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Noisy-interference Sum-rate Capacity of

Parallel Gaussian Interference Channels
Xiaohu Shang, Biao Chen, Gerhard Kramer and H. Vincent Poor

Abstract

The sum-rate capacity of the parallel Gaussian interference channel is shown to be achieved by

independent transmission across sub-channels and treating interference as noise in each sub-channel if

the channel coefficients and power constraints satisfy a certain condition. The condition requires the

interference to be weak, a situation commonly encountered in, e.g., digital subscriber line transmission.

The optimal power allocation is characterized by using the concavity of sum-rate capacity as a function

of the power constraints.

I. INTRODUCTION

Parallel Gaussian interference channels (PGICs) model thesituation in which several transceiver pairs

communicate through a number of independent sub-channels,with each sub-channel being a Gaussian

interference channel. Fig. 1 illustrates a two-user PGIC where a pair of users, each subject to a total

power constraint, has access to a set ofm Gaussian interference channels (GIC). Existing systems that

can be accurately modelled as PGICs include both wired systems such as digital subscriber lines (DSL)

and wireless systems employing orthogonal frequency division multiple access (OFDMA). Both of these

systems have been and will be major players in broadband systems.

While there have been extensions of information theory for the classical single-channel GIC to the

PGIC (e.g, [1]), most existing research, especially for DSLsystems, often relies on the following two

assumptions [2]–[4]:
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Fig. 1. Illustration of a PGIC system where the two transceiver pairs have access tom independent parallel channels.

• Transmissions in sub-channels are independent of each other.

• Each receiver treats interference as noise.

These assumptions greatly simplify an otherwise intractable problem. The independent transmission

assumption ensures that the total sum rate is expressed as a sum of all sub-channels’ sum rates. The

assumption of using single-user detection permits a simpleclosed-form expression for the rate pair of each

sub-channel1. Our main goal in this paper is to provide a sound theoreticalbasis for such assumptions, i.e.,

to understand under what conditions such a transceiver structure leads to optimal throughput performance.

It is certainly not obvious that this structure could ever beoptimal, but we show that it is optimal for

systems with weak interference, a situation encountered inmany deployed systems such as DSL.

Our approach in characterizing the sum-rate capacity of a two-user PGIC leverages recent breakthroughs

in determining the sum-rate capacity of the GIC under noisy interference [6]–[8]. We determine conditions

on the channel gains and power constraints such that there isno loss in terms of sum rate when we impose

the above two assumptions. This is accomplished in two steps. First, under the independent transmission

assumption, we find conditions such that the maximum sum ratecan be achieved by treating interference

as noise in each sub-channel. The key to establishing these conditions is the concavity of sum-rate capacity

in power constraints for a GIC (cf. Lemma 2). Second, we show that with the same power constraints

and channel gains obtained in the first step, independent transmission and single-user detection in each

sub-channel achieves the sum-rate capacity of the PGIC. Theproof utilizes a genie-aided approach that

generalizes that of [6].

This paper is organized as follows. In Section II we introduce the system model and review recent

results. In Section III, we consider the maximum sum rate of aspecial transmission scheme, i.e.,

independent transmission and single-user detection for each sub-channel. We obtain conditions on the

1Even under this simplified assumption, finding the optimal power allocation is an NP hard problem [5]
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power constraints and channel coefficients under which the above strategy maximizes the total sum rate.

We prove in Section IV that the maximum sum rate we obtain is the sum-rate capacity. Numerical results

are given in Section V. Section VI concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

The received signals of theith sub-channeli = 1, · · · ,m are defined as

Y1i =
√
ciX1i +

√
aiX2i + Z1i,

Y2i =
√
diX2i +

√
biX1i + Z2i,

(1)

where0 ≤ ai < di, 0 ≤ bi < ci; Z1i andZ2i are unit variance Gaussian noise, the total block power

constraints areP andQ for users1 and2 respectively:

m∑

i=1


 1

n

n∑

j=1

E
(
X2

1i j

)

 ≤ P,

and

m∑

i=1


 1

n

n∑

j=1

E
(
X2

2i j

)

 ≤ Q,

wheren is the block length, andX1i j andX2i j, j = 1, . . . , n, are the user/channel input sequences for

the ith sub-channel. We remark that this model is a special case ofthe multiple-input multiple-output

(MIMO) GIC [9]. We denote the sum-rate capacity of theith sub-channel asCi (Pi, Qi), wherePi and

Qi are the respective powers allocated to the two users in this sub-channel.

To find the sum-rate capacity of the PGIC, we need to solve three problems: the first problem is

whether the sub-channels can be treated separately like theparallel Gaussian multiple-access channel

[10] and parallel Gaussian broadcast channel [11]–[13], i.e., whether the sum-rate capacity of the PGIC

is in the form of
∑m

i=1Ci(Pi, Qi). Such a strategy is suboptimal for PGICs in general [14], [15]. The

second problem is the optimal distribution of the input signals. It has been shown respectively in [16]–[18]

and [6]–[8] that Gaussian inputs are sum-rate optimal for a single-channel GIC under strong or noisy

interference. However, whether this is still the case for PGICs is not known. The third problem is to find

the optimal power allocation among sub-channels. Existingworks on this problem treat the sub-channels

separately, they use Gaussian inputs, and they use single-user detection at the receivers [2]–[4].

Before proceeding, we introduce the following notation.

• Bold fontsxxx andX denote vectors and matrices respectively.

• I denotes the identity matrix and0 denotes the zero matrix.
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• |X|, XT , X−1, denote the respective determinant, transpose and inverseof the matrixX.

• xxxn =
[
xxxT1 ,xxx

T
2 , . . . ,xxx

T
n

]T
is a long vector which consists of the vectorsxxxi, i = 1, . . . , n.

• xxx ∼ N (0,Σ) means that the random vectorxxx is Gaussian distributed with zero mean and covariance

matrix Σ.

• E(·) denotes expectation; Var(·) denotes variance; Cov(·) denotes covariance matrix;I(·; ·) denotes

mutual information;h(·) denotes differential entropy with the logarithm basee andlog(·) = loge(·).

A. Noisy-interference sum-rate capacity

The noisy-interference sum-rate capacity for single-channel GICs [6]–[8] is summarized as follows.

Lemma 1:The sum-rate capacity of theith sub-channel withai < ci, bi < di and power allocationp,

q is

Ci(p, q) =
1

2
log

(
1 +

cip

1 + aiq

)
+

1

2
log

(
1 +

diq

1 + bip

)
(2)

provided(p, q) ∈ Ai:

Ai =



(p̃, q̃)

∣∣∣∣∣∣

√
aici(1 + bip̃) +

√
bidi(1 + aiq̃) ≤

√
cidi

p̃ ≥ 0, q̃ ≥ 0



 . (3)

In the case of a symmetric GIC, i.e.,ai = bi, ci = di andp = q, the noisy interference condition reduces

to

ai
ci

≤ 1

4
, p = q ≤

√
aici − 2ai

2a2i
. (4)

In the case of a ZIC whereai = 0, the noisy interference condition reduces to

bi < 1, p ≥ 0, q ≥ 0. (5)

The main difficulty in maximizing
∑m

i=1Ci (Pi, Qi) is thatCi (Pi, Qi) is generally unknown if(Pi, Qi) /∈
Ai. To solve this problem we use the following results.

B. Concavity of sum-rate capacity

The key to our study of the PGIC is theconcavityof the sum-rate capacity as a function of the power

constraint. We establish a slightly more general result by using a modified frequency division multiplexing

(FDM) argument [19].

Lemma 2:Let Cµ(p, q) denote the weighted sum rate capacity of a GIC with powersp andq:

Cµ(p, q) = max
R1,R2 achievable

{R1 + µR2},

November 23, 2018 DRAFT
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whereµ ≥ 0 is a constant. ThenCµ(p, q) is concave in the powers(p, q), i.e., for any0 ≤ λ ≤ 1 we

have

Cµ(p, q) ≥ λCµ(p
′, q′) + (1− λ)Cµ(p

′′, q′′), (6)

wherep′, p′′, q′, andq′′ are chosen to satisfy

λp′ + (1− λ)p′′ = p, λq′ + (1− λ)q′′ = q. (7)

Proof: Consider a potentially suboptimal strategy that divides the total frequency band into two sub-

bands: one with a fractionλ and the other with a fraction1 − λ of the total bandwidth. Powers are

allocated into these two sub-bands as(λp′, λq′) and ((1 − λ)p′′, (1 − λ)q′′), where p′, q′, p′′, q′′ are

such that (7) is satisfied. The information transmitted in these two sub-bands is independent and the

decoding is also independent. Then the maximum weighted sumrate for the first sub-band is reduced by

a factorλ and becomesλCµ(p
′, q′). Similarly, the maximum weighted sum rate at the second sub-band

is (1− λ)Cµ(p
′′, q′′). Therefore, the right-hand side of (6) is an achievable weighted sum rate.

Lemma 2 provides a fundamental result for weighted sum-ratecapacities. It applies not only to two-user

GICs but also to many-user GICs, Gaussian multiaccess channels, and Gaussian broadcast channels.

C. Subgradient and subdifferential

To apply the concavity of sum-rate capacity, we need to use several properties of subgradients and

subdifferentials (see [20]).

Definition 1: If f : Rn → R is a real-valued concave function defined on a convex setS ⊂ Rn, a

vectoryyy is a subgradientat pointxxx0 if

f (xxx)− f (xxx0) ≤ yyyT (xxx− xxx0) , ∀ xxx ∈ S. (8)

Definition 2: For the concave functionf defined in Definition 1, the collection∂f (xxx0) of all subgra-

dients at pointxxx0 is thesubdifferentialat this point.

If the function f is differentiable atxxx0, then the subgradient and subdifferential both coincide with

the gradient. We introduce a lemma related to subdifferentials which we use to prove our main result.

Lemma 3:Let fi(xxx), i = 1, . . . ,m, be finite, concave, real-valued functions onS ⊂ Rn and let

xxx∗i ∈ S, i = 1, · · · ,m. If there is a vectoryyy such thatyyy ∈ ∂fi(xxx
∗
i ), i = 1, . . . m, and

∑m
i=1xxx

∗
i = uuu, then

November 23, 2018 DRAFT
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xxx∗ =
[
xxx∗1

T , · · · ,xxx∗mT
]

is a solution for the following optimization problem:

max
m∑

i=1

fi(xxxi)

subject to
m∑

i=1

xxxi = uuu, xxxi ∈ S. (9)

Proof: Sinceyyy ∈ ∂fi(xxx
∗
i ), i = 1, . . . m, we have

fi(xxx) ≤ fi(xxx
∗
i ) + yyyT (xxx− xxx∗i ), ∀ xxx ∈ S. (10)

Let x̂xxi, i = 1, . . . ,m, be any vectors satisfyinĝxxxi ∈ S and
∑m

i=1 x̂xxi = uuu, then using (10) we have

fi(x̂xxi) ≤ fi(xxx
∗
i ) + yyyT (x̂xxi − xxx∗i ) (11)

Therefore
m∑

i=1

fi(x̂xxi) ≤
m∑

i=1

fi(xxx
∗
i ) + yyyT

(
m∑

i=1

x̂xxi −
m∑

i=1

xxx∗i

)

=

m∑

i=1

fi(xxx
∗), (12)

where the last equality is from
∑m

i=1 x̂xxi =
∑m

i=1xxx
∗
i = uuu.

In the Appendix, we compute the subdifferential∂Ci(p, q) when (p, q) ∈ Ai. We are also interested

in the set of pairs

Bi =
⋃

(p,q)∈Ai

∂Ci(p, q). (13)

The mapping fromAi to Bi is illustrated in Fig. 2. As seen from (3),Ai is a triangle region with the

corner points

O(0, 0),

S

(
0,

√
cidi −

√
aici −

√
bidi

ai
√
bidi

)
, (0, qs),

and

T

(√
cidi −

√
aici −

√
bidi

bi
√
aici

, 0

)
, (pt, 0).

The corresponding points inBi are respectively

O′
(
ci
2
,
di
2

)
,

S′
(

ci
2(1 + aiqs)

− bidiqs
2(1 + diqs)

,
di

2(1 + diqs)

)
,
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and

T ′
(

ci
2(1 + cipt)

,
di

2(1 + bipt)
− aicipt

2(1 + cipt)

)
.

S 

T 
O 

S′ 

T 

T′ 

O′ 

p 

q 

k
p
 

k
q
 

I 

II 

III 

IV 

A B 

Fig. 2. The mapping fromAi to Bi.

Let A(1)
i be the inner points ofAi and the line segmentST , and letB(1)

i be the inner points of the

closed area defined byO′S′T ′ and the curveŜ′T ′. As shown in the Appendix,A(1)
i maps toB(1)

i and

this mapping is one-to-one. LetA(2)
i be the line segmentOT andB(2)

i be the curvêO′T ′ and the points

above it (labeled as region II in Fig. 2).A(2)
i maps toB(2)

i and this mapping is one-to-many. Specifically,

let (Pi, 0) be a point onOT . The partial derivatives ofCi(p, q) with respect top andq at this point are

denoted asKp andKq, respectively, whereKp is a two-sided partial derivative andKq is a one-sided

partial derivative. Point(Kp,Kq) is on the curvêO′T ′ of B(2)
i . The subdifferential ofCi(p, q) at point

(Pi, 0) is a ray inB(2)
i defined askp = Kp, kq ≥ Kq.

Similarly to the above, letA(3)
i be the line segmentOS andB(3)

i be the curveÔ′S′ and the points

to the right (labeled as region III in Fig. 2).A(3)
i maps toB(3)

i and this mapping is also one-to-many.

Let A(4)
i be the origin and letB(4)

i be the collection of points(kp, kq) satisfyingkp ≥ Kp andkq ≥ Kq

(labeled as region IV in Fig. 2), whereKp andKq are the two one-sided partial derivatives at the origin.

A(4)
i maps toB(4)

i .

November 23, 2018 DRAFT
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D. Concave-like property of conditional entropy

The following Lemma is proved in [9] based on the fact that a Gaussian distribution maximizes

conditional entropy under a covariance matrix constraint [21].

Lemma 4: [9, Lemma 2] Letxxxni =
[
xxxTi,1, . . . ,xxx

T
i,n

]T
, i = 1, . . . , k, bek long random vectors each of

which consists ofn vectors. Suppose thexxxi,j, i = 1, · · · , k all have the same lengthLj, j = 1, · · · , n.

Let yyyn =
[
yyyT1 , . . . , yyy

T
n

]T
, whereyyyj has lengthLj, be a long Gaussian random vector with covariance

matrix

Cov(yyyn) =
k∑

i=1

λiCov(xxxni ) , (14)

where
∑k

i=1 λi = 1, λi ≥ 0. Let S be a subset of{1, 2, . . . , n} andT be a subset ofS ’s complement.

Then we have
k∑

i=1

λih (xxxi,S |xxxi,T ) ≤ h (yyyS |yyyT ) . (15)

Whenxxxk, k = 1, · · · , n are all Gaussian distributed, Lemma 4 shows thath (xxxS |xxxS̄ ) is concave over

the covariance matrices.

III. A LOWER BOUND FOR THE SUM-RATE CAPACITY

If the sum-rate capacity of a PGIC can be achieved by (1) transmitting independent symbol streams

in each sub-channel and (2) treating interference as noise in each sub-channel, we say this PGIC has

noisy interference. Before proceeding to the main theorem of noisy-interference sum-rate capacity, we

first consider the following optimization problem:

max

m∑

i=1

Ci(Pi, Qi)

subject to
m∑

i=1

Pi = P,

m∑

i=1

Qi = Q

Pi ≥ 0, Qi ≥ 0, i = 1, . . . ,m. (16)

Problem (16) is to find the maximum of the sum of the sum-rate capacities of individual sub-channels and

the corresponding power allocation. In general, the optimal solution of (16) isnot the sum-rate capacity

of the PGIC, since it presumes that the signals transmitted in each sub-channel are independent and no

joint decoding across sub-channels is allowed. However, solving problem (16) is important to derive the

November 23, 2018 DRAFT
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sum-rate capacity of a PGIC. We are interested in the case where the optimal power allocationsP ∗
i , Q∗

i

satisfy the following noisy interference conditions

√
aici(1 + biP

∗
i ) +

√
bidi(1 + aiQ

∗
i ) ≤

√
cidi, i = 1, . . . ,m. (17)

In such a case, it turns out that the sum of the sum-rate capacities in (16) is maximized when each

sub-channel experiences noisy interference.

For the rest of this section, we first consider the general PGIC and derive the optimal solution of

problem (16) based on Lemmas 2 and 3. We further find conditions on the total powerP andQ such

that the optimal solution of (16) satisfies (17). Then we focus on symmetric PGICs and provide some

insights on this solution.

A. General parallel Gaussian interference channel

Theorem 1:For a PGIC defined in (1), if
√
aici +

√
bidi <

√
cidi and the power constraint(P,Q) is

in the following set

⋃

[k∗

p,k
∗

q ]
T∈T

m

i=1 Bi



(P,Q)

∣∣∣∣∣∣
P =

∑m
i=1 P

∗
i , Q =

∑m
i=1Q

∗
i ,

[k∗p, k
∗
q ]

T ∈ ∂Ci(P
∗
i , Q

∗
i ) i = 1, . . . ,m.



 , (18)

then the optimal solution of (16) satisfies (17).

Proof: The proof is straightforward from Lemma 3. For any[k∗p, k
∗
q ]

T ∈ ⋂m
i=1 Bi, there existP ∗

i , Q
∗
i

such that[k∗p, k
∗
q ]

T ∈ ∂Ci(P
∗
i , Q

∗
i ), i = 1, . . . ,m. Thus if P =

∑m
i=1 P

∗
i , Q =

∑m
i=1 Q

∗
i , then from

Lemma 3,P ∗
i , Q

∗
i are optimal for the optimization problem (16). Since(P ∗

i , Q
∗
i ) ∈ Ai, then from

Lemma 1,(P ∗
i , Q

∗
i ) satisfies (17).

Theorem 1 provides conditions on the power and channel coefficients such that treating interference as

noise (or single-user detection) maximizes the sum rate of aPGIC under the assumption of independent

transmission among sub-channels. The conditions of Theorem 1 ensures that the power constraintsP and

Q are associated with a subgradient
[
k∗p, k

∗
q

]T
shared byCi(P

∗
i , Q

∗
i ) for all i = 1, · · · ,m. Therefore, at

the points of the optimal power allocations(P ∗
i , Q

∗
i ), all the functionsCi(pi, qi) have parallel supporting

hyperplanes. We will discuss this in more details in Remark 1below.

In general, the closed-form expression (18) of the power region for P andQ is very complex. However,

for some special cases like symmetric PGICs, we can obtain simpler closed-form solutions.
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B. Symmetric parallel Gaussian interference channel

In this section, we consider PGICs with symmetric parameters, namelyai = bi, ci = di andP = Q.

Without loss of generality we assumec1 ≥ c2 · · · ≥ cm. Define

wi =
4a2i(√

ci −
√
ai
)2 , (19)

ŵ = max
i

{wi}, (20)

and letr to be an index between1 andm such that

cr+1 < ŵ < cr, (21)

where we letcm+1 = 0 for convention. Then we have the following theorem.

Theorem 2:For a symmetric PGIC, if
ai
ci

<
1

4
, i = 1, . . . ,m, and

0 < P ≤ P̄ , (22)

where

P̄ =
r∑

i=1

√
c2i +

4aici
ŵ

(ai + ci)− (2ai + ci)

2ai(ai + ci)
, (23)

then the optimal solution of (16) satisfies (17). Furthermore, only the firstr sub-channels are active.

Proof: By symmetry, we simplify the proof by considering the following optimization problem:

max
m∑

i=1

Ci(Pi, Pi)

subject to
m∑

i=1

Pi = P

Pi ≥ 0, i = 1, . . . ,m.

(24)

That is, we require that the power allocated to both users bePi for the ith sub-channel. Obviously the

maximum of (24) is no greater than the maximum of(16) because of the extra constraintPi = Qi. To

prove Theorem 2, it suffices to show that under the condition0 < P ≤ P̄ : 1) the optimalP ∗
i for (24)

satisfy the noisy interference condition;2) the optimization problems (16) and (24) are equivalent.

Let Pi = Qi, we obtain from Lemma 1

A′
i =

{
p

∣∣∣∣0 ≤ p ≤
√
aici − 2ai

2a2i

}
. (25)

The subdifferential is computed in the Appendix and is givenby (see (89))

∂Ci(Pi) =





{k |ci ≤ k ≤ ĉ} , Pi = 0,{
k

∣∣∣∣k =
ci

(1 + aiPi)(1 + aiPi + ciPi)

}
, Pi ∈ A′

i, Pi 6= 0,
(26)

November 23, 2018 DRAFT
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whereĉ = max{ci}. Therefore

B′
i =

⋃

Pi∈A′

i

∂Ci(Pi) = {k |wi ≤ k ≤ ĉ} , (27)

and
m⋂

i=1

B′
i = {k |ŵ ≤ k ≤ ĉ} . (28)

For anyk∗ ∈ ⋂m
i=1 B′

i, equation (26) determines a one-to-one mapping fromk∗ to P ∗
i ∈ A′

i, namely

P ∗
i (k

∗) =





0, k∗ ≥ ci√
c2i +

4aici
k∗

(ai + ci)− (2ai + ci)

2ai(ai + ci)
, wi ≤ k∗ < ci.

(29)

So consider the region (18) which is here

⋃

k∗∈[ŵ,ĉ]

{
P

∣∣∣∣∣P =
m∑

i=1

P ∗
i (k

∗)

}
. (30)

From (29),
∑m

i=1 P
∗
i (k

∗) is decreasing ink∗, therefore

P ≥ P (k∗ = ĉ) = 0, (31)

P ≤ P (k∗ = ŵ) =
r∑

i=1

P ∗
i (k

∗ = ŵ)

=
r∑

i=1

√
c2i +

4aici
ŵ

(ai + ci)− (2ai + ci)

2ai(ai + ci)
, P̄ , (32)

where the first equality of (32) is from (21). SinceP (k∗) =
∑m

i=1 P
∗
i (k

∗) is continuous overk∗, for

any P ∈ [0, P̄ ] there exists ak∗, and the correspondingP ∗
i , i = 1, . . . ,m, that solve the optimization

problem (24).

We complete the proof by showing that the optimalP ∗
i for (24) is also optimal for (16) for a symmetric

PGIC. Assume that for a givenP and the optimalP ∗
i of (24), the corresponding subgradient (which is

identical for alli) is k∗. Then by symmetry, the subderivative ofCi(Pi, Qi) in (16) is[k
∗

2 ,
k∗

2 ]
T by choosing

Pi = Qi = P ∗
i . Therefore the subderivatives are identical for all theCi(Pi, Qi) at Pi = Qi = P ∗

i . From

Lemma 3,Pi = Qi = P ∗
i is an optimal choice for (16). SinceP ∗

i satisfies the noisy-interference condition

in (25), Pi = Qi = P ∗
i also satisfies the noisy-interference condition in (3).

Remark 1: From the proof of Theorem 2, all theCi(Pi, Qi) have parallel supporting hyperplanes at

the optimal pointPi = Qi = P ∗
i . This gives rise to a geometric interpretation, as illustrated in Fig. 3.

For clarity, we use the simplified optimization problem (24). Ci(p) is the sum-rate capacity for theith
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P1P1 − δ

kδ < △R1

kδ > △R2

δ

δ

P2 P2 + δ

C∗

s2

C∗

s1

C∗

s2 + △R2

C∗

s1 −△R1

C2(p)

C1(p)

A2

A1

A′

1

A′

2

p

Ci(p)

Fig. 3. An illustration of sum-rate capacity achieving power allocation for a symmetric parallel Gaussian interference channel.

sub-channel, pointsA1 andA2 correspond to the power allocationsP1 andP2, respectively, and the two

supporting hyperplanes pass throughA1 andA2. The power allocation satisfiesP = P1+P2, Pi ∈ A′
i, i =

1, 2, andk = ∂C1(p)
∂p

|p=P1
= ∂C2(p)

∂p
|p=P2

(we assume the subgradient is equal to the gradient in this

case, and hence the supporting hyperplane is the tangent hyperplane), and the corresponding sum rate is

C∗
s1+C∗

s2. Consider the power allocationP1−δ andP2+δ and the corresponding sum-rate capacities for

the two sub-channelsC∗
s1−△R1 andC∗

s2+△R2, respectively. By concavity,△R1 > kδ and△R2 < kδ.

Therefore the new sum-rate is(C∗
s1 −△R1) + (C∗

s2 +△R2) < (C∗
s1 − kδ) + (C∗

s2 + kδ) = C∗
s1 + C∗

s2.

Remark 2: When min
i

{√
aici−2ai

2a2
i

}
< P ≤ P̄ , there exist power allocations such that some sub-

channels do not have noisy interference. As such the sum-rate capacities of those sub-channels are

unknown. Surprisingly, in this case we do not need to derive upper bounds for those unknown sum-rate

capacities. Instead, the concavity of the sum-rate capacity (as a function of the power) and the existing

noisy-interference sum-rate capacity results ensure the validity of Theorem 2.

Remark 3: The parallel supporting hyperplanes condition for the optimal power allocation is applicable

to a broad class of parallel channels in which 1) transmissions across subchannels are independent, 2)
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the capacity of each subchannel is concave in its power constraint. For example, this condition applies to

parallel multi-access and broadcast channels. In particular, applying the condition to single user parallel

Gaussian channels, it is easy to verify that the parallel supporting hyperplanes condition reduces to the

classic waterfilling interpretation.

Remark 4: Intuitively, since each sub-channel is a symmetric Gaussian IC with noisy interference, the

power allocated to the two users in each sub-channel ought tobe identical. While Theorem 2 does not

explicitly address the power allocation scheme, we see fromthe proof of the theorem that this is indeed

the case.

Remark 5: If (22) is satisfied, the optimal power allocationP ∗
i is unique, and there exists ak∗ ∈ [ŵ, ĉ]

such thatP ∗
i andk∗ satisfy (29). To see this, observe that in the proof of Theorem 2,

∑m
i=1 P

∗
i (k∗) is

continuous and monotonically decreasing ink∗ when k∗ ∈ [ŵ, ĉ], andP varies from0 to P̄ when k∗

varies from ĉ to ŵ. Thus, if 0 ≤ P ≤ P̄ , there exists a corresponding uniquek∗ in [ŵ, ĉ] that solves

problem (24). Since the mapping fromk∗ to P ∗
i in (29) is a one-to-one mapping,P ∗

i is also unique.

Remark 6: As shown in (29), whether a sub-channel is active or not depends only on the direct channel

gainci. The amount of power allocated to a sub-channel depends on both the direct channel gainci and the

interference channel gainai. When the total power constraintP increases from0 to P̄ , the corresponding

k∗ decreases from̂c to ŵ. As such, from (29) the sub-channels with largerci become active earlier than

those with smallerci.

IV. N OISY INTERFERENCE SUM-RATE CAPACITY

The following theorem gives the noisy-interference sum-rate capacity of a PGIC.

Theorem 3:For the PGIC defined in (1), if

√
aici +

√
bidi <

√
cidi (33)

for all i = 1, · · · ,m, and the power constraint pair(P,Q) is in the set (18), the sum-rate capacity is

the maximum of problem (16), and the sum-rate capacity is achieved by independent transmission across

sub-channels and treating interference as noise for each sub-channel.

The following theorem is a special case of Theorem 1 for symmetric PGICs.

Theorem 4:For a symmetric PGIC, if
ai
ci

<
1

4
for all i = 1, · · · ,m, and the power constraintP

satisfies (22), then the sum-rate capacity is the maximum of problem (24) and is achieved by independent

transmission across sub-channels and treating interference as noise in each sub-channel.
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For the PGIC, there may exist some sub-channels with one-sided interference or no interference, i.e.,

bj = 0, or ak = 0 or ar = br = 0 for some integersj, k andr between1 andm. We prove Theorem 3

for all such cases.

Proof: Let i, j, k, r be integers and1 ≤ i ≤ m1, m1 + 1 ≤ j ≤ m2, m2 + 1 ≤ k ≤ m3 and

m3 + 1 ≤ r ≤ m throughout this proof. We denotei, j, k, r as index sets andi = {1, · · · ,m1},

j = {m1+1, · · · ,m2}, k = {m2+1, · · · ,m3}, andr = {m3+1, · · · ,m}. Without loss of generality we

can assume that sub-channels with indexi are all two-sided GICs withai 6= 0, bi 6= 0 ; the sub-channels

with index j are all GICs withaj 6= 0, bj = 0; the sub-channels with indexk are all GICs withak = 0,

bk 6= 0; and the sub-channels with indexr are all GICs withar = br = 0. LetA = diag(
√
a1, · · · ,

√
am),

B = diag(
√
b1, · · · ,

√
bm), C = diag(

√
c1, · · · ,

√
cm), D = diag(

√
d1, · · · ,

√
dm). Then we can rewrite

(1) in the following form

yyy1 = Cxxx1 +Axxx2 + zzz1,

yyy2 = Bxxx1 +Dxxx2 + zzz2,
(34)

wherezzz1 ∼ N (0, I) andzzz2 ∼ N (0, I).

We further define

Ai = diag(
√
a1, · · · ,

√
am1

) = diag(
√
ai),

Aj = diag(
√
am1+1, · · · ,

√
am2

) = diag(
√

aj),

Ak = diag(
√
am2+1, · · · ,

√
am3

) = diag(
√
ak),

Ar = diag(
√
am3+1, · · · ,

√
am) = diag(

√
ar),

and similarly forB, C andD. Denote the transmitted vector of user 1 asxxx1 = [X1, · · · ,Xm], where each

entry is the transmitted signal at the corresponding sub-channel. Similarly, we letxxx1i = [X1, · · · ,Xm1
] =

[X1i],xxx1j = [Xm1+1, · · · ,Xm2
] = [X1j ],xxx1k = [Xm2+1, · · · ,Xm3

] = [X1k] andxxx1r = [Xm3+1, · · · ,Xm] =

[X1r]. The input vectors for the second user are similarly defined.

Since the power constraint[P,Q]T is in the set (18), so there exists a subgradient[k∗p, k
∗
q ]

T ∈ ⋂m
l=1 Bl

and the corresponding[P ∗
l , Q

∗
l ]
T ∈ Al such that

[k∗p, k
∗
q ]

T ∈ ∂Cl (P
∗
l , Q

∗
l ) , l = 1, · · · ,m. (35)

From Theorem 1, theP ∗
l , Q

∗
l optimize problem (16).
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Assuming the channel is usedn times, the transmitted vector sequences are denoted asxxxn1 =
[
xxxT11, · · · ,xxxT1n

]T

andxxxn2 =
[
xxxT21, · · · ,xxxT

2n

]T
which satisfy the average power constraints

n∑

l=1

tr
[
E
(
xxx1lxxx

T
1l

)]
≤ nP,

n∑

l=1

tr
[
E
(
xxx2lxxx

T
2l

)]
≤ nQ.

Define zero-mean Gaussian vectorsx̂xx∗1 =
[
X̂∗

11, · · · , X̂∗
1m

]
andx̂xx∗2 =

[
X̂∗

21, · · · , X̂∗
2m

]
with the covariance

matrices

Cov(x̂xx∗1) =
1

n

n∑

l=1

Cov(xxx1l) , (36)

Cov(x̂xx∗2) =
1

n

n∑

l=1

Cov(xxx2l) . (37)

Obviously,x̂xx∗1 andx̂xx∗2 satisfy the power constraints. We define

Pl = Var
(
X̂∗

1l

)
, (38)

Ql = Var
(
X̂∗

2l

)
. (39)

Vectorsŷyy∗1 andŷyy∗2 are defined by (34) withxxx1 andxxx2 being replaced bŷxxx∗1 andx̂xx∗2 respectively. Similar

to xxx1, x̂xx
∗
1 is also partitioned aŝxxx∗1i, x̂xx

∗
1j , x̂xx

∗
1k andx̂xx∗1r.

Define Gaussian random vectorsnnn1i,nnn1j ,nnn2i andnnn2k independent ofxxx1 andxxx2, and let



zzz1i

zzz1j

zzz1k

nnn1i

nnn1j




∼ N




0,




Ii 0 0 ρ1iσ1i 0

0 Ij 0 0 ρ1jσ1j

0 0 Ik 0 0

ρ1iσ1i 0 0 σ2
1i 0

0 ρ1jσ1j 0 0 σ2
1j







, (40)




zzz2i

zzz2j

zzz2k

nnn2i

nnn2k




∼ N




0,




Ii 0 0 ρ2iσ2i 0

0 Ij 0 0 0

0 0 Ik 0 ρ2kσ2k

ρ2iσ2i 0 0 σ2
2i 0

0 0 ρ2kσ2k 0 σ2
2k







, (41)
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whereρi and σi are diagonal matrices with the diagonal entries beingρi and σi, i ∈ i, respectively.

Furthermore, we let

σ2
1i =

1

2bi

(
bi
ci

(aiQ
∗
i + 1)2 − ai

di
(biP

∗
i + 1)2 + 1

±
√[

bi
ci

(aiQ
∗
i + 1)2 − ai

di
(biP

∗
i + 1)2 + 1

]2
− 4bi

ci
(aiQ

∗
i + 1)2


 , (42)

σ2
2i =

1

2ai

(
ai
di

(biP
∗
i + 1)2 − bi

ci
(aiQ

∗
i + 1)2 + 1

±
√[

ai
di

(biP ∗
i + 1)2 − bi

ci
(aiQ∗

i + 1)2 + 1

]2
− 4ai

di
(biP ∗

i + 1)2


 , (43)

ρ1i =
√

1− aiσ2
2i, (44)

ρ2i =
√

1− biσ2
1i, (45)

σ2
1j =

(
1 + ajQ

∗
j

)2

cjρ
2
1j

, (46)

ρ1j =

√
1− aj

dj
, (47)

σ2
2k =

(1 + bkP
∗
k )

2

dkρ
2
2k

, (48)

ρ2k =

√
1− bk

ck
. (49)

We emphasize that theP ∗
l andQ∗

l in (42)-(49) are theoptimal powers for the problem (16) and can

be considered as constants in what follows. It has been shownin [6, equations (51),(52)] that (42)-(45)

are feasible (i.e., there exist at least one choice of{σ2
1i, σ

2
2i, ρ1i, ρ2i} such that the covariance matrices

are symmetric and semi-positive definite, and thus the defined Gaussian random vectors exist) for the

definition in (40) and (41) if and only if[P ∗
i , Q

∗
i ]
T ∈ Ai. Obviously, (46)-(49) are feasible for the

definitions in (40) and (41) if and only ifaj ≤ dj andbk ≤ ck. Moreover, (42)-(45), (46) and (48) satisfy

√
clρ1lσ1l = 1 + alQ

∗
l , (50)

√
dlρ2lσ2l = 1 + blP

∗
l , (51)

for all l = 1, · · · ,m.
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Let ǫ > 0 andǫ → 0 asn → ∞. From Fano’s inequality, any achievable rateR1 andR2 for the PGIC

must satisfy

n(R1 +R2)− nǫ

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 )

≤ I
(
xxxn1 ;yyy

n
1 ,xxx

n
1i +nnnn

1i,xxx
n
1j +nnnn

1j

)
+ I

(
xxxn2 ;yyy

n
2 ,xxx

n
2i +nnnn

2i,xxx
n
2k +nnnn

2k

)

= h
(
yyyn1 ,xxx

n
1i +nnnn

1i,xxx
n
1j +nnnn

1j

)
− h

(
yyyn1 ,xxx

n
1i +nnnn

1i,xxx
n
1j +nnnn

1j |xxxn1
)
+ h

(
yyyn2 ,xxx

n
2i +nnnn

2i,xxx
n
2k +nnnn

2k

)

−h
(
yyyn2 ,xxx

n
2i +nnnn

2i,xxx
n
2k +nnnn

2k |xxxn2
)
. (52)

In (52), we provide side informationxxxn1i+nnnn
1i andxxxn1j+nnnn

1j to receiver one, andxxxn2i+nnnn
2i andxxxn2k+nnnn

2k to

receiver two, respectively. For the firstm1 sub-channels which have two-sided interference, both receivers

have side information. For the sub-channels which have one-sided interference, only the receivers suffering

from interference have the corresponding side information. For the sub-channels without interference, no

side information is given.

For the first term of (52), we have

h
(
yyyn1 ,xxx

n
1i +nnnn

1i,xxx
n
1j +nnnn

1j

)

= h
(
yyyn1i, yyy

n
1j, yyy

n
1k, yyy

n
1r,xxx

n
1i +nnnn

1i,xxx
n
1j +nnnn

1j

)

≤ h
(
yyyn1k,xxx

n
1i +nnnn

1i

)
+ h

(
yyyn1i

∣∣∣xxxn1i +nnnn
1i

)
+ h

(
yyyn1j ,xxx

n
1j +nnnn

1j

)
+ h

(
yyyn1r

)

≤ h
(
yyyn1k,xxx

n
1i +nnnn

1i

)
+ nh

(
ŷyy∗1i

∣∣∣ x̂xx∗1i +nnn1i

)
+ nh

(
ŷyy∗1j , x̂xx

∗
1j +nnn1j

)
+ nh

(
ŷyy∗1r

)

≤ h
(
yyyn1k,xxx

n
1i +nnnn

1i

)
+ n

∑

i

h
(
Ŷ ∗
1i

∣∣∣ X̂∗
1i +N1i

)
+ n

∑

j

h
(
Ŷ ∗
1j, X̂

∗
1j +N1j

)
+ n

∑

r

h
(
Ŷ ∗
1r

)
,(53)

where the first inequality follows by the chain rule and the fact that conditioning does not increase

entropy, and the second inequality is from Lemma 4.

For the fourth term of (52), we have

−h
(
yyyn2 ,xxx

n
2i +nnnn

2i,xxx
n
2k +nnnn

2k |xxxn2
)

= −h
(
yyyn2i, yyy

n
2j , yyy

n
2k, yyy

n
2r,xxx

n
2i +nnnn

2i,xxx
n
2k +nnnn

2k

∣∣∣xxxn2i,xxxn
2j ,xxx

n
2k,xxx

n
2r

)

= −h
(
Bixxx

n
1i + zzzn2i, zzz

n
2j ,Bkxxx

n
1k + zzzn2k, zzz

n
2r,nnn

n
2i,nnn

n
2k

)

= −h
(
Bixxx

n
1i + zzzn2i,Bkxxx

n
1k + zzzn2k,nnn

n
2i,nnn

n
2k

)
− h

(
zzzn2j

)
− h

(
zzzn2r

)

= −h
(
Bixxx

n
1i + zzzn2i,Bkxxx

n
1k + zzzn2k

∣∣∣nnnn
2i,nnn

n
2k

)
− h

(
nnnn
2i

)
− h

(
nnnn
2k

)
− h

(
zzzn2j

)
− h

(
zzzn2r

)
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= −h
(
Bixxx

n
1i + zzzn2i,Bkxxx

n
1k + zzzn2k

∣∣∣nnnn
2i,nnn

n
2k

)
− n

∑

i

h (N2i)− n
∑

k

h (N2k)− n
∑

j

h (Z2j)

−n
∑

r

h (Z2r) . (54)

where the third equality holds sincezzzn2j andzzzn2r are independent of all other variables.

Combine the first terms of (53) and (54), we have

h
(
yyyn1k,xxx

n
1i +nnnn

1i

)
− h

(
Bixxx

n
1i + zzzn2i,Bkxxx

n
1k + zzzn2k

∣∣∣nnnn
2i,nnn

n
2k

)

(a)
= h

(
xxxn1i +nnnn

1i,Ckxxx
n
1k + zzzn1k

)
− h

(
Bixxx

n
1i +wwwn

2i,Bkxxx
n
1k +wwwn

2k

)

= h
(
xxxn1i +nnnn

1i,xxx
n
1k +C

−1
k zzzn1k

)
− h

(
xxxn1i +B

−1
i wwwn

2i,xxx
n
1k +B

−1
k wwwn

2k

)
+ n log

|Ck|
|Bi| · |Bk|

(b)
= n log

|Ck|
|Bi| · |Bk|

(c)
= n

∑

i

h
(
X̂∗

1i +N1i

)
+ n

∑

k

h

(
X̂∗

1k +
1√
ck

Z1k

)
− n

∑

i

h

(
X̂∗

1i +
1√
bi
W2i

)

−n
∑

k

h

(
X̂∗

1k +
1√
bk

W2k

)
+ n

∑

k

log
√
ck − n

∑

i

log
√

bi − n
∑

k

log
√

bk

= n
∑

i

h
(
X̂∗

1i +N1i

)
+ n

∑

k

h
(√

ckX̂
∗
1k + Z1k

)
− n

∑

i

h
(√

biX̂
∗
1i + Z2i |N2i

)

−n
∑

k

h
(√

bkX̂
∗
1k + Z2k |N2k

)
, (55)

where in (a) we letwww2i andwww2k be independent Gaussian vectors and

Cov
(
www2i

)
= Cov

(
zzz2i
∣∣nnn2i

)
= Ii − diag(ρ22i)

Cov
(
www2k

)
= Cov

(
zzz2k
∣∣nnn2k

)
= Ik − diag(ρ22k). (56)

The stacked vectorswwwn
2i andwwwn

2k each have independent and identical distribution (i.i.d) entries. Equality

(b) holds because of (45) and (49) which imply

Cov
(
nnn1i

)
= Cov

(
B

−1
i www2i

)
,

Cov
(
C

−1
k zzz1k

)
= Cov

(
B

−1
k www2k

)
,

and

h
(
xxxn1i +nnnn

1i,xxx
n
1k +C

−1
k zzzn1k

)
− h

(
xxxn1i +B

−1
i wwwn

2i,xxx
n
1k +B

−1
k wwwn

2k

)
= 0,

regardless of the distribution ofxxxn1i andxxxn1k.
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Equality (c) holds also because of (45) and (49), which imply

h
(
X̂∗

1i +N1i

)
− h

(
Xn

1i +
1√
bi
W2i

)
= 0,

h

(
X̂∗

1k +
1√
ck

Z1k

)
− h

(
X̂∗

1k +
1√
bk

W2k

)
= 0,

regardless of the distributions of̂X1i andX̂1k.

Combining (53) and (54) and using (55), we have

h
(
yyyn1 ,xxx

n
1i +nnnn

1i,xxx
n
1j +nnnn

1j

)
− h

(
yyyn2 ,xxx

n
2i +nnnn

2i,xxx
n
2k +nnnn

2k |xxxn2
)

≤ n
∑

i

h
(
X̂∗

1i +N1i

)
+ n

∑

k

h
(√

ckX̂
∗
1k + Z1k

)
+ n

∑

i

h
(
Ŷ ∗
1i

∣∣∣ X̂∗
1i +N1i

)
+ n

∑

r

h
(
Ŷ ∗
1r

)

+n
∑

j

h
(
Ŷ ∗
1j, X̂

∗
1j +N1j

)
− n

∑

i

h
(√

biX̂
∗
1i + Z2i |N2i

)
− n

∑

k

h
(√

bkX̂
∗
1k + Z2k |N2k

)

−n
∑

i

h (N2i)− n
∑

k

h (N2k)− n
∑

j

h (Z2j)− n
∑

r

h (Z2r) . (57)

Similarly, because of (44) and (47) we have

h
(
yyyn2 ,xxx

n
2i +nnnn

2i,xxx
n
2k +nnnn

2k

)
− h

(
yyyn1 ,xxx

n
1i +nnnn

1i,xxx
n
1j +nnnn

1j |xxxn1
)

≤ n
∑

i

h
(
X̂∗

2i +N2i

)
+ n

∑

j

h
(√

djX̂
∗
2j + Z2j

)
+ n

∑

i

(
Y ∗
2i

∣∣∣ X̂∗
2i +N2i

)
+ n

∑

r

h
(
Ŷ ∗
2r

)

+n
∑

k

h
(
Ŷ ∗
2k, X̂

∗
2k +N2k

)
− n

∑

i

h
(√

aiX̂
∗
2i + Z1i |N1i

)
− n

∑

j

h
(√

ajX̂
∗
2j + Z1j |N1j

)

−n
∑

i

h (N1i)− n
∑

j

h (N1j)− n
∑

k

h (Z1k)− n
∑

r

h (Z1r) . (58)

Substituting (57) and (58) into (52), we have

R1 +R2 − ǫ

≤
∑

i

[
h
(
X̂∗

1i +N1i

)
+ h

(
Ŷ ∗
1i

∣∣∣ X̂∗
1i +N1i

)
− h (N1i)− h

(√
aiX̂

∗
2i + Z1i |N1i

)

h
(
X̂∗

2i +N2i

)
+ h

(
Ŷ ∗
2i

∣∣∣ X̂∗
2i +N2i

)
− h (N2i)− h

(√
biX̂

∗
1i + Z2i |N2i

)]

+
∑

j

[
h
(
Ŷ ∗
1j , X̂

∗
1j +N1j

)
− h (N1j)− h

(√
ajX̂

∗
2j + Z1j |N1j

)
+ h

(√
djX̂

∗
2j + Z2j

)
− h (Z2j)

]

+
∑

k

[
h
(
Ŷ ∗
2k, X̂

∗
2k +N2k

)
− h (N2k)− h

(√
bkX̂

∗
1k + Z2k |N2k

)
+ h

(√
ckX̂

∗
1k + Z1k

)
− h (Z1k)

]

+
∑

r

[
h
(
Ŷ ∗
1r

)
− h (Z1r)

]
+
∑

r

[
h
(
Ŷ ∗
2r

)
− h (Z2r)

]

=
∑

i

fi(Pi, Qi) +
∑

j

fj(Pj , Qj) +
∑

k

fk(Pk, Qk) +
∑

r

fr(Pr, Qr)
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=
m∑

l=1

fl(Pl, Ql), (59)

where

fi(Pi, Qi) =
1

2
log

[
(1 + aiQi)Pi

1 + aiQi − ρ21i

(
1

σ1i
−

√
ciρ1i

1 + aiQi

)2

+ 1 +
ciPi

1 + aiQi

]

+
1

2
log

[
(1 + biPi)Qi

1 + biPi − ρ22i

(
1

σ2i
−

√
diρ2i

1 + biPi

)2

+ 1 +
diQi

1 + biPi

]
, (60)

fj(Pj , Qj) =
1

2
log

[
(1 + ajQj)Pj

1 + ajQj − ρ21j

(
1

σ1j
−

√
cjρ1j

1 + ajQj

)2

+ 1 +
cjPj

1 + ajQj

]
+

1

2
log (1 + djQj) , (61)

fk(Pk, Qk) =
1

2
log

[
(1 + bkPk)Qk

1 + bkPk − ρ22k

(
1

σ2k
−

√
dkρ2k

1 + bkPk

)2

+ 1 +
dkQk

1 + bkPk

]
+

1

2
log (1 + ckPk) , (62)

fr(Pr, Qr) =
1

2
log (1 + Pr) +

1

2
log (1 +Qr) . (63)

Next we will show that thefl(Pl, Ql), l = 1, · · · ,m are all concave and non-decreasing functions of

(Pl, Ql). From (59) and the fact that

h
(
X̂∗

1i +N1i

)
− h

(√
biX̂

∗
1i + Z2i |N2i

)
= − log

√
bi,

h
(
X̂∗

2i +N2i

)
− h

(√
aiX̂

∗
2i + Z1i |N1i

)
= − log

√
ai,

we have

fi(Pi, Qi) = h
(
Ŷ ∗
1i

∣∣∣ X̂∗
1i +N1i

)
− h (N1i) + h

(
Ŷ ∗
2i

∣∣∣ X̂∗
2i +N2i

)
− h (N2i)− log

√
aibi. (64)

Define Gaussian variableŝX∗
1i t, X̂

∗
2i t andŶ ∗

1i t independent ofNi, andŶ ∗
1i t =

√
ciX̂

∗
1i t+

√
aiX̂

∗
2i t+Zi,

t = 1, · · · , s wheres is an integer. Let Var
(
X̂∗

1i t

)
= Pi t, Var

(
X̂∗

2i t

)
= Qi t and

s∑

t=1

λtVar
(
X̂∗

1i t

)
= Pi = Var

(
X̂∗

1i

)
, (65)

s∑

t=1

λtVar
(
X̂∗

2i t

)
= Qi = Var

(
X̂∗

2i

)
, (66)

where{λt} is a non-negative sequence with
∑s

t=1 λt = 1. Then we have

s∑

t=1

λlCov




 Ŷ ∗

1i t

X̂∗
1i t +Ni




 = Cov




 Ŷ ∗

1i

X̂∗
1i +Ni




 , (67)

From Lemma 4 we have

h
(
Ŷ ∗
1i

∣∣∣ X̂∗
1i +N1i

)
≥

k∑

l=1

λth
(
Ŷ ∗
1i t

∣∣∣ X̂∗
1i t +N1i

)
. (68)
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Therefore,h
(
Ŷ ∗
1i

∣∣∣ X̂∗
1i +N1i

)
is a concave function of(Pi, Qi). For the same reasonh

(
Ŷ ∗
2i

∣∣∣ X̂∗
2i +N2i

)

is also a concave function of(Pi, Qi). Thereforefi(Pi, Qi) is a concave function of(Pi, Qi). Similar

steps show thatfj, fk, andfr are concave in(Pl, Ql).

To show thatfi(Pi, Qi) is a non-decreasing function ofPi, Qi, we let X̄1i, X̄2i, U1 andU2 be four

independent Gaussian variables and

X̂∗
1i = X̄1i + U1,

X̂∗
2i = X̄2i + U2.

Then

h
(
Ŷ ∗
1i

∣∣∣X̂∗
1i +N1i

)

= h
(√

ciX̂
∗
1i +

√
aiX̂

∗
2i + Z1i

∣∣∣X̂∗
1i +N1i

)

≤ h
(√

ciX̂
∗
1i +

√
aiX̂

∗
2i + Z1i

∣∣∣X̂∗
1i +N1i, U1, U2

)

= h
(√

ciX̄1i +
√
aiX̄2i + Z1i

∣∣X̄1i +N1i

)
.

Therefore,h
(
Ŷ ∗
1i

∣∣∣X̂∗
1i +N1i

)
is a non-decreasing function of(Pi, Qi). For the same reason,h

(
Ŷ ∗
2i

∣∣∣X̂∗
2i +N2i

)

is also a non-decreasing function of(Pi, Qi). Therefore,fi is a non-decreasing function of(Pi, Qi).

From (50) and (51) we have
m∑

l=1

fl(P
∗
l , Q

∗
l ) =

1

2

m∑

l=1

[
log

(
1 +

clP
∗
l

1 + alQ
∗
l

)
+ log

(
1 +

dlQ
∗
l

1 + blP
∗
l

)]

=
m∑

l=1

Cl(P
∗
l , Q

∗
l ). (69)

Next we will show that
∑m

l=1 f(P
∗
l , Q

∗
l ) ≥ ∑m

l=1 f(Pl, Ql) for any Pl, Ql that satisfy
∑m

l=1 Pl = P ,
∑m

l=1Ql = Q.

Using (50) and (51), we have

∂fl(p, q)

∂p

∣∣∣∣∣∣p = P∗

l

q = Q∗

l

=
∂Cl(p, q)

∂p

∣∣∣∣∣∣p = P∗

l

q = Q∗

l

(70)

∂fl(p, q)

∂q

∣∣∣∣∣∣p = P∗

l

q = Q∗

l

=
∂Cl(p, q)

∂q

∣∣∣∣∣∣p = P∗

l

q = Q∗

l

, (71)

for all l = 1, · · · ,m. Therefore,fl andCl have the same partial derivatives at point(P ∗
l , Q

∗
l ). From the

Appendix, the subgradient of a function is determined by thederivatives, therefore,fl andCl have the

same subgradient at point(P ∗
l , Q

∗
l ) for eachl. From (35), we have

[
k∗p, k

∗
q

]
∈ ∂fl(P

∗
l , Q

∗
l ), l = 1, · · · ,m. (72)
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Therefore, from Lemma 3 we have
m∑

l=1

fl (P
∗
l , Q

∗
l ) ≥

m∑

l=1

fl (Pl, Ql) , (73)

if
∑m

l=1 Pl = P and
∑m

l=1 Ql = Q.

If
∑m

l=1 Pl ≤ P and
∑m

l=1Ql ≤ Q, there exist two non-negative sequences{s1, · · · , sm} and

{t1, · · · , tm} such that
∑m

l=1(Pl + sl) = P and
∑m

l=1(Ql + tl) = Q. Therefore we have from Lemma 3
m∑

l=1

fl (P
∗
l , Q

∗
l ) ≥

m∑

i=1

fl (Pl + sl, Ql + tl) . (74)

Sincefl(Pl, Ql), l = 1, · · · ,m are all non-decreasing functions ofPl andQl, we have
m∑

i=1

fl (Pl + sl, Ql + tl) ≥
m∑

i=1

fl (Pl, Ql) . (75)

Combining (74) and (75) we have
m∑

l=1

fl (P
∗
l , Q

∗
l ) ≥

m∑

i=1

fl (Pl, Ql) , (76)

for any
∑m

l=1 Pl ≤ P and
∑m

l=1Ql ≤ Q. Therefore we have from (59) and (69) that

R1 +R2 − ǫ ≤ 1

2

m∑

l=1

[
log

(
1 +

clP
∗
l

1 + alQ
∗
l

)
+ log

(
1 +

dlQ
∗
l

1 + blP
∗
l

)]
. (77)

The above sum rate is achievable by independent transmission across sub-channels and single-user

detection in each sub-channel. Therefore (77) is the sum-rate capacity of the PGIC if the power constraints

satisfy (18).

Remark 7: The main idea of the proof can be summarized as follows. We first assume an arbitrary

power allocation(Pl, Ql), l = 1, · · · ,m. Then we show that the sum rate for this power allocation is

upper bounded by
∑m

l=1 fl (Pl, Ql). This upper bound decomposes the sum rate bound into the sum of the

individual sub-channel’s sum-rate capacity upper bounds.By Lemma 3, the maximum of
∑m

l=1 fl (Pl, Ql)

is
∑m

l=1 Cl (P
∗
l , Q

∗
l ) which is an achievable sum rate for a special power allocation. To ease the proof,

the upper boundfl can not be arbitrarily chosen. Compared to the sum-rate capacity Cl for sub-channel

l, fl has the following properties:

• fl is concave over the powers;

• fl is tight at the optimal point(P ∗
l , Q

∗
l );

• fl andCl have the same subdifferentials at the optimal point(P ∗
l , Q

∗
l ).

Therefore we choose the noise vectorsnnn1 andnnn2 such that the above conditions are satisfied. Fig. 4

illustrates such an upper bound.
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Fig. 4. An illustration of the upper bound suitable for the proof of Theorem 1.

V. NUMERICAL EXAMPLES

Figs. 5 and 6 are examples for a symmetric PGIC with directly link gain ci = di = 1. Fig. 5 shows

the ratio of maximum noisy interference power constraintP̄ for a two-channel symmetric PGIC witha

varying from0 to 0.25, and the sum of the maximum noisy interference power constraints for S1 + S2

whereSi =
√
ai−2ai

2a2
i

, i = 1, 2. Thus, fora1 = a2 (i.e., these two sub-channels are identical), the ratio is

1 andS1 = S2 =
P̄
2 , and whena1 anda2 are far apart, then̄P ≪ S1+S2. Thus, fora1 = a2 we achieve

capacity despite the fact that we do not know the capacity if all power is placed in one sub-channel.

Again, this is where Lemma 2 is useful.

Fig. 6 shows the maximum noisy interference power constraint P̄ for a two-channel symmetric PGIC

with a1 varying in [0, 14 ] anda2 = 1
8 . Whena1 = 1

4 , the first sub-channel no longer has noisy interference,

therefore the maximum noisy interference power constraintis P̄ = 0. Fig. 6 also shows that̄P decreases

with a1. The discontinuity ata1 = 1
8 is because the second sub-channel becomes the worse channel.

Fig. 7 shows the regions ofB1 and B2 for a PGIC with two sub-channels. In this caseB1 ⊂ B2.

In Fig. 8, O1CMND is the noisy-interference power region for this PGIC. Points A,E coincide in
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Fig. 8 since in Fig. 7A,E ∈ B(2)
1

⋂B(4)
2 and thus the power allocation isQ∗

1 = P ∗
2 = Q∗

2 = 0 and

P ∗
1 > 0. Similarly, pointsC, T coincide in Fig. 8 sinceC, T ∈ B(2)

1

⋂B(2)
2 and thusQ∗

1 = Q∗
2 = 0

andP ∗
1 > 0, P ∗

2 > 0. Similar arguments apply to pointsB,F andD,S. By considering the relationship

between the power regions and the respective subdifferentials we can determine the activity of the two

users in each sub-channel. This activity is summarized in Tab. I, where0 indicates inactive (zero power)

and+ indicates active (positive power) for the user in the corresponding sub-channel. In the following

we illustrate the regions in Figs. 7 and 8.

We first remind the reader thatB(1)
i corresponds to the case where both users are active;B(2)

i corre-

sponds to the case where only user1 is active;B(3)
i corresponds to the case where only user2 is active;

andB(4)
i corresponds to the case where both users are inactive in sub-channeli. Consider the following

regions.

• The regionO2MN in Tab. I denotes regions in both Figs. 7 and 8. In Fig. 7, it is the intersection

of B(1)
1 andB(1)

2 . Thus, to achieve the sum-rate capacity both users are active in both sub-channels.

The corresponding power regionO2MN is shown in Fig. 8.

• RegionO1EO2F is the intersection ofB(1)
1 andB(4)

2 . So both users are active only in sub-channel

1. In this case, both of the power constraintsP and Q are small, so that only the better sub-

channel which produces larger sum-rate capacity than the other is allocated power. Therefore, this

two-channel PGIC behaves as a GIC.

• RegionO1AE is the intersection ofB(2)
1 andB(4)

2 . So user1 is active in sub-channel1 and user2

is inactive in both sub-channels. The power regionO1AE is shown in Fig. 8. The overall power for

user2 is Q = 0.

• Similar to the above case, regionAETC of Fig. 7 is the intersection ofB(2)
1 andB(2)

2 . The optimal

power allocation makes user1 active in both sub-channels while user2 is inactive in both sub-

channels. In Fig. 8, the overall power for user2 is alsoQ = 0. Actually, regionsO1AE andAETC

are examples of single-user parallel Gaussian channels whose optimal power allocation is the water-

filling scheme. In the former case, the power constraint is sosmall that only the sub-channel with

larger direct link channel gain (sub-channel1) is allocated power. In the latter case, the power

constraint increases to a critical level (pointA in Fig. 8) so that both sub-channels are allocated

power.

• RegionETMO2 is the intersection ofB(1)
1 andB(2)

2 . User1 is active in both sub-channels while

user2 is active only in sub-channel1 which has larger direct channel gain for user2. In this case,
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the two-channel PGIC with two-sided interference works like a PGIC with one sub-channel having

two-sided interference and the other having one-sided interference.

• RegionsO1BF , BFSD andFO2NS are counterparts of regionsO1AE, AETC andETMO2,

respectively, by swapping the roles of the two users.

Also plotted in Fig. 8 are the noisy-interference power regions for the individual sub-channels, where

sub-channel2 has a larger noisy-interference power region than that of sub-channel1. In this case, the

overall noisy-interference power region is larger than that of either of these two sub-channels.

0
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0.7
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P̄

S
1
+

S
2

Fig. 5. Ratio of the total power constraint and the sum of the individual sub-channel power constraints for different channel

gains.

VI. CONCLUSION

Based on the concavity of the sum-rate capacity in the power constraints, we have shown that the

noisy-interference sum-rate capacity of a PGIC can be achieved by independent transmission across sub-

channels and treating interference as noise in each sub-channel. The optimal power allocations have
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Fig. 6. The maximum noisy interference power constraintP̄ for a1 with a2 = 1
8
.

TABLE I

POWER CONSTRAINTS AND THE ACTIVENESS OF USERS

O1A(E) A(E)(T )C ETMO2 O1EO2F

B
(2)
1

T

B
(4)
2 B

(2)
1

T

B
(2)
2 B

(1)
1

T

B
(2)
2 B

(1)
1

T

B
(4)
2

(P ∗

1 , Q
∗

1) (+,0) (+,0) (+,+) (+,+)

(P ∗

2 , Q
∗

2) (0,0) (+,0) (+,0) (0,0)

O2MN O1B(F ) B(F )(S)D FO2NS

B
(1)
1

T

B
(1)
2 B

(3)
1

T

B
(4)
2 B

(3)
1

T

B
(3)
2 B

(1)
1

T

B
(3)
2

(P ∗

1 , Q
∗

1) (+,+) (0,+) (0,+) (+,+)

(P ∗

2 , Q
∗

2) (+,+) (0,0) (0,+) (0,+)
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Fig. 7. B1 andB2 for the parallel Gaussian interference channel witha1 = b1 = 0.6, c1 = d1 = 4, a2 = b2 = 0.24, c2 =

d2 = 1.2.

the property that the sub-channel sum-rate capacity curveshave parallel supporting hyperplanes at these

powers. The methods introduced in this paper can also be usedto obtain the optimal power allocation

and capacity regions of parallel Gaussian multiple access and broadcast channels [22].

APPENDIX: SUBDIFFERENTIAL OFCi(p, q)

The subdifferential∂Ci(p, q) depends on the location of the point(p, q). If the sub-channel is a two-

sided GIC, from Lemma 1,Ai is defined in (3). We derive the subdifferentials as outlinedin (78)-(88)

below and present the evaluations in (89) below.

• If (p, q) is an interior point ofAi, Ci(p, q) is differentiable. From the concavity ofCi(p, q), ▽Ci(p, q)
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Fig. 8. Noisy-interference power region for the parallel Gaussian interference channel witha1 = b1 = 0.6, c1 = d1 = 4, a2 =

b2 = 0.24, c2 = d2 = 1.2.

satisfies (8) and the subdifferential∂Ci(p, q) consists of a unique vector[kp, kq]T = ▽Ci(p, q) where

kp =
∂Ci(p, q)

∂p
(78)

kq =
∂Ci(p, q)

∂q
(79)

• If
√
aici(1 + bip) +

√
bidi(1 + aiq) =

√
cidi, p > 0, q > 0, we can compute only one-sided partial

derivatives sinceCi(p, q) is unknown on the other side. The subdifferential includes avector[kp, kq]T

where

kp = lim
δ↑0

Ci(p+ δ, q) − Ci(p, q)

δ
, (80)

kq = lim
δ↑0

Ci(p, q + δ)− Ci(p, q)

δ
, (81)

wherelim
δ↑0

, lim
δ≤0,δ→0

and similarly lim
δ↓0

, lim
δ≥0,δ→0
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• If q = 0, p > 0, we have only a one-sided partial derivative inq. From the concavity ofCi(p, q),

all the [kp, kq]
T vectors satisfying following conditions are subgradients

kp =





∂Ci(p, 0)

∂p
, 0 < p <

√
cidi −

√
aici −

√
bidi

bi
√
aici

,

lim
δ↑0

Ci(p + δ, 0) − Ci(p, 0)

δ
, p =

√
cidi −

√
aici −

√
bidi

bi
√
aici

,

(82)

kq = lim
δ↓0

Ci(p, δ) − Ci(p, 0)

δ
. (83)

On the other hand, for the same point(p, q) and the corresponding[kp, kq]T defined above, by

choosingk′q > limδ↓0
Ci(p, δ) − Ci(p, 0)

δ
, the vector[kp, kq]T satisfies (8) for all points[p, q]T ∈ Ai,

and thus is also a subgradient. Therefore we can replace (83)with

kq ≥ lim
δ↓0

Ci(p, δ) − Ci(p, 0)

δ
. (84)

• Similarly, if p = 0, q > 0, the subdifferential is the set of[kp, kq]T with

kp ≥ lim
δ↓0

Ci(δ, q) − Ci(0, q)

δ
, (85)

kq =





∂Ci(0, q)

∂q
, 0 < q <

√
cidi −

√
aici −

√
bidi

ai
√
bidi

,

lim
δ↑0

Ci(p+ δ, 0) −Ci(p, 0)

δ
, q =

√
cidi −

√
aici −

√
bidi

ai
√
bidi

.

(86)

• If p = q = 0 the subdifferential is the set of[kp, kq]T with

kp ≥ lim
δ↓0

Ci(δ, 0) − Ci(0, 0)

δ
, (87)

kq ≥ lim
δ↓0

Ci(0, δ) − Ci(0, 0)

δ
. (88)

For completeness, we summarize∂Ci(p, q) as follows

∂Ci(p, q)

November 23, 2018 DRAFT



30

=








(kp, kq)

∣∣∣∣∣∣∣∣

kp =
1

2

(
ci

1 + cip+ aiq
+

bi
1 + bip+ diq

− bi
1 + bip

)

kq =
1

2

(
ai

1 + cip+ aiq
+

di
1 + bip+ diq

− ai
1 + aiq

)





, (p, q) ∈ A(1)
i




(kp, kq)

∣∣∣∣∣∣∣∣

kp =
ci

2(1 + cip)
di

2(1 + bip)
− aicip

2(1 + cip)
≤ kq ≤

d̂

2





, (p, q) ∈ A(2)
i




(kp, kq)

∣∣∣∣∣∣∣

ci
2(1 + aiq)

− bidiq

2(1 + diq)
≤ kp ≤

ĉ

2

kq =
di

2(1 + diq)





, (p, q) ∈ A(3)
i

{
(kp, kq)

∣∣∣∣∣
ci
2

≤ kp ≤
ĉ

2
,

di
2

≤ kq ≤
d̂

2

}
, (p, q) ∈ A(4)

i .

(89)

where

A(1)
i =

{
(p, q)

∣∣∣√ai(1 + bip) +
√

bi(1 + aiq) ≤
√
cidi, p > 0, q > 0

}
, (90)

A(2)
i =

{
(p, q)

∣∣∣∣0 < p ≤
√
cidi −

√
aici −

√
bidi

bi
√
aici

, q = 0

}
, (91)

A(3)
i =

{
(p, q)

∣∣∣∣p = 0, 0 < q ≤
√
cidi −

√
aici −

√
bidi

ai
√
bidi

}
, (92)

A(4)
i = {(p, q) |p = q = 0} , (93)

and

ĉ = max
i=1,··· ,m

{ci}, (94)

d̂ = max
i=1,··· ,m

{di}. (95)

In (89) Ai =
⋃4

l=1A
(l)
i . For the subgradient[kp, kq]T , when p = 0 or q = 0, kp or kq varies from

some constants to infinity. In (89) we upper boundkp andkq with ĉ
2 and d̂

2 respectively for convenience

and without loss of generality. The main reason is that we areinterested only in
⋃m

i=1 Bi. To relate the

mapping ofA(j)
i to different regions ofBi, we further define

B(j)
i =

⋃

[p,q]T∈A(j)
i

∂Ci(p, q), j = 1, · · · , 4. (96)
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If the sub-channel has one-sided interferencebi = 0, 0 < ai < 1 or no interferenceai = bi = 0, then

from Lemma 1 we haveAi = {p ≥ 0, q ≥ 0}. We similarly obtain∂Ci(p, q) as follows:

∂Ci(p, q)

=








(kp, kq)

∣∣∣∣∣∣∣

kp =
ci

2(1 + cip+ aiq)

kq =
1

2

(
ai

1 + cip+ aiq
+

di
1 + diq

− ai
1 + aiq

)





, p > 0, q > 0




(kp, kq)

∣∣∣∣∣∣∣∣

kp =
ci

2(1 + cip)
di
2

− aicip

2(1 + cip)
≤ kq ≤

d̂

2





, p > 0, q = 0




(kp, kq)

∣∣∣∣∣∣∣

ci
2(1 + aiq)

≤ kp ≤
ĉ

2

kq =
di

2(1 + diq)





, p = 0, q > 0

{
(kp, kq)

∣∣∣∣∣
ci
2

≤ kp ≤
ĉ

2
,

di
2

≤ kq ≤
d̂

2

}
, p = q = 0.

(97)
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