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Abstract

For theuniversalhypothesis testing problem, where the goal is to decide between the known null

hypothesis distribution and some other unknown distribution, Hoeffding proposed a universal test in the

nineteen sixties. Hoeffding’s universal test statistic can be written in terms of Kullback-Leibler (K-L)

divergence between the empirical distribution of the observations and the null hypothesis distribution. In

this paper a modification of Hoeffding’s test is considered based on a relaxation of the K-L divergence,

referred to as the mismatched divergence. The resulting mismatched test is shown to be a generalized

likelihood-ratio test (GLRT) for the case where the alternate distribution lies in a parametric family of

distributions characterized by a finite dimensional parameter, i.e., it is a solution to the corresponding

compositehypothesis testing problem. For certain choices of the alternate distribution, it is shown that

both the Hoeffding test and the mismatched test have the sameasymptotic performance in terms of

error exponents. A consequence of this result is that the GLRT is optimal in differentiating a particular

distribution from others in an exponential family. It is also shown that the mismatched test has a significant

advantage over the Hoeffding test in terms of finite sample size performance for applications involving

large alphabet distributions. This advantage is due to the difference in the asymptotic variances of the

two test statistics under the null hypothesis.
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I. INTRODUCTION AND BACKGROUND

This paper is concerned with the following hypothesis testing problem: Suppose that the observations

Z = {Zt : t = 1, . . .} form an i.i.d. sequence evolving on a set of cardinalityN , denoted byZ =

{z1, z2, . . . , zN}. Based on observations of this sequence we wish to decide if the marginal distribution

of the observations is a given distributionπ0, or some other distributionπ1 that is either unknown or

known only to belong to a certain class of distributions. When the observations have distributionπ0 we

say that thenull hypothesisis true, and when the observations have some other distribution π1 we say

that thealternate hypothesisis true.

A decision rule is characterized by asequenceof testsφ := {φn : n ≥ 1}, whereφn : Zn 7→ {0, 1}

with Z
n representing then-th order Cartesian-product ofZ. The decision based on the firstn elements

of the observation sequence is given byφn(Z1, Z2, . . . , Zn), whereφn = 0 represents a decision in favor

of acceptingπ0 as the true marginal distribution.

The set of probability measures onZ is denotedP(Z). The relative entropy (or Kullback-Leibler

divergence) between two distributionsν1, ν2 ∈ P(Z) is denotedD(ν1‖ν2), and for a givenµ ∈ P(Z)

andη > 0 the divergence ballof radius η aroundµ is defined as,

Qη(µ) := {ν ∈ P(Z) : D(ν‖µ) < η}. (1)

The empirical distribution ortypeof the finite set of observations(Z1, Z2, . . . , Zn) is a random variable

Γn taking values inP(Z):

Γn(z) =
1

n

n∑

i=1

I{Zi = z}, z ∈ Z (2)

whereI denotes the indicator function.

In the general universal hypothesis testing problem, the null distribution π0 is known exactly, but

no prior information is available regarding the alternate distribution π1. Hoeffding proposed in [2]

a generalized likelihood-ratio test (GLRT) for the universal hypothesis testing problem, in which the

alternate distributionπ1 is unrestricted — it is an arbitrary distribution inP(Z), the set of probability

distributions onZ. Hoeffding’s test sequence is given by,

φH
n = I{ sup

π1∈P(Z)

1

n

n∑

i=1

log
π1(Zi)

π0(Zi)
≥ η} (3)
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It is easy to see that theHoeffding test(3) can be rewritten as follows:

φH
n = I{

1

n

n∑

i=1

log
Γn(Zi)

π0(Zi)
≥ η}

= I{
∑

z∈Z
Γn(z) log

Γn(z)

π0(z)
≥ η}

= I{D(Γn‖π0) ≥ η}

= I{Γn /∈ Qη(π
0)}

(4)

If we have some prior information on the alternate distribution π1, a different version of the GLRT

is used. In particular, suppose it is known that the alternate distribution lies in a parametric family of

distributions of the following form:

Eπ0 := {π̌r : r ∈ R
d}.

whereπ̌r ∈ P(Z) are probability distributions onZ parameterized by a parameterr ∈ R
d. The specific

form of π̌r is defined later in the paper. In this case, the resulting composite hypothesis testing problem

is typically solved using a GLRT (see [3] for results relatedto the present paper, and [4] for a more

recent account) of the following form:

φMM
n = I{ sup

π1∈Eπ0

∑

z∈Z
Γn(z) log

π1(z)

π0(z)
≥ η} . (5)

We show that this test can be interpreted as a relaxation of the Hoeffding test of (4). In particular we

show that (5) can be expressed in a form similar to (4),

φMM
n = I{DMM(Γn‖π0) ≥ η} (6)

whereDMM is themismatched divergence; a relaxation of the K-L divergence, in the sense thatDMM(µ‖π) ≤

D(µ‖π) for anyµ, π ∈ P(Z). We refer to the test (6) as themismatched test.

This paper is devoted to the analysis of the mismatched divergence and mismatched test.

The terminology is borrowed from themismatched channel(see Lapidoth [5] for a bibliography). The

mismatched divergence described here is a generalization of the relaxation introduced in [6]. In this way

we embed the analysis of the resulting universal test withinthe framework of Csiszár and Shields [7].

The mismatched test statistic can also be viewed as a generalization of the robust hypothesis testing

statistic introduced in [8], [9].

When the alternate distribution satisfiesπ1 ∈ Eπ0 , we show that, under some regularity conditions on

Eπ0 , the mismatched test of (6) and Hoeffding’s test of (4) have identical asymptotic performance in
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terms of error exponents. A consequence of this result is that the GLRT is optimal in differentiating a

particular distribution from others in an exponential family of distributions. We also establish that the

proposed mismatched test has a significant advantage over the Hoeffding test in terms of finite sample size

performance. This advantage is due to the difference in the asymptotic variances of the two test statistics

under the null hypothesis. In particular, we show that the variance of the K-L divergence grows linearly

with the alphabet size, making the test impractical for applications involving large alphabet distributions.

We also show that the variance of the mismatched divergence grows linearly with the dimensiond of

the parameter space, and can hence be controlled through a prudent choice of the function class defining

the mismatched divergence.

The remainder of the paper is organized as follows. We begin in Section II with a description of

mismatched divergence and the mismatched test, and describe their relation to other concepts including

robust hypothesis testing, composite hypothesis testing,reverse I-projection, and maximum likelihood

(ML) estimation. Formulae for the asymptotic mean and variance of the test statistics are presented in

Section III. Section III also contains a discussion interpreting these asymptotic results in terms of the

performance of the detection rule. Proofs of the main results are provided in the appendix. Conclusions

and directions for future research are contained in SectionIV.

II. M ISMATCHED DIVERGENCE

We adopt the following compact notation in the paper: For anyfunction f : Z → R andπ ∈ P(Z) we

denote the mean
∑

z∈Z f(z)π(z) by π(f), or by 〈π, f〉 when we wish to emphasize the convex-analytic

setting. At times we will extend these definitions to allow functionsf taking values in a vector space.

For z ∈ Z andπ ∈ P(Z), we still useπ(z) to denote the probability assigned to elementz under measure

π. The meaning of such notation will be clear from context.

The logarithmic moment generating function (log-MGF) is denoted

Λπ(f) = log(π(exp(f)))

whereπ(exp(f)) =
∑

z∈Z π(z) exp(f(z)) by the notation we introduced in the previous paragraph. For

any two probability measuresν1, ν2 ∈ P(Z) the relative entropy is expressed,

D(ν1‖ν2) =





〈ν1, log(ν1/ν2)〉 if ν1 ≺ ν2

∞ else
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whereν1 ≺ ν2 denotes absolute continuity. The following proposition recalls a well-known variational

representation. This can be obtained, for instance, by specializing the representation in [10] to an i.i.d.

setting. An alternate variational representation of the divergence is introduced in [11].

Proposition II.1. The relative entropy can be expressed as the convex dual of the log moment generating

function: For any two probability measuresν1, ν2 ∈ P(Z),

D(ν1‖ν2) = sup
f

(
ν1(f)− Λν2(f)

)
(7)

where the supremum is taken over the space of all real-valuedfunctions onZ. Furthermore, ifν1 andν2

have equal supports, then the supremum is achieved by the loglikelihood ratio functionf∗ = log(ν1/ν2).

Outline of proof: Although the result is well known, we provide a simple proof here since similar

arguments will be reused later in the paper.

For any functionf and probability measureν we have,

D(ν1‖ν2) = 〈ν1, log(ν1/ν2)〉

= 〈ν1, log(ν/ν2)〉+ 〈ν1, log(ν1/ν)〉

On settingν = ν2 exp(f − Λν2(f)) this gives,

D(ν1‖ν2) = ν1(f)− Λν2(f) +D(ν1‖ν) ≥ ν1(f)− Λν2(f).

If ν1 and ν2 have equal supports, then the above inequality holds with equality for f = log(ν1/ν2),

which would lead toν = ν1. This proves that (7) holds wheneverν1 andν2 have equal supports. The

proof for general distributions is similar and is omitted here.

The representation (7) is the basis of the mismatched divergence. We fix a set of functions denoted

by F , and obtain a lower bound on the relative entropy by taking the supremum over the smaller set as

follows,

DMM(ν1‖ν2) := sup
f∈F

{
ν1(f)− Λν2(f)

}
. (8)

If ν1 and ν2 have full support, and if the function classF contains the log-likelihood ratio function

f∗ = log(ν1/ν2), then it is immediate from Proposition II.1 that the supremum in (8) is achieved by

f∗, and in this caseDMM(ν1‖ν2) = D(ν1‖ν2). Moreover, since the objective function in (8) is invariant

to shifts of f , it follows that even if a constant scalar is added to the function f∗, it still achieves the

supremum in (8).
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In this paper the function class is assumed to be defined through a finite-dimensional parametrization

of the form,

F = {fr : r ∈ R
d} (9)

Further assumptions will be imposed in our main results. In particular, we will assume thatfr(z) is

differentiable as a function ofr for eachz.

We fix a distributionπ ∈ P(Z) and a function class of the form (9). For eachr ∈ R
d the twisted

distribution π̌r ∈ P(Z) is defined as,

π̌r := π exp(fr − Λπ(fr)). (10)

The collection of all such distributions parameterized byr is denoted

Eπ := {π̌r : r ∈ R
d}. (11)

A. Applications

The applications of mismatched divergence include those applications surveyed in Section 3 of [4] in

their treatment of generalized likelihood ratio tests. Here we list potential applications in three domains:

Hypothesis testing, source coding, and nonlinear filtering. Other applications include channel coding and

signal detection, following [4].

1) Hypothesis testing:The problem of universal hypothesis testing is relevant in several practical

applications including anomaly detection. It is often possible to have an accurate model of the normal

behavior of a system, which is usually represented by the null hypothesis distributionπ0. The anomalous

behavior is often unknown, which is represented by the unknown alternate distribution. The primary

motivation for our research is to improve the finite sample size performance of Hoeffding’s universal

hypothesis test (3). The difficulty we address is the large variance of this test statistic when the alphabet

size is large. Theorem II.2 makes this precise:

Theorem II.2. Let π0, π1 ∈ P(Z) have full supports overZ.

(i) Suppose that the observation sequenceZ is i.i.d. with marginalπ0. Then the normalized Hoeffding

test statistic sequence{nD(Γn‖π0) : n ≥ 1} has the following asymptotic bias and variance:

lim
n→∞

E[nD(Γn‖π0)] = 1
2(N − 1) (12)

lim
n→∞

Var [nD(Γn‖π0)] = 1
2(N − 1) (13)
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whereN = |Z| denotes the size (cardinality) ofZ. Furthermore, the following weak convergence

result holds:

nD(Γn‖π0)
d.

−−−→
n→∞

1
2χ

2
N−1 (14)

where the right hand side denotes the chi-squared distribution with N − 1 degrees of freedom.

(ii) Suppose the sequenceZ is drawn i.i.d. underπ1 6= π0. We then have,

lim
n→∞

E
[
n
(
D(Γn‖π0)−D(π1‖π0)

)]
= 1

2 (N − 1)

⊓⊔

The bias result of (12) follows from the unpublished report [12] (see [13, Sec III.C]), and the weak

convergence result of (14) is given in [14]. All the results of the theorem, including (13) also follow

from Theorem III.2 — We elaborate on this in section III.

We see from Theorem II.2 that the bias of the divergence statisticD(Γn‖π0) decays asN−1
2n , irrespective

of whether the observations are drawn from distributionπ0 or π1. One could argue that the problem of

high bias in the Hoeffding test statistic can be addressed bysetting a higher threshold. However, we also

notice that when the observations are drawn underπ0, the variance of the divergence statistic decays as

N−1
2n2 , which can be significant whenN is of the order ofn2. This is a more serious flaw of the Hoeffding

test for large alphabet sizes, since it cannot be addressed as easily.

The weak convergence result in (14), and other such results established later in this paper, can be used

to guide the choice of thresholds for a finite sample test, subject to a constraint on the probability of false

alarm (see for example, [7, p. 457]). As an application of (12) we propose the following approximation

for the false alarm probability in the Hoeffding test definedin (4),

pFA := Pπ0

{
φH
n = 1

}
≈ P

{
1
2

N−1∑

i=1

W 2
i ≥ nη

}
(15)

where{Wi} are i.i.d.N(0, 1) random variables. In this way we can obtain a simple formula for the

threshold to approximately achieve a given constraint onpFA. For moderate values of the sequence length

n, theχ2 approximation gives a more accurate prediction of the falsealarm probabilities for the Hoeffding

test compared to those predicted using Sanov’s theorem as wedemonstrate below.

Consider the application of (15) in the following example. We used Monte-Carlo simulations to

approximate the performance of the Hoeffding test described in (4), with π0 the uniform distribution on

an alphabet of size20. Shown in Figure 1 is a semi-log plot comparing three quantities: The probability

of false alarmpFA, estimated via simulation; the approximation (15) obtained from the Central Limit
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Theorem; and the approximation obtained from Sanov’s Theorem, log(pFA) ≈ −nη. It is clearly seen

that the approximation based on the weak convergence resultof (15) is far more accuratethan the

approximation based on Sanov’s theorem. It should be noted that the approximate formula for the false

alarm probability obtained from Sanov’s theorem can be mademore accurate by using refinements of large

deviation results given in [15]. However, these refinementsare often difficult to compute. For instance,

it can be shown using the results of [15] thatpFA ≈ cn
N−3

2 exp(−nη) where constantc is given by a

surface integral over the surface of the divergence ball,Qη(π
0).
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Fig. 1. Approximations for the error probability in universal hypothesis testing.The error probability of the Hoeffding test is

closely approximated by the approximation (15).

One approach to addressing the implementation issues of theuniversal test is through clustering (or

partitioning) the alphabet as in [16], or smoothing in the space of probability measures as in [17], [18]

to extend the Hoeffding test to the case of continuous alphabets. The mismatched test proposed here is

a generalization of a partition in the following sense. Suppose that{Ai : 1 ≤ i ≤ Na} are disjoint sets

satisfying∪Ai = X, and letY (t) = i if X(t) ∈ Ai. Applying (13), we conclude that the Hoeffding test

usingY instead ofX will have asymptotic variance equal to12(Na−1), whereNa < N for a non-trivial

partition. We have:

Proposition II.3. Suppose that the mismatched divergence is defined with respect to the linear function

class(26) usingψi = IAi
, 1 ≤ i ≤ Na. In this case the mismatched test(5) coincides with the Hoeffding

test using observationsY . ⊓⊔
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The advantage of the mismatched test (5) over a partition is that we can incorporate prior knowledge

regarding alternate statistics, and we can include non-standard ‘priors’ such as continuity of the log-

likelihood ratio function between the null and alternate distributions. This is useful in anomaly detection

applications where one may have models of anomalous behavior which can be used to design the correct

mismatched test for the desired application.

2) Source coding with training:Let π denote a source distribution on a finite alphabetZ. Suppose we

do not knowπ exactly and we design optimal codelengths assuming that thedistribution isµ: For letter

z ∈ Z we let ℓ(z) = − log(µ(z)) denote Shannon’s codeword length. The expected codelengthis thus,

E[ℓ] =
∑

z∈Z
ℓ(z)π(z) = H(π) +D(π‖µ)

whereH denotes the entropy,−
∑

z∈Z π(z) log(π(z)). Let ℓ∗ := H(π) denote the optimal (minimal)

expected codelength.

Now suppose it is known that underπ the probability of each letterz ∈ Z is bounded away from zero.

That is, we assume that for someǫ > 0,

π ∈ Pǫ := {µ ∈ P(Z) : µ(z) > ǫ, for all z ∈ Z}.

Further suppose that a training sequence of lengthn is given, drawn underπ. We are interested in

constructing a source code for encoding symbols from the sourceπ based on these training symbols. Let

Γn denote the empirical distribution (i.e., thetype) of the observations based on thesen training symbols.

We assign codeword lengths to each symbolz according to the following rule,

ℓ(z) =





log 1
Γn(z) if Γn ∈ Pǫ/2

log 1
πu(z) else

whereπu is the uniform distribution onZ.

Let T denote the sigma-algebra generated by the training symbols. The conditional expected codelength

given T satisfies,

E[ℓn|T ] =





ℓ∗ +D(π‖Γn) if Γn ∈ Pǫ/2

ℓ∗ +D(π‖πu) else

We study the behavior ofE[ℓn − ℓ∗|T ] as a function ofn. We argue in the appendix that a modification

of the results from Theorem III.2 can be used to establish thefollowing relations:

n(E[ℓn|T ]− ℓ∗)
d.

−−−→
n→∞

1
2χ

2
N−1

E[n(ℓn − ℓ∗)] −−−→
n→∞

1
2 (N − 1) (16)

Var [nE[ℓn|T ]] −−−→
n→∞

1
2 (N − 1)
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whereN is the cardinality of the alphabetZ. Comparing with Theorem II.2 we conclude that the

asymptotic behavior of the excess codelength is identical to the asymptotic behavior of the Hoeffding

test statisticD(Γn‖π) underπ. Methods such as those proposed in this paper can be used to reduce high

variance, just as in the hypothesis testing problem emphasized in this paper.

3) Filtering: The recent paper [19] considers approximations for the nonlinear filtering problem.

Suppose thatX is a Markov chain onRn, andY is an associated observation process onR
p of the

form Y (t) = γ(X(t),W (t)), whereW is an i.i.d. sequence. The conditional distribution ofX(t) given

{Y (0), . . . , Y (t)} is denotedBt; known as thebelief statein this literature. The evolution of the belief

state can expressed in a recursive form: For some mappingφ : B(Rn)× R
p → B(Rn),

Bt+1 = φ(Bt, Yt+1), t ≥ 0

The approximation proposed in [19] is based aprojection ofBt onto an exponential family of densities

overRn, of the formpθ(x) = p0(x) exp(θ
Tψ(x)− Λ(θ)), θ ∈ R

d. They consider thereverseI-projection,

B̺ = argmin
µ∈E

D(B‖µ)

where the minimum is overE = {pθ}. From the definition of divergence this is equivalently expressed,

B̺ = argmax
θ

∫ (
θTψ(x) − Λ(θ)

)
B(dx) (17)

A projected filter is defined by the recursion,

B̂t+1 = [φ(B̂t, Yt+1)]
̺, t ≥ 0 (18)

The techniques in the current paper provide algorithms for computation of this projection, and suggest

alternative projection schemes, such as the robust approach described in Section II-F.

B. Basic structure of mismatched divergence

The mismatched test is defined to be a relaxation of the Hoeffding test described in (4). We replace

the divergence functional with the mismatched divergenceDMM(Γn‖π0) to obtain the mismatched test

sequence,

φMM
n = I{DMM(Γn‖π0) ≥ η} = I{Γn /∈ QMM

η (π0)} (19)

whereQMM
η (π0) is the mismatched divergence ball of radiusη aroundπ0 defined analogously to (1):

QMM
η (µ) = {ν ∈ P(Z) : DMM(ν‖µ) < η}. (20)
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The next proposition establishes some basic geometry of themismatched divergence balls. For any

function g we define the following hyperplane and half-space:

Hg := {ν : ν(g) = 0}

H−
g := {ν : ν(g) < 0}.

(21)

Proposition II.4. The following hold for anyν, π ∈ P(Z), and any collection of functionsF :

(i) For eachη > 0 we haveQMM
η (π) ⊂

⋂
H−

g , where the intersection is over all functionsg of the

form,

g = f − Λπ(f)− η (22)

with f ∈ F .

(ii) Suppose thatη = DMM(ν‖π) is finite and non-zero. Further suppose that forν1 = ν andν2 = π,

the supremum in(8) is achieved byf∗ ∈ F . ThenHg∗ is a supporting hyperplane toQMM
η (π), where

g∗ is given in(22) with f = f∗.

Proof: (i) Supposeµ ∈ QMM
η (π). Then, for anyf ∈ F ,

µ(f)− Λπ(f)− η ≤ DMM(µ‖π)− η < 0

That is, for anyf ∈ F , on definingg by (22) we obtain the desired inclusionQMM
η (π) ⊂ H−

g .

(ii) Let µ ∈ Hg∗ be arbitrary. Then we have:

DMM(µ‖π) = sup
r

(
µ(fr)− Λπ(fr)

)

≥ µ(f∗)− Λπ(f
∗)

= Λπ(f
∗) + η − Λπ(f

∗) = η.

Hence it follows thatHg∗ supportsQMM
η (π) at ν.

C. Asymptotic optimality of the mismatched test

The asymptotic performance of a binary hypothesis testing problem is typically characterized in terms

of error exponents. We adopt the following criterion for performance evaluation, following Hoeffding [2]

(and others, notably [17], [18].) Suppose that the observations Z = {Zt : t = 1, . . .} form an i.i.d.

sequence evolving onZ. For a givenπ0, and a given alternate distributionπ1, the type I and type II error
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π̌

Qη(π0)

π
0

π
1

Qβ∗(π
1)

HLLR

Fig. 2. Geometric interpretation of the log likelihood ratio test.The exponentβ∗ = β∗(η) is the largest constant satisfying

Qη(π
0) ∩Qβ∗(π1) = ∅. The hyperplaneHLLR := {ν : ν(L) = π̌(L)} separates the convex setsQη(π

0) andQβ∗(π1).

exponents are denoted respectively by,

J0
φ := lim inf

n→∞
−
1

n
log(Pπ0{φn = 1}),

J1
φ := lim inf

n→∞
−
1

n
log(Pπ1{φn = 0})

(23)

where in the first limit the marginal distribution ofZt is π0, and in the second it isπ1. The limit J0
φ is

also called the false-alarm error exponent, andJ1
φ the missed-detection error exponent.

For a given constraintη > 0 on the false-alarm exponentJ0
φ, an optimal test is the solution to the

asymptotic Neyman-Pearson hypothesis testing problem,

β∗(η) = sup{J1
φ : subject toJ0

φ ≥ η} (24)

where the supremum is over all allowed test sequencesφ. While the exponentβ∗(η) = β∗(η, π1) depends

uponπ1, Hoeffding’s test we described in (4) does not require knowledge ofπ1, yet achieves the optimal

exponentβ∗(η, π1) for anyπ1. The optimality of Hoeffding’s test established in [2] easily follows from

Sanov’s theorem.

While the mismatched test described in (6) is not always optimal for (24) for a general choice ofπ1, it is

optimal for some specific choices of the alternate distributions. The following corollary to Proposition II.4

captures this idea.

Corollary II.1. Supposeπ0, π1 ∈ P(Z) have equal supports. Further suppose that for allα > 0, there

existsτ ∈ R and r ∈ R
d such that

αL(z) + τ = fr(z) a.e. [π0],
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whereL is the log likelihood-ratio functionL := log(π1/π0). Then the mismatched test is optimal in the

sense that the constraintJ0
φMM ≥ η is satisfied with equality, and underπ1 the optimal error exponent is

achieved; i.e.J1
φMM = β∗(η) for all η ∈ (0,D(π1‖π0)).

Proof: Suppose that the conditions stated in the corollary hold. Consider the twisted distribution

π̌ = κ(π0)1−̺(π1)̺, whereκ is a normalizing constant and̺ ∈ (0, 1) is chosen so as to guarantee

D(π̌‖π0) = η. It is known that the hyperplaneHLLR := {ν : ν(L) = π̌(L)} separates the divergence balls

Qη(π
0) andQβ∗(π1) at π̌. This geometry, which is implicit in [17], is illustrated inFigure 2.

From the form ofπ̌ it is also clear that

log
π̌

π0
= ̺L− Λπ0(̺L).

Hence it follows that the supremum in the variational representation ofD(π̌‖π0) is achieved by̺ L.

Furthermore, since̺L+ τ ∈ F for someτ ∈ R we have

DMM(π̌‖π0) = D(π̌‖π0) = η

= π̌(̺L+ τ)− Λπ0(̺L+ τ)

= π̌(̺L)− Λπ0(̺L).

This means thatHLLR = {ν : ν(̺L − Λπ0(̺L) − η) = 0}. Hence, by applying Proposition II.4 (ii) it

follows that the hyperplaneHLLR separatesQMM
η (π0) andQβ∗(π1). This in particular means that the sets

QMM
η (π0) andQβ∗(π1) are disjoint. This fact, together with Sanov’s theorem proves the corollary.

The corollary indicates that while using the mismatched test in practice, the function class might be

chosen to include approximations to scaled versions of the log-likelihood ratio functions of the anticipated

alternate distributions{π1} with respect toπ0.

The mismatched divergence has several equivalent characterizations. We first relate it to an ML estimate

from a parametric family of distributions.

D. Mismatched divergence and ML estimation

On interpretingfr−Λπ(fr) as a log-likelihood ratio function we obtain in PropositionII.5 the following

representation of mismatched divergence,

DMM(µ‖π) = sup
r∈Rd

(
µ(fr)− Λπ(fr)

)
= D(µ‖π)− inf

ν∈Eπ

D(µ‖ν). (25)

The infimum on the RHS of (25) is known asreverse I-projection[7]. Proposition II.6 that follows uses

this representation to obtain other interpretations of themismatched test.
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Proposition II.5. The identity(25) holds for any function classF . The supremum is achieved by some

r∗ ∈ R
d if and only if the infimum is attained atν∗ = π̌r

∗

∈ Eπ. If a minimizerν∗ exists, we obtain the

generalized Pythagorean identity,

D(µ‖π) = DMM(µ‖π) +D(µ‖ν∗)

Proof: For anyr we haveµ(fr)− Λπ(fr) = µ(log(π̌r/π)). Consequently,

DMM(µ‖π) = sup
r

(
µ(fr)− Λπ(fr)

)

= sup
r
µ

(
log

(
µ

π

π̌r

µ

))

= sup
r

{D(µ‖π)−D(µ‖π̌r)}

This proves the identity (25), and the remaining conclusions follow directly.

The representation of Proposition II.5 invites the interpretation of the optimizer in the definition of

the mismatched test statistic in terms of an ML estimate. Given the well-known correspondence between

maximum-likelihood estimation and the generalized likelihood ratio test (GLRT), Proposition II.6 implies

that the mismatched test is a special case of the GLRT analyzed in [3].

Proposition II.6. Suppose that the observationsZ are modeled as an i.i.d. sequence, with marginal in

the familyEπ. Let r̂n denote the ML estimate ofr based on the firstn samples,

r̂n ∈ argmax
r∈Rd

Pπ̌r{Z1 = a1, Z2 = a2, . . . , Zn = an}

= argmax
r∈Rd

Πn
i=1π̌

r(ai)

whereai indicates the observed value of thei-th symbol. Assuming the maximum is attained we have

the following interpretations:

(i) The distributionπ̌r̂
n

solves the reverse I-projection problem,

π̌r̂
n

∈ argmin
ν∈Eπ

D(Γn‖ν).

(ii) The functionf∗ = fr̂n achieves the supremum that defines the mismatched divergence,DMM(Γn‖π) =

Γn(f∗)− Λπ(f
∗).

Proof: The ML estimate can be expressedr̂n = argmaxr∈Rd〈Γn, log π̌r〉, and hence (i) follows by

the identity,

argmin
ν∈Eπ

D(Γn‖ν) = argmax
ν∈Eπ

〈Γn, log ν〉, ν ∈ P.
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Combining the result of part (i) with Proposition II.5 we getthe result of part (ii).

From conclusions of Proposition II.5 and Proposition II.6 we have,

DMM(Γn‖π) = 〈Γn, log
π̌r̂

n

π
〉

= max
ν∈Eπ

〈Γn, log
ν

π
〉

= max
ν∈Eπ

1

n

n∑

i=1

log
ν(Zi)

π(Zi)
.

In general when the supremum in the definition ofDMM(Γn‖π) may not be achieved, the maxima in the

above equations are replaced with suprema and we have the following identity:

DMM(Γn‖π) = sup
ν∈Eπ

1

n

n∑

i=1

log
ν(Zi)

π(Zi)
.

Thus the test statistic used in the mismatched test of (6) is exactly the generalized likelihood ratio between

the family of distributionsEπ0 andπ0 where

Eπ0 = {π0 exp(fr − Λπ0(fr)) : r ∈ R
d}.

More structure can be established when the function class islinear.

E. Linear function class and I-projection

The mismatched divergence introduced in [6] was restrictedto a linear function class. Let{ψi : 1 ≤

i ≤ d} denoted functions onZ, let ψ = (ψ1, . . . , ψd)
T, and letfr = rTψ in the definition (9):

F =
{
fr =

d∑

i=1

riψi : r ∈ R
d
}
. (26)

A linear function class is particularly appealing because the optimization problem in (8) used to define the

mismatched divergence becomes a convex program and hence iseasy to evaluate in practice. Furthermore,

for such a linear function class, the collection of twisted distributions Eπ defined in (11) forms an

exponential familyof distributions.

Proposition II.5 expressesDMM(µ‖π) as a difference between the ordinary divergence and the value

of a reverse I-projectioninfν∈Eπ
D(µ‖ν). The next result establishes a characterization in terms ofa

(forward) I-projection. For a given vectorc ∈ R
d we letP denote themoment class

P = {ν ∈ P(Z) : ν(ψ) = c} (27)

whereν(ψ) = (ν(ψ1), ν(ψ2), . . . , ν(ψd))
T.
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Proposition II.7. Suppose that the supremum in the definition ofDMM(µ‖π) is achieved at somer∗ ∈ R
d.

Then,

(i) The distributionν∗ := π̌r
∗

∈ Eπ satisfies,

DMM(µ‖π) = D(ν∗‖π) = min{D(ν‖π) : ν ∈ P},

whereP is defined usingc = µ(ψ) in (27).

(ii) DMM(µ‖π) = min{D(ν‖π) : ν ∈ Hg∗}, whereg∗ is given in (22) with f = r∗Tψ, and η =

DMM(µ‖π).

Proof: Since the supremum is achieved, the gradient must vanish by the first order condition for

optimality:

∇
(
µ(fr)− Λπ(fr)

)∣∣∣
r=r∗

= 0

The gradient is computable, and the identity above can thus be expressedµ(ψ) − π̌r
∗

(ψ) = 0. That is,

the first order condition for optimality is equivalent to theconstraintπ̌r
∗

∈ P. Consequently,

D(ν∗‖π) = 〈π̌r
∗

, log
π̌r

∗

π
〉

= π̌r
∗

(r∗Tψ)− Λπ(r
∗Tψ)

= µ(r∗Tψ)− Λπ(r
∗Tψ) = DMM(µ‖π).

Furthermore, by the convexity ofΛπ(fr) in r, it follows that the optimalr∗ in the definition ofDMM(ν‖π)

is the same for allν ∈ P. Hence, it follows by the Pythagorean equality of Proposition II.5 that

D(ν‖π) = D(ν‖ν∗) +D(ν∗‖π), for all ν ∈ P.

Minimizing over ν ∈ P it follows that ν∗ is the I-projection ofπ onto P:

D(ν∗‖π) = min{D(ν‖π) : ν ∈ P}

which gives (i).

To establish (ii), note first that by (i) and the inclusionP ⊂ Hg∗ we have,

DMM(µ‖π) = min{D(ν‖π) : ν ∈ P}

≥ inf{D(ν‖π) : ν ∈ Hg∗}.

The reverse inequality follows from Proposition II.4 (i), and moreover the infimum is achieved withν∗.
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Qη(π) Q
MM

η (π)

Fig. 3. Interpretations of the mismatched divergence for a linear function class.The distributionπ̌r∗ is the I-projection ofπ

onto a hyperplaneHg∗ . It is also the reverse I-projection ofµ onto the exponential familyEπ.

The geometry underlying mismatched divergence for a linearfunction class is illustrated in Figure 3.

Suppose that the assumptions of Proposition II.7 hold, so that the supremum in (25) is achieved atr∗.

Let η = DMM(µ‖π) = µ(fr∗) − Λπ(fr∗), and g∗ = fr∗ −
(
η + Λπ(fr∗)

)
. Proposition II.4 implies that

Hg∗ defines a hyperplane passing throughµ, with Qη(π) ⊂ QMM
η (π) ⊂ H−

g∗. This is strengthened in the

linear case by Proposition II.7, which states thatHg∗ supportsQη(π) at the distributioňπr
∗

. Furthermore

Proposition II.5 asserts that the distributionπ̌r
∗

minimizesD(µ‖π̌) over all π̌ ∈ Eπ.

The result established in Corollary II.1 along with the interpretation of the mismatched test as a GLRT

can be used to show that the GLRT is asymptotically optimal for an exponential family of distributions.

Theorem II.8. Letπ0 be some probability distribution over a finite setZ. LetF be a linear function class

as defined in (26) andEπ0 be the associated exponential family of distributions defined in (11). Consider

the generalized likelihood ratio test (GLRT) betweenπ0 and Eπ0 defined by the following sequence of

decision rules:

φGLRT
n = I{ sup

ν∈Eπ0

1

n

n∑

i=1

log
ν(Zi)

π0(Zi)
≥ η}.

The GLRT solves the composite hypothesis testing problem (24) for all π1 ∈ Eπ0 in the sense that the

constraintJ0
φGLRT ≥ η is satisfied with equality, and underπ1 the optimal error exponentβ∗(η) is achieved

for all η ∈ (0,D(π1‖π0)) and for all π1 ∈ Eπ0 ; i.e., J1
φGLRT = β∗(η).

Proof: From Proposition II.6 and the discussion following the proposition, we know thatφGLRT is

the same as the mismatched test defined with respect to the function classF . Moreover, any distribution

π1 ∈ Eπ0 is of the form π̌r = π0 exp(fr − Λπ0(fr)) for somer ∈ R
d as defined in (10). UsingL to
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denote the log-likelihood ratio function betweenπ1 andπ0, it follows by the linearity ofF that for any

α > 0,

αL = α(fr − Λπ0(fr))

= fαr + τ

for someτ ∈ R. Hence, it follows by the conclusion of Corollary II.1 that the GLRTφGLRT solves the

composite hypothesis testing problem (24) betweenπ0 andEπ0 .

The above result is a special case of the sufficient conditions for optimality of the GLRT established in

[3, Thm 2, p. 1600]. From the proof it is easily seen that the result can be extended to hold for composite

hypothesis tests betweenπ0 and any family of distributionsEπ0 of the form in (11) providedF is closed

under positive scaling. It is also possible to strengthen the result of Corollary II.1 to obtain an alternate

proof of [3, Thm 2, p. 1600]. We refer the reader to [20] for details.

F. Log-linear function class and robust hypothesis testing

In the prior work [8], [9] the following relaxation of entropy is considered,

DROB(µ‖π) := inf
ν∈P

D(µ‖ν) (28)

where the moment classP is defined in (27) withc = π(ψ), for a given collection of functions{ψi :

1 ≤ i ≤ d}. The associated universal test solves a min-max robust hypothesis testing problem.

We show here thatDROB coincides withDMM for a particular function class. It is described as (9) in

which each functionfr is of the log-linear form,

fr = log(1 + rTψ)

subject to the constraint that1+rTψ(z) is strictly positive for eachz. We further require that the functions

ψ have zero mean under distributionπ - i.e., we requireπ(ψ) = 0.

Proposition II.9. For a givenπ ∈ P(Z), suppose that the log-linear function classF is chosen with

functions{ψi} satisfyingπ(ψ) = 0. Suppose that the moment class used in the definition ofDROB is

chosen consistently, withc = 0 in (27). We then have for eachµ ∈ P(Z),

DMM(µ‖π) = DROB(µ‖π)

Proof: For eachµ ∈ P(Z), we obtain the following identity by applying Theorem 1.4 in[9],

inf
ν∈P

D(µ‖ν) = sup{µ(log(1 + rTψ)) : 1 + rTψ(z) > 0 for all z ∈ Z}
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Moreover, under the assumption thatπ(ψ) = 0 we obtain,

Λπ(log(1 + rTψ)) = log(π(1 + rTψ)) = 0

Combining these identities gives,

DROB(µ‖π) := inf
ν∈P

D(µ‖ν)

= sup {µ(log(1 + rTψ))− Λπ(log(1 + rTψ)) :

1 + rTψ(z) > 0 for all z ∈ Z}

= sup
f∈F

{
µ(f)− Λπ(f)

}
= DMM(µ‖π)

III. A SYMPTOTIC STATISTICS

In this section, we analyze the asymptotic statistics of themismatched test. We require some assump-

tions regarding the function classF = {fr : r ∈ R
d} to establish these results. Note that the second and

third assumptions given below involve a distributionµ0 ∈ P(Z), and a vectors ∈ R
d. We will make

specialized versions of these assumptions in establishingour results, based on specific values ofµ0 and

s. We useZµ0 ⊂ Z to denote the support ofµ0 andP(Zµ0) to denote the space of probability measures

supported onZµ0 , viewed as a subset ofP(Z).

Assumptions

(A1) fr(z) is C2 in r for eachz ∈ Z.

(A2) There exists a neighborhoodB of µ0, open inP(Zµ0) such that for eachµ ∈ B, the

supremum in the definition ofDMM(µ‖µ0) in (8) is achieved at a unique pointr(µ).

(A3) The vectors{ψ0, . . . , ψd} are linearly independent over the support ofµ0, where

ψ0 ≡ 1, and for eachi ≥ 1

ψi(z) =
∂

∂ri
fr(z)

∣∣∣
r=s

, z ∈ Z. (29)

The linear-independence assumption in (A3) is defined as follows: If there are constants{a0, . . . , ad}

satisfying
∑d

i=1 aiψi(z) = 0 a.e. [µ0], then ai = 0 for eachi. In the case of a linear function class,

the functions{ψi, i ≥ 1} defined in (29) are just the basis functions in (26). Lemma III.1 provides an

alternate characterization of Assumption (A3).

For anyµ ∈ P(Z) define the covariance matrixΣµ via,

Σµ(i, j) = µ(ψiψj)− µ(ψi)µ(ψj), 1 ≤ i, j ≤ d. (30)



20

We useCovµ(g) to denote the covariance of an arbitrary real-valued function g underµ:

Covµ(g) := µ(g2)− µ(g)2. (31)

Lemma III.1. Assumption (A3) holds if and only ifΣµ0 > 0.

Proof: We evidently havevTΣµ0v = Covµ0(vTψ) ≥ 0 for any vectorv ∈ R
d. Hence, we have the

following equivalence: For anyv ∈ R
d, on denotingcv = µ0(vTψ),

vTΣµ0v = 0 ⇔
d∑

i=1

viψi(z) = cv a.e.[µ0]

The conclusion of the lemma follows.

We now present our main asymptotic results. Theorem III.2 identifies the asymptotic bias and variance

of the mismatched test statistic under the null hypothesis,and also under the alternate hypothesis. A key

observation is that the asymptotic bias and variance does not depend onN , the cardinality ofZ.

Theorem III.2. Suppose that the observation sequenceZ is i.i.d. with marginalπ. Suppose that there

existsr∗ satisfyingfr∗ = log(π/π0). Further, suppose that Assumptions (A1), (A2), (A3) hold with µ0 = π

and s = r∗. Then,

(i) Whenπ = π0,

lim
n→∞

E[nDMM(Γn‖π0)] = 1
2d (32)

lim
n→∞

Var [nDMM(Γn‖π0)] = 1
2d (33)

nDMM(Γn‖π0)
d.

−−−→
n→∞

1
2χ

2
d

(ii) Whenπ = π1 6= π0, we have withσ21 := Covπ1(fr∗),

lim
n→∞

E[n(DMM(Γn‖π0)−D(π1‖π0))] = 1
2d (34)

lim
n→∞

Var [n
1

2DMM(Γn‖π0)] = σ21 (35)

n
1

2 (DMM(Γn‖π0)−D(π1‖π0))
d.

−−−→
n→∞

N (0, σ21). (36)

⊓⊔

In part (ii) of Theorem III.2, the assumption thatr∗ exists implies thatπ1 andπ0 have equal supports.

Furthermore, if Assumption (A3) holds in part (ii), then a sufficient condition for Assumption (A2) is that

the functionV (r) := (−π1(fr) + Λπ0(fr)) be coercive inr. And, under (A3), the functionV is strictly
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convex and coercive in the following settings: (i) If the function class is linear, or (ii) the function class is

log-linear, and the two distributionsπ1 andπ0 have common support. We use this fact in Theorem III.3

for the linear function class. The assumption of the existence of r∗ satisfyingfr∗ = log(π1/π0) in part

(ii) of Theorem III.2 can be relaxed. In the case of a linear function class we have the following extension

of part (ii).

Theorem III.3. Suppose that the observation sequenceZ is drawn i.i.d. with marginalπ1 satisfying

π1 ≺ π0. Let F be the linear function class defined in (26). Suppose the supremum in the definition of

DMM(π1‖π0) is achieved at somer1 ∈ R
d. Further, suppose that the functions{ψi} satisfy the linear

independence condition of Assumption (A3) withµ0 = π1. Then we have,

lim
n→∞

E[n(DMM(Γn‖π0)−DMM(π1‖π0))] = 1
2trace(Σπ1Σ−1

π̌ )

lim
n→∞

Var [n
1

2DMM(Γn‖π0)] = σ21

n
1

2 (DMM(Γn‖π0)−DMM(π1‖π0))
d.

−−−→
n→∞

N (0, σ21)

where in the first limiťπ = π0 exp(fr1 −Λπ0(fr1)), andΣπ1 andΣπ̌ are defined as in (30). In the second

two limits σ21 = Covπ1(fr1). ⊓⊔

Although we have not explicitly imposed Assumption (A2) in Theorem III.3, the argument we pre-

sented following Theorem III.2 ensures that whenπ1 ≺ π0, Assumption (A2) is satisfied whenever

Assumption (A3) holds. Furthermore, it can be shown that theachievement of the supremum required in

Theorem III.3 is guaranteed ifπ1 andπ0 have equal supports. We also note that the vectors appearing

in eq. (29) of Assumption (A3) is arbitrary when the parametrization of the function class is linear.

The weak convergence results in Theorem III.2 (i) can be derived from Clarke and Barron [12], [13] (see

also [7, Theorem 4.2]), following the maximum-likelihood estimation interpretation of the mismatched

test obtained in Proposition II.6. In the statistics literature, such results are calledWilks phenomenaafter

the initial work by Wilks [14].

These results can be used to set thresholds for a target falsealarm probability in the mismatched test,

just like we did for the Hoeffding test in (15). It is shown in [21] that such results can be used to set

thresholds for the robust hypothesis testing problem described in Section II-F.

Implications for Hoeffding test The divergence can be interpreted as a special case of mismatched diver-

gence defined with respect to a linear function class. Using this interpretation, the results of Theorem III.2

can also be specialized to obtain results on the Hoeffding test statistic. To satisfy the uniqueness condition
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of Assumption (A2), we require that the function class should not contain any constant functions. Now

suppose that the span of the linear function classF together with the constant functionf0 ≡ 1 spans the

set of all functions onZ. This together with Assumption (A3) would imply thatd = N − 1, whereN is

the size of the alphabetZ. It follows from Proposition II.1 that for such a function class the mismatched

divergence coincides with the divergence. Thus, an application of Theorem III.2 (i) gives rise to the

results stated in Theorem II.2.

To prove Theorem III.2 and Theorem III.3 we need the following lemmas, whose proofs are given in

the Appendix.

The following lemma will be used to deduce part (ii) of Theorem III.2 from part (i).

Lemma III.4. Let DMM
F denote the mismatched divergence defined using function class F . Suppose

π1 ≺ π0 and the supremum in the definition ofDMM
F (π1‖π0) is achieved at somefr∗ ∈ F . Let π̌ =

π0 exp(fr∗ − Λπ0(fr∗)) andG = F − fr∗ := {fr − fr∗ : r ∈ R
d}. Then for anyµ satisfyingµ ≺ π0, we

have

DMM
F (µ‖π0) = DMM

F (π1‖π0) +DMM
G (µ‖π̌) + 〈µ− π1, log(

π̌

π0
)〉. (37)

⊓⊔

Suppose we apply the decomposition result from Lemma III.4 to the type of the observation sequence

Z, assumed to be drawn i.i.d. with marginalπ1. If there existsr∗ satisfyingfr∗ = log(π1/π0), then we

haveπ̌ = π1. The decomposition becomes

DMM
F (Γn‖π0) = DMM

F (π1‖π0) +DMM
G (Γn‖π1) + 〈Γn − π1, fr∗〉. (38)

For largen, the second term in the decomposition (38) has a mean of ordern−1 and variance of order

n−2, as shown in part (i) of Theorem III.2. The third term has zeromean and variance of ordern−1,

since by the Central Limit Theorem,

n
1

2 〈Γn − π1, fr∗〉
d.

−−−→
n→∞

N (0,Covπ1(fr∗)). (39)

Thus, the asymptotic variance ofDMM
F (Γn‖π0) is dominated by that of the third term and the asymptotic

bias is dominated by that of the second term. Thus we see that part (ii) of Theorem III.2 can be deduced

from part (i).

Lemma III.5. LetX = {Xi : i = 1, 2, . . .} be an i.i.d. sequence with meanx̄ taking values in a compact

convex setX ⊂ R
m, containingx̄ as a relative interior point. DefineSn = 1

n

∑n
i=1X

i. Suppose we are
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given a functionh : Rm 7→ R, together with a compact setK containingx̄ as a relative interior point

such that,

1) The gradient∇h(x) and the Hessian∇2h(x) are continuous over a neighborhood ofK.

2) lim
n→∞

−
1

n
logP{Sn /∈ K} > 0.

Let M = ∇2h(x̄) andΞ = Cov(X1). Then,

(i) The normalized asymptotic bias of{h(Sn) : n ≥ 1} is obtained via,

lim
n→∞

nE[h(Sn)− h(x̄)] = 1
2trace(MΞ)

(ii) If in addition to the above conditions, the directional derivative satisfies∇h(x̄)T(X1 − x̄) = 0

almost surely, then the asymptotic variance decays asn−2, with

lim
n→∞

n2Var [h(Sn)] = 1
2 trace(MΞMΞ)

⊓⊔

Lemma III.6. Suppose that the observation sequenceZ is drawn i.i.d. with marginalµ ∈ P(Z). Let

h : P(Z) 7→ R be a continuous real-valued function whose gradient and Hessian are continuous in a

neighborhood ofµ. If the directional derivative satisfies∇h(µ)T(ν − µ) ≡ 0 for all ν ∈ P(Z), then

n(h(Γn)− h(µ))
d.

−−−→
n→∞

1
2W

TMW (40)

whereM = ∇2h(µ) andW ∼ N (0,ΣW ) with ΣW = diag(µ)− µµT. ⊓⊔

Lemma III.7. Suppose thatV is anm-dimensional,N (0, Im) random variable, andD : Rm → R
m is

a projection matrix. Thenξ := ‖DV ‖2 is a chi-squared random variable withK degrees of freedom,

whereK denotes the rank ofD. ⊓⊔

Before we proceed to the proofs of Theorem III.2 and Theorem III.3, we recall the optimization

problem (25) defining the mismatched divergence:

DMM(µ‖π0) = sup
r∈Rd

(
µ(fr)− Λπ0(fr)

)
. (41)

The first order condition for optimality is given by,

g(µ, r) = 0 (42)
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whereg is the vector valued function that defines the gradient of theobjective function in (41):

g(µ, r) :=∇r

(
µ(fr)− Λπ0(fr)

)

= µ(∇rfr)−
π0(efr∇rfr)

π0(efr)

(43)

The derivative ofg(µ, r) with respect tor is given by

∇rg(µ, r) = µ(∇2
rfr)−

[
π0

(
efr∇rfr∇rf

T
r

)
+ π0

(
efr∇2

rfr
)

π0
(
efr

)

−
π0

(
efr∇rfr

)
π0

(
efr∇rf

T
r

)

(π0
(
efr

)
)2

]
(44)

In these formulae we have extended the definition ofµ(M) for matrix-valued functionsM on Z via

[µ(M)]ij := µ(Mij) =
∑

zMij(z)µ(z). On lettingψr = ∇rfr we obtain,

g(µ, r) = µ(ψr)− π̌r(ψr) (45)

∇rg(µ, r) = µ(∇2
rfr)− π̌r(∇2

rfr)−

[π̌r(ψrψrT)− π̌r(ψr)π̌r(ψrT)] (46)

where the definition of the twisted distribution is as given in (10):

π̌r := π0 exp(fr − Λπ0(fr)).

Proof of Theorem III.2: Without loss of generality, we assume thatπ0 has full support overZ.

Suppose that the observation sequenceZ is drawn i.i.d. with marginal distributionπ ∈ P(Z). We have

DMM(Γn‖π0)
a.s.

−−−→
n→∞

DMM(π‖π0) by the law of large numbers.

1) Proof of part (i): We first prove the results concerning the bias and variance ofthe mismatched

test statistic. We apply Lemma III.5 to the functionh(µ) :=DMM(µ‖π0). The other terms appearing in

the lemma are taken to beXi = (Iz1(Zi), Iz2(Zi), . . . , IzN (Zi))
T, X = P(Z), x̄ = π0, andSn = Γn. Let

Ξ = Cov(X1). It is easy to see thatΞ = diag(π0) − π0π0T andΣπ0 = ΨΞΨT, whereΣπ0 is defined in

(30), andΨ is a d×N matrix defined by,

Ψ(i, j) = ψi(zj). (47)

This can be expressed as the concatenation of column vectorsvia Ψ = [ψ(z1), ψ(z2), . . . , ψ(zN )].

We first demonstrate that

M = ∇2h(π0) = ΨT(Σπ0)−1Ψ, (48)
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and then check to make sure that the other requirements of Lemma III.5 are satisfied. The first two

conclusions of Theorem III.2 (i) will then follow from LemmaIII.5, since

trace(MΞ) = trace((Σπ0)−1ΨΞΨT) = trace(Id) = d,

and similarlytrace(MΞMΞ) = trace(Id) = d.

We first prove that under the assumptions of Theorem III.2 (i), there is a functionr : P(Z) 7→ R that is

C1 in a neighborhood ofπ0 such thatr(µ) solves (41) forµ in this neighborhood. Under the uniqueness

assumption (A2), the functionr(µ) coincides with the function given in (A2).

By the assumptions, we know that whenµ = π0, (42) is satisfied byr∗ with fr∗ ≡ 0. It follows

that π0 = π̌r
∗

. Substituting this into (46), we obtain∇rg(µ, r)
∣∣∣
µ=π0

r=r∗

= −Σπ0 , which is negative-definite

by Assumption (A3) and Lemma III.1. Therefore, by the Implicit Function Theorem, there is an open

neighborhoodU aroundµ = π0, an open neighborhoodV of r∗, and a continuously differentiable

function r : U → V that satisfiesg(µ, r(µ)) = 0, for µ ∈ U . This fact together with Assumptions (A2)

and (A3) ensure that whenµ ∈ U ∩B, the vectorr(µ) uniquely achieves the supremum in (41).

Taking the total derivative of (42) with respect toµ(z) we get,

∂r(µ)

∂µ(z)
= −

[
∇rg(µ, r(µ))

]−1∂g(µ, r(µ))

∂µ(z)
. (49)

Consequently, whenµ = π0,

∂r(µ)

∂µ(z)

∣∣∣∣∣
µ=π0

= Σ−1
π0 ψ(z). (50)

These results enable us to identify the first and second orderderivative ofh(µ) = DMM(µ‖π0). Applying

g(µ, r(µ)) = 0, we obtain the derivatives ofh as follows,

∂

∂µ(z)
h(µ) = fr(µ)(z). (51)

∂2

∂µ(z)∂µ(z̄)
h(µ) = (∇rfr(µ)(z))

T∂r(µ)

∂µ(z̄)
. (52)

Whenµ = π0, substituting (50) in (52), we obtain (48).

We now verify the remaining conditions required for applying Lemma III.5:

(a) It is straightforward to see thath(π0) = 0.

(b) The functionh is uniformly bounded sinceh(µ) = DMM(µ‖π0) ≤ D(µ‖π0) ≤ maxz log(
1

π0(z))

andπ0 has full support.

(c) Sincefr(µ) = 0 whenµ = π0, it follows by (51) that ∂
∂µ(z)h(µ)

∣∣∣
µ=π0

= 0.
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(d) Pick a compactK ⊂ U∩B so thatK containsπ0 as a relative interior point, andK ⊂ {µ ∈ P(Z) :

maxu |µ(u) − π0(u)| < 1
2 minu |π

0(u)|}. This choice ofK ensures thatlimn→∞− 1
n log P{Sn /∈

K} > 0. Note that sincer(µ) is continuously differentiable onU ∩B, it follows by (51) and (52)

that h is C2 on K.

Thus the results on convergence of the bias and variance follow from Lemma III.5.

The weak convergence result is proved using Lemma III.6 and Lemma III.7. We observe that the

covariance matrix of the Gaussian vectorW given in Lemma III.6 isΣW = Ξ = diag(π0)−π0π0T. This

does not have full rank sinceΞ1 = 0, where1 is theN × 1 vector of ones. Hence we can write,

Ξ = GGT

whereG is anN ×k matrix for somek < N . In fact, since the support ofπ0 is full, we havek = N −1

(see Lemma III.1). Based on this representation we can writeW = GV , whereV ∼ N (0, Ik).

Now, by Lemma III.6, the limiting random variable is given byU := 1
2W

TMW = 1
2V

TGTMGV ,

whereM = ∇2
µD

MM(µ‖π0)

∣∣∣∣
π0

= ΨT(ΨΞΨT)−1Ψ. We observe that the matrixD = GTMG satisfies

D2 = D. Moreover, sinceΨΞΨT has rankd under Assumption (A3), matrixD also has rankd. Applying

Lemma III.7 to matrixD, we conclude thatU ∼ 1
2χ

2
d.

2) Proof of part (ii):The conclusion of part (ii) is derived using part (i) and the decomposition in (38).

We will study the bias, variance, and limiting distributionof each term in the decomposition.

For the second term, note that the dimensionality of the function classG is alsod. Applying part (i)

of this theorem toDMM
G (Γn‖π1), we conclude that its asymptotic bias and variance are givenby

lim
n→∞

E[nDMM
G (Γn‖π1)] = 1

2d, (53)

lim
n→∞

Var [nDMM
G (Γn‖π1)] = 1

2d. (54)

For the third term, sinceZ is i.i.d. with marginalπ1, we have

E[〈Γn − π1, fr∗〉] = 0, (55)

Var [n
1

2 〈Γn − π1, fr∗〉] = Covπ1(fr∗). (56)

The bias result (34) follows by combining (53), (55) and using the decomposition (38). To prove the

variance result (35), we again apply the decomposition (38)to obtain,

lim
n→∞

Var [n
1

2DMM
F (Γn‖π0)] = lim

n→∞

{
Var [n

1

2DMM
G (Γn‖π1)] + Var [n

1

2 〈Γn − π1, fr∗〉]

+2E
[
n

1

2

(
DMM

G (Γn‖π1)− E[DMM
G (Γn‖π1)]

)

n
1

2 〈Γn − π1, fr∗〉
]}
. (57)
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From (54) it follows that the limiting value of the first term on the right hand side of (57) is0. The

limiting value of the third term is also0 by applying the Cauchy-Bunyakovsky–Schwarz inequality. Thus,

(57) together with (56) gives (35).

Finally, we prove the weak convergence result (36) by again applying the decomposition (38). By (53)

and (54), we conclude that the second termn
1

2DMM
G (Γn‖π1) converges in mean square to0 asn → ∞.

The weak convergence of the third term is given in (39). Applying Slutsky’s theorem, we obtain (36).

Proof of Theorem III.3:The proof of this result is very similar to that of Theorem III.2 (ii) except

that we use the decomposition in (37) withµ = Γn. We first prove the following generalizations of (53)

and (54) that characterizes the asymptotic mean and variance of the second term in (37) withµ = Γn:

lim
n→∞

E[nDMM
G (Γn‖π̌)] = 1

2trace
(
Σπ1(Σπ̌)

−1
)

(58)

lim
n→∞

Var [nDMM
G (Γn‖π̌)] = 1

2trace
(
Σπ1(Σπ̌)

−1Σπ1(Σπ̌)
−1

)
(59)

whereG = F − fr1 , andπ̌ is defined in the statement of the proposition. The argument is similar to that

of Theorem III.2 (i): We denotẽfr :=fr−fr1 , and defineh(µ):=DMM
G (µ‖π̌) = supr∈Rd

(
µ(f̃r)−Λπ̌(f̃r)

)
.

To apply Lemma III.5, we prove the following

h(π1) = 0, (60)

∇µh(π
1) = 0, (61)

and M = ∇2
µh(π

1) = ΨT(Σπ̌)
−1Ψ. (62)

The last two inequalities (61) and (62) are analogous to (51)and (52). We can also verify that the rest

of the conditions of Lemma III.5 hold. This establishes (58)and (59).

To prove (60), first note that the supremum in the optimization problem definingDMM(π1‖π̌) is achieved

by f̃r1 , and we know by definition that̃fr1 = 0. Together with the definitionDMM(π1‖π̌) = π1(f̃r1) −

Λπ̌(f̃r), we obtain (60).

Redefineg(µ, r) := ∇r

(
µ(f̃r) − Λπ̌(f̃r)

)
. The first order optimality condition of the optimization

problem definingDMM(µ‖π̌) givesg(µ, r) = 0. The assumption thatF is a linear function class implies

that f̃r is linear in r. Consequently∇2
r f̃r = 0. By the same argument that leads to (44), we can show

that

∇rg(µ, r) = −

[
π̌
(
ef̃r∇rf̃r∇rf̃

T
r

)

π̌
(
ef̃r

) −
π̌
(
ef̃r∇rf̃r

)
π̌
(
ef̃r∇rf̃

T
r

)

(π̌
(
ef̃r

)
)2

]
(63)

Together with the fact that̃fr1 = 0 and∇rf̃r = ∇rfr, we obtain

∇rg(µ, r)
∣∣∣

µ=π1

r=r1

= −Σπ̌. (64)
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Proceeding as in the proof of Theorem III.2 (i), we obtain (61) and (62).

Now using similar steps as in the proof of Theorem III.2 (ii),and noticing thatlog( π̌
π0 ) = fr1 , we can

establish the following results on the third term of (37):

E[〈Γn − π1, log(
π̌

π0
)〉] = 0

Var [n
1

2 〈Γn − π1, log(
π̌

π0
)〉] = Covπ1(fr1)

n
1

2 〈Γn − π1, log(
π̌

π0
)〉

d.
−−−→
n→∞

N (0,Covπ1(fr1)).

Continuing the same arguments as in Theorem III.2 (i), we obtain the result of Theorem III.3.

A. Interpretation of the asymptotic results and performance comparison

The asymptotic results established above can be used to study the finite sample performance of the

mismatched test and Hoeffding test. Recall that in the discussion surrounding Figure 1 we concluded

that the approximation obtained from a Central Limit Theorem gives much better estimates of error

probabilities as compared to those suggested by Sanov’s theorem.
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Fig. 4. Comparison of ROCs of Hoeffding and mismatched tests.

Suppose the log-likelihood ratio functionlog(π1/π0) lies in the function classF . In this case, the

results of Theorem III.2 and Lemma III.4 are informally summarized in the following approximations:
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With Γn denoting the empirical distributions of the i.i.d. processZ,

DMM(Γn‖π0) ≈




D(π0‖π0) + 1

2
1
n

∑d
k=1W

2
k , Zi ∼ π0

D(π1‖π0) + 1
2
1
n

∑d
k=1W

2
k + 1√

n
σ1U , Zi ∼ π1

(65)

where {Wk} is i.i.d., N(0, 1), andU is alsoN(0, 1) but not independent of theWk’s. The standard

deviationσ1 is given in Theorem III.2. These distributional approximations are valid for largen, and are

subject to assumptions on the function class used in the theorem.

We observe from (65) that, for large enoughn, when the observations are drawn underπ0, the

mismatched divergence is well approximated by1
2n times a chi-squared random variable withd degrees of

freedom. We also observe that when the observations are drawn underπ1, the mismatched divergence is

well approximated by a Gaussian random variable with meanD(π1‖π0) and with a variance proportional

to 1
n and independent ofd. Since the mismatched test can be interpreted as a GLRT, these results

capture the rate of degradation of the finite sample performance of a GLRT as the dimensionality of the

parameterized family of alternate hypotheses increases. We corroborate this intuitive reasoning through

Monte Carlo simulation experiments.

We estimated via simulation the performance of the Hoeffding test and mismatched tests designed

using a linear function class. We compared the error probabilities of these tests for an alphabet size of

N = 19 and sequence length ofn = 40. We choseπ0 to be the uniform distribution, andπ1 to be the

distribution obtained by convolving two uniform distributions on sets of size(N + 1)/2. We chose the

basis functionψ1 appearing in (26) to be the log-likelihood ratio betweenπ1 andπ0, viz.,

ψ1(zi) = log
π1(zi)

π0(zi)
, 1 ≤ i ≤ N

and the other basis functionsψ2, ψ3, . . . , ψd were chosen uniformly at random. Figure 4 shows a com-

parison of the ROCs of the Hoeffding test and mismatched tests for different values of dimensiond.

Plotted on thex-axis is the probability of false alarm, i.e., the probability of misclassification underπ0;

shown on they-axis is the probability of detection, i.e., the probability of correct classification underπ1.

The various points on each ROC curve are obtained by varying the thresholdη used in the Hoeffding

test of (4) and mismatched test of (19).

From Figure 4 we see that asd increases the performance of the mismatched tests degrades. This is

consistent with the approximation (65) which suggests thatthe variance of the mismatched divergence

increases withd. Furthermore, as we saw earlier, the Hoeffding test can be interpreted as a special case of
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the mismatched test for a specific choice of the function class with d = N−1 and hence the performance

of the mismatched test matches the performance of the Hoeffding test whend = N − 1.

To summarize, the above results suggest that although the Hoeffding test is optimal in an error-exponent

sense, it is disadvantageous in terms of finite sample error probabilities to blindly use the Hoeffding test

if it is known a priori that the alternate distribution belongs to some parameterized family of distributions.

IV. CONCLUSIONS

The mismatched test provides a solution to the universal hypothesis testing problem that can incorporate

prior knowledge in order to reduce variance. The main results of Section III show that the variance

reduction over Hoeffding’s optimal test is substantial when the state space is large.

The dimensionality of the function class can be chosen by thedesigner to ensure that the the bias and

variance are within tolerable limits. It is in this phase of design that prior knowledge is required to ensure

that the error-exponent remains sufficiently large under the alternate hypothesis (see e.g. Corollary II.1).

In this way the designer can make effective tradeoffs between the power of the test and the variance of

the test statistic.

The mismatched divergence provides a unification of severalapproaches to robust and universal

hypothesis testing. Although constructed in an i.i.d. setting, the mismatched tests are applicable in very

general settings, and the performance analysis presented here is easily generalized to any stationary

process satisfying the Central Limit Theorem.

There are many directions for future research. Topics of current research include,

(i) Algorithms for basis synthesis and basis adaptation.

(ii) Extensions to Markovian models.

(iii) Extensions to change detection.

Initial progress in basis synthesis is reported in [22]. Recent results addressing the computational com-

plexity of the mismatched test are reported in [20]. Although the exact computation of the mismatched

divergence requires the solution of an optimization problem, we describe a computationally tractable

approximation in [20]. We are also actively pursuing applications to problems surrounding building

energy and surveillance. Some initial progress is reportedin [23].
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APPENDIX

A. Excess codelength for source coding with training

The results in Theorem III.2 give us the asymptotic behaviorof D(Γn‖π) but what we need here is

the behavior ofD(π‖Γn). Define

h(µ) =





D(π‖µ) if µ ∈ Pǫ/2

D(π‖πu) else
.

It is clear thath is uniformly bounded from above bylog 2
ǫ . Althoughh is not continuous at the boundary

of Pǫ/2, a modified version of Lemmas III.5 and III.6 can be applied tothe functionh to establish the

results of (16) following the same steps used in proving Theorem III.2. The Hessian matrixM appearing

in the statement of the lemmas is given by,

M = ∇2h(π) = diag(π)−1.

Hence, trace(MΩ) = trace(MΩMΩ) = N − 1.

B. Proof of Lemma III.4

Proof: In the following chain of identities, the first, third and fifth equalities follow from relation

(25) and Proposition II.5.

DMM
F (µ‖π0) = D(µ‖π0)− inf{D(µ‖ν) : ν = π0 exp(f − Λπ0(f)), f ∈ F}

= D(µ‖π̌) + 〈µ, log(
π̌

π0
)〉 − inf{D(µ‖ν) : ν = π̌ exp(f − Λπ̌(f)), f ∈ G}

= DMM
G (µ‖π̌) + 〈µ, log(

π̌

π0
)〉

= DMM
G (µ‖π̌) + 〈µ− π1, log(

π̌

π0
)〉+D(π1‖π0)−D(π1‖π̌)

= DMM
G (µ‖π̌) + 〈µ− π1, log(

π̌

π0
)〉+DMM

F (π1‖π0)

C. Proof of Lemma III.5

The following simple lemma will be used in multiple places inthe proof that follows.

Lemma A.1. If a sequence of random variables{An} satisfiesE[An] −−−→
n→∞

a and {E[(An)2]} is

a bounded sequence, and another sequence of random variables {Bn} satisfiesBn m.s.
−−−→
n→∞

b, then

E[AnBn] −−−→
n→∞

ab. ⊓⊔
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Proof of Lemma III.5: Without loss of generality, we can assume that the meanx̄ is the origin in

R
m and thath(x̄) = 0.

Since the Hessian is continuous over the setK, we have by Taylor’s theorem:

n(h(Sn)−∇h(x̄)TSn)I{Sn∈K} = n[h(x̄) + 1
2S

nT∇2h(S̃n)Sn]I{Sn∈K} (66)

=
n

2
SnT∇2h(S̃n)Sn

I{Sn∈K} (67)

whereS̃n = γSn for someγ = γ(n) ∈ [0, 1]. By the strong law of large numbers we haveSn a.s.
−−−→
n→∞

x̄.

Hence S̃n a.s.
−−−→
n→∞

x̄ and ∇2h(S̃n)
a.s.

−−−→
n→∞

∇2h(x̄) = M since∇2h is continuous at̄x. Now by the

boundedness of the second derivative overK and the fact that

I{Sn∈K}
a.s.

−−−→
n→∞

1

we have(∇2h(S̃n))i,jI{Sn∈K}
m.s.

−−−→
n→∞

Mi,j.

Under the assumption thatX is i.i.d. on the compact setX, we have

E[nSn
i S

n
j ] = Σi,j for all n,

andE[(nSn
i S

n
j )

2] converges to a finite quantity asn→ ∞. Hence the results of Lemma A.1 are applicable

with An = nSn
i S

n
j andBn = ∇2h(S̃n)i,jI{Sn∈K}, which gives:

E[nSn
i S

n
j ∇

2h(S̃n)i,jI{Sn∈K}] −−−→
n→∞

Σi,jMi,j. (68)

Thus we have

E[n(h(Sn)−∇h(x̄)TSn)I{Sn∈K}] = E[
n

2
SnT∇2h(S̃n)Sn

I{Sn∈K}]

−−−→
n→∞

1
2 trace(MΞ). (69)

SinceX is compact,h is continuous, andh is differentiable at̄x, it follows that there are scalarsh and

x such thatsupx∈X |h(x)| ≤ h and |∇h(x̄)TSn| < x. Hence,

|E[n(h(Sn)−∇h(x̄)TSn)I{Sn /∈K}]| ≤ n(h+ x)P{Sn /∈ K} −−−→
n→∞

0 (70)

where we use the assumption that theP{Sn /∈ K} decays exponentially inn. Combining (69) and (70)

and using the fact thatSn has zero mean, we have

E[nh(Sn)] = E[n(h(Sn)−∇h(x̄)TSn)] −−−→
n→∞

1
2 trace(MΞ).

This establishes the result of (i).
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Under the condition that the directional derivative is zero, (67) can be written as

nh(Sn)I{Sn∈K} =
n

2
SnT∇2h(S̃n)Sn

I{Sn∈K}. (71)

Now by squaring (71), we have

(nh(Sn)I{Sn∈K})
2 =

n2

4

∑

i,j,k,ℓ

[
Sn
i (∇

2h(S̃n))i,jS
n
j S

n
k (∇

2h(S̃n))k,ℓS
n
ℓ I{Sn∈K}

]
.

As before, by the boundedness of the Hessian we have:

(∇2h(S̃n))i,j(∇
2h(S̃n))k,ℓI{Sn∈K}

m.s.
−−−→
n→∞

Mi,jMk,ℓ

It can also be shown that

E[n2Sn
i S

n
j S

n
kS

n
ℓ ] =

Fi,j,k,l

n
+Σi,jΣk,ℓ +Σj,kΣi,ℓ +Σi,kΣj,ℓ for all n

whereFi,j,k,l = E[X1
i X

1
jX

1
kX

1
ℓ ]. Moreover,E[(n2Sn

i S
n
j S

n
kS

n
ℓ )

2] is finite for eachn and converges to a

finite quantity asn → ∞ since the moments ofXi are finite. Thus we can again apply Lemma A.1 to

see that

E[n2Sn
i ∇

2h(S̃n)i,jS
n
j S

n
k∇

2h(S̃n)k,ℓS
n
ℓ I{Sn∈K}]

−−−→
n→∞

(Σi,jΣk,ℓ +Σj,kΣi,ℓ +Σi,kΣj,ℓ)Mi,jMk,ℓ.

Putting together terms and using (71) we obtain:

E[(nh(Sn))2I{Sn∈K}] −−−→
n→∞

1
2 trace(MΞMΞ) + 1

4(trace(MΞ))2.

Now similar to (70) we have:

|E[(nh(Sn))2I{Sn /∈K}]| ≤ n2h
2
P{Sn /∈ K} −−−→

n→∞
0. (72)

Consequently

E[(nh(Sn))2] −−−→
n→∞

1
2 trace(MΞMΞ) + 1

4(trace(MΞ))2

which gives (ii).
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D. Proof of Lemma III.6

We know from (2) thatΓn can be written as an empirical average of i.i.d. vectors. Hence, it satisfies

the central limit theorem which says that,

n
1

2 (Γn − µ)
d.

−−−→
n→∞

W (73)

where the distribution ofW is defined below (40).

Considering a second-order Taylor’s expansion and using the condition on the directional derivative,

we have,

n(h(Γn)− h(µ)) = 1
2n((Γ

n − µ)T∇2h(Γ̃n)(Γn − µ))

where Γ̃n = γΓn + (1 − γ)µ for someγ = γ(n) ∈ [0, 1]. We also know by the strong law of large

numbers thatΓn and hencẽΓn converge toµ almost surely. By the continuity of the Hessian, we have

∇2h(Γ̃n)
a.s.

−−−→
n→∞

∇2h(µ). (74)

By applying the vector-version of Slutsky’s theorem [24], together with (73) and (74), we conclude

n((Γn − µ)T∇2h(Γ̃n)(Γn − µ))
d.

−−−→
n→∞

1
2W

T∇2h(µ)W,

thus establishing the lemma.

E. Proof of Lemma III.7

Proof: The assumption thatD is a projection matrix implies thatD2 = D. Let {u1, . . . , um} denote

an orthonormal basis, chosen so that the firstK vectors span the range space ofD. HenceDui = ui for

1 ≤ i ≤ K, andDui = 0 for all other i.

Let U denote the unitary matrix whosem columns are{u1, . . . , um}. Then Ṽ = UV is also an

N (0, Im) random variable, and henceDV andDṼ have the same Gaussian distribution.

To complete the proof we demonstrate that‖DṼ ‖2 has a chi-squared distribution: By construction the

vector Ỹ = DṼ has components given by

Ỹi =





Ṽi 1 ≤ i ≤ K

0 K < i ≤ m

It follows that ‖Ỹ ‖2 = ‖DṼ ‖2 = Ṽ 2
1 + · · · + Ṽ 2

K has a chi-squared distribution withK degrees of

freedom.
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