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Abstract

Models for noncoherent error control in random linear network coding (RLNC) and store and

forward (SAF) have been recently proposed. In this paper, we model different types of random network

communications as the transmission of flats of matroids. This novel framework encompasses RLNC and

SAF and allows us to introduce a novel protocol, referred to as random affine network coding (RANC),

based on affine combinations of packets. Although the models previously proposed for RLNC and SAF

only consider error control, using our framework, we first evaluate and compare the performance of

different network protocols in the error-free case. We define and determine the rate, average delay, and

throughput of such protocols, and we also investigate the possibilities of partial decoding before the

entire message is received. We thus show that RANC outperforms RLNC in terms of data rate and

throughput thanks to a more efficient encoding of messages into packets. Second, we model the possible

alterations of a message by the network as an operator channel, which generalizes the channels proposed

for RLNC and SAF. Error control is thus reduced to a coding-theoretic problem on flats of a matroid,

where two distinct metrics can be used for error correction. We study the maximum cardinality of codes

on flats in general, and codes for error correction in RANC in particular. We finally design a class of

nearly optimal codes for RANC based on rank metric codes for which we propose a low-complexity

decoding algorithm. The gain of RANC over RLNC is thus preserved with no additional cost in terms

of complexity.

I. INTRODUCTION

During transmission through a network, the data can be modified, as in network coding, without

affecting their decoding. However, other modifications, such as packets in error or lost, corrupt the nature
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of the transmitted message. Recently, operator channels have been proposed to differentiate these two

types of modifications for data transmission using random linear network coding (RLNC) [1] and store

and forward (SAF) [2], respectively. For RLNC, it is shown that data transmission is equivalent to the

communication of a linear subspace of a given vector space [1]; for SAF, however, a subset of a set is

transmitted [2]. Using these operator channels, noncoherent error correction in RLNC and SAF can be

reduced to coding theoretic problems on linear subspaces and subsets, respectively.

In this paper, we generalize the models described above by viewing random data transmission through

a network as the communication of a flat of a matroid. Matroids [3] can be viewed as the combinatorial

essence of independence, and hence are a generalization of linear independence; flats of a matroid can

be viewed as generalizations of linear subspaces. Studying matroids allows to focus on the combinatorial

aspects of independence and combinations, without assuming any underlying algebraic structure. Although

the models for RLNC and SAF were introduced for error control, our matroid framework allows us to

study protocols for both the error-free case and the case where error control is considered. The matroids

associated to RLNC and SAF are easily determined and are well-known. In particular, we shall show

that the matroid for RLNC—the projective geometry—only considers a fraction of packets (around q−1,

where packets are viewed as vectors over GF(q)), hence leading to a rate loss of around one symbol per

packet.

In order to thwart this rate loss, we introduce a new way to combine packets for network coding,

referred to as random affine network coding (RANC), where packets are viewed as points instead of

vectors and new packets are created via affine combinations. The associated matroid is the well-known

and thoroughly studied affine geometry, whose flats are affine subspaces of an affine space. Unlike RLNC,

which only considers a fraction of all packets, RANC works on all possible packets, thus utilizing a better

encoding of messages into flats. Moreover, since affine combinations are particular linear combinations,

the complexity at the intermediate nodes is not increased. At the receiver end, the message can be decoded

using Gaussian elimination, for an affine subspace is no more than a translated linear subspace. Therefore,

utilizing RANC instead of RLNC does not increase the complexity at the source, the intermediate nodes,

or the destinations.

Then, using our matroid framework, we determine, evaluate, and compare the performances of different

network protocols. We first define the data rate of a matroid as the ratio between the amount of information

carried by the flat, i.e. the logarithm of the number of flats, and the size of the message transmitted through

the network. We also investigate the average delay of a matroid, which reduces to the coupon collector

problem for SAF. Combining these two parameters, we also define the throughput of a matroid as the
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proportion of useful information received by the destination. We show that RANC outperforms RLNC in

terms of data rate, while offering a similar average delay, thus yielding a higher throughput of around one

symbol per packet. We then study the delay in more detail via the average number of independent packets

in a given number of received packets. We hence demonstrate that this number tends to the optimum

for RLNC and RANC when the field size increases, while the number of independent packets in SAF

follows an exponential recovery. We finally investigate the possibilities of partial decoding. We prove

that partial decoding is highly unlikely in RLNC and RANC, while for SAF all packets are decodable.

Therefore, RLNC and RANC follow a zero-one pattern: no packets can be decoded before receiving

the total number of packets in a message, and once this amount is received, the whole message can be

decoded. On the other hand, SAF follows an exponential recovery in terms of partially decodable packets.

The study described above considers an error-free transmission through the network. In the presence

of errors, message alterations (packets lost, injected, or in error) correspond to modifications of the

transmitted flat. The network can hence be viewed as an operator channel, which generalizes the channels

defined in [1] and [2] for RLNC and SAF, respectively. We then introduce two metrics for error correction

in random network communications. These metrics, referred to as the lattice distance and the modified

lattice distance, respectively, are identified with previously proposed metrics for RLNC [4] and SAF [2].

We also place constant-dimension codes used for RLNC [1] and constant-weight codes used for SAF

[2] into the new framework of matroid codes, which are codes on flats of a matroid sharing the same

rank. We then investigate error control for RANC with codes on affine subspaces. We derive bounds on

the maximum cardinality of such codes and determine a nearly optimal class of codes based on liftings

of rank metric codes [5]. We finally design a decoding algorithm for these codes based on, and with

the same order of complexity as the decoder proposed in [1] for RLNC. The rate gain of RANC over

RLNC is therefore preserved when error correction is considered, and at no additional cost in terms of

complexity.

We summarize the advantages of our matroid framework below.

• First, this framework is very general, and offers a unified approach for distinct problems such as

SAF, RLNC, and RANC. It offers to focus on the combinatorial properties of network protocols, in

terms of both combinations and encoding. Also, associating a matroid to a protocol provides with a

new tool to study and compare the performances of different protocols for both the error-free case

and when error control is enforced.

• Second, different properties of a protocol arising from matroid theory can be discovered. For example,

we demonstrate how RLNC can be viewed as a matroid on only a fraction of all possible packets, and
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hence determine the data rate and the actual number of possible combinations offered by RLNC. The

lattice distance also illustrates the easiest way to alter a message, hence highlighting the sensitivity

of network coding to errors.

• Third, when studying error control, the advantages of using an operator channel still apply to our

general framework. Although the matroid depends on the protocol, it is independent of the actual

network, rendering our approach noncoherent and robust to network topology changes. Moreover,

errors on the message level, such as packets lost or injected, and errors on the packet level (bits or

symbol errors) can be detected and corrected using the same class of codes. The problem of error

control can be eventually tackled using methods from algebraic coding, such as binary constant-

weight codes or rank metric codes.

• Fourth, our model offers a wealth of alternatives to the protocols already proposed in the literature,

as many different types of matroids have been previously discovered and studied. One of these

alternatives introduced here, RANC, is shown to outperform RLNC. Different matroids may lead to

different tradeoffs between the number of possible combinations and the data rate. Also, it is known

that linear network coding is not optimal when multiple sources are considered [6], then non-linearly

representable matroids may offer a higher throughput than RLNC or RANC in these cases.

The rest of the paper is organized as follows. Section II reviews some necessary backgrounds on

matroids and error correction models for RLNC and SAF. In Section III, we introduce the model based

on matroids for error-free communications. Section IV introduces and illustrates random affine network

coding. In Section V, we evaluate and compare the different performance parameters of matroids. In

Section VI, we model the alterations of the message into an operator channel, and study the codes used

for error correction in random network communications. Finally, Section VII details possible extensions

of our work.

II. PRELIMINARIES

A. Matroids

We review below the definition and major properties of matroids and their flats. Although the concepts

introduced below arise from matroid theory, they all are generalizations of well-known concepts in linear

algebra. For an extensive account on matroid theory, the interested reader is referred to [3].

For any set E, we denote the set of subsets of E with cardinality 0 ≤ i ≤ |E| as P(E, i) and its power

set as P(E) =
⋃|E|
i=0 P(E, i). A matroid is a pair M = (E, I), where E and I ⊆ P(E) are referred to

as the ground set and the independent sets of M, respectively. The independent sets are generalizations
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of linearly independent vectors and satisfy the following three axioms: ∅ ∈ I; if A ∈ I and B ⊂ A,

then B ∈ I; if I1, I2 ∈ I with |I1| > |I2|, then there exists e ∈ I1\I2 such that I2 ∪ {e} ∈ I. The third

axiom, referred to as the independence augmentation axiom, is crucial as it guarantees that any family

of independent elements can be extended to form a basis (a maximal family of independent elements).

Clearly, all bases have the same cardinality.

To any matroid is associated a rank function rk(A) for all A ⊆ E, defined as the maximum number

of independent elements in A. For any two subsets A,B ⊆ E, we have the submodular inequality

rk(A∪B)+rk(A∩B) ≤ rk(A)+rk(B). The rank of a matroid is simply the rank of its ground set, and

is the number of elements in any basis. The closure cl(A) of a subset A of the ground set is then defined

as the maximal subset B ⊆ E such that B contains A and rk(B) = rk(A). The closure is unique, as it

can be shown that cl(A) = {e ∈ E : rk(A ∪ e) = rk(A)} [3, Eq. 1.4.1]. The closure and the rank are

generalizations of the span of a set of vectors and the dimension of that span, respectively.

A flat is a set equal to its closure, which is a generalization of a linear subspace. In particular, we refer

to any flat of rank r− 1 in a matroid of rank r as a hyperplane. By extension, we refer to any family of

k independent elements in a flat of rank k as a basis of that flat. The set of flats of a matroid, denoted

as F , is closed under intersection. We also denote the set of flats of rank k as Fk and its cardinality as

Nk for any 0 ≤ k ≤ r. Furthermore, the set of flats ordered by inclusion forms a lattice (in the partially

ordered set sense), where the meet of two flats is their intersection, and their join is the closure of their

union.

A matroid may contain loops and parallel elements. A loop l is an element of the ground set belonging

to no independent set: {l} /∈ I; alternatively, l belongs to the closure of the empty set. A collection of

elements are said to be parallel if they are pairwise dependent: {ei, ej} /∈ I for i 6= j; they hence all

belong to a set with rank 1. A loop and parallel elements are generalizations of the all-zero vector and

collinear vectors, respectively. A matroid is said to be simple if it does not contain any loops or parallel

elements. For any matroid M, the simple matroid obtained by removing all loops and keeping only one

element in each set of parallel elements ofM has the same lattice of flats asM. For any simple matroid,

we have F0 = {∅}, N0 = 1 and F1 = P(E, 1), N1 = |E|.

We now review three important classes of matroids. First, the free matroid on r elements, classically

denoted as Ur,r, has [r] = {0, 1, . . . , r−1} as a ground set, and any subset of [r] is independent. Clearly,

this matroid is simple, has rank r, and any subset of [r] is a flat.

Second, the projective geometry PG(r − 1, q) has all the non-zero vectors of GF(q)r with leading

nonzero coefficient equal to 1 as ground set, where linear independence is used. This matroid is simple,
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has rank r and its flats are in one-to-one correspondence with the linear subspaces of GF(q)r. Therefore,

the number of flats of rank k is given by the Gaussian binomial
[
r
k

]
=
∏k−1
i=0

qr−i−1
qk−i−1 , which satisfies

qk(r−k) ≤
[
r
k

]
< K−1q qk(r−k) for all 0 ≤ k ≤ r, where Kq =

∏∞
i=1(1− q−i) < 1 tends to 1 when q tends

to infinity [7].

Third, removing a hyperplane from PG(r−1, q) yields the affine geometry AG(r−1, q). This matroid

is also simple with rank r and its flats are the affine subspaces of GF(q)r−1; there are qr−k
[
r−1
k−1
]

flats

of rank k for all 0 ≤ k ≤ r. Any affine subspace with rank k can be represented by a linear subspace

with dimension k− 1 translated by a point belonging to a complementary linear subspace. By definition,

AG(r−1, q) is a submatroid of PG(r−1, q), and can be viewed as a matroid on the points in GF(q)r−1,

where two points u,v are affinely independent if and only if the vectors (1,u), (1,v) ∈ GF(q)r are

linearly independent.

B. Error control for RLNC and SAF

We now review the existing models for error correction in RLNC and SAF given in [1] and [2],

respectively. For RLNC, several techniques have been proposed for error correction (see [8], [9] for

coherent error correction); however, we are interested here in the operator channel approach introduced

in [1] for noncoherent error control. Suppose a message, encoded into k linearly independent packets

in GF(q)n, is transmitted through a network using RLNC. Since the linear combinations operated by

the intermediate nodes do not modify the subspace spanned by the packets, RLNC is viewed as the

transmission of a linear subspace of dimension k of GF(q)n. The alterations of the message (packets

lost, injected, or in error) hence correspond to modifications of that subspace. The transmission of a

message using RLNC is hence modeled as an operator channel which modifies the input subspace sent

by the source into the output subspace received by the destination. Accordingly, codes on subspaces, and

more especially codes on a Grassmannian referred to as constant-dimension codes, have been proposed for

error correction in RLNC. Two metrics between subspaces have been proposed: the subspace metric and

the injection metric [4]. The maximum cardinality of a constant-dimension code, consisting of subspaces

of GF(q)n with dimension k, with minimum injection distance d (and equivalently, minimum subspace

distance 2d) is between qmin{k(n−k−d+1),(n−k)(k−d+1)} and K−1q qmin{k(n−k−d+1),(n−k)(k−d+1)}. These

bounds follow the Singleton bound in [1] and the inequalities on the Gaussian binomial above and were

tightened in [10]–[12].

A possible and highly practical construction of constant-dimension codes, referred to as liftings of

rank metric codes, has been proposed in [13]. Rank metric codes [5], [14], [15] are codes on matrices
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in GF(q)k×ν , where the rank distance between two matrices is simply the rank of their difference. The

number of matrices with rank r in GF(q)k×ν is given by
[
k
r

]∏r−1
i=0 (q

ν−qi) [5]. The maximum cardinality

of a rank metric code in GF(q)k×ν with minimum rank distance d is given by qmin{k(ν−d+1),ν(k−d+1)}

and is achieved by Gabidulin codes [5], an analogue of Reed-Solomon codes. For any M ∈ GF(q)k×ν ,

the linear lifting IL(M) of M is the row space of the matrix (Ik|M), a subspace of GF(q)k+ν with

dimension k [13]. The injection distance between two liftings of matrices is equal to the rank distance

between the matrices, hence the lifting of a rank metric code has the same minimum injection distance as

the original code. In particular, lifings of Gabidulin codes are nearly optimal constant-dimension codes

for which low-complexity decoding algorithms were proposed [1], [13].

Similarly, an operator channel has been proposed for error correction in SAF in [2]. Suppose k packets

in [q]n are transmitted through a network with SAF, where we denote [q] = {0, 1, . . . , q − 1} for any

integer q. Also, assume the packets arrive at the destination in a different order to which they were sent

in. Then only the set of packets is preserved, and SAF is modeled as the transmission of a subset of

cardinality k of [qn]. Codes on subsets have hence been proposed for error control in SAF with two

distinct metrics: the Hamming metric and the modified Hamming metric. Since subsets of [qn] are in

bijection with vectors in GF(2)q
n

, codes on subsets can be viewed as binary codes; in particular, codes

on subsets with the same cardinality can be viewed as binary constant-weight codes.

Similarly to the case of constant-dimension codes, a practical construction of constant-weight codes

with length qn and weight ql is the lifting of a nonrestricted Hamming metric code in GF(qn−l)q
l

. The

lifting IS(X) of any word X = (X0, X1, . . . , Xql−1) ∈ [qn−l]q
l

is obtained by added the header i, encoded

into l symbols of [q], in front of the packet corresponding to Xi for all 0 ≤ i ≤ ql − 1. Alternatively, it

is the subset {x0, x1, . . . , xql−1} ∈ P([qn], ql), where xi = iqn−l +Xi for 0 ≤ i ≤ ql − 1. The lifting

IS preserves the Hamming distance: dH(IS(X), IS(Y)) = 2dH(X,Y), and liftings of nonrestricted

Hamming metric codes can be used for error control with SAF.

III. TRANSMISSION MODEL

A. Model and discussion

In this section, we introduce a noncoherent communication model based on matroids for error-free data

transmission through a network. We consider a source wishing to transmit a message M in the alphabet

[A] = {0, 1, . . . , A− 1} through a network toward a set of destinations. Let (E, I) be a simple matroid

and denote its set of flats of rank k as Fk for all k, and assume that both the source and the destination

know a common injective map G from [A] to Fk.
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The error-free data transmission follows three steps.

• Step I: at the source. The source encodes the original message M into a flat f = G(M) ∈ Fk. Then

a stream of elements of f containing a basis of f is transmitted into the network.

• Step II: in the network. Each intermediate node combines the elements it has previously received

by selecting and retransmitting elements of their closure.

• Step III: at each destination. The destination waits until it receives a basis of f , and then recovers

the original message by determining M = G−1(f).

We now provide several remarks regarding the matroids and the flats used in our model. First, we

consider flats of a matroid, for the matroid structure ensures that the rank function is well-behaved.

Indeed, a flat of rank k can only be described by k independent elements, no less and no more. Also,

the independence augmentation axiom reviewed in Section II-A guarantees that any set of less than k

independent elements can be extended into a basis of k elements of the flat.

Second, a non-simple matroid contains loops and parallel elements. By definition, a loop belongs

to every flat and hence does not carry any information about the transmitted flat. Also, two parallel

elements belong to the same flats and are combined in the same way, hence they carry the same

information. Therefore, loops and parallel elements are unnecessary to the destination, and our assumption

of considering simple matroids only does not lead to any loss of generality.

Third, although flats of any rank may be sent, the following two reasons justify our assumption to

send flats of the same rank k only. Foremost, no transmitted flat is properly contained by another,

thus rendering the decoding non-ambiguous. Also, the destination always expects the same number of

independent elements to start decoding, hence simplifying the decoding process.

Fourth, the number of possible combinations for an intermediate node is given by the cardinality of

the closure of the elements it has received. However, not all flats of the same rank necessarily have the

same cardinality and the same number of bases, which results in different protections to packet losses.

However, as shown below, SAF and RLNC use matroids for which all flats of the same rank have equal

cardinalities. Matroids satisfying this property are referred to as perfect matroid designs [16], [17, Section

3.4]. Due to their highly specific structure, very few classes of perfect matroid designs are known so far.

When considering a perfect matroid design, we shall denote the cardinality of any flat of rank k as Ck

henceforth, where C0 = 0 and C1 = 1 for any simple perfect matroid design.

We also comment on the validity of our model and on some practical issues regarding its realization.

Our model is general and does not take advantage of any knowledge of the network topology. It is hence

noncoherent, and is robust to network topology variations, such as node or link appearance/disappearance.
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Accordingly, the intermediate nodes are assumed to operate blindly on the elements they receive, regard-

less of the source, the destination, or the actual transmitted data.

In terms of practical implementation, without loss of generality, we assume that an element is encoded

in one packet of length n over GF(q). All intermediate nodes should have an efficient algorithm to

combine elements; this combination algorithm, however, does not guarantee to yield a new basis of the

flat. This operation can be viewed as a form of random sampling on the elements of a flat. Also, the

destination needs an efficient algorithm to retrieve the original message from any basis of the flat. For a

general matroid, efficient algorithms may not exist; however, we shall only consider matroids for which

combining elements can be done efficiently.

B. Matroids for SAF and RLNC

We now determine the matroids associated to SAF and RLNC.

First, for SAF, the only combination possible is the selection of an element, hence the flats are the

subsets of cardinality k of [qn]. The associated matroid is the free matroid Uqn,qn and we have E = [qn],

Fk = P(E, k) for all 0 ≤ k ≤ qn, and hence Nk =
(
qn

k

)
and Ck = k. In order to use notations reflecting

the protocol and the alphabet and length of packets, we denote Uqn,qn as S(q, n) or simply S when there

is no ambiguity.

Second, our model differs slightly from the purely random linear combinations typically proposed

for RLNC. Indeed, a linear combination may yield the all-zero vector or collinear vectors: these are

respectively loops and parallel elements. However, our model considers the simple matroid associated to

RLNC, which is the projective geometry PG(n − 1, q). Its ground set E is the set of one-dimensional

subspaces of GF(q)n, and Fk is a Grassmannian for 0 ≤ k ≤ n, and hence Nk =
[
n
k

]
and Ck =

[
k
1

]
.

Clearly, the combinations operated by the intermediate nodes are linear combinations which ensure the

output vector is non-zero and has leading non-zero coefficient equal to 1, while decoding the message

at the destination is achieved via Gaussian elimination. We denote PG(n− 1, q) as L(q, n) or simply L

when there is no ambiguity henceforth.

IV. RANDOM AFFINE NETWORK CODING

In this section, we introduce a novel network coding scheme, referred to as random affine network

coding (RANC), where packets are viewed as points in an affine space and where intermediate nodes

combine packets by affine combinations. An affine combination of points v0,v1, . . . ,vk−1 ∈ GF(q)n is
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any sum of the form
∑k−1

i=0 aivi, where the scalars ai ∈ GF(q)n satisfy
∑k−1

i=0 ai = 1. In other words,

an affine combination corresponds to determining the centroid of the points vi with masses ai.

The set of all possible affine combinations of a collection of points, referred to as the affine hull,

forms an affine subspace. The matroid associated to RANC is hence given by the affine geometry

AG(n, q), which we will denote as A(q, n) or simply A if there is no ambiguity about the param-

eter values. A collection of points v0,v1, . . . ,vk−1 ∈ GF(q)n are said to be affinely independent if∑k−1
i=0 bivi 6= 0 for all bis not all zero and satisfying

∑k−1
i=0 bi = 0. By definition, the rank of a set of

points is given by the number of affinely independent points, and is equal to the rank of their affine

hull. For any v0,v1, . . . ,vk−1 ∈ GF(q)n, we then have rk(v0,v1, . . . ,vk−1) = rank(1|V), where

V = (vT0 ,v
T
1 , . . . ,v

T
k−1)

T and rank denotes the number of linearly independent rows of a matrix. The

set Fk of flats of rank k being the set of affine subspaces of rank k, we have Nk = qn−k+1
[
n
k−1
]

and

Ck = qk−1 for 1 ≤ k ≤ n+ 1 [3, Section 6.2].

We now provide guidelines for the implementation of RANC. First, encoding messages (viewed as

the rows mi of a matrix M ∈ GF(q)k×(n−k+1)) into affinely independent points can be simply done by

adding the header I′k = (0|Ik−1)T to obtain (I′k|M) ∈ GF(q)k×n. We shall refer to this encoding as the

affine lifting of the matrix M. Second, since affine combinations are particular linear combinations, the

complexity of using RANC at the intermediate nodes is no higher than using RLNC. Third, we describe

the decoding algorithm at the destination, thus showing that this does not increase complexity either.

Suppose the destination receives k affinely independent points v0,v1, . . . ,vk−1, then the first k columns

of (1|V) ∈ GF(q)k×(n+1) are linearly independent. Therefore, Gaussian elimination on (1|V) yields

(Ik|M′), where M′ = (mT
0 , (m1 −m0)

T , . . . , (mk−1 −m0)
T )T . The decoding is finished by adding

m0 to all the other rows of M′. The complexity of the algorithm is hence dominated by the inversion

of a matrix of order k, which is similar to the complexity for RLNC. We finally note that the Gaussian

elimination could be modified in order to obtain the matrix (1|I′k|M) directly.

As seen in Section III-B, the simple matroid associated to RLNC is the projective geometry with

rank n, whose alphabet only has
[
n
1

]
∼ qn−1 elements. This implies a loss in terms of data rate, as

the elements are not optimally encoded into packets of length n. Similarly, any linear subspace has[
k
1

]
∼ qk−1 elements, which compared to the qk possible linear combinations, leads to a decrease in

the number of possible combinations. These issues are immediate consequences of the existence of a

loop (the all-zero vector) and parallel elements (collinear vectors). Unlike RLNC, the matroid associated

to RANC has rank n + 1 and qn elements. By construction, A(q, n) = AG(n, q) is a submatroid of

L(q, n + 1) = PG(n, q). However, we shall demonstrate in the following that A(q, n) behaves closely
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to L(q, n+ 1), hence virtually allowing to work on packets of length n+ 1 instead of n.

We illustrate the difference between RLNC and RANC by using the butterfly network, depicted in

Figure 1, where the source S wants to transmit two messages m and n over GF(q) to the destinations D1

and D2. First, suppose RLNC is used. The source then encodes these messages into linearly independent

vectors with their first non-zero coordinate equal to one by adding the following headers: x = (10|m)

and y = (01|n). The only linear combination of one vector is simply the vector itself; all the linear

combinations of x and y can be expressed as x+ay, where a ∈ GF(q). There are hence q combinations

possible, and q − 1 lead to successful decoding at the destinations (if a 6= 0), leading to a success

probability of q−1
q , which tends to 1 for large q. We remark that our model is consistent with the typical

approach of RLNC, which allows combinations of the type ax+ by instead.

Now suppose RANC is used. The source then encodes the messages into affinely independent points by

adding the following headers: u = (0|m) and v = (1|n). Note that the header is one symbol long only,

illustrating the gain of one symbol per packet of utilizing RANC over RLNC. The only affine combination

of one point is the point itself; all the affine combinations of u and v can be expressed as bu+(1− b)v,

where b ∈ GF(q). Therefore, there are q combinations possible, and q− 2 lead to successful decoding at

the destinations (if b /∈ {0, 1}) and the success probability is q−2
q . This probability is zero for the binary

field, since in the very particular case of two points in a binary affine geometry, RANC actually reduces

to SAF. However, for large q, it tends to 1 nearly as fast as its counterpart for RLNC. Finally, note that the

decoding of the messages at destination D1, which receives the points (0|m) and (1− b|bm+(1− b)n),

is straightforward (similarly for D2): construct the matrix

 1 0 m

1 1− b bm+ (1− b)n

 , which after

Gaussian elimination yields

 1 0 m

0 1 −m+ n

 , and obtain m and n.

V. PARAMETERS FOR ERROR-FREE NETWORKS

A. General assumptions

In this section, we define, determine, and compare some performance parameters of different matroids,

hence leading to a performance comparison of different network protocols. In order to carry out this

study, we need to make the following assumption to the model described in Section III. Since our model

is noncoherent, it makes the network topology and the statistical dependency amongst packets due to the

order of combinations transparent at the message level. Accordingly, we suppose that each destination

receives elements chosen independently and uniformly amongst all elements of the flat. This assumption
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Fig. 1. Transmitting data on the butterfly network using RLNC or RANC

can be viewed as a generalization of the multiplicative matrix channel proposed for RLNC in [18].

Moreover, it is motivated by file dissemination [19] and is similar to the setting in [20]. Note, however,

that the study in [20], [21] is based on simple independence assumptions for RLNC and considers delays

for the whole set of destinations, while we shall derive fine results for any matroid by viewing each

destination separately. Furthermore, we believe this assumption provides a good intuition on how the

protocols behave and it allows for the thorough performance study below. The parameters we introduce

illustrate the impact of the number of possible combinations offered by different protocols in terms of

data rate, delay, and partial decoding.

We comment on the term “error-free” used in the title of this section. Although the destination does

not necessarily recover the whole transmitted flat immediately, it keeps receiving elements of the flat and

hence it will almost surely be able to reconstruct the whole flat sent by the source. The term error-free

indicates that no other flat of the same rank can be reconstructed by the destination, and hence only the
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message sent by the source can be decoded.

B. Matroid rate, average delay, and throughput

The data rate of the communication is given by the ratio between the amount of information decoded

and the amount of data needed to transmit a flat: logq A

nk = Rcode(A,M)R(M, k), where Rcode(A,M) =
logq A

logq Nk
can be viewed as the rate of the code formed by all the possible transmitted flats and the matroid

rate is defined as

R(M, k) =
logqNk

nk
. (1)

We remark that Rcode(A,M) only depends on the encoding of the message into a flat, and does not

depend on the actual matroid (we only require Nk ≥ A). Therefore, we only focus on the matroid rate

henceforth, which indicates how efficiently a flat of rank k is encoded into a message of k packets. We

can further decompose the matroid rate into R(M, k) =
logq Nk

k logq |E|
· logq |E|

n , where the first ratio is an

intrinsic property of the matroid, while the second ratio indicates how efficiently a matroid element is

encoded into a packet. Note that the rate is entirely determined by the lattice of flats ofM, and does not

depend on the cardinalities of flats. Proposition 1 below determines the matroid rates of SAF, RLNC,

and RANC.

Proposition 1 (Matroid rate of SAF, RLNC, and RANC): The matroid rates of SAF and RLNC are

respectively given by

1−
logq k

n
≤ R(S, k) =

logq
(
qn

k

)
nk

≤ 1−
logq k − logq e

n
,

1− k

n
≤ R(L, k) =

logq
[
n
k

]
nk

< 1−
k + logqk Kq

n
,

1− k − 1

n
≤ R(A, k) =

n− k + 1 + logq
[
n
k−1
]

nk
< 1−

k − 1 + logqk Kq

n
.

Proof: For SAF, the rate is determined by (1) and Nk =
(
qn

k

)
; since

( qn
k

)k ≤ (qnk ) ≤ ( qnek )k, we

obtain the bounds on R(S, k). For RLNC, we have Nk =
[
n
k

]
and qk(n−k) ≤

[
n
k

]
< K−1q qk(n−k), as

reviewed in Section II-A. For RANC, we have Nk = qn−k+1
[
n
k−1
]
.

RANC allows a gain in terms of rate over RLNC of about one symbol per packet, due to the increase

in the number of flats from around qk(n−k) to around qk(n−k+1). This gain follows the fact that RLNC

only considers around q−1 of all possible packets of length n, while RANC considers all possible packets.

According to the assumptions made in Section V-A, the packets arrive at the destination at random.

Therefore, the number of packets to be received in order to obtain k independent packets, referred to

as the delay of a transmission, is a random variable. Clearly, the minimum delay is exactly k, while
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the maximum delay is unbounded. We hence define the average delay of a transmission as the expected

number of packets received in order to obtain k independent packets. Clearly, D(M, k) ≥ k for any

matroid M. By generalizing the approach typically used to solve the coupon collector problem [22], we

obtain for a perfect matroid design where all flats of rank k have cardinality Ck for all k,

D(M, k) =

k−1∑
i=0

1

1− Ci

Ck

. (2)

We now determine the value of the average delay for SAF, RLNC, and RANC.

Proposition 2 (Average delay of SAF, RLNC, and RANC): The average delays of SAF, RLNC, and

RANC are respectively given by

k(log k + γ) < D(S, k) = k

k∑
i=1

i−1 < k(log k + γ) +
1

2
,

k ≤ D(L, k) = k +

k−1∑
j=1

1− qj−k

qj − 1
< k +

q

(q − 1)2
,

k ≤ D(A, k) = k +

k−1∑
j=1

1

qj − 1
< k +

q

(q − 1)2
,

where γ ≈ 0.577 is Euler’s constant.

Proposition 2 indicates that in RLNC and RANC, the expected number of packets needed to decode

the subspace completely tends to the rank of the subspace as q tends to infinity. The delay of RANC

is very close to that of RLNC since, by (2), the average delay is determined by the cardinality of flats,

which only changes from qk−1
q−1 for RLNC to qk−1 for RANC.

We now define the throughput of a matroid as the ratio between the amount of transmitted information

over the amount of data received on average by the destination. In other words, it measures the proportion

of useful information in each packet received by the destination. By definition, the throughput is given

by

T (M, k) =
logqNk

nD(M, k)
= k

R(M, k)

D(M, k)
. (3)

This provides an indication on the desirable properties of a matroid for network communications. By (3),

a matroid should maintain a low average delay, while trying to maximize its data rate. By (2), minimizing

the average delay is equivalent to minimizing the ratio Ci

Ck
; also, by (1) the matroid rate increases with

the number of flats Nk. A matroid should hence have a large number of flats, whose cardinalities increase

rapidly with their ranks.
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Combining the results in Propositions 1 and 2, the throughputs of SAF, RLNC, and RANC are

respectively around

T (S, k) ∼ 1

log k
− 1

n log q
, T (L, k) ∼ 1− k

n
, T (A, k) ∼ 1− k − 1

n
. (4)

By (4), the throughputs of RLNC and RANC are higher for small values of k, but decrease linearly with

k. On the other hand, the throughout of SAF only decreases with the logarithm of k, hence this protocol

is more appropriate for messages with a large number of packets, which confirms the assumptions made

in [2]. The increase in rate and the constant delay between RANC and RLNC lead to a gain in throughput

of one symbol per packet in (4).

C. Number of received independent packets

We now investigate the delay in higher detail by considering the random variable XI(M, k; r) given

by the number of informative packets received by the destination once r packets have been received.

The variable r−XI(M, k; r) measures the random redundancy inherent to the noncoherent transmission.

Therefore, Pr{XI(M, k; r) = l} is equal to the probability PI(M, k; r, l) to obtain l independent packets

once r packets have been received. An important special case is given by the probability PI(M, k; k, k)

to receive all the necessary independent packets to reconstruct the flat with minimum delay. Proposition

3 below determines a recursive way of computing PI(M, k; r, l).

Proposition 3 (Probability of independence): We have PI(M, k; r, 0) = 0 and for r ≥ 0,

PI(M, k; r + 1, l + 1) =

(
1− Cl

Ck

)
PI(M, k; r, l) +

Cl+1

Ck
PI(M, k; r, l + 1).

In particular, PI(M, k; k, k) =
∏k−1
i=1

(
1− Ci

Ck

)
.

Proof: In order to obtain l + 1 independent packets after receiving r + 1 packets, one must have

received either l or l+1 independent packets in the first r received packets. Hence PI(M, k; r+1, l+1) =

p0PI(M, k; r, l) + p1PI(M, k; r, l+ 1), where p0 = Ck−Cl

Ck
is the probability to receive a packet outside

of a flat of rank l and p1 = Cl+1

Ck
is the probability to receive a packet inside of a flat of rank l + 1.

Applying this recursion successively for l = r yields PI(M, k; k, k).

We derive closed-form formulas of the probability of independence for SAF, RLNC, and RANC in

Proposition 4 below.
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Proposition 4 (Probability of independence for SAF, RLNC, and RANC): We have for all l ≥ 1

PI(S, k; r, l) =
k!

kr(k − l)!

{
r

l

}
=

(
k
l

)
kr

l∑
j=0

(−1)l−j
(
l

j

)
jr,

PI(L, k; r, l) =

[
k
l

]
(qk − 1)r

r−l∑
s=0

(−1)s
(
r

s

) l−1∏
i=0

(qr−s − qi),

PI(A, k; r, l) = q−(k−1)(r−1)
[
k − 1

l − 1

] l−2∏
i=0

(qr−1 − qi),

where
{
r
l

}
is a Stirling number of the second kind [23]. In particular,

√
2πk e−k+

1

12k+1 < PI(S, k; k, k) =
k!

kk
<
√
2πk e−k+

1

12k ,

Kq < PI(L, k; k, k) =

k−1∏
i=1

(
1− qi − 1

qk − 1

)
≤ 1,

Kq < PI(A, k; r, l) = q−(k−1)(r−1)
[
k − 1

l − 1

] l−2∏
i=0

(qr−1 − qi) ≤ 1.

is the probability that all k independent packets are received with minimum delay.

Proof: For SAF, PI(S, k; r, l) = SI(r,l)
kr , where SI(r, l) is the number of words of length r with l

distinct symbols from an alphabet of size k. Any word with l distinct symbols can be put in correspondence

with the partition of [r] into l cells, where each cell contains the positions of a given symbol in the word.

By definition of the Stirling numbers, there are
{
r
l

}
such partitions. Also, once the partition is fixed, there

are k(k− 1) · · · (k− l+1) choices for the symbols. Combining, we obtain the formula for PI(S, k; r, l).

For r = l = k, we obtain PI(S, k; k, k) = k!
kk , which combined with the refinement of Stirling’s formula

in [24] yields the upper bound.

For RLNC, we have PI(L, k; r, l) = RI(r,l)

[k1]
r , where RI(r, l) is the number of matrices in GF(q)k×r

with rank l such that all the columns are nonzero and the leading nonzero coefficient is equal to 1. The

number of matrices with rank l and s nonzero columns is hence given by
(
r
s

)
(q − 1)sRI(s, l). Also, the

number of matrices in GF(q)k×r with rank l is given by
[
k
l

]∏l−1
i=0(q

r−qi) [5], [7]. Summing all matrices

with rank l and s nonzero columns for l ≤ s ≤ r, we obtain
r∑
s=l

(
r

s

)
(q − 1)sRI(s, l) =

[
k

l

] l−1∏
i=0

(qr − qi).

By applying the reverse binomial transform [25], we obtain the formula for PI(L, k; r, l).

For RANC, we have PI(A, k; r, l) = AI(r,l)
qr(k−1) , where AI(r, l) is the number of collections of points

v0,v1, . . . ,vr−1 ∈ GF(q)n in a flat of rank k with exactly l affinely independent points. We have
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rk(v0,v1, . . . ,vr−1) = rank(1|V) = 1 + rank(W), where W = ((v1 − v0)
T , (v2 − v0)

T , . . . , (vr−1 −

v0)
T )T ∈ GF(q)(r−1)×n is a matrix with rank l−1 whose rows belong to a linear subspace of dimension

k − 1. There are qk−1 choices for v0 and
[
k−1
l−1
]∏l−2

i=0(q
r−1 − qi) choices for W, and hence AI(r, l) =

qk−1
[
k−1
l−1
]∏l−2

i=0(q
r−1 − qi) which leads to the result for PI(A, k; r, l).

We now investigate the moments of the probability distribution PI(M, k; r, l), in particular the expecta-

tion EI(M, k; r) and the variance VI(M, k; r). We clearly have EI(M, k; r) ≤ min{k, r}, EI(M, k; r) ≤

EI(M, k; r + 1) ≤ EI(M, k; r) + 1, and limr→∞EI(M, k; r) = k and limr→∞ VI(M, k; r) = 0.

Proposition 5 below determines or bounds the expectation and the variance for SAF, RLNC, and RANC.

Proposition 5 (Average number of independent elements in SAF, RLNC, and RANC): For all k and r,

EI(S, k; r) = k

[
1−

(
1− 1

k

)r]
∼ k(1− e−

r

k ). (5)

Also, the variance is given by

VI(S, k; r) = k

[(
1− 1

k

)r
−
(
1− 2

k

)r]
+ k2

[(
1− 2

k

)r
−
(
1− 1

k

)2r
]
∼ ke−

r

k (1− e−
r

k ).

For RLNC and RANC, we have PI(L, k; r, r) > Kq and PI(A, k; r, r) > Kq for all r ≤ k by Proposition

4. Therefore, EI(L, k; r) > Kqmin{r, k} and EI(A, k; r) > Kqmin{r, k} for all r, and accordingly, the

variance tends to 0 with the field size.

Proof: Let SI(r, l) denote the number of words of length r with l distinct symbols, then PI(S, k; r, l) =

k−rSI(r, l). Consider the bipartite graph on [k]r and P([k], a) (1 ≤ a ≤ k), where two vertices are

adjacent if and only if there exist a symbols of the word in [k]r equal to the a elements in [k]. Let us

count the number of edges in this graph in two different ways. First, there are
(
l
a

)
edges adjacent to a

word in [k]r with l different coefficients, hence there are
∑k

l=a

(
l
a

)
SI(r, l) edges in the graph. Second, by

the inclusion-exclusion principle, we obtain that each subset of [k] with cardinality a appears in exactly∑a
i=0(−1)i

(
a
i

)
(k − i)r words in [k]r. Therefore,

k∑
l=a

(
l

a

)
SI(r, l) =

(
k

a

) a∑
i=0

(−1)i
(
a

i

)
(k − i)r,

which yields (5) for a = 1. Using this identity for a = 2 and combining, we also obtain the variance.

In particular, for r = k, (5) indicates that only around 1− e−1 ≈ 0.632 of the first k received packets

are independent on average. On the other hand, for RLNC and RANC, the average number of independent

packets tends to the optimal with the field size.

The expected number of independent elements for RANC and SAF determined or bounded above is

illustrated in Figure 2 for q = 28, n = 20, k = 10, and 1 ≤ r ≤ 30. For SAF, the exponential pattern
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Fig. 2. Expected number of independent elements as a function of the number of received elements for k = 10 transmitted

elements

determined in Proposition 5 is clearly displayed, while RANC is close to optimal for practical values of

q. For k = 10, Proposition 2 indicates that the average delay is given by D(S(28, 20), 10) ≈ 29.3 for

SAF while D(A(28, 20), 10) ≈ 10.004 for RANC.

D. Partial decoding

The model introduced in Section III and the parameters determined so far assume the destination waits

to receive k independent packets in order to begin the decoding procedure. However, the destination

may choose to operate partial decoding on a fraction of k independent packets. The problem of partial

decoding is hence as follows: Suppose that less than k independent packets have been received, how

many packets do we expect to decode? We remark that this problem is intrinsic to the matroid, and does

not depend on the assumptions on the model made in the introduction of Section V.

The destination can perform partial decoding if it knows a way of recovering the messages in all the

elements contained in the flat it has received which were originally transmitted by the source. This is

equivalent to transmitting elements of a canonical basis, defined as follows. A basis B(f) of a flat f is
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a canonical basis if the elements of B(f) can be discriminated from the other elements of f and if the

information carried by any element of B(f) can be decoded using this element only. The first property

guarantees that the destination receiving a subflat g of the transmitted flat f will be able to determine

all the elements transmitted by the source which lie in g, while the second property guarantees that the

destination will decode the information carried by these elements. In other words, a canonical basis is

a systematic encoding of the message, and the destination wishes to retrieve the systematic part of the

elements of the canonical basis. It is still unknown which flats of a matroid have a canonical basis;

however, it can be easily shown that the liftings associated to SAF, RLNC, and RANC have a canonical

basis given by the set of rows of the matrix.

We illustrate partial decoding using the linear lifting for RLNC. Suppose three messages m, n, and

p over GF(q) are to be sent using RLNC. After linear lifting, the source transmits the following three

vectors: (100|m), (010|n), and (001|p), which form the canonical basis of the transmitted flat. Suppose

the destination first receives the vector (1a0|m+ an), which does not belong to the canonical basis and

hence cannot be decoded. Following, suppose the destination then receives (1b0|m+ bn). Two members

of the canonical basis clearly belong to the closure of the received vectors, therefore the destination can

decode the two messages m and n before receiving the entire flat.

Let PD(M, k; l, d) be the probability to decode d elements after receiving l independent elements.

Provided a canonical basis exists, decoding d elements is equivalent to receiving a flat containing

d members of the canonical basis of the transmitted flat. We determine PD(M, k; l, d) under certain

assumptions on the matroid, which are satisfied by L, S, and A.

Proposition 6 (Probability of partial decoding): Suppose the transmitted flat of rank k contains G(l, k)

flats of rank l for all 0 ≤ l ≤ k. Furthermore, assume that for all a ≤ l ≤ k, any flat with rank a is

contained in F (a, l) flats of rank l, all of them being contained in the transmitted flat. We then have

PD(M, k; l, d) =

(
k
d

)
G(l, k)

l∑
a=d

(−1)a+d
(
k − d
a− d

)
F (a, l).

Proof: The probability is given by PD(M, k; l, d) = ND(l,d)
G(l,k) , where ND(l, d) is the number of flats

of rank l that are contained within the transmitted flat f and which have d decodable elements. We now

determine the value of ND(l, d).

First, the set of flats of rank l with l decodable elements is given by {cl(X) : |X| = l,X ⊆ B(f)},

and hence ND(l, l) =
(
k
l

)
. Now consider the bipartite graph on the set of subflats of f of rank l and

the set of flats of rank a with a decodable elements (a ≤ d ≤ l), where two vertices fl ∈ Fl, fa ∈ Fa
are adjacent if and only if fa ⊆ fl. We now count the edges in this graph in two ways. Since there are
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F (a, l) edges adjacent to any flat of rank a, the number of edges is given by
(
k
a

)
F (a, l). Also, there are(

d
a

)
edges adjacent to any flat of rank l with d decodable elements, hence there are

∑l
d=a

(
d
a

)
ND(l, d)

edges. Combining, we obtain
l∑

d=a

(
d

a

)
ND(l, d) =

(
k

a

)
F (a, l). (6)

Denoting n = (ND(l, a), ND(l, a+1), . . . , ND(l, l)), v = (
(
k
a

)
F (a, l),

(
k
a+1

)
F (a+1, l), . . . ,

(
k
l

)
F (l, l)),

(6) becomes nL = v, where L = (ld,a) is a Pascal matrix: ld,a =
(
d
a

)
[26]. Since L−1 = (ma,d) has

ma,d = (−1)d+a
(
a
d

)
, we obtain the formula for PD(M, k; l, d).

We remark that (6) provides the binomial moments of the PD(M, k; l, d) distribution. In particular,

the expectation ED(M, k; l) and the variance VD(M, k; l) are respectively given by

ED(M, k; l) = k
F (1, l)

G(l, k)
,

VD(M, k; l) = k
(k − 1)F (2, l) + F (1, l)

G(l, k)
− k2F (1, l)

2

G(l, k)2
.

Corollary 1 (Probability of partial decoding for SAF, RLNC, and RANC): For SAF, PD(S, k; l, d) =

δl−d for all l, d, and hence ED(S, k; l) = l and VD(S, k; l) = 0 for all l. For RLNC, we have ED(L, k; l) =

k q
l−1
qk−1 < kql−k for all l. For RANC, we have ED(A, k; l) = kql−k for all l.

Proof: For SAF, all elements are decodable and PD(S, k; l, d) = δl−d for all l, d. This can also

be demonstrated via Proposition 6, where F (a, l) =
(
k−a
l−a
)

and G(l, k) =
(
k
l

)
. For RLNC, we have

F (a, l) =
[
k−a
l−a
]

and G(l, k) =
[
k
l

]
by [27, Lemma 2], which yields ED(L, k; l) = k

[k−1

l−1]
[kl]

. For RANC,

we have F (0, l) = qk−l
[
k−1
l−1
]
, F (a, l) =

[
k−a
l−a
]

for a > 0, and G(l, k) = qk−l
[
k−1
l−1
]
.

We remark that ED(A, k; k − 1) = kq−1 by Corollary 1; hence for q = 28 only 0.39% of the packets

can be decoded before receiving all the packets. Therefore, for practical values of the field size, RANC

(and also RLNC) hardly offers any opportunity of partial decoding.

Finally, let PT (M, k; r, d) be the probability to decode d packets given that r packets (not necessarily

independent) have been received. Clearly, PT (M, k; r, d) =
∑r

l=0 PI(M, k; r, l)PD(M, k; l, d), and

hence we can regroup the results above to determine the probability PT (M, k; r, d). For SAF, by Corollary

1, the expected number of decodable packets is given by ET (S, k; r) = EI(S, k; r) ∼ k(1 − e−
r

k ). For

RLNC and RANC, we respectively have ET (L, k; r) ≤ ED(L, k; r) < kqr−k and ET (A, k; r) ≤ kqr−k.

In particular, ET (A, k; k − 1) ≤ kq−1, hence only q−1 of the packets can be partially decoded before

receiving k packets. RANC then follows a zero-one behavior: before receiving k packets, no decoding is

possible; once k packets are received, they are independent with high probability and the whole message
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Fig. 3. Expected number of decodable elements as a function of the number of received elements for k = 10 transmitted

elements

can be decoded. This behavior is illustrated in Figure 3, where the values of ET (S, k; l) and ET (A, k; l)

for q = 28 are displayed for k = 10.

VI. MATROID ERROR-CORRECTING CODES

A. Operator channel and metrics for error correction

In Section III, we modeled data communication through a network as the transmission of a flat of a

matroid. However, the model in Section III did not take into account the possible alterations undergone by

the message during its transmission through the network. These alterations due to the network—packet

losses, injections, errors, etc.—modify not only the packets but also the flat being transmitted. A flat

f ∈ Fk can be modified in two ways: a deletion turns f into a proper subflat of rank k − 1, while an

insertion turns f into a proper superflat of rank k + 1. A deletion (an insertion, respectively) is hence

equivalent to moving one step down (up, respectively) the lattice of flats. Any flat f can be turned into

any other flat g via a sequence of insertions and deletions. The terms “insertion” and “deletion” were

first introduced in [4] for RLNC.
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Proposition 7 below proves that the shortest way to modify one flat into another is to perform all the

insertions first, and then all the deletions. This can be intuitively explained as follows. By performing

the insertions first, the network works in larger flats with a much higher cardinality. This large number

of combinations allows to produce bases with ‘distant’ elements to the original flat, and hence drift away

from the original flat without taking steps on the lattice. It then suffices to go back down by deleting

some elements. On the other hand, performing the deletions first implies to work in smaller flats, which

hinders the message from drifting away from the original flat.

Proposition 7: For any pair of flats f, g of a matroid, the union-path U(f, g), defined as starting

from f , going up the lattice of flats to cl(f ∪ g), and then going back down to g, is a shortest path

between f and g. Therefore, the shortest path distance s(f, g) between f and g is given by s(f, g) =

2rk(f ∪ g)− rk(f)− rk(g).

Proof: Without loss of generality, suppose rk(f) ≥ rk(g). We shall prove the claim by induction on

s(f, g). First, the cases s(f, g) = 0 and s(f, g) = 1 are trivial. Also, if s(f, g) = 2, then either g ⊂ f and

the union-path is the only path of length 2, or g * f and the only path of length 2 distinct from the union-

path is the intersection-path {f, f ∩ g, g}. The intersection-path has length rk(f) + rk(g)− 2rk(f ∩ g);

however, 2rk(f∪g)−rk(f)−rk(g) ≤ rk(f)+rk(g)−2rk(f∩g) by the submodular inequality, and hence

the union-path is no longer than the intersection-path. Therefore, the union-path is among the shortest

paths for s(f, g) = 2.

Now suppose the claim is true for all pairs of flats with a shortest path of length no more than d, and

consider f and g such that s(f, g) = d + 1. Let {f, p1, . . . , pd, g} be a shortest path between f and g.

Since s(pd−1, g) = 2, we assume g ⊂ pd, without loss by the discussion above. However, s(f, pd) = d

and hence U(f, pd) is a shortest path between f and pd. Therefore, {U(f, pd)} ∪ {g} is a shortest path

between f and g which first goes up the lattice and then down, and hence is equal to U(f, g).

We model data transmission through a faulty network as an operator channel, where the source transmits

a flat f ∈ F and the destination obtains another flat g ∈ F , which is obtained after δ insertions and ε

deletions, where δ = rk(f ∪ g)− rk(f) and ε = rk(f ∪ g)− rk(g), respectively. Accordingly, we define

the lattice distance between f and g as

dL(f, g) = δ + ε

= 2rk(f ∪ g)− rk(f)− rk(g) (7)

≤ rk(f ∪ g)− rk(f ∩ g) (8)

≤ rk(f) + rk(g)− 2rk(f ∩ g), (9)
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where (8) and (9) follow the submodular inequality.

For SAF, the lattice distance between two subsets is their Hamming distance; for RLNC, the lattice

distance between two linear subspaces is their subspace distance. We remark that for both RLNC and

SAF, we have equality in (8) and (9) for all flats. This however does not hold for all matroids; those

which satisfy this property can all be expressed as direct sums of free matroids and projective geometries

[3, Proposition 6.9.1].

Let us illustrate these remarks with the affine geometry. Two parallel hyperplanes f and g in A(q, n)

are at lattice distance 2, while (8) and (9) yield n+ 1 and 2n, respectively. Furthermore, by considering

f , g, and the whole space, it can be easily shown that the right hand sides of (8) and (9) violate the

triangular inequality. This example also illustrates how the lattice distance expresses the minimum number

of operations required to change one flat into the other. In our example, changing f into g takes only

two operations: first insert an element not belonging to f to obtain the whole space, which has a basis

given by r elements of g and one outside of g; then delete the latter element to obtain g.

The modified lattice distance

dM(f, g) = max{δ, ε}

= rk(f ∪ g)−min{rk(f), rk(g)} (10)

≤ max{rk(f), rk(g)} − rk(f ∩ g) (11)

coincides with the modified Hamming metric for SAF [2] and with the injection distance for RLNC [4].

Similarly to the lattice distance, equality holds in (11) for SAF and RLNC; however, in the example

above inequality is strict and the triangular inequality is violated by the right hand side.

We remark that both distances only depend on the lattice of flats of the matroid. However, for any

non-simple matroid, there exists a simple matroid with the same lattice of flats. Therefore, our assumption

in Section III of considering simple matroids only does not lead to any loss in generality.

Corollary 2 ensures that the distances defined above are metrics. Therefore, error correction for random

network communications can be viewed as a coding theory problem, where the codewords are flats of a

matroid associated to the network protocol and the distance between two flats is either the lattice distance

or the modified lattice distance.

Corollary 2: For any simple matroid with rank r, the lattice distance and the modified lattice distance

associated to that matroid are metrics which take integer values between 0 and r.

Proof: The lattice distance is a metric according to Proposition 7. For the modified lattice distance,

by (7) and (10) we have dM(f, g) = 1
2dL(f, g) +

1
2 |rk(f) − rk(g)| for all flats f, g ∈ F , and hence we
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easily obtain that dM is also a metric. It is clear that these metrics only have integer values between 0

and r.

B. Matroid codes

For any simple matroid M, we define a matroid code as a nonempty set of flats of a matroid with

the same rank, or equivalently as a subset of Fk. The minimum lattice (modified lattice, respectively)

distance of a matroid code is given by the minimum distance between two pairs of distinct codewords.

By (7) and (10), the minimum lattice distance of a matroid code is twice its minimum modified lattice

distance. All the other classical parameters of a code, such as the error correction capability, the covering

radius, the diameter, etc. can be similarly defined.

We now derive bounds on matroid codes which are natural generalizations of the bounds derived

for constant-dimension codes and constant-weight codes. Indeed, the latter classes of codes are so well

structured and can be easily bounded because they actually are matroid codes. In other words, by studying

matroid codes, we investigate some core properties of these classes of codes. We denote the maximum

cardinality of a matroid code on the flats of rank k of M with minimum modified lattice distance d (and

hence minimum lattice distance 2d) as A(M, k, d). Denoting the rank of M as r, we first remark that

A(M, k, 1) = Nk for all 0 ≤ k ≤ r. Also, since dM(f, g) ≤ min{k, r − k} for all f, g ∈ Fk, we shall

use the following convention: A(M, k, d) = 1 for all d > min{k, r − k}.

Johnson bounds have first been derived for constant-weight codes [28] and have been adapted to

constant-dimension codes in [10], [12]. Proposition 8 below generalizes these bounds to the case of

matroid codes by restricting to a submatroid of inferior rank in two ways. First, for any e ∈ E, the

contraction of e from M, denoted as M/e, is the simple matroid with set of flats F(M/e) = {f ∈

F : e ∈ f} [3, Chapter 3]. Note that the matroid M/e has rank r − 1 and for all f, g ∈ F(M/e),

rkM/e(f) = rkM(f)− 1 and hence dM,M/e(f, g) = dM,M(f, g). Second, for any hyperplane h ∈ Fr−1,

the restriction of M to h, denoted as M|h, is the simple matroid with set of flats {f ∈ F : f ⊆ h} [3,

Section 1.3]. For any flats f, g ⊆ h, rkM|h(f) = rkM(f) and hence dM,M|h(f, g) = dM,M(f, g).

Proposition 8 (Johnson bound): For all M and 0 ≤ k ≤ r, denote the minimum cardinality of a flat

of rank k and the minimum number of hyperplanes containing a given flat of rank k as ck and hk,

respectively. Then there exist e ∈ E and h ∈ Fr−1 such that

A(M, k, d) ≤ N1

ck
A(M/e, k − 1, d), (12)

A(M, k, d) ≤ Nr−1
hk

A(M|h, k, d). (13)
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Proof: We only prove (12), the proof of (13) being similar. For all f ∈ F and e ∈ E, let χ(e, f) = 1

if e ∈ f and χ(e, f) = 0 otherwise. Let C be a code on the flats of M with rank k, minimum distance

d, and cardinality A(M, k, d). Then for all e ∈ E, C ∩ (F/e) can be viewed a code on the flats of

M/e with rank k − 1, minimum distance at least d, and cardinality
∑

f∈C χ(e, f) ≤ A(M/e, k − 1, d).

Conversely, we have
∑

e∈E χ(e, f) = |f | ≥ ck for all f ∈ C. Combining, we obtain that there exists an

element e′ ∈ E for which |E|A(M/e′, k − 1, d) ≥
∑

e∈E
∑

f∈C χ(e, f) ≥ ckA(M, k, d).

Proposition 9 below is a generalization of the Singleton bound for constant-dimension codes derived

in [1].

Proposition 9 (Singleton bound): For allM, 0 ≤ k ≤ r, and any element e ∈ E, we have A(M, k, d) ≤

A(M/e, k, d− 1) and hence A(M, k, d) ≤ ming∈Fd−1
|{f ∈ Fk+d−1 : g ⊆ f}|.

Proof: Let C be a code on Fk with minimum distance d and cardinality A(M, k, d). For any

f ∈ C, we define the puncturing He(f) as a flat in Fk(M/e) containing f . Then by the lengths of

the shortest paths on the lattice of flats of M, we have dL(He(f), He(g)) ≥ dL(f, g) − 2 and hence

dM(He(f), He(g)) ≥ dM(f, g) − 1 for all f, g ∈ C. Therefore, {He(f) : f ∈ C} is a code on the flats

of M/e with rank k, minimum distance at least d− 1, and cardinality A(M, k, d) ≤ A(M/e, k, d− 1).

Applying this bound recursively yields the second upper bound.

We finish this section by noting that the concept of lifting, used to construct good matroid codes for

RLNC [1], [13] and SAF [2], could be generalized for any matroid. However, as shown in the case of

SAF [2], these codes may not be optimal, hence we shall not develop this idea any further.

C. Matroid codes for the affine geometry

We are now interested in matroid codes on affine subspaces. By definition, we have A(A, k, 1) = Nk =

qn−k+1
[
n
k−1
]
≥ qk(n−k+1) for all 0 ≤ k ≤ n + 1. Since the affine geometry A(q, n) is a submatroid of

the projective geometry L(q, n+ 1), the upper bound on codes on linear subspaces reviewed in Section

II-B yields

A(A(q, n), k, d) ≤ A(L(q, n+ 1), k, d) < K−1q qmin{(n−k+1)(k−d+1),k(n−k−d+2)}. (14)

As we shall see later, the upper bound on A(A(q, n), k, d) in (14) is tight up to a scalar. However, we

refine this bound below by applying the Johnson bounds derived in Proposition 8 to codes on affine

subspaces.

Proposition 10 (Bounds on codes on affine subspaces): For all 2 ≤ k ≤ n−1 and 2 ≤ d ≤ min{k, n−
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k + 1}, we have

A(A(q, n), k, d) ≤ qn−k+1A(L(q, n), k − 1, d), (15)

A(A(q, n), k, d) ≤
⌊
q

qn − 1

qn−k+1 − 1
A(A(q, n− 1), k, d)

⌋
(16)

≤
⌊
q

qn − 1

qn−k+1 − 1

⌊
q
qn−1 − 1

qn−k − 1
· · ·
⌊
q
qk+d−1 − 1

qd − 1

⌋
· · ·
⌋⌋

.

Proof: For any e ∈ GF(q)n and h ∈ Fn(A(q, n)), A(q, n)/e and A(q, n)|h are isomorphic to

L(q, n− 1) and A(q, n− 1), respectively [3, Proposition 6.2.5]. Also, every flat with rank k of A(q, n)

contains qk−1 elements and is contained in
[
n−k+1

1

]
hyperplanes. Applying Proposition 9 and (12) and (13)

in Proposition 8 to A(q, n) hence leads to (15) and (16), respectively. Finally, applying (16) recursively

yields the last upper bound.

We remark that the first Johnson bound in (15) is good for 2k ≤ n + 1, while the second Johnson

bound in (16) is good for 2k ≥ n + 1. Also, the bounds obtained by applying the Singleton bound in

Proposition 9 are looser than (15), and are hence omitted.

Recall that for any M ∈ GF(q)k×(n−k+1), the affine lifting of M, hereby denoted as IA(M) ∈ Fk, is

the closure of the rows of (I′k|M), where I′k = (0|Ik−1)T ∈ GF(q)k×(k−1). Remark that rk(IA(M)) =

rank(1|I′k|M) = k for all M ∈ GF(q)k×(n−k+1), hence IA indeed maps GF(q)k×(n−k+1) to Fk.

Proposition 11 below shows that the affine lifting preserves the distance.

Proposition 11 (Affine lifting): For any M,N ∈ GF(q)k×(n−k+1), we have dM(IA(M), IA(N)) =

dR(M,N).

Proof: We have

rk(IA(M) ∪ IA(N)) = rank

 1 I′k M

1 I′k N

 = rank

 1 I′k M

0 0 M−N

 = k + rank(M−N)

since the matrix (1|I′k) has rank k, and hence dM(IA(M), IA(N)) = dR(M,N).

We now design a class of nearly optimal codes for the affine geometry based on affine liftings of

Gabidulin codes. Let C be a Gabidulin code on GF(q)k×(n−k+1) with minimum rank distance d. Then

by Proposition 11, its affine lifting IA(C) = {IA(M) : M ∈ C} is a matroid code of A(q, n) with rank

k, minimum distance d, and cardinality qmin{(n−k+1)(k−d+1),k(n−k−d+2)}.

Corollary 3: For all 0 ≤ k ≤ n+ 1, we have A(A, k, d) ≥ qmin{(n−k+1)(k−d+1),k(n−k−d+2)}.

As a corollary of this construction, we obtain A(A, k, d) ≥ qmin{(n−k+1)(k−d+1),k(n−k−d+2)} for all

0 ≤ k ≤ n+1. Combining this result with (14) and the bounds on the maximum cardinality of constant-

dimension codes reviewed in Section II, we obtain Kq <
A(A(q,n),k,d)
A(L(q,n+1),k,d) ≤ 1. Therefore, RANC utilizes
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codes with a similar cardinality to subspace codes for packets longer by one symbol. This gain is clearly

illustrated by the definition of affine lifting, which removes the first column from the identity matrix used

in the linear lifting. The gain in data rate in (2) derived for the error-free case is hence preserved when

error control is implemented. Furthermore, we prove below that this gain comes with no significant cost

in terms of decoding complexity.

By construction, the lifting introduced above for RANC is closely related to the lifting introduced in

[1] for RLNC. We now utilize this relation to design a low-complexity decoding of affine liftings of

Gabidulin codes. More generally, we prove that decoding the affine lifting of a rank metric code can be

performed using a subspace distance decoder for the linear lifting of the same code.

In order to clarify notations, we shall use the subscripts A and L to refer to objects (ranks and lattice

distances) defined for RANC and RLNC, respectively. We introduce the nonsingular matrix Xn+1 =

(vTk |I′n+1) ∈ GF(q)(n+1)×(n+1), where vk = (1,−1,−1, . . . ,−1, 0, . . . , 0) has k nonzero coefficients.

For any affine subspace M ∈ F(A(q, n)) of rank k given by the closure of the rows of the matrix

M ∈ GF(q)k×n, we denote the linear subspace of GF(q)n+1 with dimension k generated by (1|M)Xn+1

as r(M) ∈ F(L(q, n+1)). Multiplying on the right by Xn+1 can hence be viewed as mapping the affine

subspaces of GF(q)n into linear subspaces of GF(q)n+1. Proposition 12 below shows that this mapping

preserves the lattice distance, and that the image of the affine lifting of a matrix is the linear lifting of

the same matrix.

Proposition 12: For any affine subspace M ∈ F(A(q, n)) and any affine lifting IA(C) ∈ F(A(q, n)),

we have dL,A(M, IA(C)) = dL,L(r(M), IL(C)).

Proof: Since Xn+1 is nonsingular, we have rkA(M) = rank {(1|M)Xn+1} = rkL(r(M)). Also, it

is easily shown that (1|I′k|C)Xn+1 = (Ik|C), and hence

dL,A(M, IA(C)) = 2rank

 1 M

1 I′k C

− rank(1|M)− rank(1|I′k|C) (17)

= 2rank

 (1|M)Xn+1

(Ik|C)

− rank{(1|M)Xn+1} − rank(Ik|C) (18)

= dL,L(r(M), IL(C)), (19)

where (17) and (19) follow the definition of the lattice distance in (7), while (18) is obtained by multiplying

by Xn+1 on the right.

By Proposition 12, decoding M using the affine lifting of a Gabidulin code is equivalent to decod-

ing r(M) using the linear lifting of the same code. We remark that transforming the matrix M into
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Source m ∈ GF(q)(k−d+1)×(n−k+1) // Gabidulin
encoder

C∈GF(q)k×(n−k+1)

// Affine
lifting

(I′k|C)∈GF(q)k×n

��

Network
Operator channel

Affine combinations
Insertions and deletions

M

��

Destination m Gabidulin
decoder

oo Mapping
(1−

∑
i coli|M)

oo

Fig. 4. Implementation scheme for affine network coding

(1|M)Xn+1 can be simply performed by adding a column in front of M, whose value is given by

1−
∑k−2

i=0 coli, where coli denotes the i-th column of M for all 0 ≤ i ≤ n− 1. Therefore, the decoding

algorithm for the affine lifting of a Gabidulin code follows two steps: First, obtain a matrix M, and add

the column 1−
∑k−2

i=0 coli in front of it; Second, apply the bounded subspace distance decoding algorithm

in [1] for the row space of the extended matrix. It is clear that the complexity of this algorithm is on the

same order as that of the algorithm in [1] for the same Gabidulin code, which is O(n2) operations over

GF(q)n−k+1. In order to summarize our results, the proposed implementation scheme for affine network

coding is illustrated in Figure 4 for 2k ≤ n+ 1.

VII. CONCLUSION

In this paper, we introduced a novel model for the performance study of and noncoherent error control

for data transmissions through a network. This model, based on flats of matroids, encompasses traditional

techniques, such as linear network coding and routing, and offers a wealth of alternatives to these

protocols. We evaluated the performance of these two protocols both in the error-free case and in the

case where packets are lost, injected, or in error. We then designed a new network coding protocol based

on the affine geometry which outperforms linear network coding in terms of data rate for the coded and

non-coded cases. We identified a class of nearly optimal codes, for which we provide a low-complexity

decoding algorithm. The results are summarized in Table I.

This topic opens many directions for future research, some of which are detailed below. First, the model

we proposed is based on simple assumptions, which may not accurately reflect the reality of the network.
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Protocol SAF RLNC RANC

Matroid Parameters

Matroid Uqn,qn PG(n− 1, q) AG(n, q)

Rank of the matroid qn n n+ 1

Combination Selection Linear combination Affine combination

Flats Subsets Linear subspaces Affine subspaces

Number of flats of rank k
(
qn

k

) [
n
k

]
qn−k+1

[
n

k−1

]
Cardinality of flats of rank k k qk−1

q−1
qk−1

Performance Parameters

Rate ∼ 1− logq k

n
∼ 1− k

n
∼ 1− k−1

n

Average delay ∼ k log k ∼ k ∼ k

Throughput ∼ 1
log k
− 1

n log q
∼ 1− k

n
∼ 1− k−1

n

Independent elements ∼ k(1− e−
r
k ) ∼ min{r, k} ∼ min{r, k}

Partially decodable elements l ∼ kql−k kql−k

TABLE I

SUMMARY OF PARAMETERS FOR SAF, RLNC, AND RANC.

Hence, we need to investigate how the specificity of the given network can be incorporated into our model.

Second, many different types of matroids have been proposed, from the most elementary to the most

sophisticated. Determining which matroids are desirable for a given situation is an important research

direction, as it also determines the corresponding protocol. Third, once the matroid is fixed, some tools

are required to evaluate its performance and to compare it with other matroids. Although we introduced

some parameters, such as the data rate and the average delay, new parameters may reflect some situations

more accurately. Fourth, random affine network coding deserves to be investigated in further detail. In

particular, the implementation of the low-complexity decoding procedure for liftings of Gabidulin codes

introduced in this paper has a significant impact on the feasibility of affine network coding. Fifth, on a

more practical approach, combining matroids may take advantage of the original matroids. For instance,

combining SAF and RLNC may lead to transmitting packets with different priorities. in terms of error

control, combining matroids may also lead to unequal protection against errors.
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