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Abstract—The problem of maximum-likelihood (ML) estima-
tion of discrete tree-structured distributions is considered. Chow
and Liu established that ML-estimation reduces to the construc-
tion of a maximum-weight spanning tree using the empirical
mutual information quantities as the edge weights. Using the
theory of large-deviations, we analyze the exponent associated
with the error probability of the event that the ML-estimate of
the Markov tree structure differs from the true tree structure,
given a set of independently drawn samples. By exploiting the
fact that the output of ML-estimation is a tree, we establish that
the error exponent is equal to the exponential rate of decay of a
single dominant crossover event. We prove that in this dominant
crossover event, a non-neighbor node pair replaces a true edge
of the distribution that is along the path of edges in the true tree
graph connecting the nodes in the non-neighbor pair. Using ideas
from Euclidean information theory, we then analyze the scenario
of ML-estimation in the very noisy learning regime and show
that the error exponent can be approximated as a ratio, which
is interpreted as the signal-to-noise ratio (SNR) for learning tree
distributions. We show via numerical experiments that in this
regime, our SNR approximation is accurate.

Index Terms—Error exponent, Euclidean information theory,
large-deviations principle, Markov structure, maximum-likeli-
hood (ML) distribution estimation, tree-structured distributions.

I. INTRODUCTION

T HE estimation of a distribution from samples is a classical
and an important generic problem in machine learning and

statistics and is challenging for high-dimensional multivariate
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distributions. In this respect, graphical models [2] provide a sig-
nificant simplification of joint distribution as the distribution can
be factorized according to a graph defined on the set of nodes.
Many specialized algorithms [3]–[9] exist for exact and approx-
imate learning of graphical models Markov on sparse graphs.

There are many applications of learning graphical models,
including clustering and dimensionality reduction. Suppose we
have genetic variables and we would like to group the ones
that are similar together. Then the construction of a graphical
model provides a visualization of the relationship between
genes. Those genes that have high degree are highly correlated
to many other genes (e.g., those in its neighborhood). The
learning of a graphical model may also provide the means to
judiciously remove redundant genes from the model, thus re-
ducing the dimensionality of the data, leading to more efficient
inference of the effects of the genes subsequently.

When the underlying graph is a tree, the Chow-Liu algorithm
[3] provides an efficient method for the maximum-likelihood
(ML) estimation of the probability distribution from a set of
i.i.d. samples drawn from the distribution. By exploiting the
Markov tree structure, this algorithm reduces the ML-estimation
problem to solving a maximum-weight spanning tree (MWST)
problem. In this case, it is known that the ML-estimator learns
the distribution correctly asymptotically, and hence, is consis-
tent [10].

While consistency is an important qualitative property for
any estimator, the study of the rate of convergence, a precise
quantitative property, is also of great practical interest. We
are interested in the rate of convergence of the ML-estimator
(Chow-Liu algorithm) for tree distributions as we increase the
number of samples. Specifically, we study the rate of decay of
the error probability or the error exponent of the ML-estimator
in learning the tree structure of the unknown distribution. A
larger exponent means that the error probability in structure
learning decays more rapidly. In other words, we need rela-
tively few samples to ensure that the error probability is below
some fixed level . Such model are thus “easier” to learn.
We address the following questions: Is there exponential decay
of the probability of error in structure learning as the number
of samples tends to infinity? If so, what is the exact error
exponent, and how does it depend on the parameters of the
distribution? Which edges of the true tree are most-likely to be
in error; in other words, what is the nature of the most-likely
error in the ML-estimator? We provide concrete and intuitive
answers to the above questions, thereby providing insights
into how the parameters of the distribution influence the error

0018-9448/$26.00 © 2011 IEEE



TAN et al.: A LARGE-DEVIATION ANALYSIS OF THE MAXIMUM-LIKELIHOOD LEARNING OF MARKOV TREE STRUCTURES 1715

exponent associated with learning the structure of discrete tree
distributions.

A. Main Contributions

There are three main contributions in this paper. First, using
the large-deviation principle (LDP) [11] we prove that the most-
likely error in ML-estimation is a tree which differs from the true
tree by a single edge. Second, again using the LDP, we derive the
exact error exponent for ML-estimation of tree structures. Third,
we provide a succinct and intuitive closed-form approximation
for the error exponent which is tight in the very noisy learning
regime, where the individual samples are not too informative
about the tree structure. The approximate error exponent has a
very intuitive explanation as the signal-to-noise ratio (SNR) for
learning.

We analyze the error exponent (also called the inaccuracy
rate) for the estimation of the structure of the unknown tree dis-
tribution. For the error event that the structure of the ML-esti-
mator given samples differs from the true tree structure

of the unknown distribution , the error exponent is given
by

(1)

To the best of our knowledge, error-exponent analysis for
tree-structure learning has not been considered before (See
Section I-B for a brief survey of the existing literature on
learning graphical models from data).

Finding the error exponent in (1) is not straightforward
since in general, one has to find the dominant error event with
the slowest rate of decay among all possible error events [11, Ch.
1]. For learning the structure of trees, there are a total of
possible error events,1 where is the dimension (number of vari-
ables or nodes) of the unknown tree distribution . Thus, in
principle, one has to consider the information projection [13] of

on all these error trees. This rules out brute-force information
projection approaches for finding the error exponent in (1), es-
pecially for high-dimensional data.

In contrast, we establish that the search for the dominant error
event for learning the structure of the tree can be limited to a
polynomial-time search space (in ). Furthermore, we establish
that this dominant error event of the ML-estimator is given by
a tree which differs from the true tree by only a single edge.
We provide a polynomial algorithm with com-
plexity to find the error exponent in (1), where is the
diameter of the tree . We heavily exploit the mechanism of
the ML Chow-Liu algorithm [3] for tree learning to establish
these results, and specifically, the fact that the ML-estimator tree
distribution depends only on the relative order of the empirical
mutual information quantities between all the node pairs (and
not their absolute values).

Although we provide a computationally-efficient way to com-
pute the error exponent in (1), it is not available in closed-form.
In Section VI, we use Euclidean information theory [14], [15] to
obtain an approximate error exponent in closed-form, which can

1Since the ML output � and the true structure � are both spanning trees
over � nodes and since there are � possible spanning trees [12], we have
� � � number of possible error events.

be interpreted as the signal-to-noise ratio (SNR) for tree struc-
ture learning. Numerical simulations on various discrete graph-
ical models verify that the approximation is tight in the very
noisy regime.

In Section VII, we extend our results to the case when the true
distribution is not a tree. In this case, given samples drawn
independently from , we intend to learn the optimal reverse
information projection onto the set of trees. Importantly, if

is not a tree, there may be several trees that are optimal pro-
jections [10] and this requires careful consideration of the error
events. We derive the error exponent even in this scenario.

B. Related Work

The seminal work by Chow and Liu in [3] focused on learning
tree models from data samples. The authors showed that the
learning of the optimal tree distribution essentially decouples
into two distinct steps: (i) a structure learning step and (ii) a pa-
rameter learning step. The structure learning step, which is the
focus on this paper, can be performed efficiently using a max-
weight spanning tree algorithm with the empirical mutual infor-
mation quantities as the edge weights. The parameter learning
step is a maximum-likelihood estimation procedure where the
parameters of the learned model are equal to those of the empir-
ical distribution. Chow and Wagner [10], in a follow-up paper,
studied the consistency properties of the Chow-Liu algorithm
for learning trees. They concluded that if the true distribution is
Markov on a unique tree structure, then the Chow-Liu learning
algorithm is asymptotically consistent. This implies that as the
number of samples tends to infinity, the probability that the
learned structure differs from the (unique) true structure tends
to zero.

Unfortunately, it is known that the exact learning of general
graphical models is NP-hard [16], but there have been several
works to learn approximate models. For example, Chechetka
and Guestrin [4] developed good approximations for learning
thin junction trees [17] (junction trees where the sizes of the
maximal cliques are small). Heckerman [18] proposed learning
the structure of Bayesian networks by using the Bayesian Infor-
mation Criterion [19] (BIC) to penalize more complex models
and by putting priors on various structures. Other authors used
the maximum entropy principle or (sparsity-enforcing) regu-
larization as approximate graphical model learning techniques.
In particular, Dudik et al. [9] and Lee et al. [6] provide strong
consistency guarantees on the learned distribution in terms of
the log-likelihood of the samples. Johnson et al. [7] also used
a similar technique known as maximum entropy relaxation
(MER) to learn discrete and Gaussian graphical models. Wain-
wright et al. [5] proposed a regularization method for learning
the graph structure based on logistic regression and provided
strong theoretical guarantees for learning the correct structure
as the number of samples, the number of variables, and the
neighborhood size grow. In a similar work, Meinshausen and
Buehlmann [8] considered learning the structure of arbitrary
Gaussian models using the Lasso [20]. They show that the
error probability of learning the wrong structure, under some
mild technical conditions on the neighborhood size, decays
exponentially even when the size of the graph grows with
the number of samples . However, the rate of decay is not
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provided explicitly. Zuk et al. [21] provided bounds on the
limit inferior and limit superior of the error rate for learning
the structure of Bayesian networks but, in contrast to our work,
these bounds are not asymptotically tight. In addition, the work
in Zuk et al. [21] is intimately tied to the BIC [19], whereas our
analysis is for the Chow-Liu ML tree learning algorithm [3]. A
modification of the Chow-Liu learning algorithm has also been
applied to learning the structure of latent trees where only a
subset of variables are observed [22].

There have also been a series of papers [23]–[26] that quantify
the deviation of the empirical information-theoretic quantities
from their true values by employing techniques from large-de-
viations theory. Some ideas from these papers will turn out to
be important in the subsequent development because we exploit
conditions under which the empirical mutual information quan-
tities do not differ “too much” from their nominal values. This
will ensure that structure learning succeeds with high proba-
bility.

C. Paper Outline

This paper is organized as follows: In Sections II and III, we
state the system model and the problem statement and provide
the necessary preliminaries on undirected graphical models and
the Chow-Liu algorithm [3] for learning tree distributions. In
Section IV, we derive an analytical expression for the crossover
rate of two node pairs. We then relate the crossover rates to the
overall error exponent in Section V. We also discuss some con-
nections of the problem we solve here with robust hypothesis
testing. In Section VI, we leverage on ideas in Euclidean infor-
mation theory to state sufficient conditions that allow approxi-
mations of the crossover rate and the error exponent. We obtain
an intuitively appealing closed-form expression. By redefining
the error event, we extend our results to the case when the true
distribution is not a tree in Section VII. We compare the true
and approximate crossover rates by performing numerical ex-
periments for a given graphical model in Section VIII. Perspec-
tives and possible extensions are discussed in Section IX.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Graphical Models

An undirected graphical model [2] is a probability distribu-
tion that factorizes according to the structure of an underlying
undirected graph. More explicitly, a vector of random variables

is said to be Markov on a graph
with vertex set and edge set if

(2)

where is the set of neighbors of in , i.e.,
. Equation (2) is called the (local) Markov

property and states that if random variable is conditioned on
its neighboring random variables, then is independent of the
rest of the variables in the graph.

In this paper, we assume that each random variable ,
and we also assume that is a known finite

set.2 Hence, the joint distribution , where is
the probability simplex of all distributions supported on .

Except for Section VII, we limit our analysis in this paper
to the set of strictly positive3 graphical models , in which the
graph of is a tree on the nodes, denoted .
Thus, is an undirected, acyclic and connected graph with
vertex set and edge set , with edges. Let

be the set of spanning trees on nodes, and hence, .
Tree distributions possess the following factorization property
[2]

(3)

where and are the marginals on node and edge
respectively. Since is spanning,

for all . Hence, there is a substantial simplification
of the joint distribution which arises from the Markov tree de-
pendence. In particular, the distribution is completely specified
by the set of edges and pairwise marginals on the edges
of the tree . In Section VII, we extend our analysis
to general distributions which are not necessarily Markov on a
tree.

B. Problem Statement

In this paper, we consider a learning problem, where
we are given a set of i.i.d. -dimensional samples

from an unknown distribution
, which is Markov with respect to a tree .

Each sample or observation is a vector
of dimensions where each entry can only take on one of a
finite number of values in the alphabet .

Given , the ML-estimator of the unknown distribution
is defined as

(4)

where is defined as the set of all tree
distributions on the alphabet over nodes.

In 1968, Chow and Liu showed that the above ML-estimate
can be found efficiently via a MWST algorithm [3], and is

described in Section III. We denote the tree graph of the ML-es-
timate by with vertex set and edge set

.
Given a tree distribution , define the probability of the error

event that the set of edges is not estimated correctly by the
ML-estimator as

(5)

We denote as the -fold product probability measure
of the samples which are drawn i.i.d. from . In this paper,

2The analysis of learning the structure of jointly Gaussian variables where
� � is deferred to a companion paper [27]. The error exponent analysis
carries over to the case where � is a countably infinite set.

3A distribution � is said to be strictly positive if � ��� � � for all � � � .
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we are interested in studying the rate or error exponent 4 at
which the above error probability exponentially decays with the
number of samples , given by

(6)

whenever the limit exists. Indeed, we will prove that the limit in
(6) exists in the sequel. With the notation,5 (6) can be written
as

(7)

A positive error exponent implies an exponential
decay of error probability in ML structure learning, and we will
establish necessary and sufficient conditions to ensure this.

Note that we are only interested in quantifying the prob-
ability of the error in learning the structure of in (5). We
are not concerned about the parameters that define the ML
tree distribution . Since there are only finitely many (but
a super-exponential number of) structures, this is in fact akin
to an ML problem where the parameter space is discrete and
finite [31]. Thus, under some mild technical conditions, we
can expect exponential decay in the probability of error as
mentioned in [31]. Otherwise, we can only expect convergence
with rate for estimation of parameters that belong
to a continuous parameter space [32]. In this work, we quantify
the error exponent for learning tree structures using the ML
learning procedure precisely.

III. MAXIMUM-LIKELIHOOD LEARNING OF TREE

DISTRIBUTIONS FROM SAMPLES

In this section, we review the classical Chow-Liu algorithm
[3] for learning the ML tree distribution given a set of
samples drawn i.i.d. from a tree distribution . Recall the
ML-estimation problem in (4), where denotes the set of
edges of the tree on which is tree-dependent. Note that
since is tree-dependent, from (3), we have the result that
it is completely specified by the structure and consistent
pairwise marginals on its edges .

In order to obtain the ML-estimator, we need the notion of a
type or empirical distribution of , given , defined as

(8)

4In the maximum-likelihood estimation literature (e.g., [28], [29]) if the limit
in (6) exists,� is also typically known as the inaccuracy rate. We will be using
the terms rate, error exponent and inaccuracy rate interchangeably in the sequel.
All these terms refer to � .

5The
�
� notation (used in [30]) denotes equality to the first order in the ex-

ponent. For two positive sequences �� � and �� �, �
�
� � if and only if

��� ����� �� � � 	.

where if and equals 0 otherwise.
For convenience, in the rest of the paper, we will denote the
empirical distribution by instead of .

Fact 1: The ML-estimator in (4) is equivalent to the following
optimization problem:

(9)

where is the empirical distribution of , given by (8). In

(9), denotes the Kullback-
Leibler divergence (or relative entropy) [30, Ch. 1] between the
probability distributions , .

Proof: By the definition of the KL-divergence, we have

(10)

(11)

where we use the fact that the empirical distribution in (8)
assigns a probability mass of to each sample .

The minimization over the second variable in (9) is also
known as the reverse I-projection [13], [33] of onto the
set of tree distributions . We now state the main
result of the Chow-Liu tree learning algorithm [3]. In this
paper, with a slight abuse of notation, we denote the mutual
information between two random variables and
corresponding to nodes and as

(12)

Note that the definition above uses only the marginal of re-
stricted to . If , then we will also denote the
mutual information as .

Theorem 1 (Chow-Liu Tree Learning [3]): The structure and
parameters of the ML-estimate in (4) are given by

(13)

(14)

where is the empirical distribution in (8) given the data ,
and is the empirical mutual information of
random variables and , which is a function of the empirical
distribution .
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Proof: For a fixed tree distribution ,
admits the factorization in (3), and we have

(15)

(16)

For a fixed structure , it can be shown [3] that the above quan-
tity is minimized when the pairwise marginals over the edges of

are set to that of , i.e., for all

(17)

(18)

The first term in (18) is a constant with respect to . Further-
more, since is the edge set of the tree distribution

, the optimization for the ML tree distribution
reduces to the MWST search for the optimal edge set as in (13).

Hence, the optimal tree probability distribution is the
reverse I-projection of onto the optimal tree structure given
by (13). Thus, the optimization problem in (9) essentially re-
duces to a search for the structure of . The structure of

completely determines its distribution, since the param-
eters are given by the empirical distribution in (14). To solve
(13), we use the samples to compute the empirical distribu-
tion using (8), then use to compute , for each node
pair . Subsequently, we use the set of empirical mutual

information quantities as the edge weights
for the MWST problem.6

We see that the Chow-Liu MWST spanning tree algorithm
is an efficient way of solving the ML-estimation problem, es-
pecially when the dimension is large. This is because there
are possible spanning trees over nodes [12] ruling out
the possibility for performing an exhaustive search for the op-
timal tree structure. In contrast, the MWST can be found, say
using Kruskal’s algorithm [34], [35] or Prim’s algorithm [36],
in time.

6If we use the true mutual information quantities as inputs to the MWST, then
the true edge set � is the output.

IV. LDP FOR EMPIRICAL MUTUAL INFORMATION

The goal of this paper is to characterize the error exponent
for ML tree learning in (6). As a first step, we consider a
simpler event, which may potentially lead to an error in ML-es-
timation. In this section, we derive the LDP rate for this event,
and in Section V, we use the result to derive , the exponent
associated to the error event defined in (5).

Since the ML-estimate uses the empirical mutual informa-
tion quantities as the edge weights for the MWST algorithm,
the relative values of the empirical mutual information quanti-
ties have an impact on the accuracy of ML-estimation. In other
words, if the order of these empirical quantities is different from
the true order then it can potentially lead to an error in the es-
timated edge set. Hence, it is crucial to study the probability of
the event that the empirical mutual information quantities of any
two node pairs is different from the true order.

Formally, let us consider two distinct node pairs with
no common nodes , with unknown distribution

, where the notation denotes the marginal
of the tree-structured graphical model on the nodes in the set

. Similarly, is the marginal of on edge . Assume
that the order of the true mutual information quantities follow

. A crossover event7 occurs if the corresponding
empirical mutual information quantities are of the reverse order,
given by

(19)

As the number of samples , the empirical quantities ap-
proach the true ones in probability, and hence, the probability
of the above event decays to zero. When the decay is exponen-
tial, we have a LDP for the above event, and we term its rate as
the crossover rate for empirical mutual information quantities,
defined as

(20)

assuming the limit in (20) exists. Indeed, we show in the proof
of Theorem 2 that the limit exists. Intuitively (and as seen in
our numerical simulations in Section VIII), if the difference be-
tween the true mutual information quantities is
large (i.e., ), we expect the probability of the
crossover event to be small. Thus, the rate of decay would
be faster, and hence, we expect the crossover rate to be
large. In the following, we see that depends not only on
the difference of mutual information quantities ,
but also on the distribution of the variables on node pairs

and , since the distribution influences the accuracy of
estimating them.

Theorem 2 (Crossover Rate for Empirical MIs): The
crossover rate for a pair of empirical mutual information quan-
tities in (20) is given by

(21)

7The event � in (19) depends on the number of samples � but we suppress
this dependence for convenience.
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where , are marginals of over node pairs
and , which do not share common nodes, i.e.,

(22a)

(22b)

The infimum in (21) is attained by some distribution
satisfying and .

Proof: (Sketch) The proof hinges on Sanov’s theorem
[30, Ch. 11] and the contraction principle in large-deviations
[11, Sec. III.5]. The existence of the minimizer follows from
the compactness of the constraint set and Weierstrass’ extreme
value theorem [37, Theorem 4.16]. The rate is strictly
positive since we assumed, a-priori, that the two node pairs
and satisfy . As a result, and

. See Appendix A for the details.

In the above theorem, which is analogous to Theorem 3.3 in
[25], we derived the crossover rate as a constrained min-
imization over a submanifold of distributions in (See
Fig. 5), and also proved the existence of an optimizing distri-
bution . However, it is not easy to further simplify the rate
expression in (21) since the optimization is nonconvex.

Importantly, this means that it is not clear how the parameters
of the distribution affect the rate ; hence, (21) is not
intuitive to aid in understanding the relative ease or difficulty in
estimating particular tree-structured distributions. In Section VI,
we assume that satisfies some (so-called very noisy learning)
conditions and use Euclidean information theory [14], [15] to
approximate the rate in (21) in order to gain insights as to how
the distribution parameters affect the crossover rate and
ultimately, the error exponent for learning the tree structure.

Remark 1: Theorem 2 specifies the crossover rate when
the two node pairs and do not have any common nodes. If
and share one node, then the distribution and
here, the crossover rate for empirical mutual information is

(23)

In Section VI, we obtain an approximate closed-form expres-
sion for . The expression, provided in Theorem 8, does not
depend on whether and share a node.

Example: Symmetric Star Graph: It is now instructive to
study a simple example to see how the overall error exponent

for structure learning in (6) depends on the set of crossover
rates . We consider a graphical model

with an associated tree which is a -order star
with a central node 1 and outer nodes , as shown in
Fig. 1. The edge set is given by .

We assign the joint distributions , and
to the variables in this graph in the following

specific way:
1) for all .
2) for all , , .

Fig. 1. Star graph with � � �. � is the joint distribution on any pair of
variables that form an edge e.g., � and � . � is the joint distribution on any
pair of variables that do not form an edge e.g., � and � . By symmetry, all
crossover rates are equal.

3) for all , , , .
Thus, we have identical pairwise distributions of the
central node 1 and any other node , and also identical pairwise
distributions of any two distinct outer nodes and
. Furthermore, assume that . Note that

the distribution completely specifies the above
graphical model with a star graph. Also, from the above specifi-
cations, we see that and are the marginal distributions of

with respect to to node pairs and respectively
i.e.,

(24a)

(24b)

Note that each crossover event between any nonedge (nec-
essarily of length 2) and an edge along its path results in an
error in the learned structure since it leads to being declared an
edge instead of . Due to the symmetry, all such crossover rates
between pairs and are equal. By the “worst-exponent-wins”
rule [11, Ch. 1], it is more likely to have a single crossover event
than multiple ones. Hence, the error exponent is equal to the
crossover rate between an edge and a non-neighbor pair in the
symmetric star graph. We state this formally in the following
proposition.

Proposition 3 (Error Exponent for Symmetric Star Graph):
For the symmetric graphical model with star graph and as
described above, the error exponent for structure learning
in (6), is equal to the crossover rate between an edge and a non-
neighbor node pair

for any (25)

where from (21), the crossover rate is given by

(26)
with and as the marginals of , e.g.,

(27)

Proof: Since there are only two distinct distributions
(which corresponds to a true edge) and (which corresponds
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to a nonedge), there is only one unique rate , namely the
expression in (21) with replaced by . If the event ,
in (19), occurs, an error definitely occurs. This corresponds to
the case where any one edge is replaced by any other
node pair not in .8

Hence, we have derived the error exponent for learning a sym-
metric star graph through the crossover rate between any
node pair which is an edge in the star graph and another node
pair which is not an edge.

The symmetric star graph possesses symmetry in the distri-
butions, and hence, it is easy to relate to a sole crossover
rate. In general, it is not straightforward to derive the error ex-
ponent from the set of crossover rates since they
may not all be equal and more importantly, crossover events for
different node pairs affect the learned structure in a com-
plex manner. In Section V, we provide an exact expression for

by identifying the (sole) crossover event related to a domi-
nant error tree. Finally, we remark that the crossover event
is related to the notion of neighborhood selection in the graph-
ical model learning literature [5], [8].

V. ERROR EXPONENT FOR STRUCTURE LEARNING

The analysis in the previous section characterized the rate
for the crossover event between two empirical mu-

tual information pairs. In this section, we connect these set of
rate functions to the quantity of interest, viz., the error
exponent for ML-estimation of edge set in (6).

Recall that the event denotes an error in estimating the
order of mutual information quantities. However, such events

need not necessarily lead to the error event in (5) that
the ML-estimate of the edge set is different from the true
set . This is because the ML-estimate is a tree and this
global constraint implies that certain crossover events can be
ignored. In the sequel, we will identify useful crossover events
through the notion of a dominant error tree.

A. Dominant Error Tree

We can decompose the error event for structure estimation
in (5) into a set of mutually-exclusive events

(28)
where each denotes the event that the graph of the
ML-estimate is a tree different from the true tree .
In other words

if
if

(29)

Note that whenever . The large-
deviation rate or the exponent for each error event is

(30)

8Also see Theorem 5 and its proof for the argument that the dominant error
tree differs from the true tree by a single edge.

whenever the limit exists. Among all the error events , we
identify the dominant one with the slowest rate of decay.

Definition 1 (Dominant Error Tree): A dominant error tree
is a spanning tree given by9

(31)

Roughly speaking, a dominant error tree is the tree that is the
most-likely asymptotic output of the ML-estimator in the event
of an error. Hence, it belongs to the set . In the fol-
lowing, we note that the error exponent in (6) is equal to the
exponent of the dominant error tree.

Proposition 4 (Dominant Error Tree & Error Exponent): The
error exponent for structure learning is equal to the expo-
nent of the dominant error tree

(32)

Proof: From (30), we can write

(33)

Now from (28), we have

(34)
from the “worst-exponent-wins” principle [11, Ch. 1] and the
definition of the dominant error tree in (31).

Thus, by identifying a dominant error tree , we can find
the error exponent . To this end, we revisit the
crossover events in (19), studied in the previous section.
Consider a non-neighbor node pair with respect to and the
unique path of edges in connecting the two nodes, which we
denote as . See Fig. 2, where we define the notion
of the path given a nonedge . Note that and
necessarily form a cycle; if we replace any edge along
the path of the non-neighbor node pair , the resulting edge
set is still a spanning tree. Hence, all such
replacements are feasible outputs of the ML-estimation in the
event of an error. As a result, all such crossover events
need to be considered for the error event for structure learning

in (5). However, for the error exponent , again by the
“worst-exponent-wins” principle, we only need to consider the
crossover event between each non-neighbor node pair and its
dominant replacement edge defined below.

Definition 2 (Dominant Replacement Edge): For each non-
neighbor node pair , its dominant replacement edge

is defined as the edge in the unique path along
connecting the nodes in having the minimum crossover rate

(35)

where the crossover rate is given by (21).

9We will use the notation ������ extensively in the sequel. It is to be un-
derstood that if there is no unique minimum (e.g., in (31)), then we arbitrarily
choose one of the minimizing solutions.



TAN et al.: A LARGE-DEVIATION ANALYSIS OF THE MAXIMUM-LIKELIHOOD LEARNING OF MARKOV TREE STRUCTURES 1721

Fig. 2. Path associated to the nonedge � � ��� �� �� � , denoted
������ � � � � � , is the set of edges along the unique path linking the
end points of � � ��� ��. The edge ��� � is the dominant replacement edge
associated to � �� � .

We are now ready to characterize the error exponent in
terms of the crossover rate between non-neighbor node pairs and
their dominant replacement edges.

Theorem 5 (Error Exponent as a Single Crossover Event):
The error exponent for ML-tree estimation in (6) is given by

(36)

where is the dominant replacement edge, defined in (35),
associated to and is the optimizing non-neighbor
node pair

(37)

The dominant error tree in (31) has edge set

(38)

In fact, we also have the following (finite-sample) upper bound
on the error probability:

(39)
for all .

Proof: (Sketch) The edge set of the dominant error tree
differs from in exactly one edge (See Appendix B). This
is because if were to differ from in strictly more than
one edge, the resulting error exponent would not be the min-
imum, hence contradicting Proposition 4. To identify the dom-
inant error tree, we use the union bound as in (28) and the
“worst-exponent-wins” principle [11, Ch. 1], to conclude that
the rate that dominates is the minimum over all pos-
sible non-neighbor node pairs . See Appendix B for the
details.

The above theorem relates the set of crossover rates ,
which we characterized in the previous section, to the overall
error exponent , defined in (6). Note that the result in (36)
and also the existence of the limit in (6) means that the error
probability is tight to first order in the exponent in the sense that

. This is in contrast to the work in [21],
where bounds on the upper and lower limit on the sequence

were established.10 We numerically compute
the error exponent for different discrete distributions in
Section VIII.

10However, in [21], the authors analyzed the learning of general (non-tree)
Bayesian networks.

From (36), we see that if at least one of the crossover rates
in the minimization is zero, the overall error exponent

is zero. This observation is important for the derivation of neces-
sary and sufficient conditions for to be positive, and hence,
for the error probability to decay exponentially in the number of
samples .

B. Conditions for Exponential Decay

We now provide necessary and sufficient conditions that en-
sure that is strictly positive. This is obviously of crucial im-
portance since if , this implies exponential decay of the
desired probability of error , where the error event is
defined in (5).

Theorem 6 (Equivalent Conditions for Exponential Decay):
Assume that , the original structure is acyclic (i.e., it may not
be connected). Then, the following three statements are equiv-
alent.

(a) The probability of error decays exponentially i.e.,

(40)

(b) The mutual information quantities satisfy

(41)

(c) is not a proper forest.11

Proof: (Sketch) We first show that (a) (b).
We assume statement (a) is true i.e., and

prove that statement (b) is true. Suppose, to the contrary,
that for some and some

. Then , where is the replace-
ment edge associated to . By (36), , which is a
contradiction.

We now prove that statement (a) is true assuming
statement (b) is true i.e., for all

and . By Theorem 2, the crossover
rate in (21) is positive for all . From (36),

since there are only finitely many ; hence, the
minimum in (37) is attained at some nonzero value, i.e.,

.
Statement (c) is equivalent to statement (b). The proof of this

claim makes use of the positivity condition that for
all and the fact that if variables , and form
Markov chains and , then is neces-
sarily jointly independent of . Since this proof is rather
lengthy, we refer the reader to Appendix C for the details.

Condition (b) states that, for each nonedge , we need
to be strictly smaller than the mutual information of its domi-
nant replacement edge . Condition (c) is a more intu-
itive condition for exponential decay of the probability of error

. This is an important result since it says that for any non-
degenerate tree distribution in which all the pairwise joint distri-
butions are not product distributions (i.e., not a proper forest),
then we have exponential decay in the error probability. The
learning of proper forests is discussed in a companion paper
[38].

11A proper forest on � nodes is an undirected, acyclic graph that has (strictly)
fewer than � � 	 edges.
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Fig. 3. Illustration for Example 1.

In the following example, we describe a simple random
process for constructing a distribution such that all three
conditions in Theorem 6 are satisfied with probability one (w.p.
1). See Fig. 3.

Example 1: Suppose the structure of , a spanning tree dis-
tribution with graph , is fixed and .
Now, we assign the parameters of using the following proce-
dure. Let be the root node. Then randomly draw the param-
eter of the Bernoulli distribution from a uniform distri-
bution on i.e., and .
Next let be the set of neighbors of . Regard the set of
variables as the children12 of . For each

, sample both as well
as from independent uniform dis-
tributions on i.e., and .
Repeat this procedure for all children of . Then repeat the
process for all other children. This construction results in a joint
distribution for all w.p. 1. In this case, by
continuity, all mutual informations are distinct w.p. 1, the graph
is not a proper forest w.p. 1 and the rate w.p. 1.

This example demonstrates that decays exponentially
for almost every tree distribution.

C. Computational Complexity

Finally, we provide an upper bound on the computational
complexity to compute in (36). Our upper bound on the
computational complexity depends on the diameter of the tree

which is defined as

(42)

where is the length (number of hops) of the unique
path between nodes and . For example, for the
nonedge in the subtree in Fig. 2.

Theorem 7 (Computational Complexity for ): The
number of computations of to compute , denoted

, satisfies

(43)

Proof: Given a non-neighbor node pair ,
we perform a maximum of calculations to de-
termine the dominant replacement edge from (35).
Combining this with the fact that there are a total of

12Let � be the root of the tree. In general, the children of a node � �� �� ��
is the set of nodes connected to � that are further away from the root than � .

Fig. 4. Partitions of the simplex associated to our learning problem are given
by � , defined in (44). In this example, the type � belongs to � so the tree
associated to partition � is favored.

node
pairs not in , we obtain the upper bound.

Thus, if the diameter of the tree is relatively
low and independent of number of nodes , the complexity
is quadratic in . For instance, for a star graph, the diameter

. For a balanced tree,13 ;
hence, the number of computations is .

D. Relation of the Maximum-Likelihood Structure Learning
Problem to Robust Hypothesis Testing

We now take a short detour and discuss the relation between
the analysis of the learning problem and robust hypothesis
testing, which was first considered by Huber and Strassen in
[39]. Subsequent work was done in [40]–[42] albeit for differ-
ently defined uncertainty classes known as moment classes.

We hereby consider an alternative but related problem.
Let be the trees with nodes. Also
let be the subsets of tree-struc-
tured graphical models Markov on respectively.
The structure learning problem is similar to the -ary hy-
pothesis testing problem between the uncertainty classes of
distributions . The uncertainty class denotes
the set of tree-structured graphical models with different pa-
rameters (marginal and pairwise distributions

) but Markov on the same tree .
In addition, we note that the probability simplex can

be partitioned into subsets14 where
each is defined as

(44)

See Fig. 4. According to the ML criterion in (9), if the type
belongs to , then the -th tree is favored.

In [43], a subset of the authors of this paper considered the
Neyman-Pearson setup of a robust binary hypothesis testing
problem where the null hypothesis corresponds to the true tree
model and the (composite) alternative hypothesis corresponds
to the set of distributions Markov on some erroneous tree

. The false-alarm probability was constrained to be smaller

13A balanced tree is one where no leaf is much farther away from the root
than any other leaf. The length of the longest direct path between any pair of
nodes is ����� ��.

14From the definition in (44), we see that the relative interior of the subsets
are pairwise disjoint. We discuss the scenario when � lies on the boundaries of
these subsets in Section VII.
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Fig. 5. A geometric interpretation of (21) where � is projected onto the
submanifold of probability distributions �� � ��� � � ��� � � ��� ��.

than and optimized for worst-case type-II (missed detec-
tion) error exponent using the Chernoff-Stein Lemma [30, Ch.
12]. It was established that the worst-case error exponent can
be expressed in closed-form in terms of the mutual information
of so-called bottleneck edges, i.e., the edge and nonedge pair
that have the smallest mutual information difference. However,
in general, for the binary hypothesis testing problem, the error
event does not decompose into a union of local events. This is in
contrast to error exponent for learning the ML tree , which
can be computed by considering local crossover events ,
defined in (19).

Note that corresponds to a global event since each
. The large-deviation analysis techniques we uti-

lized to obtain the error exponent in Theorem 5 show that
such global error events can be also decomposed into a collec-
tion of local crossover events . These local events depend
only on the type restricted to pairs of nodes and and are
more intuitive for assessing (and analyzing) when and how an
error can occur during the Chow-Liu learning process.

VI. EUCLIDEAN APPROXIMATIONS

In order to gain more insight into the error exponent, we make
use of Euclidean approximations [15] of information-theoretic
quantities to obtain an approximate but closed-form solution to
(21), which is nonconvex and hard to solve exactly. In addition,
we note that the dominant error event results from an edge and
a nonedge that satisfy the conditions for which the Euclidean
approximation is valid, i.e., the very-noisy condition given later
in Definition 4. This justifies our approach we adopt in this sec-
tion. Our use of Euclidean approximations for various informa-
tion-theoretic quantities is akin to various problems considered
in other contexts in information theory [14], [15], [44].

We first approximate the crossover rate for any two node
pairs and , which do not share a common node. The joint
distribution on and , namely belongs to the set .
Intuitively, the crossover rate should depend on the “sepa-
ration” of the mutual information values and , and
also on the uncertainty of the difference between mutual infor-
mation estimates and . We will see that the ap-
proximate rate also depends on these mutual information quan-
tities given by a simple expression which can be regarded as the
signal-to-noise ratio (SNR) for learning.

Roughly speaking, our strategy is to “convexify” the objective
and the constraints in (21). See Figs. 5 and 6. To do so, we recall

that if and are two discrete distributions with the same
support , and they are close entry-wise, the KL divergence can
be approximated [15] as

(45)

(46)

(47)

(48)

where denotes the weighted squared norm of , i.e.,
. The equality in (47) holds because

for . The difference
between the divergence and the Euclidean approximation
becomes tight as . Moreover, it remains
tight even if the subscript in (48) is changed to a distribution

in the vicinity of [15]. That is, the difference between
and is negligible compared to either

term when . Using this fact and the assumption that
and are two discrete distributions that are close entry-wise

(49)

In fact, it is also known [15] that if for some
, we also have .

In the following, to make our statements precise, we will use
the notation to denote that two real numbers and

are in the neighborhood of each other, i.e., .15

We will also need the following notion of information density
to state our approximation for .

Definition 3 (Information Density): Given a pairwise joint
distribution on with marginals and , the informa-
tion density [45], [46] function, denoted by , is
defined as

(50)

Hence, for each node pair , the information density
is also a random variable whose expectation is simply the

mutual information between and , i.e., .
Recall that we also assumed in Section II that is a span-

ning tree, which implies that for all node pairs , is not
a product distribution, i.e., , because if it were, then

would be disconnected. We now define a condition for which
our approximation holds.

15In the following, we will also have continuity statements where given � � �
and � � � , implies that there exists some � � ���� � � such that � �
� . We will be casual about specifying what the �’s are.
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Definition 4 ( -Very Noisy Condition): We say that
, the joint distribution on node pairs and , satisfies

the -very noisy condition if

(51)

This condition is needed because if (51) holds, then by conti-
nuity of the mutual information, there exists a such that

, which means that the mutual information
quantities are difficult to distinguish and the approximation in
(48) is accurate.16 Note that proximity of the mutual informa-
tion values is not sufficient for the approximation to hold since
we have seen from Theorem 2 that depends not only on the
mutual information quantities but on the entire joint distribution

.
We now define the approximate crossover rate on disjoint

node pairs and as

(52)

where the (linearized) constraint set is

(53)

where is the gradient vector of the mutual infor-
mation with respect to the joint distribution , regarded as a
length- vector. We also define the approximate error expo-
nent as

(54)

We now provide the expression for the approximate crossover
rate and also state the conditions under which the approx-
imation is asymptotically accurate in .17

Theorem 8 (Euclidean Approximation of ): The approx-
imate crossover rate for the empirical mutual information quan-
tities, defined in (52), is given by

(55)

where is the information density defined in (50) and the ex-
pectation and variance are both with respect to . Further-
more, the approximation (55) is asymptotically accurate, i.e., as

(in the definition of -very noisy condition), we have that
.

16Here and in the following, we do not specify the exact value of � but we
simply note that as �� �, the approximation in (49) becomes tighter.

17We say that a collection of approximations ����� � � � �� of a true param-
eter � is asymptotically accurate in � (or simply asymptotically accurate) if the
approximations converge to � as �� �, i.e., ��� ���� � �.

Proof: (Sketch) (52) and (53) together define a least squares
problem. Upon simiplification of the solution, we obtain (55).
See Appendix D for the details.

We also have an additional result for the Euclidean approx-
imation for the overall error exponent . The proof is clear
from the definition of in (54) and the continuity of the min
function.

Corollary 9 (Euclidean Approximation of ): The approx-
imate error exponent is asymptotically accurate if all joint
distributions in the set sat-
isfy the -very noisy condition.

Hence, the expressions for the crossover rate and the
error exponent are vastly simplified under the -very noisy
condition on the joint distributions . The approximate
crossover rate in (55) has a very intuitive meaning. It is
proportional to the square of the difference between the mutual
information quantities of and . This corresponds exactly
to our initial intuition—that if and are well sepa-
rated then the crossover rate has to be large.

is also weighted by the precision (inverse variance) of
. If this variance is large then we are uncertain about

the estimate , and crossovers are more likely,
thereby reducing the crossover rate .

We now comment on our assumption of satisfying the
-very noisy condition, under which the approximation is tight

as seen in Theorem 8. When is -very noisy, then we
have , which implies that the optimal solution

. When is an edge and is a non-neighbor
node pair, this implies that it is very hard to distinguish the rela-
tive magnitudes of the empiricals and . Hence, the
particular problem of learning the distribution from sam-
ples is very noisy. Under these conditions, the approximation in
(55) is accurate.

In summary, our approximation in (55) takes into account
not only the absolute difference between the mutual informa-
tion quantities and , but also the uncertainty in
learning them. The expression in (55) is, in fact, the SNR for
the estimation of the difference between empirical mutual infor-
mation quantities. This answers one of the fundamental ques-
tions we posed in the introduction, viz., that we are now able
to distinguish between distributions that are “easy” to learn and
those that are “difficult” by computing the set of SNR quantities

in (55).

VII. EXTENSIONS TO NON-TREE DISTRIBUTIONS

In all the preceding sections, we dealt exclusively with the
case where the true distribution is Markov on a tree. In this
section, we extend the preceding large-deviation analysis to deal
with distributions that may not be tree-structured but in which
we estimate a tree distribution from the given set of samples

, using the Chow-Liu ML-estimation procedure. Since the
Chow-Liu procedure outputs a tree, it is not possible to learn the
structure of correctly. Hence, it will be necessary to redefine
the error event.
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Fig. 6. Convexifying the objective results in a least-squares problem. The ob-
jective is converted into a quadratic as in (52) and the linearized constraint set
��� � is given (53).

Fig. 7. Reverse I-projection [13] of � onto the set of tree distributions
��� � � � given by (56).

TABLE I
TABLE OF PROBABILITY VALUES FOR EXAMPLE 2

When is not a tree distribution, we analyze the properties
of the optimal reverse I-projection [13] of onto the set of tree
distributions, given by the optimization problem18

(56)

is the KL-divergence of to the closest element in
. See Fig. 7. As Chow and Wagner [10] noted, if

is not a tree, there may be several trees optimizing (56).19 We
denote the set of optimal projections as , given by

(57)

We now illustrate that may have more than one ele-
ment with the following example.

Example 2: Consider the parameterized discrete proba-
bility distribution shown in Table I where

and are constants.

Proposition 10 (Nonuniqueness of Projection): For suffi-
ciently small , the Chow-Liu MWST algorithm (using either

18The minimum in the optimization problem in (56) is attained because the
KL-divergence is continuous and the set of tree distributions ��� � � � is
compact.

19This is a technical condition of theoretical interest in this section. In fact, it
can be shown that the set of distributions such that there is more than one tree
optimizing (56) has ( � �-Lebesgue) measure zero in ��� �.

Fig. 8. Each tree defines an �-flat submanifold [47], [48] of probability distri-
butions. These are the two lines as shown in the figure. If the KL-divergences
����� � and ����� � are equal, then � and � do not have the
same structure but both are optimal with respect to the optimization problem in
(56). An example of such a distribution � is provided in Example 2.

Kruskal’s [35] or Prim’s [36] procedure) will first include the
edge (1, 2). Then, it will arbitrarily choose between the two
remaining edges (2, 3) or (1, 3).

The proof of this proposition is provided in Appendix E
where we show that for suf-
ficiently small . Thus, the optimal tree structure is not
unique. This in fact corresponds to the case where belongs
to the boundary of some set defined in (44). See
Fig. 8 for an information geometric interpretation.

Every tree distribution in has the maximum sum mu-
tual information weight. More precisely, we have

(58)

Given (58), we note that when we use a MWST algorithm to
find the optimal solution to the problem in (56), ties will be en-
countered during the greedy addition of edges, as demonstrated
in Example 2. Upon breaking the ties arbitrarily, we obtain some
distribution . We now provide a sequence of useful
definitions that lead to definition of a new error event for which
we can perform large-deviation analysis.

We denote the set of tree structures20 corresponding to the
distributions in as

(59)

and term it as the set of optimal tree projections. A similar def-
inition applies to the edge sets of optimal tree projections

(60)

Since the distribution is unknown, our goal is to estimate
the optimal tree-projection using the empirical distribution

, where is given by

(61)

If there are many distributions , we arbitrarily pick one of
them. We will see that by redefining the error event, we will have
still a LDP. Finding the reverse I-projection can be solved
efficiently (in time ) using the Chow-Liu algorithm
[3] as described in Section III.

20In fact, each tree defines a so-called e-flat submanifold [47], [48] in
the set of probability distributions on � and � lies in both submani-
folds. The so-called m-geodesic connects � to any of its optimal projection
� � � �� �.
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We define as the graph of , which is
the learned tree and redefine the new error event as

(62)

Note that this new error event essentially reduces to the original
error event in (5) if contains only one
member. So if the learned structure belongs to , there is
no error, otherwise an error is declared. We would like to analyze
the decay of the error probability of as defined in
(62), i.e., find the new error exponent

(63)

It turns out that the analysis of the new event is very
similar to the analysis performed in Section V. We redefine the
notion of a dominant replacement edge and the computation of
the new rate then follows automatically.

Definition 5 (Dominant Replacement Edge): Fix an edge set
. For the error event defined in (62),

given a non-neighbor node pair , its dominant replace-
ment edge with respect to , is given by

(64)

if there exists an edge such that
. Otherwise . is the crossover

rate of mutual information quantities defined in (20). If
exists, the corresponding crossover rate is

(65)

otherwise .
In (64), we are basically fixing an edge set and

excluding the trees with replaced by if it
belongs to the set of optimal tree projections . We fur-
ther remark that in (64), may not necessarily exist. Indeed,
this occurs if every tree with replaced by
belongs to the set of optimal tree projections. This is, however,
not an error by the definition of the error event in (62); hence, we
set . In addition, we define the dominant nonedge
associated to edge set as

(66)

Also, the dominant structure in the set of optimal tree projec-
tions is defined as

(67)

where the crossover rate is defined in (65) and the
dominant nonedge associated to is defined in (66).
Equipped with these definitions, we are now ready to state the
generalization of Theorem 5.

Theorem 11 (Dominant Error Tree): For the error event
defined in (62), a dominant error tree (which may

not be unique) has edge set given by

(68)

where is the dominant nonedge associated to the
dominant structure and is defined by (66) and
(67). Furthermore, the error exponent , defined in (63)
is given as

(69)

Proof: The proof of this theorem follows directly by iden-
tifying the dominant error tree belonging to the set .
By further applying the result in Proposition 4 and Theorem 5,
we obtain the result via the “worst-exponent-wins” [11, Ch. 1]
principle by minimizing over all trees in the set of optimal pro-
jections in (69).

This theorem now allows us to analyze the more general error
event , which includes in (5) as a special case if
the set of optimal tree projections in (59) is a singleton.

VIII. NUMERICAL EXPERIMENTS

In this section, we perform a series of numerical experiments
with the following three objectives:

1) In Section VIII-A, we study the accuracy of the Euclidean
approximations (Theorem 8). We do this by analyzing
under which regimes the approximate crossover rate
in (55) is close to the true crossover rate in (21).

2) Since the LDP and error exponent analysis are asymptotic
theories, in Section VIII-B we use simulations to study
the behavior of the actual crossover rate, given a finite
number of samples . In particular, we study how fast the
crossover rate, obtained from simulations, converges to the
true crossover rate. To do so, we generate a number of sam-
ples from the true distribution and use the Chow-Liu algo-
rithm to learn trees structures. Then we compare the result
to the true structure and finally compute the error proba-
bility.

3) In Section VIII-C, we address the issue of the learner
not having access to the true distribution, but nonetheless
wanting to compute an estimate of the crossover rate.
The learner only has the samples or equivalently, the
empirical distribution . However, in all the preceding
analysis, to compute the true crossover rate and the
overall error exponent , we used the true distribution
and solved the constrained optimization problem in (21).
Alternatively we computed the approximation in (55),
which is also a function of the true distribution. However,
in practice, it is also useful to compute an online estimate
of the crossover rate by using the empirical distribution in
place of the true distribution in the constrained optimiza-
tion problem in (21). This is an estimate of the rate that the
learner can compute given the samples. We call this the
empirical rate and formally define it in Section VIII-C.
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Fig. 9. Graphical model used for our numerical experiments. The true model
is a symmetric star (cf. Section IV) in which the mutual information quantities
satisfy ��� � � ��� � � ��� � and by construction, ��� � � ��� �
for any nonedge � . Besides, the mutual information quantities on the nonedges
are equal, for example, ��� � � ��� ��.

We perform convergence analysis of the empirical rate
and also numerically verify the rate of convergence to the
true crossover rate.

In the following, we will be performing numerical experi-
ments for the undirected graphical model with four nodes as
shown in Fig. 9. We parameterize the distribution with
variables with a single parameter and let , i.e.,
all the variables are binary. For the parameters, we set

and

(70a)

(70b)

With this parameterization, we see that if is small, the mu-
tual information for , 3, 4 is also small. In fact if

, is independent of for , 3, 4 and as a result,
. Conversely, if is large, the mutual information

increases as the dependence of the outer nodes with the
central node increases. Thus, we can vary the size of the mutual
information along the edges by varying . By symmetry, there
is only one crossover rate, and hence, this crossover rate is also
the error exponent for the error event in (5). This is exactly
the same as the symmetric star graph as described in Section IV.

A. Accuracy of Euclidean Approximations

We first study the accuracy of the Euclidean approximations
used to derive the result in Theorem 8. We denote the true rate
as the crossover rate resulting from the nonconvex optimiza-
tion problem (21) and the approximate rate as the crossover rate
computed using the approximation in (55).

We vary from 0 to 0.2 and plot both the true and approx-
imate rates against the difference between the mutual informa-
tions in Fig. 10, where denotes any edge and

denotes any nonedge in the model. The nonconvex optimiza-
tion problem was performed using the Matlab function
in the optimization toolbox. We used several different feasible
starting points and chose the best optimal objective value to
avoid problems with local minima. We first note from Fig. 10
that both rates increase as increases. This is in
line with our intuition because if is such that
is large, the crossover rate is also large. We also observe that if

is small, the true and approximate rates are very
close. This is in line with the assumptions for Theorem 8. Recall

Fig. 10. Comparison of true and approximate rates.

that if satisfies the -very noisy condition (for some small
), then the mutual information quantities and are

close and consequently the true and approximate crossover rates
are also close. When the difference between the mutual infor-
mations increases, the true and approximate rate separate from
each other.

B. Comparison of True Crossover Rate to the Rate Obtained
From Simulations

In this section, we compare the true crossover rate in (21) to
the rate we obtain when we learn tree structures using Chow-Liu
with i.i.d. samples drawn from , which we define as the sim-
ulated rate. We fixed in (70) then for each , we esti-
mated the probability of error using the Chow-Liu algorithm as
described in Section III. We state the procedure precisely in the
following steps.

1) Fix and sample i.i.d. observations from .
2) Compute the empirical distribution and the set of empir-

ical mutual information quantities .
3) Learn the Chow-Liu tree using a MWST algorithm

with as the edge weights.
4) If is not equal to , then we declare an error.
5) Repeat steps 1–4 a total of times and estimate the

probability of error and the error
exponent , which is the simulated rate.

If the probability of error is very small, then the number
of runs to estimate has to be fairly large. This is often
the case in error exponent analysis as the sample size needs to
be substantial to estimate very small error probabilities.

In Fig. 11, we plot the true rate, the approximate rate and the
simulated rate when (and ) and
(and ). Note that, in the former case, the true
rate is higher than the approximate rate and in the latter case,
the reverse is true. When is large , there are large
differences in the true tree models. Thus, we expect that the error
probabilities to be very small, and hence, has to be large in
order to estimate the error probability correctly but does not
have to be too large for the simulated rate to converge to the true
rate. On the other hand, when is small , there are
only subtle differences in the graphical models; hence, we need
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Fig. 11. Comparison of true, approximate and simulated rates with � � ����
(top) and � � ��� (bottom). Here the number of runs � � �� for � � ����

and � � �� �� for � � ���. The probability of error is computed dividing
the total number of errors by the total number of runs.

a larger number of samples for the simulated rate to converge
to its true value, but does not have to be large since the error
probabilities are not small. The above observations are in line
with our intuition.

C. Comparison of True Crossover Rate to Rate Obtained From
the Empirical Distribution

In this subsection, we compare the true rate to the empirical
rate, which is defined as

(71)

The empirical rate is a function of the
empirical distribution . This rate is computable by a
learner, who does not have access to the true distribution .
The learner only has access to a finite number of samples

. Given , the learner can compute the
empirical probability and perform the optimization in
(71). This is an estimate of the true crossover rate. A natural
question to ask is the following: Does the empirical rate
converge to the true crossover rate as ? The next
theorem answers this question in the affirmative.

Theorem 12 (Crossover Rate Consistency): The empirical
crossover rate in (71) converges almost surely to the true
crossover rate in (21), i.e.,

(72)

Fig. 12. Comparison of True, Approximate and Empirical Rates with � � ����
(top) and � � ��� (bottom). Here � is the number of observations used to
estimate the empirical distribution.

Proof: (Sketch) The proof of this theorem follows from
the continuity of in the empirical distribution and
the continuous mapping theorem by Mann and Wald [49]. See
Appendix F for the details.

We conclude that the learning of the rate from samples is
strongly consistent. Now we perform simulations to determine
how many samples are required for the empirical rate to con-
verge to the true rate.

We set and in (70). We then drew
i.i.d. samples from and computed the empirical distribution

. Next, we solved the optimization problem in (71) using
the function in Matlab, using different initializations
and compared the empirical rate to the true rate. We repeated this
for several values of and the results are displayed in Fig. 12.
We see that for , approximately samples
are required for the empirical distribution to be close enough to
the true distribution so that the empirical rate converges to the
true rate.

IX. CONCLUSION, EXTENSIONS AND OPEN PROBLEMS

In this paper, we presented a solution to the problem of
finding the error exponent for tree structure learning by exten-
sively using tools from large-deviations theory combined with
facts about tree graphs. We quantified the error exponent for
learning the structure and exploited the structure of the true
tree to identify the dominant tree in the set of erroneous trees.
We also drew insights from the approximate crossover rate,
which can be interpreted as the SNR for learning. These two
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main results in Theorems 5 and 8 provide the intuition as to
how errors occur for learning discrete tree distributions via the
Chow-Liu algorithm.

In a companion paper [27], we develop counterparts to the
results here for the Gaussian case. Many of the results carry
through but thanks to the special structure that Gaussian distri-
butions possess, we are also able to identify which structures
(among the class of trees) are easier to learn and which are
harder to learn given a fixed set of correlation coefficients on the
edges. Using Euclidean information theory, we show that if the
parameters on the edges are fixed, the star is the most difficult
to learn (requiring many more samples to ensure )
while the Markov chain is the easiest. The results in this paper
have also been extended to learning high-dimensional general
acyclic models (forests) [38], where grows with and typi-
cally the growth of is much faster than that of .

There are many open problems resulting from this paper. One
of these involves studying the optimality of the error exponent
associated to the ML Chow-Liu algorithm , i.e., whether the
rate established in Theorem 5 is the best (largest) among all
consistent estimators of the edge set. Also, since large-deviation
rates may not be indicative of the true error probability ,
results from weak convergence theory [50] may potentially be
applicable to provide better approximations to .

APPENDIX A
PROOF OF THEOREM 2

Proof: We divide the proof of this theorem into three steps.
Steps 1 and 2 prove the expression in (21). Step 3 proves the
existence of the optimizer.

Step 1: First, we note from Sanov’s Theorem [30, Ch. 11]
that the empirical joint distribution on edges and satisfies

(73)
for any set that equals the closure of its inte-
rior, i.e., . We now have a LDP for the se-
quence of probability measures , the empirical distribution
on . Assuming that and do not share a common node,

is a probability distribution over four variables
(the variables in the node pairs and ). We now define the
function as

(74)

Since , defined in (22) is continuous in and
the mutual information is also continuous in , we con-
clude that is indeed continuous, since it is the composition of
continuous functions. By applying the contraction principle [11]
to the sequence of probability measures and the continuous
map , we obtain a corresponding LDP for the new sequence of
probability measures , where the rate
is given by

(75)

(76)

Fig. 13. Illustration of Step 2 of the proof of Theorem 2.

We now claim that the limit in (20) exists. From Sanov’s the-
orem [30, Ch. 11], it suffices to show that the constraint set

in (76) is a regular closed set, i.e.,
it satisfies . This is true because there are no
isolated points in , and, thus, the interior is nonempty. Hence,
there exists a sequence of distributions
such that , which proves
the existence of the limit in (20).

Step 2: We now show that the optimal solution ,
if it exists (as will be shown in Step 3), must satisfy

. Suppose, to the contrary, that with
objective value is such that .
Then , where , as shown above, is continuous.
Thus, there exists a such that the -neighborhood

(77)

satisfies [37, Ch. 2]. Consider the new
distribution (See Fig. 13)

(78)

(79)

Note that belongs to , and hence, is a fea-
sible solution of (76). We now prove that

, which contradicts the optimality of .

(80)

(81)

(82)

(83)

where (81) is due to the convexity of the KL-divergence in the
first variable [30, Ch. 2], (82) is because
and (83) is because . Thus, we conclude that the optimal
solution must satisfy and the crossover rate
can be stated as (21).

Step 3: Now, we prove the existence of the minimizer
, which will allow us to replace the in (21) with min.

First, we note that is continuous in both variables,
and hence continuous and the first variable . It remains to
show that the constraint set

(84)
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is compact, since it is clearly nonempty (the uniform distribution
belongs to ). Then we can conclude, by Weierstrass’ extreme
value theorem [37, Theorem 4.16], that the minimizer
exists. By the Heine-Borel theorem [37, Theorem 2.41], it suf-
fices to show that is bounded and closed. Clearly is bounded
since is a bounded set. Now, where is
defined in (74). Since is continuous and is closed, is
closed [37, Theorem 4.8]. Hence, that is compact. We also
need to use the fact that is compact in the proof of Theorem
12.

APPENDIX B
PROOF OF THEOREM 5

Proof: We first claim that , the edge set corresponding to
the dominant error tree, differs from by exactly one edge.21

To prove this claim, assume, to the contrary, that differs from
by two edges. Let ,

where , are the two edges that have replaced ,
respectively. Since is a tree, these edges

cannot be arbitrary and specifically,
for the tree constraint to be satisfied. Recall that

the rate of the event that the output of the ML algorithm is is
given by in (30).

Suppose that for , 2 and
for , , 2 and . See Fig. 14. Note that the

true mutual information quantities satisfy . We
prove this claim by contradiction that suppose
then, does not have maximum weight because if the nonedge

replaces the true edge , the resulting tree22 would have
higher weight, contradicting the optimality of the true edge set

, which is the MWST with the true mutual information quan-
tities as edge weights. More precisely, we can compute the ex-
ponent when is the output of the MWST algorithm

(85)

(86)

(87)

Now where . From
Prop. 4, the error exponent associated to the dominant error tree,
i.e., and from (87), the dominant error
tree cannot be and should differ from by one and only
one edge.

The similar conclusion holds for the two other cases (i)
for , 2, and
and (ii) for , 2,

and . In other words, the
dominant error tree differs from the true tree by one edge.

We now use the “worst-exponent-wins principle” [11, Ch. 1],
to conclude that the rate that dominates is the minimum

21This is somewhat analogous to the fact that the second-best MWST differs
from the MWST by exactly one edge [34].

22The resulting graph is indeed a tree because �� � � ������ � � � form a
cycle so if any edge is removed, the resulting structure does not have any cycles
and is connected; hence, it is a tree. See Fig. 2.

Fig. 14. Illustration of the proof of Theorem 5. The dominant error event in-
volves only one crossover event.

over all possible , namely with defined in
(37). More precisely

(88)

(89)

(90)

(91)

(92)

where (89) is from the union of events bound, (90) and (91) are
from the definitions of the crossover event and rate respectively
(as described in Cases 1 and 2 above) and (92) is an application
of the “worst-exponent-wins” principle [11, Ch. 1].

We conclude23 from (92) that

(93)

from the definition of the dominant replacement edge
and the dominant nonedge , defined in (35) and (37) respec-
tively. The lower bound follows trivially from the fact that
if replaces , then the error occurs. Thus,

and

(94)

(95)

Hence, (93) and (95) imply that
which proves our main result in (36).

The finite-sample result in (39) comes from the upper bound
in (92) and the following two facts:

1) The exact number of -types with alphabet is given by
[51]. In particular, we have

(96)

for all , since only involves the distribution
. Note that the exponent 4 of in (96)

23The notation � � � means that �	
 ��
 ����� �� � � �. Sim-

ilarly, � � � means that �	
 	�� ����� �� � � �.
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is an upper bound since if and share a node
.

2) The number of error events is at most
because there are nonedges
and for each nonedge, there are at most edges along
its path.

This completes the proof.

APPENDIX C
PROOF OF THEOREM 6

Statement (a) statement (b) was proven in full after the
theorem was stated. Here we provide the proof that (b) (c).
Recall that statement (c) says that is not a proper forest. We
first begin with a preliminary lemma.

Lemma 13: Suppose , , are three random variables
taking on values on finite sets , , respectively. Assume
that everywhere. Then and
are Markov chains if and only if is jointly independent of , .

Proof: That is a Markov chain implies that

(97)

or alternatively

(98)

Similarly from the fact that is a Markov chain, we
have

(99)

Equating (98) and (99), and use the positivity to cancel ,
we arrive at

(100)

It follows that does not depend on , so there is some
constant such that for all . This
immediately implies that so that .
A similar argument gives that . Furthermore, if

is a Markov chain, so is , therefore

(101)

The above equation says that is jointly independent of both
and .

Conversely, if is jointly independent of both and ,
then and are Markov chains. In fact is not
connected to .

Proof: We now prove (b) (c) using Lemma 13 and
the assumption that for all .

If (b) is true then for all
and for all . Assume, to the contrary, that

is a proper forest, i.e., it contains at least 2 connected com-
ponents (each connected component may only have one node),
say for , 2. Without loss of generality, let
be in component and , belong to component . Then

since and , we have that jointly
independent of and . By Lemma 13, we have the following
Markov chains and . This implies
from the Data Processing Inequality [30, Theorem 2.8.1] that

and at the same time
which means that . This contradicts (b) since
by taking , the mutual informations along the path

are no longer distinct.
Now assume that (c) is true, i.e., is not a proper forest.

Suppose, to the contrary, (b) is not true, i.e., there exists a
such that , where is the replacement

edge associated with the nonedge . Without loss of generality,
let and , then since is not a proper
forest, we have the following Markov chain .
Now note that . In fact, because there is no
loss of mutual information , and hence, by
the Data Processing Inequality, we also have .
By using Lemma 13, we have jointly independent of and

; hence, we have a proper forest, which is a contradiction.

APPENDIX D
PROOF OF THEOREM 8

Proof: The proof proceeds in several steps. See Figs. 5 and
6 for intuition behind this proof.

Step 1: Let be such that

(102)

Thus, the ’s are the deviations of from . To ensure
that is a valid distribution we require . The
objective in (52) can now be alternatively expressed as

(103)

where is the vectorized version of the deviations
and is a diagonal matrix containing

the entries along its diagonal.
Step 2: We now perform a first-order Taylor expansion of

in the neighborhood of .

(104)

(105)

where is the length -vector that contains the information
density values of edge . Note that because of the assumption
that is not a proper forest, for all ; hence,
the linear term does not vanish.24 The constraints can now be
rewritten as

(106)

or in matrix notation as

(107)

24Indeed if � were a product distribution, the linear term in (105) vanishes
and ��� � is approximately a quadratic in ��� (as shown in [15]).



1732 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

where is the length- vector consisting of all ones. For
convenience, we define to be the matrix in (107) i.e.,

(108)

Step 3: The optimization problem now reduces to mini-
mizing (103) subject to the constraints in (107). This is a stan-
dard least-squares problem. By using the Projection Theorem in
Hilbert spaces (or Lagrange multipliers), we get the solution

(109)
The inverse of exists because we assumed
is not a proper forest, and hence, for all

. This is a sufficient condition for the matrix to have
full row rank and thus, is invertible. Finally, we
substitute in (109) into (103) to obtain

(110)

where is the (1,1) element of the matrix . Define to
be the weighting function given by

(111)

It now suffices to show that is indeed the inverse
variance of . We now simplify the expression for the
weighting function recalling how and are
defined. The product of the matrices in (111) is

(112)

where all expectations are with respect to the distribution .
Note that the determinant of (112) is

. Hence, the (1,1) element of the inverse
of (112) is simply

(113)

Now, if and share a node, this proof proceeds in exactly the
same way. In particular, the crucial step (105) will also remain
the same since the Taylor expansion does not change. This con-
cludes the first part of the proof.

Step 4: We now prove the continuity statement. The idea
is that all the approximations become increasingly exact as (in
the definition of the -very noisy condition) tends to zero. More
concretely, for every , there exists a such that if

satisfies the -very noisy condition, then

(114)

since mutual information is continuous. For every , there
exists a such that if satisfies the -very noisy
condition, then

(115)

since if is -very noisy it is close to the constraint set
, and hence, close to the optimal solution

. For every , there exists a such that if
satisfies the -very noisy condition, then

(116)

which follows from the approximation of the divergence and
the continuity statement in (115). For every , there exists
a such that if satisfies the -very noisy condition,
then

(117)

which follows from retaining only the first term in the Taylor
expansion of the mutual information in (105). Finally, for every

, there exists a such that if satisfies the -very
noisy condition, then

(118)

which follows from continuity of the objective in the constraints
(117). Now choose to conclude that for every

, there exists a such that if satisfies the -very
noisy condition, then (118) holds. This completes the proof.

APPENDIX E
PROOF OF PROPOSITION 10

Proof: The following facts about in Table I can be
readily verified:

1) is positive everywhere, i.e., for all .
2) is Markov on the complete graph with nodes;

hence, is not a tree-structured distribution.
3) The mutual information between and as a function

of is given by

Thus, as .
4) For any ,

and this pair of mutual information quantities can be made
arbitrarily small as .

Thus, for sufficiently small ,
. We conclude that the Chow-Liu MWST algorithm will

first pick the edge (1, 2) and then arbitrarily choose between the
two remaining edges: (2, 3) or (1, 3). Thus, optimal tree struc-
ture is not unique.

APPENDIX F
PROOF OF THEOREM 12

We first state two preliminary lemmas and prove the first one.
Theorem 12 will then be an immediate consequence of these
lemmas.

Lemma 14: Let and be two metric spaces and let
be a compact set in . Let be a
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continuous real-valued function. Then the function ,
defined as

(119)

is continuous on .
Proof: Set the minimizer in (119) to be

(120)

The optimizer exists since is continuous on
for each and is compact. This follows from Weier-

strass’ extreme value theorem [37, Theorem 4.16]. We want to
show that for . In other words, we need to
prove that

(121)

Consider the difference

(122)

The first term in (122) tends to zero as by the
continuity of so it remains to show that the second term,

, as . Now, we
can remove the absolute value since by the optimality of ,

. Hence

(123)

Suppose, to the contrary, there exists a sequence
with such that

(124)

By the compactness of , for the sequence ,
there exists a subsequence whose limit is

and [37, Theorem 3.6(a)]. By
the continuity of

(125)

(126)

since every subsequence of a convergent sequence con-
verges to the same limit . Now (124) can be written as

(127)

We now take the limit as of (127). Next, we use (125)
and (126) to conclude that

(128)

which contradicts the optimality of in (120). Thus,
as and , which demonstrates the

continuity of on .

Lemma 15 (The Continuous Mapping Theorem [49]):
Let be a probability space. Let the sequence of
random variables on converge -almost surely

to , i.e., . Let be a continuous
function. Then converges -almost surely to , i.e.,

.
Proof: Now, using Lemmas 14 and 15, we complete the

proof of Theorem 12. First we note from (71) that
, i.e., is a function of the empirical distribu-

tion on node pairs and . Next, we note that is a
continuous function in . If is fixed, the expres-
sion (71) is a minimization of , over the compact
set25 ; hence, Lemma 14
applies (with the identifications and ) which im-
plies that is continuous in the empirical distribution .
Since the empirical distribution converges almost surely to

[30, Sec. 11.2], also converges almost surely
to , by Lemma 15.
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