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Abstract—The capacity of 1-D constraints is given by the
entropy of a corresponding stationary maxentropic Markov
chain. Namely, the entropy is maximized over a set of probability
distributions, which is defined by some linear requirements. In
this paper, certain aspects of this characterization are extended to
2-D constraints. The result is a method for calculating an upper
bound on the capacity of 2-D constraints.

The key steps are: The maxentropic stationary probability
distribution on square configurations is considered. A set of
linear equalities and inequalities is derived from this stationarity.
The result is a concave program, which can be easily solved
numerically. Our method improves upon previous upper bounds
for the capacity of the 2-D “no independent bits” constraint, as
well as certain 2-D RLL constraints.

I. I NTRODUCTION

Let Σ be a finite alphabet. A one-dimensional (1-D) con-
straint is a setS of words overΣ. For the setS to be called a
1-D constraint, there must exist an edge-labeled graphG with
the following property: a wordw = w1w2 . . . wn is in S iff
there exists a path inG for which the successive edge labels
arew1, w2, . . . , wn (see [1]).

A two dimensional (2-D) constraint overΣ is a gener-
alization of a 1-D constraint; it is a setS of rectangular
configurations overΣ and is defined through a pair ofvertex-
labeled graphs(Grow, Gcol), whereGrow = (V,Erow, L) and
Gcol = (V,Ecol, L). Namely, both graphs share the same ver-
tex set and the same vertex labeling functionL : V → Σ. The
constraintS = S(Grow, Gcol) consists of all finite rectangular
configurations(wi,j) overΣ with the following property: Let
A be the rectangular index set of(wi,j)(i,j)∈A. There exists
a configuration(ui,j)(i,j)∈A over the vertex setV such that
(a) for each(i, j) ∈ A we havewi,j = L(ui,j); (b) each row
in (ui,j) is a path inGrow; (c) each column in(ui,j) is a
path inGcol. Examples of 2-D constraints include the square
constraint [2], 2-D runlength-limited (RLL) constraints [3], 2-
D symmetric runlength-limited (SRLL) constraints [4], andthe
“no isolated bits” constraint [5].

Let S be a given 2-D constraint over a finite alphabetΣ.
Denote byΣM×N the set ofM × N configurations overΣ,
and let

SM,N = S ∩ ΣM×N , SM = S ∩ ΣM×M .

∗ This work was supported by grant No. 2002197 from the United-States–
Israel Binational Science Foundation (BSF), Jerusalem, Israel.

The capacity ofS is equal to

cap(S) = lim
M→∞

1

M2
· log2 |SM | . (1)

In this paper, we show a method for calculating an upper
bound oncap(S). Two other methods of calculating an upper
bound on the capacity of a 2-D constraint are the following:
The first method is the so called “stripe method,” in which we
fix a positive integerN , and boundcap(S) by

cap(S) ≤ lim
M→∞

1

M ·N
· log2 |SM,N | . (2)

Namely, we consider only stripes of widthN , and essentially
get a 1-D constraint (since we may regard each of the possible
row values as a letter in an auxiliary alphabet). The RHS of
(2) is easily calculated for modest values ofN : Let G be the
edge-labeled graph corresponding to the 1-D constraint, and
let AG be the adjacency matrix ofG. Denote byλ(AG) the
Perron eigenvalue ofAG. By [1, §3.2], the RHS of (2) is equal
to λ(AG). The second method for upper-boundingcap(S) is
the generalization presented by Forchhammer and Justesen [6]
to the method of Calkin and Wilf [7].

The capacity of a given 1-D constraint is known to be
equal to the value of an optimization program, where the
optimization is on the entropy of a certain stationary Markov
chain, and is carried out over the conditional probabilities of
that chain (see [1,§3.2.3]). We try to extend certain aspects
of this characterization of capacity to 2-D constraints. What
results is a (generally non-tight) upper bound oncap(S).

The structure of this paper is as follows. In Section II,
we set up some notation. Then, in Section III, we show
the existence of a certain stationary random variable taking
values onSM and having entropy approaching the capacity
of S, asM → ∞. We then consider a relatively small sub-
configuration of that random variable, and denote it byX(M).
The section concludes with an upper bound on the capacity
of S, which is a function of the probability distribution of
X(M). In Section IV, we derive a set of linear equations which
hold on the probability distribution ofX(M). In Section V,
we argue as follows: The bound derived in Section III is a
function of the probability distribution ofX(M), which we do
not know how to calculate; however, by Section IV we know
that this probability distribution is subject to a set of linear
requirements. Thus, we formalize an optimization problem,
where the unknown probability distribution is replaced by
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a set of variables, subject to the above-mentioned linear
requirements. The maximum of this optimization problem is
an upper bound on the capacity ofS. We then show that
this optimization problem is easily solved, since it is an
instance of convex programming. In Section VI, we show our
computational results. Finally, in Section VII we present an
asymptotic analysis of our method.

We note at this point that although this paper deals with 2-D
constraints, our method can be easily generalized to higher
dimensions as well.

II. N OTATION

This section is devoted to setting up some notation.

A. Index sets and configurations

Denote the set of integers byZ. A (2-D) index setU ⊆ Z
2

is a set of integer pairs. A 2-D configuration overΣ with an
index setU is a functionw : U → Σ. We denote such a
configuration asw = (wi,j)(i,j)∈U, where for all(i, j) ∈ U,
we have thatwi,j ∈ Σ. In this paper, index sets will always
be denoted by upper-case Greek letters or upper-case Roman
letters in the sans-serif font. Since many of our configurations
will be M × N , we have set aside special notation for their
index sets; let

BM,N = {(i, j) : 0 ≤ i < M , 0 ≤ j < N} .

Also, denote

BM = BM,M = {(i, j) : 0 ≤ i, j < M} .

For integersα, β we denote the shifting ofU by (α, β) as

σα,β(U) = {(i+ α, j + β) : (i, j) ∈ U} .

Moreover, by abuse of notation, letσα,β(w) be the shifted
configuration (with index setσ(U)):

σα,β(w)i+α,j+β = wi,j .

For a configurationw with index setU, and an index setV ⊆
U, denote the restriction ofw to V by w[V] = (w[V]i,j)(i,j)∈V;
namely,

w[V]i,j = wi,j , where (i, j) ∈ V .

We denote the restriction ofS to U by S[U]:

S[U] = {w : there existsw′ ∈ S such thatw′[U] = w} . (3)

B. Strict total order

A strict total order≺ is a relation onZ2 × Z
2, satisfying

the following conditions for all(i1, j1), (i2, j2), (i3, j3) ∈ Z
2.

• If (i1, j1) 6= (i2, j2), then either(i1, j1) ≺ (i2, j2) or
(i2, j2) ≺ (i1, j1), but not both.

• If (i1, j1) = (i2, j2), then neither(i1, j1) ≺ (i2, j2) nor
(i2, j2) ≺ (i1, j1).

• If (i1, j1) ≺ (i2, j2) and (i2, j2) ≺ (i3, j3), then
(i1, j1) ≺ (i3, j3).

For (i, j) ∈ Z
2, defineT(≺)

i,j as all the indexes preceding(i, j).
Namely,

T
(≺)
i,j =

{
(i′, j′) ∈ Z

2 : (i′, j′) ≺ (i, j)
}

.

C. Entropy

Let X andY be two random variables. Denote

px = Prob(X = x) .

and

py|x = Prob(X = x, Y = y)/Prob(X = x) .

The entropy ofX is denoted byH(X) and is equal to

H(X) =
∑

x

px log px ,

where the sum is on allx for whichProb(X = x) is positive.
Similarly, we define the conditional entropyH(Y |X) as

H(Y |X) =
∑

x

px
∑

y

py|x log py|x ,

where we sum on allx for which px is positive and ally for
which py|x is positive.

III. A PRELIMINARY UPPER BOUND ONcap(S)

Let M be a positive integer and letW be a random variable
taking values onSM . We say thatW is stationary if for all
U ⊆ BM , all α, β ∈ Z such thatσα,β(U) ⊆ BM , and all
w′ ∈ S[U], we have that

Prob(W [U] = w′) = Prob(W [σα,β(U)] = σα,β(w
′)) .

The following is a corollary of [8, Theorem 1.4]. The proof
is given in the Appendix.

Theorem 1:There exists a series of random variables
(W (M))∞M=1 with the following properties: (i) EachW (M)

takes values onSM . (ii) The probability distribution ofW (M)

is stationary. (iii) The normalized entropy ofW (M) approaches
cap(S),

cap(S) = lim
M→∞

1

M2
·H(W (M)) . (4)

We now proceed towards deriving Lemma 2 below, which
gives an upper bound oncap(S), and makes use of the
stationarity property. We note in advance that this bound is
not actually meant to be calculated. Thus, its utility will be
made clear in the following sections. In order to enhance the
exposition, we accompany the derivation with two running
examples.

Running Example I: Define the lexicographic order≺lex

as follows:(i1, j1) ≺lex (i2, j2) iff

• i1 < i2, or
• (i1 = i2 andj1 < j2).

Running Example II: Define the “interleaved raster scan”
order≺irs as follows:(i1, j1) ≺irs (i2, j2) iff

• i1 ≡ 0 (mod 2) and i2 ≡ 1 (mod 2), or
• i1 ≡ i2 (mod 2) and i1 < i2, or
• i1 = i2 andj1 < j2.

(See Figure 1 for both examples.)
For the rest of this section, fix positive integersr ands, and

define the index set
Λ = Br,s .



1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

≺lex

1 2 3 4 5
16 17 18 19 20
6 7 8 9 10
21 22 23 24 25
11 12 13 14 15

≺irs

Fig. 1. An entry labeledi in the left (right) configuration precedes an entry
labeledj according to≺lex (≺irs) iff i < j.

We will refer to Λ as “the patch.” The bound we derive in
Lemma 2 will be a function of the following:

• the strict total order≺,
• the integersr ands, which determine the orderr × s of

the patchΛ,
• an integerc, which will denote the number of “colors”

we encounter,
• a coloring functionf : Z2 → {1, 2, . . . , c}, mapping each

point in Z
2 to one ofc colors,

• c indexes,(aγ , bγ)cγ=1, such that for all1 ≤ γ ≤ c,

(aγ , bγ) ∈ Λ

(namely, each colorγ has a designated point in the patch,
which may or may not be of colorγ).

The functionf must satisfy two requirements, which we
now elaborate on. Our first requirement is: for all1 ≤ γ ≤ c,

lim
M→∞

{(i, j) ∈ BM : f(i, j) = γ}

M2
=

1

c
. (5)

Namely, as the orders ofW (M) tend to infinity, each color is
equally1 likely. Our second requirement is as follows: there
exist index setsΨ1,Ψ2, . . . ,Ψc ⊆ Λ such that for all indexes
(i, j) ∈ Z

2,

σi′,j′(Ψγ) = T
(≺)
i,j ∩ σi′,j′(Λ) , (6)

whereγ = f(i, j), i′ = aγ − i, andj′ = bγ − j. Namely, let
(i, j) be such thatf(i, j) = γ, and shiftΛ such that(aγ , bγ)
is shifted to(i, j). Now, consider the set of all indexes in the
shiftedΛ which precede(i, j): this set must be equal to the
correspondingly shiftedΨγ .

Running Example I: Take r = 4 and s = 7 as the patch
orders. Let the number of colors bec = 1. Thus, we must
definef = flex as follows: for all(i, j) ∈ Z

2, flex(i, j) = 1.
Take the point corresponding to the single color as(a1 =
3, b1 = 5). See also Figure 2(a).

Running Example II: As in the previous example, take
r = 3 ands = 5 as the patch orders. Let the number of colors
be c = 2. Definef = firs as follows:

firs(i, j) =

{
1 i ≡ 0 (mod 2)

2 i ≡ 1 (mod 2)
.

1In fact, it is possible to generalize (5), and require only that the limit exists
for all γ. We have not found this generalization useful.

• •

•

lex irs

(a) (b)

γ = 1

γ = 2

Fig. 2. The left (right) column corresponds to Running Example I (II). The
configurations are of orderr×s and represent the index setΛ. The• symbol
is in position(aγ , bγ). The shaded part isΨγ .

Take (a1 = 3, b1 = 5) and (a2 = 2, b2 = 4). See also
Figure 2(b).

Lemma 2:Let (W (M))∞M=1 be as in Theorem 1 and
define

X(M) = W (M)[Λ] .

Let ≺, r, s, c, f , (Ψγ)
c
γ=1, and (aγ , bγ)

c
γ=1 be given. For

1 ≤ γ ≤ c, define

Υγ = {(aγ , bγ)} ∪Ψγ .

Let
Yγ = X(M)[Υγ ] and Zγ = X(M)[Ψγ ]

(note thatYγ andZγ are functions ofM ). Then,

cap(S) ≤ lim sup
M→∞

1

c

c∑

γ=1

H(Yγ |Zγ) .

Proof: Let X , W andTi,j be shorthand forX(M), W (M)

andT(≺)
i,j , respectively. First note that

Yγ = W [Υγ ] and Zγ = W [Ψγ ] .

We show that

lim
M→∞

1

M2
H(W ) ≤ lim sup

M→∞

1

c

c∑

γ=1

H(Yγ |Zγ) .

Once this is proved, the claim follows from (4).
By the chain rule [9, Theorem 2.5.1], we have

H(W ) =
∑

(i,j)∈BM

H(Wi,j |W [Ti,j ∩ BM ]) .

We now recall (6) and define the index set∂̄ to be the largest
subset ofBM for which the following condition holds: for all
(i, j) ∈ ∂̄, we have that

σi′,j′(Ψγ) ⊆ BM , (7)



where hereafter in the proof,γ = f(i, j), i′ = aγ − i, and
j′ = bγ − j. Define∂ = BM \ ∂̄. Note that sincer ands are
constant, andΨ1,Ψ2, . . . ,Ψc ⊆ Λ, then

|∂|

M2
= O(1/M) .

Thus, on the one hand, we have

1

M2

∑

(i,j)∈∂

H(Wi,j |W [Ti,j ∩ BM ]) ≤ log2 |Σ| · O(1/M) .

On the other hand, from (6) and (7) we have that for all(i, j) ∈
∂̄,

σi′,j′(Ψγ) ⊆ Ti,j ∩ BM .

Hence, since conditioning reduces entropy [9, Theorem 2.6.5],

1

M2

∑

(i,j)∈∂̄

H(Wi,j |W [Ti,j ∩ BM ])

≤
1

M2

∑

(i,j)∈∂̄

H(Wi,j |W [σi′,j′(Ψγ)])

=
1

M2

∑

(i,j)∈∂̄

H(W [{(i, j)} ∪ σi′,j′ (Ψγ)]|W [σi′,j′(Ψγ)])

=
1

M2

∑

(i,j)∈∂̄

H(Yγ |Zγ) ,

where the last step follows from the stationarity ofW (M).
Recalling (5), the proof follows.

The following is a simple corollary of Lemma 2.
Corollary 3: Let (W (M))∞M=1 be as in Theorem 1 and

define
X(M) = W (M)[Λ] .

Fix positive integersr ands. Let ℓ be a positive integer, and
let (ρ〈k〉)ℓk=1 be non-negative reals such that

∑ℓ
k=1 ρ

〈k〉 = 1.
For every1 ≤ k ≤ ℓ, let ≺〈k〉, c〈k〉, f 〈k〉, (Ψ

〈k〉
γ )cγ=1, and

(a
〈k〉
γ , b

〈k〉
γ )cγ=1 be given. Also, for1 ≤ γ ≤ c〈k〉, let

Υ〈k〉
γ = {(a〈k〉γ , b〈k〉γ )} ∪Ψ〈k〉

γ .

Define

Y 〈k〉
γ = X(M)[Υ〈k〉

γ ] and Z〈k〉
γ = X(M)[Ψ〈k〉

γ ]

(note thatY 〈k〉
γ andZ〈k〉

γ are functions ofM ). Then,

cap(S) ≤ lim sup
M→∞

ℓ∑

k=1

ρ〈k〉

c〈k〉

c〈k〉∑

γ=1

H(Y 〈k〉
γ |Z〈k〉

γ ) .

Corollary 3 is the most general way we have found to state our
results. This generality will indeed help us later on. However,
almost none of the intuition is lost if the reader has in mind
the much simpler case of

ℓ = 1 , ρ〈1〉 = 1 , c〈1〉 = 1 , ≺〈1〉=≺lex ,

(a
〈1〉
1 , b

〈1〉
1 ) = (r−1, t) , and Ψ

〈1〉
1 = Λ ∩ T

(a
〈1〉
1

,b
〈1〉
1

)
, (8)

where 0 ≤ t < s. This simpler case was demonstrated in
Running Example I.

IV. L INEAR REQUIREMENTS

Recall thatX(M) = W (M)[Λ] is anr× s sub-configuration
of W (M), and thus stationary as well. In this section, we for-
mulate a set of linear requirements (equalities and inequalities)
on the probability distribution ofX(M). For the rest of this
section, letM be fixed and letX be shorthand forX(M).

A. Linear requirements from stationarity

In this subsection, we formulate a set of linear requirements
that follow from the stationarity ofX(M). Let x ∈ S[Λ] be a
realization ofX . Denote

px = Prob(X = x) .

We start with the trivial requirements. Obviously, we must
have for allx ∈ S[Λ] that

px ≥ 0 .

Also, ∑

x∈S[Λ]

px = 1 .

Next, we show how we can use stationarity to get more
linear equations on(px)x∈S[Λ]. Let

Λ′ = {(i, j) : 0 ≤ i < r − 1 , 0 ≤ j < s} .

For x′ ∈ S[Λ′] we must have by stationarity that

Prob(X [Λ′] = x′) = Prob(X [σ1,0(Λ
′)] = σ1,0(x

′)) . (9)

As a concrete example, suppose thatr = s = 3. We claim
that

Prob

(
X =

1 0 0
0 0 1
∗ ∗ ∗

)
= Prob

(
X =

∗ ∗ ∗
1 0 0
0 0 1

)
,

where∗ denotes “don’t care”.
Both the left-hand and right-hand sides of (9) are marginal-

izations of (px)x. Thus, we get a set of linear equations on
(px)x, namely, for allx′ ∈ S[Λ′],

∑

x :x[Λ′]=x′

px =
∑

x :x[σ1,0(Λ′)]=σ1,0(x′)

px .

To get more equations, we now apply the same rational
horizontally, instead of vertically. Let

Λ′′ = {(i, j) : 0 ≤ i < r , 0 ≤ j < s− 1} .

for all x′′ ∈ S[Λ′′],

∑

x :x[Λ′′]=x′′

px =
∑

x :x[σ0,1(Λ′′)]=σ0,1(x′′)

px .



B. Linear equations from reflection, transposition, and com-
plementation

We now show that ifS is reflection, transposition, or
complementation invariant (defined below), then we can derive
yet more linear equations.

Define vM (·) (hM (·)) as the vertical (horizontal) reflec-
tion of a rectangular configuration withM rows (columns).
Namely,

(vM (w))i,j = wM−1−i,j , and (hM (w))i,j = wi,M−1−j .

Defineτ as the transposition of a configuration. Namely,

τ(w)i,j = wj,i .

For Σ = {0, 1}, denote bycomp(w) the bitwise comple-
ment of a configurationw. Namely,

comp(w)i,j =

{
1 if wi,j = 0

0 otherwise.

We state three similar lemmas, and prove the first. The proof
of the other two is similar.

Lemma 4:Suppose thatS is such that for allM > 0 and
w ∈ ΣM×M ,

w ∈ S ⇐⇒ hM (w) ∈ S ⇐⇒ vM (w) ∈ S .

Then, w.l.o.g., the probability distribution ofW is such that
for all w ∈ SM ,

Prob(W = w) =

Prob(W = hM (w)) = Prob(W = vM (w)) . (10)

Lemma 5:Suppose thatS is such that for allM > 0 and
w ∈ ΣM×M ,

w ∈ S ⇐⇒ τ(w) ∈ S .

Then, w.l.o.g.,W is such that for allw ∈ SM ,

Prob(W = w) = Prob(W = τ(w)) . (11)

Lemma 6:Suppose thatΣ = {0, 1} and S is such that
for all M > 0 andw ∈ ΣM×M ,

w ∈ S ⇐⇒ comp(w) ∈ S .

Then, w.l.o.g.,W is such that for allw ∈ SM ,

Prob(W = w) = Prob(W = comp(w)) . (12)

Proof of Lemma 5: Let h and v be shorthand forhM

andvM , respectively. ForM fixed, we define a new random
variable W new taking values onSM , with the following
distribution: for allw ∈ SM ,

Prob(W new=w) =
1

4

∑

w′∈
{w,h(w),v(w),h(v(w))}

Prob(W=w′) .

Sinceh(h(w)) = v(v(w)) = w andh(v(w)) = v(h(w)) we
get that (10) holds forW new. Moreover, by the concavity of
the entropy function,

H(W ) ≤ H(W new) .

Thus, the properties defined in Theorem 1 hold forW new.
If the condition of Lemma 4 holds, then we get the following

equations by stationarity. For allx ∈ S[Λ],

px = pvr(x) = phs(x) .

If the condition of Lemma 5 holds, then the following holds
by stationarity. Assume w.l.o.g. thatr ≤ s, and let

Λ̃ = {(i, j) : 0 ≤ i, j < r} .

For all χ ∈ S[Λ̃],
∑

x :x[Λ̃]=χ

px =
∑

x :x[Λ̃]=τ(χ)

px .

If the condition of Lemma 6 holds, then we get the following
equations by stationarity. For allx ∈ S[Λ],

px = pcomp(x) .

V. A N UPPER BOUND ONcap(S)

For the rest of this section, letr, s, ℓ, ρ〈k〉, ≺〈k〉, c〈k〉, f 〈k〉,
Ψ

〈k〉
γ , and(a〈k〉γ , b

〈k〉
γ ) be given as in Corollary 3. Recall from

Corollary 3 that we are interested inH(Y
〈k〉
γ |Z

〈k〉
γ ), in order

to boundcap(S) from above.
As a first step, we fixM and expressH(Y

〈k〉
γ |Z

〈k〉
γ ) in terms

of the probabilities(px)x of the random variableX(M). For
given 1 ≤ k ≤ ℓ and1 ≤ γ ≤ c〈k〉, let

y ∈ S[Υ〈k〉
γ ] and z ∈ S[Ψ〈k〉

γ ]

be realizations ofY 〈k〉
γ andZ〈k〉

γ , respectively. Let

p〈k〉γ,y = Prob(Y 〈k〉
γ = y) and p〈k〉γ,z = Prob(Z〈k〉

γ = z)

(p〈k〉γ,y andp〈k〉γ,z are functions ofM ). From here onward, letpy
andpz be shorthand forp〈k〉γ,y andp

〈k〉
γ,z, respectively. Bothpy

andpz are marginalizations of(px)x, namely,

py =
∑

x∈S[Λ] :x[Υ
〈k〉
γ ]=y

px , pz =
∑

x∈S[Λ] :x[Ψ
〈k〉
γ ]=z

px .

Thus, for givenγ andk,

H(Y 〈k〉
γ |Z〈k〉

γ ) =
∑

y∈S[Υ
〈k〉
γ ]

−py log2 py +
∑

z∈S[Ψ
〈k〉
γ ]

pz log2 pz

is a function of the probabilities(px)x of X(M).
Our next step will be to reason as follows: We have

found linear requirements that thepx’s satisfy and expressed
H(Y

〈k〉
γ |Z

〈k〉
γ ) as a function of(px)x. However,we do not

know of a way to actually calculate(px)x. So, instead of the
probabilities(px)x, consider thevariables (p̄x)x. From this
line of thought we get our main theorem.

Theorem 7:The value of the optimization program given
in Figure 3 is an upper bound oncap(S).

Proof: First, notice that if we takēpx = px, then (by
Section IV) all the requirements which thēpx’s are subject to
indeed hold, and the objective function is equal to

ℓ∑

k=1

ρ〈k〉

c〈k〉

c〈k〉∑

γ=1

H(Y 〈k〉
γ |Z〈k〉

γ ) .



maximize
ℓ∑

k=1

ρ〈k〉

c〈k〉

c〈k〉∑

γ=1

Ξ(k, γ)

over the variables(p̄x)x∈S[Λ], where for

1 ≤ k ≤ ℓ , 1 ≤ γ ≤ c〈k〉 , y ∈ S[Υ〈k〉
γ ] , z ∈ S[Ψ〈k〉

γ ] ,

we define

p̄〈k〉γ,y ,
∑

x∈S[Λ] :x[Υ
〈k〉
γ ]=y

p̄x , p̄〈k〉γ,z ,
∑

x∈S[Λ] :x[Ψ
〈k〉
γ ]=z

p̄x ,

Ξ(k, γ) , −
∑

y∈S[Υ
〈k〉
γ ]

p̄〈k〉γ,y log2 p̄
〈k〉
γ,y +

∑

z∈S[Ψ
〈k〉
γ ]

p̄〈k〉γ,z log2 p̄
〈k〉
γ,z ,

and the variables̄px are subject to the following requirements:

(i)
∑

x∈S[Λ]

p̄x = 1 .

(ii) For all x ∈ S[Λ],
p̄x ≥ 0 .

(iii) For all x′ ∈ S[Λ′],
∑

x :x[Λ′]=x′

p̄x =
∑

x :x[σ1,0(Λ′)]=σ1,0(x′)

p̄x .

(iv) For all x′′ ∈ S[Λ′′],
∑

x :x[Λ′′]=x′′

p̄x =
∑

x :x[σ0,1(Λ′′)]=σ0,1(x′′)

p̄x .

(v) (If S is reflection (resp. complementation) invariant) For
all x ∈ S[Λ],

p̄x = p̄vr(x) = p̄hs(x) (resp.p̄x = p̄comp(x)) .

(vi) (If S is transposition invariant) For allχ ∈ S[Λ̃],
∑

x : x[Λ̃]=χ

p̄x =
∑

x :x[Λ̃]=τ(χ)

p̄x .

Fig. 3. Optimization program over the variablesp̄x (assuming w.l.o.g. that
r ≤ s). The optimum is an upper bound oncap(S).

So, the maximum is an upper bound on the above equation.
Next, by compactness, a maximum indeed exists. Since the
maximum is not a function ofM , the claim now follows from
Corollary 3.

We now proceed to show that the optimization problem
in Figure 3 is an instance of concave programming [10, p.
137], and thus easily calculated. Since the requirements that
the variables(p̄x)x are subject to are linear, this reduces to
showing that the objective function is concave in(p̄x)x.

Lemma 8:The objective function in Figure 3 is concave
in the variables(p̄x)x∈S[Λ], subject to them being non-negative.

Proof: Recall that for all1 ≤ k ≤ ℓ we have thatρ
〈k〉

c〈k〉 is
non-negative. Thus, it suffices to prove that for all1 ≤ k ≤ ℓ

and 1 ≤ γ ≤ c〈k〉, the functionΞ(k, γ) is concave in the
variables(p̄x)x. So, letk and γ be fixed, and let̄py and p̄z
be shorthand for̄p〈k〉γ,y and p̄〈k〉γ,z, respectively.

Recalling the definition of̄p〈k〉γ,y andp̄〈k〉γ,z in Figure 3 and the
fact thatΨ〈k〉

γ ⊆ Υ
〈k〉
γ , we get that

Ξ(k, γ) =
∑

y∈S[Υ〈k〉
γ ]

z=y[Ψ〈k〉
γ ]

−p̄y log2
p̄y
p̄z

.

Thus, it suffices to show that each summand is concave in
(p̄x)x. This is indeed the case: let(p̄(1)x )x∈S[Λ] and(p̄(2)x )x∈S[Λ]

be non-negative. Let0 ≤ ξ ≤ 1 be given, and define
(p̄

(3)
x )x∈S[Λ] as

p̄(3)x = ξp̄(1)x + (1− ξ)p̄(2)x , x ∈ S[Λ] .

For t = 1, 2, 3, denote byp̄(t)y and p̄
(t)
z the marginalizations

corresponding to(p̄(t)x )x. Obviously,

p̄(3)y = ξp̄(1)y + (1− ξ)p̄(2)y , y ∈ S[Υ〈k〉
γ ] .

and
p̄(3)z = ξp̄(1)z + (1 − ξ)p̄(2)z , z ∈ S[Ψ〈k〉

γ ] .

We must show that for ally ∈ S[Υ
〈k〉
γ ], z = y[Ψ

〈k〉
γ ]

p̄(3)y log2
p̄
(3)
y

p̄
(3)
z

≤ ξp̄(1)y log2
p̄
(1)
y

p̄
(1)
z

+ (1− ξ)p̄(2)y log2
p̄
(2)
y

p̄
(2)
z

.

This is indeed the case, by the log sum inequality [9, p. 29].

VI. COMPUTATIONAL RESULTS

At this point, we have formulated a concave optimization
problem, and wish to solve it. There are quite a few programs,
termedsolvers, that enable one to do so. Many such solvers
— most of them proprietary — are hosted on the servers of
the NEOS project [11][12][13], and the public may submit
moderately sized optimization problems to them. We have
coded our optimization problems in the AMPL modeling
language [14], and submitted them to NEOS.

Essentially, a solver starts with some initial guess as to the
optimizing value of(p̄x)x∈S[Λ], and then iteratively improves
the value of the objective function. This process is terminated
when the solver decides that it is “close enough” to the
optimum. Denote bỹp = (p̃x)x∈S[Λ] this “close enough”
assignment to the variables. Of course, we must supply an
upper bound oncap(S), not an approximation to one. Thus,
let f̃ and

g̃ = (g̃x)x , x ∈ S[Λ] ,

be the value of the objective function and its gradient atp̃,
respectively. Obviously,̃f is a lower bound on the value of
our optimization problem. For an upper bound2, we replace

2We remark in passing that if we had chosen to optimize thedual problem
[10, p. 215], then the “dual of”ef would already have been an upper bound.
However, we have not managed to state the dual problem in closed form.
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≺skip

Fig. 4. An entry labeledi in the configuration precedes an entry labeledj
according to≺skip iff i < j.

the objective function in Figure 3 by

maximize


f̃ +

∑

x∈S[Λ]

g̃x · (p̄x − p̃x)


 ,

and get alinear program(the value of which can be calculated
exactly). By concavity, the value of this linear program is
indeed an upper bound. So, we use NEOS yet again to
solve it. For the sake of double-checking, we submitted the
above optimization problems to two solvers: IPOPT [15] and
MOSEK.

Before stating our computational results, let us first define
one more strict total order, which we have termed the “skip”
order,≺skip (see Figure 4). We have that(i1, j1) ≺skip (i2, j2)
iff

• i1 < i2, or
• (i1 = i2 andj1 ≡ 0 (mod 2) andj2 ≡ 1 (mod 2)), or
• (i1 = i2 andj1 ≡ j2 (mod 2) andj1 < j2)

Our computational results appear in Table I. To the best of
our knowledge, they are presently the tightest. The penultimate
column contains upper bounds obtained by the method de-
scribed in [6]. When available, these compared-to bounds are
taken from previously published work, as indicated to the right
of them. The rest are the result of our implementation of [6].
For reference, the last column contains corresponding lower
bounds. We note that the indexes(a〈k〉γ , b

〈k〉
γ ) and coefficients

ρ〈k〉 used for each constraint were optimized by hand, through
trial and error. Also, we note that when applying our method
to the 2-D(1,∞)-RLL constraint, our bound was inferior to
the one presented in [2] (utilizing the method of [7]).

VII. A SYMPTOTIC ANALYSIS

For a given constraintS and positive integersr and s, let
t be an integer such that0 ≤ t < s. Denote byµ(r, s, t)
the value of the optimization program in Figure 3, where the
parameters are as in (8). In this section, we show that even
if we restrict ourselves to this simple case, we get an upper
bound which is asymptotically tight, in the following sense.

Theorem 9:For all ǫ > 0, there exist

r0 > 0 , s0 > 0 , 0 ≤ t0 < s0

such that for all

r ≥ r0 , s ≥ s0 , t0 ≤ t ≤ s− (s0 − t0) ,

we have that
µ(r, s, t)− cap(S) ≤ ǫ .

In order to prove Theorem 9, we need the following lemma.
Lemma 10:For all ǫ > 0, there exist

r0 > 0 , s0 > 0 , 0 ≤ t0 < s0

such that
µ(r0, s0, t0)− cap(S) < ǫ .

Proof: Another well known method for boundingcap(S)
from above is the so called “stripe method”, mentioned in
the introduction. Namely, for some givenθ, consider the 1-D
constraintS = S(θ) defined as follows. The alphabet of the
constraint isΣθ. A word of lengthr′ satisfiesS if and only if
when we write its entries as rows of lengthθ, one below the
other, we get anr′ × θ configuration which satisfies the 2-D
constraintS.

Define the normalized capacity ofS as

ĉap(S) =
1

θ
cap(S) .

By the definition of cap(S), the normalized capacity ap-
proachescap(S) asθ → ∞. Thus, fix aθ such that

ĉap(S)− cap(S) ≤ ǫ/2 .

We say that a 1-D constraint has memorym if there exists
a graph representing it, and all paths in the graph of length
m with the same labeling terminate in the same vertex. By
[1, Theorem 3.17] and its proof, there exists a series of 1-D
constraints{Sm}

∞
m=1 such thatS ⊆ Sm, the memory ofSm is

m, andlimm→∞ cap(Sm) = cap(S). Thus, fixm such that

ĉap(Sm)− ĉap(S) ≤ ǫ/2 .

To finish the proof, we now show that

µ(r0, s0, t0) ≤ ĉap(Sm) ,

where

r0 = m+ 1 , s0 = 2 · θ , t0 = θ − 1 .

Note thatµ(r0, s0, t0) is the maximum of

H(X̄m,θ−1|X̄ [T
(≺lex)
m,θ−1 ∩ Bm+1,2·θ]) , (13)

over all random variables̄X ∈ Sm+1,2·θ with a probability
distribution satisfying our linear requirements.

For all 0 ≤ φ < θ we get by the (imposed) stationarity of
X̄ that (13) is bounded from above by

Hφ = H(X̄m,φ|X̄[T
(≺lex)
m,φ ∩ Bm+1,θ]) .

So, (13) is also bounded from above by

1

θ

θ−1∑

φ=0

Hφ . (14)

The firstθ columns ofX̄ form a configuration with index set
Bm+1,θ. By our linear requirements, stationarity (specifically,
vertical stationarity) holds for this configuration as well. So,
we may define a stationary 1-D Markov chain [1,§3.2.3] on



TABLE I
UPPER-BOUNDS ON THE CAPACITY OF SOME2-D CONSTRAINTS.

Constraint r s k ≺ used Upper bound Comparison Lower bound

(2,∞)-RLL 3 8 7 ≺lex, ≺skip 0.4457 0.4459 [16] 0.444202 [17]
(3,∞)-RLL 4 8 5 ≺lex 0.36821 0.3686 [16] 0.365623 [18]
(0, 2)-RLL 3 5 2 ≺lex 0.816731 0.817053 0.816007 [18]

n.i.b. 3 4 1 ≺skip 0.92472 0.927855 0.922640 [17]

Sm, with entropy given by (14). That entropy, in turn, is at
most ĉap(Sm).

Proof of Theorem 9:The following inequalities are easily
verified:

µ(r, s, t) ≥ µ(r + 1, s, t) .

µ(r, s, t) ≥ µ(r, s+ 1, t) .

µ(r, s, t) ≥ µ(r, s+ 1, t+ 1) .

The proof follows from them and Lemma 10.

APPENDIX

Our goal in this appendix is to prove Theorem 1. Essentially,
Theorem 1 will turn out to be a corollary of [8, Theorem 1.4].
However, [8, Theorem 1.4] deals with configurations in which
the index set isZ2. So, some definitions and auxiliary lemmas
are in order.

Recall that(Grow, Gcol) is the pair of vertex-labeled graphs
through whichS = S(Grow, Gcol) is defined. Also, recall
that each member ofS is a configuration with a rectangular
index set. Namely, the index set of a configuration inS is
σi,j(BM,N ), for somei, j, M , andN . We now give a very
similar definition to that ofS, only now we require that
the index set of each configuration isZ2. Namely, define
S = S(Grow, Gcol) as follows: A configuration(wi,j)(i,j)∈Z2

over Σ is in S(Grow, Gcol) iff there exists a configuration
(ui,j)(i,j)∈Z2 over the vertex setV with the following prop-
erties: for all (i, j) ∈ Z

2, (a) the labeling ofui,j satisfies
L(ui,j) = wi,j ; (b) there exists an edge fromui,j to ui,j+1 in
Grow; (c) there exists an edge fromui,j to ui+1,j in Gcol.

For positive integersM,N > 0, define SM,N as the
restriction ofS to BM,N . Namely,

SM,N = S[BM,N ] ,

where the definition of the restriction operation is as in (3).
Also, for M equal toN , define

SM = SM,M .

Note that for allM,N > 0 we have

SM,N ⊆ SM,N , (15)

and there are cases in which the inclusion is strict. Next, define
the capacity ofS as

cap(S) = lim
M→∞

1

M2
· log2 |SM | .

The limit indeed exists, by sub-additivity (see [3, Appendix],
and references therein).

For integersM,N > 0 andδ ≥ 0, denote

CM,N,δ = σ−δ,−δ(BM+2δ,N+2δ)

and let
SM,N,δ = S[CM,N,δ] .

Note that the index setCM,N,δ of each element ofSM,N,δ is
simplyBM,N , padded withδ columns to the right and left and
δ rows to the top and bottom. The following lemma will help
us bridge the gap between finite and infinite index sets.

Lemma 11:Let w be a configuration over the finite
alphabetΣ with index setBM,N . If for all δ ≥ 0 we have
that

w ∈ SM,N,δ[BM,N ] , (16)

then we must have that

w ∈ SM,N .

Proof: Define the following auxiliary directed graph. The
vertex set is

⋃

δ≥0

{ŵ ∈ SM,N,δ : ŵ[BM,N ] = w} .

For everyδ ≥ 0, there is a directed edge fromw1 ∈ SM,N,δ to
w2 ∈ SM,N,δ+1 iff w1 = w2[CM,N,δ]. It is easily seen that this
graph is a directed tree with rootw, as defined in [19,§2.4].
Since (16) holds for allδ ≥ 0, the vertex set of the tree is
infinite (and countable). On the other hand, since the alphabet
size |Σ| is finite, the out-degree of each vertex is finite. Thus,
by König’s Infinity Lemma [19, Theorem 2.8], we must have
an infinite path in the tree starting from the rootw.

Denote the vertices of the above-mentioned infinite path as

w = w[0], w[1], w[2], . . . .

We now show how to find a configuration(w′
i,j)(i,j)∈Z2 such

thatw′ ∈ S andw = w′[BM,N ]. For each(i, j) ∈ Z
2, define

w′
i,j as follows: letδ ≥ 0 be such that(i, j) ∈ CM,N,δ, and

takew′
i,j = w

[δ]
i,j . It is easily seen thatw′ is well defined and

contained inS.
The following lemma states that although the inclusion in

(15) may be strict, the capacities ofS andS are equal.
Lemma 12:Let S andS be as previously defined. Then,

cap(S) = cap(S) . (17)

Proof: By (15), we must have thatcap(S) ≤ cap(S). For
the other direction, it suffices to prove that for allM > 0,

cap(S) ≤
1

M2
log2 |SM | . (18)



So, let us fixM and prove the above. By Lemma 11, there
existsδ ≥ 0 such that for allw ∈ ΣM×M ,

w 6∈ SM =⇒ w 6∈ SM,M,δ[BM ] .

For t > 0, let M ′ be shorthand for

M ′ = t ·M .

By the definition of capacity, we have that

cap(S) = lim
t→∞

1

(M ′)2
log2 |SM ′ | . (19)

Now, let us partitionBM ′ into the following disjoint sub-sets
of indexes: for0 ≤ i, j < t, define the set

Di,j = σi·M,j·M (BM ) .

Let w′ ∈ SM ′ . Notice that for all0 ≤ i, j < t for which

σi·M,j·M (CM,M,δ) ⊆ BM ′ , (20)

we must have thatw′[Di,j ] is equal to some correspondingly
shifted element ofSM . On the other hand, forM andδ fixed,
the number of pairs(i, j) for which (20) does not hold isO(t).
Thus, a simple calculation gives us that

1

(M ′)2
log2 |SM ′ | ≤

1

M2
log2 |SM |+O(1/t) .

This, together with (19), proves (18).
For a givenM > 0, define the setF(M) of configurations

with index setZ2 as follows: a configuration(wi,j)(i,j)∈Z2 is
in F(M) iff for all (i, j) ∈ Z

2,

w[σi,j(BM )] ∈ SM .

Namely, eachM × M “patch” is a correspondingly shifted
element ofSM .

Note that there exist vertex-labeled graphsGrow(M) and
Gcol(M) such thatF(M) = S(Grow(M), Gcol(M)). Specif-
ically, the vertex set of both graphs is equal toSM ; the label
of each such vertex is its lower-left entry; there is an edge
from w1 ∈ SM to w2 ∈ SM in Grow(M) (Gcol(M)) iff the
first M − 1 rows (columns) ofw1 are equal to the lastM − 1
(rows) columns ofw2. Thus,cap(F(M)) exists. Also, since
w ∈ S impliesw ∈ F(M), we have

cap(S) ≤ cap(F(M)) . (21)

The following is a direct corollary of [8, Theorem 1.4].
Corollary 13: For all M > 0, there exists a stationary

random variableW (M) taking values onF(M)[BM ] such that

cap(F(M)) ≤
1

M2
H(W (M)) . (22)

Proof of Theorem 1:Notice that

F(M)[BM ] = SM ⊆ SM .

Thus, takeW (M) as in Corollary 13 and notice that it satisfies
conditions (i) and (ii) in Theorem 1. From (17), (21), and (22)
we get that

cap(S) ≤ lim
M→∞

1

M2
·H(W (M)) .

But sinceW (M) takes values onSM , we have by [9, Page 19]
that the above inequality is in fact an equality. Thus, condition
(iii) is proved.
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