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~ Abstract—We consider the problem of designing a fair schedul-  Apart from being throughput optimal, a scheduling algo-
ing algorithm for discrete-time constrained queuing netwaks. rithm should allocate resources in a fair manner. The queuin
Each queue has dedicated exogenous packet arivals. Theregygiam js a common resource shared by various traffic flows,

are constraints on which queues can be served simultaneoysl| d th heduli lqorith hould that fl .
This model effectively describes important special instaces like an € scheduling algorithm should ensure that no Tow IS

network switches, interference in wireless networks, bandidth ~ receiving more than its “fair” share of resources. It is intpat
sharing for congestion control and traffic scheduling in roal to realize that fairness in queuing systems is not only an
roundabouts. Fair scheduling is required because it provigs intuitively desired goal but also one with an immense pcatti
isolation to different traffic flows; isolation makes the sysem impact.

more robust and enables providing quality of service. Exidghg A . tant f fai is isolati f
work on fairness for constrained networks concentrates on €iw very important consequence of fairness 1S 1sofation o

based faimess. As a main result, we describe a notion of paek Vvarious traffic flows. Throughput optimality is oblivious tioe
based fairness by establishing an analogy with the ranked ettion identities of the different flows. But, identities are imtaort
problem: packets are voters, schedules are candidates an@eh for the following two important reasons: (1) Being obliviou
packet ranks the schedules based on its priorities. We therbtain 1, f,y identities, throughput optimal algorithms often dav
a .schedullng algprlthm that achle\{es the described notion fo fl ith a hiah dat te. Theref ticular fl iaht
faimess by drawing upon the seminal work of Goodman and 'OWS With a nhigh dala rate. Therefore, a particular flow migh
Markowitz (1952). This vyields the familiar Maximum Weight ill-behave and flood the system with a high data rate mali-
(MW) style algorithm. As another important result, we prove ciously resulting in the deterioration of service to othemnf.
that the algorithm obtained is throughput optimal. There is no  Since the system is a shared resource, the algorithm should
reason a priori why this should be true, and the proof requires  jgenify the rogue flow and limit the negative impact on well-
non-traditional methods . LT .
behaved flows. (2) Secondly, isolation is important to pdevi
Index Terms—Fair scheduling, packet-based fairness, ranked performance guarantees, and thereby Quality of Serviee (se
election, throughput optimality Keshav (1997)[[1]), to various flows in the system. Designing
a scheduling algorithm that is fair will overcome these éssu
Other benefits of fairness include reducing burstiness wofsflo
eliminating bottlenecks and reducing the impact of certain
kinds of Denial-of-Service (DoS) attacks (see Bonald and
In this paper, we focus on the problem of scheduling iMassoulie” (2001)[2], and Yau et al (2005) [3]). In essence,
constrained queuing networks. Specifically, we consider aafair scheduling algorithm makes the queuing system robust
collection of queues operating in discrete time with caiats and less prone to manipulation by individuals.
on which queues may be served simultaneously. Such queuing natural way to achieve isolation among flows, in order to
systems serve as effective modeling tools for a large arrasovide protection and performance guarantees, is to deedic
of important practical problems, and their performance iesources to each of the flows. In fact, this is the approach
crucially dependent on the effectiveness of the schedulitgken in most of the work done on designing fair algorithms
algorithm. for input queued switches (details in Sectionll-B). This ap-
In this setup, the basic question is to design a scheduliggpach, though, is limited for the following reasons: Hist
algorithm that is optimal. There are several performanite-cr because of constraints, it is not straightforward to deieem
ria, with often inherent trade-offs, that determine theroptity ~ the amount of resources to be allocated to each flow in a
of a scheduling algorithm. The first is throughput optinyalit queuing network. Moreover, such determination would resjui
A queuing system has a limited amount of resources. TH&e knowledge of flow arrival rates; whereas, in the spirit of
natural constraints imposed result in an inherent limitathn  being implementable, we require the scheduling algoritom t
the amount of traffic load that can be supported. This is dall®e online i.e., use only current network state informatige |
the capacity of the system. Roughly speaking, a schedulifigeue-sizes, age of packets, etc., and myopic i.e., obkvio
algorithm that achieves the capacity utilizes system nessu flow arrival rates. Secondly, resource allocation takeseotan
optimally. Such an algorithm is called throughput optimal. an average over a long period of time. This is appropriate in
a flow level model where the arrival statistics remain camista
This work was supported in parts by NSF CAREER CNS 0546590 af@r long time periods. This assumption, though, is questixa

NSF CCF 0728554. , - in many applications like Internet traffic where short flows
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prises two sub-problems: defining a reasonable notion of faB. Related work

ness, and designing an algorithm to achieve the desiredmoti ) ) . . )
of fairness. The notion of fairess is utilized to determine We first begin with the work on single queue fairness.

the resources (more specifically, the rate or bandwidth) f&ir scheduling in single queues has been widely studied
be allocated, and the scheduling algorithm ensures that fgce the early 1990s. In one of the earliest works, John
resources are allocated on an average over a long period\g@le (1987)[[5] proposed a fair algorithm for single queues
time. Inspired by this, our approach would be to first defineG@/led “Fair Queuing.” As mentioned earlier, fair schedgli
notion of packet based fairess and then design a scheduffhig€quired to minimize starvation and limit the negative
algorithm to achieve the defined notion of fairness. Forobsi Impact of rogue sources. In order to achieve this, Nagle
reasons, we also need to reconcile the benefits of fairnes WiAr0Posed maintaining separate queues for different flowss an
achieving throughput optimality. serving the_m in a round-r(_)bm fash_lon. This is a great and
Motivated by the above discussion, we attempt to achie§"P!€ 10 implement solution, but it works only when all

the following three goals in this paper: (1) Define a notiowe packets are of equal size. In order to overcome this
of packet based fairness. (2) Design an online and myorﬂEOblem Demers, Keshav and Shenker (1980) [7] proposed the

algorithm, that is also throughput optimal, to achieve tH&Otion of Weighted Fair Queueing (WFQ) and its packetized

notion of fairness. (3) Provide the throughput optimalitgqf Implementation. Parekh and Ggllager (1_993'_19@’) [8], [_9]
of the algorithm. analyzed the performance of this packetized implememtatio

and showed it to be a good approximation of Generalized
Processor Sharing (GPS). Shreedhar and Varghese (1996) [10
o designed a computationally efficient version of weighteid fa
A. Our contributions queuing called Deficit Weighted Round Robin (DWRR). Even

The need for a packet based notion of faimess that cApugh all these algorithms are fair, they are very compfek a
be used in a constrained network is clear. But, definirfgPeNSive to implement. Hence, there was a lot of work done

a precise mathematical notion of fairness that achieves {fja achieving approximate fairness for Internet routersugh
desired intuitive and practical benefits of faimess is euif IFO queuing and appropriate packet dropping mechanisms.

challenging. Unfortunately, none of the existing notiorfs ¢-x@mples include RED by Floyd and Jacobson (1983) [11],

fairess directly extend to a packet based constrainedingielCHOKe by Pan, Prabhakar and Psounis (2000) [12], and AFD

network. Existing notions of flow based fairness are bas®d Pan, Prabhakar, Breslau and Shenker (2003) [13].
on the utility maximization framework (proposed by Kelly, To address the issue of fairness in a network, Kelly,
Maullo and Tan (1998)]4]), which is a concept borrowed frorilaullo and Tan (1998) }4] proposed a flow-level model for
Economics literature. In a similar spirit, we define a notidn the Internet. Under this model, the resource allocatiort tha
fairness by establishing a novel analogy between scheglinin maximizes the global network utility provides a notion oif fa
constrained queuing networks and a ranked election pr@blef#te allocation. We refer an interested reader to survgg-st
Ranked election is a widely studied problem in the Economifgpers by Low (2003][14] and Chuang et.al. (2006 [15] and
(and Political Science) literature and this analogy presia the book by Srikant (2004) [16] for further details. We take
ready framework to leverage this work. We draw upon th note of desirable throughput property of the dynamic flow-
work of Goodman and Markowitz (1952) [5] to obtain a uniquLeVe| resource allocation model (see for example, Bonattl an
characterization of the schedule. This, rather surprigingMassoulie” (2001)[[2], and de Veciana, Konstantopoulos and
yields a maximum weight (MW) style algorithm. MW styleLee (2001) [17]). This approach, though valid for a general
algorithms are very popular in the literature and are verif wéetwork with arbitrary topology, does not take scheduling
understood. Thus, MW algorithms choose schedules in & “faonstraints into account.
manner, though the definition of “fair” for different weight ~We next review the work done on the design of fair schedul-
is different. It should be noted that the choice of weighifig algorithms for Input Queued (IQ) switches. Switches
is crucial for obtaining the intuitive desirable propestief are the most simple — at the same time, highly non-trivial
fairness, and we make an important contribution here. — examples of constrained networks. They form the core

As another important contribution, we prove that our aIg(Slf Internet routers and there is extensive literature degali
rithm is throughput optimal. There is no a priori reason fost With the design and analysis of various switch architecture
to be true. Even though the algorithm we design is the familiand scheduling algorithms. A switch is essentially a bifeart
MW style algorithm, it is not queue size or waiting timen€twork with input ports and output ports. The function of
based. Therefore traditional methods of proving throughp@ network switch is to move packets from the input ports to
optimality, which include the popular Lyapunov-Foster huet the output ports using the switch fabric, just like the traffi
and Fluid models, cannot be applied in a direct manner. TREa traffic junction. Depending on the placement of buffers
proof technique we introduce to prove throughput optingalithd the switch fabric, there are mainly two kinds of switch
is potentially applicable to a wider class of problems. architectures — input queued switches (IQ) and output ciieue

(OQ) switches. As their names suggest, input queued svgitche
. _ _ _ o _ have buffers only at input ports, while output queued sveitch
A ranked election problem deals with choosing a winning peation

of candidates using a set of votes, where each vote is a patiorubf the have buffers Only Qt the OquUt pqrts. The input quelljed bwitc
candidates. Refer to SectibnllV. has a cross-bar switch fabric that imposes the followingnaét
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constraints: only one packet can be moved from (to) eaaax-min rates of different flows, taking into account con-
input (output) port in each time slot. On the other hand, ssintention at all levels. But this approach requires knowledfje
an output queued switch has buffers only at output portstes of flows and hence, the system should either learn these
packets arriving at the input ports are immediately tramste rates or know them a priori.
to their respective output buffers. Thus, there are no sadivegl Thus, most of the literature on the design of fair scheduling
constraints at the switch fabric in an output queued switchlgorithms for constrained networks is limited becausétlits
Because of this, the memory in an output queued switch hgaores fairness issues caused due to scheduling corstrain
to operate much faster than the memory in an input queueddirectly borrows flow-based fairness notions and allesat
switch. In most high-speed switches, memory bandwidth lmndwidth accordingly. Here, it is important to emphaskee t
the bottleneck and hence input queued switches are mbnaitations of a flow-based approach: (a) network traffic-pre
popular and widely deployed, while output queued switche®minantly contains “short-flows”, while flow-based apprioa
are idealized versions that are easy to study. requires existence of ever-lasting traffic thereby indgdinge

It is clear from the description that scheduling in outpuielays when applied naively, (b) flow-based approach regquir
queued switches is equivalent to that of single queues. ¢Jenknowledge of traffic rates, which it may have to learn, (c) our
fair scheduling in output queued switches just correspandsunit of data is a packet and modeling it as a flow is just an
implementing single queue fair algorithms at differentpput approximation, and (d) packets have priorities and thek lac
queues. Unfortunately, such extension is not possiblenfouti explicit utility functions.
queued switches because of the presence of constraints. Orla summary, our question is inherently combinatorial which
approach is to emulate the performance of an OQ switch bgquires dealing with hard combinatorial constraintskenthe
means of a 1Q switch running with a minimal speedup. Aresource allocation in a flow network which deals with soft
IQ switch is said to be running with a speed8ff it can be capacity constraints in a continuous optimization setup.
scheduledS times in each time slot. This approach was taken
by Prabhakar and McKeown (1999) [18] and Chuang, Goet, Organization

McKeown and Prabhakar (1999) [19], where they ShOWedThe rest of the paper is organized as follows: Secfion Il

that essentially a speedup of 2 is necessary and sufficient é%scribes the model, introduces the notation and states the

emulating an OQ switch. With the OQ switch operating un_dgroblem formally. Sectiof Tll motivates and describes gur a

any _Of the various policies like '_:”:O’ WFQ’ DWRR_’ St roach. Section TV takes a digression into Economics liteea
prl(_)nty,_etc. faimess can be ach!eved. Eq_uwalently,nfl@ . to explain the ranked election problem. Secfidn V establish
SW'tc_h IS Io_aded up to 50%_ Qf |ts_ capacity and the notiog, analogy between the ranked election problem and network
of .fa|rn_es§ is defined by poI|C|es_ like FIFO, V_VFQ' ,DWRRscheduling. Sectionis_ VI arld VIl present the main results of
strlf:t.prlo.n_ty, etc.,_then by emul_atlng an QQ switch witlese this paper. Sectiof VI formally states our algorithm, while
policies, it is possible to have fair scheduling for the 1Qtst. Section[VT] provides the details of the proof of throughput
However, for higher loading this approach will fail due tOoptimality. We provide some simulation results in SeciidiV

inabil_ity of emL_JIating an OQ switch. " . and then finally conclude in SectignlIX.
This necessitates the need for defining an appropriate no-

tion of fairness that cleverly, and in a reasonable manner, I

8 . MODEL AND NOTATION
combines the preferences of packets based on some absolu\t/(\a/ q b ic ab del of ined
notions along with the scheduling constraints. In prireiphis € now describe a generic abstract model of a constraine

guestion is very similar to the question answered by utiIi@ueumg network. The model corresponds to a single-hop net-

maximization based framework for bandwidth allocation in ﬂork. This generic model describes important special iresta

flow network. In fact, most of the existing literature on fair'<€ an Input queueq switch, W!reless network I|m|t_ed_ by
scheduling algorithms for input-queued switches is canegr interference, congestion control in TCP or even traffic in a

with the notion of flow-based fairness. In these approachég?djumtion' In each of these instances, the mode| effigti

a flow is identified with all the packets corresponding to appptures the constraints imposed by nature on simultaneous

input-output pair. There are two main approaches takendn tﬁervicing Of_ queues. We_ will describe th‘? examples of antinpu
literature for the design of fair algorithms for 1Q switchesqueueoI switch and a wireless network in detail. We focus on

One class of fair algorithms implement a fair schedulingIese two examples because they encapsulate a large class of

scheme at each of the servers in the switch and then ca Rpeduhng problems.

out an iterative matching. This approach is based on the )

Distributed Packet Fair Queuing architecture. Examples 6f Abstract formulation

this approach include iPDRR proposed by Zhang and BhuyanConsider a collection ofV queues. Time is discrete and
(2003) [20], MFIQ proposed by Li, Chen and Ansari (1998 indexed byt € {0,1,...}. Each queue has a dedicated
[21], and iFS proposed by Ni and Bhuyan (2002)![22]. Thisxogenous process of packet arrival. The arrival processes
approach completely ignores fairness issues that arisaubec different queues are independent. All packets are assumed t
of scheduling constraints and hence need not guaranteebannormalized to unit length. Arrivals to each queue occur
overall fair bandwidth allocation. In order to overcomesthi according to a Bernoulli process.

Hosaagrahara and Sethu (2005)][23] and more recently PafThe service to the queues is subject to scheduling contstrain
and Yang (2007)[24] propose algorithms to calculate oVerah that not all queues can be served simultaneously. The
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Figure 2. The order in which service and arrivals happenndutime slot

-
N-Queue Constrained M Output Queues

ueuing System
Q &y A, (1) € {0,1} denotes the number of arrivals to queue

Figure 1. Abstract model of the constrained queuing system n=1,2,..., N, during time slotr. The arrival rate to queue
n is denoted by\, i.e., Pr (A, (1) =1) = A\, V7. A = (\,)
denotes the arrival rate vectdp, (r) denotes the length of
scheduling constraints present are described by a finitefsefiueuen at the beginning of time slot. Q(7) = (Qn(7))
feasible schedules” C {0,1}" . In each time slot a feasible denotes the queue length vectdf(r) € . denotes the
scheduler € . is chosen and queueis offered a service,, feasible schedule chosen in time stoto serve the queues.
in that time slot. Since each packet is of unit length, when\ithout loss of generality, we assume that a feasible sdeedu
non-empty queue receives service, a packet departs from gh&éhosen and service happens at the middle of the time slot,
queue. We assume that’ is monotone i.e., ift € ., then and exogenous arrivals occur at the end of the time slot. This
for anyo < © component-wise i.eg, < T, o € .#. Further, IS shown in Fig[R. WithQ,,(7) denoting the queue length at
we assume that for each there exists a schedutec . that the beginning of time slot, we have:
serves it i.e.r, = 1. _ +
Packets exit the system from any of th& output lines. The OnlT+1) = (@nlr) = S0(m)" + An(r) @)
lines are assumed to operate at unit speed and hence at most
one packet can leave the network from each line in each timeFinally, let D, (7) denote the cumulative departure process
slot. Each of thé\/ output lines maintain buffers termed outpu®f queuen i.e.,
gueues to store packets that are ready to depart. We assume
that routing is pre-determined and, hence, the destination Du(r) = ZS”(t)ﬂ{Q"(“>O}' 2)
output line of each packet is known. After service, each pack =T
is moved to its destination output queue. Each output queug?) Definitions:We now introduce some definitions. We call
operates using a single queue scheduling policy (eg. FifstSystem rate stable, or simply stable in this paper, if the
Come First Serve (FCFS), Weighted Fair Queuing (WF@!lowing holds with probabilityl: for 1 <n < N,
etc.). The served packets are queued and served according . Dy(7)
to the single queue scheduling policy. Fig. 1 illustrateis th Hm —— = 3)
model.

. N An arrival rate vector\ = ()\,,) is called admissible i
Under this setup, the problem of scheduling is to choose . . . .
. ; : a scheduling policy under which the queuing network loaded
a feasibleschedule in each time slot to serve the queues an

move the packets to their respective output queues. Sirce th h A has a queue size procegs(7) such that

scheduling policy for each of the output queues can be chosen limsupE [|Q(7)]] < oo (4)
independently, the problem reduces to that of the constdain T
collection of queues. Let A denote the set{A € RY: X is admissiblé. A is

1) Notation: First, some general notatioR.denotes the set called the throughput region or capacity region of the nektwo
of real numbers an® ;. the set of non-negative real numberJassiulas and Ephremides (1992)I[25] proved that:
ie., R, = {xeR:z>0}. N denotes the set of natural . ——
numbe+rs{1,§, ...} and Z+}the set of non-negative integers relint co (#) € co (%) )
{0,1,2,...}. Let 0 and 1 denote the vectors dis and1s where co(.#) denotes the convex hull of” i.e.,
respectively. All the vectors in this paper are lengthvectors. {M c Rf: =3y, a;mt o > 0,710 €., Yia < 1} .
Let 1., denote the indicator functioyye = 1 andlfase = 0. relintco (.#) denotes the relative interior ofo () and
x* denotesmax {z,0} and we use thé, norm|z| = > x,. co(.”) denotes the closure @b (.#). Denoterelint co (.#)
We also use the standard inner prod{ictb) = a;b;. by A’. It was also shown by Tassiulas and Ephremides (1992)
Recall that we are assuming Bernoulli i.i.d arrivals. Ld25] that:
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Remark. An important special instance of the MW schedul-
_ ing algorithm is the one with queue sizes as the weights
A = {M € Rf: W= Zomrl; i.e., wn(1) = Qn(7). In their seminal work, Tassiulas and
i Ephremides (1992) [25] (and independently McKeown et. al.
0;>0,7 €., Z o < 1}. (1996) [26]) showed that the MW algorithm with queue sizes
f as weights is rate stable.

Since these results, there has been a significant work on
designing high-performance, implementable packet sdivegu
algorithms that are derivatives of maximum weight scheayli
\{vhere weight is some function of queue-sizes. All of these

; : . ) . Igorithms are designed to optimize network utilization as
free network is defined as a queuing network in which all S
well as minimize delay (for example, see recent work by

the queues can be served simultaneously. Therefore, fof.a L .
CFN, ¥ — {071}1\/. Thus, scheduling just entails moving.rShah and Wischik (2006) [27]). However, these algorithms

arriving packets immediately to their respective deskimat ignore the requwemen_t of falrn(_ass. Specmcally,_ it hasnbee
output queues observed that the maximum weight based algorithm can lead

As discussed in Related Work (Sectlonll-B), fairness is Wet wiltJ:r\:v ?sngev(l rIS(;ZZjV: (;KE?O rogx\;en%lgnga;e r@gkaggcgﬂfnna:’vgzz
understood for single queues. Therefore, using a singleequ%nd Shah (2004)[28]). We provic,ie a simple example’ of a
fair scheduling scheme for each of the output queues yieldg ich (detailed describtion given in the next subsectian)
fair scheduling algorithm for the CFN. We assume throughol \ﬁstrate this: Consider a 2 x 2 switch with arrival rate mat
that a CFN is operating using a fair scheduling algorithrg\.11 ~ gy :.O, A2 = 0.6, Aoy — 0.5. Here \,; corresponds
Along with a CFN we define a shadow CFN as follows: G|vepo the arrival rate of traffic at input poitfor output port;.

. ) ,
a cogstralfned queumgd r}egwoy_‘it(r’{ a C.FNN]; with the same l_fnder this loading, output port 2 is overloaded. If OQ switch
POUE\n[ E.’\Sr 2al?eudeltjheg sr?adoe g:vIIZN gcf)/mes of exogenous armvgiss Round Robin (or Fair) policy at output 2 so that traffic

, | W ' from both inputs is served equally, then input 1 will get rate

We conclude this section with a brief motivation for th% 5 and input 2 will get rate 0.5 from output 2. However, the

def|n|t|or;] ff tﬁFN' -ll;lhls al:so ser\t/_es ‘35 a l_pre\t/;]ewd_to_ OI aximum weight matching policy, with weight being queue-
approach to the problem. As mentioned earlier, the diffycu gize (or for that matter any increasing continuous function

in designing a fair scheduling algorithm for networks amseog)gueue-size), the algorithm will try to equalize lengtts o

because of the presence of constraints. In the absence ues at both inputs. Therefore, input 1 will get servite ra

such (;onstra|nts, the notion of fqlrnesslls equivalent &t t .55 while input 2 will get service rate 0.45 from output 2.
of a single queue. Thus, we define an ideal network that is

constraint-free, whose performance we want to emulates Thi
is in some sense the best we can do in providing fairness a@d, Input queued switch

thus, serves as a benchmark for defining notions of falrness.We now discuss an input queued switch as a special instance
of the abstract model that we have described. As mentioned
B. Scheduling algorithms before, a switch is present at the core of an Internet router.
router moves packets from input ports to output ports.
sed on the final destination of the arriving packet, a moute

We call a scheduling algorithm throughput optimat i\ € A’,
the system is rate-stable.

3) Constraint free network (CFN)We now introduce the
notion of a Constraint Free Network (CFN). A constrai

We consider the problem of designing scheduling algorith

for constrained queuing networks. A scheduling scheme

algorithm is a procedure whereby an appropriate feasib gtermmes th‘? appropriate output port and then transfiers t
schedule is chosen in each time slot. In this paper, we W f"Cket accordingly. The transfer of packets to the cormacpo

be interested in a class of scheduling algorithms termed twgroutput ports S calleq SV\."tChmg' . .
Maximum Weight (MW) Scheduling Algorithms. In general here are various switching architectures, but we discuss

a maximum weight algorithm works as follows: In each tim’éhe one that is °_°mmer°i"%‘”Y the_ most popular. Consider an
slot 7, each queue is assigned a weight,, (7). This weight Input queued switch containingy/ input ports andM output

is usually — but not necessarily — a function of the queue siparts- The qltjleuesd atbthe outpduthports corre?plont(:] to thﬂzﬁputpu
Q. (7). Then, the algorithm chooses the schedule with tfi'€U€S mentioned above, and hence we retain the notation

maximum weight i.e., or the r_1umber qf output of queues; s_ince we are considering
only switches with equal number of input and output ports,
S(1) = argmax (w(7), 7) (6) the number of input ports is alsd/ . Packets arriving for
mes input porti and destined for output pojtare stored at input
A feasible scheduler € % is said to be maximal if portiin @Q;;. Note that for a switch, it is convenient to denote
Vo € ., m £ o component wise. The set of all maximakhe queues a§);; instead of as),,, as we do in the generic
feasible schedules will be denoted I5%},,... It is reasonable model. Further, note that the total number of quenes=
to assume that we want to serve as many queues as possiife The switch transfers packets from input ports to output
in each time slot. Therefore, when the algorithm choosesrts using the switching fabric. The crossbar switchirgita
a feasible schedule, we serve the queues according to @anplemented in an input queued switch imposes the following
maximal schedulg € .%,,.x such thatu > . constraints on packet transfer from input to output ports: i
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Figure 3. A 3 port input queued switch showing two differemsgible
matchings.

each time slot, each input port can transmit at most one packe
and each output port can receive at most one packet. Therefor
feasible schedules are matchings from input to output ports
This is illustrated in Fig[13. The left and right hand figures
illustrate two different possible matchings.

The scheduling algorithm in the input queued switcﬁ
chooses an appropriate matching in each time slot. To link

back to the abstract model that we described, note that an I\/We assume that the network is modeled as a gi@ph
port switch hasV = M? constrained queues; for the queue(sv £) with V denoting the node sdtl,2,..., N} and€ de-

we use the nqtauor-yj and not-,, for all terms to cIearIy. noting the directed edge séti, j): i communicates withy}.
reference the input and output ports. The set of all feasible, ., ode maintains a queusd);
)

. . ; for each of its neighbors
schedules” corresponds to the set of all matchings in an \ye assume a single hop network in which packets arrive
M x M bipartite graph:

at nodes, get transmitted to one of the neighbors and then
leave the network through output queues. Eig. 4 illustrates

igure 4. A 3 node wireless network

M wireless network with three nodes operating under interfee
S = {w = (m)ij € {0, 1M > "y < constraints.
k=1 In this setup, the scheduling problem is to decide which
M directed links will be active simultaneously. Constraints
Z?Tkj <1L,1<4j SM}- limit feasible schedules to those in which none of the
k=1 neighbors of a receiver is transmitting; in other words,

Packets leave the switch from their respective output poitslink (,5) is active then none of the links in the set
and hence the output ports correspond to the output queugs.k) € £: (1,5) € £ OR (4,1) € £} should be active. For
Since at most one packet arrives at each output port in eadch network represented by graph = (V,€£), we can
time slot, the packet immediately departs from the outpaonstruct a conflict grap’ = (V’,£’) with a node for each
queue. Thus, scheduling reduces to choosing an appropriatehe directed links and an edge between two links if they
matching in each time slot. We point an interested reader ¢annot be active simultaneously. The feasible schedubss th
[19] for a more detailed exposition on switch architectures reduce to independent sets in the conflict graph. Formally,

S = {w € {0, 1}|V/| s+ <1, forall (i,5) € 5’}
. . o )

We now consider wireless networks as a special instancqy g yid be noted that using the conflict graph, more general
of the abstract model. Consider a collection of devices (€gnstraints in the network can be modeled as independent set
sensor nodes, WiFi nodes, etc.) that are using the wirelesssiraints. Thus, the model we are considering encapsulat

medium to transmit messages. The devices share the sg\assence of a large class of scheduling problems
frequency to transmit and hence interfere when they transmi

simultaneously. Because of power constraints, only device
that are close to each other geographically can communicate
This is often modeled by a graph with a node for each deviceNetwork resources are shared by different users and our goal
and an edge between two nodes if they can communicate.is to design a scheduling algorithm that allocates resaurce
Power constraints also limit interference to nodes that are a fair manner. Before we can design such an algorithm,
close to each other; in other words, only nodes that affeere is a need to give a precise definition of the users and
connected by an edge interfere. Therefore, the graph atke resources of the network. Traditionally, differentffica
models the interference constraints on scheduling. Inrotiows were considered the users and the bandwidth allocated
words, transmission to a node is successful only if nonesof tb them the resource of the network. Link capacity constsain
neighbors in the graph is transmitting at the same time. THisiited the total amount of resources available, and eaah flo
model of interference is termed tlredependent sanodel of was allocated its “fair” share of bandwidth. This is the basi
interference. of the utility maximizationframework in which the utility of

D. Wireless networks

IIl. OUR APPROACH
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each flow was a function of the allocated bandwidth — theach packet has two classes of schedules: one that it prefers
more the bandwidth allocated, the greater the utility. &#it to the other while being indifferent to schedules within the
utility functions vyield different fairness criteria. An lierent same class. Therefore, the packet assigns the same weight to
limitation of this approach is that it considers entire flomss all the schedules within the same class. Since only relative
users, disregarding the fact that flows are not continuotis fpweferences matter, we assume that each packets assigns the
are composed of packets. Moreover, bandwidth is a resousaane weight) to all schedules in the class it does not prefer.
that is allocated on an average over a long period of tirdessigning quantitative preferences now reduces to chgasin
assuming that flow statistics remain constant over such longight for each packet to assign to the class of schedules it
periods. prefers.

We overcome this limitation by treating the Head-of-Line One feasible option would be to use queue sizes as weights.
(HolL) packet of each flow as the user of the network resourcébe problem with this choice is that it is oblivious to flow
(We assume that each queue is associated with a flow adentities and is susceptible to manipulation (a flow camgai
hence we use these terms interchangeably). This takes iattvantage by overloading system with packets resulting in
account the packetized nature of a flow and is a consequelarge queue sizes). Another option would be to use the age
of the realization that in each time slot the decision is Wwhet (waiting time in the system) of the packet. This choice i sti
to serve the HoL packet or not, unlike the case of a continuooklivious to flow and packet identities and it is difficult to
flow that can be given fractional service. Therefore, it provide QoS by giving priority to one flow (packet) over other
should correspond to HoL packets and not entire flows. Witlve overcome these problems by using the idea of emulation of
HoL packets as the users, the network resource becomesttieshadow CFN. As mentioned in Related Work (Sedfioh I-B),
service they receive in each time slot. The network resouraee way of designing a fair scheduling algorithm would be to
is limited by the constraint set” and the algorithm should perfectly emulate a CFN using a fair queuing policy at each
choose a feasible schedutec . in a manner that is “fair” of the output queues. But this results in a loss of throughput
to all the HoL packets. Inspired by the utility maximizatiorof the system. Therefore, our approach would be to emulate
framework, we could define utility functions for the HolLthe shadow CFN as closely as possible. In this spirit, we use a
packets and choose a feasible schedule that maximizes finection of the departure time of the packet from the shadow
overall utility. But, there is no natural choice of the utili CFN as the weight; the earlier the departure time, the higher
function and hence we take a different approach. the weight. The details of the exact function used are cavere

We begin with the realization that packets do not hava SectiondV and VI.
natural utility functions, but they do have a natural prefere ~ We now tie this back to the utility maximization framework.
order of the feasible schedules. For each packet, theravare tJsing the Goodman and Markowitz algorithm with the above
classes of schedules — one class containing all schedwes tfhoice of weights yields a MW style algorithm with the
serve it and the other containing all schedules that do rw. Tweight of each queue equal to the weight assigned to the
packet is indifferent to all the schedules in the same class gpacket. This is identical to the result we obtain by using
the preference relation between schedules in differeissela the assigned weights as utilities of packets and choosing a
depends on how “urgently” the packet wants to get served. Fachedule that maximizes overall utility. Therefore, ougoal
scheduling now reduces to combining individual preferesnige rithm yields utility functions for packets that can be used
a fair manner to come up with a “socially” preferred schedulé the utility maximization framework. This rather surpnig
This is equivalent to a ranked election problem: HoL packetgsult connects our approach back to utility maximizatieryv
(queues) are voters, schedules are candidates and eact paugely.
has a preference list of the schedules (refer to SeEfibn tv fo We then establish that such an algorithm is throughput
more details on the ranked election problem). The problem @timal under the standard stochastic model of a network.
ranked election is very well studied in the Economics litera To prove throughput optimality (rate stability to be pregis
(also called the theory of social choice). In their seminatikv we use an appropriate quadratic Lyapunov function. However
in 1952, Goodman and Markowitz|[5] prove that under certaine cannot use the standard stability proof technique based
socially desirable postulates (detailed in Secfioh IV)ewithe on Foster’s criterion because the Lyapunov function is not a
voters have cardinal (quantitative) preferences overidaes, function of queue-sizes, but is function jpieferenceslerived
a simple function of those quantitative preferences yieldsfrom the shadow CFN. This makes the analysis rather non-
uniquely preferred outcome. trivial.

In order to use the Goodman and Markowitz result, we re- To explain the consequences of our algorithm on fair emula-
quire not just relative preferences, but quantitative gnefices tion, we present simulations for algorithms based on FIFO OQ
over the feasible schedules. By quantitative preferenaes @witch. Intuitively, our fair algorithm should be able tadteee
mean that each packet assigns numerical weights to sclsedulee queue-size (or delay) as well as get rid of starvatioseau
the higher the weight, the more preferred the schedule. by well-known throughput optimal algorithms. Our simudati
principle, the packet can assign any weights consistenhtitgit results clearly confirm this intuition.
relative order of preferences to obtain quantitative pexfees
over the schedules. But it is important to realize that the IV. RANKED ELECTION
choice of quantitative preference is crucial for obtainthg In this section we take a digression into Economics litesatu
practically desired benefits of the fair scheduling. In atup, to describe the ranked election problem.
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Definition 1 (Ranked election)There areM voters that vote V. ANALOGY BETWEEN FAIR SCHEDULING AND RANKED

for C' candidates. Vote of each voter consists of a ranking (or ELECTION

permutation) of allC’ candidates. These votes can additionally

carry quantitative values associated with their prefesentet  In this section, we motivate our fair scheduling algorithm
am. denote the value voten gives to candidate, for 1 < Dy establishing an equivalence between fair scheduling in a
m < M, 1< ¢ < C. The goal of the election is to relativeconstrained queuing netwotk” and the problem of ranked

order all theC candidates as well as produce the ultimat@léction. In our context, the packets (queues) are the soter
winner in a manner that is consistent with the votes. and the feasible schedules € . are the candidates. In

order to use the Goodman and Markowitz setup, we need to
The key for a good election lies in defining consistenc§ferive preferences for packets over schedules. For eagltpac

of the outcome of election with votes. The following ardhere are two classes of schedules — one class containing all

canonical postulates that are used in the literature onecaniechedules that serve it and the other containing all scesdul
election: that do not. The packet is indifferent to all the schedulethén

same class. Since only the relative weights matter, we assum
that a packet assigns a weight®fo all schedules that do not

P1. Between any two candidatesndc’, suppose that none !
serve it.

of the M voters prefers’ to ¢ and at least one voter We deri ‘ ¢ ket hedules that
prefersc to ¢’. Thenc’ should not be ranked higher than € derive preferences lor packels over schedules that serve

¢ in the output of the election. This property correspon&gem from the corresponpling shadqw CAN .that s operating_
to the economic notion of weak Pareto optimality. with a single queue fair scheduling policy at each of its

P2. Suppose the voters are renumbered (or renamed) Wﬂﬁgput queues. As defined before, a copy of every packet

keeping their votes the same. Then the outcome $r|V|r}g to the networkV is fed o the shadow CFI/".
election should remain the same. In other words, th at is, (a copy of) a packet arriving at queue n for output

election outcome is blind to the identity of the votersqu,euem of A immediately joins the output queue in
that is election outcome is symmetric. N The departures frqm the_ output q_ueues/‘éf happen
P3. Now, consider the setup when the votes are cardinal (i_%c;cordlng to an appropriate fair scheduling policy, Syuch

quantitative). Suppose candidatds preferred toc’ by as strict priority scheme, last-in-first-out or simply finst

the election. Then, by adding the same fixed constantf{E)St'OUt' Specifically, our objective in assigning preferes
al o anda. . fc;r 1< m < M. the relative order of is to have the departures of packets frokh be as close

candidates: and¢’ should not change. This makes sens%ls possible to the departures from the corresponding shadow

because what matters is the difference in preference lev EN A" Ideally, we yvant/\/ to exactly emulate\” i.e., we

for the two candidates. not the actual values. want the departure times of packets from both the networks
' to be exactly the same. However, we settle with approximate

_ . emulation because, as shown by Chuang et.[al. [19], exact
In the absence of cardinal (or quantitative) preferend®s, typ, jation is not possible at speedup 1. Since the prefesence

que_sf[ion of ranked election_with po_stulates P1, P2 (and So'br'lepackets are chosen frotV” and these preferences are
additional postulates) was first studied by Arrow (1951){29:mpined in a fair manner, the fair scheduling polices at the

In his celebrated work, he established the (then) very 84pry 15t queues of\” can now be chosen according to the
ing impossibility of the existence of any election schemthdesired requirements.

satisfies P1, P2 (and additional postulates) simultangods
note that this result has been an important corner stoneein %
field of theory of social choice.

Based on the above discussion, our approach is to use a
lue that is a function of the departure time of the packet
fromN” — the earlier the departure time, the higher the value
Subsequent to Arrow’s impossibility result, manyassigned. More specifically, lgi, denote the HolL packet
economists started looking for positive results. Amoni queuen of network N at time 7. Let d,,(7) denote the
many other celebrated results, the result that is relevantdeparture time op, from N”. For the following discussion
this paper is that of Goodman and Markowitz (1952) [Slve assume that the queue is non-empty and hehpg¢e) is
They showed that if voters have cardinal preferences, aswell defined. We defer the discussion of empty queues to the
our setup, then there is a unique ordering of candidates the&xt section. Now, each queuessigns a value af—d,, (1) to
satisfies P1-P2-P3 simultaneously. To describe their tesall the schedules that serve it. (The choicerefd,, (1) seems
consider the following: let the net score of a candiddte arbitrary, when we could have taken any decreasing function
Se = Zﬂ]‘le ame. Goodman and Markowitz obtained theof d, (7). Indeed we can, though it should have some “nice”
following remarkable result. properties to maximize throughput. Details are in Sediidh. vV
This completes the equivalence.
Theorem 2. Suppose the scores of all candidates are distinct. Taking a closer look at the weight — d,,(7), note the
Rank candidates as follows: candidatehas higher ranking following. Suppose at time- the packetp, is already late
thanc if and only ifs. > s’.. This ranking satisfies postulatesi.e, d,,(7) < 7. In this case, the weight — d,,(7) > 0, which
P1-P2-P3. Further, this is the only such ranking. means thafp] prefers all schedules that serve it to all the
schedules that do not by weight— d,, (7). Thus, the more
For a proof of this result, we refer the reader[to [5]. delayed the packet is, the higher the weight it assigns. On
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the other hand, when the packet is not late id&.,> 7, p],
prefers schedules that do not serve it in order to give a @ar 1) The arriving packets are queued according toRiHeO

to packets that are late to get served. gueuing policy in each of the N constrained queues.
Now, with the above assignment of values to each schedi ) For a packep in A/, let d(p) denote its departure time
by each queue, the value of a schedule . is given as: from NV Then, the arriving packets in each of thé

output queues are queued in the order of their respective
departure times from\/". More formally, in every output
queuem, a packetp will be ahead of every packef
that satisfiesi(p”) > d(p).

3) In each time slotc , the algorithm chooses a feasible
scheduleS(7) from .~ using a MW criterion as follows:

N
value(m) = Zﬂn(T —dn(7))

The postulates P1-P2-P3 translate into the following post
lates for network scheduling. S(7) € arg max <Uf(T),7r> (8)
TEFPmax

PY. Between any two schedules andn., suppose that none
of the N HoL packets prefen, to n; and at least one

HoL packet prefers; to ny. Then, we should not choose VII. THROUGHPUT OFMUCF(f) ALGORTIHM

ng. . . . .
P2. For given HolL packets, letr be the outcome of the The previous section described how we arrived at MUCF

election as per the above preferences for schedules. Th%lﬂorithm as a fair algorithm based on preferences obtained
by renumbering queues while retaining the same Hof om a shadow CFN. As established in the previous section,

preferences, the outcome of election should be on tgof_rem% |:jnpl!esblthat I\/ItUICthlsP]chligonlly tz;l_gonthr:[n that
renumberedr. In other words, the election does not giv atisties the desirable postulates-Fe-Fs. n Inis section,
we state and prove the throughput optimality property of

nfair priority to any port and thus is symmetric in its . ’ .
il:1pulspl e yp us 15 5y e n the MUCF algorithm. The proof of the algorithm is non-

P3. Suppose schedute! is preferred tor? by the election. ]tcraditior|1al_anc1 FGQL;:FGS new techtr)‘\iquzs thgthmady ble ofé:ter
By adding the same fixed constantto- d,, () for all or analysis of such non-queue based weighted algorithms.

n, the outcome of the election should remain unchangerheorem 3. Consider a constrained queuing system with an

The election algorithm of Goodman and Markowitz suggesggbitrary set of constraints”” . Suppose the system is loaded
that the following schedul&(r) should be chosen: with an i.i.d. Bernoulli arrival process, and is operatingder
the MUCF(f) algorithm withf(-) a bi-Lipschitz function.

Then, if the rate vector is strictly admissible, the queuing

S(r) € argﬂéﬂ;x (r—d(r),m) network is rate stable.

Before we prove Theoreld 3 we need the following notation
and lemmas.
Notation. First, some useful notation. Consider the HoL

Based on the discussion in the previous section, we prop&§ketp;, of queuen in network V" at the beginning of the
a fair scheduling algorithm called thmost urgent cell first time slot< . As before, leta,,(7) be its time of arrival and
algorithm. According to this algorithm, packets are sctiedu @»(7) be the time of its departure fronV”, U, (r) be its
according to the maximum weight schedule (MWS) with udrgency as defined above, alid, (7) be its waiting time (i.e.,
gencies of queues as weights with the urgefigyr) of queue 7 — an(7) if the queue is non-empty ariif itis empty). Let
n defined as- — d,, (r) if it is non-empty i.e., the more “late” Wyt (7) denotef (W, (7)) and F(y) denote [, f(z)dx. Also,
the packet is, the higher is its urgency. If queuds empty defineA, () asWi(r) — Un (7). We note that if queue is
we define its urgency as max {0, — min,,. g, (>0 Un(7)}.  EMPY. thenV,, (1) = 0 andU, () is askdeflned above. Hence,
Note that according to this definition, the weight assigreed t 2n(7) IS always non-negative. LeB;,, m = 1,2,..., M,
schedule by an empty queue is always less than or equal to @§&ote the length of the' busy cycle at output queue in
weight assigned by any non-empty queue in the system. Thefé- Finally, for any functiory: R — R and a vectow € RY,
fore, as desired, the fair schedule chosen by the algorities) t 9(v) € RY denotes(g(v,,)). Before we state the lemmas and
to minimize the number of empty queues it serves. Of courddove Theoreni3, note the following property Bf):
as mention\_ed in thg previous section, we cquld have used F(0)=0, F(y)>0,forallyecR. (9)
any increasing function of the urgency. In particular, sugg
f: R — R denotes a non-decreasing bi-Lipschitz continuous The equalityF'(0) = 0 follows directly from the definition
function with Lipschitz constang > 1 i.e., for anyz,y € R, 0f F(-). Coming to F'(y) > 0, note that sincef(-) is non-
1ple —y| < |f(z)— fy)| < plo—y|. Without loss of decreasing and'(0) = 0, it follows that f(z) < 0 for z <
generality, we assume thAt0) = 0; thus, f(z) > 0forz > 0. 0 and f(z) > 0 for = > 0. Hence, fory > 0, F(y) =
The MUCF(f ) algorithm now chooses the MWS with weight/, f(z)dz > 0 sincef(z) > 0 for 2 > 0. Similarly, fory < 0,
of queuen equal toU](7), defined asf(U,()). Formally, F(y) = [/ f(z)dz = jf(—f(a:))da: > 0 since —f(z) > 0
the three components of the algorithm are as follows: for x < 0. ‘

VI. MOSTURGENTCELL FIRST (MUCF(f)) ALGORITHM
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Lemma 4. Let L(7): = (F(W(7)),\) =>_,, F(Wn(7))An.
Then, under the MUCH{) algorithm with f(-) a bi-Lipschitz
function and\ being strictly admissible, there exists an- 0
such that

E[L(r+1) — L(7)] <

for some constani.

Lemma 5. Under the MUCF() algorithm, with f(-) a bi-

—eR[[W(n)[] + 2E[[A(7)[] + K,

Lipschitz function and\ being strictly admissible, SUPPOSe e | (7

Zr = s i IW(@)| @nd E[Z;] < O(1) < oo for all

7. Then, we must have

Pr ( lim — |W( )| = 0) =1 (10)
T—00 T
Lemma 6. Let O,,(r) denote maxo<i<, B),, for m =

1,2,..., M. Then, under a strictly adm|SS|bIa with the

10

Z W()|| <O(rlogr) + 7K. (16)
Dividing both S|des by7 log 7, we obtain
Togr Zj W(il| <o). (17)
Let X, =%Z;l| (i)] and Z, =
[Z;] < O(1) < oo for all 7 It now follows from

Lemmal[® that
Pr (hm W (r)| = 0) =1

Using [18), we complete the proof of rate stability of the
algorithm as follows. At timer, the waiting time of the HoL
packet of queuer is W, (7). Because of FIFO policy and at

(18)

output queues of\V" operating under a Work Conservingmost one arrival per time slot, we have that the queue-size of

Policy (WCP), the following is true for aland1 < m < M,
E[0,,(7)] < O(logT)

We will first prove the result of Theorefd 3 assuming th
results of Lemmad]4 arid 6, and defer their proof until after

the proof of Theoreril3.
Proof of Theorerfl3We first note that if queue is non-
empty then

< k
Anlr) = g B

(11)

wherem is the destination output queue of packét This
is true because when queueis non-empty,A,,(7) denotes
the waiting time ofp?, in its destination output queue iR”,

and hence cannot be more than the length of the busy cycle

it belongs to. Since there can be at modbusy cycles up to
time 7 and p?, arrived to N beforer, (I1) should be true.
Therefore, from lemmpal6 anf{|11) it follows that:

E[A,(7)] < O(logT) (12)

If queuen is empty, then by definition it follows that either

A, (1) =0 0or A,(r) = dy (1) — 7, for some queue’ that
is non-empty. Sincel\;(7) > 0 VI, 7, we have from[(I2) that
E[A,(7)] < E[A, ()] < O(log 7). Hence,[(IR) is valid even
for empty queues and it thus follows that:

E[|An(7)[] < O(logT) (13)
From lemmd# and (13), we obtain the following:
L(7)] < —eE[|[W(7)|] + O(log 7) + K, (14)

Telescopic summation of (1L4) from 2, ...,
(after cancellations),

E[L(r+1)—

T, we obtain

E[L(r+1)] <E[L

0)] - <E [_Z |w<z'>|]

+O(rlogT)+ 7K, (15)

Now, the network starts empty at time. Therefore,
E[L(0)] = 0. Further,L(-) is non-negative function. There-
fore, [(I%) gives us

queuen at timer, @, (1)

Qn(7)

< W, (7). From [I8), we have that

lim = 0, with probability 1. (29)
T—00 T
ow, Q,(7) observes the following dynamics:
Qu(T) = Qu(0) + > An(t) : (20)
t<t

where the second term on RHS is the cumulative arrival to

queuen till time 7 while the third term is the cumulative

departure from queue till time 7. By strong law of large

numbers (SLLN) for Bernoulli i.i.d. process we have that:
o1

Jim =3 An(t) =

n-

t<t
Using this along with[{T9) and_(20), we obtain
fim 22) _ 3 with probability 1,vn.
T—>00 T

This completes the proof of Theordmh 3. [ |
Proof of Lemma&l5:Suppose[(10) is not true. Then, since
|[W(r)| > 0 we have that for somé > 0,

Pr (|W(r)| > o7, i.0.) >, (21)

where “i.0.” means infinitely often. Now ifW(r)| > dr,
then there exists an HoL packet that has been waiting in the
network for time at leasé7/N. This is true becausgV (7)|

is the sum of waiting times of at mos¥V HoL packets.
Call this packetp. This packet must have arrived at time
<7-97/N =7(1-8§)N~L. Since waiting time of a packet
increases only by each time-slot, the waiting time of packet
p must be at least.567/N in time interval [r, 7], where

71 =7—055TN~!t = 7(1 - 0.56 N~1). Now, consider any
time 7/ € [r 7]. The packet waiting at the HoL of the queue
that containgy must have waiting time higher than that of
due to the FIFO ordering policy. Therefore, the contribatio
to [W ()| by HoL packets of the queue that contains packet
p is at least).567N~!. Therefore, we obtain

T 2,2
Z |W(T/ 57’ 6 T

T'=71

(22)

>(r—7)=— N2
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Therefore, by the definition ofX; and non-negativity of Therefore,
|[W(-)|, we have the following logical implication:

527 ZPr (Eg) < ZO <%) < 00.
k k ’

W ()|>5T:>X_4N (23)
Thus, if [Z1) holds then by(23) we have Therefore, by Borel-Cantelli's Lemma, we have that
2 i —
Pr (X 2 fNTQv i.0. > > 4. (24) Pr(By i.0) =0.
_ _ _ This completes the proof of the lemma. [
Now observe the following relation ak;: since|W (-)| > 0, Proof of Lemmal4: Define the following: for alln
1 -
Xt+1 (1 — H——l) Xt. Wn(T + 1) = Wn(T) + 1 — ﬁnS;;(T)
For any integet > 0 and any integet’ € [t,t + L], we can Where S;(7) is the schedule of MUCF algorithm and,
now write is the inter-arrival time for the arrival process to queue
il L When the queue is empty, tre@t, as an independent r.v.
without any meaning, while if queue is not empty then treat
X > 1—= ) Xy > 1——-) Xy . . . . .
Hk ; lt_/[+1 ( ) ! 1111 < > ! it as the inter-arrival time between the packet being served
1 and the packet behind it. In either case, due to the FIFO
(1 — —) Xy, policy 3, is totally independent of the scheduling decisions

performed by the algorithm till (and including) time and
Now, for anya > 1, let L = |ta] — ¢, which implies that the information utilized by the algorithm. Therefore, wellwi
L < (a —1)t. We can then write for any integef € [t,at], treat it as an independent random variable with Geometric
distribution of parametek,, (since arrival process is Bernoulli

L a—1)t
Xta) > <1 _ %) X, > (1 _ %>( : X, i.i.d.). Consider the following: for any,
i B W, (7+1)
Since - F(Walr +1)) = F(Wa(r)) = / fx)ds  (27)
AN W (7)
(1 - —) ~ exp(—a + 1),
t It is easy to see that,

taking o« = 1.5, for ¢ large enough, it follows that

1 (a—l)t Wn(T+1) 1 ﬂnsn('r)
(1-1 ~ exp(—1/2) > 1/2. Thus, fort large enough / flx)de = / fy+Wa(r))dy (28)
and any integet’ € [t, 1.5t () 0

1 Since f(-) is non-decreasing bi-Lipschitz continuous with
>~ Xy
Kot 2 54 (25) £(0) =0, we have
DefineY, = X, 5+ for k > 0. Then, the following are direct
implicatilgns o%%): for anw > 0’ f (y + Wn(T)) = f (y + Wn(T)) - f (WH(T)) + f (Wn(T))
<|f (g + Wal1) = f(Wa(1))| + W (7)

X.>0rio. = Y, >015"/3, i.0.; :
o =N /3. < plyl + Wi (r) (29)
Y, > 601.5% i.o. — X, > 0T, i.0. (26)

Now, it foll f , , 9) that
The first implication is true because for anysuch thatX,, > ow, it follows from (27), [28), and{29) tha

67,we can find & such that € [1.5¥~1 1.5*]. It then follows F(Wn(T n 1)) _ F(Wn(T))
from 28) thatYy = X |, 5¢| > 1/2X, > 67/2 > 61.5571 /2. , '
Similarly, for the second implication, wheneveg > 61.5%, <p(1=BaSi(r)" 4+ (1 = BuSi(r)) W (1) (30)

taking 7 = |1.5%|, we can writeX, > 01.5% > 67. ) ) ) )
It follows from (28) that Pr(X, > 6r) < Using [30) and the fact that, is a Geometric r.v. with mean

Pr (Yy > 01.5%/3). Thus, in order to complete the proof of!/An, we have the following:
(I8) by contradicting[(24), and theredy [21), it is suffidiém

show that for = §%/(4N?), lz An F( (t+1) ) - Z)\HF(WH(T)) ‘W(T)]

Pr (v, > 01.5%/3,i.0.) = 0.
r(k_ /’IO) <E Wf /\—g Wf T)+p§ A
For this, let eventE, = {Y;, >601.5%/3}. Then, from n

E[Z] < O(1), relations Yy = X5, Zx = 4 and _2sz* —|—2pZS* (31)
Markov’s inequality we obtain that

3E[Yy] _ 3log |15 | E[Z)1 5] - O( k ) Here we have used the fact th&f(7) € {0,1} and hence

Pr(Ex) < 5 5¢ 158 ) (Si(r)? = Si(r), andE [2] = 2/A2 1/, < 2/A%. Using
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the fact thaty, A, < N, Y, Sk(r) < N and\,* < oo for
all n such that\,, # 0, we obtain

E lz /\nF(Wn(T + 1)) - Z AnF(Wn(T)) ‘W(T)]
< (W) A= 8°(n) + K (32)
where K is a large enough constant. Now, defifi#(7) as

SY(r) = arg _max Z <Wf(T), ).

max

That is, S*(7) is the maximum weight schedule with weigh

of queuen as W/ (). Consider the following:
(WH(r),A = 8%(m))

=(W/(r),A = 8“(r)) + (W' (r) = U (r),8"(r) — S*(7))
+ (U7 (r), 8% (7) = §*(7)). (33)

From the definition ofS*(7), S* (1), A(7)(= W (r)—=U(1)),
and bi-Lipschitz continuity off(-) it follows that

- ({UIm), 8 () = $H () <0 (34)
(WH(r) = Ul (7),8"(7) = $"(r)) < p(A(7), 1) (35)

Now, for strictly admissible\ such thath = ", agm" with
> p i =1 —r for somey € (0,1), we obtain that

(W1 (r),A = 8"(1))
= <Wf(7—), Z akwk> - ('y + Z Oék) (Wl(r),8"(1))
3 %

= > a (W (r), 7" = 5°(r)) — 7 (W/(7), (7)) (36)
k
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Wy (T + 1). Else, W,,(7 + 1) = 0 and thus it follows from
@) that F(W,(r +1)) > 0 = F(0) = F(W,(r+1)).
This inequality along with[{40) implies the desired claim of
Lemmal4. [
Proof of Lemmal[l6: This result corresponds to a
constraint-free network in which scheduling at differentput
gueues is independent. Hence, we will prove the result for a
single queue operating under a WCP and strictly admissible
loading. We use the same notation, but with subscmipg
dropped. For a single queue operating under a WCP and

strictly admissible loading, busy cycle lengths form amdi.i

process i.e.B* are i.i.d. We now look at the large deviation
behavior of this process. For a particufarand timet = 0
starting from the beginning of busy cycle®, let I(¢) denote

the cumulative arrival process during®. Now consider the
event B > ¢. If the length of the busy cycle is greater than
t, it implies that the queue has been non-empty up to time
t. Further, since the service process is work conserving, it
follows that there has been one departure every time slot and
hence a total oft departures up to time. Since the total
number of departures cannot be more than the total number
of arrivals, it follows thatl(¢) > t. Thus, we conclude that
the eventB* > t implies the evenf(¢) > t. For large enough

t, we can now write

Pr(B¥ >t) <Pr(I(t)—t>0) < Cexp(—Dt) (41)

where C' and D are some non-negative constants. The last
inequality follows from Chernoff bound, which can be used
because arrivals happen according to a Bernoulli process. L
O denote the random variableax < - BF. Then, we have the
following:

SinceS™(r) is the maximum weight schedule with weight of 0] = Zpr O©>1) = Zpr ©>1)+ Zpr © > 1)
t

queuen asW, (7):

(Wl mk—sv(r))y <0 Vk (37)
Thus, it follows from [36) and(37) that
(W), A= 8“(1)) < =y (W/(r),5"(7)).  (38)

Now since allN entries can be covered by distinct feasible
schedules, it follows that the weight of maximum weight
matching is at least/N the sum of weights of all the entries.

That is
(W), 8%(7)) = 5 3 Wi ()

_WIml 1w
N ~—p N
The last inequality follows from the bi-Lipschitz contityiof

(39)

f(+). Combining [32){(3P) and taking further expectation with

respect tolW (7), we obtain

> )\nF(Wn(T + 1)) -3 AnF(W(T))]

<eE[[W(m)]] + pE[|A(T)]] + K,

E

(40)

t<T t>T
<T+) Pr(®©>t)

t>T

(42)

(@32) is true for any non-negative integ&: In particular,
choosel’ large enough such thdf{41) is trive > T'. It now
follows from union bound that

Y Pr(@>t) <y > Pr(B¥>1)

t>T k<rt>T

< O(rexp(—DT)) (43)

The second inequality follows froni_(41). Now by choosing
I' = O (log ) we can bound_,. Pr(© >t) by 1. It now
follows from (43) that a

E {maka} <O (logT).

k<t

VIIl. EXPERIMENTS

We carried out simulations to evaluate the performance of
our algorithm in the context of 1Q switches. We assumed a
FIFO queuing policy at the input ports of the 1Q switch. We

wheree = . To complete the proof, note that if queugompared the performance of our algorithm with the Longest

n IS non-empty after service at timg then Wn(T +1) =

Queue First (LQF) and Oldest Cell First (OCF) algorithms.
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Expected Latency
Expected Latency?

Figure 5. Comparison of the logarithm of Expected latendkslifferent Figure 6. Comparison of the logarithm of second moments efldfencies
scheduling algorithms of different scheduling algorithms.

We used the fixed-length packet switch simulator available
http://klamath.stanford.edu/tools/SIM/.

We first explain the simulation setting: The switch size i
N = 16. The buffer sizes are infinite. The policy used i
FIFO. All inputs are equally loaded on a normalized scal
andp € (0, 1) denotes the normalized load. The arrival proce:
is Bernoulli i.i.d. We use a Uniform load matrix, i.e\;; =
p/N Vi, j. We ran our simulation for 2.1 million time steps
removing the firstl00, 000 time steps to achieve steady-state

Because we are approaching this problem from the pt
spective of fairness, we evaluate the aforementioned inic
algorithms in terms of Latency and Output-Queue (OQ) Dela
OQ delay is defined as the difference of the departure tim ‘ | . ! ‘ ‘ | . .
of a packet in the input queued switch and the shadow C v ’ '
switch. Further, the goal cannot only be to achieve a bett..
expepted latency’_ bl_Jt in fact, we wish to value consisteocy, Figure 7. Comparison of the logarithm of expected outputugdedelays of
relatively few deviations from the mean. One measure f& thiifferent scheduling algorithms.
are higher moments of the variables. Thus, here we provide
plots for the logarithm of first and second moments of both
Latency and the OQ Delay versus a uniform loagofFigures IX. CONCLUSION

5 and 6 plot respectively the logarithm of the first and second|n this paper, we considered the problem of designing a
moments of the latency. We observe that for lower loads, i.ggjr scheduling algorithm for constrained queuing systems
for p < 0.45 the performance of all the three algorithms igajrness in networks is not only an intuitively desired goal
almost the same. But for higher loads, the first moment gf;t also one with many practical benefits. Most of the existin
LQF and MUCF are better than OCF. Fig. 6 shows that ijork concentrates on fairly allocating bandwidth to diéet
terms of the second moment, MUCF performs the best afigys in the network. A major limitation of this approach is
LQF the worst, with OCF lying between. This is in line withthat it disregards the packetized nature of flows. We oveecam
our expectations because, as mentioned earlier LQF is imot {gjs problem and proposed a packet based notion of fairness b
and hence performs badly at higher moments. MUCF perforiastaplishing a novel analogy with the ranked election gabl
better than OCF for both the moments. Ranked election is a widely studied problem in the Economics
Figures 5 and 6 correspond to latency and figures 7 alitgrature, and this analogy allowed us to leverage thatkwor
8 correspond to OQ delay. We observe that MUCF performiis results in a packet based notion of fairness and an
better than the other two algorithms for both the metrics atgorithm to achieve this fairness.
all the loads, especially for the second moments illusigati  Rather surprisingly, the algorithm turned out be the fa-
fairness. Thus, the simulations illustrate that MUCF teattle miliar MW style algorithm. Moreover, it does not require
performance of an OQ switch better than LQF and OCF. the knowledge of flow arrival rates. Our fairness algorithm
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[12]

Expected (OQ Delay)”

(23]

[14]

[15]

[16]

[17]
Figure 8. Comparison of the logarithm of second moments efdhtput
queued delays of different scheduling algorithms.

(18]

also fits into the utility maximization framework that is neor [;g;
popular for designing fair algorithms. This, in some sense,
validates our approach. We also proved that our algorithm
is throughput optimal. This result is very crucial since thgg
emulation approach already achieves fairness, but wittss: lo
of throughput. Also, the proof is non-trivial and requiresrse

" i ; . [21]
non-traditional techniques to be introduced becauseiegist
proof techniques don't directly apply. We believe that the
proof techniques we introduced are more widely applicablé]
to similar problems and this is another important contidout |53
of the paper. Finally, our simulation results corroboratefact
that our algorithm is better at providing fairness than thaen [24]
popular algorithms in the context of input queued switches.

[25]
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