitions
of the rvs X̃1, . . . , X̃m, denoted byX̃n

1 , . . . , X̃
n
m, where

X̃n
i =

(
X̃i,1, . . . , X̃i,n

)
, i ∈ M = {1, . . . ,m}. Each

rv X̃i, i ∈ M, is of the form X̃i = (Xij , j ∈ M\{i})
with m − 1 components, and the “reciprocal pairs” of rvs
{(Xij , Xji) , 1 ≤ i < j ≤ m} are mutually independent. See
Figure 1. Thus, every pair of terminals inM is associated
with a corresponding pair of rvs that are independent of
pairs of rvs associated with all the other pairs of termi-
nals. All the rvs are assumed to take their values in finite
sets. Following their observation of the random sequences
as above, the terminals inM are allowed to communicate
among themselves over a public noiseless channel of unlimited
capacity; all such communication, which may be interactive
and conducted in multiple rounds, is observed by all the
terminals. A communication from a terminal, in general, can
be any function of its observed sequence as well as all previous
public communication. The public communication of all the
terminals will be denoted collectively byF = F

(n).
The overall goal is to generate shared secret common

randomness for a given setA ⊆ M of terminals at the largest
rate possible, with the remaining terminals (if any) cooperating
in secrecy generation. The resulting secret key must be shared
by every terminal inA; but it need not be accessible to the
terminals not inA and nor does it need to be concealed from
them. It must, of course, be kept secret from the eavesdropper
that has access to the public interterminal communication
F, but is otherwise passive, i.e., unable to tamper with this
communication.

X̃2 = (X21, X23, . . . , X2m)t 2

tX̃1 = (X12, . . . , X1m)t
1

X̃m = (Xm1, Xm2, . . . , Xm,m−1)

✬

✫

✩

✪
A

tttm

Figure 1: The PIN Model

The following basic concepts and definitions are from [4],
[5]. Given ǫ > 0, for rvsU, V , we say thatU is ǫ-recoverable
from V if Pr{U 6= f(V )} ≤ ǫ for some functionf(V ) of
V . With the rvsK andF representing a secret key and the
eavesdropper’s knowledge, respectively, information theoretic
secrecy entails that the security index1

s(K;F) = log |K| −H(K|F)

be required to be small, whereK is the range ofK and | � |
denotes cardinality. This requirement simultaneously renders
K to be nearly uniformly distributed and nearly independent
of F.

Definition 1: Given any setA ⊆ M of size |A| ≥ 2, a rv
K constitutes anǫ-secret key (ǫ-SK) for the set of terminals
A, achievable with communicationF, if K is ǫ-recoverable
from

(
X̃n

i ,F
)

for eachi ∈ A and, in addition, it satisfies the
secrecy condition

s(K;F) ≤ ǫ. (1)

The condition (1) corresponds to the concept of “strong”
secrecy in whichǫ = ǫn = on(1) [15], [4], [5], as distinct
from the earlier “weak” secrecy concept which requires only
that ǫn = o(n) [14], [1].

Definition 2: A numberR is an achievable SK rate for a
set of terminalsA ⊆ M if there existǫn-SKs K(n) for A,
achievable with communicationF, such that

ǫn → 0 and
1

n
log |K(n)| → R as n → ∞.

The largest achievable SK rate forA is the SK capacityC(A).
Thus, by definition, the SK capacity forA is the largest

rate of a rv that is recoverable at each terminal inA from the
information available to it, and is nearly uniformly distributed
and effectively concealed from an eavesdropper with access
to the public interterminal communication; it need not be
concealed from the terminals inAc = M\A that cooperate in
secrecy generation.

A single-letter characterization of the SK capacityC(A),
A ⊆ M, for a general multiterminal source model, of which
the PIN model is a special case, is provided in [4]. An upper
bound forC(A) in terms of (Kullback-Leibler) divergence is
also given therein and shown to be tight in special cases. These
results play material roles below.

1All logarithms are to the base 2.
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III. R ESULTS

Our main results are the following. First, we obtain, upon
particularizing the results of [4], a (single-letter) expression
for C(A) for a PIN model, in terms of a linear combination
of mutual information terms that involve only pairs of “recip-
rocal” rvs {(Xij , Xji) , 1 ≤ i 6= j ≤ m}. Second, stemming
from this observation, a connection is drawn between SK
generation for the PIN model and the combinatorial problem of
maximal packing of Steiner trees in an associated multigraph.
Specifically, we show that the maximum rate of Steiner tree
packing in the multigraph is always a lower bound for SK
capacity. Third, for the case|A| = 2 (when the Steiner tree
becomes a path connecting the two vertices inA) and for the
caseA = M (when the Steiner tree becomes a spanning tree),
the previous lower bound is shown to be tight. This is done
by means of an explicit algorithm, based on maximal path
packing and maximal spanning tree packing, respectively, that
forms an SK out of independent SKs for pairs of terminals. In
fact, the maximum rate of the SK thereby generated equals the
previously known upper bound for SK capacity [4] mentioned
above.

A. SK Capacity

We first give the SK capacityC(A) for the PIN model. For
A ⊆ M, let

B(A) = {B ⊂ M : B 6= ∅, B + A}

andBi(A) be its subset consisting of thoseB ∈ B(A) that
containi, i ∈ M. Let Λ(A) be the set of all collections
λ = {λB : B ∈ B(A)} of weights0 ≤ λB ≤ 1, satisfying

∑

B∈Bi(A)

λB = 1 for all i ∈ M. (2)

Proposition 3.1: For a PIN model, the SK capacity for a
set of terminalsA ⊆ M, with |A| ≥ 2, is

C(A) =

min
λ∈Λ(A)




∑

1≤i<j≤m




∑

B∈B(A):

i∈B, j∈Bc

λB


 I(Xij ∧Xji)


 . (3)

Remark:(i) It is of interest in (3) that the SK capacity for
a PIN model depends on the joint probability distribution of
the underlying rvs only through a linear combination of the
pairwise reciprocal mutual information terms.

(ii) We note from [4, Theorem 3] that additional independent
randomization at the terminals inM, enabled by giving
them access to the mutually independent rvsM1, . . . ,Mm,
respectively, that are independent also of(X̃n

1 , . . . , X̃
n
m), does

not serve to enhance SK capacity. Heuristically speaking,
the mentioned independence of the randomization forces any
additional “common randomness” among the terminals inA

to be acquired only through public communication, which
is observed fully by the eavesdropper. On the other hand,

randomization can serve to enhance secrecy generation for
certain models (cf. e.g., [21])

Proof: The proof entails an application of the formula for
SK capacity in [4], [5] to the PIN model. ForB ∈ B(A),

denoteX̃B =
(
X̃i, i ∈ B

)
. From ([5, Theorem 3.1],

C(A) =

H
(
X̃1, . . . , X̃m

)
− max

λ∈Λ(A)

∑

B ∈B(A)

λBH
(
X̃B|X̃Bc

)
. (4)

For the PIN model, sinceX̃i = (Xij , j ∈ M\{i}) , we
observe in (4) that

H(X̃1, . . . , X̃m) = H ({(Xij , Xji)}1≤i<j≤m)

=
∑

1≤i<j≤m

H(Xij , Xji) (5)

and
H(X̃B|X̃Bc) = H(X̃M)−H(X̃Bc)

=
∑

1≤i<j≤m

H(Xij , Xji)−
∑

1≤i<j≤m,

i∈Bc, j∈Bc

H(Xij , Xji)

−
∑

i∈Bc, j∈B

H(Xij)

=
∑

1≤i<j≤m,

i∈B, j∈B

H(Xij , Xji) +
∑

i∈B, j∈Bc

H(Xij |Xji). (6)

A straightforward manipulation of (4), using (5), (6), gives

C(A) = min
λ∈Λ(A)

∑

1≤i<j≤m

[
H (Xij , Xji)

−




∑

B∈B(A):

i∈B, j∈B

λB


H (Xij , Xji)

−




∑

B∈B(A):

i∈B, j∈Bc

λB


H (Xij |Xji)

−




∑

B∈B(A):

i∈Bc, j∈B

λB


H (Xji|Xij)

]
.

Since, by (2),
∑

B∈B(A):

i∈B, j∈B

λB = 1−
∑

B∈B(A):

i∈B, j∈Bc

λB = 1−
∑

B∈B(A):

i∈Bc, j∈B

λB,

we get
C(A) =

min
λ∈Λ(A)




∑

1≤i<j≤m




∑

B∈B(A):

i∈B, j∈Bc

λB







H(Xij , Xji)
−H(Xij |Xji)
−H(Xji|Xij)





 ,
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thereby completing the proof.

An upper bound had been established for SK capacity
for a general multiterminal source model [4, Example 4].
This bound was expressed in terms of the (Kullback-Leibler)
divergence between the joint distribution of the rvs defining the
underlying correlated sources and the product of the (marginal)
distributions associated with appropriate partitions of these rvs,
thereby measuring the minimum mutual dependence among
the latter. The bound was particularized to the PIN model in
[23], and is restated below in a slightly different form thatwill
be used subsequently.

Let P be a partition ofM = {1, . . . ,m}, and denote the
number of atoms ofP by |P|.

Lemma 3.2 [23]: The SK capacityC(A), A ⊆ M, for the
PIN model is bounded above according to

C(A) ≤

Cub(A) , min
P

(
1

|P| − 1

)



∑

1≤i<j≤m

(i,j) crossesP

I(Xij ∧Xji)


 ,

(7)
where for a fixedP , a pair of indices(i, j) crossesP if i

and j are in different atoms ofP . The minimization in the
right side of (7) is over all partitionsP of M for which
every atom ofP intersectsA.

B. SK Capacity and Steiner Tree Packing

There exists a natural connection between SK generation for
the PIN model and the combinatorial problem of tree packing
in an associated multigraph.

LetG = (V,E) be a multigraph, i.e., a connected undirected
graph with no selfloops and with multiple edges possible be-
tween any vertex pair, whose vertex setV = M = {1, . . . ,m}
and edge setE = {eij ≥ 0, 1 ≤ i < j ≤ m}, where
eij is the number of edges connecting the pair of vertices
i, j, 1 ≤ i < j ≤ m.

Definition 3: For A ⊆ M, a Steiner treeof G (for A) is
a subgraph ofG that is a tree and whose vertex set contains
A. A Steiner packingof G is any collection of edge disjoint
Steiner trees ofG. Let µ(A,G) denote the maximum size of
such a packing (cf. [11]).

We note that when|A| = 2, a Steiner tree forA always
contains a path connecting the two vertices inA. Clearly, it
suffices to takeµ(A,G) to be the maximum number of edge
disjoint paths connecting the two terminals inA.

Next, assume without any loss of generality in the PIN
model that all pairwise reciprocal mutual information values
I(Xij ∧ Xji), 1 ≤ i 6= j ≤ m, are rational numbers. Let
N denote the collection of positive integersn such that the
number of edges between any pair of verticesi, j is equal
to nI(Xij ∧ Xji) is integer-valued for all1 ≤ i 6= j ≤ m;
clearly, the elements ofN form an arithmetic progression. For

a PIN model, consider a sequence of associated multigraphs
{G(n) =

(
M, E(n)

)
, n ∈ N}, whereE(n), n ∈ N , is such

that eij = nI(Xij ∧ Xji). We termsupn∈N
1
n
µ(A,G(n)) as

the maximum rate of Steiner tree packingin the multigraph
G = (M, E). The connection between SK generation for the
PIN model and Steiner tree packing is formalized below.

Theorem 3.3: For a PIN model,
(i) the SK capacity satisfies

C(A) ≥ sup
n∈N

1

n
µ(A,G(n)) (8)

for everyA ⊆ M;
(ii) when |A| = 2, the SK capacity is

C(A) = sup
n∈N

1

n
µ(A,G(n))

= Cub(A). (9)

Remarks:(i) The inequality in (8) can be strict, as shown by
a specific example in a sequel paper [17]. See also the remark
following Theorem 3.4 for a heuristic explanation.

(ii) An exact determination ofµ(A,G) is known to be NP-
hard [3]. A nontrivial upper bound forµ(A,G), similar in form
to (7), is known [12, paragraph 5 of Section 1]. This bound can
be extended to yield an upper bound forsupn∈N

1
n
µ(A,G(n))

which, in general, is inferior to that provided byC(A) in (8).

Proof: (i) The proof consists of two main steps. In the first
step, fix anǫ > 0 that is smaller than every positive
I(Xij∧Xji), 1 ≤ i < j ≤ m. Each pair of terminalsi, j with
I(Xij ∧Xji) > 0, generates a (pairwise) SKKij = K

(n)
ij of

size⌊n(I(Xij ∧Xji)− ǫ)⌋ bits, using public communication
Fij = F

(n)
ij , and satisfying

s(Kij ;Fij) = on(1); (10)

the existence of such an SK follows from [15]. The SK
achievability scheme in [15] consists of a “weak” SK gener-
ated by Slepian-Wolf data compression, followed by “privacy
amplification” to extract a “strong” SK. Note by the definition
of the PIN model that{(Kij , Fij)}1≤i<j≤m are mutually
independent.

In the second step, consider the sequence of multigraphs{
G

(n)
ǫ = (M, Ẽ(n))

}∞

n=1
, whereẼ(n) is such that the number

of edges between any pair of verticesi, j equals
⌊n(I(Xij ∧Xji)− ǫ)⌋. We next show that every Steiner tree
in a Steiner tree packing ofG(n)

ǫ yields one shared bit for the
terminals inA that is independent of the communication in that
Steiner tree. Specifically, for edges(i, j) and (i, j′), j 6= j′,

with common vertexi in the Steiner tree, vertexi broadcasts
to verticesj, j′ the binary sum of two independent SK bits
– one withj and the other withj′ – obtained from the first
step. This enablesi, j, j′ to share any one of these two bits,
with the attribute that the shared bit is independent of the
binary sum. This method of propagation ([4, proof of Theorem
5]) enables all the vertices inA, which are connected in the
Steiner tree, to share one bit that is independent of all the
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broadcast binary sums from this tree. Therefore, the maximum
number of such shared bits for the terminals inA that can
be generated by this procedure equalsµ(A,G

(n)
ǫ ). Denote

these shared bits (of sizeµ(A,G(n)
ǫ )) and the communication

messages generated by the mechanism in this second step by
K = K(n)({Kij}1≤i<j≤m) andF = F (n)({Kij}1≤i<j≤m),
respectively.

We claim thatK constitutes an SK forA. Specifically, it
remains to show thatK satisfies the secrecy condition (1)
with respect to the overall communication in steps 1 and 2. To
this end, we denote byK(n)

R ({Kij}1≤i<j≤m) all the pairwise
SK bits generated in the first step, that are residual from the
maximal Steiner tree packing ofG(n)

ǫ used to generateK by
means ofF . Clearly,

{Kij}1≤i<j≤m = (K,F,KR). (11)

Moreover, since the total number of edges in any Steiner tree
equals the sum of unity (i.e., the shared bit ofK) and the
number of bits of public communication for that shared bit,
we have

|Ẽ(n)| = log |K|+ log |F|+ log |KR|, (12)

whereK, F andKR denote the respective ranges ofK, F
andKR. Note thatlog |K| = µ(A,G

(n)
ǫ ). Then,

s(K; {Fij}1≤i<j≤m, F )

= log |K| −H(K|{Fij}1≤i<j≤m, F )

≤ log |K| −H(K|{Fij}1≤i<j≤m, F,KR)

= log |K| −H(K,F,KR|{Fij}1≤i<j≤m)

+H(F,KR|{Fij}1≤i<j≤m)

= log |K| −H({Kij}1≤i<j≤m|{Fij}1≤i<j≤m)

+H(F,KR|{Fij}1≤i<j≤m), by (11)

≤ log |K|+ s({Kij}1≤i<j≤m; {Fij}1≤i<j≤m)

−|Ẽ(n)|+H(F,KR)

≤ s({Kij}1≤i<j≤m; {Fij}1≤i<j≤m), by (12)

=
∑

1≤i<j≤m

s(Kij ;Fij),

=
m(m− 1)

2
on(1),

where the second-to-last equality is by the fact that
{(Kij , Fij)}1≤i<j≤m are mutually independent, and the
last equality is by (10). The maximum rate of the SK thus
generated is equal tolimn→∞

1
n
µ(A,G

(n)
ǫ ) which, since

ǫ > 0 was arbitrary, equalssupn∈N
1
n
µ(A,G(n)).

(ii) Suppose thatA = {1, 2}, and note from the paragraph
after Definition 3 thatµ(A,G) is the maximum number of
edge disjoint paths inG connecting terminals1 and 2. It is
clear that 1

n
µ(A,G(n)) is nondecreasing inn ∈ N , by the

definition of G(n). According to Menger’s theorem [16], [2],
given a multigraphG = (M, E), the maximum number of
edge disjoint paths inG connecting terminals1 and2 is equal

to

min
∅6=B⊂M

1∈B, 2∈Bc

(number of edges that cross{B,Bc}) .

Applying this toG(n) as above, we have that forn ∈ N ,

1

n
µ(A,G(n)) =

1

n


 min

∅6=B⊂M
1∈B, 2∈Bc




∑

1≤i<j≤m:

(i,j) crosses{B,Bc}

nI(Xij ∧Xji)





 .

It then follows that

C(A) ≥ sup
n∈N

1

n
µ(A,G(n)), by (8)

= min
∅6=B⊂M

1∈B, 2∈Bc




∑

1≤i<j≤m:

(i,j) crosses{B,Bc}

nI(Xij ∧Xji)




= Cub(A), by (7).

The last equality follows upon noting that when|A| = 2, the
minimization in (7) is over only those partitions that contain
two atoms, each of which includes terminal 1 and terminal 2,
respectively. This proves (ii).

C. SK Capacity and Spanning Tree Packing forA = M

When all the terminals inM seek a shared SK, i.e., when
A = M, a Steiner tree forA is a spanning tree forM. In
this case, we show that the lower bound for SK capacity in
Theorem 3.3 (i) is, in fact, tight. Specifically, we show that
the algorithm in the proof of Theorem 3.3 yields an SK of
maximum rate that coincides with the upper bound forC(M)
in Lemma 3.2.

Theorem 3.4: For a PIN model, the SK capacityC(M) is

C(M) = sup
n∈N

1

n
µ(M, G(n))

= Cub(M). (13)

Remark: When A ⊂ M, Steiner tree packing may not
attain SK capacity. In SK generation, a helper terminal inAc

helps link the user terminals inA in complex ways through
various combinations of subsets ofA. In general, an optimal
such linkage need not be attained by Steiner tree packing.
However, when|A| = 2, the two user terminals are either
directly connected or are connected by a path through helpers
in Ac; both can be accomplished by Steiner tree packing.
When A = M, the mentioned complexity of a helper is
nonexistent.

Proof: The proof relies on a graph-theoretic result of Nash-
Williams [18] and Tutte [20], that gives a min max formula for
the maximum size of spanning tree packing in a multigraph.
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It is clear that 1
n
µ(M, G(n)) is nondecreasing inn ∈ N ,

by the definition ofG(n). By [18], [20], given a multigraph
G = (M, E), the maximum number of edge disjoint spanning
trees that can be packed inG is equal to

min
P

⌊ 1

|P| − 1
(number of edges that crossP)

⌋
,

with the minimization being over all partitionsP of M.
Applying this toG(n) as above, we have that forn ∈ N ,

1

n
µ(M, G(n)) =

1

n


min

P

⌊ 1

|P| − 1




∑

1≤i<j≤m:

(i,j) crossesP

nI(Xij ∧Xji)




⌋

 .

Denoting byD the quantity in
[ ]

above, it follows that

C(M) ≥ sup
n∈N

1

n
µ(M, G(n)), by Theorem 3.3

≥ sup
n∈N

{D −
1

n
}

≥ min
P

1

|P| − 1




∑

1≤i<i≤m:

(i,j) crossesP

I(Xij ∧Xji)




= Cub(M), by (7).

The assertion in (13) is now immediate.
Lastly, the following observation is of independent interest.

Given a combinatorial problem of finding the maximal packing
of Steiner trees in a multigraph, we can always associate with
it a problem of SK generation for an associated PIN model.
By Theorem 3.3 (i), the SK capacity for the PIN model yields
an upper bound for the maximum rate of edge disjoint Steiner
trees that can be packed in the multigraph; the upper bound
is tight both in the case of path packing by Theorem 3.3 (ii)
and in the case of spanning tree packing by Theorem 3.4.

IV. D ISCUSSION

Our proofs of Theorems 3.3 and 3.4 give rise to explicit
polynomial-time schemes for forming a group-wide SK for the
terminals inA from the collection of optimum and mutually
independent SKs for pairs of terminals inM (namely theKijs
in the proof of Theorem 3.3). When|A| = 2 or A = M,
our schemes achieve SK capacity. Specifically, the schemes
combine known polynomial-time algorithms for finding a max-
imal collection of edge-disjoint paths (resp. spanning trees)
connecting the vertices inA when |A| = 2 (resp.A = M)
[6], [7], [8] with the technique for SK propagation in each tree
as in the proof of Theorem 3.3.

For a general multiterminal source model, the notions of
wiretap secret key (WSK) [13], [1], [4] and private key (PK)
[4] have also been proposed. Specifically, these notions involve
an extra “wiretapped” terminal, saym + 1, that observesn
i.i.d. repetitions of a rvX̃m+1 with a given joint pmf with
(X̃1, . . . , X̃m), and to which the eavesdropper has access.

The key must now be concealed from the eavesdropper’s
observations ofX̃n

m+1 = (X̃m+1,1, . . . , X̃m+1,n) and the
public communication. The notion of a WSK requires that
terminal m + 1 not cooperate in key generation. The less
restrictive notion of a PK allows cooperation by terminal
m + 1 by way of public communication. The corresponding
capacities for the terminals inA ⊆ M are defined in the usual
manner, and denoted byCW (A) andCP (A). We remark that
in the context of a PIN model, terminalm + 1 represents a
compromised entity.

One model for the wiretapped rṽXm+1 entails its con-

sisting of

(
m

2

)
mutually independent components, one

corresponding to each pair(Xij , Xji), 1 ≤ i < j ≤ m, of
legitimate correlated signals. This model is unresolved even
in the simplest case ofm = 2 terminals [14], [1], [4], [9],
[10]. Instead, we consider a different model which depicts
the situation in which an erstwhile legitimate terminalm+ 1
becomes compromised. Specifically, the model now involves
every legitimate terminali in M observingn i.i.d. repetitions
of the rv (X̃i, Xi,m+1), while terminalm+1 observesn i.i.d.
repetitions ofX̃m+1 = (Xm+1,j , j ∈ M). We argue in the
following proposition that the WSK and PK capacities for this
PIN model are the same as the SK capacity of a reduced PIN
model obtained by disregarding terminalm+1 and with each
legitimate terminali in M observing justX̃n

i .

Proposition 4.1: It holds that

CW (A) = CP (A) = C(A).

Proof: We shall prove that

C(A)
(a)

≤ CW (A)
(b)

≤ CP (A)
(c)

≤ C(A).

The inequality (b) is by definition. Next, let K =
K(X̃n

1 , . . . , X̃
n
m) be a SK forA achieved with communication

F = F(X̃n
1 , . . . , X̃

n
m) for the reduced PIN model. ThenK is

also a WSK since
s
(
K;F, (Xn

m+1,j, j ∈ M)
)

= log |K| −H
(
K|F, (Xn

m+1,j , j ∈ M)
)

= s(K;F) + I(K ∧ (Xn
m+1,j , j ∈ M)|F)

= on(1)

sinceI
(
K,F ∧ (Xn

m+1,j , j ∈ M)
)
= 0, thereby establishing

(a). In order to establish (c), we claim that every achievable PK
rate is an achievable SK rate for the reduced PIN model upon
using randomization at the terminals inM; by remark (ii) after
Proposition 3.1, (c) then follows. Since(Xn

m+1,j , j ∈ M)

is independent of(X̃n
1 , . . . , X̃

n
m), any terminal inM, say

terminal 1, can simulate(Xn
m+1,j, j ∈ M) and broadcast

it to all the terminals. Next, each terminali in M can
simulate Xn

i,m+1 conditioned on(Xn
m+1,j , j ∈ M) =

(xn
m+1,j , j ∈ M). This second step of randomization is

feasible since(X̃n
1 , . . . , X̃

n
m), Xn

1,m+1, . . . , X
n
m,m+1 are con-

ditionally mutually independent conditioned on(Xn
m+1,j , j ∈
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M) = (xn
m+1,j , j ∈ M). Thus, each terminali in M now

has access to(X̃n
i , X

n
i,m+1) while the eavesdropper observes

(Xn
m+1,j , j ∈ M), so that the reduced PIN model for SK

generation can be used to simulate a PIN model for PK
generation with the given underlying joint pmf. Thus, any
achievable rate of a PK forA in the given PIN model for
PK generation is an achievable rate of a PK forA in the
simulatedmodel. Further, the latter PK is a fortiori an SK for
A in the reduced PIN model with randomization permitted at
the terminals inM. This establishes (c).

In the proof of achievability of SK capacity for the general
multiterminal source model in [4], an SK of optimum rate was
extracted from “omniscience,” i.e., from a reconstructionby
the terminals inA of all the signals(X̃n

i , i ∈ M) observed
by the terminals inM. In contrast, the scheme in Theorem
3.3 (ii) (resp. Theorem 3.4) for achieving SK capacity for a
PIN model with |A| = 2 (resp.A = M) neither seeks nor
attains omniscience; however, we note that omniscience can
be attained by letting the terminals inM simply broadcast all
the residual bits left over from a maximal path packing (resp.
maximal spanning tree packing).

We close with the observation that in the proof of Theorem
3.3, the SK bit generated by each Steiner tree in Step 2 is
exactly independent of the public communication in that tree.
Thus, if the pairwise SKs in step 1 are “perfect” with zero
security index, then so is the overall SK forA. It transpires
that for the PIN model, there is a tight connection between
“perfect secrecy generation” and “communication for perfect
omniscience,” redolent of the asymptotic connection in [4].

This new connection and the role of Steiner tree packing in
attaining perfect omniscience and generating perfect secrecy
are the subjects of a sequel paper [17].
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