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Abstract—In this paper, a new method is introduced to blindly transmission policy in the secondary network can be acelyrat
estimate the transmit power of multiple signal sources in miti-  and dynamically adapted. An example of use is found in the
antenna fading channels, when the number of sensing devicaad o ant development of femtocells, i.e., small area cetlt dip-
the number of available samples are sufficiently large compad te ind b laving th ¢ i dt o
to the number of sources. Recent advances in the field of large erate indoors Dy overlaying the spectrum ficensead 1o OF'. .00
dimensional random matrix theory are used that result in a Macrocells. Closed access femtocells have the capabitiie
simple and computationally efficient consistent estimatorof the self-organize and to dynamically access spectrum ressurce
power of each source. A criterion to determine the minimum [2]-[3]; specifically, the first requirement of a femtoced! io
number of sensors and the minimum number of samples required  inima|ly interfere the overlaid licensed macrocell netiyo
to achieve source separation is then introduced. Simulatits are hil imult v trvi t timi t S dat
performed that corroborate the theoretical claims and showthat while S',mP aneously trying 9 op |m|ze ransmission data
the proposed power estimator |arge|y Outperforms alternaive rates W|th|n the femtoce”. Th|S requ|res that the femtmel
power inference techniques. be constantly aware of the outdoor activity of the macrocell

Index Terms—Cognitive radio, G-estimation, power estimation, Mobile users. As such, macrocell-femtocell networks ag co
random matrix theory, statistical inference. nitive wireless networks in which the established maciocel
network is seen as the primary network, while the femtocell
network plays the role of the opportunistic secondary nétwo

) ) In [4], the achievable rates of a two-tier macrocell-fenetbc
At a time when radio resources become scarce, the alterjgqyork are derived in the very general case where all eatiti

tive offered by cognitive radios [1] is gaining more and MOrg, he networks are embedded with multiple antennas. The
interest. Acognitive (or flexible) wireless network is a set of 5 ima| coverage of the secondary networks is computedrunde
opportunistic entities, referred to as tsecondarynetwork, seyeral assumptions on the side information available @t th
that ben_eflt. from .unused spectrum resources.to establish o cells. Among these assumptions, [4] supposes that the
communication while generating little or even no interfe@® o mtocells have perfect knowledge of the distances to the
to the licensed networks, collectively referred to asghmary  acrocell user equipments. This last assumption sugdeatts t
network. This is ac_hie\_/ed by letting the secondary devicqﬂ.?e femtocells have a means, either global positioningesyst
sense the communication channel for the presence of actiye;ome sort of detection mechanism, to perfectly evaluege t
transmissions and exchange the collected information 8MQfjsances to the active primary users. In the present woek, w
the secondary network, in order to perform optimal decsion q4ress the problem of the estimation of the distance of the
on the opportunistic communication strategy to apply. Th&condary network to each primary user or, more exactly, the
difficulty for the secondary network does not lie in the des opiem of the estimation of the individual source transmit
tection of downlink transmissions from fixed access pomtsegower& We provide a framework for the secondary network
licensed mobile users in the primary network, but ratheh t ;) ¢4 jgentify the number of primary sources, (ii) to deténm
reliable detection of the uplink transmissions from the f®b 1o nymper of transmit antennas for every source and (iii) to
licensed users to the primary access points. If, in addiion oqtimate the transmit power from each source.

detecting active transmissions, the secondary devicesatan e gifficulty of estimating transmit powers lies in thelétt

all time, detect the exact number of primary mobile Sourc&sormation knowna priori by the secondary network: the
and evaluate the power used by every individual source, gnsmitted data and the transmission channels are usually
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sources, e.g., individual secondary users are equippdd wit
many antennas, or a large number of secondary users, each
of them equipped with few antennas, collect their received
data via a central backbone; this assumption is valid in the
context of femtocells that can communicate through wired
private or public networks. The condition on the number of
sensors allows one to model the multi-dimensional chaFkhel
from the joint primary sources to the secondary users, tin¢ jo
source transmit datX and the additive received noid¥ as
large dimensional random matrices with independent entrigg. 1. A cognitive radio network
(no specific matrix size definition is required at this paint)
DenotingP a diagonal matrix whose entries are the source
powers with multiplicities the number of transmit antennddat, if the number of sensing entities is larger than the
of each user, the power detection problem boils down fmber of active transmitters in the primary network, it is
estimating the entries dP from the sole knowledge of the possible to evaluate both the exact number of transmitters
received data matrix¥ = HP3X + W, as all system and their respective transmit powers (and, for that maitter,
dimensions (number of antennas per transmit source, numpember of transmit antennas per source can also be estimated
of sensors, number of available samples) are large. If thherwise, ambiguous scenarios might arise where multiple
available samples largely outnumber the sensors (of devdfansmitters may be confused as a single transmitter with
orders of magnitude), and the number of sensors are megtimated transmit power the average of the true transmit
larger than the number of transmit antennas, the strong I@@wers of these transmitters. Additionally, we provide an
of large numbers ensures that the diagonal entrieP @fan expression of the minimum number of sensors required to
be retrieved directly from the eigenvalues ¥fY", and the Separate transmit sources of similar power.
problem is immediately solved. When all dimensions aredarg The remainder of this paper is structured as follows: Sactio
but are of the same order of magnitude, the law of lardkintroduces the system model. In Section Ill, we study the
numbers no longer applies and one has to consider resuits frdSymptotic spectrum of the eigenvaluesY¥". In Section
the theory of large dimensional random matrices, e.g.,,[l(b‘}/’ the novel power estimator is derived. Section V provides
used in the present article to derive the asymptotic eigaavasimulation results. Section VI concludes this work.
distribution of YY" as a function ofP. To this day and to the ~ Notations: In the following, boldface lower case symbols
best of our knowledge, no computationally-efficienhsistent epresent vectors, capital boldface characters denotecest
estimator for the entries @& has been proposéddmong the (I is the sizeXN identity matrix). The transpose and Hermi-
existing techniques are discretization and convex opéition  tian transpose operators are dendgd and(-)", respectively.
strategies [11], [12], which tend to directly invert the utts We denote byC* the set{z € C,3[z] > 0} and byC~ the
from [10] (although an explicit inverse was not available &€t{z € C,S[z] < 0}. The left-limit in = of a function f is
that time), and moment-based approaches [13], [14], wrseh (fenotedf (z—).
the empirical moments of the eigenvalue distribufiéiy " to
infer the entries ofP. Some of these moment-based methods Il. SYSTEM MODEL
are computationally cheap, but provide in general consiste Consider a wireless (primary) network in whi¢h entities
estimators of the moments of the eigenvalue distributioR of are transmitting data simultaneously on the same frequency
instead of estimators of the sought powers. These techsiquesource. Transmitter € {1,..., K} has transmission power
are therefore expected to perform worse than methods tidat and is equipped withn, antennas. We denote =
would fully exploit the eigenvalue distribution &Y™, and Zszl ny, the total number of transmit antennas of the primary
not only a few moments of the distribution. This problem igetwork. Consider also a secondary network composed of a
successfully addressed in [15] for the simpsample covari- total of N, N > n, sensing devices (they may B¢ single
ance matrixmodel Y/ = P2X, where strongly consistentantenna devices or multiple devices embedded with multiple
estimators for the individual entries ®f are provided, which antennas whose sum equal$; we shall refer to théV sensors
are based on the full eigenvalue distributionXfPX. collectively asthe receiver This scenario is depicted in Figure
The present work generalizes this result to infer the emtrié. To ensure that every sensor in the secondary network,
of P from the observed matri¥ = HPzX + W. The novel €.9., in a femtocell, roughly captures the same amount of
estimator proposed here is strongly consistent with resp&gergy from a given transmitter, we need to assume that
to growing number of sensors, sources and samples, hatherespective transmitter-sensor distances are alikis. i
very compact form, is computationally efficient and is showfgalistic assumption for a in-house femtocell network. @ten
in simulations to largely outperform alternative apprasgsh Hr € CV*™* the multiple antenna channel matrix between
such as moment-based methods. The estimator is moredy@psmitterk and the receiver. We assume that the entries

robust to small system dimensions. We specifically showf vV NH,, are independent and identically distributed with
zero mean, unit variance and finite fourth order moment. At

lan estimatorP; of the it* entry P; of P is said to beconsistentf P — tlr(?ne) Instantm, t-ransmltlterk emits the mU|t|'.antenna S|gnal
P; — 0 almost surely when the relevant system dimensions grovelarg ~ x,~ € C™, with entries assumed to be independent and

Secondary Network



identically distributed of zero mean, unit variance andtéini For x € R a continuity point of F, we have theinverse
fourth order moment. Assume further that at time instarthe  Stieltjes transfornformula

receive signal is impaired by additive white noise with &ssr 1 ©
of zero mean, variance? and finite fourth order moment on F(z) = = lim S[m(t + iy)]dt. )
every sensor; we denotev(™ € CV the receive noise vector _ _ Y20t /oo _
where the entries ov\™ have unit variance. At timen, the ~ In this section, we prove the following result .
receiver therefore senses the sigpél’) € CV defined as Theorem l:Let By = YY" with Y defined as in
K (3). Then, for M, N, n growing large with limit ratios
m) (m) m M/N — ¢, N/np — ¢k, 0 < ¢,c1,...,cx < o0, the
y( )= ; \/F’“Hkxk +ow™). @ eigenvalue distribution functiod®~ of By, referred to as

) ) o the empirical spectral distribution(e.s.d.) ofBy, converges
Assuming the channel fading coefficients are constant avergmost surely to the deterministic distribution functidn

least M consecutive sampling periods, by concatenatidg (eferred to as thdimit spectral distribution(l.s.d.) of B,

ive si izations indg — v M - -
successive signal realizations int6 = [y'",....y*™] € \yhose Stieltjes transform - (z) satisfies, forz € C*,
CN*M we have

K mF(z):cmE(z)—i—(c—l)% (6)
Y ; \/FkaXk oW @ wheremp(z) is the unique solution with positive imaginary
part of the implicit equation inng
where X, = [x\", ... x{™7] e c*M for everyk, and «
W = [w), ... wM] ¢ CN*M This can be further 1 2+1_ 1 B )
rewritten as ) mg - f — Ck 1+ P f
Y =HPz2X + oW 3) . _
in which we denoted the value
where P € R" ™ is diagonal with firstn; entries P, 9
subsequent, entries P, ..., lastng entries Py, H = f=Q0=c)mp —camp”. (8)
[H,...,Hg] € CV" and X = [X],..., XE]T € CM. The rest of this section is dedicated to the proof of Theorem
By convention, we shall assunfg < ... < Pk. 1. First remark that (3) can be further simplified into
Remark 1:The statement that/NH, X and W have
independent entries of finite fourth order moment is meant Y = (HP% a'IN) (é/_) : 9)
to provide as loose assumptions as possible on the channel,

signal and noise properties. In the simulations of Sectiptih® AppendingY € CN*M jinto the larger matrixY e
entries ofH, W are taken Gaussian. Nonetheless, accordigg® +n)xM
to our assumptions, the entries Xf need not be identically 1

L . . : HP2> olIy) (X
distributed, but may originate from a maximum &f dis- Y = ( 0 0 > <W) ,
tinct distributions. This translates the realistic asstiompthat
different data sources may use different symbol consietiat we recognize tha%ﬂH is asample covariance matrjfor
(e.g.,M-QAM, M-PSK); the finite fourth moment assumption, hich the
is obviously verified for finite constellations.

(10)

population covariance matri>< HPH' 40"y 8) is

gon-deterministic and the random matfix, ) has indepen-

Our objective is to infer the values of the power o . . -
Py..... Py from the realization of the random matfi. This dent (non-necessarily identically distributed) entrigghvezero
Lo mean and varianceé.

is the subject of Section IV. In the sequel, we introducegsoo At this point. we need the following result
from large dimensional random matrix theory and we provide IS point, w N x wing resuft,
. : e H Proposition 1: Let Z,, € C**™ have complex independent
a thorough analysis of the eigenvalue dlstnbutlonﬁﬁ{Y . ) . :
entries of zero mean, unit variance and finite+ £ order

asi, n and M grow large at the same rate. moment, for some > 0, and T,, € R™*"™ be Hermitian
with e.s.d. converging almost surely 0, as N — oo. Let
A, = +Z,T,Z}. Then, asn, N — oo, N/n — ¢ > 0, the
We start by analyzing the eigenvalue distributionjoh Y"  eigenvalue distribution ofA,, converges weakly and almost
whenn, N and M grow large at a similar rate. This is asurely to the distribution functiont with Stieltjes transform
fundamental prior step to the proper estimatiorPpf. . ., Pk. ma(z), z € C*, being the unique solution with positive
imaginary part of the equation im 4

IIl. SPECTRAL ANALYSIS

A. Limiting spectrum of; YY" 1 1 ¢
i , . . z:——+—/7dT(t). (11)
We first define the Stieltjes transform of a (cumulative) ma ¢ J 1+tma

distribution function. S _ Proof: The proof originates from Theorem 4.1 of [16]
Definition 1: Let F be a distribution function. For € C\  that states that, under the hypotheses of Proposition 1, the
R, the Stieltjes transformmn(z) of I is defined as eigenvalue distribution ofA, converges weakly to some
1 distribution functionA whose Stieltjes transform 4(z) is a
m(z) = / @) ) function of the Stieltjes transform af (=) ande only: m.4(z)




is explicitly given by (4.4.4) of [16]. Now, in the specialsm=a 0.1 m— w '

where Z,, has independent and identically distributed (i.i.d.) Asymptotic spectrum

entries of zero mean, unit variance and firite- ¢ moment,

[10] and Theorem 4.3 of [16] show that 4(z) satisfies (11). 0.075 I o

But then, sincen 4(z) is only a function ofc andT regardless

of the distribution of the independent entries Df, ma(z)

that solves (11) is the Stieltjes transform 4ffor the more

general case. ]
Note that Proposition 1 can be equally stated whenC~—.

In that casem 4(z) is the unique solution of (11) with negative

imaginary part. 0.025 |1
From Proposition 1, sincél has independent entries with

finite fourth order moment, we have that the e.s.dH@H"

converges weakly and almost surely to a limit distribut@n 0 3 ; x -

asN,ni,...,ng — oo With, N/ny — ¢ > 0. Forz € C*,

the Stieltjes transforrm(z) of G is the unique solution with Estimated powers

positive imaginary part of the equation ing,

x  Empirical eigenvalues

Fig. 2. Empirical and asymptotic eigenvalue distributio‘nj\gYYH when
1 1 P P has three distinct entrie®; = 1, P, = 3, P3 = 10, n1 = n2 = ng,
k (12) co =10, ¢ =10, o = 0.1. Empirical testn = 60.

pm ety
mg ;Ckl—f—Pka

K

The almost sure convergence of the e.s.dHIPH" en- Where, according to (12)ng(—1/mp(z) — o?) satisfies

sures the almost sure convergence of the e.s.d. of the matrix 1 2 1

(HPHHO+021N 8). Sincemg(z) evaluated at € C* is the mp(z) o mg(—#(z) —02)

Stieltjes transform of the |.s.d. @PH" + oIy evaluated K B p

at z + o2, addingn zero eigenvalues, we finally have that the — Z — K T > a7

e.s.d. of( HPH'o"Ix 0 ) tends almost surely to a distribution i ok L+ Peme (=5 — 0%)

H whose Stieltjes transformmy; (z) satisfies Together with (16), this is exactly (7), witly(z) =
me (ks = 0%) = (1 - mp(2) — czmp(2)*.

Co 1 1

-, 13) Since the eigenvalues of the matricBsy and B only
I+coz differ by M — N zeros, we also have that the Stieltjes transform
mp(z) of the I.s.d. ofBy satisfies

mp(z) mg(z—az) -

:1+CO

for z € C*, where we denoted, the limit of the ratioN/n,
; _ (.1 —1\—1 1
ie,co=(c; +...+cxg ) h . ., mp(z) = emp(z) + (c— 1)=.

As a consequence, the sample covariance mq@NY z
has a population covariance matrix which is not deternmimist This completes the proof of Theorem 1. For further usage,
but whose e.s.d. has an almost sure limit for increasimgtice here that (18) provides a simplified expression for
dimensions. Sinc& and W have entries with finite fourth ma(—1/mg(z) — o?). Indeed we have,
order moment, we can again apply Proposition 1, and we have

oTnppy - op ma(~1/mp(z) — 0%) = —zmp()mp(z).  (19)

that the e.s.d. oBy = %XHX converges almost surely to

the limit F whose Stieltjes transformg(z) is the unique  Therefore, the support of the (almost sure) |.g:dof By

solution inC™ of the equation innpg can be evaluated as follows: for anye C*, mp(2) is given
by (6), in whichmg(2) is solution of (7); the inverse Stieltjes
transform formula (5) allows then to evaluatefrom mg(z),

(18)

2 = b +1 <1 + i) / t dH(t) (14) for values ofz §p§mning_ over_the_se{tz =z +iy,x > 0}
mp C Co L+tmp andy small. This is depicted in Figure 2, whé has three

1 1+ & 1 1 distinct valuesP, = 1, P, = 3, P; = 10 andn; = ny = ns,
T Tmr | omp [1 - m—EmH <——F>] (15) N/n =10, M/N = 10, 0 = 0.1, as well as in Figure 3 for

the same setup but witR; = 5.
forall z € C+. Two remarks on Figures 2 and 3 are of fundamental im-
For z € C*, mp(2) € C*+. Therefore—1/mp(z) € C* portance to the following. First, it appears that the asyript

and one can evaluate (13)at /mp(z). Combinﬁg (13) and l.s.d. F' of BN is compactly supported gnd divided into up
(15), we then have - to K + 1 disjoint compact intervals, which we further refer

to asclusters Each cluster can be mapped onto one or many
1 1 1 9 1 1 values in the sefo?, Py,. .., Px}. For instance, in Figure 3,
)2 <_W -9 ) + (_ ) mp(z)’  the first cluster is mapped 0, the second cluster t®; and
o "~ (16) the third cluster to the s€tP», P3}. Depending on the ratios

EmE( ¢



0.1 i achievable if the cluster mapped o, in I is disjoint from
Asymptotic spectrum all other clusters. The purpose of the present section is to
x  Empirical eigenvalues . _ . -

provide sufficient conditions for cluster separability.
g To ensure that clustérr (associated td; in F) is distinct
from cluster1 (associated tar?) and clustersir, i # k,
(associated to all otheP;), we assume now and for the rest
of this article that the following conditions are fulfille) &
satisfies Assumption 1, given as follows

Assumption 1:

0.075

0.05 1 -

Density

0.025 N K 2
1 Prmgyk
oL _mea® 20

0¢ N K 1 P, 2
3 5 > — (Brme 1) s <1 (21)
Cr (1 + PrmG7k+1)

°F
-f

Estimated powers

Fig. 3. Empirical and asymptotic eigenvalue distributio‘nj\gYYH when with ma,1,...,Ma.K the K real solutions to the equation in

P has three distinct entrie®; = 1, P = 3, P3 = 5, n1 = no = n3, MG
co = 10, ¢ = 10, 62 = 0.1. Empirical test:n = 60.

K 3
Z i% -1 (22)
r—1 Cr 1 + P mG)
andcy and on the particular values taken By, ..., Px and

o2, these clusters are either thin disjoint compact intenass with the conventionng g1 = 0,
in F|gure 2, or they may overlap to generate larger compagty (ii) & satisfies Assumption 2 as follows,
intervals, as in Figure 3. We shall see, as is in fact requ'redAssumptmn 2:Denoting, forj € {1 K}
by the law of large numbers, that for increasingand cq, ’ o
the asymptotic spectrum tends to be divided into thinner and
thinner clusters. The inference technique proposed hereaf
relies on the separability of the clusters associated th &ac

and too?. Precisely, to be able to derive a consistent estimate

jo = #{i < j | i satisfies Assumption}l,  (23)

of the transmitted powePy, the cluster associated 19, in F, 1—co (Usz,kc)Q

number it clusterkr, must be distinct from the neighboring co (1+0%mpig)?

clusters(k — 1)y and(k + 1), associated td;_; and Py ka1 4 (Ig L+ 0?)2m

respectively (when they exist), and also distinct from wEus + Z ol T STV - 5

1 in F associated t@2. As such, in the scenario of Figure r=1 (1+ (IGW +o)me k)

3, our method will be able to provide a consistent estimate &1 (g, + 0% mE .,

for Py, but (so far) will not succeed in providing a consistent + Z e (L1 (2. + 02)mppg)? <c (24)

estimate for eitheP, or Ps, since2r = 3. We shall see that r=ka " Gr Eba

a consistent estimate fdP, + P3)/2 is accessible though. 1—cy  (o*mppg+1)?

Secondly, notice that the empirical eigenvaluesBY; are co (1+0*mpig+1)?

all inside the asymptotic clusters and, most importantty, i kG + 212, 2

the case where clustér- is distinct from1, (k — 1) and Z 1 (xG’:—i— i )QmE"kG“ >

(k+1)p, observe that the number of eigenvalues in clukter —— (1+ (xG r T O2)ME kG+1)

is exactlyny. This fact is referred to asxact separationThe (zg, +o 2)2m2, hot1

exact separation for the current model originates from ectlir + Z { — 5 <¢ (25)

application of the exact separation for the sample coveean ka1 O L (@G, +0%)ME ke +1)

matrix proven in [17] and is provided here in Theorem 3. This

is further discussed in the subsequent sections. wherexg ;, x5, i € {1,..., Kg}, are defined by

B. Condition for separability I 1 n ZK: 1 P, (26)
In the following, we are interested in estimating consid{en G meg, oo l+Pmg,

the powerP; for a given fixedk € {1,...,K}. We recall 1 K P

that consistency means here that, as all system dimensions 1751 =——+ Z _7r+ (27)

grow large with finite asymptotic ratios, the differeng— Py ’ meq o O L+ Pemg

between the estimat®, of P. and P, itself converges to

zero with probability one. As previously mentioned, we showith mg, ;,m& 4,...,mg Kc,mg K the 2K real roots of

by construction in Section IV that such an estimate is on{0), andmpg ;, j € {1 ., K¢ + 1}, the j-th real root (in



increasing order) of the equation ing 100 T

l—co (0®mp)? (zd . +0°)*mp?

R 80 I -
co (1+02mp)3 ; e (1+ (xgr +o2)mp)?
$51 g, ot me’ ol |
— = C.
¢ (1 p 2 3 . .
= o (L+ (g, + 0%)mp) 8 cluster separability region
(28)
40 |- 2

Although difficult to fathom at this point of the article, the
above assumptions will be clarified in the subsequent sextio
We give hereafter a short intuitive explanation of the rale o 20
every condition.

Assumption 1 is a necessary and sufficient condition for 0 ! ! !
clusterkq, that we define as the cluster associatedtan G 0 0.2 0.4 0.6 0.8
(the I.s.d. of HPH"), to be distinct from the clusteg —1)¢ Py/Ps
and(k+1)¢, associated t@;_1 and Pyy; in G, respectively.

Note that we implicitly assume a unique mapping between thg 4. Limiting ratio co to ensure separability ofPy, P,), P < P,

P; and clusters irt7; this statement will be made more rigorousk = 2, ¢1 = ca.

in subsequent sections. Assumption 1 only deals with therinn

HPH" covariance matrix properties and ensures specifically

that the powers to be estimated differ sufficiently from on@nd spread over the clusters associated’tpthen P, etc.
another for our method to be able to resolve them. Note thd@ counter this effect, one must increasei.e., take more

if P,,...,Px are scaled by a common constant, then tHgnal samples. Figure 6 depicts the critical rattbat satisfies
solutions of (22) are scaled by the inverse of this constaet; Assumption 2 as a function of?, in the caseK = 3,
separability condition is then a function 8 /Py, ..., Px /P, (P1, P2, P3) = (1,3,10), co = 10, ¢1 = c2 = c3. Notice that,

and of the ratios:, ..., cx only. In Figure 4, we depict the in the case: = 10, belowo? ~ 1, it is possible to separate all
critical ratio ¢, above which Assumption 1 is satisfied for alclusters, which is compliant with Figure 2 wheré = 0.1.

k, whenK = 2 andc; = ¢, as a function ofP, / P,, i.e., the As a consequence, under the assumption (proved later)
critical ratio ¢, above which the two clusters associated?o that our proposed method cannot perform consistent power
and P, in G are disjoint. Observe that, @ gets close td?, estimation when the cluster separability conditions atemet,

co increases fast; therefore, to be able to separate powegssakye have two first conclusions:

with ratio close to one, an extremely large number of sensors, if one desires to increase the sensitivity of the estimator,

is required. In Figure 5, the cadé = 3 is considered with i.e., to be able to separate two sources of close transmit
c1 = ca = c3, ¢ = 10, and we letP, /Py and P3/ Py vary; this powers, one needs to increase the number of sensors (by
situation corresponds to the scenarios previously depiicte increasingeo),

Figures 2 and 3. Note that the triplefy, P, P3) = (1,3,5) . if one desires to detect and reliably estimate power
is slightly outside the region that satisfies Assumptionrid a  sources in a noisy environment, one needs to increase
then, for thiscg, not all the clusters ofG (and therefore the number of sensed samples (by increasjng

of F) are disjoint, as confirmed by Figure 3. As for the In the subsequent section, we study the properties of the

triplet (1, 3, 10), it clearly lies inside the region that SatiSﬁe%symptotic spectrum oHPH" and B, in more details
DN .

Assumption 1, Wh'Ch is sufficient to ensure the Separab"'tf"hese properties will lead to an explanation for Assumgtion
of the clusters inG, but not enough though to ensure th(a1

- . and 2. Under those assumptions, we shall then derive our
separability of the clusters if'".

i ) ) novel power estimator.

Assumption 2 deals with the compleRy matrix model.
It is however a non-necessary but sufficient condition s¢ tha
cluster kr, associated taP, in F, be distinct from clusters IV. MULTI-SOURCE POWER INFERENCE
(k—1)r, (k+1)F and1 (clusterl being associated t@*). The
exact necessary and sufficient condition will be statechéurt
in the next sections; however, the latter is not exploitade
is, and Assumption 2 will be shown to be an appropria
substitute. Assumption 2 is concerned with the valuecof
necessary to avoid (i) clustéi; (associated taP, in G) to
further spread on the clusteks; — 1 and kg + 1 associated
to P,_; and P,; and, more importantly, to avoid (ii) cluster
1 associated t@r? in I to merge with clustekr. As shall P, — P, 2% 0 (29)
become evident in the next sections, wheh is large, the
tendency is for the cluster associatedotd to become large where the estimaté, is given by

In this section, we prove our main result,

Theorem 2:Let By € CV*¥ be defined as in Theorem 1,
taendA = (A,..,An), M1 < ... < An, be the vector of the
ordered eigenvalues @ . Further assume that the limiting
ratios cg, c1,...,cx, ¢ and P are such that Assumptions 1
and 2 are fulfilled for somé& € {1,..., K}. Then, asN, n,
M grow large, we have
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Fig. 7. zg(mg) for mg real, P diagonal composed of three evenly
Fig. 5. Subset of P1, P2, P3) that fulfills Assumption 1K = 3, ¢c; = weighted masses ih 3 and10. Local extrema are marked in circles, inflexion
co = c3, for cp = 10, in crosshatched pattern. points are marked in squares.

100 T T T
Py separability limit The approach pursued to prove Theorem 2 relies strongly on
P separability Timit the original idea of [15]. From Cauchy’s integration formul
80 —o— Py separability limit | |
[18],
1 w
i P, = — d
o "o fo, P—w
© cluster separability region . Ko
w
| — — d 32
401 o @kzcrpr—ww (32)
r=1
20 |- i for any negatively oriented contowt, C C, such thatP;
e~ 10 is contained in the surface described by the contour, while

for everyi #£ k, P; is outside this surface. The strategy is

0 £ 24 then the following: we first propose a convenient integratio
-5 *10 *5 0 > 10 15 20 contourCy, which is parametrized by a function of the Stieltjes
SNRZ L [dB] transformmp(z) of the I.s.d. ofB . We proceed to a variable

change in (32) to expresB; as a function ofmpg(z). We

Fig. 6. Limiting ratioc as a function o2 to ensure consistent estimationthen evaluate the complex integral resulting from replatire

of Pr =1, P, =3 and P; = 10, co = 10, c1 = c2 = c3. limiting m g (2) in (32) by its empirical counterparhr(z) =
% tr(By — 2Iy) L. This new integral, whose value we name
Py, is shown to be almost surely equal & in the largeN

o if M #N, limit. It then suffices to evaluat&,, which is just a matter of
A NM residue calculus [18].
Po=— S (- i), 30 i - i
k ng(M — N) ZEZN: (= 1) (30) We start by determining the integration contaty. For
_ i this, we first need to study the distributio6sand F" in more
o if M =N, details.
—1
N
> N i
Fi= nk(N —n) GXN: ; (\j —mi)? - (1) A. Properties ofG' and F’
K3 k =
& Let us introduce the following result on the |.s.d. of sample
inwhichNy = {325 nit1,..., 30 nab, (o) ar¢  covariance matrices, borrowed from [19]
the ordered eigenvalues of the mattliag(A) — VAV Proposition 2: Let A, be defined as in Proposition 1. Then
and (p1, .. . ,MN) are the ordered eigenvalues of the matrihe almost sure limiting Stieltjes transfonm, (z) of the e.s.d.
diag(X\) — \/_\/_ of A, » € CT admits a limitms, (z) whenz — = € R*. If
Remark 2 We immediately notice that, itV < n, the = is inside the support ofl, thenm$(z) is the only solution
powers Py, ..., P, with [ the largest integer such thaf — with positive imaginary part of the equatiory(m) = z in

ZiK:l n; < 0, cannot be estimated. the variablem, with z4(m) defined, for—1/m outside the
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zg(ma) U {_1/P177_1/PK}1 by
Support of G K
1 1 P,
= _— 35
za(ma) mea + ; ¢ 14+ Pomg (35)
. The functionz¢(m¢) is depicted in Figures 7 and 8, for
g 5 1 the cases wher@ = 10, ¢; = ¢co = ¢3 and(Py, P2, P5) equal
S respectively(1,3,10) and(1, 3,5). As expected by Proposition
& 2, z¢(mg) is increasing formeg such thateg (me) is outside
31 1 the support ofG. Note now that the functiorrs presents
asymptotes in the positions1/Py,...,—1/Pk,
lim za(mg) = oo 36
' ;/‘./_e\ 1 mal(=1/P;) ¢(ma) (36)
| [ | 3 —
= 1o mGTl(lir%/Pi) za(me) 00, (37)
mag

and thatzg(mg) — 07 asmg — —oo. Note also that, on

} ) its restriction to the set where it is non-decreasing, is
Fig. 8. zg(mg) for mg real, P diagonal composed of three evenly.

. . . L
weighted masses ih, 3 and5. Local extrema are marked in circles, inﬂexionlncreasmgz' To prove this, letm¢ and mg be two distinct

points are marked in squares. points such thatrg(mg) > 0 and zg(my) > 0, and
mg < mg < 0, we indeed havé,
T s
o (mp) J za(me) — xa(msy) = L’;’:‘G

mmmm Support of F' mameg
Support of —1/H e i 1 PTQ
=1 Cr (P + mLG)(PT + mlg)
| 10 |- ] (38)

Noticing that, forP; > 0,

2
P; P;
0< - L 39
/ <Pi+_1 B"'—l*) (39)
ma mg,

zg(mp)

30 ] P2 P2 P?
¢ _ [ + [ -2 k3 ,
W L \ (PitL2 " (Pt (Bt o) P+ &)
0-1= -1 _1 _L(; (40)
3 10
mpg we have

composed of three evenly weighted masses, i and 10. The support ofF’

< i . E i : i
Fig. 9. zp(mp) for mp real, 0> = 0.1, ¢ = ¢o = 10, P diagonal 1— —7rlz + 11— —7TlQ
Cr (P —|——) Cy (PT—Fm—*G)

. . A r=1 ma r=1
is read on the vertical axis.
K1 p?
<2-2 E — s . 41
=1 Cr (Pr+mlc)(PT+m}g) @

support ofT’, as .
Since we also have

1 1 t K
wa(m) = -+ 41 / aree, @) o, L[ 1 P2
m ¢ 1+tm Zea(mea) me, [1 ; o Bt mLG)Ql >0 (42)
while, if = is outside the support off, m(x) is the only 1 L p2
solutionm of z4(m) = z such thatr’,(m) > 0. Moreover, re(mg) = —3 ll - Z —%12] >0, (43)
if for somem € R such that—1/m is outside the support of (m&) o (Bt m_g)
T, a’y(m) > 0, thenz 4(m) is outside the support ofl. we conclude that the term in brackets in (38) is positive and

The immediate corollary of Proposition 2 is that the conthen thatrg (me) — 26 (mg) > 0. Hencez is increasing on
plementary of the suppoBtupp(A) of A is the set{xz4(m)} its restriction to the set where it is non-decreasing.
for —1/m outside the support df’ such thatz’, (m) > 0, Notice also thatz, both in Figures 7 and 8, has exactly
one inflexion point on each open sgt1/P,_;,—1/F;), for
Supp(A) =R\ {z | Im € R,z = z4(m), 24, (m) > 0}.
(34) 2vl/e say.h_ere that *a functioffi(z) is *increasing ifx < a* = f(z) —
1) Support ofG: First consider the matrit HPH", and {jéﬁre)a;ng’_ Mo <a= f@) = f@) 20 we say thatf(z) is non-
let the functionz¢(m¢) be defined, for scalarsiz € R* \ 3this proof is borrowed from the proof of [15], with differenbtations.



1€ {1,..., K}, with conventionP, = 0+. This is proven by  2) Support ofF: We now proceed to the study df, the

noticing thatz7.(m¢) = 0 is equivalent to almost sure limit spectrum distribution @ . In the same
K 5 3 way as in the previous section, we have that the suppaft of
Z 1 Pmg 1=0. (44) is fully determined by the function g (mp), defined formg
= (14 Prmg)? real, such that-1/mp lies outside the support @, by
Now, the left-hand side of (44) has derivative along;, 1 1+ t
(44) vp(mp) = —— + —2 / dH(t).  (48)
K P32 mg cco 1+tmp
Z ;7(1 +TPT7§G)4’ (45) _ Figure 9 depicts the functiomr in the case of Figure 2,
r=1 Le.,, K =3, Pl = 1,P2 :3,P3 =10, C] =C2 =2¢C3,Ch = 10,
which is always positive. Notice that the left-hand side4f)( ¢ = 10, o> = 0.1. Figure 9 has the peculiar behaviour that it
has asymptotes fang = —1/P; forall i € {1,..., K}, and does not have asymptotes as in Figure 7 where the population

has limits0 asmg — 0 and1/co — 1 asme — —oo. If  eigenvalue distribution was discrete. As a consequence, ou
co > 1, Equation (44) (and thent, (m¢) = 0) therefore has a previous derivations cannot be straightforwardly adapted

unique solution in(—1/P;_1,—1/P;) foralli € {1,...,K}. derive the spectrum separability conditioncdf> 1, note also,
When z¢ is increasing somewhere ofi-1/P;_1,—1/F;), although it is not appearing in the abscissa range of Figure
the inflexion point, i.e., the solution tag,(mg) = 0, in 9, that there exist asymptotes in the positian = —1/02.

(=1/Pi—1,-1/P;) is necessarily found in the region whereThis is due to the fact that(0) — G(0—) > 0, and therefore

rg increases. Ity < 1, the leftmost inflexion point may not H (02?) — H(0?—) > 0. We assume, > 1 until further notice.

exist. From Proposition 2, the support &f is complementary to
From the discussion above and Proposition 2, it is clear that set of real nonnegative such thatr = zp(mpg) and

the support ofG is divided into K < K compact subsets /. (mp) > 0 for a certain reahm g, with 2. (mr) given by

[zg 28] i €{1,...,Ka}. Also, if ¢ > 1, G has an addi- ,

tional mass in of probability G(0) — G(0—) = (co — 1)/co; / I 1t / ¢ dH(t).  (49)

( .

s . IE(mF) = 2 2
this mass will not be counted as a clusterGn Observe that mp cco 1+tmp)

every P; can be uniquely mapped to a corresponding subse P e ooy, 1 :
[Iaj,xaj] in the following fashion. The poweP; is mapped b(iivmv;ESé:g thattl (t) = 7347 Gt —0%) + 55 0(1), this can
onto the first cluster inG; we then havelg = 1. Then the )

power P; is either mapped onto the second cluste6iif ¢ o(mp) = 1 - l/ t _dG(t—o%).  (50)
increases in the subset1/P;, —1/P), which is equivalent = = mp? c/) (1+tmp)

to saying thatzg(me,2) > 0 for mg,, the only solution s siill true thatep (m ), restricted to the set ofiz where

to zg(mg) = 0in (=1/P, —1/P,); in this case, we have ;s (., .y >, is increasing. As a consequence, it is still true
2g = 2 and the clusters associated B and P in G areé  igg that each cluster ¢ can be mapped to a unique cluster
distinct. Otherwise, ifri; (ma,2) <0, P> is mapped onto the j, it is then possible to iteratively map the pow®f onto
f|_rst cluster inF; in this case2g = 1. The latter scenario clusterke in G, as previously described, and to further map
visually corresponds to the case whéh and P, engender cysterz. in G' (which is also clustekc in H) onto a unique
‘_‘over_lapplng clusters”. More generally;, j € {1,..., K}, clusterks in F (or equivalently inF).

is uniquely mapped onto the clustgr such that Therefore, a necessary and sufficient condition for the

jo=#{i <j | minfzl(ma,), ¥a(ma.is1)] >0}, (46) separability_ of the cluster a_ssociated}fg irj I reads
Assumption 3:There exist two distinct real values

with conventionmg k1 = 0, which is exactly m(EI?kG < m(ET?kG such that

e cnticf . p .

jo =#{i <j |1 satisfies Assumption}l, (47) 1) x/E(m(E),kc) >0, x/E(m(E,)kc) ~0
whency > 1. If ¢y < 1, mg 1, the zero ofcf, in (—oo, —1/P;) 2) there existm(céfk,m(GT,),C € R such thatxg(mg),k) =
may not exist. Ifcy < 1, we claim thatP; cannot be evaluated ~1/m@¥, 0% andazg(ml),) = —1/my),  — o> that

(as was already observed in Remark 2). The special case when Satisfy_"

¢o = 1 would require a restatement of Assumption 1 to handle )

a) z(my,) > 0, xiz(m¥)) >0,

the special case aP;; this will however not be done, as it b) and

will turn out that Assumption 2 is violated faP; if o2 > 0, . )

which we assume. Py < ——q < P, < ——7 < Poi1 (51)
In the particular case of the powe}, of interest in Theorem me me g

2, because of Assumption %y, (m¢,) > 0. Therefore the
index kg of the cluster associated 8. in G satisfieskg =
(k—1)g+1 (with conventiorDe = 0). Also, from Assumption "

1, 2% (mg.rs1) > 0. Therefore(k + 1)¢ = kg + 1. In that clusters(k— Da an(_j(k:+ e (Ite“m 2b); this is _ano('g)her vZay
case, we have thaP, is the only power mapped to clusterof stating Assumption 1, and (ii) that the points;’, . =
kg in G, and then we have the required cluster separabilityl/(zg(mgfkc)+o—2) andm(é)kc = —1/(:cG(m(GT,)kG)+02)
condition. (which lie on either side of clustéts in H) have respective

with the conventionP, = 0+, Pk 11 = c©.
Assumption 3 states (i) that clustes in G is distinct from



|mages:c§f) = xF(mg)k ) and T) £ IF(ka ) by zp,
such thatr (mg)k )>0 andx}?(mg)k ) >0, ie. xg) and

:cECTF) lie outside the support af, on either side of clustetp.

However, Assumption 3, be it a necessary and sufficie

condition for the separability of clustetr, is difficult to

exploit in practice. Indeed, it is not satisfactory to rerqw

the verification of the existence of su@h;)kc and mF ke

More importantly, the computation ofr requires to “know
H, which is only fully accessible through the non-convenie

inverse Stieltjes transform formula

H(z) = 1 lim

T y—0

mp (t + iy)dt. (52)

— 0o

Instead of Assumption 3, we derive here a sufficient condiZE (5% ))

10

estimated. It is therefore not necessary to update Assompti
1 for the particular case aP;, whency = 1.
Therefore, Assumptions 1 and 2 ensure thiat- 1) <
< (k+ 1)p, kr # 1, and there exists a constructive way
0 derive the mapping — kr. We are now in position to
determine the contouy,.

r%’ Determination ofe,,

From Assumption 2 and Proposition 2, there exi%i and
xg) outside the support of’, on either side of clustekp,
such thalmp(z) has IimitSm(El?,C £ mp(z (l)) andm (T) L=

asz — :cg) andz — :c(r) respectively, W|thnF

tion for cluster separability in". Notice from the clustering the analytic extension ofir in the pomtm:( ) eR and:z:(”

of G into K clusters plus a mass at zero that (50) becomgs These limitsn"

— dG(t — o*
1+th) Gt —o)

B (1+ UQmE)2 (53)

where we remind thatcg, ;, z¢; ;] is the support of clusteirin
G, i€, 251,25, - 1g Kc,xg k. are the images by
of the 2K, real solutions torG(mG) = 0.

Observe now that the functiont?/(1 + tmp)?, found in
the integrals of (53), has derivative along

(1+tmp) (54)

2 L 2t
(1 —|—tmE)2 B (1—|—tm£)4
and is therefore strictly increasing whenp < —1/¢t and
strictly decreasing whemp > —1/t. Formp € (—1/(:55#
0%),=1/xg 1, +0?), we then have the inequality

1 1< (zg, +0%)?
mr) > 2 . Z T 2 2
mpg ¢ (1 + (IG,T +o )mE)

r=1
+Z

r= 1+1

xGr+U )2

(55)

Denote fi(mr) the right-hand side of (55). Through thecontoursey ), of diameter|
inequality (55), we then fall back on a finite sum expression
as in the previous study of the support 6f In that case,
we can exhibit a sufficient condition to ensure the sepdtgbi

+ cop—1 ot
+(zg, +o2)mp)? o (1+0%mp)? |-

|and:z:kF forkr € {1,2

Pk ande ., are on either side of cluster
2LHRG 2LHRG
kg in the support of-1/H, and therefore—l/mg)kc —o?

and —1/mg?kc — o? are on either side of clustdrg in the
support ofG.

Consider any continuously differentiable complex pBhy,
with endpoints:cgz and xg;) and interior points of positive
imaginary part. We define the contol-; as the union of
I'ry oriented from:cgc) to xg) and its complex conjugate

Ik oriented backwards fromk " to :ck) The contouCr, is
clearly continuous and piecewise contmuously differaie.
Also, the support of clustekr in F is completely inside
Cr,k, While the supports of the neighboring clusters are away
from Cg . The support of clusteks in H is then inside
—1/mp(Cry),* and therefore the support of clustef in G is
inside Cg £ —1/mp(Cry) — 2. Sincemp is continuously
differentiable onC \ R (it is in fact holomorphic there [19])
and has limits im:,(f; and a:,(fp) Cea,x Is also continuous and
piecewise continuously differentiable. Going one laspste
this process, we finally have thd®, is inside the contour
Cx £ —1/mg(Cq k), while P;, for all i # k, is outside
Ck. Sincemg is also holomorphic orC \ R and has limits
in —l/mEO(I,(jl) — 0% and —l/mEO(:r,(:F)) — 0% G is a
continuous and piecewise continuously differentiable plex
path, which is sufficient to perform complex integration][18
The contour£;, Cs, C3 or|g|nat|n%) from circular integration
:ckF,a:kF k € {1,2,3}, for the
case of Figure 2, are depicted in Figure 10. The poﬂﬁk
,3} are taken to be,, l) =2p(ME.ks),

of clusterky from the neighboring clusters. Specifically, wer;,, = 2r(mF, kG+1) with m g ; the real FOOt offj(mp) =0

only need to verify thaffy. i (mpg k,) > 0, with mp ., the
single solution tof; ., (mp) = 0 in the set(—1/(zf .., +
o), =1/(xg 4, + 0%)), and fig(mprg+1) > 0, with

mr ke+1 the unique solution tof; .(mp) = 0 in the set
(=1/ (@& 4, +0°), =1/ (2G4 41 +07)). This is exactly what

Assumption 2 states.
Remember now that we assumed in this sectign> 1.

If ¢ < 1, thenO is in the support ofH and therefore the
leftmost cluster inF, i.e., that attached te?, is necessarily

in (— 1/(:chZ , +0%),-1/(zg,; +0?)) wheni € {1,2,3},
and we take the conventlonGA =-1/(15+0?).
Recall now thatP, was defined as

K

1 1 w

Pi = e 21 cr
Crop=1 "

dw.

(56)

P —w

4we slightly abuse notations here and should instead sayttiBasupport
clusterkg in H is inside the contour described by the image-by/m g

merged with that ofP;. This already discards the possibilityof the restrlctlon toCT andC~ of €, continuously extended & in the
of spectrum separation foP; and thereforeP; cannot be points— 1/mF ke @nd— 1/mﬁf .
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Fig. 10. Integration contour€r 1, Cr2 and Cg 3, for ¢ = 10, co = 10,
P =1, P,=3, P3=10.
With the variable change = —1/m¢(t), this becomes
Ck al
P, =— mgag t
210 Jeg . ( ®) [ ma(t) Zl 1+ P, mg( )
co— 1Y\ mg(t)
_— dt. 57
* co ) ma(t)? (57)
From Equation (12), this simplifies into
e 1 m(t)
P, =—— t t -1 t. (58
b co 2mi Jeg (cotma (1) + (co ) mg (t)? 9)

Using (16) and proceeding to the further change of variable -

t=—1/mp(z) — o2, (58) becomes
= C—k # 0'2 Zm Z)m z U 1
B = o i’i Kw(z) * ) pleyme(z) + =0 ]
—mp(z)mp(z) — zmp'(z)mp(z) — zmp(z)mEy(2) ;
X Z2mE(Z)2mF(Z)2 (5d9)
— oc‘mp(z U 171
- 2mi Crun [(1+ i £ ))+ Co sz(z)]
L mEe w1
| e @) €

This whole process of variable changes allowed us

11

and
(62)

Instead of going further with (59), defing,, the “empirical
counterpart” of P, as

R n 1 N N —n 1
:n_k% A [; (1+02mp(2))+Tm:|
) ) (2)

: [ np(s)  me(? e |
(63)

The integrand can then be expanded into nine terms, for
which residue calculus [18] can easily be performed. De-
note firstn,...,nxy the N real roots ofrnp(z) = 0 and
Hi,- .., pn the N real roots ofinp(z) = 0. We identify three
sets of possible poles for the nine aforementioned terms: (i
the set{A1,..., An}N [a:,(j;,:ckF] (i) the set{n1,...,nn} N
[:z:,(f;,:cgC ] and (iii) the set{u1,...,un} N [a:,(j;,x,(:)] For
M +# N, the full calculus leads to

’ k(M —N) 1<i<N " 1<i<N "
o) <ni<al) o) <pi<al’)
N S - Y o2
b 1<i<N 1<i<N
L=}.) <mi<ay) o) <<l
T T - S (64)
U 1<i<N 1<i<N
[=}) <pi<al?) o) <i<al)

Details are given in Appendix A. Now, we know from
Theorem 1 thatnp(z) == mp(z) andmg(z) == mp(2)
as N — oo. Observing that the integrand in (63) is uniformly
bounded on the compadr, the dominated convergence
theorem [20] ensure®, == P,.

To go further, we now need to determine which of
Al oo ANG M1, .-,y @and pg, ..., uy lie inside Cp . This
tequires a result of eigenvaliexact separatiorthat extends

describeP;, as a function ofmr(z), the Stielties transform the earlier results of [21], [17], as follows

of the almost sure limiting spectral distribution ®&,, as
N — oo. It then remains to exhibit a relation betwe£n and
the empirical spectral distribution @ for finite V. This is
to what the subsequent section is dedicated to.

C. Evaluation ofP;

Let us now definernr(z) and mp(z) as the Stieltjes
transforms of the empirical eigenvalue distributions Bf;
andB,, respectively, i.e.,

1L 1
:N;/\—

(61)

Theorem 3:Let B, (1/n)T X, XHT2 € CP*P, where
we assume the following conditions
1) X,, € CP*" has entries;;, 1 <i<p, 1 <j<n,ex-
tracted from a doubly infinite array;; } of independent
variables, with zero mean and unit variance.
2) There existK and a random variabl& with finite fourth
order moment such that, for any> 0,
oDy
M2 i <ns

P(|xij] > ) < KP(|X|>z) (65)

for any ny, no.
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3) There is a positive functiogh(x) 1 oo asz — oo, and eigenvalue ofBy (or B,) outside the support of’, and

M > 0, such that the number of eigenvalues inside cluster is exactly ny.
Since € encloses clustekr and is away from the other
max Bla 46|y ]) < M. (66) 3 RN
ij clusters,{A1,..., An} N [z, 2] = {Ni,i € Ny} almost
4) p = p(n) with ¢, = p/n — ¢ > 0 asn — oo. surely, for all largeN. Also, for anyi € {1,...,N}, it is

5) For eachn, T, € CP*P is Hermitian nonnegative defi- €asy to see from (61) thabr(2) — oo whenz 1 A; and
nite, independent ofz;; }, satisfyingH,, £ FT» = H, mp(z) — —00 whenz + A Thereforemp(_z) = 0 has at least
H a nonrandom probability distribution function, almosPne solution in each interval\;_1, A;), with Ao = 0, hence

surely. T is any Hermitian square root af,. pa <A <pp <...<py <Ay. This implies that, ifko is
6) The spectral norn{T,, | of T, is uniformly bounded the index such that r, . contains exactif, -, Ako-+(ni—1)»

in n almost surely. then Cr . also containg] jix, 11, - - - 5 fkg+(np—1) - Thg same
7) Leta,b > 0, nonrandom, be such that, with probabilityf €SU/t hoIdS fOrme, 41, 1+ (n,—1)- When the indexes

one, [a, b] lies in an open interval outside the suppor]?\i('ls‘t’ due:[to fluftzr Seﬁar\i/b'“mozﬁ anldﬁ’%ftlh k;jeI?ng,_fqr
of FenHa for all largen, with F¥G defined to be the £ 'ar9e, 1o Clusteky — 1. YVe are then Ieft with determining

almost sure 1.s.d. ofl /n)XHT, X, when H = G and whetheryy, andny, are asymptotically found insidér .
nonen For this, we use the same approach as in [15], by noticing

c=y. . . . .
Denote \Y > ... > AY the ordered eigenvalues of thethat’ sincel) is not included i€, one has
Hermitian matrixY € CP*P. Then, we have that L ldw —0. (70)
1) P(no eigenvalue oB,, lies in [a,b] for all largen) = 2mi Je, w
1. Performing the same changes of variables as above, we have
2) If ¢(1 — H(0)) > 1, thenzy, the smallest value in the that
support of F<# | is positive, and with probability one, —mp(z)mp(z) — zmp’(z)mp(z) — zmp(2)mpE(2)
ABn — 29 asn — oo. _ o 22mp(2)2mp(z)? dz
3) If c(1— H(0) < 1, 0rc(1 — H(0) > 1 butfa,0] is 71)
not contained ino0, zo], thenmpge,x(a) < mpen(b) <
0. With probability one, there exists, for all large, For N large, the dominated convergence theorem ensures

an indexi, > 0 such that/\};“ > —1/mp.n(b) and again that the left-hand side of the (71) is close to

)‘3;11 > —1/mpen(a) and we have —mp(2)ip(2) — 2mp(2)mE(2) — 2imE(2)ip(2)

> S dz.
P(AP" >bandAP , <a forall largen) = 1. (67) Jep, 22 (2)?mr(2)? 72
T ) . 7
Theorem 3 is proven in Appendix B. . Residue calculus of (72) then leads to
To apply Theorem 3 td, in our scenario, we need to
ensure all assumptions are met. Only Items 2-6 need paticul
attention. In our scenario, the matriX,, of Theorem 3 is a.s,
) n 2 — 1-—- 1| —0.
(), while T,, is T £ (HPH4o"Iv 0) The latter has 1;]\, 1;1\/ 1;1\/
been proven to have almost sure |.sil, so that Item 5 is rele) 2] mele) 2] pielay) 2]
verified. Also, from the result of [21] upon which Theorem 3 is (73)
based, there exists a subset of probability one in the pitityab ~ Since the cardinalities ofi,n; € [x,gl;,x,(c’;?]} and {i, u; €

space that engenders tA& over which, forn large enough, Lx,ﬁl;,x,(g]} are at mostnyg, (73) is satisfied only if both
T has no eigenvalues in any closed set strictly outside tBgrdinalities equahy, in the limit. As a consequencey,, €
support of H; this ensures Item 6. Now, from constructi, [,.() 7:6;;)] andny, € [5171(@[) 7:6;:)]_ For N large, N # M, this
and W have independent entries of zero mean, unit varianggiows us to simplify (64) into

fourth order moment and are composed of at mst 1 NM

distinct distributions, irrespectively dff. DenoteX, ..., Xy, Pp=—— Z (5 — 1) (74)
d < K + 1, d random variables distributed as those distinct nx(M —N) 1<i<N
distributions. LettingX = |X;| + ...+ |X4|, we have that Ai €Nk

4 with probability one. The same reasoning holds fdr= N.
1 Z Pz > 2) < P (Z 1X,| > x) 68) This is our final relation.

mny,_ e~ pt It now remains to show tha# thg; and thep; are tf}e
<ny,j< (x| > 7) (69) eigenvalues ofliag(A)— 4 VAV anddiag(A)— 2 vVAVA
’ respectively. For this, we need the following lemma,
wherez;; is the (i, j)*" entry of (X ). Since allX; have finte  Lemma 1:Let A € RN*N be diagonal with entries
order four moments, so doe$ and Item 2 is verified. From ),,..., Ay, and lety € RV. Then the eigenvalues & —yy"

the same argument, Item 3 follows witl{z) = 2*. Theorem are theN real solutions of the following equation in
3 can then be applied B .

The corollary of Theorem 3 applied B, is that, with Vi
probability one, for N sufficiently large, there will be no P Ai —x

N

= 1. (75)
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Proof: Let \ be an eigenvalue oA — yy". For a certain solve the problem of determininj andn, ..., nx based on
non-zero vectok € CV, we then have the equivalent relation§heorems 1 and 2.
In the following, we assume for readability that we know

(A —yy™)x = Ax, (76) the numbel of transmit sources (taken large enough to cover
(A = My)x = y"'xy, (77) all possible hypotheses), some having possiblyransmit
x = yHX(A — My ty, (78) antennas. The approach consists in the following steps:
yix = yHxy"(A — ALy) 1y, (79) 1) we first identﬁfy a set of pIausibIe. hypqtheses for
1= yH(A — ATy)"! (80) ni,...,Ng. This can be performed by mfe_rrmg_clusters
¥ N) Y based on the spacing between consecutive eigenvalues:
SinceA is diagonal, denoting; € C” the vector such that if the distance between neighboring eigenvalues is more
eij = 67, we finally have than a threshold, then we add an entry for a possible
N cluster separation in the list of all possible positions of
Z (yHe)? 1 81) cluster separation. From this list, we create all possible
P Ai — A ' K-dimensional vectors of eigenvalue clusters. Obvi-
- ously, the choice of the threshold is critical to reduce

the number of hypotheses to be tested;

. L _ /1 ,
Applying Lemma 1 toA = diag A andy = V v, We find 2) for eachK-dimensional vector with number of antennas

that the eigenvalues Gﬂﬁag(A)—%\/X\/XT are the solutions fi,...,7k, we use Theorem 2 in order to obtain
of estimates of thé’,, ..., Px (some being possibly null);
N %/\i 1 82 3) based on these estimates, we compare the &84.of
L)\ —x =5 (82) By to the distribution functiord”’ defined as the I.s.d. of
=t the matrix modelY’ = HPX + W with P the diagonal
which is equivalent to matrix composed ofi; entries equal taP;, 7, entries
LN equal tc_>P2 etc. up tonk entries equal _toPK. The
— Z =0, (83) comparison can be performed based on different metrics.
NZA-=z In the simulations carried hereafter, we consider as a
i=1 n s
whose solutions are by definitiop, . . ., 7x. The same argu- metric the mean absolute difference between the Stieltjes
ment applies similarly ti, . .., uy. Incidentally, this remark transform of 2~ and of I on the segmerit-1, —0.1].
was already noticed in [22]. Note that the above process can bring an interesting feature
We end this section by a short discussion on the condiked to the cluster separability problem discussed along
guences of Theorem 2. this article. Indeed, if two subsequent powedts and P,
are close to one another, then the separability condition of
D. Discussion Assumptions 1 and 2 is not verified. If one knows and

n;+1 and blindly uses the estimator of Theorem 2, the result

Theorem 2 states that, under spectrum separability C(’"O“t'can be catastrophic as the estimator is unreliable. On the

for all 1;’“’ ke {.1’ U th}A) Whengl’ -5 Tk Are knowna} pri- contrary, ifn; andn;; are unknown and one uses the above
ori to the receiver, t ey, ..., i are consistent es‘t'm""torsprocess, it is very likely that the distinct sources withsgo
for Pi,..., Px. Now, in practice, it is rare thaty,...,ng

power will be assumed to be a single source with power

and evs_rﬁf area prlor:j ktrrl]own o the recte_lve{. prcal\t/er, i equal to the estimate aff; + P;41)/2 and embedded with
separabliily IS assumed, then one can estimate simu 8"‘?0%1- + n;41 antennas. For practical blind detection purposes
K,ny,...,ng and Pi,..., Pg. This is performed by (i)

d ining the ¢l f th irical ei s in cognitive radios, this leads the secondary network terinf
etermining the clusters of the empirical eigenvalueSf, a number of transmit entities that is less than the effective

WhiCh determinest, (ii) cc_>unting the '_"“_m_'?er of eigenvalue%umber of transmitters. In general, this would not haveosri
|r_1__each|clutfsterﬁ;to detigml?e th?”TuIUpllcglﬁ; -, nx and consequences on the decisions made by the secondary network
(|||Leva ua lngt Lo K rotmb ebor_em I il h but this might at least reduce the capabilities of the seagnd

h owe?/er, ssp 0 fmay not be obvious. 1n parlllcu ?]r, w heﬂetwork to optimally overlay the licensed spectrum. Furthe
the total numbem of transmit antennas is small, when t §vork is also being carried out to go past the cluster sepi@sabi

pr|calllczlgs_ter siz€ 1S :args or When tr;]e |nt.er—clusl,ter;n[gac assumption; specifically, methods for estimating the nurobe
is small, it is non-trivial to determine what eigenvaluesiiica P, associated to any clustgf are under study.

cluster. To solve this critical issue, studies are beingemtly

carried out that aim to determine second order statistics of

FB~ . Thanks to second order statistics &%, it will be V. SIMULATIONS

possible to design estimators @%,..., Pk that take into  In this section, we provide simulation results to assess
account the probability oBy being an appropriate modelthe performance of Theorem 2 wheld, and nq,...,ng

for the estimated?,, . . .,PR for every hypothesigs for the are known, to compare this performance against alternative
number of transmit source and every hypothé¢sis ..., n ;) estimation methods and finally to evaluate the performance
for the number of antennas for each of these sources. Wfethe ad-hocapproach discussed in Section IV-D. In order
hereafter provide an alternatial-hoctechnique to partially to underline some precise features of the advantages of our
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novel method, we will use two simulation models. The firdhe novel Stieltjes transform approach, the moment method
model, already presented in Figure 2, involves a scenatio wdoes not require any assumption of cluster separabilityeto b
clear separation between clusters, while the second mdtiel walid.
consider the case of co-located clusters.
The estimator of Theorem 2 will be compared against two
methods, which we describe below. B. Results
1) Cluster separability limit:We start with a demonstration

A. Alternative methods of the performance of the novel estimator with respect to the
satisfaction of the cluster separability assumption. Wesier
the model presented in Figure 2, i.&,=3, P, =1, P, = 3,
P; =10, n1/n =ny/n=ng/n=1/3 andn/N = N/M =
T/IO. The SNR, defined &8NR = 1/02, ranges from-15 dB
to 20 dB. The entries oX are QPSK-modulated and those of
9 ) ) : H and W are Gaussian distributed. In Figure 11, we present
. However, the first: eigenvalues oB y are asymptotically . : ; .

simulation results in terms of normalized mean square error

o L
grefa\ter_ thano® and it 'S also clear that_ the e.;.d. of th?NMSE) in the estimates of the individu&},, both forn = 60
projection ofB,y on the eigenspace associated o its IalrgEStandn = 6. For future need, we define this system model with

eigenvalues tends th masses inP, +o2,..., Px +0% This . =
leads to the strongly consistent estimaig® of P, given by n =6 as Scenario (). The NMSE for pow; is given by

1) Strongly consistent estimator fad > N and N > n:
The first method is the classical estimator that assumesttbat
sample dimensioft/ is much larger than the sensor dimensio
N, while N is much larger than the source dimensionn this
case, it is easy to see that the e.s.dBgf tends to a mass in

R 1 P, — B)?
P =— ST -, (84) NMSE = E (’“P% , (85)
k €Ny, k
with where the expectation is taken over the random realizabbns
o 1 N_”)\_ the matricedI, X andW.
7 TN _=n Z ¢ Note how steep the mean square error curves increase below

a given SNR value. This intuitively corresponds to the tigpi
and we recall thap; < ... < Ay are the eigenvalues . point where the cluster separability assumptions are ngeion
The strong consistence is with respect to the rates oo, verified. Especially here, this corresponds to the pointrehe
N/n — oo and M/N — oo. Note that we take an estimatorassumption 2 no longer holds. Now, remembering the results
for o2 instead of? itself in order to be coherent with Theoremy¢ Figure 6, observe that the horizontal line= 10 crosses
2 which does not require argy priori information ono®. We  the respective curves of validity of Assumption 2 around the
will refer to this estimator as thelassicalmethod. SNR values where Figure 11 shows steep curve increase.
2) Estimator based on strongly consistent moment esfihjs indicates that our novel estimator is indeed inappaser
mates: The second method is a technique issued from frggen Assumption 3 is not satisfied. This also validates the
probability theory, which is based on moments of the .S.dccuracy of Assumption 2, which we recall is only a sufficient
of By. As such, we will refer to this method as theoment condition for cluster separability. Note also that, as larsy
method. It consists in com%uting the first moments of thele.sc|yster separation is achieved, the performance of thétjSsie
of By, i.e., 5 tr (37 YY™)", for k = 1,..., K, from which transform algorithm goes quickly down to a constant level
the deconvolvednoments’: (n, P + ...+ nx Pf.) of F¥ can  (with respect to the SNR) which is a function of the amplitude
be evaluated, see e.g., [23]. These estimated moments capf@e values of,, N and M.
expressed as polynomials of the moments&t¥, which is ) performance comparisorive first compare the classical
convenient from a practical point of view although it leads tmethod against the novel Stielties transform approach for
serious shortcomings in terms of estimator accuracy. lde&cenario (a). Under the hypotheses of this scenario, thesrat
small deviations in the low order moments 5P~ around . ande, equall0, leading therefore the classical detector to
the corresponding moments &f lead to large deviations in pe aimost asymptotically unbiased. We therefore suspatt th
the estimation of the high order momentsiof. the NMSE performance for both detectors is alike. This is
One can then retrieve the vect¢P™™, ..., PI"™)  described in Figure 12, which suggests as predicted that in
whose distribution function has for firsf moments the firsk’  the high SNR regime (when cluster separability is reaches) t
estimated moments df’”". This is performed using Newton- classical estimator performs similar to the Stieltjes sfarm
Girard polynomial formulas [24], which boils down to findingmethod. However, it appears that @B gain is achieved by the
the roots of a polynomial of ordek. The value ™™ is Stieltjes transform method around the position where efust
the estimate off. Computingﬁ,ﬁmom) requires in particular separability is no longer satisfied. This translates thetfzat,
that K, n1,...,nx ando? are known. The main shortcomingwhen subsequent clusters tend to mergerasncreases, the
of the Newton-Girard inversion is that the polynomial to b&tieltjes transform method manages to track the positighef
solved may have purely imaginary roots. This issue, addedpgowers P, while the classical method keeps assuming each
the deviations in the estimated moments, contribute toerathP; is located at the center of clustkgf. This observation is
poor estimation accuracies unless the system dimensiens\ary similar to that made in [25], where an improved MUSIC
very large. However, as opposed to the classical method astimator is introduced that pushes further the SNR pasitio
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Fig. 11. Normalized mean square error of individual pow®is P, Ps,
Py =1,P, = 3,P3 = 10, n1/n = n2/n = n3z/n = 1/3 n/N =
N/M = 1/10, for 10,000 simulation runs.

Fig. 13. Distribution function of the estimatoi3®, P, P} and Plg"‘o"‘)
for k € {1,2,3}, PP = 1/16, P, = 1/4, P3 =1,n1 = na =n3 =4
antennas per usely = 24 sensorsM = 128 samples andNR = 20 dB.
Optimum estimator shown in dashed lines.

10

the moment method, it shows rather accurate performance for
the stronger estimated power, but proves very inaccurate fo
smaller powers. This entails from the inherent shortcoming
of the moment method. The performance of the estim&for

will be commented in Section V-B3.

We then focus on the estimate for the larger powegrand
take now the SNR to range from15 to 30 dB under the
same conditions as previously and for the same estimators.
The NMSE for the estimators dP; is depicted in Figure 14.
The curve marked with squares will be commented in Section
V-B3. As already observed in Figure 13, in the high SNR
regime, the Stieltjes transform estimator outperformshbot
alternative methods. We also notice the SNR gain achieved by
the Stieltjes transform approach with respect to the daksi
method in the low SNR regime, as already observed in Figure
Fig. 12. Normalized mean square error of individual powgys P, P;, 12. However, it now turns out that in this low SNR regime,
Py =1,P =3P = 10, mi/n = n2/n = n3/n = 1/3 n/N = the moment method is gaining ground and outperforms both
N/M = 1/10, n = 6. Comparison between classical and Stieltjes transform, . . .
approach. Cluster-based methods. This is due to the cluster sepiyabil
condition which is not a requirement for the moment approach
This indicates that much can be gained by the Stieltjes
where the performance of the classical MUSIC estimat§i@nsform method in the low SNR regime if a more precise
decays significantly. treatment of overlapping clusters is taken into account.

We now consider another model, for which the classical 3) Joint estimation of<, ny, P;: So far, we have assumed
estimator is largely biased. We now take= 3, P, =1/16, that the number of user& and the number of antennas
P, = 1/4, P = 1, ny/n = na/n = nz/n = 1/3 and per usern; were perfectly known. As discussed in Section
n = 12, N = 24 and M = 128. The entries ofX are IV-D, this may not be a strong assumption if it is known by
still QPSK-modulated while the entries 8f and W are still advance how many antennas are systematically used by every
independent standard Gaussian. This model is furtherregfersource or if another mechanism, such as in [9], can provide
to as Scenario (b). We first compare the performance of ttlés information. Nonetheless, these are in general strong
classical, Stieltjes transform and moment estimators for assumptions to take. Based on thé-hocmethod described
SNR of 20 dB. Figure 13 depicts the distribution function ofin Section IV-D, we therefore provide the performance of our
the estimated powers in logarithmic scale. The Stieltjaagyr novel Stieltjes transform method in the high SNR regime when
form method appears here to be very precise and seeminghly n is known; this assumption is less stringent as in the
unbiased. On the opposite, the classical method, with htklig medium to high SNR regime, one can easily decide which
smaller variance shows a large bias as was anticipated.rAs éigenvalues ofBy belong to the cluster associated &3

Normalized mean square error [dB]

—20

SNR [dB]
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0 ‘ SNR | RCI () RCI (b)
- 5dB | 0.8473  0.1339

: — B 10 dB | 0.9026  0.4798
—e— Ps° 15dB | 0.9872  0.4819

—e— plmom) 20 dB | 0.9910  0.5122

=5 3 i 25 dB | 0.9892  0.5455
) R 30 dB | 0.9923  0.5490

TABLE |
RATE OF CORRECT INFERENCERCI) OF THE TRIPLET(n1,n2,n3) FOR
SCENARIOS(A) AND (B).

—10

—15

Normalized mean square error [dB]

S22 Y904
(S5 1 Vo VAVAVARS P
S0 06000000060060000

—20 | | | | | | —10 ,\\ —0pP |
-5 0 5 10 15 20 25 30 _ \ ___p
/M \ 2
SNR [dB] = 9L N E—
B
% ' —o— P}
Fig. 14. Normalized mean square error of largest estimamdep Ps, © -o- P ]
P =1/16,Py = 1/4,P3 =1,n1 =na =ng =4 ,N = 24, M = 128. g o
Comparison between classical, moment and Stielties wamsapproaches. g 3
g |
g
B
. . . . S| |
and which eigenvalues do not. We dendté the estimator E
of P, when K and nq,...,ng are unknown. We assume g _____
for this estimator that all possible combinations bfto 3 =~ f--—---——-~g---—= S=c-—=se--—2: 5
clusters can be generated from the- 6 observed eigenvalues | | | |
in Scenario (a) and that all possible combinationslofo _225 10 15 20 25 30

3 clusters with even cluster size can be generated from the
n = 12 eigenvalues ofBy in Scenario (b). For Scenario
(a), the NMSFT performance of the eStlmatd?ﬁ and Py is Fig. 15. Normalized mean square error of individual powBs Pa, P3
proposed in Figure 15 for the SNR ranging frémiB to 30 and Py, £}, P, Py =1, P, = 3, Ps = 10, n1/n = na/n = na/n = 1/3

dB. For Scenario (b), the distribution function of the imeet »/N = N/M = 1/10, n = 6, 10,000 simulation runs.

P,; is depicted in Figure 13, while the NMSE performance for

the inference ofP; is proposed in Figure 14; these are both

compared against the classical, moment and Stieltjesftrans

estimator. We also indicate in Table V-B3 the percentage of

correct estimation of the triplét,, n2, n3) for both Scenario VI. CONCLUSION

() and (b). In Scenario (a), this amountsltd such triplets

that satisfyn, > 0, n1 + n2 + ng = 6, while in Scenario

(b), this corresponds td6 triplets that satisfyn, € 2N,

n1 + no +n3 = 12. Observe that the noise variance, assumed

to be knowna priori in this case, plays an important role

with respect to the statistical inference of thg. In Scenario

(a), for an SNR greater thats dB, the correct hypothesis In this paper, a blind multi-source power estimator was
for the n; is almost always taken and the performance aferived. Under the assumptions that the ratio between the
the estimator is similar to that of the optimal estimator. Inumber of sensors and the number of signals sources is not too
Scenario (b), the detection of the exact cluster separagionsmall and the source transmit powers are sufficiently distin
less accurate and the performance for the inferencé’of from one another, we derived a method to infer the individual
saturates at high SNR te-16 dB of NMSE, against—19 source powers if the number of sources is known, which
dB when the exact cluster separation is known. It therefonas shown to outperform alternative estimation technidnes
seems that in the high SNR regime the performance of tttee medium to high SNR regime. We then briefly discussed
Stieltjes transform detector is loosely affected by theeabs the joint estimation of the number of transmit sources, the
of knowledge about the cluster separation. This statensentumber of antennas of each source and the transmit powers,
also confirmed by the distribution functionég in Figure 13, which appeared in simulation to perform well in the high
which still outperforms the classical and moment methods. VBNR regime. The novel method is moreover computationally
underline again here that this is merely the result oddshoc efficient and is particularly robust to small system dimensi
approach; this performance could be greatly improved if, e.g\s such, it is particularly suited to the blind detection of
more is known about the second order statisticFEf . primary mobile user in future cognitive radio networks.

SNR [dB]
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APPENDIXA APPENDIXB
RESIDUE CALCULUS PROOF OF EXACT SEPARATION

The integrand of?; in (63) can be expanded as Theorem 3 is a generalization from the assumption of iden-
o1 . tical distribution of ther;;’s, the proof of which is contained in
N - 1 N Tnﬂ(z)z N - mF(AZ) the two papers [21] and [17], which, with some modifications,
nzip(z)  nomp(2)? nonp(2)ne(z) appear as Chapter 6 in [16]. The proof uses previous articles

N-n 1 _N-n m’g(z) that need to be updated as well. We shall therefore go through
n  22mp(2)mr(z) n  zimp(z)%mr(z) the necessary steps that need to be modified, taking reterenc
N —n 1 (%) No21 No?1mlp(z) to all papers successively._ o .
T T mr)pz) | m oz n () We shall assume for _S|.m.pI|C|ty in the fqllovymg thz_:\t the
5 ., = = matricesT,, are deterministic, converges in distribution to
_ No g (2 (86) H and that||T, || is uniformly bounded. The generalization

n mp(z) to randomT,, follows from Tonelli's theorem [20]. Indeed,
First assume the casd # N. Numbering the nine terms in let X be the probability space that engenders &g and
order, we have that (1) has poles4re {n;,...,nx}, where T the probability space that engenders tlig. Let A be
mp(z) = 0. Applying I'Hospital rule, all poles have ordar any of the events in Conclusion 1), 2), or 3), claimed to

and the corresponding residues are occur with probability one. Assume that Theorem 3 holds for
N z—mn N 1 deterministicT,, satisfying Assumptions 5), 6), and 7). Let
lim —— d (87) t & T be an element of the intersection of these events. Then

v 5 T i (n)
v zimp(2) n it (1) I4(t,z) = 1 for all z contained in a subset df having

As for (2), it is the derivative of-1/7r(z), which is well- probability one. Therefore, by Tonelli's theorem, dengtin
behaved insid€r ;, so it does not have poles. The term (3) x X the product space df and X, we have that

has poles of ordet in z € {n,...,7x} as well and we have
the residue /fr xIA(taw)derxx(tw)
X
L NGE-—m)ip(z) N N ()
dm = mp(z)mp(z)  nM—N m'E(nk)”’“ (88) = [T [ /x IA(m)dPx(:v)] dPr(t) =1, (92)
the last equality being obtained from the fact that and Theorem 3 therefore holds true if it holds true By,
. M M—N1 deterministic.
Thp(z) = N’”E(z) R (89) |
andiiup (1) = 0. It also has polesin € {u1,. .., ux}, where A Extension of [26]
mp(z) = 0. These are order poles and we have The first step is to extend the work in [26] on the largest

eigenvalue ofS,, = 1X, X", whereX,, = (z;;) is p x n,
lim ——~— — = ol (90) p = p(n), andp/n — y > 0 asn — oo. Checking the
wowi n p(2)ime(z) o M- assumptions in [26], we change the six conditions of Page

Term (4) is shown in a similar way to have residue518 to
—N;”%%m’g(m) and M=t MoLif(u) i€ (1) rij,i=1,2,...,p; j =1,2,...,n are independent for
{1,...,N}. Term (5) has residues@(MN_%)Qm and eachn,
~Nen ML BrEU) i e {1,...,N}. Term (6) has 8 g;jl_f %nx/ﬁ wherer, |0,

: —n_ N2 mirip(m —n__ L , Yoo
residues — 2 N "m,;(f:)) and S22 e, © € (4) Ela2| < 1,
{1,...,N}. Term (7) has a pole in = 0 but we already (5) E|z;;|' < (n./n)'" 1, fori > 2,

know that0 is not insideCr,y, so this is already discarded. (6) Elx!;| < c(nn/n)' =3, for i > 3.

N (z = pa)ip(z) _ N M

Term (8) has poles im € {\1,...,\n} ofzresidueNT"z and By the same argument given there (no difference for com-
poles inz € {n,...,nn} of residue—NT". Similarly term plex random variables), the inequality
F9) has poles iz € {\y,. '."/\N} of2 residueNT”2 and poles Etr(Sn)* < 1" (93)
in z € {u1,...,un} of residue— ) _ _
Summing together the 9 terms and remarking that thIdS for anyn > b = (1 + /)" providedk is chosen such
that

N . M 1
(b) nSk/logn — 0.
This implies thatP (Amax(S») > b+ ¢) = o(n~") for any
I%vens >0 andt > 0.

we obtain exactly (64).
Assume nowM = N, in which casemp(z) = mp(z).
It can be readily seen that the terms (4) to (6) are t

Nt Non 1 ; Remark 3:Notice that if Condition (4) is replaced by
derivative of —7; Z%F(zﬁ’ so that they have residue 2| <, where. is a fixed positive constant, then we have
The only remaining term here is (1), whose residues are rﬁé% =" '

— P(Amax(Sn) > 1(b+2)) = o(n ™), (94)
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We only need to consider the matrix'S,, and replace:;; and the above identity, we have
by .=%/2z;; to verify the six conditions. L e
max [AZ (S, Tr) — A2 (S Th)|

k<p
1 1
< | Ta|ll|ln"2 n
B. First step truncation and renormalization < [T flin~2 BCY )1” (103)
2
We considerS,, T,,, where the assumptions of Theorem 3 1 Z |y (104)
are met, except tha@,, are assumed nonrandom. Here, to be ~— \ 7
consistent with Chapter 6 of [16], we replace with y,, and 1
¢ with y. 1 ’
—_ 2
Notice, from the identity s Z |[Ezij I(|zi;] > nnv/n)) (105)
iJ
o 3
EY* = / P(Y > z'/*Ydx, (95) 1
0 <\ > Bladj|Ela [ 12| > nav/n) (106)
valid for any nonnegative random varialife that (ii) implies 1
. exi Knp 2
the fourth moments of the;; exist. < ( E|XY|I(X] > nn\/ﬁ)> 0. (107)
We will need the following identity later on. For nonnegativ i’

Y having finite fourth moment, sinc&Y*1(Y > y) > 3. Rescaling.Define w;; = zi;/oij, Wy = (wi;)pxn and
1P(Y > y), we havey’P(Y > y) — 0 asy — oo. Thus, & 1 H ’ S )P

y o = y) Y Y Y S, = LWWH!. Then, by Theorem A. 46 of [16],

using integration by parts, we have for amy> 0 "

max|A? (8,T,) — A? (S,T,.)|

EY*I(Y > a) =
y < 2 -3 —
=a*P(Y > a) + lim (—y*P(Y > y) +/ 42°P(Y > x)dz) - ”Tf W= = Wl (109
Yy—>00 a _
(96) < Hﬁ [25;(1 — /\ijl)}’ — 0, a.s. (109)
=a*P(Y >a) + / 423 P(Y > z)da. (97) because of (94) and the fact that
, max |1 — A% (110)
We choosey,, | 0 such thatp,,/n 1 oo, liminf, n2+/n > ©J
0, and < rIli?X[E|I12j|I(|Iij| > nv/n) + (Blzi [1(|zi;] > nvn))?]
o 2k k/2 (111)
2°FP(|X N2 98 _
2 2EPUXI> 12t < oo, ©8) < 2y /) max Bla? o s]) — 0 (12)
where i, = 7ok which implies that
1. Truncation. Define y;; = zi;1(|zi;| < nvn), Yo = ) (1—A%)?
(yij)pxn @andS,, = LY, YH. We have max Bluwg; — 2i;|” = X T Ay 0. (113)

P(X Y, i.o. . .
(Xn # Yo, 1.0 . C. Second truncation and normalization
2

i 3 y We may assume now that thg; satisfy the six conditions
<hm el U U Grl> w9 :

et i<pa<n of Section B-A with Condition (4) strengthened x| = 1

phi1 for all 4, 5.
. - _ Definey,; = ;I (|zij| < C) —Ex;;I(Jxi;| < C) for some
< . k/2 Yij J il J gl
= n“}gnoo]; P _9 ) ‘<2U‘< {is| > 2" large constan€ and defin€Y,, = (yij)pxn, Sn = LY, Y1,
- L Then by Theorem A. 46 of [16], we have
(100)
1 .~ 1 ~
0o max |AZ (S, Ty) — A2 (S,Th)|
= lim Y P U Alzgl > @22y | (201) k<p §
m—0o0 £y
k=m i<y2k+2 j<ok+1 < HT721 ” anl/Q(Xn _ Yn) (114)
—8yK lim Y 2%P (|X| > ﬁk2k/2) —0. (102) < anl/z‘(xn “v,). (115)
m—0o0
k=m

SinC6E|ZCZ'j — yij|2 < E|ZC3J|I(|CCZJ| > C) < M/U)(O), this
2. Centralization. Define z;; = y;; — Ey;; and Z, = can be made arbitrarily small by makirg sufficiently large.
(2ij)pxn @and$S,, = LZ,ZH. Then by Theorem A. 46 of [16] We can then apply (94).
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The rescaling is the same as given in last Section. Now weFor the rest of Section 6.2.8, is mentioned twice. We need

have to replace it withb,,; and the arguments go through without
9 1 9 - any further changes.
Hﬁ?xu — oyl <207(C) mi?XEmﬂ'W(x”)’ (116) For Section 6.2.4, (6.2.42) needs to be replaced by
which can be made arbitrarily small by makingsufficiently dH,,(t
large. y"/il—i—tés) + 2ynE(sn(2)) (127)
I _ _
D. Extension of [27] and Chapter 6 of [16] == ZEﬂk [riD, ' (Es, Tn + 1) 'ry
The result in [27] on the smallest eigenvalug,i,(S..), k=1
of S,, can be extended with only Assumptions 1), 2), 3) of —lEtr(EgnTn +1)7'T, D7 . (128)
Theorem 3. Indeed, using the two step truncations, we may n
assume ther;; are bounded, with meaf and variancel. For the rest of the section, replace subsctiptith subscript
Following the same steps as in [27], one may prove that Whengypscript2 with subscriptj, replacebs,, with
y<l1
2 1 .
Amin(Sn) = (1= /y)7, (117) b, — . k#J, (129)

" 14 n BEt(T,Dy;)
almost surely. '

We proceed now to the necessary changes in Chapter il all appearances of subscripisassumek # j. Fy,i;; has
[16]. We may now assume the same conditions as in Sectith¢ Obvious definition. Replace the summations feanging
6.2.1 of [16] on ther;; (except they need not be identicallyfom 2 to n with j # k. All the bounds derived fok = 1
distributed), and the bounds appearing there. The chamges&€ true for allk. So we conclude the left side of (6.2.42) is
needed wherever identical distribution was exploited. bounded bykn~".

We begin with Page 139, below (6.2.34). We change theThe rest of Chapter 6 follows without any changes.
definition of b,, to
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