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Abstract

This paper demonstrates fundamental limits of sensor networks for detection problems where the

number of hypotheses is exponentially large. Such problemscharacterize many important applications

including detection and classification of targets in a geographical area using a network of sensors, and

detecting complex substances with a chemical sensor array.We refer to such applications as large-

scale detection problems. Using the insight that these problems share fundamental similarities with the

problem of communicating over a noisy channel, we define a quantity called the ‘sensing capacity’

and lower bound it for a number of sensor network models. The sensing capacity expression differs

significantly from the channel capacity due to the fact that afixed sensor configuration encodes all

states of the environment. As a result, codewords are dependent and non-identically distributed. The

sensing capacity provides a bound on the minimal number of sensors required to detect the state of an

environment to within a desired accuracy. The results differ significantly from classical detection theory,

and provide an intriguing connection between sensor networks and communications. In addition, we

discuss the insight that sensing capacity provides for the problem of sensor selection.

Index Terms

sensor networks, sensing capacity, detection theory, sensor selection, sensor allocation

I. INTRODUCTION

A sensor network is deployed to obtain information about thestate of an environment using

multiple sensors. In many sensing applications, such as pollution monitoring and border security,

the phenomena under observation has a large scale that exceeds the range of any one sensor. As a

result, collecting measurements from multiple sensors is essential to the sensing task. Obtaining
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information about an environment can be cast as either a ‘detection’ or an ‘estimation’ problem.

In estimation problems such as the problem of estimating a continuous field to within a desired

distortion, the state of the environment is continuous. In detection problems, such as binary

hypothesis testing, the state of the environment is represented as a finite set of hypotheses. In

this paper we study the problem of ‘large-scale detection’ where the state of the environment

belongs to an exponentially large, structured set of hypotheses. Large-scale detection problems

include many applications where a sensor network is deployed in order to monitor a large-

scale phenomena. We exploit the structure of large-scale detection problems to demonstrate a

fundamental information-theoretic relationship betweenthe number of sensor measurements and

ability of a sensor network to detect the state of the environment to within a desired accuracy.

We obtain our results by drawing on an analogy between sensornetworks and channel

encoders. For a fixed sensor configuration, each state of the environment induces a corresponding

set of sensor outputs. This set of sensor outputs can be viewed as a noise-corrupted ‘codeword,’

which must be ‘decoded’ in order to detect the state of the environment. Thus, the sensor network

acts as a channel encoder. In order to motivate this perspective, we examine the following large-

scale detection applications.

Robotic mapping is the first large-scale application we consider [1]. In mapping, robots

collect sensor measurements to map an unknown environment for the purpose of navigation. [2]

introduced occupancy grids, one of the most popular approaches to this problem. In occupancy

grids, the world is modeled as a discrete grid, where each grid location has a value corresponding

to the state of the environment. For example, in a binary a grid a ‘0’ can indicate free space

while a ‘1’ can indicate an obstacle. A robot traversing an unknown environment collects sensor

measurements that encode the state of the environment. For example, a robot using a sonar

sensor emits a wide acoustic pulse and measures the time until a reflected pulse is sensed.

These readings are ambiguous, since one cannot infer the precise location of the obstacle that

caused the reflection from a single sensor reading. In addition, sonar readings are noisy. As

a result, multiple sensor measurements must be used to distinguish among an exponentially

large number of possible grid states. The sequence of sonar readings can be viewed as a noise-

corrupted codeword corresponding to the state of the grid. While robotic mapping systems have

been successfully implemented in practice, little can be said about their theoretical performance.

Theoretical understanding could shed light on the number ofsensor measurements required
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to map an unknown environment. In addition, theory can provide insight into questions about

sensor selection. Is it better to use cheap, low power, wide angle sensors or expensive, high

power, narrow angle sensors? A theoretical framework couldprovide general insight into such

sensor selection questions.

Video surveillance is another large scale detection problem. [3] used multi-camera sensor

networks to detect and track objects across multiple areas,and [4] uses multiple cameras to

localize moving objects in a room. The region under surveillance can be viewed as a three-

dimensional grid. For example each grid position can have a binary value, representing motion

or lack of motion in that grid position. As in the previous example, the number of states of this

grid is exponential in the number of grid blocks. Each cameraobserves a subset of grid blocks,

but introduces ambiguity by reducing a three-dimensional volume to a two-dimensional image.

As a result multiple camera images must be combined to detectthe state of the environment.

The set of images encode the grid state. While practical systems for surveillance applications

are deployed, a theoretical framework for understanding performance limits for such problems

is not available.

Identifying a complex chemical substance is a third exampleof a large-scale detection problem.

In this application the output of chemical sensor arrays, consisting of heterogeneous chemical

sensors, is used to distinguish among a large number of substances [5]. Each substance can be

modeled as a mixture of constituent chemicals at various discrete concentration levels, resulting

in an exponentially large set of possible states. Each chemical sensor in the array reacts to a

subset of chemicals. For example, sensors can output a voltage proportional to a weighted sum

of the concentrations of a subset of chemicals. The output ofa chemical sensor array encodes

the state of the sample being sensed. As in the previous two examples, theory could provide

insight into the practical design of such sensor arrays.

Target detection and classification in a geographical area is an important class of applications

for sensor networks [6], and a final motivating example of a large-scale detection problem. We

consider the problem of detection and classification using seismic sensors, as demonstrated in

[6], [7]. The environment can be modeled as a discrete grid, where each position can contain

targets of multiple types. The number of target configurations is exponential in the number of

grid blocks. Seismic sensors are scattered randomly on thisgrid, and sense the vibrations of

targets over subsets of the grid. The intensity of vibrationis dependent on the target’s distance



4

from the sensor, and therefore a single sensor cannot distinguish between many targets far away

and a single target nearby. The set of seismic sensor outputsencode the location and class of

targets in the field.

All of the examples considered above share the following common elements. The state can

be modeled as a discrete vector or grid, and the number of states is exponentially large. Sensors

output noise-corrupted functions of subsets of the vector or grid. These sensor measurements

must be fused in order to detect the state of the environment.In this paper we analyze the

fundamental limits of this process by using the insight thatthe problem of large-scale detection

and the problem of communicating over a noisy channel share essential similarities.

II. SENSORNETWORKS AND COMMUNICATION CHANNELS

The examples described in Section I motivate the sensor network model shown in Figure 1.

A discrete target vectorv represents the state of the environment. In this paper, the term ‘state’

and ‘target vector’ are used interchangeably. A fixed sensorconfiguration encodes the state as

a vector of noiseless sensor outputs that form the codewordx. The observed, noisy sensor

measurements are written asy, a noise-corrupted version ofx. Finally, a detection algorithm

usesy to compute a guess of the state of the environmentv̂.

The sensor model shown in Figure 1 is similar to the classicalcommunication channel model

shown in Figure 2. The target vectorv corresponds to the messagem being sent. The sensor

network acts as a channel encoder, producing the codewordx. Finally, a detection algorithm acts

as a channel decoder on the noise corrupted codewordy. Shannon’s celebrated Channel capacity

results provide limits for the communications channel [8].Motivated by the similarity between

the sensor network model and the communication channel model, we defined and bounded the

sensing capacityin [9]. The sensing capacity plays a role in our sensor network model analogous

to the role of channel capacity in a communications channel.However, because the models differ

in significant ways, the notions of channel capacity and sensing capacity also differ.

The most important difference between the sensor network model and a communication

channel model is at the encoder. In communications, the content of the message and its codeword

representation can be decoupled. Further, the channel encoder can implement any mapping

between message and codeword. As a result, two highly similar messages can be differentiated

with arbitrarily high accuracy. In contrast, a sensor network encoder uses the same sensor
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configuration to encode all states of the environment. Further, since sensors react to some

phenomena in the environment and are limited by physical constraints, the codeword associated

with a particular state of the environment is a direct function of that state. Therefore the state and

its codeword representation are coupled. As a result, two highly similar states of the environment

cannot be distinguished with arbitrarily high accuracy. While similarities between the sensor

network model and the channel model motivate the application of insights about communications

from information theory, significant differences between the two models require care in applying

such insights in order to understand the impact of these differences on the final theoretical results.

Section III provides an overview of the main results presented in this paper, and reviews

related work. Section IV presents sensing capacity resultsfor non-spatial (e.g. chemical) sensing

applications, while Section V demonstrates sensing capacity results for a sensor network model

that accounts for spatial locality in sensor observations.Section VI concludes the paper and

discusses future work.

III. M AIN RESULTS AND RELATED WORK

We review the main theoretical results presented in this paper. In Section IV we introduce a

simple but useful sensor network model that can be used to model sensing applications such as

chemical sensing applications and computer network monitoring. For this model, we define and

bound the sensing capacity. The sensing capacity bound differs significantly from the standard

channel capacity results, and requires novel arguments to account for the constrained encoding

of a sensor network. This is an important observation due to the use of mutual information as

a sensor selection heuristic [10]. Our result shows that this is not the correct metric for large-

scale detection applications. Extensions are presented toaccount for non-binary target vectors,

target sparsity, and heterogeneous sensors. Plotting the sensing capacity bound, we demonstrate

interesting sensing tradeoffs. For example, perhaps counter-intuitively, sensors of shorter range

can achieve a desired detection accuracy with fewer measurements than sensors of longer range.

Finally, we also compare our sensing capacity bound to simulated sensor network performance.

In Section V we introduce a sensor network model that accounts for contiguity in a sensor’s

field of view. Contiguity is an essential aspect of many classes of sensors. For example, cameras

observe localized regions and seismic sensors sense vibrations from nearby targets. We demon-

strate sensing capacity bounds that account for such sensors by extending results about Markov
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types [11], and use convex optimization to compute these bounds. The first result in Section

V assumes the state of the environment is modeled as a one-dimensional vector. In Section

V-D we extend this result to the case where the state of the environment is modeled as a two-

dimensional grid. While a one-dimensional vector can modelsensor network applications such

as border security and traffic monitoring, results about twodimensions significantly increase the

type of applications described by our models.

The performance of sensor networks is limited by both sensing resources and non-sensing

resources such as communications, computation, and power.One set of results has been obtained

by considering the limitations that communications requirements impose on a sensor network.

[12] extends the results in [13] to account for the differenttraffic models that arise in a sensor

network. [14] studies network transport capacity for the case of regular sensor networks. [15]

studies the impact of computational constraints and power on the communication efficiency

of sensor networks. [16] has considered the interaction between transmission rates and power

constraints. Another set of results has been obtained by extending results from compression

to sensor networks. Distributed source coding [17], [18] provides limits on the compression of

separately encoded correlated sources. [19] applies theseresults to sensor networks. [20] provides

an overview of this area of research.

In contrast to the work mentioned above, we focus directly onthe limits of detecting the state

of the environment using noisy sensor observations. The notion of sensing capacity characterizes

the limits that sensing (e.g. sensor type, range, and noise)imposes on the attainable accuracy of

detection. We do not examine the compression of sensor observations, or the resources required

to communicate sensor observations to a point in the network. Instead, we focus on the limits of

detection accuracy assuming complete availability of noisy sensor observations. Among existing

work in information theory, the problem we investigate in this paper is unlike a source coding

problem, and is similar to a channel coding problem. However, the sensor network model we

investigate is fundamentally different than a standard communications channel.

Our work is most closely related to work on detection and classification in sensor networks.

[21] describes a large body of work on distributed detectionwhere the number of hypotheses

is small. [22], [23] extend this work to consider a decentralized binary detection problem with

noisy communication links to obtain error exponents. [24] analyzes the performance of various

classification schemes for classifying a Gaussian source. This is an m-ary problem where the
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number of hypotheses is small. [25] analyzes the performance suboptimal classification schemes

for classifying multiple targets. While the number of hypotheses is exponential in the number

of targets, the large-scale detection problem of a large number of targets is not considered. [26]

considers the problem of sensor placement for detecting thelocation of one or few targets in

a grid. This problem is most closely related to the large-scale detection problems addressed in

this paper. However, due to restrictions on the numbers of targets, the number of hypotheses

remains small in comparison to a large-scale detection problem. A coding-based approach was

used to bound the minimum number of sensors required for discrimination, and to propose

structured sensor configurations. However, sensors were noiseless, and of limited type, and no

notion of sensing capacity was considered. In contrast to existing to existing work on detection

and classification in sensor networks, we demonstrate fundamental performance limits for large-

scale detection problems.

The problem of estimating a continuous field using a sensor network is an active area of

research. [27] considers the relationship of transport capacity and the rate distortion function of

a continuous random processes. [28] proves limits on the estimation of an inhomogeneous random

fields using sensor that collect noisy point samples. Other work on the problem of estimating

a continuous random field includes [29], [30], [31], [32]. [33] considers the estimation of

continuous parameters of a set of underlying random processes through a noisy communications

channel. The results presented in this paper consider the detection of a discrete state of an

environment. We do not consider extensions to environmentswith a continuous state.

IV. SENSING CAPACITY OF THE ARBITRARY CONNECTIONS MODEL

In this section we define and analyze the sensing capacity of the arbitrary connections model, a

simple but useful model introduced in [9]. We denote random variables and functions by upper-

case letters, and instantiations or constants by lower-case letters. Bold-font denotes vectors.

log(·) has base-2. Sets are denoted using calligraphic script.D(P ||Q) denotes the Kullback-

Leibler distance andH(P ) denotes entropy of a random variable with probability distributionP .

H(Q|P ) is the conditional entropy of a random variable with conditional probability distribution

Q given another random variable with probability distribution P .
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A. Arbitrary Connections Model

Figure 3 shows an example of the arbitrary connections model. The state of the environment

is modeled as ak-dimensional binary target vectorv. Each position in the vector may represent

the presence of a target in an actual region in space, or may have other interpretations, such

as the presence of a specific chemical in a sample. The possible target vectors are denotedvi,

i ∈ {1, . . . , 2k}. We say that ‘a certainv has occurred’ if that vector represents the true state. We

define a sensor networks(k, n) as a graph showing the connections ofn sensors tok positions

in the target vector. The sensor network hasn identical sensors. Sensorℓ senses exactlyc out

of the k spatial positions (shown in the graph asc connections). We refer to such sensors as

having a rangec. Ideally, each sensor produces a valuex ∈ X that is anarbitrary function of

the targetswhich it senses,xℓ = Ψ(vℓt1 , . . . , vℓtc). Thus, the ‘ideal output vector’ of the sensor

networkx depends on the sensor connections, and on the target vectorv that occurs. However,

we assume that each sensor outputy ∈ Y is corrupted by noise, so that the conditional p.m.f.

PY |X(y|x) determines the output. Since the sensors are identical,PY |X is the same for all the

sensors. Further, we assume that the noise is independent inthe sensors, so that the ‘sensor

output vector’y relates to the ideal outputx as PY |X(y|x) =
∏n

ℓ=1 PY |X(yℓ|xℓ). Given the

noise corrupted outputy of the sensor network, we detect the target vectorv which occurred

by using a detectorg(y). Because of the constrained encoding of a sensor network, weallow

the decoder a distortion ofD ∈ [0, 1]. DenotingdH(vi, vj) as the Hamming distance between

two target vectors, the tolerable distortion region ofvi is Dvi
= {j : 1

k
dH(vi, vj) < D}. Given

that vi occurred, the detector is in error ifg(y) 6∈ Dvi
.

Figure 3 shows the target vectorv = (0, 0, 1, 0, 1, 1, 0) indicating 3 targets among the7

target positions. In this example, the sensing functionΨ is a sum that indicates the number of

positions which contain a target,xℓ =
∑c

u=1 vℓtu , so thatx ∈ X = {0, 1, . . . , c}. Such a function

could model a chemical sensor that is sensitive to a subset ofchemicals and whose output is

linearly proportional to the number of such chemicals present in the sample. More complex, e.g.

nonlinear, relationships between chemicals and sensor output require a different choice ofΨ. In

the figure,each sensor senses two target positions, and the sensors encode the target vector as

x = (1, 0, 2, 1). However, due to noise, the observed vector of sensor outputs isy = (1, 1, 2, 1).

The target vectorv′ = (0, 1, 1, 0, 1, 1, 0), which differs fromv in one target position, is encoded
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asx = (1, 1, 2, 1). As a result a detection algorithm can easily confusev′ for v, demonstrating

the limitation imposed by the constrained encoding of a sensor network.

The arbitrary connections model describes large-scale detection problems that do not have a

spatial aspect. Examples of such applications include the detection of complex chemical and

computer network monitoring. Disease detection in a population where individual sample can

be combined is another such application. In addition to practical utility, this model is easy to

analyze and provides useful insights into large-scale detection problems.

B. Sensing Capacity Definitions

How many sensor measurements must a sensor network collect to detect the a target vector to

within a desired distortion? To answer this question we define the idea of a ‘sensing capacity.’

The probability of error of a sensor network given a that target vectorvi occurred isPe,i,s =

Pr(error|i, s,xi,y) = Pr(g(y) 6∈ Dvi
|vi, s,xi,y). The expected probability of error for a sensor

network isPe,s =
∑

i Pe,i,sPV (vi). The rateR of a sensor network is defined as the ratio of target

positions being sensed to the number of sensor measurements, R = k
n
. The sensing capacityof

a sensor network,C(D), is defined as the maximum rateR such that below this rate there exists

a sequence of sensor networkss(⌈nR⌉, n) whose expected probability of error across all target

vector goes to zero with increasingn, that is,Pe,s → 0 asn → ∞ at a fixed rateR.

Is C(D) nonzero? One of the main contributions of the theorem presented in this section is

to demonstrate that the sensing capacity can be strictly positive for the arbitrary connections

model. We use a random coding argument to obtain a bound on thesensing capacity for the

arbitrary connections model. Instead of constructing a sequence of sensor network directly, we

bound the expected probability of error, averaged over a randomly generated ensemble of sensor

networks. The sensor networks are generated as follows. Each sensor connects toc randomly

chosen target positions out of thek possible positions. The connections are made independently,

and are chosen with replacement. Therefore a sensor can choose the same target position more

than once. When we take the expectation over all such randomly generated sensor networks, the

ideal sensor outputs associated with each target vector become random. Since a sensor network

produces a codeword that is a function of the target vector, codeword distribution depends on the

occurring target vector. We denote the random vector which occurs whenvi is the target vector

asXi. Because each sensor forms its connections independently,PXi
(xi) =

∏n

ℓ=1 PXi
(xiℓ). It is
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important to note that sensor outputs are in general not independent, and are only independent

when we condition on the occurrence of a particular target vector. Further, it is important to

note that the random vectorsXi andXj, associated with apair of target vectors, vi and vj

respectively, arenot independent, since the sensor connections produce a dependency between

them. Thus, the ‘codewords’{Xi, i = 1, 2, . . . , 2k} of the sensor network are non-identical

and dependent on each other, unlike channel codes in classical information theory. Using this

probabilistic model for sensor network generation, we write the expected probability of error,

averaged over the sensor network ensemble asPe = E S[Pe,S]. Theorem 1 in Section IV-C bounds

this quantity to prove a lower boundCLB(D) on the sensing capacityC(D).

The statement of the result presented in this section relieson the method of types [11], and

requires an explanation oftypesandjoint types. Since in the random sensor network construction

each sensor connects toc target positions independently, the distribution of a sensor’s ideal output

Xi depends only on the typeγ = (γ0, γ1) of vi. The type of target vectorvi is a histogram

of the number of 0’s and 1’s invi. Here,γ0 denotes the fraction of zeros invi. Since sensor

connections are generated independently and uniformly across target positions in the arbitrary

connections model we can write,PXi
(xi) = P γ,n(xi) =

∏n

ℓ=1 P
γ(xiℓ) for all vi of the same

typeγ.

Since a single sensor network encodes all target vectors, pairs of codewords are dependent,

unlike codes in communications. The joint probability of two codewordsPXiXj
depends on the

joint typeof the target vectorsvi andvj. The joint type isλ = (λ00, λ01, λ10, λ11). Here,λ01 is

the fraction of positions invi, vj wherevi has bit ‘0’ whilevj has bit ‘1’. Similarly, we define

λ00, λ10, λ11.

Following the notation introduced in [11],λ ∈ Pk({0, 1}
2), indicating thatλ is in the set of

joint types ofk-bit binary vector pairs. Again, since sensor connections are generated indepen-

dently and with uniform probability across target positions, PXi ,Xj
(xi,xj) = Pλ,n(xi,xj) =

∏n

ℓ=1 P
λ(xiℓ, xjℓ) for all vi, vj of the same joint typeλ. Since the joint typeλ also defines the

typeγ of vi, we haveλ00 + λ01 = γ0, λ10 + λ11 = γ1.

We give specific examples of these quantities using the example shown in Figure 3 where

c = 2 and sensors count the number of targets present in the targetpositions that they sense.

Table I lists the types of four vectorsvj, and their joint type with the target vector in the example

vi = 0010110. Given a target vector, a sensor will output ‘2’ only if both of its connections
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connect to positions with a ‘1.’ For a vector of typeγ, this occurs with probability(γ1)
2. Table

II describes the complete output p.m.f. for a randomly generated sensor, given that a vector of

type γ occurred. Given two target vectorsvi, vj of joint type λ, a sensor will output ‘0’ for

both target vectors only if both its connections are connected to target positions that have a ‘0’

bit in both these target vectors. This happens with probability (λ00)
2. Table III lists the complete

joint p.m.f. PXiXj
(xi, xj) = Pλ(xi, xj) of a randomly generated sensor for two target vectors

with a joint typeλ.

C. Sensing Capacity Lower Bound

We specify two probability distributions which we will utilize in the main theorem of this

section. The first is the joint distribution of the ideal output xi whenvi occurs, and the noise

corrupted outputy, PXiY (xi,y) =
∏n

ℓ=1 PXiY (xiℓ, yℓ) =
∏n

ℓ=1 PXi
(xiℓ)PY |X(yℓ|xiℓ). The second

distribution is the joint distribution of the ideal outputxi corresponding tovi and the noise

corrupted outputy generated by the occurrence of adifferent target vectorvj. We can write

this joint distribution asQ(j)
XiY

(xi,y) =
∏n

ℓ=1Q
(j)
XiY

(xiℓ, yℓ) =
∏n

ℓ=1

∑

a∈X PXi,Xj
(xiℓ, xj =

a)PY |X(yℓ|xj = a). Note that althoughY was produced byXj, Xi and Y are dependent

because of the dependence ofXi andXj.

We argued earlier that due to the random sensor network construction,PXi
andPXiXj

can

be compute using the typeγ of vi and joint typeλ of vi, vj respectively. Thus, we write

PXiY (xi,y) =
∏n

ℓ=1 P
γ
XiY

(xiℓ, yℓ) whereP γ
XiY

(xi, y) = P γ(xi)PY |X(y|xi). Similarly, we write

Q
(j)
XiY

(xi,y) =
∏n

ℓ=1Q
λ
XiY

(xiℓ, yℓ) whereQλ
XiY

(xi, y) =
∑

a∈X Pλ(xi, xj = a)PY |X(y|xj = a).

We can now ready to state the main theorem of this section.

Theorem 1 (Sensing Capacity Theorem for the Arbitrary Connections Model): The sensing ca-

pacity at distortionD is bounded as,

C(D) ≥ CLB(D) = min
λ

λ01+λ10≥D
λ00+λ01=γ0
λ10+λ11=γ1

D
(

P γ
XiY

‖Qλ
XiY

)

H(λ)−H(γ)
(1)

whereγ = (0.5, 0.5) andλ = (λ00, λ01, λ10, λ11) is an arbitrary probability mass functions.

The most striking difference between the result shown in Theorem 1, and Shannon’s channel

capacity results is that the bound on the sensing capacity isnot a mutual information. From



12

the definition ofQλ
XiY

, we notice that if the ‘codewords’Xi were independent, the Kullback-

Leibler distance would reduce to the mutual information betweenXi and its noisy versionY .

This is an important difference because of the frequent use of mutual information as a sensor

selection metric (e.g. [10]), and indicates that the mutualinformation is not the correct notion of

information for large-scale detection applications. The difference between channel capacity and

sensing capacity arises due to different codeword geometries. In proofs of the achievability of

channel capacity, since a codeword can be arbitrarily assigned to a message in communications,

codewords are distributed uniformly. In a sensor network, the codeword distribution depends

on the state of the environment (the target vector). Codewords are clustered, with similar target

vectors encoded as similar codewords. As a result, similar target vectors are more likely to be

confused due to noise than dissimilar target vectors. The Kullback-Leibler distance in Theorem

1 is the appropriate information measure for such a codewordgeometry. The denominator in

Theorem (1) accounts for disparities in the size of codewords clusters. The minimization over

the joint type appears because the “closest” target vectorsdominate the error probability. Thus,

the sensing capacity is similar to classical channel capacity, with differences arising due to the

non-identical, dependent codeword distribution.

The proof of Theorem 1 broadly follows the proof of channel capacity provided by Gallager

[34], by analyzing a union bound of pair-wise error probabilities, averaged over randomly

generated sensor networks. However, it differs from [34] inseveral important ways. In our

sensor network model, the codewords are dependent on each and non-identically distributed. To

prove our bound, we group the exponential number of pair-wise error terms into a polynomial

number of terms using the method of types.

Proof:

We assume a maximum-likelihood detectorgML(y) = argmaxj PY |X(y|xj). For this detector,

we considerPe = 1
2k

∑

i Pe,i, where we assume that the target vectors are equally likely.Pe,i

is the error probability when theith target vector occurs, averaged over all randomly generated

sensor networks. For a fixed sensor networks there is a known and fixed correspondence between

target vectorsvi and codewordsxi. Since our sensor network is chosen randomly, the set of

codewords is random,C = {X1, . . . ,X2k}.

Pe = E V Y C [Pr(g(Y ) 6∈ DV |V , C,Y )] (2)
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Using the fact that we are taking the expectation of a probability, we boundPe as follows,

Pe ≤ E V Y C

[

∑

w

Pr(g(Y ) ∈ Sw|V , C,Y )ρ

]

(3)

whereρ ∈ [0, 1], and{S1,S2, . . .} is a partition of the complement ofDV , denotedDC
V . Using

the union bound, we upper bound the probability Pr(g(Y ) ∈ Sw|V , C,Y ) as follows,

Pe ≤ E V Y C

[

∑

w

(

∑

j∈Sw

Pr(g(Y ) = j|V , C,Y )

)ρ]

(4)

The term Pr(g(Y ) = j|V , C,Y ) is a pairwise error term that depends only on the codewords

Xi andXj. Using this observation, the fact thatxρ is a concave function forρ ∈ [0, 1], and

Jensen’s inequality, we obtain,

Pe ≤ E VYXi

[

∑

w

(

∑

j∈Sw

EXj |Xi
[Pr(g(Y ) = vj|V ,Xi,Xj,Y )]

)ρ]

(5)

The term Pr(g(Y ) = vj|V ,Xi,Xj,Y ) is a one zero function, equaling one wheng(Y ) =

vj and zero otherwise. Using our assumption thatg is an ML detector we upper bound this

probability as follows,

Pe ≤
1

2k

∑

i

∑

xi∈Xn

∑

y∈Yn

PXi
(xi)PY |X(y|xi)

·
∑

w





∑

j∈Sw

∑

xj∈Xn

PXj |Xi
(xj|xi)

(

PY |X(y|xj)

PY |X(y|xi)

)
1

1+ρ





ρ

(6)

The bound in equation (6) has an exponentially large number of terms. Earlier in this paper, it

was shown that the distributions in this bound can be completely specified by the typeγ and

joint typeλ rather than the specifici, j pair of target vectors. To do this, we choose eachSw to

be a distinct joint typeλ, and letw index the setSγ(D) of all λ that are the joint type ofvi

andvj ∈ DC
vi

. We group the summation overi according to the type ofvi. Grouping according

to the type and joint type enables us to take advantage of the fact that the number of types is

polynomial ink. After grouping according to types, we write equation (6) as,

Pe ≤
1

2k

∑

γ

α(γ, k)
∑

xi∈Xn

∑

y∈Yn

P γ,n(xi)PY |X(y|xi)

·
∑

λ∈Sγ (D)



β(λ, k)
∑

xj∈Xn

Pλ,n(xj|xi)

(

PY |X(y|xj)

PY |X(y|xi)

)
1

1+ρ





ρ

(7)
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whereα(γ, k) is the number of target vectorsvi of lengthk and typeγ, and whereβ(λ, k) is

the number of target vectorsvj of lengthk and joint typeλ with a target vectorvi of type γ.

Sγ(D) is defined as

Sγ(D) = {λ : λ01 + λ10 ≥ D, λ00 + λ01 = γ0, λ10 + λ11 = γ1} (8)

Using standard results from the method of types [11] about the number of binary vectors of a

given type, we obtain the bound,α(γ, k) ≤ 2kH(γ). The number of vectors with a given joint

type is bounded as,

β(λ, k) =

(

kγ0
kλ00

)(

kγ1
kλ11

)

≤ 2k(H(λ)−H(γ)) (9)

Combining equation (7) with the bounds onα andβ, and using the conditional independence

of sensor outputs, we obtain,

Pe ≤
∑

γ

∑

λ∈Sγ (D)

2−k(1−H(γ))2kρ(H(λ)−H(γ))2−nE(ρ,λ) (10)

whereE(ρ,λ) is defined as below,

E(ρ,λ) = − log

(

∑

ai∈X

∑

b∈Y

P γi(ai)PY |X(b|ai)
1

1+ρ

(

∑

aj∈X

Pλ(aj |ai)PY |X(b|aj)
1

1+ρ

)ρ

)

(11)

Since the number of typesγ and joint typesλ are upper bounded by(k + 1)2 and (k + 1)4

respectively, andk = ⌈nR⌉, implying k < nR + 1, (10) is bounded as,

Pe ≤ 2−n(o1(n)+Er(R,D)) (12)

whereo1(n) → 0 asn → ∞, and whereEr(R,D) is defined as,

Er(R,D) = min
γ

min
λ∈Sγ (D)

max
0≤ρ≤1

(E(ρ,λ) +R(1−H(γ))− ρR(H(λ)−H(γ))) (13)

The average error probabilityPe → 0 asn → ∞ if Er(R,D) > 0. Observing thatE(0,λ) =

0 ∀λ, we letρ go to zero, rather than optimizing it, thus resulting in a lower bound onEr(R,D).

In the above expression, this implies that in order forR to be achievableE(ρ,λ)
ρ

+ R 1−H(γ)
ρ

−

R(H(λ)−H(γ)) must be positive for all types and joint types asρ → 0.

For H(γ) 6= 1, 1−H(γ)
ρ

→ ∞ asρ → 0. For such aγ, Pe → 0 sinceEr(R,D) is positive for

all ratesR. Since we seek to boundR for which Er(R,D) is positive for all types and joint

types, we letγ = (0.5, 0.5). This implies that asρ → 0, R is achievable when the derivative of

E(ρ,λ) with respect toρ at ρ = 0 is greater thanR(H(λ)−H(γ)). It can be easily shown that,
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∂E(ρ,λ)/∂ρ
∣

∣

ρ=0
= D(P γ

XiY
‖Qλ

XiY
). Using this derivative in the analysis above, we see that the

achievable ratesR are bounded as below.

R ≤ min
λ

λ01+λ10>D
λ00+λ01=γ0
λ10+λ11=γ1

D
(

P γ
XiY

‖Qλ
XiY

)

H(λ)−H(γ)
(14)

whereγ = (0.5, 0.5), andλ is an arbitrary p.m.f. sincen → ∞. Therefore, the right hand side

of (14) is a lower bound onC(D).

D. Numerical Results

We compute the capacity boundCLB(D) in (1) for various distortions, noise levels, and sensor

ranges. A sensor of rangec is connected toc target positions. We assume that the sensing function

Ψ simply counts the number of target positions in the sensor range with a target present. The

sensor noise model assumes that the probability of countingerror decays exponentially with

the error magnitude. In the figures, ‘Noise =p’ indicates that for a sensor,P (Y 6= X) = p,

with Y = X assumed. In Figure 4, we demonstrateCLB(D) for various sensor noise levels and

ranges. We compute this bound by systematically sampling the space of possibleλ. Whileλ is a

four-dimensional vector, because of constraints we need tosample only two dimensions in order

search over all validλ. In all cases,CLB(D) approaches0 asD approaches0. This occurs because

similar target vectors have similar codewords due to dependence in the codeword distribution.

The relative magnitude of the bounds for sensors of variousc and noise levels describes tradeoffs

among sensor types that can be captured by our result. Some tradeoffs are intuitive. For example,

lower noise sensor of rangec have a higher sensing capacity than higher noise sensors of the

same range. Other tradeoffs are more complex. For example the tradeoff between shorter and

longer range sensors depends on the desired distortion. Sensors of range4 and noise0.10 result

in a higher sensing capacity than sensors of range2 and noise0.01 for distortion above0.047.

The opposite is true for distortions below0.047. Thus, the bound presented in (1) describes a

complex tradeoffs between sensor noise, sensor range, and the desired detection accuracy.

Figure 5 showsCLB(D) at D = 0.1 as a function of sensor noise level for sensors of

various range and sensing functions. This figure demonstrates that the strategy of simple sensor

replication, which is a popular practical method for reducing error probability, can be inefficient.

For example, for sensors of range4 and a sum sensing function, a rate of0.61 is achievable
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at noise level0.1. If each sensor with noise0.1 is replicated three times and majority decoding

is used, the noise can be reduced to3 × (0.1)2 × 0.9 + (0.1)3 = 0.028. For a noise level of

0.028, CLB(0.1) equals0.91 for a sensor of range4 and a sum sensing function. However, due

to sensor replication, the rate is reduced to0.91/3 = 0.303. This rate is significantly lower

than the rate of0.61 for sensors of noise0.1 achievable by using our random sensor network

construction. Thus, the bound indicates that cooperative sensor strategies can require significantly

fewer sensor measurements than sensor replication. Figure5 also showsCLB(D) at D = 0.1

for sensors withc = 4 and a weighted sum sensing function with weights{1, 0.5, 0.25, 0.1}.

This sensing function has a higher sensing capacity than sensors with the same range and an

un-weighted sum sensing function across all noise levels. We conjecture that this occurs because

a weighted sum can distinguish among more target configurations than an un-weighted sum.

Interestingly, the gap between the two sensing functions increases with increasing noise.

Using the loopy belief propagation algorithm [35] we empirically examined sensor probability

of error as a function of rate. We generated sensor networks of various rates by setting the number

of targets, and varying the number of sensors. We chose the number of connections to bec = 4,

the distortion level to be0.1, and the noise level to be0.1 (i.e. P (Y 6= X) = 0.1, with Y = X ).

As in the previous section, we assume that the probability oferror decays exponentially with

error magnitude. We empirically evaluated the average error rate obtained in decoding target

vectors in a randomly generated set of sensor networks. We plotted the average error rate for

each rate value, and for various numbers of targets as shown in Figure 6. As the number of

targets increase, the transition from high error to low error rate becomes increasingly sharp.

However, all the error curves are well below the capacity valueCLB(0.1) = 0.62. We conjecture

that this occurs because belief propagation is suboptimal for graphs with cycles.

E. Extensions

Section IV-A introduced a sensor network model where each sensor is allowed to make

arbitrary connections to the target vector. In several situations, more complex sensor network

models may be necessary. This section describes extensionsof the arbitrary connection model.

Extensions that account for contiguity in sensor connections require a new model and are

discussed in Section V. The first extension considers non-binary target vectors. Binary target

vectors indicate the presence or absence of targets at the spatial positions. A target vector over a
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general finite alphabet may indicate, in addition to the presence of targets, the class of a target.

Alternatively, the entries of non-binary vectors can indicate levels of intensity or concentration.

Assuming a non-binary target vector, we can define types and joint types over an alphabetV,

and apply the same analysis as before to obtain the sensing capacity bound below.

C(D) ≥ CLB(D) = min
λ

P

a 6=b λab≥D
P

b λab=γa

D
(

P γ
XiY

‖Qλ
XiY

)

H(λ)−H(γ)
(15)

where γ =
(

γa =
1
|V|
, a ∈ V

)

, while λ = (λab, a, b ∈ V) is an arbitrary probability mass

function.

The second extension allows the following a priori distribution over target vectors. Assume

that each target position is generated i.i.d. with probability PV over the alphabetV. This may

model the fact that targets are sparsely present. The previous analysis can be extended to a

Maximum-a-Posteriori (MAP) detector, instead of the ML detector considered earlier, resulting

in the following sensing capacity bound.

C(D) ≥ CLB(D) = min
λ

P

a 6=b λab≥D
P

b λab=γia

D
(

P
γi

XiY
‖Qλ

XiY

)

H(λ)−H(γj)−D(γj‖PV )
(16)

whereγi = PV , λ = (λab, a, b ∈ V) is an arbitrary probability mass function andγj is the

marginal ofλ calculated asγjb =
∑

a λab.

A third extension accounts for heterogenous sensors, whereeach class of sensor possibly has

a different rangec, noise modelPY |X , and/or sensing functionΨ. Let the sensor of classl be

used with a given relative frequencyαl. For such a model the sensing capacity bound is as

follows.

C(D) ≥ CLB(D) = min
λ

P

a 6=b λab≥D
P

b λab=γia

∑

l αlD
(

P
γi,l

XiY
‖Qλ,l

XiY

)

H(λ)−H(γj)−D(γj‖PV )
(17)

whereγi = PV , λ = (λab, a, b ∈ V) is an arbitrary probability mass function andγj is the

marginal ofλ calculated asγjb =
∑

a λab.

V. SENSING CAPACITY OF CONTIGUOUS CONNECTIONS MODEL

In this section, we analyze the sensing capacity of a sensor network model that models

contiguity in a sensor’s connections. Figure 7 shows an example of such a model. Sensorℓ
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is connected to exactlyc contiguouspositions out of thek spatial positions. In contrast, the

arbitrary connections model analyzed in the previous section did not account for localized sensor

observations since each sensor could sense anyc (not necessarily contiguous) spatial positions.

A. Higher Order Types

The statement of the result for contiguous models requires higher order types [11]. We

introducecircular c-order typesandcircular c-order joint types. We define the circularc-order

type of a binary sequence (i.e. a target vector) as a2c dimensional vector,γ, where each entry

in the vector corresponds to the frequency of occurrence of one of the possible subsequences

of length c. A circular sequence is one in which the last element of the sequence precedes

the first element of the sequence. The total number of subsequences of lengthc that can occur

in a circular sequence of lengthk is k. For example, for a binary target vector andc = 2,

γ = (γ00, γ01, γ10, γ11). While it is possible to prove our bound using non-circular types as

shown in [36], circular types lead to the same asymptotic result with the benefit of significantly

simpler notation. The notational simplicity arises out of the fact that the lower order circular

types are precise marginals of the higher order circular types. Although all the types in this

section are circular, we will omit the word ‘circular’ when referring to types in the remainder

of this section for brevity.

We denote the set of allc-order types over the alphabetVc for target vectors of lengthk as

Pk(V
c). Since each sensor independently chooses a block ofc contiguous spatial positions, the

distribution of its ideal outputXi depends only on thec-order typeγ of the target vectorvi

which occurs. For a sensing functionΨ and a target vectorvi of type γ,

PXi
(Xi = x) =

∑

a∈Vc

Ψ(a)=x

γa
.
= P γ(x) (18)

Next, we note that the joint distributionPXiXj
depends on thec-order joint typeλ of the

ith and jth target vectorsvi, vj. λ is the vector ofλ(a)(b), the fraction of positions invi, vj

wherevi has a bit subsequencea while vj has a bit subsequenceb. For example, whenc = 2

andV = {0, 1}, λ = (λ(00)(00), . . . , λ(11)(11)). We denote the set of all c-order joint types over

the alphabetVc for target vectors of lengthk asPk(V
c,Vc). Eachλ ∈ Pk(V

c,Vc) must satisfy

the normalization constraint that the sum over all entries of λ equals one. Since the joint type
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λ also defines the typeγ of vi, for all {a} ∈ Vc we must haveγa =
∑

b∈Vc λ(a)(b). Taking

advantage of the fact that for circular types, lower order types are precise marginals of higher

order types, we denoteλ(a)(b) =
∑

a′∈Vc−1

∑

b′∈Vc−1 λ(aa′)(bb′). λ(a)(b) is the normalized count of

locations where target vectori has valuea while target vectorj has valueb. Since each sensor

depends only on thec contiguous targets bits which it senses,PXi ,Xj
depends only on the joint

typeλ. For target vectorsvi,vj of c-order joint typeλ,

PXiXj
(Xi = xi, Xj = xj) =

∑

a,b∈Vc

Ψ(a)=xi, Ψ(b)=xj

λ(a)(b)
.
= Pλ(xi, xj) (19)

For example, for binary target vectors andc = 2, vectors00000000, 01101000, 01000111 have

γ = (1, 0, 0, 0), (3/8, 2/8, 2/8, 1/8), (2/8, 2/8, 2/8, 2/8) respectively. Table IV contains the 2-

order joint type of two target vectors. Consider a sensor network where each sensor is randomly

connected toc = 2 contiguous spatial positions. We assume thatΨ outputs the number of

targets which the sensor observes. Thus, each sensor has an ideal output alphabetX = {0, 1, 2}.

For target vectors of typeγ, P (Xi = 0) = γ00, P (Xi = 1) = γ01 + γ10, P (Xi = 2) = γ11

respectively. Given two target vectorsvi, vj of joint type λ, a sensor will output ‘0’ for both

target vectors only if both of its connections see a ‘0’ bit inboth target vectors. This happens

with probabilityλ(00)(00). Table V lists the joint p.m.f.PXiXj
(xi, xj) = Pλ(xi, xj) for all output

pairsxi, xj corresponding to joint typeλ. The table shows thatXi, Xj are not independent, in

general.

To prove Theorem 1, we bounded the number of target vectorsvj that have a given joint type

with a target vectorvi in equation (9). To prove a sensing capacity bound for the contiguous

connections model we prove a bound on the number of target vectors vj that have a joint c-

order typeλ with a target vector ofc-order typeγ in the lemma below. Before proceeding, we

introduce the following notation. The set of lengthk target vectors ofc-order typeγ is denoted

T k
γ . The set of pairs of lengthk target vectors of joint typeλ is denotedT k

λ . The set of length

k target vectors that have joint c-order typeλ with a given vector of typeγ, is denotedT k
λ|γ.

Lemma 1 (Bound on|T k
λ|γ| ): The number of binary vectors of lengthk with c-order joint

typeλ for a given vector ofc-order typeγ, denoted|T k
λ|γ|, is bounded as follows

|T k
λ|γ| ≤ C(k)2k(H(λ̃|λ′)−H(γ̃|γ′)) (20)
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C(k) = 22(c−1)k2c−1
(k+1)2

2(c−1)
andλ′ = {λ(a)(b), ∀a, b ∈ Vc−1} is a probability mass function

defined asλ′
(a)(b) =

∑

a,b∈V λ(aa)(bb). λ̃ = {λ̃(aa)(bb), ∀a, b ∈ Vc−1, ∀a, b ∈ V} is a conditional

probability mass function defined as̃λ(aa)(bb) =
λ(aa)(bb)

λ(a)(b)
. γ ′ = {γ′

a, ∀a ∈ Vc−1} is probability

mass function defined asγ′
a =

∑

a∈V γaa. γ̃ = {γ̃aa, ∀a ∈ Vc−1, ∀a ∈ V} is a conditional

probability mass function defined as̃γaa =
γaa

γa
.

Proof: To bound|T k
λ|γ|, we begin by bounding|T k

γ |. Thec-order typeγ of a binary vector

specifies a 2-order type (referred to as a Markov type) of a vector who entries are in an alphabet

of cardinality2c−1. Consider the vector011010001. Denoting a pair of bits using{0, 1, 2, 3}, as

we move from left to right over this vector, one bit at a time, the sequence obtained is132120012.

The 3-order typeγ specifies the 2-order type over this new vector. For example,the fraction

of times1 transitions to3 is equal toγ011 and the fraction of times1 transitions to2 is equal

to γ010. Any c-order type over a binary sequence can thus be mapped toa 2-order type over a

sequence with symbols in an alphabet of cardinality2c−1. [37] proves bounds on the number

of sequences that correspond to a 2-order circular type overa sequence with an alphabetV.

Given our mapping from a c-order type to a 2-order type, we canapply this result to obtain the

following bound,

|T k
γ | ≥ C1(k)2

k(H(γ)−H(γ′)) = C1(k)2
kH(γ̃|γ′) (21)

whereC1(k) = k−2c−1
(k+1)−22(c−1)

. We now bound|T k
λ | using a similar argument. The c-order

joint typeλ of a pair of binary vectors specifies a 2-order type of a singlevector whose entries

are symbols from an alphabet of cardinality22(c−1). We consider an example for a 3-order joint

type, and for vectorsv = 011010001 andv′ = 101011011. We can rewrite these vectors as a

single vector whose entries at locationi are defined by the pair of entriesvi, v′i and the subsequent

pair of entriesvi+1, v
′
i+1. These four entries, combined asvivi+1v

′
iv

′
i+1 are mapped to a symbol in

an alphabet of cardinality24 by reading the entries as a binary number (i.e.0000 = 0, 0001 = 1,

. . .). In this manner,v and v′ are mapped to a vector(6, 14, 10, 9, 11, 2, 1, 7, 11). The 3-order

joint typeλ specifies the 2-order type over this new vector. For example,the fraction of times

1 transitions to7 is equal toλ(001)(011) and the fraction of times2 transitions to1 is equal to

λ(000)(101). Any c-order joint type over a binary sequence can thus be mapped to a 2-order type

over a sequence with symbols in an alphabet of cardinality22(c−1). We use the results of [37]

again. Given our mapping from a c-order joint type to a 2-order type, we can apply this result
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to obtain the following bound,

|T k
λ | ≤ C22

k(H(λ)−H(λ′)) = C22
kH(λ̃|λ′) (22)

whereC2 = 22(c−1). We observe that|T k
λ|γ| depends only on the typeγ of the vector on which

we are conditioning, and not on the actual vector. Therefore, |T k
λ|γ| =

|T k
λ
|

|T k
γ |

. Using equations (21)

and (22), we obtain the following bound,

|T k
λ|γ| ≤ C(k)2k(H(λ̃|λ′)−H(γ̃|γ′)) (23)

whereC(k) = C−1
1 (k)C2

B. Sensing Capacity Lower Bound

We defineP γ
XiY

Qλ
XiY

as they were defined for the arbitrary connections model bounds, with

the only difference arising to the use ofc-order types instead of types.

Theorem 2 (Sensing Capacity Theorem for the Contiguous Connections Model):The sensing

capacity at distortionD satisfies,

C(D) ≥ CLB(D) = min
λ

λ(0)(1)+λ(1)(0)≥D

D
(

P γ
XiY

‖Qλ
XiY

)

H(λ̃|λ′)−H(γ̃|γ ′)
(24)

whereλ ∈ P({0, 1}c, {0, 1}c), γa =
∑

b∈{0,1}c λ(a)(b), andH(γ̃|γ ′) = 1.

If we specialize this result to the case ofc = 1, this theorem provides a bound that coincides

with our bound for the arbitrary connections model. The proof of the sensing capacity lower

bound is similar for the arbitrary and contiguous connections models. The main differences in

the proofs arise due to the contiguity of sensor field of view,which necessitates the use of

c-order types. Extensions demonstrated in Section IV-E for the arbitrary connections model can

be easily applied to the contiguous connections model.

Proof Outline: The proof of Theorem 2 is essentially identical to the proof of Theorem 1,

with types and joint types replaced byc-order types and joint types. The use of these higher

order types requires counting arguments described in Lemma1. For c-order types, we boundα

in equation (7) as follows,

α(γ, k) = |T k
γ | ≤ 2kH(γ̃|γ′) (25)
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For c-order joint types, we boundβ(λ, k) = |T k
λ|γ| in equation (7) using Lemma 1. The set

Sγ(D) is defined as,

Sγ(D) =

{

λ : λ0 + λ1 ≥ D, γa =
∑

b∈{0,1}c

λ(a)(b)

}

(26)

Given these new bounds and definitions, and the substitutionof c-order types for types, the proof

of Theorem 1 can be applied directly to prove Theorem 2.

C. Numerical Results

In Figure 8, we compareCLB(D = 0.025) for sensor networks with localized (i.e. contiguous

connections model) and non-localized (i.e. arbitrary connections model) sensing. We assume that

the sensing functionΨ is a weighted additive function, with weights{1, 0.5, 0.25, 0.1} for c = 4

and{1, 0.5, 0.25} for c = 3. The sensor noise model used throughout this section assumes that

the probability of error decays exponentially with the error magnitude. In the figures, ‘Noise =

p’ indicates that for a sensor,P (Y 6= X) = p, with Y = X assumed. Contiguous sensor field of

view causes a significant reduction in sensing capacity. We conjecture that this effect is similar to

the inferior performance of channel codes that have finite memory, such as convolutional codes,

as opposed to LDPC codes. Further, it is interesting to note that the gap in sensing capacity

between sensors of rangec = 3 andc = 4 is larger for the arbitrary connections model than the

contiguous connections model.

To compute the bound shown in Theorem 2, we solve a sequence ofconvex optimization

problems. Rather than computing the bound directly, we find the largestR for which the

minimum of f(λ) = D
(

P γ
XiY

‖Qλ
XiY

)

− R(H(λ̃|λ′) − H(γ̃|γ ′)) over all valid λ is greater

than 0. Minimizing f(λ) is a convex optimization problem sincef(λ) is convex inλ and the

set of validλ is convex. SinceH(γ̃|γ′) = 1, the convexity off(λ) in λ can be proven using

the log-sum inequality and the concavity of entropy.

D. Extension to Two-dimensional Fields

The sensing capacity bounds obtained in this section can be extended from discrete target

vectors to two dimensional ‘target fields.’ This extension requires the introduction of two di-

mensional types. Such types are histograms over the set of possible two dimensional patterns.
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We first analyzed the sensing capacity for a two-dimensionalcontiguous connections model in

[38].

Figure 9 shows an example of our sensor network model. The state of the environment is

modeled as ak × k grid with k2 spatial positions. Each discrete position may contain no target

or one target, and therefore the target configuration is represented by ak2-bit target fieldf . The

possible target fields are denotedfi, i ∈ {1, . . . , 2k
2
}. Target fields occur with equal probability.

The sensor network hasn identical sensors. Sensorℓ located at grid blockFh senses a set

of contiguous target positions within a Euclidean distancec of its grid location (though this

approach can be extended to other sensor coverage models). Circular boundary conditions are

assumed. Figure 9 depicts sensors with rangec = 1. Each sensor outputs a valuex ∈ X that is

an arbitrary function of the targets which it senses,x = Ψ({fv : v ∈ Sc,h}), whereSc,h is the

coverage of a sensor located at grid blockFh with rangec. Since the number of targets sensed by

a sensor depends only on the sensor range, we write the numberof targets in a sensor’s coverage

as|Sc|. We assume a simple model for randomly generating sensor networks, where each sensor

chooses a region of Euclidean radiusc with equal probability among the set of possible regions

of radiusc. This would occur, for example, if sensors were randomly dropped on a field. All

definitions from the one-dimensional contiguous model extend directly, with target vectorsv

replaced by fieldsf . The rate is defined asR = k2

n
.

For a sensor located randomly in the target field, the probability of a sensor producing a value

depends on the number of target patterns that correspond to that value in the sensor’s range, and

thus, can be written as a function of the frequency of patterns in the field. The two-dimensional

type γi is a vector that corresponds to the normalized counts over the set of possible target

configurations in the sensor’s field of view in a fieldf i. For a sensor of rangec, γi is a 2|Sc|

dimensional vector, where each entry in the vectorγi corresponds to the frequency of occurrence

of one of the possible|Sc| bit patterns. The set of sensor typesγ of a k × k field is denoted

P2
k({0, 1}

|Sc|). γ(0) and γ(1) are the number of zeros and ones respectively in a vector of type

γ. These quantities can be directly computed fromγ.

Next, we note that for sensor of rangec the conditional probabilityPXiXj
depends on the

two-dimensional joint typeλ of the ith andjth target fieldsfi, fj. Fora, b ∈ {0, 1}|Sc|, λ is the

matrix of λ(a)(b), the fraction of positions infi, fj wherefi has a target patterna while fj has

a target patternb. We denote the set of all joint sensor types for sensors of range c observing
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a target field of areak2, asP2
k({0, 1}

|Sc|, {0, 1}|Sc|). Since the output of each sensor depends

only on the contiguous region of targets which it senses,PXiXj
depends only onλ (discussed

in Section IV-B).λ(1)(0) is the number of grid locations where fieldi has a target and fieldj

does not, and can be computed directly fromλ. λ(0)(1) is similarly defined and computed.

Using the definitions of two dimensional types in the definitions ofP γi

XiY
andQλ

XiY
from the

one-dimensional contiguous connections model, we can prove the following bound for sensing

a two-dimensional field. The sensing capacity at distortionD satisfies,

C(D) ≥ CLB(D) = min
λ

λ(0)(1)+λ(1)(0)≥D

D
(

P
γi

XiY
‖Qλ

XiY

)

H((γj(0), γj(1)))
(27)

whereγi,γj ∈ P2({0, 1}|Sc|), γi(0) = 0.5 andγi(1) = 0.5, andλ ∈ P2({0, 1}|Sc|, {0, 1}|Sc|).

Proof Outline: The proof is essentially identical to the proof of Theorem 1,with types and

joint types replaced by two-dimensional types and joint types. For two-dimensional types, we

boundα as follows,

α(γi, k) ≤ 2k
2H((γi(0) ,γi(1))) (28)

For two-dimensional joint types, we boundβ as,

β(λ, k) ≤ 2k
2H((γj(0) ,γj(1))) (29)

The bounds onα andβ are loose, and the authors are not aware of tighter combinatorial bounds

for two-dimensional types. The setSγ(D) is defined as in equation (26). Given these new bounds

and definitions, and the substitution of 2D types for types, the proof of Theorem 1 can be applied

directly to prove this result.

VI. CONCLUSIONS AND DISCUSSION

The results presented in this paper provide limits on the accuracy of sensor networks for

large-scale detection applications. These results are obtained by drawing on an analogy between

channel coding and sensor networks. We define the sensing capacity and lower bound it for

several sensor network models. For all rates below the sensing capacity, detection to within a

desired accuracy with arbitrarily small error is achievable. This threshold behavior contrasts with

classical detection problems, where probability of error goes to zero as the number of sensor

measurements go to infinity while the number of hypotheses remains fixed [39]. The sensing

capacity captures complex sensor tradeoffs. For example, our bounds show that the efficiency
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of using long range, noisy sensors or shorter range, less noisy sensors depends on the desired

detection accuracy. Further, our results show that the mutual information is not the correct notion

of information for large-scale detection problems. This has implications for the problem of sensor

selection due to the popularity of ‘information gain’ as a sensor selection metric.

An important contribution of this paper is its demonstration of a close connection between

sensor networks and communication channels. It is thought-provoking to consider that one

could apply insights from the large body of work available for communication channels to the

sensor network setting. For example, channel coding theorycontains a large number of results

that are used to build practical communication systems. Canwe fruitfully apply ideas from

coding theory to sensor networks? To demonstrate the potential benefit of a channel coding

perspective, in [40], [41] we proposed extending ideas fromconvolutional coding to sensor

networks. We demonstrated that a version of sequential decoding (a low complexity decoding

heuristic for convolutional codes) can be applied to detection in sensor networks, as an alternative

to the belief propagation algorithm. Our empirical resultsindicate that above a certain number

of sensor measurements, the sequential decoding algorithmachieves accurate decoding with

bounded computations per bit (target position). This empirical result suggests the existence of a

‘computational cut-off rate’, similar to one that exists for channel codes.

Our work on the theory of sensing points to a large set of open problems on large-scale detec-

tion. Obvious directions include strengthening the theoryby considering alternative settings of the

problem, tightening the sensing capacity bounds, and proving a converse to sensing capacity. For

example, we presented extensions to the work presented in this paper by considering the impact

of spatial [38] and temporal [42] dependence on the sensing capacity. Another direction for

future work is to explore the connection between sensor networks and communication channels,

including the exploitation of existing channel codes to design sensor networks.
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Fig. 3. Arbitrary connections model withk = 7, n = 4, c = 2, and a sum sensing function.
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TABLE I

JOINT TYPESλ FOR FOUR PAIRS OF TARGET VECTORS.
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Xi Xi = 0 Xi = 1 Xi = 2

PXi
(γ0)

2 2γ0γ1 (γ1)
2

TABLE II

DISTRIBUTION OFXi IN TERMS OF THE TYPEγ OF vi WHEN c = 2.

PXiXj
Xj = 0 Xj = 1 Xj = 2

Xi = 0 (λ00)
2 2λ00λ01 (λ01)

2

Xi = 1 2λ00λ10 2 (λ10λ01 + λ00λ11) 2λ01λ11

Xi = 2 (λ10)
2 2λ10λ11 (λ11)

2

TABLE III

JOINT DISTRIBUTION OFXj AND Xi IN TERMS OF THE JOINT TYPEλ OF vi , vj WHEN c = 2.
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Fig. 4. CLB(D) of arbitrary connections model for sensors of varying noiselevels and range.
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Fig. 7. Sensor network model withk = 7, n = 3, c = 3, contiguous connections, and a sensing function corresponding to the

weighted sum of the observed targets.

λ(ab)(cd) cd = 00 cd = 01 cd = 10 cd = 11

ab = 00 0 0 1/8 2/8

ab = 01 1/8 1/8 0 0

ab = 10 1/8 1/8 0 0

ab = 11 0 0 1/8 0

TABLE IV

λ WITH c = 2 FORvi = 01101000 AND vj = 01000111.

PXiXj
Xj = 0 Xj = 1 Xj = 2

Xi = 0 λ(00)(00) λ(00)(01) + λ(00)(10) λ(00)(11)

Xi = 1 λ(10)(00) + λ(01)(00) λ(01)(01) + λ(01)(10) + λ(10)(01) + λ(10)(10) λ(10)(11) + λ(01)(11)

Xi = 2 λ(11)(00) λ(11)(01) + λ(11)(10) λ(11)(11)

TABLE V

JOINT DISTRIBUTION OFXj AND Xi IN TERMS OF THE JOINT TYPEλ OF vj AND vi , WITH c = 2.
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Fig. 9. Sensor network model withk = 5, n = 2, c = 1.
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