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Abstract—The capacity of 1-D constraints is given by the The capacity ofS is equal to
entropy of a corresponding stationary maxentropic Markov

chain. Namely, the entropy is maximized over a set of probality cap(S) = lim L -log, [Sas] - (1)
distributions, which is defined by some linear requirements In M—o0 M?
this paper, certain aspects of this characterization are eended to In this paper, we show a method for calculating an upper

tz)'D C(;)“S”"’Ems' The res‘;'tzisDa method for calculating an uper  poynd oncap(S). Two other methods of calculating an upper
ound on the capacity of 2-D constraints. . : e
The key steps are: The maxentropic stationary probability b(ﬁunfd on thi c;pact:ty of a ﬁg ‘f:onstralnt ﬁr?j Eh_e forLIpvr\lllng.
distribution on square configurations is considered. A set b he first method is the so called “stripe method,” in which we

linear equalities and inequalities is derived from this stsionarity. ~ fix a positive integetV, and bounctap(S) by
The result is a concave program, which can be easily solved

numerically. Our method improves upon previous upper bound cap(S) < lim Lt -logy [Sp | - (2)
for the capacity of the 2-D “no independent bits” constraint, as M—oo M - N ’
well as certain 2-D RLL constraints. Namely, we consider only stripes of widfk, and essentially
get a 1-D constraint (since we may regard each of the possible
[. INTRODUCTION row values as a letter in an auxiliary alphabet). The RHS of

n@) is easily calculated for modest values/éf Let G be the
edge-labeled graph corresponding to the 1-D constraimt, an
let A be the adjacency matrix df. Denote byA\(Aq) the
Perron eigenvalue os. By [, §3.2], the RHS of[(R) is equal
fo A(A¢). The second method for upper-boundicap(S) is
the generalization presented by Forchhammer and Jusi@ksen [
to the method of Calkin and Wilf [7].
The capacity of a given 1-D constraint is known to be
equal to the value of an optimization program, where the
- optimization is on the entropy of a certain stationary Marko
labeled graph$Giow, Geol), WhereGirow = (V, Erow, L) and chain, and is carried out over the conditional probabditid
Geol = (V, Eco1, L). Namely, both graphs share the same ve{- . X )
- hat chain (see [1§3.2.3]). We try to extend certain aspects
tex set and the same vertex labeling functionV — Y. The ; o . .
) : - of this characterization of capacity to 2-D constraints.atvh
constraintS = S(G,ow, Geol) consists of all finite rectangular

configurationgw; ;) over X with the following property: Let re§ruhltes Isstric(tﬂfgec:?”tﬁigonz:l%r:t)isugze:‘obl%wsdc?r'?(ize.ct[ﬁh I
A be the rectangular index set 0fv; ;)(; jyea. There exists pap - '

' : we set up some notation. Then, in Sectiod Ill, we show
a configuration(u; ;) j)ea over the vertex set’ such that . . . i .
AN . the existence of a certain stationary random variable tpkin
(a) for each(i, j) € A we havew; ; = L(u; ;); (b) each row

in (u;;) is & path iNGyow; (C) €ach column infu,,) is a values onS,, and having entropy approaching the capacity

path inG... Examples of 2-D constraints include the squar%]c S, as M — oc. We then consider a relatively small sub-

. . . . )
constraint[2], 2-D runlength-limited (RLL) constrain]] 2- configuration of that random variable, and denote itby").

D symmetric runlength-limited (SRLL) constraints [4], atte The sect_|on _concludes_ with an upper bql_md on _the_capacny
o - . of S, which is a function of the probability distribution of
no isolated bits” constraint [5].

. . - X M) n SectiorL 1V, we derive a set of linear equations which
Let S be a given 2-D constraint over a finite alphabet .y o he probability distribution oft (M), In Section[¥,
Denote byx: the set ofM x N configurations over, we argue as follows: The bound derived in Secfion Il is a
and let function of the probability distribution ok ™), which we do
Syun =SNEMXN g g pMxM not knqw how to _caICl_JIat_e; h_owe_ver, by Sectiond IV we know
’ that this probability distribution is subject to a set ofdar
* This work was supported by grant No. 2002197 from the Un8eates— requirements. Thus, we form_alize_ ar.] optimi;ation problem,
Israel Binational Science Foundation (BSF), Jerusaleragls where the unknown probability distribution is replaced by

Let > be a finite alphabet. A one-dimensional (1-D) co
straint is a set5 of words overX. For the setS to be called a
1-D constraint, there must exist an edge-labeled gG@iptith
the following property: a wordv = wiws ... w, is in S iff
there exists a path it for which the successive edge label
arewy, wa, ..., w, (seell]).

A two dimensional (2-D) constraint over is a gener-
alization of a 1-D constraint; it is a sé&i of rectangular
configurations ovek: and is defined through a pair gértex
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a set of variables, subject to the above-mentioned line@r Entropy

requirements. The maximum of this optimization problem is | ot X andY be two random variables. Denote
an upper bound on the capacity 8f We then show that
this optimization problem is easily solved, since it is an
instance of convex programming. In Sectiod VI, we show oW g
computational results. Finally, in Sectibn VIl we present a

pr = Prob(X = x) .

asymptotic analysis of our method.

We note at this point that although this paper deals with Z—Ph
constraints, our method can be easily generalized to higher

dimensions as well.

Il. NOTATION
This section is devoted to setting up some notation.

A. Index sets and configurations

Denote the set of integers [&. A (2-D) index setU C Z?2
is a set of integer pairs. A 2-D configuration overwith an
index setU is a functionw :
configuration asw = (w; ;) ;)eu, where for all(i, j) € U,

we have thatw; ; € 2. In this paper, index sets will always
be denoted by upper-case Greek letters or upper-case Roman

letters in the sans-serif font. Since many of our configoreti

Pylz = Prob(X = 2,Y = y)/Prob(X =z) .
e entropy ofX is denoted byH (X) and is equal to
H(X)= szlogpm )

where the sum is on all for which Prob(X = z) is positive.
Similarly, we define the conditional entrogy (Y| X) as

HY|X) =Y "pa D> pylslogpyps »
x Yy

U — 3. We denote such a where we sum on alt for which p,. is positive and ally for

which p, |, is positive.

[1l. A PRELIMINARY UPPER BOUND ONcap(S)
Let M be a positive integer and I& be a random variable

will be M x N, we have set aside special notation for the#aking values orS,;. We say thatV is stationaryif for all

index sets; let
Buny ={(i,5) : 0<i< M,
Also, denote
Byv =Bum ={(4,5):0<4,j < M} .
For integersw, 5 we denote the shifting ofl by («, 5) as
oap(U) ={(i+a,j+p):(ij) €U} .

Moreover, by abuse of notation, let, g(w) be the shifted
configuration (with index set(U)):

0<j<N}.

0a,B(W)ita,j+8 = Wi -

For a configuratiom with index setU, and an index seét C
U, denote the restriction af to V by w[V] = (w[V]i ;) j)evs
namely,

w[Vl]i; =wij

We denote the restriction & to U by S[U]:

S[U] = {w : there existaw’ € S such thatw'[U] = w} . (3)
B. Strict total order

A strict total order < is a relation onz? x 7?2, satisfying
the following conditions for al(i1, j1), (i2, j2), (i3, j3) € Z2.

o If (il,jl) 75 (ig,jg), then either(il,jl) < (ig,jg) or

(i2,j2) < (i1, 41), but not both.
o If (i1,51) = (i2,j2), then neither(i1, j1) < (i2,j2) nor
(i2, j2) < (i1, J1)-
o If (i, 1) < (i2,j2) and (iz,j2) <
(i1, 1) < (i3, J3)-
For (i, j) € Z2, defineTl(._j) as all the indexes precedifg ;).
Namely,

where (i,j) € V.

(ig, jg), then

T ={(,7) e 2*: (', 5') < (i,5)} -

U C Bu, all a,8 € Z such thato, g(U) C By, and all
w’ € S[U], we have that

Prob(W[U] = w’) = Prob(Wloa,(U)] = 04 5(w’)) .

The following is a corollary of [8, Theorem 1.4]. The proof
is given in the Appendix.

Theorem 1:There exists a series of random variables
(WD)2e | with the following properties: (i) Eachy (M)
takes values 08,,. (ii) The probability distribution ofiy (M)
is stationary. (iii) The normalized entropy Bf () approaches
cap(8),

1 ,
cap(S)zﬂ}@mW-H(WU‘“).

4

We now proceed towards deriving Lemiina 2 below, which
gives an upper bound ownap(S), and makes use of the
stationarity property. We note in advance that this bound is
not actually meant to be calculated. Thus, its utility wié b
made clear in the following sections. In order to enhance the
exposition, we accompany the derivation with two running
examples.

Running Example |: Define the lexicographic ordeg)ey
as follows: (i1, j1) <iex (ia, jo) iff

o 11 < 19, OF

e (i1 =12 andj; < jo).

Running Example II: Define the “interleaved raster scan”
order <;,5 as follows: (i1, j1) <irs (i2, j2) iff

e i1 =0 (mod 2) andiz =1 (mod 2), or

e i1 =iy (mod 2) andiy < ig, OF

o 11 =19 andj1 < j2.
(See Figuré]l for both examples.)

For the rest of this section, fix positive integerands, and
define the index set

A=B,,.



lex irs

1123|4165 1123|415
6 | 781910 16 | 17| 18|19 20
11112 13|14 |15 671819110 N=1
16 | 17|18 | 19| 20 211222324125
21(122(23|24]25 1112 13]14 |15 o o
<lex ~irs
Fig. 1. An entry labeled in the left (right) configuration precedes an entry
labeled; according t0<jeyx (<irs) iff 7 < j. v=2
[}

We will refer to A as “the patch.” The bound we derive in (a) (b)
Lemmal2 will be a function of the following:

« the strict total order, Fig. 2. The left (right) column corresponds to Running Exkerig(ll). The

« the integers- ands, which determine the orderx s of configurations are of orderx s and represent the index s&t Thee symbol
the patchA is in position (a~, by). The shaded part i¥.

« an integere, which will denote the number of “colors”
we encounter,

« acoloring functionf : Z? — {1,2,..., ¢}, mapping each Take (a1 = 3,by = 5) and (a2 = 2,by = 4). See also

o Figure[2(b).
point in Z? to one ofc colors, i (M)yoo .
« ¢ indexes (a,,b,)5_,, such that for alll < < c, definIéemma 2:Let (W) be as in Theorenll1 and
(ay,by) € A X = wD[A].
(namely, each coloy has a designated point in the patch, g <, 7, 8 ¢ f, (¥,)5_,, and (a,,b,)5_, be given. For
which may or may not be of coloy). 1<~ < ¢, define
The function f must satisfy two requirements, which we
now elaborate on. Our first requirement is: for Al v < Ty ={(ay,0,)} UYL,
i L0:J) € B :Qf(z,J) = _1 5) Let . .
M—>00 M ¢ Y, =XMI[r,] and Z, = XM |1,

Namely, as the orders a¥ (*) tend to infinity, each color is
equallyi likely. Our second requirement is as follows: ther

exist index setal{, ¥,, ..., ¥. C A such that for all indexes
(i,§) € 72, cap(S) < limsup — ZH Y,1Z,) .

M — o0 1
oy (W) =T Now (M) (6)

énote thatY,, and Z, are functions of\f). Then,

Proof: Let X, W andT; ; be shorthand fox (M), 17 (M)
wherey = f(i,j), i’ = a, —i, andj’ = by — j. Namely, let 5,4 T(=) raspectively. First note that

(i,7) be such thatf (i, j) = ~, and shiftA such that(a, b-) R
is shifted to(i, j). Now, consider the set of all indexes in the Y, =WI[Y,] and Z, = W[V.] .
shifted A which precedq:, j): this set must be equal to the
correspondingly shifted ,. We show that
Running Example |: Taker = 4 ands = 7 as the patch
orders. Let the number of colors he= 1. Thus, we must Jim WH(W) < lim sup - ZH Y| Zy) .

define f = fiex as follows: for all(i, j) € Z2, fiex(i,j) = 1.
Take the point corresponding to the single color(as =
3,b; = 5). See also Figurgl 2(a).

Running Example II: As in the previous example, take

Once this is proved, the claim follows frornl (4).
By the chain rule[[9, Theorem 2.5.1], we have

r =3 ands = 5 as the patch orders. Let the number of colors H(W) = Z H(W,; ;|W[T;; NBuml) -
be ¢ = 2. Define f = fi,s as follows: (i,7)EBas
Fieslis ) = 1 i=0 (mod2) We now recall[(B) and define the index gkto be the largest
sl ] 2 i=1 (mod?2) subset ofB,, for which the following condition holds: for all

(i,7) € 9, we have that

1n fact, it is possible to generalizE](5), and require onbttie limit exists
for all . We have not found this generalization useful. o+ (¥y) € B, @)



where hereafter in the proof, = f(i,j), i’ = a, — i, and IV. LINEAR REQUIREMENTS
j'=by, —j. Defined = By \ 9. Note that since: and s are

constant, andb;, W, ..., U, C A, then Recall thatY M) = W) [A] is anr x s sub-configuration
9 of WM) and thus stationary as well. In this section, we for-
— =0(1/M). mulate a set of linear requirements (equalities and inéips)!
M on the probability distribution ofX (™), For the rest of this
Thus, on the one hand, we have section, letM be fixed and letX be shorthand fofX (M),
3z 2 HWij[WTi;nBl) < log, |- O(1/M) . | , .y
(i.7)€d A. Linear requirements from stationarity
On the other hand, froril(6) ard (7) we have that fofalj) € In this subsection, we formulate a set of linear requiresent
0, that follow from the stationarity of (™). Let = € S[A] be a
oy (¥y) CT,,; NBar. realization of X. Denote
Hence, since conditioning reduces entrdpy [9, Theoren5].6. pr = Prob(X =x) .
5 IWI[Ti;NB : - . .
M2 Z Wig[WTi; N Bu) We start with the trivial requirements. Obviously, we must
(6.9)€d have for allz € S[A] that
<qp 2 HWWiow o (T,)])
(i,5)€d Pz = 0
1 .
=0 Ziﬂ(W[{(m)} Uoy,j (U))][Wlow 3 (¥5)])  Also,
(i,7)€0 =1.
=2 ZiH(YﬂZv)a »€S[A]
()€ Next, we show how we can use stationarity to get more
where the last step follows from the stationarity Bf(*)). |inear equations Olfp.: ) pesia- Let
Recalling [5), the proof follows. ]
The following is a simple corollary of Lemmid 2. N={(G7):0<i<r—1, 0<j<s}.
Corollary 3: Let (WM))3s_, be as in Theorer]1 and
define For 2’ € S[A’] we must have by stationarity that

XM = WwODIA]

Prob(X[A'] = ') = Prob(X A = . 9
Fix posmve integers ands. Let ¢ be a posmve mteger, and rob(X[A] =) rob(Xfo10(A)] = 10()) - (9)

14
let (pt*1)¢_, be non- negat|ve reals sucr]: th@k]€>1 P™ =1.  as a concrete example, suppose that s — 3. We claim
For everyl < k < £, let <), ¢(F) - ik} ( §)_y, and  that
(a@,bﬁk )$—1 be given. Also, forl <y <R et Loo
9 = (@ U b (=001 ) e (x = 1ie )
Define wherex denotes “don’t care”.
Y = XD ] and 25 = XD (w0 Both the left-hand and right-hand sides [of (9) are marginal-

izations of (p,).. Thus, we get a set of linear equations on

(note th:’;lt}@“€> and Zy“) are functions ofd/). Then, (p2)s, Namely, for allz’ € S[A'],

14 k)c

cap(S) < hmbupz ZH |Z<’€> Z Dy = Z Da -

x:x[N]=x' z:xfor,0(A)]=01,0(z')

Corollary[3 is the most general way we have found to state our_l_ . v th ional
results. This generality will indeed help us later on. Hoarev 0 get more equations, we now apply the same rationa

almost none of the intuition is lost if the reader has in mingonzontally, instead of vertically. Let

the much simpler case of N () 0<icr. 0< 51},
=1, pM=1, M=1, <P=x,

(1) 51 (1) for all " € S[A"],

(a1 ’bl ) = (T—l,t) , and \Ifl =AnN T(a§1>,b§1>) R (8)

where0 < t < s. This simpler case was demonstrated in Z Pz = Z Pz -
Running Example I. @A )=a" z:z[o0,1(A)]=00,1(2")



B. Linear equations from reflection, transposition, and eonThus, the properties defined in Theorem 1 hold¥iore™. m

plementation
We now show that ifS is reflection, transposition, or

complementation invariant (defined below), then we carvderi

yet more linear equations.

Define vy (+) (ha(+)) as the vertical (horizontal) reflec-

tion of a rectangular configuration with/ rows (columns).
Namely,

(v (w))ij = war—1-45, and (har(w))iy; = winm—1-j -
Define T as the transposition of a configuration. Namely,
T(w)i_’j = wjyl- .
For ¥ = {0,1}, denote bycomp(w) the bitwise comple-
ment of a configuratiomns. Namely,
1 if Wi, = 0
0 otherwise.

comp(w); j = {

We state three similar lemmas, and prove the first. The prqﬁm

of the other two is similar.
Lemma 4:Suppose thad is such that for all'/ > 0 and
w € E]MXM,

weES <= hyw)eS < vy(w)ES.

Then, w.l.o.g., the probability distribution d# is such that
for all w € Sy,

Prob(W = w)

Prob(W = hpr(w)) = Prob(W = vpr(w)) . (10)

Lemma 5:Suppose thad is such that for all'/ > 0 and
w E EI\IXM’
weS < 7(w) €S.
Then, w.l.0.g.,W is such that for allw € Sy,
Prob(W = w) = Prob(W = 7(w)) . (11)

Lemma 6:Suppose thak = {0,1} andS is such that
for all M >0 andw € SM*M,

weS < comp(w) €S.
Then, w.l.o.g.,W is such that for alkw € Sy,
Prob(W = w) = Prob(W = comp(w)) . (12)
Proof of Lemmdl5: Let A and v be shorthand foh,,

If the condition of Lemma&l4 holds, then we get the following
equations by stationarity. For all € S[A],

Pz = Puv,(x) = Phy(x) -
If the condition of Lemma&ls holds, then the following holds
by stationarity. Assume w.l.o.g. that< s, and let

A={(i,j):0<ij<r}.

For all x € S[A],

> b

z:x[A]=x
If the condition of Lemma&l6 holds, then we get the following
equations by stationarity. For all € S[A],

>

z: z[A]=7(x)

Pz -

Pz = Pcomp(z) -
V. AN UPPER BOUND ONcap(S)

For the rest of this section, let s, ¢, pk), <) k) (k)

57, and(a§k>,b§k>) be given as in Corollar]3. Recall from
Corollary[3 that we are interested H(Y$k>|Z§k>), in order
to boundcap(S) from above.

As a first step, we fix\/ and expres:H(Kf’€> |Z§k>) in terms
of the probabilities(p,), of the random variableX (™). For
givenl <k </?andl <~ <c®, let

y €S[T] and z € S[wP]
be realizations 01}/7““> and Zy“), respectively. Let
pik) = Prob(Yv(M =y) and p*) = Prob(Zy€> =z)

Y V2

(p% andpﬁ are functions ofdf). From here onward, let,
andp, be shorthand fop% and pﬁf;, respectively. Botlp,
andp. are marginalizations ofp..)., namely,

2 2

z€S[A] :w['rfym]:y zES[A] :m[q’fyk)]:z
Thus, for giverny andk,
H(Yffk>|Z»<yk>) = Z —pylogy py + Z p=1ogy p-
yes[ri] zes[w]
is a function of the probabilitiegp, ), of X M),
Our next step will be to reason as follows: We have

found linear requirements that the's satisfy and expressed
H(Y§k>|Z§k>) as a function of(p,).. However,we do not

Dy = Pz DPz= Pz -

andwy, respectively. For)/ fixed, we define a new randomknow of a way to actually calculat@,).. So, instead of the

variable WV taking values onS,;, with the following
distribution: for allw € Sy,

1
w'e
{w,h(w),v(w),h(v(w))}

4
Sinceh(h(w)) = v(v(w)) = w and h(v(w)) = v(h(w)) we
get that [ID) holds fof¥"°™. Moreover, by the concavity of
the entropy function,

H(W) < HW™v) .

Prob(W™*V=w) = Prob(W=u') .

probabilities (p,)., consider thevariables (p,).. From this
line of thought we get our main theorem.

Theorem 7:The value of the optimization program given
in Figure[3 is an upper bound anp(S).

Proof: First, notice that if we takes, = p., then (by
Sectior 1Y) all the requirements which tipe’s are subject to
indeed hold, and the objective function is equal to

¢ (k)

p<k> H(Y. k)| 7(k)
> CHY, Rz .
k=1 y=1

(k)



and1 < v < ¢®, the functionZ(k,~) is concave in the

maximize ! "
¢ gy ™ variables(p,),. So, letk and~ be fixed, and letp, andp,

Z /c)—’@ =(k,y) be shorthand fop7 [ andpﬁki, respectively

k=1 7=1 Recalhng the def|n|t|on oﬁw andpV . in Figure[3 and the
over the variable$p, ),cs(), Where for fact that\I/W C T7 , we get that
1<k<t, 1<y<c®, yesy®], zeswh], E(k) = Y. —ylog by
we define yes[ri™] ’

(k) & (k) e
— — — A —
Pyy = Z " Pe Pyz= Z " P Thus, it suffices to show that each summand is concave in
2€8[A]: 2[5 1=y €S al¥5 == (P2)«- This is indeed the case: 161", csa) and (55 ) aesa)
= (k) (k) (k) k) be non-negative. Le) < < 1 be given, and define
=(k,vy) Z Py logy PN+ Z p ) log, p,y ) (7(3)) gas § g
yes(T] seswi) PeJmesia
and the variableg, are subject to the following requirements: ﬁ§c3) = 515561) +(1- 5)15552) , T €S[A].
(i) Z e =1. Fort = 1,2,3, denote byp’ andp!” the marginalizations
xeS[A corresponding tc(ﬁg))m. Obviously,
(i) For all = € S[A], ) 13753) - fﬁél) +(1- §)§§2) . y€ S[Tg’”] )
Pz > 0.
i For all 2/ € SIA/ and
(i) For all 2/ € S[A), P = ) + (1—p? , 2 e S,
Z Pz = Z Pz - We must show that for alj € §[T§k>], z= y[\IJU“)]
x:x[A]=x' z:xfor,0(A)]=01,0(z')

. (3) (1) _(2)
1" "
F € _ p
(iv) For all 2 € S[A"], (3) 10g2 < ﬁpul 10g2 (1) (1- f)pz(;z) log, __7(;2) ’

Z Da = Z Dz - p . -pz

T - @ 2]o0.1 (A7) =001 () This is indeed the case, by the log sum inequality [9, p. 29].
. . L . [ |
(v) (If S is reflection (resp. complementation) invariant) For
all z € S[A], VI. COMPUTATIONAL RESULTS
Pz = Por(z) = Pho(x) (T€SP-De = Peomp(s)) - At this point, we have formulated a concave optimization
_ _ o _ - problem, and wish to solve it. There are quite a few programs,
(vi) (If S is transposition invariant) For af € S[A], termedsolvers that enable one to do so. Many such solvers
Z By = Z P — most of them proprietary — are hosted on the servers of

the NEOS project[[11][12][13], and the public may submit

moderately sized optimization problems to them. We have

coded our optimization problems in the AMPL modeling

Fig. 3. Optimization program over the variablgs (assuming w.l.o.g. that language([14], and submitted them to NEOS.

7 < s). The optimum is an upper bound eap(S). Essentially, a solver starts with some initial guess as ¢o th
optimizing value of(p.),es(a}, and then iteratively improves
the value of the objective function. This process is tertada

So, the maximum is an upper bound on the above equatiQfhen the solver decides that it is “close enough” to the

Next, by compactness, a maximum indeed exists. Since (ﬂﬁlmum Denote byp = (j)sespa) this “close enough”

maximum is not a function oM, the claim now follows from assignment to the variables. Of course, we must supply an

z:z[A]=x z:z[A]=7(x)

Corollary[3. B upper bound ortap(S), not an approximation to one. Thus,
We now proceed to show that the optimization problefat 7 and
in Figure[3 is an instance of concave programming [10, p. G=(G)e, xeS[A]

137], and thus easily calculated. Since the requiremests th

the variables(p,.), are subject to are linear, this reduces tbe the value of the objective function and its gradienpat

showing that the objective function is concave(jn,).. respectively. Obviouslyf is a lower bound on the value of
Lemma 8: The objective function in Figuriel 3 is concaveour optimization problem. For an upper bofnave replace

in the variable$p, ),cs(A]» Subject to them being non-negative.
2We remark in passing that if we had chosen to optimizedih@ problem

k),
PI‘OOf.. Recall tha}t for glll <k < we have thatcw 1S [10], p. 215], then the “dual of’f would already have been an upper bound.
non-negative. Thus, it suffices to prove that forialk £ < ¢ However, we have not managed to state the dual problem iedlfm.



1151216374 In order to prove Theorefd 9, we need the following lemma.

1219 1131101411 Lemma 10:For all € > 0, there exist
1511916 (2017|2118

ro >0, s0>0, 0<ty<sg

=skip such that

Fig. 4. An entry labeled in the configuration precedes an entry labejed p(ro; 50,0) — cap(S) <.

according o<y iff @ < 7. Proof: Another well known method for boundingp(S)
from above is the so called “stripe method”, mentioned in
the introduction. Namely, for some giveh consider the 1-D
constraintS = S(#) defined as follows. The alphabet of the
~ constraint isx?. A word of lengthr’ satisfiesS if and only if
maximize [+ Z go - (P2 —D2) | when we write its entries as rows of lengthone below the

z€S[A] other, we get an’ x 6 configuration which satisfies the 2-D

the objective function in Figurel 3 by

and get dinear program(the value of which can be calculated®Onstraints. _ _
exactly). By concavity, the value of this linear program is Define the normalized capacity 6f as
indeed an upper bound. So, we use NEOS yet again to - 1

solve it. For the sake of double-checking, we submitted the cap(§) = geap($) -

above optimization problems to two solvers: IPOPT] [15] angy the definition of cap(S), the normalized capacity ap-

MOSEK, . : , _proachesap(S) asf — oo. Thus, fix af such that
Before stating our computational results, let us first define
one more strict total order, which we have termed the “skip” cap(S) —cap(S) <¢/2.
order, <., (see Figuréld). We have th@t, j1) <skip (42,7 . ) .
iff wip ( g ) @k, 1) <siap (2, J2) We say that a 1-D constraint has memanyif there exists

a graph representing it, and all paths in the graph of length

. . . m with the same labeling terminate in the same vertex. By
* El.l — 2 ::gj.l - 0 (mOdd22) a:fdj? = 1,()mOd 2)), or [T, Theorem 3.17] and its proof, there exists a series of 1-D
° \n =02 AL =2 (mod 2) 1< 2 constraints{ S, }>°_, such thatS C S,,, the memory ofS,, is
Our computational results appear in Table I. To the be_st Q]f andlimm_,c cap(Sm) = cap(S). Thus, fixm such that

our knowledge, they are presently the tightest. The penatg

column contains upper bounds obtained by the method de- cap(Sm) —cap(S) < ¢/2.
scribed in [6]. When available, these compared-to bounes ar
taken from previously published work, as indicated to tly@tri

of them. The rest are the result of our implementation_of [6]. (10, 50, t0) < ap(Sm)

For reference, the last column contains correspondingriowe

bounds. We note that the index@s , b{"') and coefficients Where

p@ used for each constraint were optimized b_y hand, through ro=m+1, so=2-0, to=60—1.
trial and error. Also, we note that when applying our method

to the 2-D(1, c0)-RLL constraint, our bound was inferior toNote that(ro, so, %) is the maximum of

the one presented ih![2] (utilizing the method [of [7]).

o 11 <19, O

To finish the proof, we now show that

H (X1 X[T557) N Brni1,2]) 4 (13)
VII. ASYMPTOTIC ANALYSIS

For a given constrain® and positive integers and s, let distribution satisfying our linear requirements.
t be an integer su<_:h .thajt st < l?en(_)te byu(r, s, t) For all 0 < ¢ < 6 we get by the (imposed) stationarity of
the value of the optimization program in Figure 3, where th/% that [I3) is bounded from above by
parameters are as ifil (8). In this section, we show that even
if we restrict ourselves to this simple case, we get an upper Hy = H(Xm,qle[T,(}f;e“) N Bmi10]) -
bound which is asymptotically tight, in the following sense ’

Theorem 9:For all € > 0, there exist

0—1
o >0, so>0, 0<ty<s 1
0 0 0 0 5 Z H, . (14)
such that for all $=0

over all random variables( < Sm+1,2.0 With a probability

So, [13) is also bounded from above by

r>ro, s>s0, to<t<s—(so—ty), The firsté colum_ns ofX for_m a configura_\tion yvith inde_x_ set
Bm+1,0. By our linear requirements, stationarity (specifically,
we have that vertical stationarity) holds for this configuration as webo,

pu(r, s,t) —cap(S) < €. we may define a stationary 1-D Markov chalin [B.2.3] on



TABLE |
UPPERBOUNDS ON THE CAPACITY OF SOME2-D CONSTRAINTS

[ Constraint [ r [ s [k ] < used | Upper bound[ Comparison | Lower bound ]|
(2,00)0RLL [ 3 [ 8 [ 7 [ <iows <ekip 0.4457 0.4459 [[16] | 0.444202[[17
(3,00)-RLL | 4 [ 8] 5 <lex 0.36821 0.3686 16] | 0.365623|[18
(0,2)-RLL 3|52 <lex 0.816731 | 0.817053 0.816007([18

n.i.b. 3141 <skip 0.92472 0.927855 0.9226401([1V

Sm, With entropy given by[(T4). That entropy, in turn, is at For integersM, N > 0 andd > 0, denote

mostcap(Sm). | C - B )
Proof of Theorerfill9:The following inequalities are easily M.N,§ = T—8,~6\BM+26,N+23
verified: and let
,LL(T, s, t) > ,LL(T +1,s, t) . gM.,N.,é = g[CM_,N_,(;] .
w(r,s, t) > p(r,s+1,t) . Note that the index sefys n,s Of each element o8y, 5 IS

simply By, v, padded withy columns to the right and left and
0 rows to the top and bottom. The following lemma will help
The proof follows from them and Lemna]l10. m Uus bridge the gap between finite and infinite index sets.

Lemma 1l:Let w be a configuration over the finite

/L(T,S,t) ZH(TaS‘FLt"'l) .

APPENDIX alphabety: with index setBj, n. If for all § > 0 we have
Our goal in this appendix is to prove TheorgEm 1. Essentialljyat
TheorentL will turn out to be a corollary df|[8, Theorem 1.4]. w € Syns[Bun, (16)

However, [8, Theorem 1.4] deals with configurations in which

the index set i¥2. So, some definitions and auxiliary lemmadhen we must have that

are in order. wE SyN -
Recall that(G,.w, Geo1) is the pair of vertex-labeled graphs ] ) - )
through whichS = S(Grow, Geol) is defined. Also, recall Proof: Define the following auxiliary directed graph. The
that each member @& is a configuration with a rectangularVe"ex setis
index set. Namely, the index set of a configur_ationSiris U {€Syns : WBuN]=w} .
0i,;(Bam,n), for somei, j, M, and N. We now give a very 530

similar definition to that ofS, only now we require that
the index set of each configuration . Namely, define
S = 8(Grow, Geol) as follows: A configuration(w; ;) (i, ) ez
over X is in S(Grow, Geol) iff there exists a configuration
(ui,j)@,5)ez2 over the vertex set” with the following prop-
erties: for all (i,j) € Z?, (a) the labeling ofu; ; satisfies
L(u; ;) = w; j;; (b) there exists an edge from ; to u; j11 in
Grow; (C) there exists an edge from ; t0 w41 5 iN Geol.

For positive integersM,N > 0, define Sy, v as the
restriction ofS to By, n. Namely,

Su,ny = S[Bu.n]|,
— - S We now show how to find a configuratidmy; ;); j)ez> such
where the definition of the restriction operation is as[ih (3?hatw’ € S andw = w'[Bas ). For each(z‘,j) c 72, define

For every$ > 0, there is a directed edge from € Sy n,5 tO
wa € SpyrN,s41 Iff w1 = w2 [Car,ns). Itis easily seen that this
graph is a directed tree with roat, as defined in[[1952.4].
Since [16) holds for al > 0, the vertex set of the tree is
infinite (and countable). On the other hand, since the akphab
size|X] is finite, the out-degree of each vertex is finite. Thus,
by Konig's Infinity Lemma [19, Theorem 2.8], we must have
an infinite path in the tree starting from the raot

Denote the vertices of the above-mentioned infinite path as

1] 2] e e .

w = wl® wl) !

Also, for M equal toN, define w;j as follows: leté > 0 be such thati, j) € Cyr n,5, and
Sm =SmM - takew; ; = wz[ég It is easily seen that’ is well defined and
Note that for allAM, N > 0 we have contained |n$. . -
Y > D W v The following lemma states that although the inclusion in
Su,N CSmw (15) (@5) may be strict, the capacities 8fand S are equal.

and there are cases in which the inclusion is strict. NeXinde Lemma 12:Let S andS be as previously defined. Then,

the capacity ofS as cap(S) = cap(S) . a7)

Proof: By (13), we must have thatp(S) < cap(S). For

cap(S) = AT .
the other direction, it suffices to prove that for af > 0,

lim
M— o0
The limit indeed exists, by sub-additivity (see€ [3, Appeddi 1
and references therein). cap(S) < 775 logy [Su| - (18)

1
W . 10g2 |SM| .



So, let us fixM and prove the above. By Lemrial11, ther8ut sincelV ™) takes values 08,,, we have by[[9, Page 19]

existsd > 0 such that for alw € MM, that the above inequality is in fact an equality. Thus, cbodi
iii) is proved. [ |
w € SM — w Q gM.,M.,é[BM] . ( ) P
Fort¢ > 0, let M’ be shorthand for REFERENCES
, [1] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrainedteyns and
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o ) and W. Huffman, Eds. Amsterdam: Elsevier, 1998, pp. 1636417
By the definition of capacity, we have that [2] W. Weeks and R. E. Blahut, “The capacity and coding gaircertain
1 checkerboard codes|EEE Trans. Inform. Theoryvol. 44, pp. 1193—
— 7 , 1203, 1998.
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- Trans. Inform. Theoryvol. 43, pp. 319-324, 1997.
Di; = oinrjn(Bar) - [5] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wtfiproved
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[9] T. M. Cover and J. A. Thomaglements of Information ThearyWiley,
1 1 1991.
W log, [Sar| < 72 log, [Sa| + O(1/1) . [10] S. Boyd and L. Vandenbergh€onvex Optimization Cambridge, UK:
Cambridge University Press, 2004.
This, together With[:a]g), proveE(]j_S)_ W [11] J. Czyzyk, M. P. Mesnier, and J. J. Moré, “The NEOS sehEEE

Computational Science & Engineeringol. 5, no. 3, pp. 68-75, 1998.
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in F(M) iff for all (i,5) € 7.2, versity Press, 1997, pp. 167-182.

[13] E.D. Dolan, R. Fourer, J. J. Moré, and T. S. Munson, “NteOS server

w[a’i_j(BM)] €S- for optimization: Version 4 and beyond,” Mathematics andrPater

Science Division, Argonne National Laboratory, Argonnk, Tech.
Namely, eachM x M “patch” is a correspondingly shifted Rep., 2002. _ _
element ofS [14] R. Fourer, D. M. Gay, and B. W. Kernigha®AMPL: A Modeling
M- . Language for Mathematical Programmin@nd ed. Duxbury Press,
Note that there exist vertex-labeled grapfs,, (M) and 2002.
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of each such vertex is its lower-left entry; there is an edges] s. Forchhammer and T. V. Laursen, “Entropy of bit-shgfinduced
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[18] A. Sharov and R. M. Roth, “Two-dimensional constraireediing based
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The following is a direct corollary ol |8, Theorem 1.4]. [19] S. Even,Graph Algorithms Computer Science Press, 1979.

Corollary 13: For all M > 0, there exists a stationary
random variabléV (M) taking values o (M)[By,] such that

1
cap(F(M)) < 5z HW ). (22)
Proof of Theoreni]1: Notice that
F(M)[Bum]=SEm CSu -
Thus, takelV ™) as in Corollary 1B and notice that it satisfies
conditions (i) and (ii) in Theoref 1. From (17], {21), ahd)(22
we get that
. 1 ,
cap(S) < lim - H(WWMDy

M—o0
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