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Abstract

One popular approach to soft-decision decoding of Reed-Solomon (RS) codes is based on using

multiple trials of a simple RS decoding algorithm in combination with erasing or flipping a set of symbols

or bits in each trial. This paper presents a framework based on rate-distortion (RD) theory to analyze these

multiple-decoding algorithms. By defining an appropriate distortion measure between an error pattern

and an erasure pattern, the successful decoding condition, for a single errors-and-erasures decoding trial,

becomes equivalent to distortion being less than a fixed threshold. Finding the best set of erasure patterns

also turns into a covering problem which can be solved asymptotically by rate-distortion theory. Thus, the

proposed approach can be used to understand the asymptotic performance-versus-complexity trade-off

of multiple errors-and-erasures decoding of RS codes.

This initial result is also extended a few directions. The rate-distortion exponent (RDE) is computed

to give more precise results for moderate blocklengths. Multiple trials of algebraic soft-decision (ASD)

decoding are analyzed using this framework. Analytical and numerical computations of the RD and RDE

functions are also presented. Finally, simulation results show that sets of erasure patterns designed using

the proposed methods outperform other algorithms with the same number of decoding trials.
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I. INTRODUCTION

Reed-Solomon (RS) codes are among the most popular error-correcting codes in communication and

data storage systems. An (N,K) RS code of length N and dimension K is a maximum distance separable

(MDS) linear code with minimum distance dmin = N −K + 1. RS codes have efficient hard-decision

decoding (HDD) algorithms, such as the Berlekamp-Massey (BM) algorithm, which can correct up to⌊
dmin−1

2

⌋
errors.

Since the discovery of RS codes [1], researchers have spent a considerable effort on improving the

decoding performance at the expense of complexity. A breakthrough result of Guruswami and Sudan

(GS) introduced an algebraic hard-decision list-decoding algorithm, based on bivariate interpolation and

factorization, that can correct errors well beyond half the minimum distance of the code [2]. Nevertheless,

HDD algorithms do not fully exploit the information provided by the channel output. Koetter and Vardy

(KV) later extended the GS decoder to an algebraic soft-decision (ASD) decoding algorithm by converting

the probabilities observed at the channel output into algebraic interpolation conditions in terms of a

multiplicity matrix [3].

The GS and KV algorithms, however, have significant computational complexity. Therefore, multiple

runs of errors-and-erasures and errors-only decoding with some low-complexity algorithm, such as the

BM algorithm, has renewed the interest of researchers. These algorithms use the soft-information available

at the channel output to construct a set of either erasure patterns [4], [5], test patterns [6], or patterns

combining both [7], [8] and then attempt to decode using each pattern. Techniques have also been

introduced to lower the complexity per decoding trial in [9], [10], [11]. Other soft-decision decoding

algorithms for RS codes include [12], [13] that use the binary expansion of RS codes to work on the

bit-level. In [12], belief propagation is run while the parity-check matrix is iteratively adapted on the

least reliable basis. Meanwhile, [13] adapts the generator matrix on the most reliable basis and uses

reprocessing techniques based on ordered statistics.

In the scope of multiple errors-and-erasures decoding, there have been several algorithms proposed

that use different erasure codebooks (i.e., different sets of erasure patterns). After running the errors-

and-erasures decoding algorithm multiple times, each time using one erasure pattern in the set, these

algorithms produce a list of candidate codewords, whose size is usually small, and then pick the best

codeword on this list. The common idea of constructing the set of erasure patterns in these multiple errors-

and-erasures decoding algorithms is to erase some of the least reliable symbols since those symbols are

more prone to be erroneous. The first algorithm of this type is called Generalized Minimum Distance
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(GMD) [4] and it repeats errors-and-erasures decoding while successively erasing an even number of the

least reliable positions (LRPs) (assuming that dmin is odd). More recent work by Lee and Kumar [5]

proposes a soft-information successive (multiple) error-and-erasure decoding (SED) that achieves better

performance but also increases the number of decoding attempts. Literally, the Lee-Kumar’s SED(l, f)

algorithm runs multiple errors-and-erasures decoding trials with every combination of an even number

≤ f of erasures within the l LRPs.

A natural question that arises is how to construct the “best” set of erasure patterns for multiple errors-

and-erasures decoding. Inspired by this, we first develop a rate-distortion (RD) framework to analyze the

asymptotic trade-off between performance and complexity of multiple errors-and-erasures decoding of

RS codes. The main idea is to choose an appropriate distortion measure so that the decoding is successful

if and only if the distortion between the error pattern and erasure pattern is smaller than a fixed threshold.

After that, a set of erasure patterns is generated randomly (similar to a random codebook generation) in

order to minimize the expected minimum distortion.

One of the drawbacks in the RD approach is that the mathematical framework is only valid as the block-

length goes to infinity. Therefore, we also consider the natural extension to a rate-distortion exponent

(RDE) approach that studies the behavior of the probability, pe, that the transmitted codeword is not on the

list as a function of the block-length N . The overall error probability can be approximated by pe because

the probability that the transmitted codeword is on the list but not chosen is very small compared to pe.

Hence, our RDE approach essentially focuses on maximizing the exponent at which the error probability

decays as N goes to infinity. The RDE approach can also be considered as the generalization of the RD

approach since the latter is a special case of the former when the rate-distortion exponent tends to zero.

Using the RDE analysis, this approach also helps answer the following two questions: (i) What is the

minimum error probability achievable for a given number of decoding attempts (or a given size of the

set of erasure patterns)? (ii) What is the minimum number of decoding attempts required to achieve a

certain error probability?

The RD and RDE approaches are also extended beyond conventional errors-and-erasures decoding to

analyze multiple-decoding for decoding schemes such as ASD decoding. It is interesting to note that the

RDE approach for ASD decoding schemes contains the special case where the codebook has exactly one

entry (i.e., ASD decoding is run only once). In this case, the distribution of the codebook that maximizes

the exponent implicitly generates the optimal multiplicity matrix. This is similar to the line of work

[14], [15], [16], [17] where various researchers solve for a multiplicity matrix that minimizes the error

probability obtained by either using a Gaussian approximation [14], applying a Chernoff bound [15],

July 28, 2021 DRAFT



4

[16], or using Sanov’s theorem [17].

Finally, we propose a family of multiple-decoding algorithms based on these two approaches that

achieve better performance-versus-complexity trade-off than other algorithms.

A. Outline of the paper

The paper is organized as follows. In Section II, we design an appropriate distortion measure and

present a rate-distortion framework, for both the RD and RDE approaches, to analyze the performance-

versus-complexity trade-off of multiple errors-and-erasures decoding of RS codes. Also in this section,

we propose a general multiple-decoding algorithm that can be applied to errors-and-erasures decoding.

Then, in Section III, we discuss numerical computations of RD and RDE functions together with their

complexity analyses which are needed for the proposed algorithm. In Section IV, we analyze both bit-level

and symbol-level ASD decoding and design distortion measures compatible with the general algorithm.

A closed-form analysis of some RD and RDE functions is presented in Section V. Next, in Section VI,

we offer some extensions that combine covering codes with random codes and also consider the case of

a single decoding attempt. Simulation results are presented in Section VII and, finally, conclusions are

provided in Section VIII.

II. A RD FRAMEWORK FOR MULTIPLE ERRORS-AND-ERASURES DECODING

In this section, we first set up a rate-distortion framework to analyze multiple attempts of conventional

hard decision errors-and-erasures decoding.

Let Fm with m = 2η be the Galois field with m elements denoted as α1, α2, . . . , αm. We consider

an (N,K) RS code of length N , dimension K over Fm. Assume that we transmit a codeword c =

(c1, c2, . . . , cN ) ∈ FNm over some channel and receive a vector r = (r1, r2, . . . , rN ) ∈ YN where Y
is the received alphabet for a single RS symbol. While our approach can be applied to much more

general channels, our simulations focus on the Additive White Gaussian Noise (AWGN) channel and

two common modulation formats, namely BPSK and m-QAM. Correspondingly, we use Y = Rη for

BPSK and Y = R2 for m-QAM. For each codeword index i, let ϕi : {1, 2, . . . ,m} → {1, 2, . . . ,m} be

the permutation given by sorting πi,j = Pr(ci = αj |ri) in decreasing order so that πi,ϕi(1) ≥ πi,ϕi(2) ≥
. . . ≥ πi,ϕi(m). Then, we can specify yi,j = αϕi(j) as the j-th most reliable symbol for j = 1, . . . ,m

at codeword index i. To obtain the reliability of the codeword positions (indices), we construct the

permutation σ : {1, 2, . . . , N} → {1, 2, . . . , N} given by sorting the probabilities πi,ϕi(1) of the most
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likely symbols in increasing order.1 Thus, codeword position σ(i) is the i-th LRP. These above notations

will be used throughout this paper.

Example 1: Consider N = 3 and m = 4. Assume that we have the probability πi,j written in a matrix

form as follows:

Π =


0.01 0.01 0.93

0.94 0.03 0.04

0.03 0.49 0.01

0.02 0.47 0.02

where πi,j = [Π]j,i.

then ϕ1(1, 2, 3, 4) = (2, 3, 4, 1), ϕ2(1, 2, 3, 4) = (3, 4, 2, 1), ϕ3(1, 2, 3, 4) = (1, 2, 4, 3) and σ(1, 2, 3) =

(2, 3, 1).

Condition 1: (Classical decoding threshold, see [18], [19]): If e symbols are erased, a conventional

hard-decision errors-and-erasures decoder such as the BM algorithm is able to correct ν errors in unerased

positions if and only if

2ν + e < N −K + 1. (1)

A. Conventional error patterns and erasure patterns.

Definition 1: (Conventional error patterns and erasure patterns) We define xN ∈ ZN2 , {0, 1}N and

x̂N ∈ ZN2 as an error pattern and an erasure pattern respectively, where xi = 0 means that an error occurs

(i.e., the most likely symbol is incorrect) and x̂i = 0 means that the symbol at index i is erased (i.e., an

erasure is applied at index i). XN and X̂N will be used to denote the random vectors which generate

the realizations xN and x̂N , respectively.

Example 2: If dmin is odd then the GMD algorithm corresponds to the set

{111111 . . . , 001111 . . . , 000011 . . . , . . . , 00 . . . 0︸ ︷︷ ︸
dmin−1

11 . . . 1}

of erasure patterns. Meanwhile, the SED(3, 2) uses the following set

{111111 . . . , 001111 . . . , 010111 . . . , 100111 . . .}.

Here, in each erasure pattern, the letters are written in increasing reliability order of the codeword

positions.

Let us revisit the question of how to construct the best set of erasure patterns for multiple errors-

and-erasures decoding. First, it can be seen that a multiple errors-and-erasures decoding succeeds if the

1Other measures such as entropy or the average number of guesses might improve Algorithm B in Section II-C.
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condition (1) is satisfied during at least one round of decoding. Thus, our approach is to design a distortion

measure that converts the condition (1) into a form where the distortion between an error pattern xN and

an erasure pattern x̂N , denoted as d(xN , x̂N ), is less than a fixed threshold.

Definition 2: Given a letter-by-letter distortion measure δ, the distortion between an error pattern xN

and an erasure pattern x̂N is defined by

d(xN , x̂N ) =

N∑
i=1

δ(xi, x̂i).

Proposition 1: If we choose the letter-by-letter distortion measure δ : X × X̂ → R≥0, where in this

case X = X̂ = Z2, as follows:
δ(0, 0) = 1, δ(0, 1) = 2,

δ(1, 0) = 1, δ(1, 1) = 0,
(2)

then the condition (1) for a successful errors-and-erasures decoding is equivalent to

d(xN , x̂N ) < N −K + 1 (3)

where the distortion is less than a fixed threshold.

Proof: First, we define

χj,k , |{i ∈ {1, 2, . . . , N} : xi = j, x̂i = k}|

to count the number of (xi, x̂i) pairs equal to (j, k) for every j ∈ X and k ∈ X̂ . With the chosen

distortion measure, we have

d(xN , x̂N ) = 2χ0,1 + χ0,0 + χ1,0.

Noticing that e = χ0,0 +χ1,0 and ν = χ0,1, the condition (1) for one errors-and-erasures decoding attempt

to succeed becomes 2χ0,1 + χ0,0 + χ1,0 < N −K + 1 which is equivalent to d(xN , x̂N ) < N −K + 1.

Next, we try to maximize the chance that this successful decoding condition is satisfied by at least one of

the decoding attempts (i.e., d(xN , x̂N ) < N−K+1 for at least one erasure pattern x̂N ). Mathematically,

we want to build a set B of no more than 2R erasure patterns x̂N that achieves the maximum

max
B:|B|≤2R

Pr

{
min
x̂N∈B

d(XN , x̂N ) < N −K + 1

}
.

Solving this problem exactly is very difficult. However, one can observe that it is a covering problem

where tries to cover the most-likely error patterns using a fixed number of spheres centered at the chosen

erasure patterns. This view leads to two asymptotic solutions of the problem based on rate-distortion

theory. Taking this point of view, we view the error pattern xN as a source sequence and the erasure

pattern x̂N as a reproduction sequence.
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Error pattern
Erasure pattern

Fig. 1. Pictorial illustration of a covering problem

1) RD approach: Rate-distortion theory (see [20, Chapter 13]) characterizes the trade-off between R̄

and D̄ such that sets B of 2NR̄ reproduction sequences exist (and can be generated randomly) so that

lim
N→∞

1

N
EXN ,B

[
min
x̂N∈B

d(XN , x̂N )

]
< D̄.

Under mild conditions, this implies that, for large enough N , we have

min
x̂N∈B

d(XN , x̂N ) < ND̄

with high probability. Here, R̄ and D̄ are closely related to the complexity and the performance, respec-

tively, of the decoding algorithm. Therefore, we characterize the trade-off between those two aspects

using the relationship between R̄ and D̄. In this paper, we denote the rate and distortion by R and D,

respectively, using unnormalized quantities, i.e., R = NR̄ and D = ND̄.

2) RDE approach: The above-mentioned RD approach focuses on minimizing the average minimum

distortion with little knowledge of how the tail of the distribution behaves. In this RDE approach, we

instead focus on directly minimizing the probability that the minimum distortion is not less than the

predetermined threshold D = N −K + 1 (due to the condition (3)) with the help of an error-exponent

analysis. The exact probability of interest is

pe = Pr

(
XN : min

x̂N∈B
d(XN , x̂N ) > D

)
that reflects how likely the decoding threshold (1) is going to fail. In other words, every error pattern

xN can be covered by a sphere centered at an erasure pattern x̂N except for a set of error patterns of

probability pe. The RDE analysis shows that pe decays exponentially as N → ∞ and the maximum

exponent attainable is the RDE function F (R,D). Throughout this paper, we denote the rate-distortion
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exponent by F (R,D) using unnormalized quantities (i.e., without dividing by N ) and note that exponent

used by other authors in [21], [22], [23] is often the normalized version F̄ (R,D) , F (R,D)
N .

RDE analysis is discussed extensively in [21], [22] and it is shown that a set B of roughly 2NR̄

codewords, generated randomly using the test-channel input distribution, can be used to achieve F̄ (R,D).

An upper bound is also given that shows, for any ε > 0, there is a sufficiently large N (see [24, p. 229])

such that

pe ≤ 2−N [F̄ (R,D)−ε].

An exponentially tight lower bound for pe can also be obtained (see [24, p. 236]) and it implies that the

best sequence of codebooks satisfy

lim
N→∞

− 1

N
log pe = F̄ (R,D).

Remark 1: The RDE approach possesses several advantages. First, the converse of the RDE [24, p.

236] provides a lower bound for pe. This implies that, given an arbitrary set B of roughly 2NR̄ erasure

patterns and any ε > 0, the probability pe cannot be made lower than 2−N [F̄ (R,D)+ε] for N large enough.

Thus, no matter how one chooses the set B of erasure patterns, the difference between the induced

probability of error and the pe for the RDE approach becomes negligible for N large enough. Second,

it can help one estimate the smallest number of decoding attempts to get to a RDE of F (or get to an

error probability of roughly 2−NF̄ ) or, similarly, allow one to estimate the RDE (and error probability)

for a fixed number of decoding attempts.

B. Generalized error patterns and erasure patterns

In this subsection, we consider a generalization of the conventional error patterns and erasure patterns

under the same framework to make better use of the soft information. At each index of the RS codeword,

besides erasing a symbol, we also try to decode using not only the most likely symbol but also less likely

ones as the hard decision (HD) symbol. To handle up to the ` most likely symbols at each index i, we

let Z`+1 , {0, 1, . . . , `} and consider the following definition.

Definition 3: (Generalized error patterns and erasure patterns) Consider a positive integer ` smaller

than the field size m. Let xN ∈ ZN`+1 be a generalized error pattern where, at index i, xi = j implies

that the j-th most likely symbol is correct for j ∈ {1, 2, . . . `}, and xi = 0 implies none of the first

` most likely symbols is correct. Let x̂N ∈ ZN`+1 be a generalized erasure pattern used for decoding

where, at index i, x̂i = k implies that the k-th most likely symbol is used as the hard-decision symbol

for k ∈ {1, 2, . . . , `}, and x̂i = 0 implies that an erasure is used at that index.
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For simplicity, we refer to xN as the error pattern and x̂N as the erasure pattern like in the conventional

case. Now, we need to convert the condition (1) to the form where d(xN , x̂N ) is less than a fixed threshold.

Proposition 1 is thereby generalized into the following proposition.

Proposition 2: We choose the letter-by-letter distortion measure δ : X ×X̂ → R≥0, where in this case

X = X̂ = Z`+1, defined by δ(x, x̂) = [∆]x,x̂ in terms of the (`+ 1)× (`+ 1) matrix

∆ =



1 2 . . . 2 2

1 0 . . . 2 2
...

...
. . .

...
...

1 2 . . . 0 2

1 2 . . . 2 0


. (4)

Using this, the condition (1) for a successful errors-and-erasures decoding is equivalent to

d(xN , x̂N ) < N −K + 1.

Proof: The reasoning is very similar to the proof of Proposition 1 using the fact that e =
∑`

j=0 χj,0

and ν =
∑`

k=1

∑`
j=0,j 6=k χj,k where χj,k , |{i ∈ {1, 2, . . . , N} : xi = j, x̂i = k}| for every j, k ∈ Z`+1.

For each ` = 1, 2, . . . ,m, we will refer to this generalized case as mBM-` decoding.

Example 3: Consider mBM-2 (or top-` decoding with ` = 2). In this case, the distortion measure is

given by following the matrix

∆ =


1 2 2

1 0 2

1 2 0

 .

Remark 2: The distortion measure matrix changes slightly if we use the errors-only decoding instead

of errors-and-erasures decoding. In this case, X̂ = Z`+1 \ {0} and the chosen letter-by-letter distortion

measure is given in terms of the (` + 1)× ` matrix obtained by deleting the first column of (4). When

` = 2, we consider the first and second most likely symbols as the two hard-decision symbols at each

codeword position. This is similar to the Chase-type decoding method proposed by Bellorado and Kavcic

[9]. Das and Vardy also suggest this approach by considering only several highest entries in each column

of the reliability matrix Π for single ASD decoding of RS codes [17].

C. Proposed General Multiple-Decoding Algorithm

In this section, we propose two general multiple-decoding algorithms for RS codes. In each algorithm,

one can choose either Step 2a that corresponds to the RD approach or Step 2b that corresponds to the
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RDE approach. These general algorithms apply to not only multiple errors-and-erasures decoding but

also multiple-decoding of other decoding schemes that we will discuss later. The common first step is

designing a distortion measure δ : X × X̂ → R≥0 that converts the condition for a single decoding

to succeed to the form where distortion is less than a fixed threshold. After that, decoding proceeds as

described below.

1) Algorithm A:

Step 1: Based on the received signal sequence, compute an m×N reliability matrix Π where [Π]j,i =

πi,j . From this, determine the probability matrix P where pi,j = Pr(Xi = j) for i = 1, 2, . . . , N and

j ∈ X .
Step 2a: (RD approach) Compute the RD function of a source sequence (error pattern) with probability

of source letters derived from P and the chosen distortion measure (see Section III and Section V). Given

the design rate R, determine the optimal input-probability distribution matrix Q, for the test channel,

with entries qi,k = Pr(X̂i = k) for i = 1, 2, . . . , N and k ∈ X̂ .
Step 2b: (RDE approach) Given D (in most cases D = N −K + 1) and the design rate R, compute

the RDE function of a source sequence (error pattern) with probability of source letters derived from P

and the chosen distortion measure (see Section III and Section V). Also determine the optimal input-

probability distribution matrix Q, for the test channel, with entries qi,k = Pr(X̂i = k) for i = 1, 2, . . . , N

and k ∈ X̂ .
Step 3: Randomly generate a set of 2R erasure patterns using the test-channel input-probability distri-

bution matrix Q.

Step 4: Run multiple attempts of the corresponding decoding scheme (e.g., errors-and erasures decod-

ing) using the set of erasure patterns in Step 3 to produce a list of candidate codewords.

Step 5: Use the maximum-likelihood (ML) rule to pick the best codeword on the list.

Remark 3: In Algorithm A, the RD (or RDE) function is computed on the fly, i.e., after every received

signal sequence. In practice, it may be preferable to precompute the RD (or RDE) function based on

the empirical distribution measured from the channel. We refer to this approach as Algorithm B, and

simulation results show a negligible difference in the performance of these two algorithms.

2) Algorithm B:

Step 1: Transmit τ (e.g., τ = 103− 106) arbitrary test RS codewords, indexed by time t = 1, 2, . . . , τ ,

over the channel and compute a set of τ m×N matrices Π
(t)
1 where [Π

(t)
1 ]j,i = π

(t)

i,ϕ
(t)
i (j)

is the probability

of the j-th most likely symbol at position i during time t. For each time t, obtain the matrix Π
(t)
2 from

Π
(t)
1 through a permutation σ(t) : {1, 2, . . . , N} → {1, 2, . . . , N} that sorts the probabilities π(t)

i,ϕ
(t)
i (1)

in
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increasing order to indicate the reliability order of codeword positions. Take the entry-wise average of

all τ matrices Π
(t)
2 to get an average matrix Π̄.2 The matrix Π̄ serves as Π in Algorithm A and from

this, determine the probability matrix P where pi,j = Pr(Xi = j) for i = 1, 2, . . . , N and j ∈ X .
Step 2a: (RD approach) Compute the RD function of a source sequence (error pattern) with probability

of source letters derived from P and the chosen distortion measure. Given a design rate R, determine

the test-channel input-probability distribution matrix Q where qi,k = Pr(X̂i = k) for i = 1, 2, . . . , N

and k ∈ X̂ .
Step 2b: (RDE approach) Given D (in most cases D = N −K + 1) and the design rate R, compute

the RDE function of a source sequence (error pattern) with probability of source letters derived from P

and the chosen distortion measure. Also determine the optimal test-channel input-probability distribution

matrix Q where qi,k = Pr(X̂i = k) for i = 1, 2, . . . , N and k ∈ X̂ .
Step 3: Based on the actual received signal sequence, compute πi,ϕi(1) and determine the permuta-

tion σ that gives the reliability order of codeword positions by sorting πi,ϕi(1) in increasing order.

Step 4: Randomly generate a set of 2R erasure patterns using the test-channel input-probability distri-

bution matrix Q and permute the indices of each erasure pattern by the permutation σ−1.

Step 5: Run multiple attempts of the corresponding decoding scheme (e.g., errors-and-erasures decod-

ing) using the set of erasure patterns in Step 4 to produce a list of candidate codewords.

Step 6: Use the ML rule to pick the best codeword on the list.

III. COMPUTING THE RD AND RDE FUNCTIONS

In this section, we will discuss some numerical methods to compute the RD and RDE functions and the

corresponding test-channel input-probability distribution matrix Q, whose entries are qi,k = Pr(X̂i = k)

for i = 1, 2, . . . , N and k ∈ X̂ . These numerical methods allow us to efficiently compute the RD and

RDE functions discussed in the previous section for arbitrary discrete distortion measures. For some

simple distortion measures, closed-form solutions are given in Section V.

A. Computing the RD function

For an arbitrary discrete distortion measure, it can be difficult to compute the RD function analyti-

cally. Fortunately, for a single source X , the Blahut algorithm (see details in [25]) gives an alternating

2In fact, one need not store separately each Π
(t)
2 matrix. The average Π̄ can be computed on the fly.
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minimization technique that efficiently computes the RD function which is given by3

R(D) = min
w∈WD

∑
j

∑
k

pjwk|j log
wk|j∑

j′ pj′wk|j′

where pj , Pr(X = j), qk , Pr(X̂ = k), wk|j , Pr(X̂ = k|X = j), and4

WD =

w

∣∣∣∣ wk|j ≥ 0,
∑

k wk|j = 1∑
j

∑
k pjwk|jδjk ≤ D

 .

More precisely, given the Lagrange multiplier t ≤ 0 that represents the slope of the RD curve at a specific

point (see [26, Thm 2.5.1]) and an arbitrary all-positive initial test-channel input-probability distribution

vector q(0), the Blahut algorithm shows us how to compute the rate-distortion pair (Rt, Dt).

However, it is not straightforward to apply the Blahut algorithm to compute the RD for a discrete

source sequence xN (an error pattern in our context) of N independent but not necessarily identical

(i.n.d.) source components xi. In order to do that, we consider the group of source letters (j1, j2, . . . , jN )

where ji ∈ X as a super-source letter J ∈ XN , the group of reproduction letters (k1, k2, . . . , kN ) where

ki ∈ X̂ as a super-reproduction letter K ∈ X̂N , and the source sequence xN as a single source. For

each super-source letter J , pJ = Pr(XN = J ) =
∏N
i=1 Pr(Xi = ji) =

∏N
i=1 pji follows from the

independence of source components.5

While we could apply the Blahut algorithm to this source directly, the complexity is a problem because

the alphabet sizes for J and K become the super-alphabet sizes |χ|N and |χ̂|N respectively. Instead,

we avoid this computational challenge by choosing the initial test-channel input-probability distribution

so that it can be factored into a product of N initial test-channel input-probability components, i.e.,

q
(0)
K =

∏
i=1 q

(0)
ki

. One can verify that this factorization rule still applies after every step τ of the iterative

process, i.e., q(τ)
K =

∏
i=1 q

(τ)
ki

. Therefore, the convergence of the Blahut algorithm [27] implies that the

optimal distribution is a product distribution, i.e., q?K =
∏
i=1 q

?
ki

.

One can also finds that, for each parameter t, one only needs to compute the rate-distortion pair for each

source component xi separately and sum them together. This is captured into the following algorithm.

Algorithm 1: (Factored Blahut algorithm for RD function) Consider a discrete source sequence xN of

N i.n.d. source components xi’s with probability pji , Pr(Xi = ji). Given a parameter t ≤ 0, the rate

3All logarithms in this paper are taken to base 2.
4δ(j, k) is sometimes written as δjk for convenience.
5In this paper, the notations pji and pi,j are interchangeable. The notations qki and qi,k are also interchangeable.
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and the distortion for this source sequence under a specified distortion measure are given by

Rt =

N∑
i=1

Ri,t and Dt =

N∑
i=1

Di,t (5)

where the components Ri,t and Di,t are computed by the Blahut algorithm with the Lagrange multiplier t.

This rate-distortion pair can be achieved by the corresponding test-channel input-probability distribution

qK , Pr(X̂N = K) =
∏n
i=1 qki where the component probability distribution qki , Pr(X̂i = ki).

Remark 4: Equation (5) can also be derived from [26, Corollary 2.8.3] in a way that does not use the

convergence property of the Blahut algorithm.

B. Computing the RDE function

The original RDE function F (R,D), defined in [21, Sec. VI] for a single source X , is given by

F (R,D) = max
w

min
p̃∈PR,D

∑
j

p̃j log
p̃j
pj

(6)

where pj = Pr(X = j), qk = Pr(X̂ = k), wk|j = Pr(X̂ = k|X = j), and

PR,D =

p̃

∣∣∣∣
∑

j

∑
k p̃jwk|j log

wk|j∑
j′ p̃j′wk|j′

≥ R∑
j

∑
k p̃jwk|jδjk ≥ D

 . (7)

For a single source X , given two parameters s ≥ 0 and t ≤ 0 which are the Lagrange multipliers

introduced in the optimization problem (see [21, p. 415]), the Arimoto algorithm given in [28, Sec. V]

can be used to compute the exponent, rate, and distortion numerically.

In the context we consider, the source (error pattern) xN comprises i.n.d. source components xi’s.

We follow the same method as in the RD function case, i.e., by choosing the initial distribution still

arbitrarily but following a factorization rule q(0)
K =

∏N
i=1 q

(0)
ki

, and this gives the following algorithm.

Algorithm 2: (Factored Arimoto algorithm for RDE function) Consider a discrete source xN of i.n.d.

source components xi’s with probability pji , Pr(Xi = ji). Given Lagrange multipliers s ≥ 0 and t ≤ 0,

the exponent, rate and distortion under a specified distortion measure are given by

F |s,t =

N∑
i=1

Fi|s,t , R|s,t =

N∑
i=1

Ri|s,t , D|s,t =

N∑
i=1

Di|s,t

where the components Fi|s,t , Ri|s,t , Di|s,t are computed parametrically by the Arimoto algorithm.

Remark 5: Though it is standard practice to compute error-exponents using the implicit form given

above, this approach may provide points that, while achievable, are strictly below the true RDE curve. The

problem is that the true RDE curve may have a slope discontinuity that forces the implicit representation
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to have extra points. An example of this behavior for the channel coding error exponent is given by

Gallager [29, p. 147]. For the i.n.d. source considered above, a cautious person could solve the problem

as described and then check that the component RDE functions are differentiable at the optimum point.

In this work, we largely neglect this subtlety.

C. Complexity of computing RD/RDE functions

1) Complexity of computing RD function.: For each parameter t < 0, if we directly apply of the

original Blahut algorithm to compute the (Rt, Dt) pair, the complexity is O(τmax|X |N |X̂ |N ) where

τmax is the number of iterations in the Blahut algorithm. However, using the factored Blahut algorithm

(Algorithm 1) greatly reduces this complexity to O(τmax|X ||X̂ |N). In Section II-C, one of the proposed

algorithms needs to compute the RD function for a design rate R. To do this, we apply the bisection

method on t to find the correct t that corresponds to the chosen rate R.

• Step 0: Set tmin < 0 (e.g., tmin = −10)

• Step 1: If Rtmin
> R, go to Step 3. Else go to Step 2.

• Step 2: If Rtmin
= R then stop. Else if Rtmin

< R, set tmin ← 2tmin and go to Step 1.

• Step 3: Find t using the bisection method to get the correct rate R within εR.

The overall complexity of computing the RD function for a design rate R is

O

(
τmax log2

(−tmin

εR

)
|X ||X̂ |N

)
.

Now, we consider the dependence of τmax on εR. It follows from [27] that the error due to early

termination of the Blahut algorithm is O
(

1
τmax

)
. This implies that choosing τmax = O

(
1
εR

)
is sufficient.

However, recent work has shown that a slight modification of the Blahut algorithm can drastically increase

the convergence rate [30]. For this reason, we leave the number of iterations as the separate constant

τmax and do not consider its relationship to the error tolerance.

2) Complexity of computing RDE function.: Similarly, for each pair of parameters t < 0 and s ≥ 0,

the complexity if we directly apply of the original Arimoto algorithm to compute the (R|s,t, D|s,t) pair

is O(τmax|X |N |X̂ |N ) where τmax is the number of iterations. Instead, if the factored Arimoto algorithm

(Algorithm 2) is employed, this complexity can also be reduced to O(τmax|X ||X̂ |N). In one of our

proposed general algorithms in Section II-C, we need to compute the RDE function for a pre-determined

(R,D) pair. We use a nested bisection technique to find the Lagrange multipliers s, t that give the correct

R and D.

• Step 0: Set tmin < 0 and smax > 0 (e.g., tmin = −10 and smax = 2)
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• Step 1: If R|smax,tmin
≤ R, set tmin ← 2tmin and repeat Step 1. Else go to Step 2.

• Step 2: Find t using the bisection method to obtain R|smax,t = R within εR. If D|smax,t > D, go to

Step 3. If D|smax,t = D then stop. Else if D|smax,t < D, set smax ← 2smax and go to Step 1.

• Step 3: Find s using the bisection method to get the correct distortion D within εD while with each

s doing the following steps

– Step 3a: If R|s,tmin
> R, go to Step 3c.

– Step 3b: If R|s,tmin
= R, then stop. Else if R|s,tmin

< R, set tmin ← 2tmin and go to Step 1.

– Step 3c: Find t using the bisection method to get the correct R within εR.

The overall complexity of computing the RD function for a design rate R is therefore

O

(
τmax log2

(−tmin

εR

)
log2

(
smax

εD

)
|X ||X̂ |N

)
.

IV. MULTIPLE ALGEBRAIC SOFT-DECISION (ASD) DECODING

In this section, we analyze and design a distortion measure to convert the condition for successful

ASD decoding to a suitable form so that we can apply the general multiple-decoding algorithm to ASD

decoding.

First, let us give a brief review on ASD decoding of RS codes. Let {β1, β2, . . . , βN} be a set of

N distinct elements in Fm. From each message polynomial f(X) = f0 + f1X + . . . + fK−1X
K−1

whose coefficients are in Fm, we can obtain a codeword c = (c1, c2, . . . , cN ) by evaluating the message

polynomial at {βi}Ni=1, i.e., ci = f(βi) for i = 1, 2, . . . , N . Given a received vector r = (r1, r2, . . . , rN ),

we can compute the a posteriori probability (APP) matrix Π as follows:

[Π]j,i = πi,j = Pr(ci = αj |ri) for 1 ≤ i ≤ N, 1 ≤ j ≤ m.

The ASD decoding as in [3] has the following main steps.

1) Multiplicity Assignment: Use a particular multiplicity assignment scheme (MAS) to derive an m×N
multiplicity matrix, denoted as M, of non-negative integer entries {Mi,j} from the APP matrix Π.

2) Interpolation: Construct a bivariate polynomial Q(X,Y ) of minimum (1,K − 1) weighted degree

that passes through each of the point (βj , αi) with multiplicity Mi,j for i = 1, 2, . . . ,m and

j = 1, 2, . . . , N .

3) Factorization: Find all polynomials f(X) of degree less than K such that Y − f(X) is a factor of

Q(X,Y ) and re-evaluate these polynomials to form a list of candidate codewords.

In this paper, we denote µ = maxi,jMi,j as the maximum multiplicity. Intuitively, higher multiplicity

should be put on more likely symbols. A higher µ generally allows ASD decoding to achieve a better
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performance. However, one of the drawbacks of ASD decoding is that its decoding complexity is roughly

O(N2µ4) [31]. Even though there have been several reduced complexity variations and fast architectures

as discussed in [32], [33], [34], the decoding complexity still increases rapidly with µ. Thus, in this

section we will mainly work with small µ to keep the complexity affordable.

One of the main contributions of [3] is to offer a condition for successful ASD decoding represented

in terms of two quantities specified as the score and the cost as follows.

Definition 4: The score SM(c) with respect to a codeword c and a multiplicity matrix M is defined

as

SM(c) =

N∑
j=1

M[cj ],j

where [cj ] = i such that αi = cj . The cost CM of a multiplicity matrix M is defined as

CM =
1

2

m∑
i=1

N∑
j=1

Mi,j(Mi,j + 1).

Condition 2: (ASD decoding threshold, see [3], [35], [31]). The transmitted codeword will be on the

list if

(a+ 1)
[
SM −

a

2
(K − 1)

]
> CM (8)

for some a ∈ N such that

a(K − 1) < SM ≤ (a+ 1)(K − 1). (9)

To match the general framework, the ASD decoding threshold (or condition for successful ASD

decoding) should be converted to the form where the distortion is smaller than a fixed threshold.

A. Bit-level ASD case

In this subsection, we consider multiple trials of ASD decoding using bit-level erasure patterns. A

bit-level error pattern bn ∈ Zn2 and a bit-level erasure pattern b̂n ∈ Zn2 have length n = N × η since

each symbol has η bits. Similar to Definition 1 of a conventional error pattern and a conventional erasure

pattern, bi = 0 in a bit-level error pattern implies a bit-level error occurs and b̂i in a bit-level erasure

pattern implies that a bit-level erasure is applied. We also use BN and B̂N to denote the random vectors

which generate the realizations bN and b̂N , respectively.

From each bit-level erasure pattern, we can specify entries of the multiplicity matrix M using the bit-

level MAS proposed in [35] as follows: for each codeword position, assign multiplicity 2 to the symbol

with no bit erased, assign multiplicity 1 to each of the two candidate symbols if there is 1 bit erased,
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and assign multiplicity zero to all the symbols if there are ≥ 2 bits erased. All the other entries are zeros

by default. This MAS has a larger decoding region compared to the conventional errors-and-erasures

decoding scheme.

Condition 3: (Bit-level ASD decoding threshold, see [35]) For RS codes of rate K
N ≥ 2

3 + 1
N , ASD

decoding using the bit-level MAS will succeed (i.e., the transmitted codeword is on the list) if

3νb + eb <
3

2
(N −K + 1) (10)

where eb is the number of bit-level erasures and νb is the number of bit-level errors in unerased locations.

We can choose an appropriate distortion measure according to the following proposition which is a natural

extension of Proposition 1 in the symbol level.

Proposition 3: If we choose the bit-level letter-by-letter distortion measure δ : Z2 × Z2 → R≥0 as

follows
δ(0, 0) = 1, δ(0, 1) = 3,

δ(1, 0) = 1, δ(1, 1) = 0,

then the condition (10) becomes

d(bn, b̂n) <
3

2
(N −K + 1) . (11)

Proof: The condition (10) can be seen to be equivalent to

2

3
d(bn, b̂n) < N −K + 1

using the same reasoning as in Proposition 1. The results then follows right away.

Remark 6: We refer the multiple-decoding of bit-level ASD as m-bASD.

B. Symbol-level ASD case

In this subsection, we try to convert the condition for successful ASD decoding in general to the form

that suits our goal. We will also determine which multiplicity assignment schemes allow us to do so.

Definition 5: (Multiplicity type) Consider a positive integer ` ≤ m where m is the number of elements

in Fm. For some codeword position, let us assign multiplicity mj to the j-th most likely symbol

for j = 1, 2, . . . , `. The remaining entries in the column are zeros by default. We call the sequence,

(m1,m2, . . . ,m`), the column multiplicity type for “top-`” decoding.

First, we notice that a choice of multiplicity types in ASD decoding at each codeword position has

the similar meaning to a choice of erasure decisions in the conventional errors-and-erasures decoding.

However, in ASD decoding we are more flexible and may have more types of erasures. For example,
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assigning multiplicity zero to all the symbols (all-zero multiplicity type) at codeword position i is similar

to erasing that position. Assigning the maximum multiplicity µ to one symbol corresponds to the case

when we choose that symbol as the hard-decision one. Hence, with some abuse of terminology, we also

use the term (generalized) erasure pattern x̂N for the multiplicity assignment scheme in the ASD context.

Each erasure-letter xi gives the multiplicity type for the corresponding column of the multiplicity matrix

M.

Definition 6: (Error patterns and erasure patterns for ASD decoding) Consider a MAS with T mul-

tiplicity types. Let x̂N ∈ {1, 2 . . . , T}N be an erasure pattern where, at index i, xi = j implies that

multiplicity type j is used at column i of the multiplicity matrix M. Notice that the definition of an error

pattern xN ∈ ZN`+1 in Definition 3 applies unchanged here.

Remark 7: In our method, we generally choose an appropriate integer a in Condition 2 and design

a distortion measure corresponding to the chosen a so that the condition for successful ASD decoding

can be converted to the form where distortion is less than a fixed threshold. The following definition of

allowable multiplicity types will lead us to the result of Lemma 1 and consequently, a ≥ µ, as stated

in Corollary 1. Also, we want to find as many as possible multiplicity types since rate-distortion theory

gives us the intuition that in general the more multiplicity types (erasure choices) we have, the better

performance of multiple ASD decoding we achieve as N becomes large.

Definition 7: The set of allowable multiplicity types for “top-`” decoding with maximum multiplicity

µ is defined to be6

A(µ, `) ,

(m1,m2, . . . ,m`)

∣∣∣∣∣
∑`

j=1mj ≤ µ,∑`
j=1mj(µ−mj) ≤ (µ+ 1) (|{j : mj 6= 0}| − 1) minj:mj 6=0mj

 .

(12)

We take the elements of this set in an arbitrary order and label them as 1, 2, . . . , |A(µ, `)| with the

convention that the multiplicity type 1 is always (µ, 0, . . . , 0) which assigns the whole multiplicity µ to

the most likely symbol. The multiplicity type k is denoted as (m1,k,m2,k, . . .m`,k).

Remark 8: Multiplicity types (0, 0, . . . , 0), (1, 1 . . . , 1) as well as any permutations of (µ, 0, . . . , 0) and

(bµ2 c, b
µ
2 c, 0, . . . , 0) are always in the allowable set A(µ, µ). We use mASD-µ to denote the proposed

multiple ASD decoding using A(µ, µ).

Example 4: Consider mASD-2 where µ = ` = 2. We have A(2, 2)={(2, 0), (1, 1), (0, 2), (0, 0)} which

comprises four allowable multiplicity types for “top-2” decoding as follows: the first is (2, 0) where we

6We use the convention that minj:mj 6=0mj = 0 if {j : mj 6= 0} = ∅.
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assign multiplicity 2 to the most likely symbol yi,1, the second is (1, 1) where we assign equal multiplicity

1 to the first and second most likely symbols yi,1 and yi,2, the third is (0, 2) where we assign multiplicity

2 to the second most likely symbol yi,2, and the fourth is (0, 0) where we assign multiplicity zero to all

the symbols at index i (i.e., the i-th column of M is an all-zero column). We also consider a restricted

set, called mASD-2a, that uses the set of multiplicity types {(2, 0), (1, 1), (0, 0)}.
Example 5: Consider mASD-3. In this case, the allowable set A(3, 3) consists of all the permutations

of (3, 0, 0), (0, 0, 0), (1, 1, 0), (2, 1, 0), (1, 1, 1). We can see that the set A(3, 2) consists of all permutations

of (3, 0), (2, 1), (1, 1), (0, 0) and |A(3, 2)| < |A(3, 3)|.
From now on, we assume that only allowable multiplicity types are considered throughout most of the

paper. With that setting in mind, we can obtain the following lemmas and theorems.

Lemma 1: Consider a MAS(µ, `) for “top-`” ASD decoding with multiplicity matrix M that only

uses multiplicity types in the allowable set A(µ, `). Then, the score and the cost satisfy the following

inequality:

2CM ≥ (µ+ 1)SM.

Proof: Let us denote ek = |{i ∈ {1, . . . , N} : x̂i = k}| to count the number of positions i

that use multiplicity type k for k = 1, . . . , T and notice that
∑T

k=1 ek = N . We also use νj,k =

|{i ∈ {1, . . . , N} : xi 6= j, x̂i = k}| to count the number of positions i that use multiplicity type k

where the j-th most reliable symbol yi,j is incorrect for j = 0, . . . , ` and k = 1, . . . , T . The notation

χj,k = |{i ∈ {1, . . . , N} : xi = j, x̂i = k}| remains the same. Notice also that

ek =
∑̀
j=0

χj,k and χj,k = ek − νj,k. (13)

The score and the cost can therefore be written as

SM(c) =

N∑
j=1

M[cj ],j

=

T∑
k=1

∑̀
j=1

mj,kχj,k (14)

= µχ1,1 +

T∑
k=2

∑̀
j=1

mj,kχj,k (15)

= µ

(
N −

T∑
k=2

ek − ν1,1

)
+

T∑
k=2

∑̀
j=1

mj,k(ek − νj,k) (16)
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and

CM =
1

2

m∑
i=1

N∑
j=1

Mi,j(Mi,j + 1)

=
1

2

T∑
k=1

ek
∑̀
j=1

mj,k(mj,k + 1)

=
1

2
µ(µ+ 1)

(
N −

T∑
k=2

ek

)
+

1

2

T∑
k=2

ek
∑̀
j=1

mj,k(mj,k + 1) (17)

where (15) and (17) use the fact that the multiplicity type 1 is always assumed to be (µ, 0, . . . , 0).

Hence, we obtain

2CM − (µ + 1)SM = µ(µ + 1)ν1,1 +

T∑
k=2

(µ + 1)
∑̀
j=1

mj,kνj,k −
T∑
k=2

ek
∑̀
j=1

mj,k(µ − mj,k),

and therefore, since µ and ν1,1 are non-negative, Lemma 1 holds if we can show

(µ+ 1)
∑̀
j=1

mj,kνj,k ≥ ek
∑̀
j=1

mj,k(µ−mj,k) (18)

for every k = 2, . . . T .

Next, we observe that

(µ+ 1)
∑̀
j=1

mj,kνj,k ≥ (µ+ 1)

 ∑
j:mj,k 6=0

νj,k

 min
j:mj,k 6=0

mj,k (19)

and ∑
j:mj,k 6=0

νj,k =
∑

j:mj,k 6=0

(ek − χj,k) (20)

= ek|{j : mj,k 6= 0}| −
∑

j:mj,k 6=0

χj,k

≥ek(|{j : mj,k 6= 0}| − 1) (21)

where (20) follows from (13) and (21) follows from∑
j:mj,k 6=0

χj,k ≤
∑̀
j=0

χj,k = ek.

From (19) and (21), we have

(µ+ 1)
∑̀
j=1

mj,kνj,k ≥ ek(µ+ 1)(|{j : mj,k 6= 0}| − 1) min
j:mj,k 6=0

mj,k (22)

and this motivates our definition of allowable multiplicity types.
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Specifically, if we choose {m1,k,m2,k, . . . ,m`,k} in the allowable set A(µ, `), defined in (12), then

by combining with (22), we obtain (18) and this completes the proof.

Corollary 1: With the setting as in Lemma 1, the integer a in Condition 2 must satisfy a ≥ µ.

Proof: From (a+ 1)
[
SM − a

2 (K − 1)
]
> CM and SM ≤ (a+ 1)(K − 1) in (8) and (9), we have

(a+ 1)SM − CM >
1

2
a(a+ 1)(K − 1)

≥ 1

2
aSM

and this implies that

2CM < (a+ 2)SM. (23)

But, Lemma 1 states that 2CM ≥ (µ + 1)SM. Combining this with (23) gives a contradiction unless

a > µ− 1.

In Condition 2, if we carefully design a distortion measure then for every a ≥ µ, the first constraint (8)

can be equivalently converted to the form where distortion is smaller than a fixed threshold.

Theorem 1: Consider an (N,K) RS code and a MAS(µ, `) for “top-`” decoding with multiplicity

matrix M that only uses T multiplicity types in the allowable set A(µ, `). Consider an arbitrary integer

a ≥ µ. Let δa : X × X̂ → R≥0, where in this case X = Z`+1 and X̂ = ZT+1 \ {0}, be a letter-by-letter

distortion measure defined by δa(x, x̂) = [∆a]x,x̂, where ∆a is the (`+ 1)× T matrix7

∆a =



ρ1,a ρ2,a . . . ρT,a

ρ1,a − 2m1,1

a ρ2,a − 2m1,2

a . . . ρT,a − 2m1,T

a

ρ1,a − 2m2,1

a ρ2,a − 2m2,2

a . . . ρT,a − 2m2,T

a
...

...
. . .

...

ρ1,a − 2m`,1

a ρ2,a − 2m`,2

a . . . ρT,a − 2m`,T

a


(24)

with

ρk,a =
µ(2a+ 1− µ)

a(a+ 1)
+
∑̀
j=1

mj,k(mj,k + 1)

a(a+ 1)

for k = 1, . . . , T . Then, the equation (8) in Condition 2 is equivalent to

d(xN , x̂N ) <
µ(2a+ 1− µ)

a(a+ 1)
N −K + 1 , Da,

and it is easy to verify that Dµ = N −K + 1.

7The first column of ∆a is [ 2µ
a
, 0, 2µ

a
, 2µ
a
, . . . , 2µ

a
]T since multiplicity type 1 is always chosen to be (µ, 0, 0, . . . , 0).
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Proof: First, we show that ∆a consists of non-zero entries. It suffices to show that ρk,a ≥ 2mj,k

a for

all j = 1, . . . , ` and k = 1, . . . , T , i.e.,

µ(2a+ 1− µ) +
∑̀
j′=1

mj′,k(mj′,k + 1) ≥ 2mj,k(a+ 1)

which is equivalent to

2(a+ 1)(µ−mj,k) +
∑̀
j′=1

mj′,k(mj′,k + 1)− µ(µ+ 1) ≥ 0. (25)

This is true since the left hand side of (25) is at least

2(µ+ 1)(µ−mj,k) +mj,k(mj,k + 1)− µ(µ+ 1) = (µ−mj,k)(µ+ 1−mj,k) ≥ 0.

With the same ek, νj,k, χj,k as defined in the proof of Lemma 1 and the chosen distortion matrix ∆a,

we have

d(xN , x̂N ) =

T∑
k=1

∑̀
j=1

(
ρk,a −

2mj,k

a

)
χj,k + ρk,aχ0,k


=

T∑
k=1

ρk,a∑̀
j=0

χj,k − 2
∑̀
j=1

mj,k

a
χj,k


=

T∑
k=1

ρk,aek − 2
∑̀
j=1

mj,k

a
χj,k

 .

Noting that the first column of ∆a is always [2µ
a , 0,

2µ
a ,

2µ
a , . . . ,

2µ
a ]T and ν1,1 = e1 − χ1,1, we obtain

d(xN , x̂N ) =
2µ

a
ν1,1 +

T∑
k=2

ρk,aek − 2

T∑
k=2

∑̀
j=1

mj,k

a
χj,k. (26)

Next, one can see that (8) can be rewritten as

2SM
a
−K + 1 >

2CM

a(a+ 1)

which, by substituting SM and CM in (16) and (17), is equivalent to

2µ

a

(
N−

T∑
k=2

ek−ν1,1

)
+2

T∑
k=2

∑̀
j=1

mj,k

a
χj,k−K+1>

µ(µ+ 1)

a(a+ 1)

(
N−

T∑
k=2

ek

)
+

T∑
k=2

ek
∑̀
j=1

mj,k(mj,k + 1)

a(a+ 1)
.

Equivalently, this gives(
2µ

a
−µ(µ+ 1)

a(a+ 1)

)
N−K+1>

2µ

a
ν1,1−2

T∑
k=2

∑̀
j=1

mj,k

a
χj,k+

T∑
k=2

ek

2µ

a
−µ(µ+ 1)

a(a+ 1)
+
∑̀
j=1

mj,k(mj,k + 1)

µ(µ+ 1)


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which in turn is equivalent to

µ(2a+ 1− µ)

a(a+ 1)
N −K + 1 >

2µ

a
ν1,1 +

T∑
k=2

ekρk,a −
2

a

T∑
k=2

∑̀
j=1

mj,kχj,k. (27)

Finally, combining (26) and (27) gives the proof.

Example 6: Consider mASD-2 for a = µ = 2. In this case, the distortion matrix is

∆ =


2 5/3 2 1

0 2/3 2 1

2 2/3 0 1

 . (28)

However, Condition 2 also requires the second constraint (9) to be satisfied. In addition, we need to

choose an integer a ≥ µ in order to apply our proposed approach. Therefore, we first consider the case

of high-rate RS codes where if a = µ then the satisfaction of (8) also implies the satisfaction of (9). For

the case of lower-rate RS codes, we obtain a range of a and also propose a heuristic method to choose

an appropriate a.

1) High-rate Reed-Solomon codes: In this subsection, we focus on high-rate RS codes which are

usually seen in many practical applications. The high-rate constraint allows us to see that a = µ is

essentially the correct choice.

Lemma 2: Consider an (N,K) RS code with rate

K

N
≥ 1

N
+

µ

µ+ 1
.

If equation (8) is satisfied for a = µ, or equivalently,

d(xN , x̂N ) < N −K + 1

under the distortion measure ∆µ then whole Condition 2 is satisfied and the transmitted codeword will

be therefore on the list.

Proof: Suppose (8) is satisfied for a = µ, i.e.,

SM >
CM

µ+ 1
+
µ

2
(K − 1). (29)

We will show that

µ(K − 1) < SM (30)

≤ (µ+ 1)(K − 1) (31)

and, therefore, both (8) and (9) in Condition 2 are satisfied for a = µ.
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Firstly, using Lemma 1 we have
SM
2
≥ SM −

CM

µ+ 1

and consequently, (30) is implied by (29) since

SM
2
≥ SM −

CM

µ+ 1
>
µ

2
(K − 1).

Secondly, note that (31) holds since

SM = µ

(
N −

T∑
k=2

ek − ν1,1

)
+

T∑
k=2

∑̀
j=1

mj,k(ek − νj,k)

= µN − µν1,1 −
T∑
k=2

∑̀
j=0

mj,kνj,k −
T∑
k=2

ek

µ− ∑̀
j=1

mj,k


≤ µN (32)

≤ (µ+ 1)(K − 1) (33)

where (32) is obtained by dropping non-negative terms and (33) follows from the high-rate constraint
K−1
N ≥ µ

µ+1 .

Finally, by Theorem 1, one can verify that equation (8) with a = µ is equivalent to

d(xN , x̂N ) < Dµ = N −K + 1

under the distortion measure ∆µ.

However, there are possibly other integers a 6= µ that can also satisfy Condition 2. If we consider higher-

rate RS codes, as in the following theorem, then we can claim that a = µ is the only such integer.

Theorem 2: Consider an (N,K) RS code with rate

K

N
≥ 1

N
+

µ(µ+ 3)

(µ+ 1)(µ+ 2)
.

The integer a in Condition 2 must satisfy a = µ and, consequently, the set of constraints (8) and (9) in

Condition 2 is equivalent to

d(xN , x̂N ) < N −K + 1

under the distortion measure ∆µ.

Proof: We first see that

(a+ 1)
[
SM −

a

2
(K − 1)

]
> CM
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in (8) implies

SM −
a

2
(K − 1) >

CM

a+ 1

and, with the score SM and the cost CM computed in (16) and (17), we obtain

µ

(
N−

T∑
k=2

ek−ν1,1

)
+

T∑
k=2

∑̀
j=1

mj,k(ek−νj,k)−
a

2
(K − 1)

>
µ(µ+ 1)

2(a+ 1)

(
N −

T∑
k=2

ek

)
+

T∑
k=2

ek
∑̀
j=1

mj,k(mj,k + 1)

2(a+ 1)
.

This gives(
µ−µ(µ+ 1)

2(a+ 1)

)
N− a

2
(K − 1) > µν1,1+

T∑
j=2

∑̀
j=1

νj,k+

T∑
k=2

ek

µ−∑̀
j=1

mj,k+
∑̀
j=1

mj,k(mj,k + 1)

2(a+ 1)


≥

T∑
k=2

ek

µ− ∑̀
j=1

mj,k

 (34)

≥ 0 (35)

where (34) is obtained by dropping non-negative terms.

Combining this inequality with the high-rate constraint implies that

µ(2a+ 1− µ)

a(a+ 1)
>
K − 1

N
≥ µ(µ+ 3)

(µ+ 1)(µ+ 2)

which leads to a < µ+ 1, i.e. a ≤ µ.

This, together with a ≥ µ according to Corollary 1, leave a = µ as the only possible choice. Finally,

by seeing that

K

N
≥ 1

N
+

µ(µ+ 3)

(µ+ 1)(µ+ 2)
>

1

N
+

µ

µ+ 1

and applying Lemma 2 we conclude the proof.

Corollary 2: When the RD approach is used, R(D) is positive for Dmin ≤ D < Dmax and is zero for

D ≥ Dmax. Computing Dmax reveals how good the distortion measure matrix is at rates close to zero

(i.e., the erasure codebook has only one entry). For mASD-µ,

Dmax(mASD-µ) =

N∑
i=1

min
k=2,...,T

2(1− pi,1), ρk,µ −
∑̀
j=1

mj,k

µ
pi,j


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TABLE I

EXAMPLE RANGES OF POSSIBLE a

RS(255,191) RS(255,127)

µ = 2 2 ≤ a ≤ 3 2 ≤ a ≤ 6

µ = 3 3 ≤ a ≤ 5 3 ≤ a ≤ 9

while for mBM-`,

Dmax(mBM-`) =

N∑
i=1

min{1, 2(1− pi,1)}.

Moreover, if mASD-µ uses multiplicity type (0, 0, . . . 0) then Dmax(mASD-µ) ≤ Dmax(mBM-`) for

every µ, `.

Proof: See Appendix A.

Example 7: Consider mASD-2 with distortion matrix in (28). We have

Dmax(mASD-2) =

N∑
i=1

min

{
1, 2(1− pi,1),

5

3
− 2

3
(pi,1 + pi,2)

}
which is less than or equal to Dmax(mBM-`) for every `. This fact can be seen in Fig. 5 which is obtained

by simulation. This also predicts that, as expected, ASD decoding will be superior when R is small.

2) Lower-rate Reed-Solomon codes: Without the high-rate constraint as in Theorem 2, we may not

have a = µ. However, we can obtain a range for a and heuristically choose the integer a that potentially

give the highest rate-distortion exponent. After that, we can also apply the algorithms proposed in Section

II-C with the corresponding distortion measure ∆a and distortion threshold Da derived in Theorem 1.

The following lemma tells us the range of possible a.

Lemma 3: Consider an (N ,K) RS code. In order to satisfy (8), one must have

µ ≤ a ≤
⌈
µθ − 1/2 +

√
µ2θ (θ − 1) + 1/4

⌉
− 1

where θ , N
K−1 .

Proof: First note that (35) holds for any (N,K). Therefore, we have

µ− µ(µ+ 1)

2(a+ 1)
>
a(K − 1)

2N
.

Combining this with a ≥ µ in Corollary 1, we obtain the stated result.

Example 8: Table I gives several example ranges of possible a for some choices of µ and RS codes.
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Among possible choices of a, we are interested in choosing a that gives the largest rate-distortion

exponent and therefore has a better chance to satisfy Condition 2. The following lemma can give us an

insight of how to choose such an integer a.

Lemma 4: If

a >
1

2

(√
1 + 4θµ(µ+ 1)− 3

)
(36)

where θ = N
K−1 then starting from a, the rate-distortion exponent Fa strictly decreases until reaching

zero, i.e., Fa > Fa+1 > Fa+2 > . . . ≥ 0 if rate R is fixed.

Proof: For a fixed rate R, the distortion measure ∆a+1 and distortion Da+1 yield exponent Fa+1.

Scaling both ∆a+1 and Da+1 leaves Fa+1 unchanged. Hence, a+1
a ∆a+1 and a+1

a Da+1 also yield Fa+1.

Next, we will show that
a+ 1

a
∆a+1 ≥ ∆a. (37)

To prove (37), it suffices to show
a+ 1

a
ρk,a+1 ≥ ρk,a (38)

since
a+ 1

a

(
ρk,a+1 −

2mj,k

a+ 1

)
≥ ρk,a −

2mj,k

a

is also equivalent to (38).

Equivalently, we need to show

µ(µ+ 1) ≥
∑̀
j=1

mj,k(mj,k + 1)

which is true because µ ≥∑`
i=1mj,k by the definition of allowable multiplicity types.

Thus, (37) holds and, therefore, the exponent yielded by ∆a and a+1
a Da+1 is at least Fa+1. From (36)

we have

Da =
µ(2a+ 1− µ)

a(a+ 1)
N −K + 1

>
µ(2a+ 3− µ)

a(a+ 2)
N − a+ 1

a
(K − 1)

=
a+ 1

a
Da+1.

Since for a fixed R, exponent F is increasing in distortion D [24, Thm 6.6.2], we know that Fa > Fa+1

where Fa is the exponent yielded by ∆a and Da.

[h]
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TABLE II

EXAMPLE RANGES OF a THAT GIVES THE LARGEST EXPONENT

RS(255,191) RS(255,127)

µ = 2 a = 2 a ∈ {2, 3}

µ = 3 a = 3 a ∈ {3, 4}

µ = 12 a ∈ {12, 13} 12 ≤ a ≤ 17

2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

a

F
a

µ = 2, Eb/N0 = 6.0 dB
µ = 3, Eb/N0 = 6.0 dB
µ = 2, Eb/N0 = 6.5 dB
µ = 3, Eb/N0 = 6.5 dB

Fig. 2. Plot of exponent Fa versus a for µ = 2 and µ = 3 with a fixed rate R = 6. Simulations are conducted for the

(255,127) RS code using BPSK over an AWGN channel at Eb/N0 = 6.0 dB and 6.5 dB.

Corollary 3: The integer a that gives the largest exponent lies in the range

µ ≤ a ≤
⌊1

2

(√
1 + 4θµ(µ+ 1)− 3

)⌋
+ 1.

Example 9: The following Table II presents several example ranges of a that gives the largest exponent

for some choices of µ and RS codes.

Remark 9: Simulation results also confirm our analysis. For example, in Fig. 2, a = 3 and a = 4 give

roughly same and the largest exponents for µ = 3 while a = 2 yields the largest exponent for µ = 2. In

fact, simulation results suggest that, typically, either a = µ or a = µ+ 1 gives the best exponent.

In Condition 2, for lower-rate RS codes, so far we have only paid attention to (8). However, it is also
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required that

a(K − 1) < SM ≤ (a+ 1)(K − 1),

or equivalently

a+ 1 =
⌈ SM
K − 1

⌉
. (39)

While it is hard to tell exactly which a will satisfy (39) with high probability right away, we can propose

a heuristic method to choose the integer a that is likely to work. We first need the following lemma.

Lemma 5: Suppose we have obtained a test-channel input-probability distribution matrix Q (e.g.,

during Step 2a or Step 2b in the proposed algorithms in Section II-C) and the set of erasure patterns

for mASD is generated independently and randomly according to Q. Then, the expected score can be

computed as follows:

E[SM] =

T∑
k=1

∑̀
j=1

N∑
i=1

mj,kpi,jqi,k. (40)

Proof: The proof follows from the following equations:

E[SM] = E

 T∑
k=1

∑̀
j=1

mj,kχj,k

 (41)

=

T∑
k=1

∑̀
j=1

mj,kE[χj,k]

=

T∑
k=1

∑̀
j=1

mj,kE

[
N∑
i=1

1{Xi=j,X̂i=k}

]

=

T∑
k=1

∑̀
j=1

N∑
i=1

mj,k Pr(Xi = j, X̂i = k)

=

T∑
k=1

∑̀
j=1

N∑
i=1

mj,kpi,jqi,k

where (41) is implied by (14).

Next, we propose a heuristic method to find the appropriate integer a to work with as follows.

Algorithm 3:

• Step 1: Start with a = µ, using distortion measure ∆a and distortion threshold Da to get the

corresponding distribution matrix Q as discussed above.

• Step 2: Compute the expected score E[SM] using (40). If
⌈
E[SM]
K−1

⌉
= a+ 1 then output a and stop.

If not set a← a+ 1 and return to Step 1.

July 28, 2021 DRAFT



30
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µ = 10, Eb/N0 = 6.0 dB
µ = 10, Eb/N0 = 6.5 dB

Fig. 3. Plot of exponent Fa versus a for µ = 10 with a fixed rate R = 6. The set of multiplicity types considered is the

relaxed set A0(10, 2). Simulations are conducted for the (458,410) RS code over F210 using BPSK over an AWGN channel at

Eb/N0 = 6.0 dB and 6.5 dB.

Remark 10: In simulations with small to moderate µ, it is usually found that a is either µ or µ + 1.

Typically, E[SM]
K−1 > µ and a unit increase of a produces a small increase in E[SM]

K−1 .

Remark 11: So far, we have considered only the allowable multiplicity types in Definition 7. It is

possible to obtain better performance if we relax some constraints and allow multiplicity types to be in

the relaxed set

A0(µ, `) ,
{

(m1,m2, . . . ,m`)
∣∣∣ ∑`

j=1mj ≤ µ
}
.

In this case, some theoretical results, e.g., results in Lemma 1 and Theorem 2, do not hold. However,

this modification combined with the heuristic method above can improve the decoding performance,

especially with large µ. Specifically, we consider mASD0-µ which denotes our proposed multiple ASD

decoding algorithm that only uses multiplicity types (0, 0) and(m1,m2) of the form m1 +m2 = µ. These

multiplicity types form a subset of A0(µ, 2). The choice of ` = 2 is suggested by observations that top-2

decoding performs almost as good as top-` decoding for ` > 2. The integer a used in mASD0-µ is found

through the heuristic method. In Fig. 3, simulations are conducted for the (458,410) RS code using BPSK

over an AWGN channel. For µ = 10, it can again be observed that a = µ gives the best exponent. More

simulation results of this heuristic method can be seen in Section VII.
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V. CLOSED-FORM ANALYSIS OF RD AND RDE FUNCTIONS FOR SOME DISTORTION MEASURES

A. Closed-form RD function

For some simple distortion measures, we can compute the RD functions analytically in closed form.

First, we observe an error pattern as a sequence of i.n.d. random source components. Then, we compute

the component RD functions at each index of the sequence and use convex optimization techniques to

allocate the total rate and distortion to various components. This method converges to the solution faster

than the numerical method in Section III. The following two theorems describe how to compute the RD

functions for the simple distortion measures of Proposition 1 and 3.

Lemma 6: Consider a binary source X where Pr(X = 1) = p and Pr(X = 0) = 1 − p . With the

distortion measure in (2), the rate-distortion function for this source is8

R(D) = [H(p)−H(D + p− 1)]+ .

Proof: See Appendix B.

Theorem 3: (Conventional errors-and-erasures “mBM-1” decoding) Let pi,1 , Pr(Xi = 1) for i =

1, . . . , N . The overall rate-distortion function is given by

R(D) =

N∑
i=1

[
H(pi,1)−H(D̃i)

]+

where D̃i , Di + pi,1 − 1 and D̃i can be found be a reverse water-filling procedure (see [20, Theorem

13.3.3]):

D̃i =

λ if λ < min{pi,1, 1− pi,1}

min{pi,1, 1− pi,1} otherwise

where λ should be chosen so that
N∑
i=1

D̃i = D +

N∑
i=1

pi,1 −N.

The R(D) function can be achieved by the test-channel input-probability distribution

qi,0 , Pr(X̂i = 0) =
1− pi,1 − D̃i

1− 2D̃i

and

qi,1 , Pr(X̂i = 1) =
pi,1 − D̃i

1− 2D̃i

.

Proof: See Appendix C.

8The binary entropy function is H(u) , −u log u− (1− u) log(1− u).
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Theorem 4: (Bit-level ASD “m-bASD” decoding) Let ri,1 , Pr(Bi = 1) and ri,0 , Pr(Bi = 0) for

i = 1, . . . , n. The overall rate-distortion function in m-bASD scheme is given by

R(D) =

n∑
i=1

[Ri(λ)]+

where

Ri(λ) = H(ri,1)−H
(

1 + λ

1 + λ+ λ2

)
+

(
ri,1 −

1 + λ

1 + λ+ λ2

)
H

(
λ

1 + λ

)
and the distortion component Di is given by

Di =


1+2λ+3λ2

1+λ+λ2 − ri,1 1+2λ
1+λ if Ri(λ) > 0

min{1, 3(1− ri,1)} otherwise

where λ ∈ (0, 1) should be chosen so that
∑n

i=1Di = D. The R(D) function can be achieved by the

following test-channel input-probability distribution

si,0 , Pr(B̂i = 0) =
(1 + λ)− ri,1(1 + λ+ λ2)

1− λ2

and

si,1 , Pr(B̂i = 1) =
ri,1(1 + λ+ λ2)− λ(1 + λ)

1− λ2
.

Sketch of proof: With the distortion measure in (3), using the method in [26, Chapter 2] we can

compute the rate-distortion function components

Ri(λi) = H(ri,1)−H
(

1 + λi
1 + λi + λ2

i

)
+

(
ri,1 −

1 + λi
1 + λi + λ2

i

)
H

(
λi

1 + λi

)
where λi is a Lagrange multiplier such that

Di =
1 + 2λi + 3λ2

i

1 + λi + λ2
i

− ri,1
1 + 2λi
1 + λi

for each bit index i. Then, the Kuhn-Tucker conditions define the overall rate allocation using the similar

argument as in the proof of Theorem 3.

B. Closed-form RDE function

In this subsection, we consider the case mBM-1 whose distortion measure is given in (2). We study the

setup that RS codewords defined over Galois field Fm are transmitted over the m-ary symmetric channel

(m-SC) which for each parameter p can be modeled as

Pr(r|c) =

p if r = c

(1− p)/(m− 1) if r 6= c

.
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Here, c (resp. r) is the transmitted (resp. received) symbol and r, c ∈ Fm. For this channel model,

we restrict our attention to the range of p where the received symbol is the most-likely (i.e., p >

(1 − p)/(m − 1)). Therefore, at each index i of the codeword, the hard-decision is also the received

symbol and then it is correct with probability p. Thus, we have pi,1 = Pr(Xi = 1) = p for every index i

of the error pattern xN . That means, in this context we have a source xN with i.i.d. binary components

xi. Since the components xi’s are i.i.d, we can treat each xi as a binary source X with Pr(X = 1) = p

and first compute the RDE function for this source X as given by an analysis in Appendix D. Based on

this analysis, we obtain the following lemmas and theorems for the mBM-1 decoding algorithm of RS

codes over an m-SC channel.

Lemma 7: Let h(u) = H(u) − H(u + D − 1) map u ∈
[
1−D, 1− D

2

)
to R. Then, the inverse

mapping of h,

h−1 : (0, H(1−D)]→
[
1−D, 1− D

2

)
,

is well-defined and maps R to u.

Proof: h(u) is strictly decreasing since the derivative is negative over
[
1−D, 1− D

2

)
. Hence, the

mapping h :
[
1−D, 1− D

2

)
→ (0, H(1−D)] is one-to-one. From the analysis in Appendix D, one can

also see that h is onto.

Theorem 5: Using mBM-1 with 2R decoding attempts where R ∈ (0, NH(1 − D
N )], the maximum

rate-distortion exponent that can be achieved is9

F = N DKL

(
h−1

(
R

N

) ∣∣∣∣∣∣∣∣ p) . (42)

Proof: First, note that in our context where we have a source sequence xN of N i.i.d. source

components, the rate and exponent for each source component are now R
N and F

N . From Case 3 in

Appendix D and from Lemma 7, we have

F

N
= DKL(u||p) = DKL

(
h−1

(
R

N

) ∣∣∣∣∣∣∣∣ p)
and the theorem follows.

Lemma 8: Let g(u) = DKL(u||p) map u ∈ [1−D, p] to F . Then, the inverse mapping of g,

g−1 : [0, DKL(1−D || p)]→ [1−D, p]

is well-defined and maps F to u.

9The Kullback-Leibler divergence is DKL(u||p) , u log u
p

+ (1− u) log 1−u
1−p .
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Fig. 4. Performance of mBM-1(RDE,11) and its approximation 2−F where F is given in (42) for the (255,239) RS code over

an m-SC(p) channel.

Proof: We first see that g(u) is a strictly convex function and achieves minimum value at u = p and

therefore g(u) is strictly decreasing over [1−D, p]. Thus, the mapping g : [1−D, p]→ [0, DKL(1−D || p)]
is one-to-one. From the analysis in Appendix D, one can also see that g is onto.

Theorem 6: In order to achieve a rate-distortion exponent of F ∈ [0, N DKL (1−D || p)], the mini-

mum number of decoding attempts required for mBM-1 is 2R where

R = N

[
H

(
g−1

(
F

N

))
−H

(
g−1

(
F

N

)
+
D

N
− 1

)]+

.

Proof: We also note that the rate, distortion and exponent for each source component are R
N ,

D
N and

F
N respectively. Combining all the cases in Appendix D, we have

R

N
=

[
H

(
g−1

(
F

N

))
−H

(
g−1

(
F

N

)
+
D

N
− 1

)]+

and the theorem follows.

Remark 12: In Fig. 4, we simulate the performance of mBM-1(RDE,11) for the (255,239) RS code

over an m-SC channel. One curve reflects the simulated frame-error rate (FER) and the other is the

approximation derived from 2−F where F is given in (42) with R = 11.
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VI. SOME EXTENSIONS

A. Erasure patterns using covering codes

The RD framework we use is most suitable when N → ∞. For a finite N , choosing random codes

for only a few LRPs can be risky. We can instead use good covering codes to handle these LRPs. In the

scope of covering problems, one can use an `-ary tc-covering code (e.g., a perfect Hamming or Golay

code) with covering radius tc to cover the whole space of `-ary vectors of the same length. The covering

may still work well if the distortion measure is close to, but not exactly equal to the Hamming distortion.

The method of using covering codes in the LRPs was proposed earlier in [36] to choose the test patterns

in iterative bounded distance decoding algorithms for binary linear block codes.

In order take care of up to the ` most likely symbols at each of the nc LRPs of an (N,K) RS, we

consider an (nc, kc) `-ary tc-covering code whose codeword alphabet is Z`+1\{0} = {1, 2, . . . , `}. Then,

we give a definition of the (generalized) error patterns and erasure patterns for this case. In order to draw

similarities between this case and the previous cases, we still use the terminology “generalized erasure

pattern” and shorten it to erasure pattern even if errors-only decoding is used. For errors-only decoding,

Condition 1 for successful decoding becomes

ν <
1

2
(N −K + 1).

Definition 8: (Error patterns and erasure patterns for errors-only decoding) Let us define xN ∈ ZN`+1

as an error pattern where, at index i, xi = j implies that the j-th most likely symbol is correct for j ∈
{1, 2, . . . `}, and xi = 0 implies none of the first ` most likely symbols is correct. Let x̂N ∈ {1, 2, . . . , `}N

be an erasure pattern where, at index i, x̂i = j implies that the j-th most likely symbol is chosen as the

hard-decision symbol for j ∈ {1, 2, . . . , `}.
Proposition 4: If we choose the letter-by-letter distortion measure δ : Z`+1 × Z`+1 \ {0} → R≥0

defined by δ(x, x̂) = [∆]x,x̂ in terms of the (`+ 1)× ` matrix

∆ =



1 1 . . . 1

0 1 . . . 1

1 0 . . . 1
...

...
. . .

...

1 1 . . . 0


(43)

then the condition for successful errors-only decoding then becomes

d(xN , x̂N ) <
1

2
(N −K + 1). (44)
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Proof: It follows directly from

d(xN , x̂N ) =
∑̀
k=1

∑̀
j=0,j 6=k

χj,k = ν.

Remark 13: If we delete the first row which corresponds to the case where none of the first ` most

likely symbols is correct then the distortion measure is exactly the Hamming distortion.

Split covering approach: We can break an error pattern xN into two sub-error patterns xLRPs ,

xσ(1)xσ(2) . . . xσ(nc) of nc least reliable positions and xMRPs , xσ(nc+1) . . . xσ(N) of N − nc most

reliable positions. Similarly, we can break an erasure pattern x̂N into two sub-erasure patterns x̂LRPs ,

x̂σ(1)x̂σ(2) . . . x̂σ(nc) and x̂MRPs , x̂σ(nc+1) . . . x̂σ(N). Let znc be the number of positions in the nc LRPs

where none of the first ` most likely symbols is correct, or

znc =
∣∣{i = 1, 2, . . . , nc : xσ(i) = 0

}∣∣ .
If we assign the set of all sub-error patterns x̂LRPs to be an (nc, kc) tc-covering code then

d(xLRPs, x̂LRPs) ≤ tc + znc

because this covering code has covering radius tc. Since

d(xN , x̂N ) = d(xLRPs, x̂LRPs) + d(xMRPs, x̂MRPs),

in order to increase the probability that the condition (44) is satisfied we want to make d(xMRPs, x̂MRPs)

as small as possible by the use of the RD approach. The following proposition summarizes how to generate

a set of 2R erasure patterns for multiple runs of errors-only decoding.

Proposition 5: In each erasure pattern, the letter sequence at nc LRPs is set to be a codeword of

an (nc, kc) `-ary tc−covering code. The letter sequence of the remaining N − nc MRPs is generated

randomly by the RD method (see Section II-C) with rate RMRPs = R − kc log2 ` and the distortion

measure in (43). Since this covering code has `kc codewords, the total rate is RMRPs + log2 `
kc = R.

Example 10: For a (7,4,3) binary Hamming code which has covering radius tc = 1, we take care of

the 2 most likely symbols at each of the 7 LRPs. We see that 1001001 is a codeword of this Hamming

code and then form erasure patterns 1001001x̂8x̂9 . . . x̂n with assumption that the positions are written

in increasing reliability order. The 2R−4 sub-erasure patterns x̂8x̂9 . . . x̂n are generated randomly using

the RD approach with rate (R− 4).

Remark 14: While it also makes sense to use a covering codes for the nc LRPs of the erasure patterns

and set the rest to be letter 1 (i.e., chose the most likely symbol as the hard-decision), our simulation
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results shows that the performance can usually be improved by using a combination of a covering code

and a random (i.e., generated by the RD approach) code. More discussions are presented in Section VII.

B. A single decoding attempt

In this subsection, we investigate a special case of our proposed RDE framework when R = 0 (i.e.,

the set of erasure patterns consists of one pattern). In this case, our proposed approach is related to

another line of work where one tries to design a good erasure pattern for a single BM decoding or a

good multiplicity matrix for a single ASD decoding [14], [16], [15], [17]. We will see that the RDE

approach for R = 0 is quite similar to optimizing a Chernoff bound [16], [15] or using the method

of types [17]. The main difference is that this approach starts from Condition 2 rather than its large

multiplicity approximation.

Lemma 9: When rate R = 0, the distribution matrix Q that optimizes the RDE/RD function consists

of only binary entries. Consequently, the random codebook using the proposed RDE approach (the set

of erasure patterns) becomes a single deterministic pattern.

Sketch of proof: For each (s, t) pair, the total rate is the sum of N individual components as seen

in Proposition 2. Therefore, the zero total rate implies all components are zero. Thus, it suffices to show

that if an arbitrary rate component (denoted as R in the proof) is zero then the corresponding column of

Q has all entries equal to 0 or 1.

For the RD case, it is well known [26, p. 27] that if R = 0 then the distortion is given by Dmax =

mink
∑

j pjδjk where k? is the argument that achieves this minimum and the test-channel input distri-

bution is

q?k =

1 if k = k?

0 otherwise
.

Computing the RDE for the source distribution pj is equivalent to solving the RD problem for an

appropriately tilted source distribution p̃?j . Therefore, the above property is inherited by the RDE as well.

In particular, the distortion at R = 0 is given by mink
∑

j p̃
?
jδjk and the test-channel input distribution

is supported on the singleton element that achieves this minimum.

This result can also be shown directly by solving (6) while dropping the rate constraint from (7).

Let Gk(D) be the large deviation rate-function for the distortion when the reconstruction symbol is fixed

to k. It is well-known that this can be computed using either a Chernoff bound or the method of types
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[20]. Both techniques result in the same function; for α ≥ 0, it is described implicitly by

D(α) =

∑
j pj2

αδj,kδj,k∑
j′ pj′2

αδj′,k
,

Gk(α) =
∑
j

pj2
αδj,k∑

j′ pj′2
αδj′,k

log
2αδj,k∑

j′ pj′2
αδj′,k

.

Theorem 7: The RDE function for R = 0 is equal to

F (0, D) = max
k

Gk(D).

Proof: Lemma 9 shows that the reconstruction distribution must be supported on a single element.

Since the exponential failure probability for any fixed reconstruction symbol follows from a standard

large-deviations analysis, the only remaining degree of freedom is which symbol to use. Choosing the

best symbol maximizes the RDE.

Remark 15: This means that the single decoding attempt with the best error-exponent can be computed

as a special case of the RDE approach. Simplifying our proposed algorithm to use the single Lagrange

multiplier α leads to an algorithm that is very similar to the one proposed in [17]. It also seems unlikely

that this new algorithm will provide any significant performance gains either in performance or complexity.

VII. SIMULATION RESULTS

In this section, we present simulation results on the performance of RS codes over an AWGN channel

with either BPSK or 256-QAM as the modulation format. In all the figures, the curve labeled mBM-1

corresponds to standard errors-and-erasures BM decoding with multiple erasure patterns. For ` > 1,

the curves labeled mBM-` correspond to errors-and-erasures BM decoding with multiple decoding trials

using both erasures and the top-` symbols. The curves labeled mASD-µ correspond to multiple ASD

decoding trials with maximum multiplicity µ. The number of decoding attempts is 2R where R is denoted

in parentheses in each algorithm’s acronym (e.g., mBM-2(RD,11) uses the RD approach with R = 11

while mBM-2(RDE,10) uses the RDE approach with R = 10). Please note that not all the algorithms

listed in this section are of the same complexity unless stated explicitly.

In Fig. 5, the RD curves are shown for various algorithms using the RD approach at Eb/N0 = 5.2 dB

where BPSK is used. For the (255,239) RS code, the fixed threshold for decoding is D = N−K+1 = 17.

Therefore, one might expect that algorithms whose average distortion is less than 17 should have a frame

error rate (FER) less than 1
2 . The RD curve allows one to estimate the number of decoding patterns

required to achieve this FER. Notice that the mBM-1 algorithm at rate 0, which is very similar to

conventional BM decoding, has an expected distortion of roughly 24. For this reason, the FER for
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Fig. 5. A realization of RD curves at Eb/N0 = 5.2 dB for various decoding algorithms for the (255,239) RS code over an

AWGN channel.

conventional decoding is close to 1. The RD curve tells us that trying roughly 216 (i.e., R = 16) erasure

patterns would reduce the FER to roughly 1
2 because this is where the distortion drops down to 17.

Likewise, the mBM-2 algorithm using rate R = 11 has an expected distortion of less than 14. So we

expect (and our simulations confirm) that the FER should be less than 1
2 .

One weakness of this RD approach is that RD describes only the average distortion and does not

directly consider the probability that the distortion is greater than 17. Still, we can make the following

observations from the RD curve. Even at high rates (e.g., R ≥ 5), we see that the distortion D achieved

by mBM-2 is roughly the same as mBM-3, mASD-2, and mASD-3 but smaller than mASD-2a (see

Example 4) and mBM-1. This implies that, for this RS code, mBM-2 using the RD approach is no worse

than the more complicated ASD based approaches for a wide range of rates (i.e., 5 ≤ R ≤ 35). This is

also true if the RDE approach is used as can be seen in Fig. 6 which depicts the trade-off between rate

R and exponent F for various algorithms at Eb/N0 = 6 dB. For this RS code, ASD based approaches
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Fig. 6. A realization of RDE curves at Eb/N0 = 6 dB for various decoding algorithms for the (255,239) RS code over an

AWGN channel.

have a better exponent than mBM-2 at low rates (i.e., small number of decoding trials) and have roughly

the same exponent for rates R ≥ 5.

In Fig. 7, a plot of the FER versus Eb/N0 is shown for the (255,239) RS code over an AWGN channel

with BPSK as the modulation format. The conventional HDD and the GMD algorithms have modest

performance since they use only one or a few decoding attempts. Choosing R = 11 allows us to make

fair comparisons with SED(12,12). With the same number of decoding trials, mBM-2(RD,11) outperforms

SED(12,12) by 0.3 dB at FER= 10−4. Even mBM-2(RD,7), with many fewer decoding trials, outperforms

both SED(12,12) and the KV algorithm with µ =∞. Among all our proposed algorithms using the RD

approach with rate R = 11, the mBM2-HM74(RD,11) achieves the best performance. This algorithm

uses the Hamming (7,4) covering code for the 7 LRPs and the RD approach for the remaining codeword

positions. Meanwhile, small differences in the performance among mBM-2(RD,11), mBM-3(RD,11),

mASD-2(RD,11), and mASD-3(RD,11) suggest that: (i) taking care of the 2 most likely symbols at each
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Fig. 7. Performance of various decoding algorithms for the (255,239) RS code using BPSK over an AWGN channel.

codeword position is good enough for multiple decoding of this RS code and (ii) multiple runs of errors-

and-erasures decoding is generally almost as good as multiple runs of ASD decoding. Recall that this

result is also correctly predicted by the RD analysis. When the RDE approach is used, mBM-2(RDE,11)

still has roughly the same performance as a more complex mASD-3(RDE,11). One can also observe

that these two algorithms using the RDE approach achieve better performance than mBM-2(RD,11) and

mBM2-HM74(RD,11) that use the RD approach. We also simulate our proposed algorithm at R = log2 9

to compare with the GMD algorithm. While both mBM-2(RDE,log2 9) and the GMD algorithm use the

same number of 9 errors-and-erasures decoding attempts, mBM-2(RDE,log2 9) yields roughly a 0.1 dB

gain. The simulation results show that, at this low rate R = log2 9, mASD-3 has a larger gain over

mBM-2 than at a higher rate R = 11. This phenomenon can be predicted in Fig. 6 where mASD-3 starts

to achieve a larger exponent F at small values of R.

To compare with the Chase-type approach (LCC) used in [9], in Fig. 7 we also consider the mBM2-
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Fig. 8. Performance of various decoding algorithms for the (255,239) RS code using 256-QAM over an AWGN channel.

HM74(4) algorithm that uses the Hamming (7,4) covering code for the 7 LRPs and the hard decision

pattern for the remaining codeword positions. This shows that, for the (255,239) RS code, the mBM2-

HM74 achieves better performance than the LCC(4) with the same number (24) of decoding attempts.

For the (458,410) RS code considered in Fig. 9, one can also observe that the group of algorithms that

we propose have better performance than LCC(10) with the same number (210) of decoding attempts.

However, the implementation complexity of LCC(10) may be lower than the algorithms proposed here

due to their clever techniques that reduce the decoding complexity per trial. It is also interesting to

note that the method proposed here, based on covering codes and random codebook generation, is also

compatible with some of the fast techniques used by the LCC decoding.

We also performed simulations using QAM and Fig. 8 shows FER versus Eb/N0 performance of the

same (255,239) RS code transmitted over an AWGN channel with 256-QAM modulation. At FER=10−4,

our proposed algorithms mBM-2(RD,10) and mBM-2(RDE,10) achieve 0.3−0.4 dB gain over SED(11,10)

(with the same complexity) and also outperform KV(µ =∞). At R = 10, mBM-2 still achieves roughly
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Fig. 9. Performance of various decoding algorithms for the (458,410) RS code over F210 using BPSK over an AWGN channel.

the same performance as mASD-3.

In Fig. 9, a plot of the FER versus Eb/N0 is shown for the (458,410) RS code that has a longer block

length. In this plot, BPSK is used as the modulation format and we also focus on rate R = 10. With

algorithms that use the RD approach, mBM-2(RD,10) still has approximately the same performance as

mBM-3(RD,10), mASD-2(RD,10), mASD-3(RD,10). However, when the RDE approach is employed,

algorithms that run multiple ASD decoding attempts have a recognizable gain over algorithms that use

multiple runs of BM decoding. The performance gain of the RDE approach (over the RD approach) is

small, but can be seen easily by comparing mASD-3(RDE,10) to mASD-3(RD,10). As a reference, we

also plot the performance of KV(4.99) which corresponds to the proportional KV algorithm [32] with

the scaling factor 4.99.

In Fig. 10, the same setting is used as in Fig. 9. As can be seen in the figure, KV(µ = ∞) achieve

better performance than mASD-3(RDE,10) and mBM-2(RDE,10). However, by considering higher µ,
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Fig. 10. Performance of various decoding algorithms for the (458,410) RS code over F210 using BPSK over an AWGN channel.

our algorithms using the heuristic method mASD0-10(RDE,10) and mASD0-20(RDE,10) can outperform

KV(µ =∞).

To target RS codes of lower rate, we also ran simulations of the (255,127) RS code over an AWGN

channel with BPSK modulation and the results can be seen in Fig. 11. While mBM-2(RDE,6), mBM-

2(RD,6), SED(7,6) and GMD all use the same number of about 64 errors-and-erasures decoding attempts,

our proposed mBM-2 algorithms outperforms the other two algorithms. As seen in the plot, mASD-

3(RDE,6) has quite a large gain over mBM-2(RD,6) which is reasonable since ASD decoding is known

to perform very well compared to BM decoding with low-rate RS codes. In this figure, KV(3.99) denotes

the proportional KV algorithm [32] with the scaling factor 3.99 and therefore with maximum multiplicity

µ = 3. While mASD-3(RDE,6) with 64 decoding attempts outperforms KV(3.99) as expected, the small

gain of roughly 0.5 dB at FER=10−4 suggests that with low-rate RS codes, one might prefer increasing

µ in a single ASD decoding attempt to running multiple ASD decoding attempts of a lower µ.

In Fig. 12, we show the FER versus Es/N0 performance for the (255,191) RS codes using 256-QAM.
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Fig. 11. Performance of various decoding algorithms for the (255,127) RS code using BPSK over an AWGN channel.

Again, our proposed algorithm mBM-2(RDE,5) performs favorably compared to SED(6,6) and GMD with

the same number of about 32 errors-and-erasures decoding attempts. Under this setup, mASD-2(RDE,5)

and mASD-3(RDE,5) achieve significant gains over mBM-2(RDE,5). Our proposed mASD-3(RDE,11)

and mASD-3(RDE,5) algorithms have fairly the same performance as the proportional KV algorithm

with the scaling factor 12.99 and 6.99, respectively.

To compare with the iterative erasure and error decoding (IEED) algorithm proposed in [8], we also

conducted simulations of the (255,223) RS code over an AWGN channel using BPSK and the results

are shown in Fig. 13. With the same number of about 17 errors-and-erasures decoding attempts, our

proposed mBM-2(RDE,log2 17) algorithm outperforms both the GMD and 17-IEED algorithms. In fact,

at FER smaller than 10−3, mBM-2(RDE,log2 17) has roughly the same performance as 32-IEED which

needs to use 32 decoding attempts. Meanwhile, mBM-2(RDE,5) that uses 32 decoding attempts performs

as good as 112-IEED where 112 decoding attempts are required.
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Fig. 12. Performance of various decoding algorithms for the (255,191) RS code using 256-QAM over an AWGN channel.

VIII. CONCLUSION

A unified framework based on rate-distortion (RD) theory has been developed to analyze multiple

decoding trials, with various algorithms, of RS codes in terms of performance and complexity. An

important contribution of this paper is the connection that is made between the complexity and per-

formance (in an asymptotic sense) of these multiple-decoding algorithms and the rate-distortion of an

associated RD problem. Based on this analysis, we propose two solutions; the first is based on the RD

function and the second on the RD exponent (RDE). The RDE analysis shows that this approach has

several advantages. Firstly, the RDE approach achieves a near optimal performance-versus-complexity

trade-off among algorithms that consider running a decoding scheme multiple times (see Remark 1).

Secondly, it helps estimate the error probability using exponentially tight bounds for N large enough.

Further, we have shown that covering codes can also be combined with the RD approach to mitigate

the suboptimality of random codes when the effective block-length is not large. As part of this analysis,

we also present numerical and analytical computations of the RD and RDE functions for sequences
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Fig. 13. Performance of various decoding algorithms for the (255,223) RS code using BPSK over an AWGN channel.

of i.n.d. sources. Finally, the simulation results show that our proposed algorithms based on the RD

and RDE approaches achieve a better performance-versus-complexity trade-off than previously proposed

algorithms. One key result is that, for the (255, 239) RS code, multiple-decoding using the standard

Berlekamp-Massey algorithm (mBM) is as good as multiple-decoding using more complex algebraic

soft-decision algorithms (mASD). However, for the (458, 410) RS code, the RDE approach improves the

performance of mASD algorithms beyond that of mBM decoding.

Simulations results suggest an interesting conjecture that for moderate-rate RS codes, multiple ASD

decoding attempts with small µ is preferred while for low-rate RS codes, a single ASD decoding with

large µ may be preferred. This conjecture remains open for future research. Our future work will also

focus on extending this framework to analyze multiple decoding attempts for intersymbol interference

channels. In this case, it will be appropriate for the decoder to consider multiple candidate error-events

during decoding. Extending the RD and RDE approaches directly to this case is not straightforward since

computing the RD and RDE functions for Markov sources in the large distortion regime is still an open
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problem. Another interesting extension is to use clever techniques to reuse the computations from one

stage of errors-and-erasures decoding to the next in order to lower the complexity per decoding trial (e.g.,

[9]).

APPENDIX A

PROOF OF COROLLARY 2

Proof: Using the formula in [26, p. 27], we have

Dmax =

N∑
i=1

min
k

∑̀
j=0

pi,jδjk.

For mBM-` with distortion matrix in (4), we have
∑`

j=0 pi,jδjk =
∑

j 6=k 2pi,j = 2(1− pi,k) for k ≥ 1

and
∑`

j=0 pi,jδj0 =
∑`

j=0 pi,j = 1. Therefore,

Dmax(mBM-`) =

N∑
i=1

min
k=1,...`

{1, 2(1− pi,k)}

=

N∑
i=1

min{1, 2(1− pi,1)}

since pi,1 = maxk≥1{pi,k}.
Similarly, for mASD-µ with distortion matrix ∆µ in (24), we have

∑̀
j=0

pi,jδjk = pi,0ρk,µ +
∑̀
j=1

pi,j

(
ρk,µ −

2mj,k

µ

)

= ρk,µ −
∑̀
j=1

mj,k

µ
pi,j

for k = 1, . . . , T . Since multiplicity type 1 is always defined to be (µ, 0, . . . , 0), we have ρ1,µ = 2 and

consequently, ∑̀
j=0

pi,jδj1 = 2(1− pi,1).

Therefore, we obtain

Dmax(mASD-µ) =

N∑
i=1

min
k=2,...,T

2(1− pi,1), ρk,µ −
∑̀
j=1

mj,k

µ
pi,j

 .

If mASD-µ uses multiplicity type (0, 0, . . . 0) which is, for example, labeled as type T then we have

ρT,µ −
∑̀
j=1

mj,T

µ
pi,j = ρT,µ = 1.

July 28, 2021 DRAFT



49

Consequently,

Dmax(mASD-µ) =

N∑
i=1

min
k=2,...,T−1

1, 2(1− pi,1), ρk,µ −
∑̀
j=1

mj,k

µ
pi,j


≤

N∑
i=1

min{1, 2(1− pi,1)}

= Dmax(mBM-`)

and this completes the proof.

APPENDIX B

PROOF OF LEMMA 6

Proof: With the notation p̄ = 1− p, according to [26, p. 27] we have

Dmin = p̄min
k
δ0k + pmin

k
δ1k = 1− p

Dmax = min
k

(p̄δ0k + pδ1k) = min{1, 2(1− p)}.

The function R(D) is not defined for D < Dmin and R(D) = 0 for D ≥ Dmax. For the case Dmin ≤
D < Dmax, the rate-distortion function R(D) is given by solving the following convex optimization

problem

minw I(X; X̂)

subject to wk|j , Pr(X̂ = k|X = j) ≥ 0 ∀j, k ∈ {0, 1}
w0|0 + w1|0 = 1

w0|1 + w1|1 = 1

p̄w0|0 + pw0|1 + 2p̄w1|0 = D

where the mutual information

I(X; X̂) = p̄
∑
k

wk|0 log
wk|0
qk

+ p
∑
k

wk|1 log
wk|1
qk

and the test-channel input probability-distribution

qk = Pr(X̂ = k) = p̄wk|0 + pwk|1.

We then form the Lagrangian

J(W ) = I(X; X̂) +
∑
j

γj(w0|j + w1|j − 1) + γ(p̄w0|0 + pw0|1 + 2p̄w1|0 −D)−
∑
j,k

λjkwk|j
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and the Karush-Kuhn-Tucker (KKT) conditions become10

∂J
∂wk|j

= 0 ∀j, k ∈ {0, 1}

w0|j + w1|j − 1 = 0 ∀j ∈ {0, 1}

wk|j , λjk ≥ 0 ∀j, k ∈ {0, 1}

λjkwk|j = 0 ∀j, k ∈ {0, 1}

.

By [26, Lemma 1, p. 32], we only need to consider the following cases.

• Case 1: w0|0 = w0|1 = 0. In this case, we further have w1|0 = w1|1 = 1. This leads to R = 0 and

D = 2(1− p) ≥ Dmax which is a contradiction as we only consider D ∈ [Dmin, Dmax).

• Case 2: w1|0 = w1|1 = 0. In this case, we have w0|0 = w0|1 = 1. This leads to R = 0 and

D = 1 ≥ Dmax which is also a contradiction.

• Case 3: wk|j > 0 ∀j, k ∈ {0, 1}. In this case, we know λjk = 0 and then, from ∂J
∂wk|j

= 0, we obtain

p̄(log
wk|0
qk

+ δ0kγ) + γ0 = 0 ∀k ∈ {0, 1},

p(log
wk|1
qk

+ δ1kγ) + γ1 = 0 ∀k ∈ {0, 1}.

Equivalently, we have

wk|0 = qk2
−δ0kγ2

−γ0
p̄ ∀k ∈ {0, 1},

wk|1 = qk2
−δ1kγ2

−γ1
p ∀k ∈ {0, 1}.

Letting α , 2−µ and noticing that w0|j + w1|j = 1 ∀j ∈ {0, 1}, we get

w0|0 =
q0

q0 + q1α
, w0|1 =

q0α

q0α+ q1
,

w1|0 =
q1α

q0 + q1α
, w1|1 =

q1

q0α+ q1
.

Putting this into the constraints 
p̄w0|0 + pw0|1 + 2p̄w1|0 = D

q0 = p̄w0|0 + pw0|1

q1 = p̄w1|0 + pw1|1

10Here we use some abuse of notation and still write the optimizing values in their old forms without a ? notation.
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we have a set of 3 equations involving 3 variables α, q0, q1. Solving this gives us

α =
D + p− 1

2− (D + p)
,

q0 =
2(1− p)−D
3− 2(D + p)

,

q1 =
1−D

3− 2(D + p)
.

Therefore, we can obtain the optimizing wk|j and have

R = H(p)−H(
1

1 + α
)

= H(p)−H(D + p− 1).

Hence, in all cases R = [H(p)−H(D + p− 1)]+ and we conclude the proof.

APPENDIX C

PROOF OF THEOREM 3

Proof: The objective here is to compute the RD function for a discrete source sequence xN of i.n.d.

source components xi. First, with the notations pi,j , Pr(Xi = j) and qi,j , Pr(X̂i = j) for j ∈ {0, 1)

and i ∈ {1, 2, . . . N}, Lemma 6 gives us the rate-distortion components

Ri(Di) = [H(pi)−H(Di + pi,1 − 1)]+

along with the test-channel input-probability distributions

qi,0 =
2(1− pi,1)−Di

3− 2(pi,1 +Di)
and qi,1 =

1−Di

3− 2(pi,1 +Di)

for each index i of the codeword. The overall rate-distortion function is given by

R(D) = min∑N
i=1 Di=D

Ri(Di)

= min∑N
i=1 Di=D

N∑
i=1

[H(pi)−H(Di + pi,1 − 1)]+

which is a convex optimization problem.

Using Lagrange multipliers, we form the functional

J(D) =

N∑
i=1

(H(pi,1)−H(Di + pi,1 − 1)) + γ

(
N∑
i=1

Di −D
)

and compute the derivatives
∂J

∂Di
= log(

Di + pi,1 − 1

2−Di − pi,1
) + γ.

July 28, 2021 DRAFT



52

The Kuhn-Tucker condition (see the restated version in [29], page 86) then tells us that there is γ such

that

∂J

∂Di

= 0 ifRi(Di) > 0

≤ 0 ifRi(Di) = 0

which is equivalent to

Di + pi,1 − 1

2−Di − pi,1

= 2−γ ifH(pi,1)−H(Di + pi,1 − 1) > 0

≤ 2−γ ifH(pi,1)−H(Di + pi,1 − 1) ≤ 0

.

With the notations D̃i , Di + pi,1 − 1 and λ , 2−γ

1+2−γ , it is equivalent to

D̃i

= λ if D̃i < min{pi,1, 1− pi,1}

≤ λ otherwise
.

Finally, it becomes

D̃i =

λ ifλ < min{pi,1, 1− pi,1}

min{pi,1, 1− pi,1} otherwise

where
N∑
i=1

D̃i =

N∑
i=1

(Di + pi,1 − 1)

= D +

N∑
i=1

pi,1 −N

and we conclude the proof.

APPENDIX D

ANALYSIS OF RDE COMPUTATION

Consider a binary single source X with Pr(X = 1) = p and Pr(X = 0) = 1 − p , p̄. According to

[21], for any admissible (R,D) pair we can find two parameters s ≥ 0 and t ≤ 0 so that F (R,D) can

be parametrically evaluated as

F (R,D) = sR− stD + max
q1

(− log f(q1))

= sR− stD − log min
q1

f(q1)

where

f(q1) = p̄

(∑
k

qk2
tδ0k

)−s
+ p

(∑
k

qk2
tδ1k

)−s
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and R,D are given in terms of optimizing q?.

For the distortion measure in (2) and with q0 = 1− q1, we have

f(q1) = p̄
(
(1− q1)2t + q122t

)−s
+ p

(
(1− q1)2t + q1

)−s
which is a convex function in q1. Taking the derivative ∂f

∂q1
= 0 gives us

q?1 =
1 + 2t

1− 2t

(
1

1 + 2t
− p̄

1

s+1

2
st

s+1 p
1

s+1 + p̄
1

s+1

)
, β.

In order to minimize f(q1) over q1 ∈ [0, 1], we consider three following cases where the optimal q?1

is either on the boundary or at a point with zero gradient.

• Case 1: 0 ≤ p ≤ 2t

1+2t then β ≤ 0. Since f convex, it is non-decreasing in the interval [β,∞) and

therefore in the interval [0, 1]. Thus, the optimal q?1 = 0 and we can also compute

D = 1; R = 0; F = 0 = DKL(p||p).

• Case 2: 1 ≥ p ≥ 1
1+2t(2s+1) then β ≥ 1. Since f convex, it is non-increasing in the interval (−∞, β]

and therefore in the interval [0, 1]. Thus, the optimal q?1 = 1 and we get

D =
2p̄

p22ts + p̄
; R = 0; F = DKL(u||p)

where in this case u = 1− D
2 . We can further see that D ∈ [2(1− p), 1] and u ∈ [1−D, p].

• Case 3: 2t

1+2t < p < 1
1+2t(2s+1) then β ∈ (0, 1). In this case, the optimal q?1 = β. We can find

w?k|j = q?k2tδjk∑
k q

?
k2tδjk

according to [21] and then obtain

D =
2t

1 + 2t
+ 1− u,

R = H(u)−H(u+D − 1),

F = DKL(u||p)

where

u =
2

st

s+1 p
1

s+1

2
st

s+1 p
1

s+1 + p̄
1

s+1

.

With this notation of u, we can express

q?1 =
1−D

3− 2(u+D)
and q?0 =

2(1− u)−D
3− 2(u+D)

.

We can see that D ∈ (1 − p, 1). It can also be verified that, in this case, by varying s and t, u spans

(1−D, 1− D
2 ) and R spans (0, H(1−D)).
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