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Abstract. While two hidden Markov process (HMP) resp. quantum ran-
dom walk (QRW) parametrizations can differ from one another, the stochas-
tic processes arising from them can be equivalent. Here a polynomial-
time algorithm is presented which can determine equivalence of two HMP
parametrizationsM1,M2 resp. two QRW parametrizationsQ1,Q2 in time
O(|Σ|max(N1, N2)

4), where N1, N2 are the number of hidden states in
M1,M2 resp. the dimension of the state spaces associated withQ1,Q2, andΣ
is the set of output symbols. Previously available algorithms for testing equiva-
lence of HMPs were exponential in the number of hidden states. In case of QRWs,
algorithms for testing equivalence had not yet been presented. The core subrou-
tines of this algorithm can also be used to efficiently test hidden Markov processes
and quantum random walks for ergodicity.

Keywords. Dimension, Discrete Random Sources, Hidden Markov Processes,
Identifiability, Linearly Dependent Processes, Quantum Random Walks,

1 Introduction

Let a parameterized class of stochastic processes be described by a mapping

Φ : P → S (1)

whereP is the set of parameterizations andS is the corresponding set of stochastic
processes. A stochastic processΦ(P ) as induced by the parameterizationP is said to
be identifiableiff

Φ−1(Φ(P )) = {P} (2)

that is, iff the parameterization giving rise to it is uniquely determined. The entire class
of stochastic processesΦ(P) is said to beidentifiableiff Φ : P → Φ(P) is one-to-
one. Theequivalence problem(EP) emerges whenΦ is many-to-one and is to decide

http://arxiv.org/abs/0808.2833v5


2 U.Faigle/A. Schönhuth

whether two parameterizationsP1, P2 are equivalent, that isΦ(P1) = Φ(P2). Under-
standing its solutions can significantly foster understanding of the classes of stochastic
processes under consideration as it usually yields insights about the class’ complexity
and its number of free parameters. Therefore, apart from itstheoretical relevance, it is
an important issue in the practice of system identification (e.g. [18]).

Hidden Markov processes (HMPs)are a class of processes which have gained
widespread attention. In practical applications, for example, they have established
gold standards in speech recognition and certain areas of computational biology. See
e.g. [19,6,7] for comprehensive related literature. In an intuitive description, a hidden
Markov process is governed by a Markov process which, however, cannot be observed.
Observed symbols are emitted according to another set of distributions which govern the
hidden, non-observed states. Since observed processes cancoincide although the non-
observed processes on the hidden states can differ from one another, hidden Markov
processes are non-identifiable.

For hidden Markov processes, the EP was first discussed in 1957 [3] (see also
[11] for a subsequent contribution). It was formulated for finite functions of Markov
chains (FFMCs), an alternative way of parametrizing hiddenMarkov processes where,
as sets of parametrizations, the parametrizations discussed here, also referred to ashid-
den Markov models (HMMs)in the following, models trivially contain FFMCs. The EP
for hidden Markov processes was fully solved in 1992 [13]. The corresponding algo-
rithm is exponential in the number of hidden states and therefore impractical for larger
models. See [13] also for more related work.

Quantum random walks (QRWs)have been introduced to quantum information the-
ory as an analog of classical Markov sources [1]. For example, they allow emulation
of Markov Chain Monte Carlo approaches on quantum computers. A collection of re-
sults has pointed out that they would be superior to their classical counterparts with
respect to a variety of aspects (see e.g. [15,2,16]). However, although their mechanisms
can be described in terms of elementary linear algebraic definitions, their properties are
much less understood. The key element of a quantum random walk parametrization is
a graph whose vertices are the observed symbols. Quantum probability distributions on
the vertices are transformed by linear operations which describe the quantum mechani-
cal concepts of evolution and measurement. It is easy to see that quantum random walks
are non-identifiable. For example, any of the (infinitely many different) parametriza-
tions with a graph of only one vertex yields the same, trivialprocess. The equivalence
problem for quantum random walks has not been discussed before.

Beyond the work cited in [13], there is a polynomial-time solution to test equiva-
lence of probabilistic automata [21] where HMMs can be viewed as probabilistic au-
tomata with no final probabilities [5]. The crucial difference, however, is that probabilis-
tic automata do not give rise to stochastic processes (distributions over infinite-length
sequences), but to probability distributions over the set of strings of finite length. The
algorithm presented in [21] decisively depends on this and therefore does neither apply
for hidden Markov processes nor for quantum random walks. Conversely, by adding a
stop symbol to the set of observed symbols, any probability distribution over the set
of strings of finite length can be viewed as a probability distribution over the set of
infinite-length symbol sequences. This way, it can be seen that our solution also applies
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for probabilistic automata and therefore is more general than [21]’s solution.

Overall, the purpose of this work is to present a simple, polynomial-time algorithm
that solves the EP for both hidden Markov processes and quantum random walks:

Theorem 1. LetΣ be a finite set of symbols and

MX ,MY resp. QX ,QY (3)

be two hidden Markov process resp. quantum random walk parametrizations giving rise
to the processes(Xt), (Yt) emitting symbols fromΣ. Let

nX , nY (4)

be the cardinalities of the set of hidden states in the hiddenMarkov models resp. the
dimensions of the state spaces associated with the quantum random walks. Equivalence
of (Xt), (Yt) can be determined in

O(|Σ|max{nX , nY }
4) (5)

arithmetic operations.

Remark 1.Note that a polynomial-time solution for the identifiability problem for
HMPs does not provide a polynomial-time solution for the graph isomorphism prob-
lem. There are both non-equivalent HMPs which act on sets of hidden states which
are isomorphic as graphs (e.g. two HMPs both acting on only one hidden state which,
however, have different emission probability distributions) and equivalent HMPs where
underlying graphs are non-ismorphic (e.g. two HMPs, one acting on two hidden states,
but emitting the symbola with probability1 from both states and the other one acting
on only one hidden state, also emitting the symbola with probability1, both result in
the stochastic process which generatesaaaa.... with probability1).

Remark 2.In [20] it was described how to test HMPs for ergodicity. Plugging the al-
gorithm for computation of a basis (see subsection 5.1) intothe generic ergodicity tests
provided in [20] renders these tests efficient.

1.1 Organization of Sections

The core ideas of this work are tightly interconnected with the theory offinitary pro-
cesses. Therefore, we start by concisely revisiting their theory in section 2. We then
introduce hidden Markov models and quantum random walk parametrizations and the
mechanisms which give rise to the associated processes in section 3. In section 4 we
outline how to most efficiently compute probabilities for both hidden Markov processes
and quantum random walks. The algorithm and theorems behindour efficient equiva-
lence tests are then presented in section 5. We finally outline some complementary
applications of our algorithms and make some conclusive remarks.
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2 Finitary Random Processes

Throughout this paper, we consider discrete random processes(Xt) that take values in
the (fixed) finite alphabetΣ. We assume that the process emits theempty word� at
time t = 0. We denote theprobability functionp of (Xt) by

p(a1 . . . at) := Pr{X1 = a1, . . . , Xt = at} (a1 . . . at ∈ Σ
t). (6)

As usual, we set
Σ∗ :=

⋃

t≥0

Σt (with Σ0 = {�}) (7)

and note thatΣ∗ is a semigroup under the concatenationwv ∈ Σs+t for w ∈ Σs and
v ∈ Σt. |v| = ℓ is thelengthof a wordv ∈ Σℓ.

For anyv, w ∈ Σ∗, we define functionspv, pw : Σ∗ → R via

pv(w) := p(wv) =: pw(v) (8)

and viewRΣ
∗

as a vector space.p(v = v1...vt|w = w1...ws) generally denotes the
conditional probability

p(v|w) := Pr(Xs+1 = v1, ..., Xt+s = vt |X1 = w1, ..., Xs = ws)

=







p(v) if w = �

0 if p(w) = 0
p(wv)/p(w) otherwise.

(9)

Furthermore, the subspace

R(p) := span{pv | v ∈ Σ∗} resp. C(p) := span{pw | w ∈ Σ∗} (10)

is therow spaceresp.column spaceassociated with the (probability functionp of) the
random process(Xt).

It is easy to see thatR(p) andC(p) have the same vector space dimension. So we
define thedimensionof (Xt) (or its probability functionp) as the parameter

dim(Xt) = dim(p) := dimR(p) = dim C(p) ∈ Z+ ∪ {∞}. (11)

For anyI, J ⊆ Σ∗, we define the matrix

PIJ := [p(wv)]v∈I,w∈J ∈ RI×J . (12)

PIJ is calledgeneratingif rk (PIJ) = rk (PΣ∗,Σ∗)(= dim(p)) andbasic if it is gen-
erating and minimal among the generatingPIJ , that is |I| = |J | = dim(p) in case
of dim(p) < ∞. In that sense, we call (in slight abuse of language)I resp.J a row
resp.column generator/basisand the pair(IJ) a generator/basisfor p.

We call a process(Xt) finitary if it admits a (finite) basis. So the finitary processes
are exactly the ones with finite dimension.
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Remark 3.The dimension of a random process is known as itsminimum degree of
freedom. The termfinitary was introduced in [12]. Finitary processes are also called
linearly dependent[14].

Theorem 2. Let (Xt) and (Yt) be discrete, finitary random processes (overΣ) with
probability functionsp andq. Let furthermore(IJ) be a basis for(Xt). Then the fol-
lowing statements are equivalent:

(a) p = q.
(b) (I, J) is a basis for(Yt) and the equalities

p(v) = q(v), p(wv) = q(wv) and p(wav) = q(wav) (13)

hold for all choices ofv ∈ I, w ∈ J anda ∈ Σ.

Proof. Given a basic matrixPIJ together with the probabilitiesp(v), p(wav) for
all v ∈ I, w ∈ J, a ∈ Σ, one can reconstructp via a ”minimal representation” (see,
e.g., [13,14,20] for details). ⋄

3 Parametrizations and The Equivalence Problem

3.1 Hidden Markov Processes

A hidden Markov process (HMP)is parametrized by a tupleM = (S,E, π,M) where

1. S = {s1, . . . , sn} is a finite set of“hidden” states
2. E = [esa] ∈ RS×Σ is a non-negativeemission probability matrixwith unit row

sums
∑

a∈Σ Esa = 1, (i.e. the row vectors ofE are probability distributions onΣ)
3. π is aninitial probability distributiononS and
4. M = [mij ] ∈ RS×S is a non-negativetransition probability matrixwith unit row

sums
∑n

i=1mij = 1 (i.e. the row vectors ofM are probability distributions onS

The associated process(Xt) initially moves to a states ∈ S with probabilityπs and
emits the symbolX1 = a with probabilityEsa. Then it moves froms to a states′ with
probabilitymss′ and emits the symbolX2 = a′ with probabilityes′a′ and so on. In the
following, we also refer to a parametrizationM = (S,E, π,M) as ahidden Markov
model (HMM).

3.2 Quantum Random Walks

A quantum random walk (QRW)is parametrized by a tupleQ = (G,U, ψ0) where

1. G = (Σ,E) is a directed,K-regular graph over the alphabetΣ
2. U : Ck → Ck is a unitaryevolutionoperator wherek := |E| = K · |Σ| and
3. ψ0 ∈ Ck is a wave function, that is||ψ0|| = 1 (||.|| the Euclidean norm).
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Edges are labeled by tuples(a, x), a ∈ Σ, x ∈ X whereX is a finite set with|X | = k.
Correspondingly,Ck is considered to be spanned by the orthonormal basis

〈 e(a,x) | (a, x) ∈ E 〉.

According to [1] some more specific conditions must hold which do not affect our con-
siderations here.

The quantum random walk(Xt) arising from a parametrizationQ = (G,U, ψ0)
proceeds by first applying the unitary operatorU toψ0 and subsequently, with probabil-
ity

∑

x∈X |(Uψ0)(a,x)|
2, “collapsing” (i.e. projecting and renormalizing, which mod-

els a quantum mechanical measurement)Uψ0 to the subspace spanned by the vectors
e(a,x),x∈X to generate the first symbolX1 = a. CollapsingUψ0 results in a new wave
functionψ1. ApplyingU toψ1 and collapsing it, with probability

∑

x∈X |(Uψ1)(a′,x)|
2,

to the subspace spanned bye(a′,x),x∈X generates the next symbolX2 = a′. Iterative
application ofU and subsequent collapsing generates further symbols.

3.3 The Equivalence Problem

Theequivalence problemcan be framed as follows:

Equivalence Problem (IP)

Given two hidden Markov modelsMX ,MY or two quantum random walk parametriza-
tionsQX ,QY , decide whether the associated processes(Xt) and(Yt) are equivalent.

The equivalence problem can, of course, be solved in principle, in the spirit of The-
orem 2. In order to efficiently solve it in practice, it suffices to be able to efficiently
compute the following quantities:

(1) A basis(I, J) for the finitary processes(Xt), (Yt) from their parametrizations
MX ,MY .

(2) The corresponding probabilitiesp(v), p(wv), p(wav) for all choices ofv ∈ I, w ∈
J, a ∈ Σ.

4 Computing Probabilities

We would like to point out that in the following we assume thatall inputs consist of
rational numbers and that each arithmetic operation can be done in constant time. This
agrees with the usual conventions when treating related probabilistic concepts in terms
of algorithmic complexity [19,21,5].
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4.1 Hidden Markov Processes

Let now (Xt) be a hidden Markov process with parametrizationM = (S,E, π,M).
Observe first that thetransition matrixM decomposes asM =

∑

a∈Σ Ta into matrices
Ta with coefficients

(Ta)ij := esia ·mij (14)

which reflect the probabilities to emit symbola from statesi and subsequently to move
on to statesj . Standard technical computations (e.g.[8]) reveal that that for any word
a1 . . . at ∈ Σt:

p(a1a2 . . . at) = p(a1a2 . . . at−1)p(at|a1a2 . . . at−1)

= · · ·

= πTTa1 . . . Tat−1
Tat1,

(15)

where1 = (1, ..., 1)T ∈ RS is the vector of all ones.

For further reference, we use the notations

Tv := Tv1Tv2 . . . Tvt−1
Tvt ∈ Rn×n (16)

for anyv = v1 . . . vt ∈ Σ∗ as well as

−→p (v) := πTTv ∈ R1×n and ←−p (v) := Tv1 ∈ Rn×1. (17)

Remark 4.Note that computation of vectors−→p (v) and←−p (v) is an alternative way to
describe the well-known Forward and Backward algorithm (e.g.[7]) since the entries
of these two vectors can be identified with the Forward and Backward variables

Pr(Ss+1 = si |X1 = a1, ..., Xs = as) (18)

and (19)

Pr(Ss+1 = si |Xs+1 = as+1, ..., Xs+t = as+t) (20)

where(St) is the (non-observable)Markov process over the hidden statesS = (s1, ..., sn).

4.2 Quantum Random Walks

The following considerations can be straightforwardly derived from standard quantum
mechanical arguments, see [4] for a reference.

The State SpaceSn We writeQ∗ for the adjoint of an arbitrarily sized matrixQ ∈
Cm×n, (that isQ∗

ji = a− ib if Qji = a+ ib where usage ofi as both a running index
and a complex number should not lead to confusion). Let

n := k2 = |E|2. (21)
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We will consider the set of self-adjoint matrices

Sn := {Q ∈ Ck
2

|Q = Q∗} (22)

in the following, which is usually referred to asstate spacein quantum mechanics.
As usual,Sn can be viewed as ann = k2-dimensional real-valued vector space. To
illustrate this let

em := (0, ..., 0, 1
m
, 0, ..., 0)T ∈ CK ,m = 1, ..., k and (23)

fm := (0, ..., 0, i
m
, 0, ..., 0)T ∈ CK ,m = 1, ..., k. (24)

The self-adjoint matrices

Em1m2
:= (em1

e∗m2
+ em2

e∗m1
) and Fm1m2

:= (fm1
f∗m2

+ fm2
f∗m1

) (25)

for all choices of1 ≤ m1,m2 ≤ k andm1 6= m2 for Fm1m2
(since entries on the

diagonal of self-adjoint matrices are real-valued) then form a canonical basis ofSn

(note thatEm1m2
= Em2m1

,Fm1m2
= Fm2m1

).

Linear Operations on S
n For a quantum random walk parametrizationQ = (G =

(Σ,E), U, ψ0) we introduce the projection operators (k := |E|)

Pa : Ck −→ Ck, ψ 7→
∑

(a,x),x∈X

ψ(a,x)e(a,x) (26)

for all a ∈ Σ which reflects projection ofψ onto the subspace spanned by thee(a,x), x ∈
X . We find that

Ta : Sn −→ Sn, Q 7→ (PaU)Q(PaU)∗ (27)

is anR-linear operator acting on the state spaceSn. In analogy to the theory of hidden
Markov models, where here the order on the letters has been reversed, we further define

Tv := TvtTvt−1
. . . Tv2Tv1 ∈ Rn×n (28)

for anyv = v1 . . . vt ∈ Σ∗.

Let nowQψ := ψψ∗ ∈ Ck×k be the self-adjoint matrix being associated with a
wave functionψ ∈ Ck. We recall that, by definition of the quantum random walkp
with parametrizationQ, probabilitiesp(v = v1...vt) are computed as

p(v = v1...vt) = ||(PvtU)(Pvt−1
) . . . (Pv1U)ψ0||

2 (29)

which can be rephrased as (Qψ0
:= ψ0ψ

∗
0 and tr is the linear trace functional, that is the

sum of the diagonal entries)

p(v = v1...vt) = tr Tvt ...Tv1Qψ0
(30)

which yields that probabilitiesp(v) can be computed by iterative application of mul-
tiplying n × n-matrices withn-dimensional vectors where we recall thatQψ0

can be
taken as an element of then-dimensional vector spaceSn. Note thatTv acts onQψ0

in
the sense ofSn whereas the trace functional treatsTvQψ0

as a matrix.
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Forward and Backward Algorithm Note that application of the trace functional can
be rephrased as

tr Q = E ·Q ∈ R where E :=

k
∑

i=1

eie
∗
i (31)

and, on the right hand side, bothE andQ are taken as elements ofSn, i.e. asn-
dimensional vectors. Using this, we define

−→p (v) := TvQψ0
∈ Sn ⊂ Cn

2

and ←−p (v) := ETv ∈ Cn
2

. (32)

Computation of−→p (v) and←−p (v) can be taken as performing a quantum random walk
version of the Forward and the Backward algorithm. Correspondingly, entries of−→p (v)
and←−p (v) reflect Forward and Backward variables.

4.3 Runtimes

Since the multiplication of an(n × n)-matrix with a vector can be done inO(n2)
arithmetic operations, the previous considerations let usconclude:

Lemma 1. GivenM orQ letn be the number of hidden states|S| resp. the dimension
of the state spaceSn associated withQ andp be the probability function ofM or Q.

1. For anyv ∈ Σ∗

−→p (v),←−p (v) and p(v) (33)

can be computed inO(|v|n2) arithmetic operations.
2. Upon computation of−→p (w) computation of all

p(wa) and −→p (wa) (34)

requiresO(|Σ|n2) arithmetic operations.
3. Upon computation of←−p (v) computation of all

p(av) and ←−p (av) (35)

requiresO(|Σ|n2) arithmetic operations.
4. Upon computation of−→p (w) and←−p (v) computation of all

p(wav) (36)

requiresO(|Σ|n2) arithmetic operations. ⋄

For hidden Markov modelsM this actually reflects well-known results on compu-
tation of Forward/Backward variables.

5 Equivalence Tests

In this section, we describe how to efficiently test two hidden Markov processes or
quantum random walks(Xt) and(Yt) for equivalence. We recall that a generic strategy
has been established by theorem 2. Our solution proceeds according to this strategy.



10 U.Faigle/A. Schönhuth

5.1 Computation of a Basis

We will now show how to compute a basis(IJ) in runtimeO(|Σ|n4) for a hidden
Markov process resp. a quantum random walkp. Therefore, assume for now thatg1, . . . , gn :
Σ∗ → R are probability functions the probabilities of which can becomputed in the
style of hidden Markov processes resp. quantum random walksand which generate the
column space ofp, i.e.,

C(p) ⊂ span{g1, . . . , gn}. (37)

Giveng1, . . . , gn, computation of a basis(IJ) proceeds in three steps the first two of
which are analagous and the third of which is a simple procedure.

1. Compute a row generatorI.
2. Compute a column basisJ .
3. ReduceI to a row basis.

While steps1 and2 both require runtimeO(|Σ|n4), step3 requiresO(n4) which over-
all evaluates asO(|Σ|n4) runtime required for computation of a basis.

We discuss the steps in the following paragraphs. In a subsequent subsection, we
show how to obtain suitableg1, ..., gn for both hidden Markov models and quantum
random walks.

Step 1: Computation of a row generatorI Consider the following algorithm.

Algorithm 1

1: Defineg(v) = (g1(v), ..., gn(v)) ∈ Rn.
2: I ← {�}, Brow ← {g(�)}, Crow ← Σ.
3: while Crow 6= ∅ do
4: Choosev ∈ Crow.
5: if g(v) is linearly independent ofBrow then
6: I ← I ∪ {v}, Brow ← Brow ∪ {g(v)}

Crow ← Crow ∪ {av | a ∈ Σ}
7: end if
8: end while
9: output I.

Proposition 1. LetI ⊆ Σ∗ be the output of Algorithm 1. Then one has

R(p) = span{pv | v ∈ I} and dim(Xt) ≤ |I| (38)

where
C(p) = span{g1, . . . , gn} ⇒ dim(Xt) = |I|. (39)

Furthermore,

(i) The algorithm terminates after at most|Σ| · n iterations.
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(ii) Each iteration requiresO(n3) arithmetic operations where at mostn iterations
need additionalO(|Σ|n3) operations.

Proof. Ad (i): Because then-dimensional vectors inBrow are independent|Brow| ≤
n and|I| ≤ n follow immediately. Since at mostΣ words are added toCrow upon dis-
covery of ann-dimensional vector which is linearly independent of thosein Brow, we
have|Crow| ≤ |Σ| · n and hence at most|Σ| · n iterations.

Ad (ii): In each iteration, we perform a test for linear independency of at mostn
vectors of dimensionn which requires at mostO(n3) arithmetic operations [10]. In the
at mostn cases whereg(v) is linearly independent ofBrow, we proceed by computing

(g1(av), ..., gn(av)) and (←−g1(av), ...,
←−gn(av)) (40)

for all a ∈ Σ where(←−g1(v), ...,
←−gn(v)) are available from an iteration before (note that

gi(�) = 1,←−gi(�) = (1, ..., 1) in the first iteration). Due to lemma 1, (35), this requires
O(|Σ| · n3) operations.

To prove (38), letw0 ∈ Σ∗ be arbitrary and suppose

pw0
/∈ span{pv | v ∈ I}. (41)

SinceC(p) ⊂ span{g1, ..., gn}, pluggingw = � into lemma 2 below implies

g(w0) /∈ span{g(v) | v ∈ I}. (42)

We will derive a contradiction. Indeed, the algorithm can only missw0 if w0 had never
been collected intoCrow in step 6. This happens only in case that there is av0 ∈ Σ∗

such that
w0 = wv0 (43)

holds for somew ∈ Σ∗ andg(v0) had been found to be linearly dependent of[g(v)]v∈I .
Lemma 2 below then states that in such a casepw0

∈ span{pwv | v ∈ I} holds and it
remains to show that for eachw ∈ Σ∗ andv ∈ I

pwv ∈ span{pv | v ∈ I}. (44)

This follows by induction on the length|w| of w from the following arguments. For
eachw ∈ Σ∗ we define a linear operatorσw onR(p) through

σwpv = pwv. (45)

By design of the update rule forCrow in step 6 of algorithm 1 we immediately see that

g(av) ∈ span{g(v) | v ∈ I} (46)

for all a ∈ Σ, hence by pluggingv0 = av andw = � into lemma 2, we obtain
pav ∈ span{pv | v ∈ I} that is

σa(span{pv | v ∈ I}) ⊂ span{pv | v ∈ I} (47)



12 U.Faigle/A. Schönhuth

for all a ∈ Σ. Inductively, by observing thatσw=w1...wt
= σw1

◦ ... ◦ σwt
,

σw(span{pv | v ∈ I} ⊂ span{pv | v ∈ I} (48)

and thereby (44).

To see (39) letdim(Xt) < |I|. Since|I| = |Brow| we obtain that

dim C(p) = dim(Xt) < |Brow| ≤ dim span{g1, . . . , gn} (49)

henceC(p) ( span{g1, . . . , gn}. ⋄

Lemma 2. Let g1, . . . , gn : Σ∗ → R be such such thatC(p) ⊆ span{g1, . . . , gn} and
let v0, v1, ..., vm ∈ Σ∗ be such that

(g1(v0), ..., gn(v0)) ∈ span{(g1(vj), ..., gn(vj)) | j = 1, ...,m} ⊆ Rn. (50)

Then one has for everyw ∈ Σ∗:

pwv0 ∈ span{pwvj | j = 1, ...,m} ⊆ Rn. (51)

The analogous statement holds for the row spaceR(p).

Proof. By our hypothesis, there are scalarsβ1, ..., βm ∈ R such that

(g1(v0), ..., gn(v0)) =

m
∑

j=1

βj(g1(vj), ..., gn(vj)). (52)

Letu ∈ Σ∗ be arbitrary. Again by our hypothesis, there are scalarsαi, i = 1, ..., n ∈ R

such that

pu =

n
∑

i=1

αigi. (53)

We now compute

pu(v0)
(53)
=

n
∑

i=1

αigi(v0)

(52)
=

n
∑

i=1

αi

m
∑

j=1

βjgi(vj) =

m
∑

j=1

βj

n
∑

i=1

αigi(vj)

(53)
=

m
∑

j=1

βjgu(vj) =
m
∑

j=1

βjp(uvj) =
m
∑

j=1

βjpvj (u).

Since theβj had been determined independently ofu, we thus conclude

pv0 =
m
∑

j=1

βjpvj . (54)
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Let σw be the linear operator onR(p) with the property

σwpv = pwv. (55)

Application ofσw to (54) then shows

pv0w = σw(pv0) =

m
∑

j=1

βjσw(pvj ) =

m
∑

j=1

βjpvjw, (56)

which implies (51). ⋄

Step 2: Computation of a column basisJ Having obtained the row generatorI ⊆ Σ∗

in the step before, that isdim(Xt) ≤ |I| and

R(p) = span{pv | v ∈ I}, (57)

we can now use these functionspv as an input for an algorithm which is analogous to
that for computing the row generatorI.

Algorithm 2

1: Defineq(w) := (pv(w) = p(wv), v ∈ I) ∈ R|I|.
2: J ← {�}, Bcol ← {qw(�)}, Ccol ← Σ
3: while Crow 6= ∅ do
4: Choosew ∈ Ccol.
5: if q(w) is linearly independent ofBcol then
6: Acol ← Acol ∪ {w}, Bcol ← Bcol ∪ {q(w)}

Ccol ← Ccol ∪ {wa | a ∈ Σ}
7: end if
8: end while
9: output J

While this routine is, in essence, analogous to algorithm 1,there is one difference
to be observed: HereCcol gets augmented by joiningwa whereasCrow, in algorithm
1, was augmented by joiningav. This asymmetry is due to that one obtains an equiv-
alently asymmetric statement in lemma 2 when rephrasing it forR(p) instead ofC(p).
As a consequence, application of (34) instead of (35) in lemma 1 is needed.

We obtain that
PIJ = [p(wv)]v∈I,w∈J (58)

is a generator for(Xt). SinceR(p) = span{pv | v ∈ I}, by applying (39), we see that

|J | = dim(Xt). (59)

HenceJ is a genuine column basis. We recall that this was not necessarily the case for
I which can happen to occur in the caseC(p) ( span{g1, ..., gn}.
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All p(wav), v ∈ I, w ∈ J, a ∈ Σ can be obtained in runtimeO(|Σ| · n4) through
application of (36) in lemma 1 making use of the−→p (w),←−p (v) which were computed
when executing the algorithms 1, 2.

We conclude: all necessary quantities can be obtained throughO(|Σ|·n4) arithmetic
operations.

Step 3: MakingI a basis This step is simple: one removesv fromI wherep(wv), w ∈
J is linearly dependent inPIJ . This reduces the possibly too large setI to a row basis
and finally yields a basis(IJ) for (Xt). This requires at mostn linear independence
tests ofn-dimensional vectors henceO(n4) runtime [10].

5.2 Generating sets

Let us call a set{g1, . . . , gn} of functionsgi as in the previous section a set ofgener-
ators for the column spaceC(p) of the hidden Markov process resp. quantum random
walk (Xt).

We can get sets of generators as follows for which probabilitiesgi(v) can be com-
puted in the style of hidden Markov processes resp. quantum random walks as follows.

Hidden Markov ProcessesGiven a hidden Markov modelM = (S,E, π,M), con-
sider the hidden Markov modelsMi = (S,X, ei,M), whereei is theith unit vector in
RS . One now takes

gi(v) = eTi Tv1 (i = 1, . . . , n). (60)

Quantum Random Walks For a quantum random walk, as parametrized through a
self-adjoint matrixQψ0

and linear operatorsTv, v ∈ Σ∗ (acting on the state space see
subsection 4.2), we see that

gi(v) = tr TvQi (i = 1, . . . , n) (61)

where theQi comprise all of the state space basis membersEm1m2
,Fm1m2

(see (25)).

5.3 Summary

Theorem 2 yields the following procedure as an efficient testfor equivalence of pro-
cesses(Xt) and(Yt), :

1. Compute a basis for both(Xt) and(Yt).
2. If dim(Xt) 6= dim(Yt) returnnot equivalent.
3. If dim(Xt) = dim(Yt), perform equality tests from (13).
4. Outputequivalent if all of them apply andnot equivalent if not.
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According to the above considerations, Step1 can be performed inO(|Σ|n4) run-
time where

n = max{nX , nY } (62)

andnX , nY , in case of hidden Markov processes(Xt), (Yt), are the numbers of hid-
den states and in case of quantum random walks(Xt), (Yt) are the dimensions of the
associated state spaces. For step2 we recall that all strings participating in the bases,
as computed through algorithms 1,2, emerge as extensions ofbasis strings obtained in
an earlier iterations. Application of (34,35,36) from lemma 1 then yields that all of the
equality tests can be equally performed inO(|Σ|n4) arithmetic operations.

These insights can be condensed into the following main theorem wheren as in
(62).

Theorem 3. The equivalence problem can be algorithmically solved for both hidden
Markov processes and quantum random walks inO(|Σ|n4) arithmetic operations. ⋄

Probabilistic Automata Our solution can be straightforwardly adapted to determine
equivalence of probabilistic automata which we will describe in the following. It can
therefore be viewed as more general than the main result obtained in [21]. The main
difference one has to keep in mind is that probabilistic automata induce probability
distributions on the (countable) set of stringsΣ∗ whereas HMMs give rise to stochastic
processes, in other words to probability distributions on the (uncountably infinite) set of
sequencesΣN. in case of probabilistic automata equivalence then translates to equality
of the associated probability distributions onΣ∗. The following notations are adopted
from [21].

Corollary 1. LetA1 = (S1, Σ,M1, π1, F1),A2 = (S2, Σ,M2, π2, F2) be two prob-
abilistic automata whereN1 = |S1|, N2 = |S2|. Then equivalence ofA1,A2 can be
determined inO((|Σ|+ 1)N4) whereN = max(N1, N2).

Proof. By adding a special symbol$ to Σ which is emitted from the final states
with probability1 the automataA1,A2 can be transformed into probabilistic automata
with no final probabilitiesĀ1, Ā2. Let pĀ1

, pĀ2
be the resulting stochastic processes.

According to [5], lemmata3 − 5, proposition8, probabilistic automata with no final
probabilities can be can be viewed as HMMsM1,M2 which translates to that for each
v ∈ Σ∗

pA1
(v) = pM1

(v) and pA2
(v) = pM2

(v). (63)

Note that the transformation fromA1,2 toM1,2 requires only constant time. Applying
theorem 1 toM1,M2 yields the result. ⋄

In short, corollary scales down the runtimeO((N1+N2)
4) (the size of the alphabet

|Σ| is not discussed in [21]) toO((max(N1, N2))
4).
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Ergodicity Tests In [20], a generic algorithmic strategy for testing ergodicity of hid-
den Markov processes was described, where overall efficiency hinged on computation
of a basis of the tested hidden Markov processes. The algorithms described above re-
solve this issue. Hence ergodicity of hidden Markov processes can be efficiently tested.
Similarly to the equivalence tests, the ergodicity test of [20] solely requires that the
process in question is finitary. Therefore this efficient ergodicity test equally applies for
quantum random walks.

5.4 Conclusive Remarks

We have presented a polynomial-time algorithm by which to efficiently test both hid-
den Markov processes and quantum random walks for equivalence. Previous solutions
available for hidden Markov processes had runtime exponential in the number of hid-
den states. To test equivalence for quantum random walks, that is random walk models
to be emulated on quantum computers, is relevant for the samereasons that apply for
hidden Markov processes. An algorithm for testing equivalence for quantum random
walks had not been available before. Note that the algorithmpresented here is easy to
implement and, in particular for hidden Markov processes, only requires invocation of
well-known standard routines. Future directions are to explore how to efficiently test
for similarity of hidden Markov processes and quantum random walks where similarity
is measured in terms ofapproximate equivalence. Such tests have traditionally been of
great practical interest.
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