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Abstract

We analyze opportunistic schemes for transmission scheduling from one of n homogeneous

queues whose channel states fluctuate independently. Considered schemes consist of the LCQ pol-

icy, which transmits from a longest connected queue in the entire system, and its low-complexity

variants that transmit from a longest queue within a randomly chosen subset of connected queues.

A Markovian model is studied where mean packet transmission time is n−1 and packet arrival rate

is λ < 1 per queue. Transient and equilibrium distributions of queue occupancies are obtained in

the limit as the system size n tends to infinity.
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1 Introduction

We analyze a queueing system that arises under opportunistic scheduling of packet transmissions from

a collection of queues with time-varying service rates. The system of interest is motivated by cellular

data communications in which a single transceiver serves multiple mobile stations through distinct

channels. Transmission scheduling has been well-studied in this context under the guiding principle of

opportunism, which broadly refers to exploiting channel variations to maximize transmission capacity

in the long term. In this we paper consider two generic opportunistic scheduling policies and obtain

asymptotically exact descriptions of the resulting queue length distributions in symmetric systems

of statistically identical queues.

Explicit analysis of queue lengths under opportunistic scheduling is generally difficult due to model

complexities and lack of closed-form expressions. In related work Tassiulas and Ephremides [10]

considered a queueing system under an on/off channel model in which each queue is independently

either connected, and in turn it is eligible for service at a standard rate, or disconnected and it cannot

be serviced. It is shown that transmitting from a longest connected queue stabilizes queue lengths if

that is at all feasible, and that it minimizes occupancy of symmetric systems in which queues have

identical load and channel statistics. This policy is coined LCQ. Explicit description of queue length

distributions under LCQ is not available, but several bounds for mean packet delay are obtained

in [3, 6] for LCQ and some of its variants. In more general models that admit multiple transmission

rates and simultaneous transmissions, max-weight scheduling policies and their variations are shown

in [9, 7] to asymptotically minimize a range of occupancy measures along a certain heavy-traffic limit.

In the special case when one queue can transmit at a time, max-weight transmits from a queue that

maximizes the product of instantaneous queue length and transmission rate. Tails of queue length

distributions under such policies are studied in [8, 12] via large deviations analysis.

Here we consider a system of n queues under an on/off channel model in which each queue is

connected independently with probability q ∈ (0, 1]. A continuous-time Markovian model is adopted

where packet transmission rate is n and packet arrival rate is λ < 1 per queue. It can be seen that

λ is also the load factor of the system; hence the condition λ < 1 is necessary to have positive-

recurrent queue lengths. We analyze this system for large values of the system size n, under the

LCQ scheduling policy and under its low-complexity variant, namely LCQ(d), that transmits from
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a longest queue within d ≥ 1 randomly selected connected queues. It is apparent that LCQ(d) is not

particularly suitable for non-symmetric systems, yet our goal here is to obtain a generic evaluation

of its underlying principle, which may be tailored to specific circumstances.

We establish that as the system size n increases equilibrium distribution of queue occupancies

under the LCQ policy converges to the deterministic distribution centered at 0. Hence asymptotically

almost all queues are empty in equilibrium. The number of queues with one packet is Θ(1) and the

number of queues with more than one packet is o(1) as n →∞. In particular maximum queue size

tends to one. The total number of packets in the system is therefore given by the number of nonempty

queues, and this number is shown to have the same equilibrium distribution as the positive-recurrent

birth-death process with birth rate λ and death rate 1 − (1 − q)j at state j ∈ Z+. Note that the

latter rate is equal to the probability of having at least one connected queue within a given set of j

queues, and that the nature of the total system occupancy may be anticipated once maximum queue

size is determined to be one. The obtained description leads to asymptotic mean packet delay via

Little’s law as the rate of packet arrivals to the system is readily seen to be nλ.

The analysis technique applied to LCQ can be extended, although with excessive tediousness, to

symmetric max-weight policies in cases when each queue can be serviced independently at rate nR

for some random variable R. Above conclusions about LCQ offer substantial insight about queue

occupancies in that more general setting. Namely if R exceeds λ with positive probability (note that

this condition is necessary for positive recurrence of queue lengths), then stochastic coupling with

a related LCQ system yields that the maximum queue length in equilibrium tends to 1 as n → ∞.

In turn, equilibrium distribution of total system occupancy should be expected to resemble that of

a birth-death process with birth rate λ and death rate E[max{R1, R2, · · · , Rj}] at state j, where

R1, R2, · · · , Rj are independent copies of R.

We obtain the equilibrium distribution {pk}∞k=0 of individual queue occupancy under the LCQ(d)

policy in the limit as n→∞. Specifically pk = v∗k − v∗k+1 where v∗0 = 1 and

v∗k = 1− d

√

1− λv∗k−1, k = 1, 2, · · · .

This distribution is shown to have tails that decay as Θ((λ/d)k) as queue size k → ∞. Hence, in

terms of tail occupancy probabilities, the choice parameter d has the equivalent effect of reducing

the system load by the same factor. Yet, for any fixed d, system occupancy under LCQ(d) is larger
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Figure 1: Mean packet delays as n→∞. Note the normalization in (a).

than that of LCQ by a factor of order n. Numerical values of asymptotic mean packet delay under

LCQ and LCQ(d) are illustrated in Figure 1. We also conclude that if d is allowed to depend on n

so that d →∞ but d/n → 0 then order of the alluded disparity reduces to n/d. This suggests that

for moderate values of d and n LCQ(d) and LCQ may be expected to have comparable packet delay.

The present analysis is based on approximating system dynamics via asymptotically exact differ-

ential representations that amount to functional laws of large numbers. Hence besides the mentioned

equilibrium properties the paper also describes transient behavior of queue occupancies. The present

analysis of LCQ(d) is inspired by the work of Vvedenskaya et al. [11] which concerns an analogue

of this policy that arises in routing and load balancing. It should perhaps be noted that the choice

parameter d appears to have a substantially more pronounced effect in the routing context. Our

conclusions about the LCQ policy require a more elaborate technical approach. Here we apply

a technique due to Kurtz [5] to obtain a suitable asymptotic description of the system. Related

applications of this technique can be found in [1, 4, 13].

The rest of this paper is organized as follows. We continue in Section 2 with formal description

of the model and the notation adopted in the paper. The policies LCQ(d) and LCQ are analyzed

respectively in Sections 3 and 4. The paper concludes with final remarks in Section 5.
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Figure 2: Sketch of the considered queueing system. At most one queue is serviced at a time, and

each queue i can be serviced only when channel i is eligible for transmission.

2 Queueing Model

Consider n queues each serving a dedicated stream of packet arrivals as illustrated in Figure 2.

Arrivals of each stream occur according to an independent Poisson process with rate λ < 1 packets

per unit time and transmission time of each packet is exponentially distributed with mean n−1,

chosen independently of the prior history of the system. Each queue is serviced by a designated

channel but at most one channel can transmit at a time. Channel states fluctuate randomly and

each channel is eligible for transmission with probability q ∈ (0, 1] independently of other channels.

Queues with eligible channels are called connected. We assume that channel states remain constant

during packet transmission and that they are determined anew, independently of each other and of

the current queue lengths, just before the next transmission decision.

Let mk(t) denote the number of queues with k or more packets at time t, and let

uk(t) =
mk(t)

n
, k = 0, 1, 2, · · · .

be the fraction of such queues in the system. In particular

1 = u0(t) ≥ u1(t) ≥ · · · ≥ 0, (1)

the sequence {1 − uk(t)}∞k=0 is the empirical cumulative distribution function of queue occupancies,

and
∑

k≥1 uk(t) is the empirical average queue occupancy in the system at time t. We denote by
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Pn and En respectively probabilities and expectations associated with system size n. In particular

if qi(t) denotes the occupancy of the i-th queue at time t then by the symmetry of the model

En[uk(t)] = Pn(qi(t) ≥ k).

Let U denote the collection of sequences u = {uk}∞k=0 that satisfy relation (1), and endow U with

metric ρ that is defined by

ρ(u,u′) = sup
k>0

|uk − u′k|
k

, u,u′ ∈ U.

Note that convergence in U is equivalent to coordinate-wise convergence, and that U is compact as

each coordinate lies in a compact interval.

For each time t let u(t) denote the sequence {uk(t)}∞k=0. We represent the trajectory (u(t) : t ≥ 0)

by the symbol u(·), and say that u(·) converges to a given trajectory v(·) uniformly on compact time-

sets (uoc) if for all t > 0

sup
0≤s≤t

ρ(u(s),v(s))→ 0 a.s. as n→∞.

3 LCQ(d)

We focus on LCQ(d) which randomly and independently selects d connected queues and transmits

from a longest queue within this collection. For convenience of analysis we assume that repetitions

are allowed in the selection procedure, and that if all selected queues are empty or no connected queue

exists at a scheduling instant then the scheduler makes a new selection after idling for the transmission

time of a hypothetical packet. This latter assumption can be seen to imply that scheduling instances

form a Poisson process of rate n.

For k = 1, 2, 3, · · · let ek = {ek(i)}∞i=0 where

ek(i) = 1{i = k}.

Here and in the rest of the paper 1{·} denotes 1 if its argument is true and 0 otherwise. Jumps of

the process u(·) are of the form ±n−1ek for some k. Namely u(·) changes by +n−1ek whenever some

queue with exactly k−1 packets has a new arrival, and by −n−1ek whenever a packet transmission is

scheduled from a queue with exactly k packets. The number of queues with k−1 packets at time t is
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given by n(uk−1(t)−uk(t)); hence the former event occurs at instantaneous rate nλ(uk−1(t)−uk(t)).

The latter event occurs if and only if, upon completion of a packet transmission, (i) there exists a

connected queue and (ii) the scheduler inspects at least one connected queue with k packets but none

with more than k packets. To determine the instantaneous rate of this event let τ be a scheduling

instant and let

αn = 1− (1− q)n.

Namely αn is the probability that there exists a connected queue at time τ . Since channel states

are assigned independently of queue lengths at time τ , a connected queue at this time has strictly

less than k packets with probability 1 − uk(τ). Therefore, given that a connected queue exists,

the maximum queue length inspected by the scheduler is equal to k with (conditional) probability

(1−uk+1(τ))
d− (1−uk(τ))

d. Since scheduling instants occur at constant rate n, instantaneous rate

of transmissions from a queue of size k is nαn((1− uk+1(t))
d − (1− uk(t))

d). In particular u(·) is a

time-homogeneous Markov process whose generator can be sketched as

u←







u+ n−1ek at rate nλ(uk−1 − uk)

u− n−1ek at rate nαn((1 − uk+1)
d − (1− uk)

d),
k = 1, 2 · · · . (2)

It offers some convenience in the subsequent discussion to represent the process u(·) via the

“random time change” construction of [2, Chapter 6]. Namely

u(t) = u(0) +

∞
∑

k=1

n−1ekAk−1

(

nλ

∫ t

0
uk−1(s)− uk(s)ds

)

−
∞
∑

k=1

n−1ekDk

(

nαn

∫ t

0
(1− uk+1(s))

d − (1− uk(s))
dds

)

(3)

where Ak−1(·), Dk(·), k = 1, 2, · · · , are mutually independent Poisson processes each with unit rate.

In informal terms, the processes Ak(·) and Dk(·) clock respectively arrivals to and departures from

some queue with length k, and the construction (3) is based on suitably expediting these processes

to match the instantaneous transition rates given in (2). Martingale decomposition of the Poisson

processes used in (3) yields

u(t) = u(0) +
∞
∑

k=1

ek

∫ t

0

(

λ(uk−1(s)− uk(s))ds − αn((1 − uk+1(s))
d − (1− uk(s))

d)
)

ds+ ε(t), (4)

where ε(t) = {εk(t)}∞k=0 is such that each coordinate process εk(·) is a real-valued martingale adapted

to the filtration generated by u(·).
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Theorem 3.1 Every subsequence of {n} has a further subsequence along which u(·) converges in

distribution to a differentiable process v(·) such that v0(t) ≡ 1 and

d

dt
vk(t) = λ(vk−1(t)− vk(t))− (1− vk+1(t))

d + (1− vk(t))
d k = 1, 2 · · · . (5)

Proof. The sequence of processes u(·) : n = 1, 2, · · · is tight in the Skorokhod space DU [0,∞)

of right continuous functions with left limits in U [2, Chapter 3.5]. Therefore every subsequence

has a further subsequence that converges in distribution. By Skorokhod’s Embedding Theorem [2,

Theorem 3.1.8] the processes can be reconstructed in an appropriate probability space if necessary

so that the convergence occurs almost surely. Since jumps of u(·) have magnitudes that scale with

n−1, the limit process is continuous and convergence of u(·) can be taken uoc [2, Theorem 3.10.1].

To describe a limit process v(·) note that u0(t) ≡ 1, and so ε0(t) ≡ 0. For k = 1, 2, · · · the martingale

εk(·) is square integrable. This process has O(n) jumps per unit time and each jump is of size n−1,

hence its quadratic variation vanishes as n → ∞. In turn, Doob’s L2 inequality [2, Proposition

2.2.16] implies that εk(·) → 0 uoc as n →∞. Since αn → 1 and convergence of u(·) is uoc, the kth

integral in equality (4) converges to

∫ t

0

(

λ(vk−1(s)− vk(s))ds − ((1− vk+1(s))
d − (1− vk(s))

d)
)

ds.

Therefore v(·) satisfies equality (4) with αn = 1 and ε(t) ≡ 0. Differential representation of that

equality is (5). �

Let Uo denote the set of system states in which average queue occupancy is finite. That is,

Uo = {u ∈ U :

∞
∑

k=1

uk <∞}.

Let v∗ = {v∗k}∞k=0 ∈ U be defined by setting v∗0 = 1 and

v∗k = 1− d

√

1− λv∗k−1, k = 1, 2, · · · . (6)

Since 1 − d

√

1− λv∗k−1 ≤ λv∗k−1 it follows that v∗k ≤ λk; in particular v∗ ∈ Uo. It can be readily

verified by substitution that v∗ is an equilibrium point for the differential system (5). The following

lemma establishes that v∗ is the unique stable equilibrium for trajectories that start in Uo.
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Lemma 3.1 Let v(·) solve the differential system (5) with initial state v(0) ∈ Uo. Then

lim
t→∞

vk(t) = v∗k, k = 1, 2, · · · . (7)

We provide a proof based on the following auxiliary result:

Lemma 3.2 Let v+(·) and v−(·) solve the differential system (5) with respective initial conditions

v+(0),v−(0) ∈ U such that v+k (0) ≥ v−k (0) for all k. Then v+k (t) ≥ v−k (t) for all k and all t > 0.

Proof. Suppose that the lemma is incorrect and let t > 0 be the first instant such that

v+k (t) = v−k (t) and
d

dt
v+k (t) <

d

dt
v−k (t) for some k.

Let i be the largest index k that satisfies this condition at time t. Then by (5)

d

dt
v+i (t)−

d

dt
v−i (t) = λ(v+i−1(t)− v−i−1(t)) + (1− v−i+1(t))

d − (1− v+i+1(t))
d.

The right hand side of this equality is nonnegative due to the choice of t (since otherwise either the

condition v+i−1(t) ≥ v−i−1(t) and or the condition v+i+1(t) ≥ v−i+1(t) must be violated before time t).

This contradicts with the definition of t; therefore no such t exists and the lemma holds. �

Proof of Lemma 3.1 Let v+(·) and v−(·) be solutions to (5) with respective initial states

v+(0) and v−(0) that are defined by setting v+k (0) = max{vk(0), v∗k} and v−k (0) = min{vk(0), v∗k} for

k = 0, 1, 2, · · · . By Lemma 3.2

v−k (t) ≤ vk(t), v
∗
k ≤ v+k (t), for all k, t. (8)

Equality (5) and definition (6) of v∗ give

d

dt

∞
∑

i=k

v±i (t) = λv±k−1(t) + (1− v±k (t))
d − 1

= λ(v±k−1(t)− v∗k−1) + (1− v±k (t))
d − (1− v∗k)

d,

or, in integral form,

∞
∑

i=k

v±i (t)−
∞
∑

i=k

v±i (0) =

∫ t

0
λ(v±k−1(s)− v∗k−1)ds+

∫ t

0
((1− v±k (s))

d − (1− v∗k)
d)ds. (9)
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Note that since v+1 (t) ≥ v∗1 = 1− d
√
1− λ it follows that

d

dt

∞
∑

i=1

v+k (t) = λ+ (1− v+1 (t))
d − 1 ≤ 0.

Hence
∑∞

i=k v
+
i (t), and therefore

∑∞
i=k v

−
i (t), is bounded by

∑∞
k=1 v

+
k (0) uniformly for all t. In turn

equality (9) yields

∣

∣

∣

∣

∫ t

0
λ(v±k−1(s)− v∗k−1)ds +

∫ t

0
((1 − v±k (s))

d − (1− v∗k)
d)ds

∣

∣

∣

∣

≤
∞
∑

i=k

v+i (0).

The bound on the right hand side is finite since v+(0) ∈ Uo due to the hypothesis v(0) ∈ Uo. Note

that, owing to the inequality (8), neither one of the two integrands above changes sign. Hence if the

first integral converges as t→∞ then so does the second one, implying further that

lim
t→∞

v±k (t) = v∗k. (10)

Since v±0 (t) ≡ v∗0 = 1, this is clearly the case for k = 1. Induction on k confirms that equality (10)

holds for all k. The desired conclusion (7) now follows from the property (8). �

Theorem 3.1, which establishes convergence over finite time intervals, is complemented next by

showing that equilibrium distribution of u(·) converges as n → ∞ to the deterministic measure

concentrated at v∗.

Theorem 3.2 The process u(·) is ergodic. Let u∗ = {u∗k}∞k=0 denote the equilibrium random

variable. For ε > 0

lim
n→∞

Pn(ρ(u
∗,v∗) > ε) = 0. (11)

In particular limn→∞En[u
∗
k] = v∗k for k = 0, 1, 2, · · · .

Proof. Let Un = {u ∈ U : nuk ∈ Z+ for k ≥ 0}. Note that (u(t) : t ≥ 0) is irreducible in

Un and Un is compact; therefore the process is ergodic and has a unique equilibrium distribution

concentrated on Un. In that equilibrium the rate of arrivals to queues with occupancy k or higher

should be equal to the rate of departures from such queues. That is,

En[λu
∗
k−1] = 1− En[(1− u∗k)

d] ≥ En[u
∗
k], for k ≥ 1,

where the inequality follows since (1 − u∗k)
d ≤ (1 − u∗k). Therefore En[u

∗
k] ≤ λk and in turn

En[
∑∞

k=1 u
∗
k] ≤ λ/(1 − λ). Let Uo,λ , {u ∈ U :

∑∞
k=1 uk ≤ λ/(1 − λ)} so that Pn(u

∗ ∈ Uo,λ) = 1.

10



Suppose that (11) is false so that for some infinite subsequence {n′} of {n} and some δ > 0

Pn′(ρ(u∗,v∗) > ε) > δ. (12)

Due to Lemma 3.1 and compactness of Uo,λ one can choose t(ε) such that if v(0) ∈ Uo,λ then

ρ(v(t),v∗) < ε/2 for t ≥ t(ε). Let u(0) have the same distribution as u∗ and let v(0) = u(0).

By Theorem 3.1 there is a further subsequence {n′′} of {n′} such that Pn′′(ρ(u(t(ε)),v(t(ε))) >

ε/2) < δ whenever n′′ is large enough. Since Pn′′(u∗ ∈ Uo,λ) = 1, the choice of t(ε) implies that

Pn′′(ρ(u(t(ε)),v∗) > ε) < δ for those values of n′′. However u(t(ε)) and u∗ have identical distributions

as the latter is in equilibrium; leading to a contradiction with (12). Hence no sequence {n′} and

constant δ > 0 satisfy (12); so (11) holds. By definition of ρ equality (11) implies that each entry u∗k

of u∗ converges in probability to the constant v∗k; since 0 ≤ u∗k ≤ 1, so does En[u
∗
k]. �

We conclude the discussion of LCQ(d) with a relationship between d and the tail probabilities of

equilibrium queue occupancy:

Theorem 3.3 v∗k = Θ((λ/d)k) as k →∞.

Proof. The assertion is immediate for d = 1 so we consider the case d > 1. Equality (6), together

with Taylor expansion of d
√
1− x around x = 0 yields

v∗k =
λ

d
v∗k−1 +

1

d

∞
∑

i=2

(λv∗k−1)
i

i!

i−1
∏

j=1

(j − 1

d
), k = 1, 2, · · · . (13)

The second term on the right hand side is nonnegative; therefore v∗k ≥ (λ/d)v∗k and

lim inf
k→∞

v∗k
(λ/d)k

≥ 1. (14)

We define ck , v∗k/(λ/d)
k and complete the proof by showing that {ck}∞k=0 is uniformly bounded.

Let βk be defined as

βk , 1 +

∞
∑

i=1

(λv∗k−1)
i 2

(i+ 2)!

i+1
∏

j=2

(j − 1

d
) < 1 +

∞
∑

i=1

(λv∗k−1)
i (15)

so that equality (13) can be rearranged as

v∗k =
λ

d
v∗k−1 +

(λv∗k−1)
2

2d
(1− 1

d
)βk. (16)

11



Since v∗k ≤ λk there exists a finite ko such that v∗k−1 < 1/d for k ≥ ko. The bound in (15) implies

that βk < 1/(1 − λ/d) < d/(d − 1) for such k; in turn by (16)

ck < ck−1 + c2k−1

d

2
(λ/d)k, k > ko.

It can be verified by induction on k > ko that

ck < cko(1 + λ+ λ2 + · · · + λk−ko) : (17)

Namely, if (17) holds for k then it holds also for k+1 if cko(1+ λ+ λ2 + · · ·+ λk−ko)2λko/(2dk) < 1.

This latter condition can be verified based on the bound cko(λ/d)
ko = vko < 1/d, which follows from

the definition of ko. Inequality (17) implies the uniform bound ck < cko/(1 − λ); therefore

lim sup
k→∞

v∗k
(λ/d)k

<
cko

1− λ
. (18)

The theorem follows due to (14) and (18). �

4 LCQ

Given m(τ) at a scheduling instant τ , the maximum occupancy over all connected queues at time τ

is equal to k = 1, 2, · · · with probability (1 − q)mk+1(τ) − (1 − q)mk(τ); hence under the LCQ policy

u(·) is a time-homogenous Markov process with jump rates

u←







u+ n−1ek at rate nλ(uk−1 − uk)

u− n−1ek at rate n ((1− q)nuk+1 − (1− q)nuk) .
(19)

This process can be constructed as in Section 3, so that

uk(t) = uk(0) +

∫ t

0

(

λ(uk−1(s)− uk(s))− (1− q)mk+1(s) + (1− q)mk(s)
)

ds+ εk(t) (20)

where εk(·) is a martingale that vanishes as n → ∞. The sequence of processes u(·) : n = 1, 2, · · ·

converges in distribution along subsequences of {n}, but identifying a limit is relatively more involved

than for the LCQ(d) policy since the process m(·) fluctuates persistently for all values of n and the

integrand in (20) does not converge. Rather than this integrand, here we study the behavior of the

integral in (20) via an averaging technique due to Kurtz [5]. In reading this section the reader may

find it helpful to consult related applications of this technique in [1, 4, 13].
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Let Ω denote the set of sequences ω = {ωk}∞k=0 such that ωk ∈ Z+∪{∞}, ω0 =∞, and ωk ≥ ωk+1.

Define the mapping h : Ω 7→ [0, 1]∞ by setting

h(ω) = {(1 + ωk)
−1}∞k=0, ω ∈ Ω,

with the understanding that 1+∞ =∞ and 1/∞ = 0. Let Ω be endowed with metric ρo defined by

ρo(ω,ω′) = ρ(h(ω), h(ω′)), ω,ω′ ∈ Ω.

In particular Ω is compact with respect to the induced topology. We denote by L the collection of

measures µ on the product space [0,∞) × Ω such that µ([0, t) × Ω) = t for each t > 0. Let L be

endowed with the topology corresponding to weak convergence of measures restricted to [0, t) × Ω

for each t. Since Ω is compact, so is L due to Prohorov’s Theorem.

Let ξ be a random member of L defined by

ξ([0, t) ×A) =

∫ t

0
1{m(s) ∈ A}ds, t > 0, A ∈ B(Ω).

Here B(Ω) denotes Borel sets of Ω. Note that equality (20) can be expressed in terms of ξ as

uk(t) = uk(0) +

∫ t

0
λ(uk−1(s)− uk(s))ds − φk+1(t) + φk(t) + εk(t)

where

φk(t) ,

∫ t

0
(1− q)mk(s)ds =

∫

[0,t)×Ω
(1− q)ωkξ(ds × dω).

Compactness of L implies that each subsequence of {n} has a further subsequence along which ξ

converges in distribution. This property is also possessed by u(·), and therefore by the pair (u(·), ξ).

The following definition is useful in characterizing possible limits of (u(·), ξ): For fixed u ∈ U let

ωu(·) denote the Markov process with states in Ω and with the following transition rates:

ωu ←







ωu + ek at rate λ(uk−1 − uk)

ωu − ek at rate (1− q)ω
u

k+1 − (1− q)ω
u

k .
(21)

See Figure 3 for a partial illustration of this process. The process ωu(·) bears a certain resemblance

to m(·) = nu(·), which can be observed by inspecting the generators (19) and (21), though it should

be noted that in (21) u = {uk}∞k=0 is a constant and has no binding to instantaneous values of ωu(·).

We also point out that ωu(·) evolves on a compactified state space and it is reducible due to the

states that involve ∞; hence it has multiple equilibrium distributions in general.
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0 1 2 j

λ(uk-1-uk) λ(uk-1-uk) λ(uk-1-uk)

1(1 ) (1 )kq q
ω +− − −

u

1 2
(1 ) (1 )kq q

ω +− − −
u

1(1 ) (1 )k j
q q

ω +− − −
u

Figure 3: Transition rates of ωu

k (·), that is, the kth coordinate of ωu(·). The process has also an

isolated state ∞ which is not shown. The coordinate process ωu

k (·) is generally not Markovian due

to its dependence on ωu

k+1(·).

Theorem 4.1 Let (v(·), χ) be the limit of (u(·), ξ) along a convergent subsequence of {n}.

a) The limit measure χ satisfies

χ([0, t) ×A) =

∫ t

0
π
v(s)(A)ds, t > 0, A ∈ B(Ω),

where, for each s > 0, π
v(s) is an equilibrium distribution for the process ωv(s)(·) such that

π
v(s) (ωk =∞) = 1 if vk(s) > 0.

b) The limit trajectory v(·) satisfies

d

dt
vk(t) = λ(vk−1(t)− vk(t))− Eπ

v(t)
[(1 − q)ωk+1 − (1− q)ωk ], (22)

where k = 1, 2, · · · and Eπ
v(t)

denotes expectation with respect to distribution π
v(t).

Proof. Let all processes be constructed on a common probability space so that convergence of

(u(·), ξ) is almost sure. Convergence of u(·) is then uoc. We start by consulting [5, Lemma 1.4] to

verify that the limit measure χ possesses a density so that

χ([0, t) ×A) =

∫ t

0
γs(A)ds, t > 0, A ∈ B(Ω), (23)

where, for each s, γs is a probability distribution on Ω. We proceed by identifying these distributions.

Let F denote the collection of bounded continuous functions f : Ω 7→ R such that f(ω) depends

on a finite number of entries in the sequence ω = {ωk}∞k=0 ∈ Ω. Given f ∈ F define the function

14



Gf : Ω× U 7→ R by setting

Gf (ω,u) ,
∞
∑

k=1

(f(ω + ek)− f(ω))λ(uk−1 − uk) + (f(ω − ek)− f(ω))((1 − q)ωk+1 − (1− q)ωk)

for each ω ∈ Ω and u = {uk}∞k=0 ∈ U . Gf is continuous due to the continuity of f , and continuity

of Gf is uniform since the product space Ω× U is compact.

The process f(m(·)) satisfies at each instant t

f(m(t))− f(m(0))

=

∫ t

0

∞
∑

k=1

(f(m(s) + ek)− f(m(s)))dAk−1

(
∫ s

0
nλ(uk−1(τ)− uk(τ))dτ

)

+

∫ t

0

∞
∑

k=1

(f(m(s)− ek)− f(m(s)))dDk

(
∫ s

0
n
(

(1− q)mk+1(τ) − (1− q)mk(τ)
)

dτ

)

= n

∫ t

0

∞
∑

k=1

(f(m(s) + ek)− f(m(s)))λ(uk−1(s)− uk(s))ds

+ n

∫ t

0

∞
∑

k=1

(f(m(s)− ek)− f(m(s)))
(

(1− q)mk+1(s) − (1− q)mk(s)
)

ds + µf (t)

= n

∫ t

0
Gf (m(s),u(s))ds + µf (t),

where µf (·) is a square-integrable martingale. Rearranging the last equality and expressing the

integral there in terms of the random measure ξ yields

∫

[0,t)×Ω
Gf (ω,u(s))ξ(ds × dω) =

∫ t

0
Gf (m(s),u(s))ds = (f(m(t))− f(m(0))/n + µf (t)/n.

Since f is bounded, the first term on the right hand side vanishes as n→∞. The martingale µf (·)

has bounded jumps; in turn by Doob’s L2 inequality µf (t)/n also vanishes. Therefore

∫

[0,t)×Ω
Gf (ω,u(s))ξ(ds × dω)→ 0. (24)

Since u(·) converges uoc to v(·) by hypothesis, uniform continuity of Gf implies
∣

∣

∣

∣

∣

∫

[0,t)×Ω
Gf (ω,u(s))ξ(ds × dω)−

∫

[0,t)×Ω
Gf (ω,v(s))ξ(ds × dω)

∣

∣

∣

∣

∣

→ 0. (25)

Finally by the Continuous Mapping Theorem

∫

[0,t)×Ω
Gf (ω,v(s))ξ(ds × dω)→

∫

[0,t)×Ω
Gf (ω,v(s))χ(ds × dω). (26)

Observations (24)–(26) lead to

∫

[0,t)×Ω
Gf (ω,v(s))χ(ds × dω) =

∫ t

0

∑

ω∈Ω

Gf (ω,v(s))γs(ω)ds = 0,
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where the left equality is due to (23). This equality holds for all t > 0; therefore

∑

ω∈Ω

Gf (ω,v(s))γs(ω) = 0

for almost all s > 0. Since f ∈ F is arbitrary (note that F is dense in continuous bounded functions

on Ω) [2, Proposition 4.9.2] implies that γs is an equilibrium distribution for the process ωv(s)(·).

Let ε > 0 and [t0, t1] be an interval such that vk(t) ≥ ε for t ∈ [t0, t1]. Since vk(t) is the limit of

uk(t) = n−1mk(t), for any given integer B

ξ([t0, t1]× {0, 1, 2, · · · , B}) =

∫ t1

t0

1{mk(s) ≤ B}ds → 0 as n→∞.

Hence χ([t0, t1] × Z+) = 0 due to the arbitrariness of B. Since ε can be chosen arbitrarily small it

follows that γt(Z+) = 0 for almost all t such that vk(t) > 0. This completes the proof of part a).

Part b) follows from equality (20) since

∫ t

0
(uk−1(s)− uk(s))ds→

∫ t

0
(vk−1(s)− vk(s))ds

due to uoc convergence of u(·), and

φk(t) →
∫

[0,t)×Ω
(1− q)ωkχ(ds× dω) =

∫ t

0
Eγs [(1− q)wk ]ds

due to the Continuous Mapping Theorem. �

Theorem 4.1 explains the extent of the disparity between time scales of two processes, namely

m(·) and its normalized version u(·): The process m(·) displays far larger variation than its nor-

malized version, so that, in the limit of large n, m(·) settles to equilibrium before u(·) changes its

value. In particular integral of a binary-valued measurable function of m(·) is well-approximated

by integrating an appropriate equilibrium probability. Provided that u(t) remains close to v(t), the

process ω
v(t)(·) mimics a slowed-down version of m(·) observed around time t; hence the alluded

equilibrium distribution pertains to ω
v(t)(·).

Specification of ω
v(t)(·) requires inclusion of ∞ since entries of m(·) can be as large as n.

Compactifying the augmented state-space Ω of m(·) via choice of the metric ρo leads to the repre-

sentation (22) of a limit trajectory v(·), but it also entails ambiguity in that representation. Namely,

Theorem 4.1 does not specify which equilibrium distribution for ωv(t)(·) should be adopted in (22).

While a full account of equilibrium distributions of ωv(t)(·) appears difficult, an important feature of

the right distribution can be identified:
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Lemma 4.1 Let v(·) and π
v(·) be as specified by Theorem 4.1. Given k = 1, 2, · · ·

π
v(t) (ωk ∈ Z+ and ωk+1 = 0) = 1

for almost all t such that vk(t) = 0.

Lemma 4.1 will be instrumental in obtaining a sharper description for v(·), yet an informal

explanation may still be useful in putting it in perspective with the queueing system of interest.

Note that if vk(t) = 0 and vk−1(t) > 0 then v(t) reflects a distribution with support {0, 1, · · · , k−1}.

This property does not immediately translate into a bound on the maximum queue length in the

system, since v(t) is the limit of u(t) = n−1m(t) and so the number of queues with at least i ≥ k

packets, mi(t), is o(n) as n→∞. By way of interpreting ω
v(t)(·) as a proxy to m(·) around time t,

Lemma 4.1 indicates that the maximum queue size is at most one larger than what is deduced from

v(t) and that the number of maximal queues is O(1) as n→∞.

Proof of Lemma 4.1 Let [t0, t1] be an interval such that vk(t) = 0 for t ∈ [t0, t1]. We prove the

lemma by showing that as n→∞ along the convergent subsequence of interest

ξ([t0, t1]× {ω : wk+1 = 0}) =

∫ t1

t0

1{mk+1(t) ≥ 1}dt → 0, (27)

ξ([t0, t1]× {ω : wk ∈ Z+}) =

∫ t1

t0

1{mk(t) ∈ Z+}dt → t1 − t0. (28)

For each integer l and time t let sl(t) ,
∑∞

i=l mi(t). This quantity increases when some queue with

size at least l−1 receives a packet, and it decreases when transmission is scheduled from some queue

with size at least l. Given u(t), these events occur at respective instantaneous rates nλul−1(t) and

n
(

1− (1− q)ml(t)
)

. Therefore

En[sl(t1)− sl(t0)] = nEn

[
∫ t1

t0

λul−1(t)−
(

1− (1− q)ml(t)
)

dt

]

. (29)

Consider this equality for l = k + 1. By choice of the interval [t0, t1]

n−1En[sk+1(t)] →
∞
∑

i=k+1

vi(t) = 0

and uk(t)→ vk(t) = 0 for all t ∈ [t0, t1]. Consequently

En

[
∫ t1

t0

(

1− (1− q)mk+1(t)
)

dt

]

→ 0.
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This leads to (27) since

1− (1− q)mk+1(t) ≥ q1{mk+1(t) ≥ 1}.

To complete the proof, note that n−1En[sk(t)] → 0 for all t ∈ [t0, t1]; therefore (29) evaluated at

l = k implies that for any open subset B ⊂ [t0, t1]

lim sup
n→∞

En

[
∫

B

(

1− (1− q)mk(t)
)

dt

]

= lim sup
n→∞

En

[
∫

B

λuk−1(t)dt

]

<

∫

B

dt.

The last inequality is strict since λ < 1. Arbitrariness of B implies (28). �

Given positive integer K let UK = {u ∈ U : uk = 0 for k ≥ K}.

Theorem 4.2 Let v(·) and π
v(·) be as specified by Theorem 4.1 with initial state v(0) ∈ UK for

some K. Then for t > 0

a) v(t) ∈ UK and

π
v(t)

(

ωK(t) ∈ Z+ and ωK(t)+1 = 0
)

= 1

where K(t) = min{k : vj(t) = 0 for j ≥ k}.

b)

d

dt
vk(t) =







λvk−1(t)− 1 < 0 if k = K(t)− 1

0 if k ≥ K(t).

In particular vk(t) = 0 for k > 0 and t > K/(1 − λ).

Proof. Let t be an instant such that K(t) <∞. Lemma 4.1 implies that

π
v(t)

(

ωK(t) ∈ Z+ and ωK(t)+1 = 0
)

= 1. (30)

In particular the coordinate process ω
v(t)
K(t)(·) possesses an equilibrium in Z+. The process should

have equal rates of up-jumps and down-jumps in that equilibrium, namely

Eπ
v(t)

[(1− q)ωK(t) ] = 1− λvK(t)−1(t). (31)

Since vK(t)−1(t) > 0 by definition of K(t), Theorem 4.1.a implies that

Eπ
v(t)

[(1 − q)ωK(t)−1 ] = 0. (32)
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Substituting (31) and (32) in equality (22) evaluated at k = K(t)− 1 yields

d

dt
vK(t)−1(t) = λvK(t)−2(t)− 1 < 0. (33)

Note also that Eπ
v(t)

[(1− q)ωK(t)+1 ] = 1 due to (30); hence equality (22) for k = K(t) gives

d

dt
vK(t)(t) = − λvK(t)(t) = 0. (34)

Since K(0) = K <∞ by hypothesis, it follows via (33) and (34) that K(t) is finite and nonincreasing

in t. Part (a) of the theorem now follows by (30). Part (b) is due to (33) and (34). �

Corollary 4.1 If u(0) ∈ UK for some K then

lim
n→∞

Pn(m1(t) ∈ Z+,m2(t) = 0) = 1 (35)

for t ≥ K/(1 − λ). The system occupancy
∑∞

k=1mk(t) converges in distribution to the equilibrium

value of a birth-death process with constant birth rate λ and death rate 1− (1− q)j at state j.

Proof. Let {ni} be a subsequence along which (u(·), ξ) converges and let (v(·), χ) denote the limit.

Since u(0) ∈ UK it follows that v(0) ∈ UK . Choose t1 > t0 > K/(1 − λ) so that by Theorem 4.2.b

v(t) = {1, 0, 0, 0, · · · } for t ∈ [t0, t1]. Let A = {ω ∈ Ω : ω1 ∈ Z+, w2 = 0}. Then
∫ t1

t0

Pni
(m(t) ∈ A)dt = Eni

[
∫ t1

t0

1{m(t) ∈ A}dt
]

→
∫ t1

t0

π
v(t)(A)dt = t1 − t0,

where the last equality is due to Theorem 4.2.a. The above limit does not depend on the particular

subsequence {ni}; therefore (35) follows. The final claim of the corollary is verified by observing that

for t > K/(1 − λ) the coordinate process ω
v(t)
2 ≡ 0 in equilibrium; and in turn ω

v(t)
1 is a positive

recurrent birth-death process on Z+ with birth rate λ and death rate 1− (1− q)j at state j. �

It should be noted that the hypothesis u(0) ∈ UK is necessary for the conclusions of Corollary 4.1:

If the initial size of a single queue is allowed to grow without bound with increasing n then, for large

values of n, that queue receives service whenever it is connected. In effect this reduces the service

rate available to the rest of the system by a factor of (1 − q). In such degenerate cases the present

analysis applies to the subsystem that is composed of queues with bounded initial occupancies, after

appropriate adjustment of the service rate.
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5 Final remarks: LCQ(dn)

Conclusions of Sections 3 and 4 reveal that the system occupancies under LCQ(d) and LCQ differ

by a factor of order n as n → ∞. More insight on this disparity, especially for moderate values of

d relative to n, can be gained by considering an asymptotic regime in which d is allowed to depend

on n. Here we sketch asymptotic analysis of LCQ(dn) in the case

lim
n→∞

dn =∞ and lim
n→∞

dn
n

= 0.

The present discussion closely follows that of Section 4, hence proofs are omitted.

Under LCQ(dn) the representation (4) can be expressed as

uk(t) = uk(0) +

∫ t

0

(

λ(uk−1(s)− uk(s))−
(

(1− bk+1(s)

dn
)dn − (1− bk(s)

dn
)dn

))

ds+ εk(t)

where bk(t) , dnuk(t). Let b(t) = {bk(t)}∞k=0 and let Ωo be obtained by augmenting Ω with nonin-

creasing sequences that take values in R+ ∪ {∞}. Define the random measure ξo by

ξo([0, t) ×A) =

∫ t

0
1{b(s) ∈ A}ds, t > 0, A ∈ B(Ωo).

Consideration of the pair (u(·), ξo) via an analogue of Theorem 4.1 identifies possible limits v(·) of

u(·) as solutions to

d

dt
vk(t) = λ(vk−1(t)− vk(t))− Eπ

v(t)
[e−ωk+1 − e−ωk ], k = 1, 2, · · ·

where π
v(t) is a distribution on Ωo such that π

v(t)(ωk =∞) = 1 if vk(t) > 0 and

Eπ
v(t)

[

1{ωk 6=∞}
(

λ(vk−1(t)− vk(t)) + e−ωk − e−ωk+1
)]

= 0.

The line of reasoning employed in establishing Lemma 4.1 and Theorem 4.2 readily applies to v(·)

and π
v(·) here, yielding that

π
v(t) (ωk ∈ R+ and ωk+1 = 0) = 1 if vk(t) = 0,

and that v1(t) = 0 for t > K(0)/(1−λ). In turn for such t, b1(t) = O(1) and b2(t) = o(1) as n→∞.

The maximum queue size in equilibrium therefore tends to one, but the number of queues at that

occupancy is substantially larger than the same number under the LCQ policy. In particular for

large enough values of t the total system occupancy
∑

k≥1mk(t) = (n/dn)
∑

k≥1 bk(t) is O(n/dn).
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