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Abstract

The following network computingproblem is considered. Source nodes in a directed acyclic network generate
independent messages and a single receiver node computes a target functionf of the messages. The objective is to
maximize the average number of timesf can be computed per network usage, i.e., the “computing capacity”. The
network codingproblem for a single-receiver network is a special case of the network computing problem in which
all of the source messages must be reproduced at the receiver. For network coding with a single receiver, routing is
known to achieve the capacity by achieving the networkmin-cutupper bound. We extend the definition of min-cut
to the network computing problem and show that the min-cut isstill an upper bound on the maximum achievable
rate and is tight for computing (using coding) any target function in multi-edge tree networks and for computing
linear target functions in any network. We also study the bound’s tightness for different classes of target functions.
In particular, we give a lower bound on the computing capacity in terms of the Steiner tree packing number and a
differnet bound for symmetric functions. We also show that for certain networks and target functions, the computing
capacity can be less than an arbitrarily small fraction of the min-cut bound.
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1 Introduction

We consider networks where source nodes generate independent messages and a single receiver node computes a target
functionf of these messages. The objective is to characterize the maximum rate of computation, that is the maximum
number of timesf can be computed per network usage.

Giridhar and Kumar [18] have recently stated:

“In its most general form, computing a function in a network involves communicating possibly correlated
messages, to a specific destination, at a desired fidelity with respect to a joint distortion criterion dependent
on the given function of interest. This combines the complexity of source coding of correlated sources,
with rate distortion, different possible network collaborative strategies for computing and communication,
and the inapplicability of the separation theorem demarcating source and channel coding.”

The overwhelming complexity of network computing suggeststhat simplifications be examined in order to obtain
some understanding of the field.

We present a natural model of network computing that is closely related to the network coding model of Ahlswede,
Cai, Li, and Yeung [1, 49]. Network coding is a widely studiedcommunication mechanism in the context of network
information theory. In network coding, some nodes in the network are labeled as sources and some as receivers.
Each receiver needs to reproduce a subset of the messages generated by the source nodes, and all nodes can act as
relays and encode the information they receive on in-edges,together with the information they generate if they are
sources, into codewords which are sent on their out-edges. In existing computer networks, the encoding operations
are purely routing: at each node, the codeword sent over an out-edge consists of a symbol either received by the node,
or generated by it if is a source. It is known that allowing more complex encoding than routing can in general be
advantageous in terms of communication rate [1, 22, 38]. Network coding with a single receiver is equivalent to a
special case of our function computing problem, namely whenthe function to be computed is the identity, that is when
the receiver wants to reproduce all the messages generated by the sources. In this paper, we study network computation
for target functions different than the identity.

Some other approaches to network computation have also appeared in the literature. In [8, 11, 12, 28, 34, 39]
network computing was considered as an extension of distributed source coding, allowing the sources to have a joint
distribution and requiring that a function be computed withsmall error probability. A rate-distortion approach to the
problem has been studied in [10, 15, 47]. However, the complexity of network computing has restricted prior work to
the analysis of elementary networks. Networks with noisy links were studied in [3, 14, 16, 17, 19, 26, 35, 37, 50] and
distributed computation in networks using gossip algorithms was studied in [4–6,9,27,36].

In the present paper, our approach is somewhat (tangentially) related to the field of communication complexity
[30, 48] which studies the minimum number of messages that two nodes need to exchange in order to compute a
function of their inputs with zero error. Other studies of computing in networks have been considered in [18, 43], but
these were restricted to the wireless communication protocol model of Gupta and Kumar [20].

In contrast, our approach is more closely associated with wired networks with independent noiseless links. Our
work is closest in spirit to the recent work of [31,40–42] on computing the sum (over a finite field) of source messages
in networks. We note that in independent work, Kowshik and Kumar [29] obtain the asymptotic maximum rate of
computation in tree networks and present bounds for computation in networks where all nodes are sources.

Our main contributions are summarized in Section 1.3, afterformally introducing the network model.

1.1 Network model and definitions

In this paper, anetworkN consists of a finite, directed acyclic multigraphG = (V , E), a set ofsource nodesS =
{σ1, . . . , σs} ⊆ V , and areceiverρ ∈ V . Such a network is denoted byN = (G,S, ρ). We will assume thatρ 6∈ S
and that the graph1 G contains a directed path from every node inV to the receiverρ. For each nodeu ∈ V , let Ei(u)
andEo(u) denote the set of in-edges and out-edges ofu respectively. We will also assume (without loss of generality)
that if a network node has no in-edges, then it is a source node.

1Throughout the paper, we will use “graph” to mean a directed acyclic multigraph, and “network” to mean a single-receivernetwork. We may
sometimes writeE(G) to denote the edges of graphG.
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An alphabetA is a finite set of size at least two. For any positive integerm, any vectorx ∈ Am, and any
i ∈ {1, 2, . . . ,m}, letxi denote thei-th component ofx. For any index setI = {i1, i2, . . . , iq} ⊆ {1, 2, . . . ,m} with
i1 < i2 < . . . < iq, letxI denote the vector(xi1 , xi2 , . . . , xiq ) ∈ A|I|.

Thenetwork computingproblem consists of a networkN and atarget functionf of the form

f : As −→ B

(see Definition 1.4 for some examples). We will also assume that any target function depends on all network sources
(i.e. they cannot be constant functions of any one of their arguments). Letk andn be positive integers. Given a
networkN with source setS and alphabetA, amessage generatoris any mapping

α : S −→ Ak.

For each sourceσi, α(σi) is called amessage vectorand its componentsα(σi)1 , . . . , α(σi)k are calledmessages.2

Definition 1.1. A (k, n) network codefor computing a target functionf in a networkN consists of the following:

(i) For any nodev ∈ V − ρ and any out-edgee ∈ Eo(v), anencoding function:

h(e) :



























∏

ê∈Ei(v)

An



×Ak −→ An if v is a source node

∏

ê∈Ei(v)

An −→ An otherwise

(ii) A decoding function:

ψ :

|Ei(ρ)|
∏

j=1

An −→ Bk.

Given a(k, n) network code, every edgee ∈ E carries a vectorze of at mostn alphabet symbols,3 which is
obtained by evaluating the encoding functionh(e) on the set of vectors carried by the in-edges to the node and the
node’s message vector if it is a source. The objective of the receiver is to compute the target functionf of the
source messages, for any arbitrary message generatorα. More precisely, the receiver constructs a vector ofk alphabet
symbols such that for eachi ∈ {1, 2, . . . , k}, thei-th component of the receiver’s computed vector equals the value of
the desired target functionf applied to thei-th components of the source message vectors, for any choiceof message
generatorα. Let e1, e2, . . . , e|Ei(ρ)| denote the in-edges of the receiver.

Definition 1.2. A (k, n) network code is calleda solution for computingf in N (or simplya (k, n) solution) if the
decoding functionψ is such that for eachj ∈ {1, 2, . . . , k} and for every message generatorα, we have

ψ
(

ze1 , · · · , ze|Ei(ρ)|

)

j
= f

(

α(σ1)j , · · · , α(σs)j

)

. (1)

If there exists a(k, n) solution, we say the rational numberk/n is anachievable computing rate.

In the network coding literature, one definition of thecoding capacityof a network is the supremum of all achiev-
able coding rates [7,13]. We adopt an analogous definition for computing capacity.

Definition 1.3. Thecomputing capacityof a networkN with respect to target functionf is

Ccod(N , f) = sup
{k

n
: ∃ (k, n) network code for computingf in N

}

.

2For simplicity, we assume that each source has exactly one message vector associated with it, but all of the results in this paper can readily be
extended to the more general case.

3By default, we will assume that edges carry exactlyn symbols.
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Thus, the computing capacity is the supremum of all achievable computing rates for a given networkN and a
target functionf . Some example target functions are defined below.

Definition 1.4.

Target functionf AlphabetA f (x1, . . . , xs) Comments

identity arbitrary (x1, . . . , xs)

arithmetic sum {0, 1, . . . , q − 1} x1 + x2 + · · ·+ xs ‘+’ is ordinary integer addition

modr sum {0, 1, . . . , q − 1} x1 ⊕ x2 ⊕ . . .⊕ xs ⊕ is mod r addition

histogram {0, 1, . . . , q − 1} (c0, c1, . . . , cq−1) ci = |{j : xj = i}| for eachi ∈ A

linear any finite field a1x1 + a2x2 + . . .+ asxs arithmetic performed in the field

maximum any ordered set max {x1, . . . , xs}

Definition 1.5. For any target functionf : As −→ B, any index setI ⊆ {1, 2, . . . , s}, and anya, b ∈ A|I|, we write
a ≡ b if for everyx, y ∈ As, we havef(x) = f(y) wheneverxI = a, yI = b, andxj = yj for all j 6∈ I.

It can be verified that≡ is an equivalence relation4 for everyf andI.

Definition 1.6. For everyf andI, letRI,f denote the total number of equivalence classes induced by≡ and let

ΦI,f : A|I| −→ {1, 2, . . . , RI,f}

be any function such thatΦI,f (a) = ΦI,f (b) iff a ≡ b.

That is,ΦI,f assigns a unique index to each equivalence class, and

RI,f =
∣

∣

∣

{

ΦI,f (a) : a ∈ A|I|
}∣

∣

∣
.

The value ofRI,f is independent of the choice ofΦI,f . We callRI,f thefootprint sizeof f with respect toI.PSfrag replacements

X Y

x yg(x)

f(x, y)

Figure 1:X , Y are two sources with messagesx andy respectively.X communicatesg(x) toY so thatY can compute
a functionf of x andy.

Remark 1.7. Let Ic = {1, 2, . . . , s} − I. The footprint sizeRI,f has the following interpretation (see Figure 1).
Suppose a network has two nodes,X andY , and both are sources. A single directed edge connectsX to Y . LetX
generatex ∈ A|I| andY generatey ∈ A|Ic|. X communicates a functiong(x) of its input, toY so thatY can compute
f(a) wherea ∈ As, aI = x, andaIc = y. Then for anyx, x̂ ∈ A|I| such thatx 6≡ x̂, we needg(x) 6= g(x̂). Thus
∣

∣g
(

A|I|
)∣

∣ ≥ RI,f , which implies a lower bound on a certain amount of “information” thatX needs to send toY to
ensure that it can compute the functionf . Note thatg = ΦI,f achieves the lower bound. We will use this intuition to
establish a cut-based upper bound on the computing capacityCcod(N , f) of any networkN with respect to any target
functionf , and to devise a capacity-achieving scheme for computing any target function in multi-edge tree networks.

4Witsenhausen [46] represented this equivalence relation in terms of the independent sets of a characteristic graph andhis representation has
been used in various problems related to function computation [11, 12, 39]. Although≡ is defined with respect to a particular index setI and a
functionf , we do not make this dependence explicit – the values ofI andf will be clear from the context.
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Definition 1.8. A set of edgesC ⊆ E in networkN is said toseparatesourcesσm1 , . . . , σmd
from the receiverρ, if

for eachi ∈ {1, 2, . . . , d}, every directed path fromσmi
to ρ contains at least one edge inC. The setC is said to be a

cut in N if it separates at least one source from the receiver. For anynetworkN , defineΛ(N ) to be the collection of
all cuts inN . For any cutC ∈ Λ(N ) and any target functionf , define

IC = {i : C separatesσi from the receiver}

RC,f = RIC ,f . (2)

Since target functions depend on all sources, we haveRC,f ≥ 2 for any cutC and any target functionf . The
footprint sizesRC,f for some example target functions are computed below.

A multi-edge treeis a graph such that for every nodev ∈ V , there exists a nodeu such that all the out-edges ofv
are in-edges tou, i.e.,Eo(v) ⊆ Ei(u) (e.g. see Figure 2).

Figure 2: An example of a multi-edge tree.

1.2 Classes of target functions

We study the following four classes of target functions: (1)divisible, (2) symmetric, (3)λ-exponential, (4)λ-bounded.

Definition 1.9. A target functionf : As −→ B is divisible if for every index setI ⊆ {1, . . . , s}, there exists a finite
setBI and a functionf I : A|I| −→ BI such that the following hold:

(1) f{1,...,s} = f

(2)
∣

∣f I
(

A|I|
)∣

∣ ≤ |f (As)|

(3) For every partition{I1, . . . , Iγ} of I, there exists a function
g : BI1 × · · · × BIγ −→ BI such that for everyx ∈ A|I|, we have
f I(x) = g

(

f I1(xI1 ) , . . . , f
Iγ
(

xIγ
))

.

Examples of divisible target functions include the identity, maximum,mod r sum, and arithmetic sum.
Divisible functions have been studied previously5 by Giridhar and Kumar [18] and Subramanian, Gupta, and

Shakkottai [43]. Divisible target functions can be computed in networks in a divide-and-conquer fashion as follows.
For any arbitrary partition{I1, . . . , Iγ} of the source indices{1, . . . , s}, the receiverρ can evaluate the target function
f by combining evaluations off I1 , . . . , f Iγ . Furthermore, for everyi = 1, . . . , γ, the target functionf Ii can be
evaluated similarly by partitioningIi and this process can be repeated until the function value is obtained.

Definition 1.10. A target functionf : As −→ B is symmetricif for any permutationπ of {1, 2, . . . , s} and any vector
x ∈ As,

f(x1, x2, . . . , xs) = f(xπ(1), xπ(2), . . . , xπ(s)).

5The definitions in [18, 43] are similar to ours but slightly more restrictive.
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That is, the value of a symmetric target function is invariant with respect to the order of its arguments and hence, it
suffices to evaluate the histogram target function for computing any symmetric target function. Examples of symmetric
functions include the arithmetic sum, maximum, andmod r sum. Symmetric functions have been studied in the
context of computing in networks by Giridhar and Kumar [18],Subramanian, Gupta, and Shakkottai [43], Ying,
Srikant, and Dullerud [50], and [26].

Definition 1.11. Letλ ∈ (0, 1]. A target functionf : As −→ B is said to beλ-exponentialif its footprint size satisfies

RI,f ≥ |A|λ|I| for everyI ⊆ {1, 2, . . . , s}.

Let λ ∈ (0,∞). A target functionf : As −→ B is said to beλ-boundedif its footprint size satisfies

RI,f ≤ |A|λ for everyI ⊆ {1, 2, . . . , s}.

Example 1.12. The following facts are easy to verify:

• The identity function is1-exponential.

• LetA be an ordered set. The maximum (or minimum) function is1-bounded.

• LetA = {0, 1, . . . , q − 1} whereq ≥ 2. Themod r sum target function withq ≥ r ≥ 2 is logq r-bounded.

Remark 1.13. Giridhar and Kumar [18] defined two classes of functions:type-thresholdandtype-sensitivefunctions.
Both are sub-classes of symmetric functions. In addition, type-threshold functions are also divisible andc-bounded, for
some constantc that is independent of the network size. However, [18] uses amodel of interference for simultaneous
transmissions and their results do not directly compare with ours.

Following the notation in Leighton and Rao [33], themin-cutof any networkN with unit-capacity edges is

min-cut(N ) = min
C∈Λ(N )

|C|

|IC |
. (3)

A more general version of the network min-cut plays a fundamental role in the field of multi-commodity flow [33,44].
The min-cut provides an upper bound on the maximum flow for anymulti-commodity flow problem. The min-cut is
also referred to as “sparsity” by some authors, such as Harvey, Kleinberg, and Lehman [22] and Vazirani [44]. We
next generalize the definition in (3) to the network computing problem.

Definition 1.14. If N is a network andf is a target function, then define

min-cut(N , f) = min
C∈Λ(N )

|C|

log|A| RC,f
. (4)

Example 1.15.

• If f is the identity target function, then

min-cut(N , f) = min
C∈Λ(N )

|C|

|IC |
.

Thus for the identity function, the definition of min-cut in (3) and (4) coincide.

• LetA = {0, 1, . . . , q − 1}. If f is the arithmetic sum target function, then

min-cut(N , f) = min
C∈Λ(N )

|C|

logq ((q − 1) |IC |+ 1)
. (5)

• LetA be an ordered set. Iff is the maximum target function, then

min-cut(N , f) = min
C∈Λ(N )

|C| .
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1.3 Contributions

The main results of this paper are as follows. In Section 2, weshow (Theorem 2.1) that for any networkN and any
target functionf , the quantity min-cut(N , f) is an upper bound on the computing capacityCcod(N , f). In Section 3,
we note that the computing capacity for any network with respect to the identity target function is equal to the min-cut
upper bound (Theorem 3.1). We show that the min-cut bound on computing capacity can also be achieved for all
networks with linear target functions over finite fields (Theorem 3.2) and for all multi-edge tree networks with any
target function (Theorem 3.3). For any network and any target function, a lower bound on the computing capacity is
given in terms of the Steiner tree packing number (Theorem 3.5). Another lower bound is given for networks with
symmetric target functions (Theorem 3.7). In Section 4, thetightness of the above-mentioned bounds is analyzed
for divisible (Theorem 4.2), symmetric (Theorem 4.3),λ-exponential (Theorem 4.4), andλ-bounded (Theorem 4.5)
target functions. Forλ-exponential target functions, the computing capacity is at leastλ times the min-cut. If every
non-receiver node in a network is a source, then forλ-bounded target functions the computing capacity is at least a
constant times the min-cut divided byλ. It is also shown, with an example target function, that there are networks
for which the computing capacity is less than an arbitrarilysmall fraction of the min-cut bound (Theorem 4.7). In
Section 5, we discuss an example network and target functionin detail to illustrate the above bounds. In Section 6,
conclusions are given and various lemmas are proven in the Appendix.

2 Min-cut upper bound on computing capacity

The following shows that the maximum rate of computing a target functionf in a networkN is at most min-cut(N , f).

Theorem 2.1. If N is a network with target functionf , then

Ccod(N , f) ≤ min-cut(N , f).

Proof. Let the network alphabet beA and consider any(k, n) solution for computingf in N . Let C be a cut and
for eachi ∈ {1, 2, . . . , k}, let a(i), b(i) ∈ A|IC |. Supposej ∈ {1, 2, . . . , k} is such thata(j) 6≡ b(j), where≡ is the
equivalence relation from Definition 1.5. Then there existx, y ∈ As satsifying:f(x) 6= f(y), xIC = a(j), yIC = b(j),
andxi = yi for everyi 6∈ IC .

The receiverρ can compute the target functionf only if, for every such pair
{

a(1), . . . , a(k)
}

and
{

b(1), . . . , b(k)
}

corresponding to the message vectors generated by the sources inIC , the edges in cutC carry distinct vectors. Since
the total number of equivalence classes for the relation≡ equals the footprint sizeRC,f , the edges in cutC should
carry at least(RC,f )

k distinct vectors. Thus, we have

An|C| ≥ (RC,f )
k

and hence for any cutC,
k

n
≤

|C|

log|A|RC,f
.

Since the cutC is arbitrary, the result follows from Definition 1.3 and (4). �

The min-cut upper bound has the following intuition. Given any cutC ∈ Λ(N ), at leastlog|A|RC,f units of
information need to be sent across the cut to successfully compute a target functionf . In subsequent sections, we
study the tightness of this bound for different classes of functions and networks.

3 Lower bounds on the computing capacity

The following result shows that the computing capacity of any networkN with respect to the identity target function
equals the coding capacity for ordinary network coding.
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Theorem 3.1. If N is a network with the identity target functionf , then

Ccod(N , f) = min-cut(N , f) = min-cut(N ).

Proof. Rasala Lehman and Lehman [32, p.6, Theorem 4.2] showed that for any single-receiver network, the conven-
tional coding capacity (when the receiver demands the messages generated by all the sources) always equals the min-
cut(N ). Since the target functionf is the identity, the computing capacity is the coding capacity and min-cut(N , f) =
min-cut(N ), so the result follows. �

Theorem 3.2. If N is a network with a finite field alphabet and with a linear target functionf , then

Ccod(N , f) = min-cut(N , f).

Proof. Follows from [41, Theorem 2]. �

Theorems 3.1 and 3.2 demonstrate the achievability of the min-cut bound for arbitrary networks with particular
target functions. In contrast, the following result demonstrates the achievability of the min-cut bound for arbitrary
target functions and a particular class of networks. The following theorem concerns multi-edge tree networks, which
were defined in Section 1.1.

Theorem 3.3. If N is a multi-edge tree network with target functionf , then

Ccod(N , f) = min-cut(N , f).

Proof. LetA be the network alphabet. From Theorem 2.1, it suffices to showthatCcod(N , f) ≥ min-cut(N , f). Since
Eo(v) is a cut for nodev ∈ V − ρ, and using (2), we have

min-cut(N , f) ≤ min
v ∈ V−ρ

|Eo(v)|

log|A|REo(v),f
. (6)

Consider any positive integersk, n such that

k

n
≤ min

v ∈ V−ρ

|Eo(v)|

log|A|RIEo(v),f
. (7)

Then we have
|A||Eo(v)|n ≥ Rk

IEo(v),f
for every nodev ∈ V − ρ. (8)

We outline a(k, n) solution for computingf in the multi-edge tree networkN . Each sourceσi ∈ S generates a
message vectorα(σi) ∈ Ak. Denote the vector ofi-th components of the source messages by

x(i) = (α(σ1)i , · · · , α(σs)i) .

Every nodev ∈ V − {ρ} sends out a unique index (as guaranteed by (8)) overA|Eo(v)|n corresponding to the set of
equivalence classes

ΦIEo(v),f (x
(l)
IEo(v)

) for l ∈ {1, · · · , k}. (9)

If v has no in-edges, then by assumption, it is a source node, sayσj . The set of equivalence classes in (9) is a
function of its own messagesα(σj)l for l ∈ {1, . . . , k}. On the other hand ifv has in-edges, then letu1, u2, · · · , uj
be the nodes with out-edges tov. For eachi ∈ {1, 2, · · · , j}, using the uniqueness of the index received fromui, node
v recovers the equivalence classes

ΦIEo(ui)
,f (x

(l)
IEo(ui)

) for l ∈ {1, · · · , k}. (10)
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Furthermore, the equivalence classes in (9) can be identified by v from the equivalance classes in (10) (andα(v) if v
is a source node) using the fact that for a multi-edge tree networkN , we have a disjoint union

IEo(v) =

j
⋃

i=1

IEo(ui).

If each nodev follows the above steps, then the receiverρ can identify the equivalence classesΦIEi(ρ)
,f

(

x(i)
)

for i ∈ {1, . . . , k}. The receiver can evaluatef(x(l)) for eachl from these equivalence classes. The above solution
achieves a computing rate ofk/n. From (7), it follows that

Ccod(N , f) ≥ min
v ∈ V−ρ

|Eo(v)|

log|A| RIEo(v),f
. (11)

�

We next establish a general lower bound on the computing capacity for arbitrary target functions (Theorem 3.5)
and then another lower bound specifically for symmetric target functions (Theorem 3.7).

For any networkN = (G,S, ρ) with G = (V , E), define aSteiner tree6 of N to be a minimal (with respect to
nodes and edges) subgraph ofG containingS andρ such that every source inS has a directed path to the receiverρ.
Note that every non-receiver node in a Steiner tree has exactly one out-edge. LetT (N ) denote the collection of all
Steiner trees inN . For each edgee ∈ E(G), let Je = {i : ti ∈ T (N ) ande ∈ E(ti)}. The fractional Steiner tree
packing numberΠ(N ) is defined as the linear program

Π(N ) = max
∑

ti∈T (N )

ui subject to







ui ≥ 0 ∀ ti ∈ T (N ) ,
∑

i∈Je

ui ≤ 1 ∀ e ∈ E(G). (12)

Note thatΠ(N ) ≥ 1 for any networkN , and the maximum value of the sum in (12) is attained at one or more vertices
of the closed polytope corresponding to the linear constraints. Since all coefficients in the constraints are rational,the
maximum value in (12) can be attained with rationalui’s. The following theorem provides a lower bound7 on the
computing capacity for any networkN with respect to a target functionf and uses the quantityΠ(N ). In the context
of computing functions,ui in the above linear program indicates the fraction of the time the edges in treeti are used
to compute the desired function. The fact that every edge in the network has unit capacity implies

∑

i∈Je
ui ≤ 1.

Lemma 3.4. For any Steiner treeG′ of a networkN , letN ′ = (G′, S, ρ). LetC′ be a cut inN ′. Then there exists a
cutC in N such thatIC = IC′ .

(Note thatIC′ is the set indices of sources separated inN ′ by C′. The setIC′ may differ from the indices of
sources separated inN byC′.)

Proof. Define the cut
C =

⋃

i′∈IC′

Eo(σi′ ). (13)

C is the collection of out-edges inN of a set of sources disconnected by the cutC′ in N ′. If i ∈ IC′ , then, by (13),C
disconnectsσi from ρ in N , and thusIC′ ⊆ IC .

Let σi be a source. such thati ∈ IC and LetP be a path fromσi to ρ in N . From (13), it follows that there
existsi′ ∈ IC′ such thatP contains at least one edge inEo(σi′ ). If P also lies inN ′ and does not contain any edge

6Steiner trees are well known in the literature for undirected graphs. For directed graphs a “Steiner tree problem” has been studied and our
definition is consistent with such work (e.g., see [25]).

7In order to compute the lower bound, the fractional Steiner tree packing numberΠ(N ) can be evaluated using linear programming. Also note
that if we construct thereverse multicast networkby letting each source in the original networkN become a receiver, letting the receiver in theN

become the only source, and reversing the direction of each edge, then it can be verified that the routing capacity for the reverse multicast network
is equal toΠ(N ).
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in C′, thenσi′ has a path toρ in N ′ that does not contain any edge inC′, thus contradicting the fact thatσi′ ∈ IC′ .
Therefore, eitherP does not lie inN ′ orP contains an edge inC′. Thusσi ∈ IC′ , i.e.,IC ⊆ IC′ . �

Theorem 3.5. If N is a network with alphabetA and target functionf , then

Ccod(N , f) ≥ Π(N ) · min
C∈Λ(N )

1

log|A|RC,f
.

Proof. SupposeN = (G,S, ρ). Consider a Steiner treeG′ = (V ′, E ′) of N , and letN ′ = (G′, S, ρ). From Lemma
3.4 (takingC′ to beEo(v) in N ′), we have

∀ v ∈ V ′ − ρ, ∃ C ∈ Λ(N ) such thatI ′Eo(v)
= IC . (14)

Now we lower bound the computing capacity for the networkN ′ with respect to target functionf .

Ccod(N
′, f) = min-cut(N ′, f) [from Theorem 3.3] (15)

= min
v ∈ V′−ρ

1

log|A|RI′

Eo(v)
,f

[from Theorem 2.1, (6), (11)]

≥ min
C∈Λ(N )

1

log|A| RIC ,f
[from (14)]. (16)

The lower bound in (16) is the same for every Steiner tree ofN . We will use this uniform bound to lower bound the
computing capacity forN with respect tof . Denote the Steiner trees ofN by t1, . . . , tT . Let ǫ > 0 and letr denote
the quantity on the right hand side of (16). On every Steiner treeti, a computing rate of at leastr − ǫ is achievable by
(16). Using standard arguments for time-sharing between the different Steiner trees of the networkN , it follows that
a computing rate of at least(r − ǫ) · Π(N ) is achievable inN , and by lettingǫ→ 0, the result follows. �

The lower bound in Theorem 3.5 can be readily computed and is sometimes tight. The procedure used in the proof
of Theorem 3.5 may potentially be improved by maximizing thesum

∑

ti∈T (N )

ui ri subject to







ui ≥ 0 ∀ ti ∈ T (N ) ,
∑

i∈Je

ui ≤ 1 ∀ e ∈ E(G) (17)

whereri is any achievable rate8 for computingf in the Steiner tree networkNi = (ti, S, ρ).
We now obtain a different lower bound on the computing capacity in the special case when the target function is the

arithmetic sum. This lower bound is then used to give an alternative lower bound (in Theorem 3.7) on the computing
capacity for the class of symmetric target functions. The bound obtained in Theorem 3.7 is sometimes better than that
of Theorem 3.5, and sometimes worse (Example 3.8 illustrates instances of both cases).

Theorem 3.6. If N is a network with alphabetA = {0, 1, . . . , q − 1} and the arithmetic sum target functionf , then

Ccod(N , f) ≥ min
C∈Λ(N )

|C|

logq Pq,s

wherePq,s denotes the smallest prime number greater thans(q − 1).

Proof. Let p = Pq,s and letN ′ denote the same network asN but whose alphabet isFp, the finite field of orderp.
Let ǫ > 0. From Theorem 3.2, there exists a(k, n) solution for computing theFp-sum of the source messages in

N ′ with an achievable computing rate satisfying

k

n
≥ min

C∈Λ(N )
|C| − ǫ.

8From Theorem 3.3,ri can be arbitrarily close to min-cut(ti, f).
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This (k, n) solution can be repeated to derive a(ck, cn) solution for any integerc ≥ 1 (note that edges in the network
N carry symbols from the alphabetA = {0, 1, . . . , q − 1}, while those in the networkN ′ carry symbols from a
larger alphabetFp). Any (ck, cn) solution for computing theFp-sum inN ′ can be ‘simulated’ in the networkN by a
(

ck, ⌈cn logq p⌉
)

code (e.g. see [2]). Furthermore, sincep ≥ s(q− 1)+1 and the source alphabet is{0, 1, . . . , q− 1},
theFp-sum of the source messages in networkN is equal to their arithmetic sum. Thus, by choosingc large enough,
the arithmetic sum target function is computed inN with an achievable computing rate of at least

min
C∈Λ(N )

|C|

logq p
− 2ǫ.

Sinceǫ is arbitrary, the result follows. �

Theorem 3.7. If N is a network with alphabetA = {0, 1, . . . , q − 1} and a symmetric target functionf , then

Ccod(N , f) ≥

min
C∈Λ(N )

|C|

(q − 1) · logq P (s)

whereP (s) is the smallest prime number9 greater thans.

Proof. From Definition 1.10, it suffices to evaluate the histogram target functionf̂ for computingf . For any set of
source messages(x1, x2, . . . , xs) ∈ As, we have

f̂ (x1, . . . , xs) = (c0, c1, . . . , cq−1)

whereci = |{j : xj = i}| for eachi ∈ A. Consider the networkN ′ = (G,S, ρ) with alphabetA′ = {0, 1}. Then for
eachi ∈ A, ci can be evaluated by computing the arithmetic sum target function inN ′ where every source nodeσj is
assigned the message1 if xj = i, and0 otherwise. Since we know that

q−1
∑

i=0

ci = s

the histogram target function̂f can be evaluated by computing the arithmetic sum target function q − 1 times in the
networkN ′ with alphabetA′ = {0, 1}. Let ǫ > 0. From Theorem 3.6 in the Appendix, there exists a(k, n) solution
for computing the arithmetic sum target function inN ′ with an achievable computing rate of at least

k

n
≥

min
C∈Λ(N )

|C|

log2 P (s)
− ǫ.

The above(k, n) solution can be repeated to derive a(ck, cn) solution for any integerc ≥ 1. Note that edges in the
networkN carry symbols from the alphabetA = {0, 1, . . . , q−1}, while those in the networkN ′ carry symbols from
A′ = {0, 1}. Any (ck, cn) code for computing the arithmetic sum function inN ′ can be simulated in the networkN
by a (ck, ⌈cn logq 2⌉) code10. Thus by choosingc large enough, the above-mentioned code can be simulated in the

networkN to derive a solution for computing the histogram target function f̂ with an achievable computing rate11 of
at least

1

(q − 1)
·

1

logq 2
·

min
C∈Λ(N )

|C|

log2 P (s)
− 2ǫ.

Sinceǫ is arbitrary, the result follows. �

9From Bertrand’s Postulate [21, p.343], we haveP (s) ≤ 2s.
10To see details of such a simulation, we refer the interested reader to [2].
11Theorem 3.7 provides a uniform lower bound on the achievablecomputing rate for any symmetric function. Better lower bounds can be found

by considering specific functions; for example Theorem 3.6 gives a better bound for the arithmetic sum target function.
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PSfrag replacements

σ1

σ1

σ2

σ2

ρ

N2

σ3

ρ

ρ

N3

Figure 3: The Reverse Butterfly NetworkN2 has two binary sources{σ1, σ2} and networkN3 has three binary sources
{σ1, σ2, σ3}, each withA = {0, 1}. Each network’s receiverρ computes the arithmetic sum of the source messages.

Example 3.8. Consider networksN2 andN3 in Figure 3, each with alphabetA = {0, 1} and the (symmetric)
arithmetic sum target functionf . Theorem 3.7 provides a larger lower bound on the computing capacityCcod(N2, f)
than Theorem 3.5, but a smaller lower bound onCcod(N3, f).

• For networkN2 (in Figure 3), we havemax
C∈Λ(N )

RC,f = 3 and min
C∈Λ(N )

|C| = 2, both of which occur, for example,

whenC consists of the two in-edges to the receiverρ. Also, (q − 1) logq P (s, q) = log2 3 andΠ(N ) = 3/2, so

Ccod(N2, f) ≥ (3/2)/ log2 3 [from Theorem 3.5]

Ccod(N2, f) ≥ 2/ log2 3 [from Theorem 3.7]. (18)

In fact, we get the upper boundCcod(N2, f) ≤ 2/ log2 3 from Theorem 2.1, and thus from (18),Ccod(N2, f) =
2/ log2 3.

• For networkN3, we have max
C∈Λ(N )

RC,f = 4 and min
C∈Λ(N )

|C| = 1, both of which occur whenC = {(σ3, ρ)}.

Also, (q − 1) logq P (s, q) = log2 5 andΠ(N ) = 1, so

Ccod(N3, f) ≥ 1/ log2 4 [from Theorem 3.5]

Ccod(N3, f) ≥ 1/ log2 5 [from Theorem 3.7].

From Theorem 3.3, we haveCcod(N3, f) = 1/ log2 4.

Remark 3.9. An open question, pointed out in [7], is whether the coding capacity of a network can be irrational.
Like the coding capacity, the computing capacity is the supremum of ratiosk/n for which a(k, n) solution exists.
Example 3.8 demonstrates that the computing capacity of a network (e.g.N2) with unit capacity links can be irrational
when the target function is the arithmetic sum function.

4 On the tightness of the min-cut upper bound

In the previous section, Theorems 3.1 - 3.3 demonstrated three special instances for which the min-cut(N , f) upper
bound is tight. In this section, we use Theorem 3.5 and Theorem 3.7 to establish further results on the tightness of the
min-cut(N , f) upper bound for different classes of target functions.

The following lemma provides a bound on the footprint sizeRI,f for any divisible target functionf .
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Lemma 4.1. For any divisible target functionf : As −→ B and any index setI ⊆ {1, 2, . . . , s}, the footprint size
satisfies

RI,f ≤ |f (As)| .

Proof. From the definition of a divisible target function, for anyI ⊆ {1, 2, . . . , s}, there exist mapsf I , f Ic

, andg
such that

f(x) = g
(

f I(xI), f
Ic

(xIc)
)

∀ x ∈ As

whereIc = {1, 2, . . . , s} − I. From the definition of the equivalence relation≡ (see Definition 1.5), it follows that
a, b ∈ A|I| belong to the same equivalence class wheneverf I(a) = f I(b). This fact implies thatRI,f ≤

∣

∣f I
(

A|I|
)∣

∣.
We need

∣

∣f I
(

A|I|
)∣

∣ ≤ |f (As)| to complete the proof which follows from Definition 1.9(2). �

Theorem 4.2. If N is a network with a divisible target functionf , then

Ccod(N , f) ≥
Π(N )

|Ei(ρ)|
· min-cut(N , f)

whereEi(ρ) denotes the set of in-edges of the receiverρ.

Proof. LetA be the network alphabet. From Theorem 3.5,

Ccod(N , f) ≥ Π(N ) · min
C∈Λ(N )

1

log|A|RC,f

≥ Π(N ) ·
1

log|A| |f (A
s)|

[from Lemma 4.1]. (19)

On the other hand, for any networkN , the set of edgesEi(ρ) is a cut that separates the set of sourcesS from ρ. Thus,

min-cut(N , f) ≤
|Ei(ρ)|

log|A|REi(ρ),f
[from (4)]

=
|Ei(ρ)|

log|A| |f (A
s)|

[from IEi(ρ) = S and Definition 1.6]. (20)

Combining (19) and (20) completes the proof. �

Theorem 4.3. If N is a network with alphabetA = {0, 1, . . . , q − 1} and symmetric target functionf , then

Ccod(N , f) ≥
logq R̂f

(q − 1) · logq P (s)
· min-cut(N , f)

whereP (s) is the smallest prime number greater thans and12

R̂f = min
I⊆{1,...,s}

RI,f .

Proof. The result follows immediately from Theorem 3.7 and since for any networkN and any target functionf ,

min-cut(N , f) ≤
1

logq R̂f

min
C∈Λ(N )

|C| [from (4) and the definition of̂Rf ].

�

The following results provide bounds on the gap between the computing capacity and the min-cut forλ-exponential
andλ-bounded functions (see Definition 1.11).

12From our assumption,̂Rf ≥ 2 for any target functionf .
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Theorem 4.4. If λ ∈ (0, 1] andN is a network with aλ-exponential target functionf , then

Ccod(N , f) ≥ λ · min-cut(N , f).

Proof. We have

min-cut(N , f) = min
C∈Λ(N )

|C|

log|A|RC,f

≤ min
C∈Λ(N )

|C|

λ |IC |
[from f beingλ-exponential]

=
1

λ
· min-cut(N ) [from (3)].

Therefore,

min-cut(N , f)

Ccod(N , f)
≤

1

λ
·

min-cut(N )

Ccod(N , f)

≤
1

λ

where the last inequality follows because a computing rate of min-cut(N ) is achievable for the identity target func-
tion from Theorem 3.1, and the computing capacity for any target functionf is lower bounded by the computing
capacity for the identity target function (since any targetfunction can be computed from the identity function), i.e.,
Ccod(N , f) ≥ min-cut(N ). �

Theorem 4.5. Letλ > 0. If N is a network with alphabetA and aλ-bounded target functionf , and all non-receiver
nodes in the networkN are sources, then

Ccod(N , f) ≥
log|A| R̂f

λ
· min-cut(N , f)

where
R̂f = min

I⊆{1,...,s}
RI,f .

Proof. For any networkN such that all non-receiver nodes are sources, it follows from Edmond’s Theorem [45, p.405,
Theorem 8.4.20] that

Π(N ) = min
C∈Λ(N )

|C| .

Then,

Ccod(N , f) ≥ min
C∈Λ(N )

|C| · min
C∈Λ(N )

1

log|A|RC,f
[from Theorem 3.5]

≥ min
C∈Λ(N )

|C|

λ
[from f beingλ-bounded]. (21)

On the other hand,

min-cut(N , f) = min
C∈Λ(N )

|C|

log|A|RC,f

≤ min
C∈Λ(N )

|C|

log|A| R̂f

[from the definition ofR̂f ]. (22)
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Combining (21) and (22) gives

min-cut(N , f)

Ccod(N , f)
≤ min

C∈Λ(N )

|C|

log|A| R̂f

·
1

min
C∈Λ(N )

|C|
λ

=
λ

log|A| R̂f

.

�

Since the maximum and minimum functions are1-bounded, and̂Rf = |A| for each, we get the following corollary.

Corollary 4.6. Let A be any ordered alphabet and letN be any network such that all non-receiver nodes in the
network are sources. If the target functionf is either the maximum or the minimum function, then

Ccod(N , f) = min-cut(N , f).

Theorems 4.2 - 4.5 provide bounds on the tightness of the min-cut(N , f) upper bound for different classes of
target functions. In particular, we show that forλ-exponential (respectively,λ-bounded) target functions, the com-
puting capacityCcod(N , f) is at least a constant fraction of the min-cut(N , f) for any constantλ and any network
N (respectively, any networkN where all non-receiver nodes are sources). The following theorem shows by means
of an example target functionf and a networkN , that the min-cut(N , f) upper bound cannot always approximate
the computing capacityCcod(N , f) up to a constant fraction. Similar results are known in network coding as well as
in multicommodity flow. It was shown in [33] that whens source nodes communicate independently with the same
number of receiver nodes, there exist networks whose maximum multicommodity flow isO(1/ log s) times a well
known cut-based upper bound. It was shown in [23] that with network coding there exist networks whose maximum
throughput isO(1/ log s) times the best known cut bound (i.e. meagerness). Whereas these results do not hold for
single-receiver networks (by Theorem 3.1), the following similar bound holds for network computing in single-receiver
networks. The proof of Theorem 4.7 uses Lemma 7.1 which is presented in the Appendix.

Theorem 4.7. For anyǫ > 0, there exist networksN such that for the arithmetic sum target functionf ,

Ccod(N , f) = O

(

1

(log s)1−ǫ

)

· min-cut(N , f).

Proof. Note that for the networkNM ,L and the arithmetic sum target functionf ,

min-cut(NM ,L, f) = min
C∈Λ(NM ,L)

|C|

log2 (|IC |+ 1)
[from (5)].

Let m be the number of sources disconnected from the receiverρ by a cutC in the networkNM ,L. For each such
sourceσ, the cutC must contain the edge(σ, ρ) as well as either theL parallel edges(σ, σ0) or theL parallel edges
(σ0, ρ). Thus,

min-cut(NM ,L, f) = min
1≤m≤M

{

L+m

log2(m+ 1)

}

. (23)
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Letm∗ attain the minimum in (23) and definec∗= min-cut(NM ,L, f). Then,

c∗/ ln 2 ≥ min
1≤m≤M

{

m+ 1

ln(m+ 1)

}

≥ min
x≥2

{ x

lnx

}

> min
x≥2

{

x

x− 1

}

> 1

L = c∗ log2 (m
∗ + 1)−m∗ [from (23)]

≤ c∗ log2

(

c∗

ln 2

)

−

(

c∗

ln 2
− 1

)

(24)

where (24) follows since the functionc∗ log2 (x+ 1)−x attains its maximum value over(0,∞) atx = (c∗/ ln 2)−1.
Let us chooseL = ⌈(logM)1−(ǫ/2)⌉. We have

L = O(min-cut(NM ,L, f) log2(min-cut(NM ,L, f))) [from (24)] (25)

min-cut(NM ,L, f) = Ω((logM)1−ǫ) [from (25)] (26)

Ccod(NM,L, f) = O(1) [from Lemma 7.1]

= O

(

1

(logM)1−ǫ

)

· min-cut(NM ,L, f) [from (26)].

�

5 An example network

PSfrag replacements

σ3

σ1 σ2

ρ

Figure 4: NetworkN̂ has three binary sources,σ1, σ2, andσ3 with A = {0, 1} and the receiverρ computes the
arithmetic sum of the source messages.

In this section, we evaluate the computing capacity for an example network and a target function (which is divisible
and symmetric) and show that the min-cut bound is not tight. In addition, the example demonstrates that the lower
bounds discussed in Section 3 are not always tight and illustrates the combinatorial nature of the computing problem.

Theorem 5.1. The computing capacity of network̂N with respect to the arithmetic sum target functionf is

Ccod

(

N̂ , f
)

=
2

1 + log2 3
.

Proof. For any(k, n) solution for computingf , letw(1), w(2), w(3) ∈ {0, 1}k denote the message vectors generated
by sourcesσ1, σ2, σ3, respectively, and letz1, z2 ∈ {0, 1}n be the vectors carried by edges(σ1, ρ) and (σ2, ρ),
respectively.
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Consider any positive integersk, n such thatk is even and

k

n
≤

2

1 + log2 3
. (27)

Then we have
2n ≥ 3k/22k/2. (28)

We will describe a(k, n) network code for computingf in the networkN̂ . Define vectorsy(1), y(2) ∈ {0, 1}k by:

y
(1)
i =

{

w
(1)
i + w

(3)
i if 1 ≤ i ≤ k/2

w
(1)
i if k/2 ≤ i ≤ k

y
(2)
i =

{

w
(2)
i if 1 ≤ i ≤ k/2

w
(2)
i + w

(3)
i if k/2 ≤ i ≤ k.

The firstk/2 components ofy(1) can take on the values0, 1, 2, and the lastk/2 components can take on the values
0, 1, so there are a total of3k/22k/2 possible values fory(1), and similarly fory(2). From (28), there exists a mapping
that assigns unique values toz1 for each different possible value ofy(1), and similarly forz2 andy(2). This induces a
solution forN̂ as summarized below.

The sourceσ3 sends its full message vectorw(3) (k < n) to each of the two nodes it is connected to. Source
σ1 (respectively,σ2) computes the vectory(1) (respectively,y(2)), then computes the vectorz1 (respectively,z2), and
finally sendsz1 (respectively,z2) on its out-edge. The receiverρ determinesy(1) andy(2) from z1 andz2, respectively,
and then computesy(1) + y(2), whosei-th component isw(1)

i + w
(2)
i + w

(3)
i , i.e., the arithmetic sum target function

f . The above solution achieves a computing rate ofk/n. From (27), it follows that

Ccod

(

N̂ , f
)

≥
2

1 + log2 3
. (29)

We now prove a matching upper bound on the computing capacityCcod

(

N̂ , f
)

. Consider any(k, n) solution for

computing the arithmetic sum target functionf in networkN̂ . For anyp ∈ {0, 1, 2, 3}k, let

Ap = {(z1, z2) : w
(1) + w(2) + w(3) = p}.

That is, each element ofAp is a possible pair of input edge-vectors to the receiver whenthe target function value
equalsp.

Let j denote the number of components ofp that are either0 or 3. Without loss of generality, suppose the firstj
components ofp belong to{0, 3} and definew̃(3) ∈ {0, 1}k by

w̃
(3)
i =

{

0 if pi ∈ {0, 1}
1 if pi ∈ {2, 3}.

Let
T = {(w(1), w(2)) ∈ {0, 1}k × {0, 1}k : w(1) + w(2) + w̃(3) = p}

and notice that
{

(z1, z2) : (w
(1), w(2)) ∈ T,w(3) = w̃(3)

}

⊆ Ap. (30)

If w(1) + w(2) + w̃(3) = p, then:

(i) pi − w̃
(3)
i = 0 impliesw(1)

i = w
(2)
i = 0;

(ii) pi − w̃
(3)
i = 2 impliesw(1)

i = w
(2)
i = 1;

(iii) pi − w̃
(3)
i = 1 implies(w(1)

i , w
(2)
i ) = (0, 1) or (1, 0).
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Thus, the elements ofT consist ofk-bit vector pairs(w(1), w(2)) whose firstj components are fixed and equal (i.e.,
both are0 whenpi = 0 and both are1 whenpi = 3), and whose remainingk − j components can each be chosen
from two possibilities (i.e., either(0, 1) or (1, 0), whenpi ∈ {1, 2}). This observation implies that

|T | = 2k−j . (31)

Notice that if onlyw(1) changes, then the sumw(1) + w(2) + w(3) changes, and soz1 must change (sincez2 is not
a function ofw(1)) in order for the receiver to compute the target function. Thus, ifw(1) changes andw(3) does not
change, thenz1 must still change, regardless of whetherw(2) changes or not. More generally, if the pair(w(1), w(2))
changes, then the pair(z1, z2) must change. Thus,

∣

∣

∣

{

(z1, z2) : (w
(1), w(2)) ∈ T,w(3) = w̃(3)

}∣

∣

∣ ≥ |T | (32)

and therefore

|Ap| ≥
∣

∣

∣

{

(z1, z2) : (w
(1), w(2)) ∈ T,w(3) = w̃(3)

}∣

∣

∣ [from (30)]

≥ |T | [from (32)]

= 2k−j . [from (31)] (33)

We have the following inequalities:

4n ≥
∣

∣

∣{(z1, z2) : w
(1), w(2), w(3) ∈ {0, 1}k}

∣

∣

∣

=
∑

p∈{0,1,2,3}k

|Ap| (34)

=
k
∑

j=0

∑

p∈{0,1,2,3}k

|{i:pi∈{0,3}}|=j

|Ap|

≥
k
∑

j=0

∑

p∈{0,1,2,3}k

|{i:pi∈{0,3}}|=j

2k−j [from (33)]

=
k
∑

j=0

(

k

j

)

2k2k−j

= 6k (35)

where (34) follows since theAp’s must be disjoint in order for the receiver to compute the target function. Taking
logarithms of both sides of (35), gives

k

n
≤

2

1 + log2 3

which holds for allk andn, and therefore

Ccod

(

N̂ , f
)

≤
2

1 + log2 3
. (36)

Combining (29) and (36) concludes the proof. �
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Corollary 5.2. For the networkN̂ with the arithmetic sum target functionf ,

Ccod

(

N̂ , f
)

< min-cut
(

N̂ , f
)

.

Proof. Consider the network̂N depicted in Figure 4 with the arithmetic sum target functionf . It can be shown that
the footprint sizeRC,f = |IC |+ 1 for any cutC, and thus

min-cut
(

N̂ , f
)

= 1 [from (5)].

The result then follows immediately from Theorem 5.1. �

Remark 5.3. In light of Theorem 5.1, we compare the various lower bounds on the computing capacity of the network

N̂ derived in Section 3 with the exact computing capacity. It can be shown thatΠ
(

N̂
)

= 1. If f is the arithmetic sum

target function, then

Ccod

(

N̂ , f
)

≥ 1/2 [from Theorem 3.5]

Ccod

(

N̂ , f
)

≥ 1/ log2 5 [from Theorem 3.7]

Ccod

(

N̂ , f
)

≥ 1/2 [from Theorem 4.2].

Thus, this example demonstrates that the lower bounds obtained in Section 3 are not always tight and illustrates the
combinatorial nature of the problem.

6 Conclusions

We examined the problem of network computing. The network coding problem is a special case when the function
to be computed is the identity. We have focused on the case when a single receiver node computes a function of the
source messages and have shown that while for the identity function the min-cut bound is known to be tight for all
networks, a much richer set of cases arises when computing arbitrary functions, as the min-cut bound can range from
being tight to arbitrarily loose. One key contribution of the paper is to show the theoretical breadth of the considered
topic, which we hope will lead to further research. This workidentifies target functions (most notably, the arithmetic
sum function) for which the min-cut bound is not always tight(even up to a constant factor) and future work includes
deriving more sophisticated bounds for these scenarios. Extensions to computing with multiple receiver nodes, each
computing a (possibly different) function of the source messages, are of interest.
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7 Appendix

Define the function

Q :

M
∏

i=1

{0, 1}k −→ {0, 1, . . . ,M}k

as follows. For everya = (a(1), a(2), . . . , a(M)) such that eacha(i) ∈ {0, 1}k,

Q(a)j =

M
∑

i=1

a
(i)
j for everyj ∈ {1, 2, . . . , k}. (37)

We extendQ forX ⊆
M
∏

i=1

{0, 1}k by definingQ(X) = {Q(a) : a ∈ X}.

We now present Lemma 7.1. The proof uses Lemma 7.2, which is presented thereafter. We define the following
function which is used in the next lemma. Let

γ(x) = H−1

(

1

2

(

1−
1

x

))

⋂

[

0,
1

2

]

for x ≥ 1 (38)

whereH−1 denotes the inverse of the binary entropy functionH(x) = −x log2 x − (1 − x) log2(1 − x). Note that
γ(x) is an increasing function ofx.

Lemma 7.1. If lim
M→∞

L

log2M
= 0, then lim

M→∞
Ccod(NM ,L, f) = 1.

Proof. For anyM andL, a solution with computing rate1 is obtained by having each sourceσi send its message
directly to the receiver on the edge(σi, ρ). HenceCcod(NM ,L, f) ≥ 1. Now suppose thatNM ,L has a(k, n) solution
with computing ratek/n > 1 and for eachi ∈ {1, 2, . . . ,M}, let

gi : {0, 1}k −→ {0, 1}n

be the corresponding encoding function on the edge(σi, ρ). Then for anyA1, A2, . . . , AM ⊆ {0, 1}k, we have

(

M
∏

i=1

|gi (Ai)|

)

· 2nL ≥

∣

∣

∣

∣

∣

Q

(

M
∏

i=1

Ai

)∣

∣

∣

∣

∣

. (39)

EachAi represents a set of possible message vectors of sourceσi. The left-hand side of (39) is the maximum number
of different possible instantiations of the information carried by the in-edges to the receiverρ (i.e., |gi (Ai)| possible
vectors on each edge(σi, ρ) and2nL possible vectors on theL parallel edges(σ0, ρ)). The right-hand side of (39) is
the number of distinct sum vectors that the receiver needs todiscriminate, using the information carried by its in-edges.

For eachi ∈ {1, 2, . . . ,M}, let zi ∈ {0, 1}n be such that
∣

∣g−1
i (zi)

∣

∣ ≥ 2k−n and chooseAi = g−1
i (zi) for eachi.

Also, letU (M) =

M
∏

i=1

Ai. Then we have

∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≤ 2nL [from |gi (Ai)| = 1 and (39)]. (40)

Thus (40) is a necessary condition for the existence of a(k, n) solution for computingf in the networkNM ,L.
Lemma 7.2 shows that13

∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≥ (M + 1)γ(k/n)k (41)

13One can compare this lower bound to the upper bound
∣

∣Q
(

U (M)
)
∣

∣ ≤ (M + 1)k which follows from (37).
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where the functionγ is defined in (38). Combining (40) and (41), any(k, n) solution for computingf in the network
NM ,L with rater = k/n > 1 must satisfy

r γ(r) log2(M + 1) ≤
1

n
log2

∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≤ L. (42)

From (42), we have

r γ(r) ≤
L

log2(M + 1)
. (43)

The quantityrγ(r) is monotonic increasing from0 to ∞ on the interval[1,∞) and the right hand side of (43) goes
to zero asM → ∞. Thus, the rater can be forced to be arbitrarily close to1 by makingM sufficiently large, i.e.
Ccod(NM ,L, f) ≤ 1. In summary,

lim
M−→∞

Ccod(NM ,L, f) = 1.

�

Lemma 7.2. Letk, n,M be positive integers such thatk > n. For eachi ∈ {1, 2, . . . ,M}, letAi ⊆ {0, 1}k be such

that |Ai| ≥ 2k−n and letU (M) =

M
∏

i=1

Ai. Then,

∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≥ (M + 1)γ(k/n)k.

Proof. The result follows from Lemmas 7.4 and 7.7. �

The remainder of this Appendix is devoted to the proofs of lemmas used in the proof of Lemma 7.2. Before we
proceed, we need to define some more notation. For everyj ∈ {1, 2, . . . , k}, define the map

h(j) : {0, 1, . . . ,M}k −→ {0, 1, . . . ,M}k

by

(

h(j)(p)
)

i
=

{

max {0, pi − 1} if i = j

pi otherwise.
(44)

That is, the maph(j) subtracts one from thej-th component of the input vector (as long as the result is non-negative)
and leaves all the other components the same. For everyj ∈ {1, 2, . . . , k}, define the map

φ̂(j) : 2{0,1}
k

× {0, 1}k −→ {0, 1}k

by

φ̂(j)(A, a) =

{

h(j)(a) if h(j)(a) /∈ A

a otherwise
∀ A ⊆ {0, 1}k anda ∈ {0, 1}k. (45)

Define
φ(j) : 2{0,1}

k

−→ 2{0,1}
k

by

φ(j)(A) =
{

φ̂(j)(A, a) : a ∈ A
}

. (46)

Note that
∣

∣

∣φ(j)(A)
∣

∣

∣ = |A| . (47)
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A setA is said to beinvariantunder the mapφ(j) if the set is unchanged whenφ(j) is applied to it, in which case from
(45) and (46) we would have that for eacha ∈ A,

h(j)(a) ∈ A. (48)

Lemma 7.3. For anyA ⊆ {0, 1}k and all integersm andt such that1 ≤ m ≤ t ≤ k, the setφ(t)(φ(t−1)(· · ·φ(1)(A)))
is invariant under the mapφ(m).

Proof. For anyA′ ⊆ {0, 1}k, we have

φ(i)(φ(i)(A′)) = φ(i)(A′) ∀ i ∈ {1, 2, . . . , k}. (49)

The proof of the lemma is by induction ont. For the base caset = 1, the proof is clear sinceφ(1)(φ(1)(A)) =
φ(1)(A) from (49). Now suppose the lemma is true for allt < τ (whereτ ≥ 2). Now supposet = τ . Let
B = φ(τ−1)(φ(τ−2)(· · ·φ(1)(A))). Sinceφ(τ)(φ(τ)(B)) = φ(τ)(B) from (49), the lemma is true whenm = t = τ .
In the following arguments, we takem < τ . From the induction hypothesis,B is invariant under the mapφ(m), i.e.,

φ(m)(B) = B. (50)

Consider any vectorc ∈ φ(τ)(B). From (48), we need to show thath(m)(c) ∈ φ(τ)(B). We have the following cases.

cτ = 1 : c, h(τ)(c) ∈ B [from cτ = 1 andc ∈ φ(τ)(B)] (51)

h(m)(c) ∈ B [from (50) and (51)] (52)

h(τ)
(

h(m)(c)
)

= h(m)
(

h(τ)(c)
)

∈ B [from (50) and (51)] (53)

h(m)(c) ∈ φ(τ)(B) [from (52) and (53)]

cτ = 0 : ∃ b ∈ B such thath(τ)(b) = c [from cτ = 0 andc ∈ φ(τ)(B)] (54)

h(m)(b) ∈ B [from (50) and (54)] (55)

h(m)
(

h(τ)(b)
)

= h(τ)
(

h(m)(b)
)

∈ φ(τ)(B) [from (55)] (56)

h(m) (c) ∈ φ(τ)(B) [from (54) and (56)].

Thus, the lemma is true fort = τ and the induction argument is complete. �

LetA1, A2, . . . , AM ⊆ {0, 1}k be such that|Ai| ≥ 2k−n for eachi. LetU (M) =

M
∏

i=1

Ai and extend the definition

of φ(j) in (46) to products by

φ(j)(U (M)) =

M
∏

i=1

φ(j)(Ai).

U (M) is said to beinvariant underφ(j) if
φ(j)(U (M)) = U (M).

It can be verifed thatU (M) is invariant underφ(j) iff eachAi is invariant underφ(j). For eachi ∈ {1, 2, . . . ,M}, let

Bi = φ(k)(φ(k−1)(· · ·φ(1)(Ai)))

and from (47) note that
|Bi| = |Ai| ≥ 2k−n. (57)
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Let

V (M) = φ(k)(φ(k−1)(· · ·φ(1)(U (M)))) =

M
∏

i=1

Bi

and recall the definition of the functionQ (37).

Lemma 7.4.
∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≥
∣

∣

∣Q
(

V (M)
)∣

∣

∣ .

Proof. We begin by showing that
∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≥
∣

∣

∣Q
(

φ(1)(U (M))
)∣

∣

∣ . (58)

For everyp ∈ {0, 1, . . . ,M}k−1, let

ϕ(p) =
{

r ∈ Q
(

U (M)
)

: (r2, · · · , rk) = p
}

ϕ1(p) =
{

s ∈ Q
(

φ(1)(U (M))
)

: (s2, · · · , sk) = p
}

and note that

Q
(

U (M)
)

=
⋃

p∈{0,1,...,M}k−1

ϕ(p) (59)

Q
(

φ(1)(U (M))
)

=
⋃

p∈{0,1,...,M}k−1

ϕ1(p) (60)

where the two unions are in fact disjoint unions. We show thatfor everyp ∈ {0, 1, . . . ,M}k−1,

|ϕ(p)| ≥ |ϕ1(p)| (61)

which by (59) and (60) implies (58).
If |ϕ1(p)| = 0, then (61) is trivial. Now consider anyp ∈ {0, 1, . . . ,M}k−1 such that|ϕ1(p)| ≥ 1 and let

Kp = max {i : (i, p1, · · · , pk−1) ∈ ϕ1(p)} .

Then we have
|ϕ1(p)| ≤ Kp + 1. (62)

Since(Kp, p1, · · · , pk−1) ∈ ϕ1(p), there exists(a(1), a(2), . . . , a(M)) ∈ U (M) such that

M
∑

i=1

φ̂(1)
(

Ai, a
(i)
)

= (Kp, p1, · · · , pk−1). (63)

Then from the definition of the map̂φ(1) in (45), there areKp of thea(i)’s from amongst

{a(1), a(2), . . . , a(M)} such thata(i)1 = 1 andφ̂(1)
(

Ai, a
(i)
)

= a(i). Let I = {i1, i2, . . . , iKp
} ⊆ {1, 2, . . . ,M} be

the index set for these vectors and letâ(i) = h(1)(a(i)) for eachi ∈ I. Then for eachi ∈ I, we have

a(i) =
(

1, a
(i)
2 , . . . , a

(i)
k

)

∈ Ai

â(i) =
(

0, a
(i)
2 , . . . , a

(i)
k

)

∈ Ai [from φ̂(1)
(

Ai, a
(i)
)

= a(i) and (45)].

Let

R =

{

M
∑

i=1

b(i) :
b(i) ∈ {a(i), â(i)} for i ∈ I,

b(i) = a(i) for i /∈ I

}

⊆ ϕ(p). (64)
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From (63) and (64), for everyr ∈ R we have

r1 ∈ {0, 1, . . . , |I|} ,

ri = pi ∀ i ∈ {2, 3, . . . , k}

and thus
|R| = |I|+ 1 = Kp + 1. (65)

Hence, we have

|ϕ(p)| ≥ |R| [from (64)]

= Kp + 1 [from (65)]

≥ |ϕ1(p)| [from (62)]

and then from (59) and (60), it follows that
∣

∣

∣Q
(

U (M)
)∣

∣

∣ ≥
∣

∣

∣Q
(

φ(1)(U (M))
)∣

∣

∣ .

For anyA ⊆ {0, 1}k and anyj ∈ {1, 2, . . . , k}, we know that
∣

∣φ(j)(A)
∣

∣ ⊆ {0, 1}k. Thus, the same arguments as
above can be repeated to show that

∣

∣

∣
Q
(

φ(1)(U (M))
)∣

∣

∣
≥
∣

∣

∣
Q
(

φ(2)(φ(1)(U (M)))
)∣

∣

∣

≥
∣

∣

∣Q
(

φ(3)(φ(2)(φ(1)(U (M))))
)∣

∣

∣

...

≥
∣

∣

∣
Q
(

φ(k)(φ(k−1)(· · ·φ(1)(U (M))))
)∣

∣

∣

=
∣

∣

∣Q
(

V (M)
)∣

∣

∣ .

�

For anys, r ∈ Z
k, we say thats ≤ r if sl ≤ rl for everyl ∈ {1, 2, . . . , k}.

Lemma 7.5. Letp ∈ Q
(

V (M)
)

. If q ∈ {0, 1, . . . ,M}k andq ≤ p, thenq ∈ Q
(

V (M)
)

.

Proof. Sinceq ≤ p, it can be obtained by iteratively subtracting1 from the components ofp, i.e., there existt ≥ 0
andi1, i2, . . . , it ∈ {1, 2, . . . , k} such that

q = h(i1)
(

h(i2)
(

· · ·
(

h(it)(p)
)))

.

Consider anyi ∈ {1, 2, . . . , k}. We show thath(i)(p) ∈ Q
(

V (M)
)

, which implies by induction thatq ∈ Q
(

V (M)
)

. If
pi = 0, thenh(i)(p) = p and we are done. Suppose thatpi > 0. Sincep ∈ Q

(

V (M)
)

, there existsb(j) ∈ Bj for every
j ∈ {1, 2, . . . ,M} such that

p =

M
∑

j=1

b(j)

andb(m)
i = 1 for somem ∈ {1, 2, . . . ,M}. From Lemma 7.3,V (M) is invariant underφ(i) and thus from (48),

h(i)(b(m)) ∈ Bm and

h(i)(p) =

m−1
∑

j=1

b(j) + h(i)(b(m)) +

M
∑

j=m+1

b(j)
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is an element ofQ
(

V (M)
)

. �

The lemma below is presented in [3] without proof, as the proof is straightforward.

Lemma 7.6. For all positive integersk, n,M , andδ ∈ (0, 1),

min
0 ≤ mi ≤ M,

∑k
i=1 mi ≥ δMk

k
∏

i=1

(1 +mi) ≥ (M + 1)
δk
. (66)

For anya ∈ {0, 1}k, let |a|H denote the Hamming weight ofa, i.e., the number of non-zero components ofa. The
next lemma uses the functionγ defined in (38).

Lemma 7.7. ∣

∣

∣Q
(

V (M)
)∣

∣

∣ ≥ (M + 1)γ(k/n)k.

Proof. Let δ = γ(k/n). The number of distinct elements in{0, 1}k with Hamming weight at most⌊δk⌋ equals

⌊δk⌋
∑

j=0

(

k

j

)

≤ 2kH(δ) [from [24, p.15, Theorem 1]]

= 2(k−n)/2 [from (38)].

For eachi ∈ {1, 2, . . . ,M}, |Bi| ≥ 2k−n from (57) and hence there existsb(i) ∈ Bi such that
∣

∣b(i)
∣

∣

H
≥ δk. Let

p =

M
∑

i=1

b(i) ∈ Q
(

V (M)
)

.

It follows thatpj ∈ {0, 1, 2, . . . ,M} for everyj ∈ {1, 2, . . . , k}, and

k
∑

j=1

pj =

M
∑

i=1

∣

∣

∣b(i)
∣

∣

∣

H
≥ δMk. (67)

The number of vectorsq in {0, 1, . . . ,M}k such thatq � p equals
k
∏

j=1

(1 + pj), and from Lemma 7.5, each such

vector is also inQ
(

V (M)
)

. Therefore,

∣

∣

∣Q
(

V (M)
)∣

∣

∣ ≥
k
∏

j=1

(1 + pj)

≥ (M + 1)
δk

[from (67) and Lemma 7.6].

Sinceδ = γ(k/n), the result follows. �
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