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Abstract

Giulietti and Korchmáros presented new curves with the maximal number of
points over a field of size q6. Garcia, Güneri, and Stichtenoth extended the con-
struction to curves that are maximal over fields of size q2n, for odd n ≥ 3. The
generalized GK-curves have affine equations xq + x = yq+1 and yq

2 − y = zr, for
r = (qn + 1)/(q + 1). We give a new proof for the maximality of the generalized
GK-curves and we outline methods to efficiently obtain their two-point coordinate
ring.

Introduction

One of the main open problems for curves over finite fields is the classification of maximal
curves, curves that have the maximum number of points in the Hasse-Weil upper bound.
Additional motivation for the problem comes from coding theory since curves with many
points can be used to construct long codes with good parameters. For many years, all new
examples of maximal curves could be derived as subcovers of the ubiquitous Hermitian
curve. Giulietti and Korchmáros [7] presented an important new family of maximal curves
(GK-curves) that can not be obtained in this way. The Natural Embedding Theorem
says that a curve is maximal over a field of size q2 if and only if it is a curve of degree
q + 1 on a Hermitian hypersurface [11], [8]. GK-curves have a known embedding as a
curve on a Hermitian surface [7].
Building on an example of Serre, Abdón, Bezerra and Quoos [1] formulated a new family
of plane maximal curves. Garcia, Güneri and Stichtenoth [2] construct generalized GK-
curves as suitable covers of those plane curves. For a generalized GK-curve it is not known
if it is covered by the Hermitian curve. Nor is it known how the curve is embedded in a
Hermitian hypersurface.
In this paper, we provide an elementary proof that generalized GK-curves are maximal.
It is well known that maximality can be shown by giving, for an arbitrary point over
the algebraic closure, a carefully chosen hypersurface that intersects the curve only in
that point and its conjugates, with prescribed multiplicities. For the Hermitian curve,
the choice is straightforward. The curve is a plane curve and for the hypersurface one
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can choose the tangent at a point. A similar straightforward choice is available for GK-
curves, using their known embedding in a Hermitian surface, but not for generalized
GK-curves. Generalized GK-curves are defined by two equations in 3−space and our
maximality proof consists of explicitly presenting the surface that intersects the curve
with the required multiplicities. A different maximality proof appeared in [2]. It would
be interesting to have yet another proof, along the lines of Weil’s classical paper on
curves over finite fields and exponential sums, by expressing the Frobenius eigenvalues
as exponential sums and then connecting the exponential sums to Gauss sums.
The surface that we present in our maximality proof plays a role in the second part of the
paper, where we describe the ring of functions on generalized GK-curves that are regular
outside two given points. That ring contains a subring k[h, h−1] of finite index, where
h = 0 is the equation of the surface. We describe a method to obtain a basis for the full
ring as a free module over the subring k[h, h−1]. A possible application, not considered in
this paper, is the construction of good codes on generalized GK-curves. From the given
description it is straightforward to efficiently construct such codes.
To illustrate our methods we present the two-point non-gaps for GK-curves defined over
a field of size q6, for q = 2, 3, 4. This extends earlier results for one-point non-gaps for
the cases q = 2, 3 that were obtained in [6].

Maximal curves

The Hermitian curve yq + y = xq+1 over the field k of q2 elements is special in several
ways. It has N = q3+1 rational points (q3 solutions (x, y) ∈ k2 and one point at infinity)
and genus g = q(q − 1)/2. With these parameters it attains the maximum in the Hasse-
Weil bound N ≤ q2+1+2gq. Moreover, as was shown by Ihara [9], its genus is maximal
among all curves that meet the Hasse-Weil upper bound (the so-called maximal curves).
Ihara’s result has the following generalization. A curve over the field of q elements with
number of points N > rm + 1, for r =

√
q, m ≥ 2, has at least one Frobenius eigenvalue

α = reiθ with θ ∈ (π/m, 3π/m) [4]. A curve is maximal if and only if α = −r and
θ = π for all Frobenius eigenvalues. And in particular, a maximal curve can not have
more than r3+1 rational points. The maximum N = r3 +1 is attained only if the curve
is Hermitian [13]. The classification of maximal curves remains a major challenge. An
important tool in the classification is the Natural Embedding Theorem [11], [8, Theorem
10.22, Remark 10.24] which says that a curve over k is maximal if and only if it is a curve
of degree q + 1 on a Hermitian hypersurface. Giulietti and Korchmáros [7] presented a
curve that lies on a Hermitian surface and that can not be obtained as a subcover of
the Hermitian curve. It is defined by the equations (we use the equivalent equations
introduced in [2]) xq + x = yq+1 and yq

2 − y = zq
2−q+1 and is maximal over the field of

size q6. Garcia, Güneri and Stichtenoth [2] extended this to a larger class by proving that
more generally the curve is maximal over q2n for odd n if the exponent for z is replaced
with (qn + 1)/(q + 1). The proof in [2] uses results by Abdón, Bezerra and Quoos [1] for
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plane curves yq
2 − y = z(q

n+1)/(q+1). The genera are

g =
(q − 1)(qn − q)

2
and g =

(q − 1)(qn+1 + qn − q2)

2
,

respectively, for the plane curve and for the generalized GK-curve [2, Proposition 2.2].
To prove maximality it is then verified that the number of points N meets the Hasse-Weil
bound. In this paper we give a different proof that shows that for a generalized GK-curve
all Frobenius eigenvalues are equal to −qn. Whereas the maximality proof in [2] uses the
results in [1], our proof implies those results. Our proof is elementary and consists of two
steps. We look for a special function h that intersects the curve with high multiplicity in
a given point. The two steps are (1) find suitable equations for h and (2) find the function
h as a solution to the equations. The main difficulty is to stay away from computing
large resultants and to introduce suitable short cuts in the computations. The structure
of the curves is nice enough that this is indeed possible and the computations remain
perfectly manageable.

Rings of regular functions

A second goal of the paper is to describe the functions on the generalized GK-curve in a
way that makes it feasible to use the curve for the construction of good linear codes. The
first results in this direction were obtained by Fanali and Giulietti [6], with a description
of the functions regular outside a rational point on the GK-curve, for the cases q = 2
and q = 3. The functions that we are looking for generalize similar functions for the
Hermitian curve. For the Hermitian curve with equation xq + x = yq+1 (note that we
follow the notation for the GK-curve and not the common notation yq+ y = xq+1 for the
Hermitian curve), one-point Hermitian codes use as ring of functions

k[x, y] = the free k[x] module with basis {1, y, . . . , yq}.

The functions in the ring have no poles outside the point of infinity. Two-point codes use
a larger ring of functions with the possibility of poles at a second point. For the choice
of (0, 0) as the second point, the ring extends to

k[x, x−1, y] = the free k[x, x−1] module with basis {1, y, . . . , yq}.

More generally, for a choice (α, β) as second point, and for (a, b) = (αq, βq) we obtain
the ring

k[x+ a− by, (x+ a− by)−1, y − bq]

= the free k[(x+ a− by), (x+ a− by)−1] module

with basis {1, y − bq, . . . , (y − bq)q = yq − b}.

The surface h = 0 that we will determine in the next two sections generalizes the line
x + a = by. As outlined above, the function h can be used to prove the maximality
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of the generalized GK-curves. For the Hermitian curve, the automorphism group acts
transitively on ordered pairs of rational points and we can always assume that the first
point is the point at infinity and the second point is the origin (0, 0). For the generalized
GK-curves, this is not the case. For the GK-curve itself, the rational points divide into
two orbits [7]. We claim that the ring of functions regular outside the point at infinity
and the origin (0, 0, 0) is the ring

k[x, x−1, y, z] = the free k[x, x−1] module with basis {yizj : 0 ≤ i < q + 1, 0 ≤ j < r}.

It is known ([7, Proposition 1], see also [6, Section IV]) that the ring of functions regular
outside the point at infinity is generated by the three functions x, y and z. To find the
full ring it suffices to invert one function that has poles only at infinity and that vanishes
only in (0, 0, 0). The function x qualifies. In Section 3, we give a description when the
second point is not in the orbit of the origin (0, 0, 0).

1 The surface x + a = by + Z in implicit form

The generalized GK-curve Cn is defined, for an odd integer n, and for r = (qn+1)/(q+1),
by the pair of equations

{

xq + x = yq+1

yq
2 − y = zr

The curves were formulated in [2] and it was shown there that the curve Cn has genus

g(Cn) =
(q − 1)(qn+1 + qn − q2)

2

and that it has the maximum number N = q2n + 1 + 2gqn of Fq2n-rational points. A
curve is maximal over Fq2n if and only if, for an arbitrary point P on the curve and for
a rational point P0, the following fundamental linear equivalence holds,

qnP + Φ(P ) ∼ (qn + 1)P0.

Here Φ denotes the q2n-Frobenius morphism that raises the coordinates of a point to the
power q2n. The equivalence implies that the q2n-Frobenius action on the Jacobian of Cn
(more precisely on a ℓ-adic Tate module for the Jacobian) has unique eigenvalue −qn,
and therefore that the curve has the maximum number of q2 + 1 + 2gqn rational points
over Fq2n . We will present, for any point P = (α, β, γ) on Cn, possibly with coordinates
in an extension field, a polynomial hP ∈ k[x, y, z] with divisor

(hP ) = qn(α, β, γ) + (αq2n , βq2n, γq
2n

)− (qn + 1)∞,

where ∞ denotes the common pole of x, y and z. This proves the fundamental linear
equivalence and hence the maximality of Cn. The function h uses coefficients a = αqn,

4



b = βqn, and c = γq
n

. Clearly, (a, b, c) is a point on Cn.
{

aq + a = bq+1

bq
2 − b = cr

Ignoring for the moment the second equation and the variable z, we are left with the
Hermitian curve xq+x = yq+1 and a point (a, b) on the Hermitian curve, i.e. aq+a = bq+1.

For a = αq and b = βq, the line x+a = by intersects the curve in (α, β) (q times) and
(αq2, βq2) (multiplicity one). This is the classical proof that the Hermitian curve of degree
q + 1 is maximal over the field of q2 elements. For the computation of the intersection
divisor of the line x+ a = by, we start with the three equations











xq + x = yq+1

aq + a = bq+1

x+ a = by

After elimination of x and a we find

yq+1 + bq+1 − (by)q − by = (yq − b)(y − bq) = 0.

For b = βq, the solutions are y = β (q times) and y = βq2 (multiplicity one).

We want to extend the argument, which is well known for the Hermitian curve, to
the curve Cn. For the curve Cn, we bring in the second equation and consider the system
of equations































xq + x = yq+1

aq + a = bq+1

yq
2 − y = zr

bq
2 − b = cr

x+ a = by + Z

The purpose is to replace Z with a suitable polynomial such that the surface x+a = by+Z
vanishes in (α, β, γ) (qn times) and (αq2n, βq2n , γq

2n

) (multiplicity one), for a = αqn, b =
βqn, and c = γq

n

. To this end we eliminate x and a as well as y and b from the equations,
which will lead to an expression

F (Z, z, c) = 0,

for a polynomial F that is symmetric in z and c. The next step will be to choose
Z = Z(z, c) such that

F (Z(z, c), z, c) = (zq
n − c)(z − cq

n

).

For such a choice of Z, the hypersurface x+ a = by+Z intersects the curve Cn in points
(x, y, z) with z a root of

(zq
n − c)(z − cq

n

) = (zq
n − γq

n

)(z − γq
2n

) = (z − γ)q
n

(z − γq
2n

) = 0.
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After elimination of x and a we find










(yq − b)(y − bq) = Zq + Z

yq
2 − y = zr

bq
2 − b = cr

We express the left hand sides in terms of the new variables u = yq − b and v = y − bq.
And we replace the last two equations with two new equations.











uv = Zq + Z

(uq − v)(u− vq) = (cz)r

(uq
2 − u)(vq

2 − v) = (zqr − cr)(zr − cqr)

Elimination of u and v is straightforward. Note that all left sides are symmetric polyno-
mials in u and v. The symmetric polynomial (Xq−1 − 1)(Y q−1 − 1) can be written as a
polynomial F (X + Y,XY ) in X + Y and XY .

(Xq−1 − 1)(Y q−1 − 1) =
∏

ζq−1=1

(X − ζ)(Y − ζ)

=
∏

ζq−1=1

(XY − ζ(X + Y ) + ζ2) =: F (X + Y,XY ).

Thus, for X = uq+1, Y = vq+1,

(zqr − cr)(zr − cqr) = (uq
2 − u)(vq

2 − v)

= (uv)(Xq−1 − 1)(Y q−1 − 1)

= (uv)F (X + Y,XY )

= (uv)F ((cz)r + uv + (uv)q, (uv)q+1).

With (q + 1)r = qn + 1, we have

(zqr − cr)(zr − cqr) = (zq
n − c)(z − cq

n

) + cz + (cz)q
n − (cz)r − (cz)rq

= (zq
n − c)(z − cq

n

) + ((cz)r − cz)((cz)qr−1 − 1).

Thus we are looking for Z such that, for uv = Zq + Z,

(cz)(uv)F ((cz)r + uv + (uv)q, (uv)q+1) = ((cz)r − cz)((cz)qr − cz).

For t = cz, and for w = uv = Zq + Z,

twF (tr + w + wq, wq+1) = (tr − t)(tqr − t),

where F (X + Y,XY ) = (Xq−1 − 1)(Y q−1 − 1).
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Theorem 1.1. For odd n ≥ 1, let Cn be the generalized GK-curve over Fq2n, defined by
the equations

{

xq + x = yq+1

yq
2 − y = zr

where r = (qn + 1)/(q + 1). Let

twF (tr + w + wq, wq+1) = (tr − t)(tqr − t)

for w = Zq+Z, t = cz and for F (X+Y,XY ) = (Xq−1−1)(Y q−1−1). Then, for any point
(α, β, γ) ∈ Cn, and for (a, b, c) = (αqn, βqn, γq

n

), the surface x+a = by+Z intersects the
curve Cn in

(α, β, γ) (qn times) and (αq2n , βq2n, γq
2n

) (multiplicity one).

Corollary 1.2. Let Xn be the plane curve over Fq2n, defined by the equation yq
2−y = zr.

Then, for any point (β, γ) ∈ Xn, and for (b, c) = (βqn, γq
n

), the curve (yq− b)(y− bq)−w
intersects the curve Xn in

(β, γ) (qn times) and (βq2n, γq
2n

) (multiplicity one).

Proof. The equation of the curve follows by taking the trace of x+ a− (by + Z),

(xq + x) + (aq + a)− (yb)q − (yb)− (Zq + Z) =

yq+1 + bq+1 − (by)q − by − (Zq + Z) = (yq − b)(y − bq)− w.

2 The surface x + a = by + Z in explicit form

For a prime power q = pm, we define two formal sums f̂ and ĝ in the variable t with
coefficients in a field of characteristic p.

f̂ =
∑

n≥1

trn , rn = (q2n−1 + 1)/(q + 1),

ĝ =
∑

n≥0

tsn, sn = (q2n − 1)/(q + 1).

So that

f̂ = t+ tq
2−q+1 + tq

4−q3+q2−q+1 + · · · ,
ĝ = 1 + tq−1 + tq

3−q2+q−1 + · · · .
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As power series in the variable t, f̂ and ĝ are uniquely determined by their initial terms,
f̂ = t+ (higher order terms) and ĝ = 1 + (higher order terms), and by the relations

f̂ = tĝq, tĝ = t+ f̂ q.

It follows that
tq−1(f̂ − t) = f̂ q2, (ĝ − 1) = tq−1ĝq

2

.

We will also use
f̂ ĝ = f̂ + (f̂ ĝ)q = f̂ + f̂ q + f̂ q2 + · · · .

For a given n, let r = rn and s = sn, so that s = qr − 1 and r + s = q2n−1. Let f be the
sum of monomials in f̂ of degree less than r and let g be the sum of monomials in ĝ of
degree less than s.

Lemma 2.1. The equation

twF (tr + w + wq, wq+1) = (tr − t)(tqr − t),

where F (X + Y,XY ) = (Xq−1 − 1)(Y q−1 − 1), has a polynomial solution w = fg.

Proof. The polynomials f and g satisfy

tq−1(f + tr − t) = f q2,

(g + ts − 1) = tq−1gq
2

.

And therefore,
tr − t = (Xq−1 − 1)f for tX = f q+1,
ts − 1 = (Y q−1 − 1)g for Y = tgq+1.

Moreover,
f + tr = tgq, tg = t+ f q.

Let w = fg, so that XY = wq+1. Then

X = f(g − 1), Y = (f + tr)g,

w = fg, wq = XY/w = (g − 1)(f + tr),

and X + Y = w + wq + tr. Thus w = fg is a solution.

For the surface x+a = by+Z in Theorem 1.1 we need Z such that Zq+Z = w. With
the lemma we may obtain Z as a solution to Zq+Z = fg. For a given n, f = tr1+· · ·+trn−1

and g = ts0 + · · ·+ tsn−1 . The product fg is the sum of (n− 1)n terms of the form tri+sj .
It is helpful to picture the sums ri + sj in an addition table. For n = 4,

s0 s1 s2 s3
r1 1 q
r2 q2 q3

r3 q4 q5
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Only the entries near the diagonal have been filled in. They follow from the relations
ri + si−1 = q2i−2 and ri + si = q2i−1, for i ≥ 1. In general, for 0 ≤ j < i < n,

rj+1 + si = q(ri + sj).

Thus the entries above the diagonal are q-multiples of the entries below the diagonal.
And we can choose Z =

∑

0≤j<i<n t
ri+sj .

Example 2.2. Let C be the GK-curve defined by xq+x = yq+1, yq
2−y = zr, r = q2−q+1,

over Fq6. Then w = tq+t and Z = t. The equation of the hypersurface is x+a−by−cz = 0.
The equation appears in [6] and in this special case can be obtained directly as the tangent
plane to the Hermitian surface xq

3

+ x = yq
3+1 + zq

3+1. It follows from the proof of the
Natural Embeding Theorem [11], see also [8, Theorem 10.22, Remark 10.24] that the
latter approach to find the equation of the hypersurface applies more generally to all
maximal curves with a known embedding in a Hermitian hypersurface.

Example 2.3. Let C be the maximal curve defined by x2 + x = y3, y4 − y = z11 over
F210 . Let (α, β, γ) be a rational point with γ 6= 0 and let (a, b, c) = (α32, β32, γ32). For
q = 2, f̂ = t+ t3 + t11 + t43 + · · · and ĝ = 1+ t+ t5 + t21 + t85 + · · · . For the given curve
we use r = 11, s = 21, r + s = 32, f = t+ t3 and g = 1 + t + t5. The rational function

(y2 − b)(y − b2)− f(cz)g(cz)

for the plane curve X with y4 − y = z11 has a pole of order 25 + 1 at infinity and a zero
of order 25 + 1 at (β, γ). With fg = (t+ t3 + t4) + (t+ t3 + t4)2 and Z = t+ t3 + t4, the
rational function

x+ a− by − Z(cz)

for the curve C has a pole of order 25+1 at infinity and a zero of order 25+1 at (α, β, γ).

Remark 2.4. The equations that we used in the previous section are formulated for
pairs of points (x, y, z) and (a, b, c) on the same curve, and the equations express a
correspondence between two copies of the same curve. For a curve with function field
K/k defined over a finite field of size q, let F : K −→ K be the purely inseparable map
F (x) = xq and let ψ : K −→ K be the map ψ(x) = xq

2 − x. Using two copies of this
map, we find a map ψ × ψ : K ×K −→ K ×K with a factorization ψ × ψ = φ ◦ φ, for
φ : K ×K −→ K ×K such that φ(x, y) = (xq − y, x− yq). In matrix form,

(

F 2 − 1 0
0 F 2 − 1

)

=

(

F −1
1 −F

)(

F −1
1 −F

)

.

If we denote by p : K × K −→ K the product p(x, y) = xy then we can write the left
sides of our equations as

p ◦ φ(y, b) = uv

p ◦ φ2(y, b) = (uq − v)(u− vq)

p ◦ φ3(y, b) = (uq
2 − u)(vq

2 − v).
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3 Two-point coordinate rings

For the Hermitian curve, with equation xq + x = yq+1, the functions that are regular
except possibly at infinity are the polynomials in x and y. Using the equation of the
curve, each such polynomial can be represented uniquely as a polynomial of degree at
most q in y with coefficients in k[x],

k[x, y] = the free k[x] module with basis {1, y, . . . , yq}.

The larger ring of all functions that are regular except possibly at infinity or at the origin
(0, 0) is

k[x, x−1, y] = the free k[x, x−1] module with basis {1, y, . . . , yq}.

The function x has divisor (q + 1)((0, 0)−∞). It has a zero of order q + 1 at the origin,
a pole of order q + 1 at infinity, and no other zeros or poles. The function y has poles
only at infinity, of order q, and it has q zeros of order one including a zero at the origin.
Note that as f runs through {1, y, . . . , yq}, the pole order of f at infinity and the order of
vanishing of f at the origin both run through all the residue classes modulo q + 1. This
assures that the functions 1, y, . . . , yq are independent over k[x].

For the curve with equation yq
2 − y = zr, for r = (qn + 1)/(q + 1), n odd, the

functions that are regular outside infinity are again the polynomials in y and z. The ring
of functions that are regular except possibly at infinity or at the origin (0, 0) is

k[y, y−1, z] = the free k[y, y−1] module with basis {1, z, . . . , zr−1}.

The main properties are the same as before. For a choice of (β, γ) as second point such
that γ = 0, we replace y with y − β. The function y − β has a pole of order r at infinity
and a unique zero at (β, 0) of order r. However when we choose as second point on the
curve a rational point (β, γ) with γ 6= 0, then we need the function h of the previous
section. For b = βqn, c = γq

n

,

(h) = (qn + 1)((β, γ)−∞), for h = (yq − b)(y − bq)− f(cz)g(cz).

The ring of functions regular outside infinity and (β, γ) becomes

k[h, h−1, y, z] = the free k[h, h−1] module with basis {yizj : 0 ≤ i < q + 1, 0 ≤ j < r}.

While this gives a correct description of the ring it is not quite in the right form to
recognize the k-subspaces that are needed for the construction of two-point codes. For
that purpose we order the monomials yizj by increasing pole order at infinity. And we
replace each monomial yizj with a polynomial fi,j that has y

izj as leading monomial and
whose vanishing order at the second point (β, γ) is maximal.

k[h, h−1, y, z] = the free k[h, h−1] module with

basis {fi,j = yizj + · · · : 0 ≤ i < q + 1, 0 ≤ j < r}.
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The function h with (h) = (qn + 1)((β, γ) − ∞) provides useful relations between
the Weierstrass semigroups at the points (β, γ) and ∞. We make a small digression to
describe these relations for general points P and Q and for a function h with divisor
m(P − Q). Applying the relations with P = ∞ and Q = (β, γ) we will then be able to
determine properties of the Weierstrass semigroup at Q using known properties of the
Weierstrass semigroup at P . We will also be able to motivate the choice of the modified
free basis {fi,j} for the two-point coordinate ring. Properties of pairs of Weierstrass non-
gaps are considered in [10], [12]. In those papers a pair of nonnegative integers (a, b) is
called a nongap for (P,Q) if there exists a rational function f with pole divisor aP + bQ.
In [3, Definition 1], this definition is relaxed to arbitrary pairs of integers, and a pair of
integers (a, b) is a nongap if there exists a function f with no poles outside P and Q such
that − ordP (f) = a,− ordQ(f) = b. At least one of a, b is nonnegative. If a, b ≥ 0 the
nongap is a classical pole divisor. If a ≥ 0 and b < 0 then f has a pole of order a at P
and vanishes to the order −b at Q, with a similar interpretation when b ≥ 0 and a < 0.

For two points P and Q, fix an integer m such thatmP ∼ mQ, and let h be a function
with divisor (h) = m(P − Q). Clearly m is a common Weierstrass nongap for P and
Q. We call a Weierstrass P -nongap a minimal if it is the smallest nongap in the residue
class a+mZ. Similarly for a Weierstrass Q-nongap b. The Weierstrass semigroups for P
and Q are determined by their m minimal nongaps. The number of minimal Weierstrass
nongaps in the interval (im−m, im] is the same for P and for Q, for any integer i. This
is easy to see using that dimL(imP ) = dimL(imQ), for every integer i. We show that
moreover there exists a natural bijection between the minimal nongaps in (im −m, im]
for P and those for Q. The bijection is the restriction of a bijection defined on all integers
in [3, Definition 13, Proposition 14(i)], [5, Theorem 8.5].

Proposition 3.1. For a Weierstrass P -nongap a ∈ (im − m, im], let b be maximal
such that there exists a function f ∈ L(aP ) with precise pole order a at P and precise
vanishing order b at Q. Then a is minimal if and only if b ∈ [0, m). In that case,
b′ = im− b ∈ (im−m, im] is a minimal Weierstrass Q-nongap with maximal vanishing
order a′ = im− a ∈ [0, m) at P .

Proof. Assume that a is minimal. Clearly, b ≥ 0. On the other hand b < m. For otherwise
f/h would be a function with poles only at P of order a −m, contradicting minimality
of a. The function f/hi has a pole only at Q of order b′ = im − b ∈ (im −m, im]. The
relation between a and b is characterized by

L(aP − bQ) 6= L((a− 1)P − bQ) and L(aP − (b+ 1)Q) = L((a− 1)P − (b+ 1)Q,

which is equivalent to the combination

L(aP − bQ) 6= L(aP − (b+ 1)Q) and L((a− 1)P − bQ) = L((a− 1)P − (b+ 1)Q.

For a′ = im− a and b′ = im− b, the latter becomes

L(b′Q− a′P ) 6= L((b′ − 1)Q− a′P ) and L(b′Q− (a′+1)P ) = L((b′ − 1)Q− (a′+1)P ).

11



This shows that a′ is the maximum vanishing order at P for a function with precise
pole order b′ at Q. Since a ∈ (im −m, im], a′ ∈ [0, m). But then b′ ∈ (im − m, im] is
minimal.

We return to the special case P = ∞ and Q = (β, γ), with m = qn + 1. The qn + 1
minimal P -nongaps are {ir + jq2 : 0 ≤ i < q + 1, 0 ≤ j < r}. With the proposition
the minimal Q-nongaps can be determined from the maximal vanishing orders at Q of
functions with poles only at P . In the process of finding the maximal vanishing orders we
update the free basis of monomials {yizj} to the free basis {fi,j}. The new basis will be
useful when we need to find a basis for a given vector space L(aP+bQ). If L((a−1)P+bQ)
is properly contained in L(aP + bQ) then we choose f ∈ L(aP + bQ)\L((a− 1)P + bQ)
as follows. Let a − km be a minimal nongap and let g be the function in the free basis
{fi,j} with precise pole order a − km at P . Then g vanishes with maximal order at Q
and we can choose f = ghk.

Replacing the monomial yizj with a polynomial fi,j = yizj + · · · is essentially a
process of Gaussian elimination on a square matrix of size qn+1 over k. Namely for each
monomial yizj we consider its development as a power series in a local parameter t at
the point (β, γ) as follows. The functions y − β and z − γ each vanish to the order one
in (β, γ). We set z = γ(t + 1), so that the new variable t vanishes to the order one in
(β, γ). After fixing t as a local parameter we express y as a power series in t. Note that
(y−β)q

2 − (y−β) = zr −γr = γr((1+ t)r −1). If we let T = (1+ t)r −1 and c = γr then

y = β − cT − (cT )q
2 − (cT )q

4 − · · · .

For an arbitrary monomial yizj we find its power series in t by substituting the series for
y and for z. We associate to each monomial a vector of length qn + 1 whose coordinates
are the coefficients of its power series modulo tq

n+1. The Gaussian elimination comes
with the restriction that only previous rows can be used to clear entries in the current
row. The computations reduce significantly if we fill in the rows one at a time, and each
time a row is needed we fill it not with the development of yizj but with the development
of either fi−1,jy or fi,j−1z. In that case each new row requires at most q + 1 operations
to be updated to a polynomial fi,j. This is very similar to the obtained improvements in
the Berlekamp-Massey algorithm.

For the curves y4 − y = z3 over F26 , y
9 − y = z7 over F36 , and y16 − y = z13 over

F46 , the results are summarized in tables that give the positions of the pivots after the
Gaussian elimination is completed. The matrices are of size 9 × 9, 28 × 28 and 65 × 65
respectively. Rows in the matrices correspond to monomials yizj and are ordered by
increasing pole order at infinity (i.e. 1 < y < z < y2 < yz < z2 < y3 < · · · ). For each
monomial yizj , the table lists the maximal vanishing order at a point (β, γ) with γ 6= 0,
for a polynomial fi,j with leading monomial yizj . A vanishing order of m corresponds to
a power series with leading term tm and to a row with a pivot in the m + 1-st column.
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The polynomials that result after the Gaussian elimination is completed are independent,
with distinct vanishing orders in the range 0 to qn.

When we extend the plane curves to the GK-curves

x2 + x = y3, y4 − y = z3 over F26 ,
x3 + x = y4, y9 − y = z7 over F36 ,
x4 + x = y5, y16 − y = z13 over F46 ,

and choose as second point (α, β, γ) with γ 6= 0 then we can use the same functions fi,j
with the same vanishing orders (since (α, β, γ) is one of q distinct points lying above
(β, γ)). The pole orders in the left table on the other hand are all multiplied by q (since
the point at infinity is the unique point above the point at infinity on the plane curve,
in a covering of degree q). In other words, the plane curve and the GK-curve share the
same free basis for their two-point coordinate rings. The generating functions h for the
ring k[h, h−1] are different in each case but are related via hqGK +hGK = h, where we can
choose hGK = Z and h = w as in Section 1 and Section 2. For the GK-curve, rational
points (α, β, γ) with γ 6= 0 lie in a single orbit under the action of the automorphism
group ([7]) and the tables do not depend on the choice of the second point.

The tables contain all the information about two-point Weierstrass nongaps and in
particular about one-point Weierstrass nongaps. Of particular interest are the functions
with leading monomial

(q = 2) Y (6,−1) Z (8,−2) Z2 (16,−5)
(q = 3) Y (21,−1) Z (27,−3) Z3 (81,−10) Z5 (135,−19)
(q = 4) Y (52,−1) Z (64,−4) Z4 (256,−17) Z7 (448,−33) Z10 (640,−49)

For each function, the numbers (a, b) in parentheses give the pole order a at infinity
and the vanishing order −b at a point (α, β, γ) above (β, γ), γ 6= 0. After multiplication
with a power of the function hGK we find functions with poles only at the second point
that vanish with maximal order at infinity. The numbers (a′, b′) give the pole order b′ at
the second point and the corresponding maximal order of vanishing −a′ at the point at
infinty.

(q = 2) Y (−3, 8) Z (−1, 7) Z2 (−2, 13)
(q = 3) Y (−7, 27) Z (−1, 25) Z3 (−3, 74) Z5 (−5, 121)
(q = 4) Y (−13, 64) Z (−1, 61) Z4 (−4, 243) Z7 (−7, 422) Z10 (−10, 601)

In this way we recover the numerical semigroups 〈7, 8, 9, 13〉 (q = 2), 〈25, 27, 28, 74, 121〉
(q = 3), and 〈61, 64, 65, 243, 422, 601〉 (q = 4). The cases q = 2, 3 were computed in [6].
We do not list the functions themselves, which are in general returned by the algorithm
as rather long polynomials.
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The pole orders in the left tables are minimal non-gaps within their residue class
modulo q3 + 1. With Proposition 3.1 this guarantees that the corresponding vanishing
orders in the right table lie in the interval [0, q3 + 1). Proposition 3.1 applies to general
curves. Both the plane curve yq

2 − y = zr and the generalized GK-curve Cn have the
special property that the canonical divisor is a multiple of the point at infinity. We
indicate briefly how this can be used to explain in a different way that the vanishing
orders in the right table lie in the interval [0, q3). The largest entry in the left table is
the pole order of the monomial yqzr−1. For general n, this pole order is

q · r + (r − 1) · q2 = q(q + 1)r − q2 = qn+1 + q − q2,

for the plane curve yq
2 − y = zr, and qn+2 + q2 − q3 for the generalized GK-curve Cn.

In both cases the pole order equals 2g − 1 + qn + 1. This pole order is minimal within
its residue class modulo qn + 1 and thus, for both the plane curve and the curve Cn,
2g− 1 is a nongap for the point at infinity, and the canonical divisor is a multiple of the
point at infinity. To the pole order 2g − 1 + qn + 1 corresponds the maximal vanishing
order qn. Using K = (2g − 2)∞ it can be shown that if (a, b) is any pair of a pole order
a and a corresponding maximal vanishing order b then (a′, b′) is another such pair for
a+ a′ = 2g − 1 + qn + 1 and b+ b′ = qn. The claim corresponds to Lemma 8.2 in [5]. It
follows from the characterization

L(aP − bQ) 6= L((a− 1)P − bQ) and L(aP − (b+ 1)Q) = L((a− 1)P − (b+ 1)Q,

for pairs (a, b), using the Riemann-Roch theorem together with the assumption K =
(2g − 2)∞.

A clear pattern emerges from the cases q = 2, 3, 4. In terms of a general q the observed
patterns are the following. There exist functions with pole order a at ∞ with maximal
vanishing order −b at (α, β, γ), for γ 6= 0, for

{

(a, b) = (q3 − q2 + q,−1), (q3,−q), (q3 + 1,−q3 − 1), and for

(a, b) = (q4 + i(q4 − q3),−q2 − 1− iq2), i = 0, 1, . . . , q − 2.

The corresponding set of pairs (a′, b′) such that there exist functions with pole order b′

at (α, β, γ), for γ 6= 0, with maximal order of vanishing −a′ at ∞ are
{

(a′, b′) = (−q2 + q − 1, q3), (−1, q3 + 1− q), (−q3 − 1, q3 + 1), and for

(a′, b′) = (−q − i(q − 1), q4 + q + i(q4 + q − q3 − 1)− q2 − 1− iq2), i = 0, 1, . . . , q − 2,

In particular, the Weierstrass semigroup at (α, β, γ), for γ 6= 0, is

〈q3 − q + 1, q3, q3 + 1, q4 − q2 + q − 1 + i(q4 − q3 − q2 + q − 1) : i = 0, 1, . . . , q − 2〉.

The patterns hold for other values of q as well (we tested up to q = 9, using Magma) but
a proof of the general case seems to require a further analysis of the functions involved.
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1 Y Y 2

1 0 3 6
Z 4 7 10
Z2 8 11 14

1 Y Y 2

1 0 1 3
Z 2 4 6
Z2 5 7 8

1 Y Y 2 Y 3

1 0 7 14 21
Z 9 16 23 30
Z2 18 25 32 39
Z3 27 34 41 48
Z4 36 43 50 57
Z5 45 52 59 66
Z6 54 61 68 75

1 Y Y 2 Y 3

1 0 1 2 5
Z 3 4 7 8
Z2 6 9 11 14
Z3 10 12 15 17
Z4 13 16 18 21
Z5 19 20 23 24
Z6 22 25 26 27

0 1 Y Y 2 Y 3 Y 4

1 0 13 26 39 52
Z 16 29 42 55 68
Z2 32 45 58 71 84
Z3 48 61 74 87 100
Z4 64 77 90 103 116
Z5 80 93 106 119 132
Z6 96 109 122 135 148
Z7 112 125 138 151 164
Z8 128 141 154 167 180
Z9 144 157 170 183 196
Z10 160 173 186 199 212
Z11 176 189 202 215 228
Z12 192 205 218 231 244

1 Y Y 2 Y 3 Y 4

1 0 1 2 3 7
Z 4 5 6 10 11
Z2 8 9 13 14 15
Z3 12 16 18 19 23
Z4 17 20 22 26 27
Z5 21 24 28 30 31
Z6 25 29 32 35 39
Z7 33 34 36 40 43
Z8 37 38 42 44 47
Z9 41 45 46 48 52
Z10 49 50 51 55 56
Z11 53 54 58 59 60
Z12 57 61 62 63 64

Pole orders (left) and vanishing orders (right) for the curves
y4 − y = z3 (top), y9 − y = z7 (middle), y16 − y = z13 (bottom).

4 Conclusion

We provided a new self-contained proof for the maximality of a generalized GK-curve.
Furthermore, we provided an efficient way to construct functions with prescribed poles or
vanishing orders at two given points P and Q on the curve, for P the point at infinity and
for Q a rational point (α, β, γ) with γ 6= 0. For the original GK-curve, we expect to be
able to give generating functions in closed form for the ring of functions with poles only
at Q. That would make it possible to settle the structure of the Weierstrass semigroup
at Q.
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