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Abstract

For theuniversalhypothesis testing problem, where the goal is to decide d@tvthe known null
hypothesis distribution and some other unknown distrdsytHoeffding proposed a universal test in the
nineteen sixties. Hoeffding’s universal test statistio ¢g written in terms of Kullback-Leibler (K-L)
divergence between the empirical distribution of the oketions and the null hypothesis distribution. In
this paper a modification of Hoeffding’s test is consideredda on a relaxation of the K-L divergence,
referred to as the mismatched divergence. The resultinghaiehed test is shown to be a generalized
likelihood-ratio test (GLRT) for the case where the altéendistribution lies in a parametric family of
distributions characterized by a finite dimensional paiteme.e., it is a solution to the corresponding
compositehypothesis testing problem. For certain choices of therate distribution, it is shown that
both the Hoeffding test and the mismatched test have the seymptotic performance in terms of
error exponents. A consequence of this result is that theTGkRptimal in differentiating a particular
distribution from others in an exponential family. It is@alshown that the mismatched test has a significant
advantage over the Hoeffding test in terms of finite sampe peerformance for applications involving
large alphabet distributions. This advantage is due to tfierence in the asymptotic variances of the

two test statistics under the null hypothesis.
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. INTRODUCTION AND BACKGROUND

This paper is concerned with the following hypothesis tegfiroblem: Suppose that the observations
Z ={Z :t=1,...} form an i.i.d. sequence evolving on a set of cardinalfy denoted byZ =
{z1,29,...,2n}. Based on observations of this sequence we wish to decithe ifmarginal distribution
of the observations is a given distributiar!, or some other distributionr’ that is either unknown or
known only to belong to a certain class of distributions. Whiee observations have distributiafl we
say that thenull hypothesiss true, and when the observations have some other distiibut we say
that thealternate hypothesis true.

A decision rule is characterized bysequencef tests¢ := {¢,, : n > 1}, where¢,, : Z" — {0,1}
with Z" representing the-th order Cartesian-product &. The decision based on the firstelements
of the observation sequence is givendyy 71, Zs, . .., Z,), whereg,, = 0 represents a decision in favor
of acceptingr® as the true marginal distribution.

The set of probability measures ahis denotedP(Z). The relative entropy (or Kullback-Leibler
divergence) between two distributions, > € P(Z) is denotedD(v!|v?), and for a givery € P(Z)

andn > 0 the divergence balbf radius  aroundy is defined as,

Q(p) :=={v € P(Z) : D(v|lp) <n}. 1)
The empirical distribution otype of the finite set of observations, Z», ..., Z,) is a random variable
'™ taking values irP(Z):
n 1 .
r (z)_E;H{ZZ_z}, zeZ 2)

wherel denotes the indicator function.

In the general universal hypothesis testing problem, thié distribution 7% is known exactly, but
no prior information is available regarding the alternatstribution 7!. Hoeffding proposed in[]2]
a generalized likelihood-ratio test (GLRT) for the uniaréiypothesis testing problem, in which the
alternate distributionr! is unrestricted — it is an arbitrary distribution iR(Z), the set of probability

distributions onZ. Hoeffding’s test sequence is given by,

7T1 1
¢p =T{ sup %Zlog (ZZ_) >n} (3)



It is easy to see that thidoeffding test(3) can be rewritten as follows:

H=1{ > log g > )
=1
= YT log ) > )
= "(2) (@)

= I{D(I"||7°) = n}

={I" ¢ Qy(n")}

If we have some prior information on the alternate distitnutr!, a different version of the GLRT
is used. In particular, suppose it is known that the alterrhstribution lies in a parametric family of
distributions of the following form:

Epo :={7" : r € RY}.

where#” € P(Z) are probability distributions oZ parameterized by a parametee R?. The specific
form of #” is defined later in the paper. In this case, the resulting amitg hypothesis testing problem
is typically solved using a GLRT (se&l[3] for results relatedthe present paper, and [4] for a more

recent account) of the following form:

M =1{ sup ZF log

Wefozez

) >n}. (5)

We show that this test can be interpreted as a relaxationeoHibeffding test of[(#4). In particular we

show that[(b) can be expressed in a form similario (4),
Y = I{D"™("x°) = n} (6)

whereD"™ is themismatched divergenca relaxation of the K-L divergence, in the sense that (u.||7) <
D(p||7) for any u,m € P(Z). We refer to the tesf]6) as threismatched test

This paper is devoted to the analysis of the mismatched givere and mismatched test.

The terminology is borrowed from thmismatched channésee Lapidoth([5] for a bibliography). The
mismatched divergence described here is a generalizatithe aelaxation introduced in [6]. In this way
we embed the analysis of the resulting universal test withenframework of Csiszar and Shields [7].
The mismatched test statistic can also be viewed as a gaagi@l of the robust hypothesis testing
statistic introduced in_[8],]9].

When the alternate distribution satisfies € £,0, we show that, under some regularity conditions on

Ero, the mismatched test of(6) and Hoeffding’s test [df (4) halentical asymptotic performance in



terms of error exponents. A consequence of this result isthteaGLRT is optimal in differentiating a
particular distribution from others in an exponential famif distributions. We also establish that the
proposed mismatched test has a significant advantage @velotifding test in terms of finite sample size
performance. This advantage is due to the difference in shmptotic variances of the two test statistics
under the null hypothesis. In particular, we show that theawae of the K-L divergence grows linearly
with the alphabet size, making the test impractical for magibns involving large alphabet distributions.
We also show that the variance of the mismatched divergermesglinearly with the dimensiod of
the parameter space, and can hence be controlled througtdanprchoice of the function class defining

the mismatched divergence.

The remainder of the paper is organized as follows. We beagi8action[Il with a description of
mismatched divergence and the mismatched test, and dedheb relation to other concepts including
robust hypothesis testing, composite hypothesis testigrse I-projection, and maximum likelihood
(ML) estimation. Formulae for the asymptotic mean and vargaof the test statistics are presented in
Section[Tl]. Sectiori 1l also contains a discussion intetjplg these asymptotic results in terms of the
performance of the detection rule. Proofs of the main resaié provided in the appendix. Conclusions

and directions for future research are contained in Sefftfon

Il. MISMATCHED DIVERGENCE

We adopt the following compact notation in the paper: For famgction f: Z — R andrw € P(Z) we
denote the meah___, f(z)7(z) by 7(f), or by (7, f) when we wish to emphasize the convex-analytic
setting. At times we will extend these definitions to allowdtions f taking values in a vector space.
Forz € Z andw € P(Z), we still user(z) to denote the probability assigned to elemeninder measure
w. The meaning of such notation will be clear from context.

The logarithmic moment generating function (log-MGF) isded

Az (f) = log(m(exp(f)))

wherer(exp(f)) = > .7 m(2) exp(f(z)) by the notation we introduced in the previous paragraph. For

any two probability measures', v? € P(Z) the relative entropy is expressed,

1 17,2 e 1 2
DO ) = (v, log(v'/v?)) if v <v
00 else



wherev! < 12 denotes absolute continuity. The following propositionalés a well-known variational
representation. This can be obtained, for instance, byiapeeg the representation in [10] to an i.i.d.

setting. An alternate variational representation of thedjence is introduced in [11].

Proposition 11.1. The relative entropy can be expressed as the convex duaé ddghmoment generating

function: For any two probability measures, v? € P(Z),
D(H|v?) ZSI;p(Vl(f) — A2 (f)) (7)

where the supremum is taken over the space of all real-véiuections onZ. Furthermore, ifv! and v?

have equal supports, then the supremum is achieved by tHiédigood ratio functionf* = log(v!/v/?).

Outline of proof: Although the result is well known, we provide a simple proefésince similar
arguments will be reused later in the paper.

For any functionf and probability measure we have,
D) = (' log(v'/v?))
= (' log(v/v?)) + (V' log(v' /1))
On settingy = v2exp(f — A,-(f)) this gives,
DWHv?) = vH(f) = Mz (f) + D |lv) = v (f) = Awa(f)-

If »! andv? have equal supports, then the above inequality holds witraléy for f = log(v!/v?),
which would lead tov = v!. This proves thaf{7) holds whenevel andv? have equal supports. The
proof for general distributions is similar and is omitteddne [ |
The representatiori](7) is the basis of the mismatched divery We fix a set of functions denoted
by F, and obtain a lower bound on the relative entropy by takirggshipremum over the smaller set as

follows,

D™ (! [12) = sup {1 () — Ao () }. (®)

feF
If ' and »? have full support, and if the function clasg contains the log-likelihood ratio function
f* = log(vt/v?), then it is immediate from Propositidn 1.1 that the supremin (8) is achieved by
f*, and in this caséd" (v'||v?) = D(v'||v?). Moreover, since the objective function i (8) is invariant
to shifts of f, it follows that even if a constant scalar is added to the fionc/*, it still achieves the

supremum in[{B).



In this paper the function class is assumed to be defineddhrauinite-dimensional parametrization
of the form,
F={f:reRY (9)

Further assumptions will be imposed in our main results. dntipular, we will assume thaf,(z) is
differentiable as a function aof for eachz.
We fix a distribution7 € P(Z) and a function class of the forra](9). For eachke R? the twisted

distribution 7" € P(Z) is defined as,

7 =mexp(fr — Ar(fr))- (10)
The collection of all such distributions parameterizedrbig denoted

Er i ={7" :r e RY}. (11)

A. Applications

The applications of mismatched divergence include thopdéicgtions surveyed in Section 3 dfl [4] in
their treatment of generalized likelihood ratio tests. édese list potential applications in three domains:
Hypothesis testing, source coding, and nonlinear filter@iher applications include channel coding and
signal detection, following [4].

1) Hypothesis testing:The problem of universal hypothesis testing is relevantewesal practical
applications including anomaly detection. It is often poesto have an accurate model of the normal
behavior of a system, which is usually represented by thiehyglothesis distribution®. The anomalous
behavior is often unknown, which is represented by the uwknalternate distribution. The primary
motivation for our research is to improve the finite samplee gperformance of Hoeffding's universal
hypothesis tesf{3). The difficulty we address is the largéamae of this test statistic when the alphabet

size is large. Theorem 1.2 makes this precise:

Theorem 11.2. Let 7%, 7! € P(Z) have full supports over.

(i) Suppose that the observation seque#ds i.i.d. with marginalr®. Then the normalized Hoeffding

test statistic sequencgD(I'||7°) : n > 1} has the following asymptotic bias and variance:

Jim ElnDI"|x%)] = (N -1) (12)
lim Var[nD(I"(|7%)] = (N -1) (13)

n—oo



where N = |Z| denotes the size (cardinality) @. Furthermore, the following weak convergence
result holds:

d.
nD(I"|7%) —=— L%, (14)

where the right hand side denotes the chi-squared disicdhuwith N — 1 degrees of freedom.

(i) Suppose the sequengeis drawn i.i.d. underr! # 70, We then have,

JLI&OE[n(D(F”HWO) - D(7T1||7T0))] =1i(N-1)

The bias result ofL(12) follows from the unpublished repdiZ][(see([18, Sec III.C]), and the weak
convergence result of (1L4) is given in_[14]. All the resulfstioe theorem, including (13) also follow
from Theoren{ 1.2 — We elaborate on this in sectlod III.

We see from TheoremTl.2 that the bias of the divergencestiad (I || 7°) decays aé\%, irrespective
of whether the observations are drawn from distributidnor 7'. One could argue that the problem of
high bias in the Hoeffding test statistic can be addresseseltyng a higher threshold. However, we also

notice that when the observations are drawn undeithe variance of the divergence statistic decays as
N-1

2n2 !

test for large alphabet sizes, since it cannot be addressedsly.

which can be significant wheN is of the order of22. This is a more serious flaw of the Hoeffding

The weak convergence result [n14), and other such resstibleshed later in this paper, can be used
to guide the choice of thresholds for a finite sample testiestito a constraint on the probability of false
alarm (see for example,][7, p. 457]). As an application[of) (W2 propose the following approximation
for the false alarm probability in the Hoeffding test definedd),

N-1
peni=Pro {9 = 1} = P{3 30 W2 2 ) a5)
=1
where {W;} are i.i.d. N(0,1) random variables. In this way we can obtain a simple formolatifie
threshold to approximately achieve a given constrainpQnFor moderate values of the sequence length
n, the x? approximation gives a more accurate prediction of the falaem probabilities for the Hoeffding
test compared to those predicted using Sanov’s theorem akemenstrate below.

Consider the application of (IL5) in the following examplee Wsed Monte-Carlo simulations to
approximate the performance of the Hoeffding test desdribed), with 7° the uniform distribution on
an alphabet of siz0. Shown in Figuré]l is a semi-log plot comparing three quiastifThe probability

of false alarmpe,, estimated via simulation; the approximatidn](15) obtdif®m the Central Limit



Theorem; and the approximation obtained from Sanov’s Téraplog(pea) ~ —nn. It is clearly seen

that the approximation based on the weak convergence res(i5) is far more accuratethan the

approximation based on Sanov’s theorem. It should be not&idthe approximate formula for the false

alarm probability obtained from Sanov’s theorem can be nmadiee accurate by using refinements of large

deviation results given il [15]. However, these refinememés often difficult to compute. For instance,
N-3

it can be shown using the results 6f [15] that ~ ¢n 2 exp(—nn) where constant is given by a

surface integral over the surface of the divergence I&)(x°).

Probability of error —

10 o e Sanov’s prediction
==+ %2 prediction
— True error probability

1 | | | | 1
10 40 50 60 70 80 90 100 110 120 130

Sample size n—

Fig. 1. Approximations for the error probability in universal hythesis testingThe error probability of the Hoeffding test is
closely approximated by the approximatién](15).

One approach to addressing the implementation issues afrtiversal test is through clustering (or
partitioning) the alphabet as ih [16], or smoothing in thaapof probability measures as in [17], [18]
to extend the Hoeffding test to the case of continuous alpisalihe mismatched test proposed here is
a generalization of a partition in the following sense. Swggpthat{A; : 1 < i < N,} are disjoint sets
satisfyingUA; = X, and letY (¢t) =i if X(¢) € A;. Applying (13), we conclude that the Hoeffding test
usingY instead ofX will have asymptotic variance equal gcéNa —1), whereN, < N for a non-trivial

partition. We have:

Proposition 11.3. Suppose that the mismatched divergence is defined withatetgpthe linear function
class(@8) usingy; =14, 1 <i < N,. In this case the mismatched t€S) coincides with the Hoeffding

test using observationg'. O



The advantage of the mismatched t€s$t (5) over a partitiohaiswe can incorporate prior knowledge
regarding alternate statistics, and we can include namdata ‘priors’ such as continuity of the log-
likelihood ratio function between the null and alternatstibbutions. This is useful in anomaly detection
applications where one may have models of anomalous behatiich can be used to design the correct
mismatched test for the desired application.

2) Source coding with trainingLet = denote a source distribution on a finite alphabeSuppose we

do not knowr exactly and we design optimal codelengths assuming thadigtebution isu: For letter

z € Z we letl(z) = —log(u(z)) denote Shannon’s codeword length. The expected codeléntis,
E[() = > U(2)m(z) = H(x) + D(rl|)
ze”Z

where H denotes the entropys >, 7(z)log(n(z)). Let £* := H(w) denote the optimal (minimal)
expected codelength.
Now suppose it is known that underthe probability of each letter € Z is bounded away from zero.

That is, we assume that for some> 0,
7 eP:={ueP(Z):u(z) >e foral z € Z}.

Further suppose that a training sequence of lengtis given, drawn underr. We are interested in
constructing a source code for encoding symbols from thecsoubased on these training symbols. Let
'™ denote the empirical distribution (i.e., thge of the observations based on thestaining symbols.
We assign codeword lengths to each symbalccording to the following rule,

0z) = log F%(Z) if T € P o
log —i— else

m(2)

wherer" is the uniform distribution orz.
Let 7 denote the sigma-algebra generated by the training synibiésconditional expected codelength

given 7T satisfies,

. 0+ D(x||T™) if T™ € Pejy
E[¢"|T]) = /
0* + D(r||7) else
We study the behavior dE[¢" — ¢*|T] as a function of.. We argue in the appendix that a modification
of the results from Theorem Ml.2 can be used to establishfdhewing relations:
n « d.
n(ET] =) —— $xk

n—oo

Eln(¢" —¢*)] —— (N -1) (16)

n—oo

Var nE[("|T]] —— (N —1)

n—oo
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where N is the cardinality of the alphabet. Comparing with Theoreri 112 we conclude that the
asymptotic behavior of the excess codelength is identwahée asymptotic behavior of the Hoeffding
test statisticD(I'"||) unders. Methods such as those proposed in this paper can be useduizerkigh
variance, just as in the hypothesis testing problem empédsn this paper.

3) Filtering: The recent paper [19] considers approximations for the ineai filtering problem.
Suppose thafX is a Markov chain orR™, andY is an associated observation processinof the
form Y'(t) = v(X(t),W(t)), whereW is an i.i.d. sequence. The conditional distributionX6ft) given
{Y(0),...,Y(t)} is denotedB;; known as thebelief statein this literature. The evolution of the belief

state can expressed in a recursive form: For some mappig(R") x RP — B(R"),
Bt-l—l = (b(Bta}/t-i-l)a t> 0

The approximation proposed in [19] is based aprojectioBobnto an exponential family of densities
overR™, of the formpy(x) = po(x) exp(67(x) — A(6)), § € R, They consider thesversel-projection
B? = argmin D(B||n)
nesé

where the minimum is ovef = {py}. From the definition of divergence this is equivalently egsed,
B¢ = arggnax/(HTz/J(x) — A(H)) B(dz) (17)

A projected filter is defined by the recursion,
Bii1 = [0(Br, Y1), >0 (18)

The techniques in the current paper provide algorithms éonputation of this projection, and suggest

alternative projection schemes, such as the robust appaescribed in Sectidn TI}F.

B. Basic structure of mismatched divergence

The mismatched test is defined to be a relaxation of the Hiogfftest described i 14). We replace
the divergence functional with the mismatched diverge¥ (I'"||7") to obtain the mismatched test
sequence,

W ={D"™ (" |7°%) > n} = H{I™ ¢ QM (")} (19)
where Q3" (%) is the mismatched divergence ball of radipysroundr® defined analogously t1(1):

QM (1) = {v € P(Z) : D" (v[|p) < n}. (20)
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The next proposition establishes some basic geometry ofmismatched divergence balls. For any

function ¢ we define the following hyperplane and half-space:
Hy = {v 1 v(g) = 0}

H, ={v:v(g) <0}

(21)

Proposition 11.4. The following hold for any, = € P(Z), and any collection of function#:

() For eachn > 0 we haveQ;"(m) C (1H,, where the intersection is over all functiopsof the

form,

g=f—A(f)—m (22)

with f € F.
(i) Suppose thay = D" (v||r) is finite and non-zero. Further suppose that fdr= v andv? = T,

the supremum i8) is achieved byf* € F. Then#H,- is a supporting hyperplane t@y" (), where
g* is given in(Z2) with f = f*.

Proof: (i) Supposeu € Qi (7). Then, for anyf € F,

p(f) = Ax(f) —n < D"™(u|lm) —n <0

That is, for anyf € F, on definingg by (22) we obtain the desired inclusi@™ (r) C .
(i) Let o € Hgy- be arbitrary. Then we have:

D™ (ulm) = sup(u(f) = Ax(f))
u(f*) = Ax(f7)

= Ax(f") +n—A(f) =

v

Hence it follows thatH . supportsQy"(r) at v.

C. Asymptotic optimality of the mismatched test

The asymptotic performance of a binary hypothesis testimoglpm is typically characterized in terms
of error exponents. We adopt the following criterion forfpemance evaluation, following Hoeffdingl[2]
(and others, notably [17]/ [18].) Suppose that the obsemsatZ = {Z; : t = 1,...} form an i.i.d.

sequence evolving of. For a givent?, and a given alternate distributiort, the type | and type Il error



12

Fig. 2. Geometric interpretation of the log likelihood ratio te3the exponeni3™ = 8*(n) is the largest constant satisfying
Q,(7%) N Qg+ (7') = 0. The hyperplane{"R := {v : v(L) = 7(L)} separates the convex sads (7°) and Qg (r).

exponents are denoted respectively by,
1
0. 1: . 1 ) _
Jg = lim inf ——log(Pro{¢y = 1}),
(23)
1
1. 1: . o+ . _
Jy = h}f;g}f - log(Pr1{¢n = 0})
where in the first limit the marginal distribution &, is 7°, and in the second it is'. The limit Jg is
also called the false-alarm error exponent, a[@olhe missed-detection error exponent.
For a given constraing > 0 on the false-alarm exponedg, an optimal test is the solution to the

asymptotic Neyman-Pearson hypothesis testing problem,
B*(n) = sup{Jé : subject tOJ(g >n} (24)

where the supremum is over all allowed test sequeticaBhile the exponent*(n) = 5*(n, 7') depends
upon~!, Hoeffding’s test we described ihl(4) does not require kmalge ofr!, yet achieves the optimal
exponent3*(n, «') for any 7'. The optimality of Hoeffding’s test established [ [2] éagbllows from
Sanov’s theorem.

While the mismatched test describedih (6) is not alwayswgltfor (22) for a general choice af, it is
optimal for some specific choices of the alternate distiiimgt The following corollary to Propositidn 11.4

captures this idea.

Corollary I1.1. Supposer’, 7! € P(Z) have equal supports. Further suppose that foralt- 0, there

existsT € R andr € R? such that

aL(z)+7=f(z) ae. [7],
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whereL is the log likelihood-ratio functior. := log(n! /7). Then the mismatched test is optimal in the
sense that the constrairﬂgMM > 7 is satisfied with equality, and undet the optimal error exponent is

achieved; i.eJ(zl)MM = B*(n) for all n € (0, D(x!||7°)).

Proof: Suppose that the conditions stated in the corollary holchs@er the twisted distribution
7 = r(r%)1=2(x1)e, wherex is a normalizing constant and € (0,1) is chosen so as to guarantee

(

D(7||7°) = n. It is known that the hyperplar®'® := {v : v(L) = #(L)} separates the divergence balls
Q,(n%) and Qg- (') at #. This geometry, which is implicit in [17], is illustrated igure[2.

From the form of7 it is also clear that

i
log o= oL — Ayo(poL).

Hence it follows that the supremum in the variational repn¢ation of D(7||7") is achieved byoL.

Furthermore, sinceL + v € F for somer € R we have
D"™(x||x) = D(xllx%) =7

= (oL +7)— Ago(oL + 1)

= 7(oL) — Aro(oL).
This means that{"® = {v : v(oL — A (oL) —n) = 0}. Hence, by applying Propositidn 11.4 (ii) it
follows that the hyperplang/"* separate®;" (%) and Qg- (w'). This in particular means that the sets
oy (79) and Q- (') are disjoint. This fact, together with Sanov’s theorem pothe corollary. ®

The corollary indicates that while using the mismatched itegpractice, the function class might be

chosen to include approximations to scaled versions ofagydikelinood ratio functions of the anticipated
alternate distributiongz!} with respect tor".

The mismatched divergence has several equivalent cheratiens. We first relate it to an ML estimate

from a parametric family of distributions.

D. Mismatched divergence and ML estimation
On interpretingf, — A (f.) as a log-likelihood ratio function we obtain in Propositid5]the following
representation of mismatched divergence,
D™ (pf|m) = Sup (#(fr) = Ax(fr)) = D(plim) = inf D(ulv). (25)
reRd VELR

The infimum on the RHS of (25) is known asverse I-projectior7]. Propositiod 1.6 that follows uses

this representation to obtain other interpretations ofrfiematched test.
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Proposition I1.5. The identity(Z5) holds for any function clasg. The supremum is achieved by some
r* € R4 if and only if the infimum is attained at* = # € &,. If a minimizerv* exists, we obtain the

generalized Pythagorean identity
D(p|w) = D™ (ullw) + D(ullv*)

Proof: For anyr we haveu(f,) — Ar(f;) = p(log(7"/m)). Consequently,

D" (uljm) = sup(u(fr) = Ax(f:))

o (25)
= sgp{D(MHﬂ) — D(pl|7")}

This proves the identity (25), and the remaining conclusitollow directly. |

The representation of Proposition_11.5 invites the intetption of the optimizer in the definition of
the mismatched test statistic in terms of an ML estimatee@ihe well-known correspondence between
maximum-likelihood estimation and the generalized liketd ratio test (GLRT), Propositidn 1.6 implies

that the mismatched test is a special case of the GLRT arthipz[].

Proposition 11.6. Suppose that the observatio@sare modeled as an i.i.d. sequence, with marginal in

the family&,.. Let7™ denote the ML estimate efbased on the first samples,

7;1’), c argmaXPﬁT{Zl :a1722:a27,,"Zn:an}

reR4

= arg max I} ;7" (a;)
reRd

wherea; indicates the observed value of th¢h symbol. Assuming the maximum is attained we have

the following interpretations:

(i) The distribution7™" solves the reverse I-projection problem,

7" € argmin D(T"||v).
l/E&r

(i) The functionf* = f;» achieves the supremum that defines the mismatched diverdg&qT" ||x) =

(%) = Ax(f7).

Proof: The ML estimate can be express&tl= arg max, cr.(I'"",log 7"), and hence (i) follows by
the identity,

argmin D(I'"||v) = arg max (', log v), veP.
ve€y ves



15

Combining the result of part (i) with Propositign1I.5 we dgbe result of part (ii). [ |
From conclusions of Propositidn 1.5 and Proposition]11.6 have,

)

= max(I", log K}
vely ™

-7

D"™([I"|r) = (I log =
T

In general when the supremum in the definition/&f" (I'"||7) may not be achieved, the maxima in the

above equations are replaced with suprema and we have thwifa identity:

D" (1" || :sup—g log .
( || ) 1/66} n i=1 ﬂ-(ZZ)

Thus the test statistic used in the mismatched te$f of (&asthy the generalized likelihood ratio between

the family of distributionsg,o and 7" where
Ero = {7?0 exp(fr — Ago(fr)) i 7 € Rd},

More structure can be established when the function claksaar.

E. Linear function class and I-projection

The mismatched divergence introduced|ih [6] was restritted linear function class. Lefy; : 1 <
i < d} denoted functions onZ, let ¢ = (¢1,...,1%,4)", and letf, = r™) in the definition [(9):
d
]::{f?«:ZrizZ)i:reRd}. (26)
=1
A linear function class is particularly appealing becatmgedptimization problem irf{8) used to define the
mismatched divergence becomes a convex program and hesasyiso evaluate in practice. Furthermore,
for such a linear function class, the collection of twistedtributions £, defined in [(I1) forms an
exponential familyof distributions.
PropositionILH expresseB" (u||7) as a difference between the ordinary divergence and thes valu
of a reverse Il-projectionnf,cs_D(u|lv). The next result establishes a characterization in terma of

(forward) I-projection. For a given vecterc R? we letP denote themoment class
P={veP2):vy)=c} (27)

wherev () = (v(1), v(1h2), ..., v(q))"
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Proposition 11.7. Suppose that the supremum in the definitio®¥F (1| 7) is achieved at some* € R,
Then,

(i) The distributionv* := 7" € &, satisfies,
D™ (u||r) = D(v*||7) = min{D(v||x) : v € P},

whereP is defined using = pu(v) in 7).
(i) D"™(u||w) = min{D(v||r) : v € Hg}, whereg* is given in@22) with f = r*T, andn =
DY (pu|).

Proof: Since the supremum is achieved, the gradient must vanistdyirst order condition for
optimality:

v(:u(fr) _Aﬂ(fr)) =0

The gradient is computable, and the identity above can teusxpresseg(y)) — " (¢)) = 0. That is,

the first order condition for optimality is equivalent to thenstraintz” < P. Consequently,

*

=T

D(’||lr) = (7" ,log —)
= 7 (") = Ax(rTY)
= u(r"y) — Ax(r*Tp) = D™ (pim).

Furthermore, by the convexity &, (f,) in r, it follows that the optimat* in the definition of D™ (v||7)

is the same for all> € P. Hence, it follows by the Pythagorean equality of Proposifil.d that
D(v||m) = D(v||v*) + D(v*||r), for all v € P.
Minimizing overv € P it follows thatv* is the I-projection ofr onto P:
D(v*||7) = min{D(v||r) : v € P}

which gives (i).

To establish (ii), note first that by (i) and the inclusiBnC #H,- we have,

D"™(u||7) = min{D(v|r):v e P}

v

inf{D(v||7) : v € Hg-}.

The reverse inequality follows from Propositiobn 1.4 (ipdamoreover the infimum is achieved withi.
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Fig. 3. Interpretations of the mismatched divergence for a linearcfion classThe distributionz”" is the I-projection ofr

onto a hyperplané{,-. It is also the reverse I-projection @f onto the exponential family¥.

The geometry underlying mismatched divergence for a lifi@action class is illustrated in Figuté 3.
Suppose that the assumptions of Proposifiod 1.7 hold, abttie supremum i (25) is achievedrdt
Let n = D" (u||7) = p(fr) — Ax(fre), @andg* = fre — (7 + Ax(f,+)). Propositio IL4 implies that
H,- defines a hyperplane passing throyghwith Q, (7) C Q" (m) C H,.. This is strengthened in the
linear case by Propositidn 1.7, which states thgt supportsQ, (=) at the distributiont” . Furthermore
Propositio IL% asserts that the distributiofi minimizes D(u/||%) over all © € &,.

The result established in Corolldry1l.1 along with the iptetation of the mismatched test as a GLRT

can be used to show that the GLRT is asymptotically optimabkfo exponential family of distributions.

Theorem 11.8. Let7® be some probability distribution over a finite setLet F be a linear function class
as defined in[(26) and,. be the associated exponential family of distributions @efiim [I1). Consider
the generalized likelihood ratio test (GLRT) betweehand £,0 defined by the following sequence of

decision rules:

GLRT _ H - 1 > .
T =T s ; %8 oz 2™

The GLRT solves the composite hypothesis testing probldf@R all 7' € £.0 in the sense that the
constrainth(;GLRT > 7 is satisfied with equality, and undet the optimal error exponent*(n) is achieved

for all 7 € (0, D(w"||7°)) and for all 7! € Exo; i.e., Jlaiar = B*(1).

Proof: From Propositio IL6 and the discussion following the msition, we know thatp®F" is
the same as the mismatched test defined with respect to thadiuclass?. Moreover, any distribution

7l € & is of the form#” = 7%exp(f, — Aro(f,)) for somer ¢ R¢ as defined in[(20). Usingd. to
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denote the log-likelihood ratio function betweeh and#?, it follows by the linearity of 7 that for any
a >0,
al = a(fr - Awo(fr))
= fart+T
for somer € R. Hence, it follows by the conclusion of Corollary 1I.1 thdiet GLRT ¢°F" solves the
composite hypothesis testing problem](24) betwe&rand £,.. [
The above result is a special case of the sufficient conditionoptimality of the GLRT established in
[3, Thm 2, p. 1600]. From the proof it is easily seen that treultecan be extended to hold for composite
hypothesis tests betweer! and any family of distributiong . of the form in [11) providedF is closed

under positive scaling. It is also possible to strengthenrésult of Corollary Il to obtain an alternate
proof of [3, Thm 2, p. 1600]. We refer the reader [fo![20] foralst

F. Log-linear function class and robust hypothesis testing
In the prior work [8], [9] the following relaxation of entrgpis considered,
DF®(ul|) := inf D(ulv) (28)
ve

where the moment clas® is defined in [(2I7) withc = (1)), for a given collection of functiong; :
1 <4 < d}. The associated universal test solves a min-max robustthgpis testing problem.
We show here thaDR® coincides withD"™ for a particular function class. It is described Bk (9) in

which each functiory,. is of the log-linear form,

fr =log(1+r")

subject to the constraint that- " (z) is strictly positive for each. We further require that the functions

1 have zero mean under distributian- i.e., we requirer () = 0.

Proposition 11.9. For a givenw € P(Z), suppose that the log-linear function clagsis chosen with
functions{y;} satisfying=(v)) = 0. Suppose that the moment class used in the definitioR"6% is
chosen consistently, with= 0 in (27). We then have for eaghe P(Z),

D™ (p|m) = D)
Proof: For eachu € P(Z), we obtain the following identity by applying Theorem 1.4[8],

irelgD(qu/) = sup{p(log(1 + ")) : 1 +r"Y(z) > 0 for all z € Z}
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Moreover, under the assumption that)) = 0 we obtain,
Ar(log(L + r'y)) =log(m(1 +r7))) = 0
Combining these identities gives,
D*(pl|w) = inf D(plv)
= sup {p(log(1 + 1)) — Ar(log(1 + r'e)) :
14+7rT(z) >0forall z € Z}

= sup{u(f) — As(f)} = D" (u]}x)
fer

1. ASYMPTOTIC STATISTICS

In this section, we analyze the asymptotic statistics ofrtii@matched test. We require some assump-
tions regarding the function class = {f, : » € R%} to establish these results. Note that the second and
third assumptions given below involve a distributiph € P(Z), and a vectors € R?. We will make
specialized versions of these assumptions in establishingesults, based on specific values8fand
s. We useZ,0 C Z to denote the support ¢f° andP(Z,0) to denote the space of probability measures

supported or?,,0, viewed as a subset ¢(Z).

Assumptions

(A1) f.(z)is C?in r for eachz € Z.

(A2) There exists a neighborhods of 1.°, open inP(Z,,0) such that for each € B, the
supremum in the definition ab"™ (1||°) in (8) is achieved at a unique point).

(A3) The vectors{vy,...,1;} are linearly independent over the support;df where

1o = 1, and for each > 1

Yi(z) = if,n(z) , ze”. (29)

or; r=s
The linear-independence assumption iml(A3) is defined dewiel If there are constant&u,...,aq}
satisfying Zle aii(z) = 0 a.e.[u’], thena; = 0 for eachi. In the case of a linear function class,
the functions{v;,i > 1} defined in [2D) are just the basis functions [inl(26). Lenimd]Ifirovides an
alternate characterization of Assumptiori {A3).

For anyu € P(Z) define the covariance matrix,, via,

(1, 5) = plhiyy) — p(i) u(v;), 1<id,5 <d. (30)
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We useCov,(g) to denote the covariance of an arbitrary real-valued fonggi under
Covyi(9) = nulg®) — n(g)*. (31)
Lemma I11.1. Assumption (A3) holds if and only i, > 0.

Proof: We evidently havey™,,0v = Cov,0(v™¢) > 0 for any vectorv € RY. Hence, we have the

following equivalence: For any € R?, on denotinge, = p°(v™v),

d

VS =0 & vaﬁi(z) —c, ae.[u

i=1

The conclusion of the lemma follows. [ |
We now present our main asymptotic results. Thedren lllehiifies the asymptotic bias and variance

of the mismatched test statistic under the null hypoth@sid,also under the alternate hypothesis. A key

observation is that the asymptotic bias and variance doedepend onV, the cardinality ofZ.

Theorem 111.2. Suppose that the observation seque#cés i.i.d. with marginalr. Suppose that there
existsr* satisfyingf,- = log(w /7). Further, suppose that Assumptiongl(A1L1(A2)] (A3) hotd wi = 7

and s = r*. Then,

(i) Whenr = 7Y,
: MM (1|0 _ 1
nh_)nolo ElnD"™(T™||7°)] = 5d (32)
lim Var [nD" T~ = 3d (33)
MM (7|0 d. 1.2
nD™ (%) L 13
(i) Whenm = 7! # 70, we have witho? := Covi (f,+),
lim E[n(D"™(I"||7°) — D(x'|[x"))] = 3d (34)
lim Var [n:D"™(T"|7%)] = o? (35)
n? (D™ (T"|7°) — D(n*||x°)) %N(O,Jf)- (36)

In part (i) of Theoreni1IL.2, the assumption that exists implies thatr' and7® have equal supports.
Furthermore, if Assumption (A3) holds in part (i), then dfmient condition for Assumption (A2) is that

the functionV (r) := (—7'(f,) + Ao (f,)) be coercive in-. And, under (A8), the functioiv is strictly
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convex and coercive in the following settings: (i) If the &tion class is linear, or (ii) the function class is

log-linear, and the two distributions' and7® have common support. We use this fact in Theorem!11.3
for the linear function class. The assumption of the existeof r* satisfying f,- = log(7!/7%) in part

(i) of TheorenTI.2 can be relaxed. In the case of a lineanction class we have the following extension

of part (ii).

Theorem 111.3. Suppose that the observation sequettés drawn i.i.d. with marginalr! satisfying
7t < 7%, Let F be the linear function class defined [n126). Suppose theesagpm in the definition of
D" (71||x%) is achieved at some' € R? Further, suppose that the functiods);} satisfy the linear

independence condition of Assumptiofi](A3) with= 7!'. Then we have,

lim E[n(D"™(I"||7%) — D™ (x'||z"))] =  Strace(EnX;')
n—o0
lim Var [n: D™ (I ||z%)] = o
n (D" (I [l7°) — D" (x! %)) —=— N(0,0)

where in the first limitt = 7% exp(f,.1 — Azo(f1)), andX,» and X5 are defined as if(30). In the second

two limits 0?2 = Cov: (f1). O

Although we have not explicitly imposed Assumption {A2) ihebrem I3, the argument we pre-
sented following Theorerh 112 ensures that wheh < 7% Assumption (AR) is satisfied whenever
Assumption (AB) holds. Furthermore, it can be shown thatati@evement of the supremum required in
TheorenfIL3 is guaranteed #f' and7” have equal supports. We also note that the vectappearing

in eq. [29) of Assumption (A3) is arbitrary when the paramation of the function class is linear.

The weak convergence results in Theofemllll.2 (i) can besddrirom Clarke and Barron [12], [13] (see
also [7, Theorem 4.2]), following the maximum-likelihoodtienation interpretation of the mismatched
test obtained in Propositidn 11.6. In the statistics litera, such results are call&tlilks phenomenafter
the initial work by Wilks [14].

These results can be used to set thresholds for a targetafalse probability in the mismatched test,
just like we did for the Hoeffding test in_(15). It is shown that such results can be used to set
thresholds for the robust hypothesis testing problem dsetin Sectiori II-F.

Implications for Hoeffding test The divergence can be interpreted as a special case of noisedadiver-
gence defined with respect to a linear function class. Usiisginterpretation, the results of Theorem 1.2

can also be specialized to obtain results on the Hoeffdistgstatistic. To satisfy the uniqueness condition
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of Assumption (A2), we require that the function class sbaubt contain any constant functions. Now
suppose that the span of the linear function clas®gether with the constant functigff = 1 spans the
set of all functions orZ. This together with Assumption [A3) would imply thdt= N — 1, whereN is
the size of the alphabét It follows from Propositiod 1.1 that for such a functionasls the mismatched
divergence coincides with the divergence. Thus, an agpitaof TheorenIIL.2 (i) gives rise to the

results stated in Theorem 11.2.

To prove Theorer IITR2 and Theordm 1ll.3 we need the follayvlemmas, whose proofs are given in
the Appendix.
The following lemma will be used to deduce part (ii) of TheafdL.2] from part (i).

Lemma 111.4. Let D denote the mismatched divergence defined using functias #a Suppose
7! < 7% and the supremum in the definition 6/ (7!||x°) is achieved at somg,. € F. Let & =

70 exp(fre — Ago(fre)) and G = F — fpo :={fr — f= : 7 € R4}, Then for anyu satisfyingu < 7°, we

have

D" (u||m°) = D! (! [|n%) + D" (ull) + (1 — 7', log(—)).- 37)

O

Suppose we apply the decomposition result from Lerhmd Id.the type of the observation sequence
Z, assumed to be drawn i.i.d. with marginal. If there exists-* satisfying f,. = log(w!/z°), then we

havei = n!. The decomposition becomes
D (T 7% = D" (! |n%) + DG* (T |x') + (" = ', fr-). (38)

For largen, the second term in the decompositibn](38) has a mean of ardeand variance of order
n~2, as shown in part (i) of TheoremIl.2. The third term has zevean and variance of order*,

since by the Central Limit Theorem,
nH (0" =t fr) == N0, Cov (fr-)). (39)

Thus, the asymptotic variance 6/ (I'*||x%) is dominated by that of the third term and the asymptotic
bias is dominated by that of the second term. Thus we see #ngfip) of Theoreni II.2 can be deduced

from part (i).

Lemmalll.5. LetX = {X?:i=1,2,...} be ani.i.d. sequence with meartaking values in a compact

convex seX C R™, containingz as a relative interior point. Defin&™ = %2?21 X', Suppose we are
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given a functions : R™ — R, together with a compact sétf containingz as a relative interior point
such that,
1) The gradientVh(x) and the HessiaWV2h(x) are continuous over a neighborhood &f.
. 1 n
2) nh_)ngo—ﬁlog P{S" ¢ K} > 0.
Let M = V2h(z) and = = Cov(X1). Then,

(i) The normalized asymptotic bias i(S™) : n > 1} is obtained via,

lim nE[h(S™) — h(Z)] = ttrace(ME)

n—oo

(i) If in addition to the above conditions, the directional dextive satisfiesvh(z)" (Xt —z) =0

almost surely, then the asymptotic variance decays&s with

lim n?Var[h(S™)] = $trace( MEME)

n—oo

Lemma I11.6. Suppose that the observation sequetés drawn i.i.d. with marginaly € P(Z). Let
h : P(Z) — R be a continuous real-valued function whose gradient andstdesare continuous in a

neighborhood ofu. If the directional derivative satisfie§h(u)" (v — ) = 0 for all v € P(Z), then

n(h(I™) = h(p)) === JW MW (40)
where M = V2h(p) and W ~ N (0, Sy ) with Sy = diag(p) — pp O

Lemma I11.7. Suppose that” is an m-dimensional N/(0, I,,,) random variable, andD: R™ — R™ is
a projection matrix. Thert := ||[DV||? is a chi-squared random variable with® degrees of freedom,

where K denotes the rank ob. O

Before we proceed to the proofs of Theorém 1.2 and Theo#i8] Iwe recall the optimization

problem [2b) defining the mismatched divergence:

D™ (/‘HWO) = S&@(M(fr) - Awo(fr))- (41)

The first order condition for optimality is given by,

9(p,7) =0 (42)
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whereg is the vector valued function that defines the gradient ofahjective function in[(41):

g(p, ) ==V, (M(fr) — Ao (fr))

a (el V. fr)
= (V. fr) — GO

(43)

The derivative ofg(u,r) with respect tor is given by
w0 (e/ Vo [N fT) + 70 (e VRS
70 (efr)
ﬂo(efTVrfr)ﬂo(efTVrf,T)
(70 (efr))2
In these formulae we have extended the definition:@#/) for matrix-valued functions\/ on Z via
((M)]ij = p(M;;) = >, M (2)p(z). On lettingy”™ = V., f, we obtain,

Vrg(:uar) = :u(vgfr)_

(44)

glp,m) = p@") —x" (") (45)
VTQ(,U, T) = M(Vafr) - ﬁ-r(vafr) -
[7" (") — 7" (W) R ()] (46)

where the definition of the twisted distribution is as given{10):

T

# =70 eXp(fr - Aw“(fr))~

Proof of Theoreni TILR: Without loss of generality, we assume thét has full support oveZZ.
Suppose that the observation seque#ces drawn i.i.d. with marginal distributiomr € P(Z). We have
D™ (T™||70) % D" (7||7°) by the law of large numbers.

1) Proof of part (i): We first prove the results concerning the bias and variandbefmismatched
test statistic. We apply LemniaTll.5 to the functiduiy) := D" (u||7°). The other terms appearing in
the lemma are taken to &’ = (I, (Z;),1.,(Z;), ..., 1., (Z))", X = P(Z), z = «°, and S = I'". Let
= = Cov(X1!). It is easy to see th& = diag7’) — 7977 and X0 = WZVUT, whereX o is defined in

(30), and¥ is ad x N matrix defined by,

(i, ) = i(z). (47)

This can be expressed as the concatenation of column vegtods = [i)(z1), ¢ (22), ..., ¥ (zN)].
We first demonstrate that

M = V?h(mg) = U (Sr0) ' 0, (48)
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and then check to make sure that the other requirements ofmadfil.d are satisfied. The first two

conclusions of Theorem M2 (i) will then follow from Lemnfli.5] since
trace(ME) = trace((Xq0) ' WEWT) = trace(ly) = d,

and similarlytrace(MZMZE) = trace(l;) = d.

We first prove that under the assumptions of Thedrem I, 2t{gre is a functiom : P(Z) — R that is
C' in a neighborhood of:° such that-(x) solves[(4lL) foru in this neighborhood. Under the uniqueness
assumption (AR), the function(x) coincides with the function given in [A2).

By the assumptions, we know that when= 7%, (@2) is satisfied by-* with f,.. = 0. It follows
that 7% = #"". Substituting this into[{46), we obtai¥,.g (s, ) .0 = —2z0, Which is negative-definite
by Assumption (AB) and Lemmiall.1. Therefore, by the Irrn:hr)iiéunction Theorem, there is an open
neighborhood/ aroundy = 7Y, an open neighborhoo¥f of »*, and a continuously differentiable
functionr : U — V that satisfieg)(u, (1)) = 0, for 4 € U. This fact together with Assumptions[(A2)
and (A3) ensure that whem € U N B, the vectorr(u) uniquely achieves the supremum [n](41).

Taking the total derivative of(42) with respect idz) we get,

or(u) —19g(p,r(p))
Op(z) ou(z)

= Vrglin.r()] (49)

Consequently, whep = 7°,

)

r(p
op(z

These results enable us to identify the first and second olerarative ofh (i) = D™ (u||7°). Applying

= 2 0(2). (50)

p=m0

~—

g(p,r(p)) = 0, we obtain the derivatives df as follows,

0
8u(z)h(”) = fr(®)- (51)
& ) )

When i = 79, substituting [BD) in[({32), we obtaifi (48).
We now verify the remaining conditions required for apptyinemmalllL5:
(@) It is straightforward to see tha{r") = 0.
(b) The functionh is uniformly bounded sincé(u) = D" (u||7%) < D(u|7°) < max, 1og(7r+(z))
and7” has full support.

(c) Sincef,(,) =0 whenyu = =, it follows by (51) thatﬁ(z)h(u) =0.

p=m0
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(d) Pick acompack C UNB so thatK containst® as a relative interior point, anl C {u € P(Z) :
max, |p(u) — 7°(u)| < & min, |7°(u)|}. This choice ofK ensures thatim,, . —2 log P{S" ¢
K} > 0. Note that since*(u) is continuously differentiable oy N B, it follows by (51) and [(5R)
thath is C? on K.

Thus the results on convergence of the bias and varianaavfdtbm LemmdaIL5.

The weak convergence result is proved using Lerimal IIl.6 aechrha[1ll.7. We observe that the
covariance matrix of the Gaussian vector given in Lemmdlll.6 isYy, = = = diag(7”) — 77", This

does not have full rank sincel = 0, where1l is the N x 1 vector of ones. Hence we can write,

=GGT

[1]

whereG' is an N x k matrix for somek < N. In fact, since the support af® is full, we havek = N —1
(see LemmaTlLll). Based on this representation we can Wite- GV, whereV ~ N (0, I;).

Now, by LemmaldIL®$, the limiting random variable is given By := W'™MW = 1V'GTMGYV,
where M = VZD"™ (u||z")| = UT(VEWT)"'¥. We observe that the matriv = GTMG satisfies
D? = D. Moreover, sinceI/E7{IolT has rankd under Assumption (A3), matri®0 also has ranki. Applying
Lemmal[lIL.7 to matrixD, we conclude that/ ~ $y2.

2) Proof of part (ii):The conclusion of part (ii) is derived using part (i) and trecdmposition in[(38).
We will study the bias, variance, and limiting distributioh each term in the decomposition.
For the second term, note that the dimensionality of thetfanaclassg is alsod. Applying part (i)

of this theorem taD¥" (I'™||z!), we conclude that its asymptotic bias and variance are diyen

lim E[nDg" T« = id, (53)
lim_ Var [nDg" T~ = id. (54)
For the third term, since& is i.i.d. with marginalwl, we have
E(I" — 7', fr)] = 0, (55)
Var[n® (I — 7t f-)] = Covgi(fre). (56)

The bias result[{34) follows by combining (53], {55) and gsthe decompositio (38). To prove the

variance result(35), we again apply the decomposifioh {88)btain,
lim_Var [n2 D (T"|7%)] = lim {Var [n* D§"(I"(|7")] + Var [n? (" — 7!, f,-)]

128 [n* (DY (0"17) — E[DY* (0"} )

nd (" -7t £} (57)
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From [53) it follows that the limiting value of the first terrmdhe right hand side of (57) i8. The
limiting value of the third term is also by applying the Cauchy-Bunyakovsky—Schwarz inequalityjug,
(57) together with[{36) give$ (B5).

Finally, we prove the weak convergence redulf (36) by agaplying the decomposition (88). Bl (63)
and [54), we conclude that the second ter%ngM (I™||7!) converges in mean square @casn — oo.
The weak convergence of the third term is given[inl (39). Apm\Slutsky’s theorem, we obtaih (36m

Proof of Theorem II.B:The proof of this result is very similar to that of Theorém2lKii) except
that we use the decomposition [0{37) wjth= I'". We first prove the following generalizations 6f{53)

and [54) that characterizes the asymptotic mean and variahthe second term i (B7) with = I'":

: MM (7 || = _ 1 . 1

lim E[nD@"(T"|7)] = gtrace(Sm (7)) (58)
: MM (T || = _ 1 Ny 1 ) \—1
lim Var [nD@"(T"|7)] = Ltrace (Zr1 (27) 'S0 (Z5)7) (59)

whereG = F — f,1, and~ is defined in the statement of the proposition. The argunsesiniilar to that
of TheorentIIL2 (i): We denot, := f, — f,1, and definer(p) := DI (u|| %) = sup,.era (1(fr) — Az (fr)).
To apply Lemmd L5, we prove the following

h(r') = 0, (60)
V,h(r') = 0, (61)
and M =Vin(r') = U(S:)'w. (62)

The last two inequalitied (61) and (62) are analogous$ to &) (52). We can also verify that the rest
of the conditions of LemmBTIll5 hold. This establishgs] (a&H [59).

To prove [6D), first note that the supremum in the optimizagiooblem definingd™" (z!||#%) is achieved
by f.1, and we know by definition thaf,: = 0. Together with the definitioD" (x!||%) = ' (f,1) —
Ax(f), we obtain [BD).

Redefineg(u,r) := V, (u(ﬁ,) — Aﬁ(ﬁn)). The first order optimality condition of the optimization
problem definingD" (u.||7) givesg(u,r) = 0. The assumption thaf is a linear function class implies
that f, is linear inr. ConsequentIWEﬁ, = 0. By the same argument that leads [tal (44), we can show

that
L ﬁ(efrvrfrvrfl) B ﬁ(efrvrfr)ﬁ(efrvrf;)
Veglp,r) = [ ﬁ'(e-f") (ﬁ'(eﬁ‘))2 (63)

Together with the fact thaf,. = 0 andV,.f, = V,.f,, we obtain

Vg, ) = Y. (64)

p=ml
T:Tl
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Proceeding as in the proof of Theorém111.2 (i), we obtain)(&td [62).
Now using similar steps as in the proof of Theorfem1Il.2 @hd noticing thatog(Z;) = f,1, we can
establish the following results on the third term bf](37):

T
E[r" — ' log(Z)] = 0
Var[n#(I" — 7' log(=))] = Covm(fn)
™
1 mn 1 s d.
b — 7l log(5)) —S— N(0, Cov ().
Continuing the same arguments as in TheoremlIl1.2 (i), weaiakthe result of Theorefm 11l 3. [ |

A. Interpretation of the asymptotic results and perform@aoomparison

The asymptotic results established above can be used ty gtadinite sample performance of the
mismatched test and Hoeffding test. Recall that in the disiom surrounding Figuriel 1 we concluded
that the approximation obtained from a Central Limit Theorgives much better estimates of error

probabilities as compared to those suggested by Sanowdsetme

1
a -
IS
c
kel
= il
Q
©
g il
ks A
> R -
= 0.4 ' Mismatched tests:
< S d=1
'§ 03pf d=
o

O2ff 4=5 .

d=10
0.1f — Hoeffding test | |
0 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of false alarm pry —

Fig. 4. Comparison of ROCs of Hoeffding and mismatched tests.

Suppose the log-likelihood ratio functidog(r!/#°) lies in the function classF. In this case, the

results of Theorerh 1IT]2 and Lemnia1l).4 are informally suammed in the following approximations:
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With T denoting the empirical distributions of the i.i.d. procéss

D070 + L5 w2, Zi ~ 0

D (7°) =

D(r!|x%) + 33 il WE+ =onU, Zi ~ 7!

(65)
where {W}} is i.id., N(0,1), and U is also N(0,1) but not independent of th#’s. The standard
deviationo is given in Theorer IILP. These distributional approxiimas are valid for large:, and are
subject to assumptions on the function class used in thedgheo

We observe from[{85) that, for large enough when the observations are drawn undés the
mismatched divergence is well approximatedggytimes a chi-squared random variable witkdegrees of
freedom. We also observe that when the observations arendraderr=?!, the mismatched divergence is
well approximated by a Gaussian random variable with meén'||7") and with a variance proportional
to % and independent ofi. Since the mismatched test can be interpreted as a GLRTe ttessilts
capture the rate of degradation of the finite sample perfoomaf a GLRT as the dimensionality of the
parameterized family of alternate hypotheses increasescaffoborate this intuitive reasoning through
Monte Carlo simulation experiments.

We estimated via simulation the performance of the Hoeffdiest and mismatched tests designed
using a linear function class. We compared the error prditiabiof these tests for an alphabet size of
N = 19 and sequence length af = 40. We choser® to be the uniform distribution, and' to be the
distribution obtained by convolving two uniform distrilrts on sets of sizéN + 1)/2. We chose the

basis functiony; appearing in[{26) to be the log-likelihood ratio betweegnand 7?, viz.,

7' (2)
()

and the other basis functions, vs, . .., 14 were chosen uniformly at random. Figle 4 shows a com-

P1(z) = log 1<i<N

parison of the ROCs of the Hoeffding test and mismatched tiest different values of dimensiod.
Plotted on thez-axis is the probability of false alarm, i.e., the probapibf misclassification under?;
shown on they-axis is the probability of detection, i.e., the probailif correct classification under'.
The various points on each ROC curve are obtained by varyiagtireshold; used in the Hoeffding
test of [4) and mismatched test 6f119).

From Figurd ## we see that @sincreases the performance of the mismatched tests degrHuisss
consistent with the approximatioh {65) which suggests thatvariance of the mismatched divergence

increases withl. Furthermore, as we saw earlier, the Hoeffding test canteepreted as a special case of
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the mismatched test for a specific choice of the functionsolgith d = N — 1 and hence the performance
of the mismatched test matches the performance of the Hogftdst whend = N — 1.

To summarize, the above results suggest that although th#dittg test is optimal in an error-exponent
sense, it is disadvantageous in terms of finite sample eratrapilities to blindly use the Hoeffding test

if it is known a priori that the alternate distribution betgmto some parameterized family of distributions.

IV. CONCLUSIONS

The mismatched test provides a solution to the universabtingsis testing problem that can incorporate
prior knowledge in order to reduce variance. The main resoft SectionIll show that the variance
reduction over Hoeffding’s optimal test is substantial whke state space is large.

The dimensionality of the function class can be chosen byd#sgner to ensure that the the bias and
variance are within tolerable limits. It is in this phase es@jn that prior knowledge is required to ensure
that the error-exponent remains sufficiently large underaternate hypothesis (see e.g. Corollary I1.1).
In this way the designer can make effective tradeoffs betvtee power of the test and the variance of
the test statistic.

The mismatched divergence provides a unification of sevapproaches to robust and universal
hypothesis testing. Although constructed in an i.i.d.isgftthe mismatched tests are applicable in very
general settings, and the performance analysis presemtedi$ easily generalized to any stationary
process satisfying the Central Limit Theorem.

There are many directions for future research. Topics ofeciresearch include,

(i) Algorithms for basis synthesis and basis adaptation.

(i) Extensions to Markovian models.

(iii) Extensions to change detection.

Initial progress in basis synthesis is reported(inl [22]. éeaesults addressing the computational com-
plexity of the mismatched test are reported[inl [20]. Altheube exact computation of the mismatched
divergence requires the solution of an optimization probleve describe a computationally tractable
approximation in [[20]. We are also actively pursuing apgiiens to problems surrounding building

energy and surveillance. Some initial progress is repand@3].
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APPENDIX
A. Excess codelength for source coding with training

The results in Theorem 12 give us the asymptotic behawioD (I ||x) but what we need here is
the behavior ofD(r||T™). Define

D(nllu) if j€ Py
h(p) =
D(rl||m") else
It is clear thath is uniformly bounded from above hygg % Althoughh is not continuous at the boundary
of P/, a modified version of Lemmds T11.5 ahd T1.6 can be appliedte function’ to establish the
results of [16) following the same steps used in proving Teedll.2. The Hessian matrix/ appearing

in the statement of the lemmas is given by,
M = V?h(r) = diagim) "

Hence, traceV/2) = trac MQMQ) = N — 1.

B. Proof of Lemm&lllLl

Proof: In the following chain of identities, the first, third and fifequalities follow from relation
(25) and Propositioh T115.

D (ul|7®) = D(ulln®) —inf{D(u|lv) : v = 7°exp(f — Ano(f)), f € F}

= D(ul7) + (uylog(%» —inf{D(ullv) : v = Texp(f — Ax(f)), f € G}

E

()
~—
~

= Dg"(ull7) + (s log(=

= Dg*(pl7) + (u— ', log(

= Dg'(pl7) + (n— ', log(

C. Proof of Lemm&lIlLb

The following simple lemma will be used in multiple placestime proof that follows.

Lemma A.L If a sequence of random variablgsA”} satisfiesE[A"] —— a and {E[(A")?]} is
n—o0

m.s.

a bounded sequence, and another sequence of random varifBlé} satisfies B” — b, then
E[A"B"] —— ab. o

n— oo
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Proof of Lemma IIL.b: Without loss of generality, we can assume that the meanthe origin in
R™ and thath(z) = 0.

Since the Hessian is continuous over the Ketwe have by Taylor's theorem:
n(h(S™) — Vh(z)'S"igncry = nlh(z) + $8"V2R(S™)S"L{5ne k) (66)
nan any Qn

where S = vS” for somey = ~(n) € [0, 1]. By the strong law of large numbers we hase " 7.

n— o0

Hence S" —%* z and V2h(5") —%* V2h(z) = M since V2h is continuous atz. Now by the

n—o0 n—

boundedness of the second derivative aifeand the fact that

a.s.

we have(V2h(S"™)); jLisnex) i—s> M; ;.

Under the assumption tha is i.i.d. on the compact sef, we have
E[nS;'S}] = % ; for all n,

andE[(nSfS;-L)z] converges to a finite quantity as— oo. Hence the results of Lemrha’A.1 are applicable
with A" = nSP'S® and B" = V2h(S™); ;I snexy, Which gives:

E[nS7S)VAh(S")i lsner)) —— BiiMiy. (68)
Thus we have
n ~
E[(h(S") = Vh(@) S isecry) = E[5 5" V2R(EM)S (s cxc)]
— itracg ME). (69)

SinceX is compact is continuous, and is differentiable atz, it follows that there are scalarsand

7 such thatsup,cx |h(z)| < h and|Vh(z)"S"| < Z. Hence,
Eln(h(S™) — Vh(z)'S" Iisegry]| < n(f+B)PLS" ¢ K} —— 0 (70)

where we use the assumption that 5™ ¢ K} decays exponentially in. Combining [(69) and_(70)

and using the fact tha¥” has zero mean, we have
E[nh(S")] = E[n(h(S") — Vh(2)'S")] —— stracg M=).

This establishes the result of (i).
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Under the condition that the directional derivative is zefB) can be written as
n nan any qgn
nh(S™)[ignery = ES "V2h(S™)S L sneky- (71)
Now by squaring[(7]1), we have

2
n n n an n Qn an n
(nh(S™)Lignery)® = T ) {5} (V2h(S™))i,3 ST S1(V2h(S™ ke St Tismery | -
Z"j7k7z

As before, by the boundedness of the Hessian we have:
(V2h(S™))i 5 (V2h(S™)ksmer —= M; Mg
It can also be shown that
E[n*S]'S}Sp Sy = % + 58k + TS0 + 2k for all n

whereF; ;. = E[X] X} X/ X;]. Moreover,E[(n*S}S7S}'S}")?] is finite for eachn and converges to a
finite quantity asn — oo since the moments ok are finite. Thus we can again apply LemmalA.1 to
see that
E[n?SIV2h(S™); ;ST SEV2h(S™) ke Sy L sne i)
o (B X0+ XinX0) Mi g M.

Putting together terms and usirig(71) we obtain:
E[(nh(S™)*I{snery] — Stracd MEME) + (tracg ME))?.
Now similar to [Z0) we have:
El(nA(S™) Iisngrcy)| < n?h°P{S" ¢ K} —— 0. (72)
Consequently

E[(nh(S™))?] —— Strac§ MEME) + % (tracg M E))*

n—oo

which gives (ii).
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D. Proof of Lemm&lTllb

We know from [2) thafl'™™ can be written as an empirical average of i.i.d. vectors.ddeit satisfies

the central limit theorem which says that,

(" =) S W (73)

n—oo
where the distribution of¥ is defined below[(40).
Considering a second-order Taylor's expansion and usiagctindition on the directional derivative,

we have,

n(A(I") = h(n)) = gn((T" — u)'V2H(I")(I" — p))

D=

whereT™ = ~AT" + (1 — v)u for somey = ~(n) € [0,1]. We also know by the strong law of large

numbers thal™ and hencd™ converge to: almost surely. By the continuity of the Hessian, we have

V2h(I™) 22 V2h(u). (74)

n—oo

By applying the vector-version of Slutsky’s theoreml[24gether with [(7B) and(74), we conclude

(0" = ) V2R (0" = p)) —S SWTVh()W,

n— oo

thus establishing the lemma.

E. Proof of Lemma&TlLl7

Proof: The assumption thab is a projection matrix implies thab? = D. Let {u',...,u™} denote
an orthonormal basis, chosen so that the fifrstectors span the range space/df HenceDu' = u’ for
1 <i< K, andDu’ = 0 for all otheri.

Let U denote the unitary matrix whose columns are{u!,...,u™}. ThenV = UV is also an
N(0,1,,) random variable, and hend2V and DV have the same Gaussian distribution.
To complete the proof we demonstrate thﬂtf/”? has a chi-squared distribution: By construction the
vectorY = DV has components given by
_ Vi 1<i<K
Y; =
0 K<i<m
It follows that [|Y||? = |DV|? = V2 + --- + V2 has a chi-squared distribution with® degrees of

freedom. [ ]
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