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Belief Propagation and LP Relaxation for
Weighted Matching in General Graphs

Sujay SanghaviMember, IEEE Dmitry Malioutov and Alan WillskyFellow, IEEE,

~ Abstract—Loopy belief propagation has been employed in algorithm), to the weighted matching problen®ur motiva-

a wide variety of applications with great empirical success, butit tion for doing so is two-fold: firstly, weighted matching is
comes with few theoretical guarantees. In this paper we analyze 5 ¢jassical problem with much structure, and this structure
the performance of the max-product form of belief propagation b dt id h fi ' h terizati i
for the weighted matching problem on general graphs. can be used o provide a much finer ¢ ar‘_”lc erization o
max-product performance than would be possible for general

We show that the performance of max-product is exactly graphical models. Secondly, fast and distributed comjmutat
characterized by the natural linear programming (LP) relax-  of weighted matchings is often required in areas as divesse a

ation of the problem. In particular, we first show that if the LP . . . "
relaxation has no fractional optima then max-product always resource allocation, scheduling in communications neta/or

converges to the correct answer. This establishes the extensioh [8], @and machine learning [9].

the recent result by Bayati, Shah and Sharma, which considered . . . .

bipartite graphs, to general graphs. Perhaps more interestingly Given a graphG = (V, E)) with non-negative weights

we also establish a tightconverse, namely that the presence of w,. on its edgese € FE, the weighted matching problem

any fractional LP optimum implies that max-product will fail  js to find the heaviest set of mutually disjoint edges (i.e.

to yield useful estimates on some of the edges. a set of edges such that no two edges share a node).
We extend our results to the weightedh-matching and -  VVeighted matching can be naturally formulated as an integer

edge-cover problems. We also demonstrate how to simplify the program (IP). The technique dinear programming (LP)

max-product message-update equations for weighted matching, relaxation involves replacing the integer constraints with

making it easily deployable in distributed settings like wireless |inear inequality constraints. In general graphs, theaine

or sensor networks. program for weighted matching can have fractional optima —

) _ _l.e. those that assign fractional mass to edges. The primary

Index Terms—Belief Propagation, Message Passing, oontribution of this paper is an exact characterization akm

Matching, Combinatorial Optimization, Graphical Models, . . .

Markov Random Eields p;]oduct:; pterformance for the weighted matching problem: we

show tha

« If the LP has no fractional optima (i.e. if the optimum
[. INTRODUCTION of LP is unique and integral), then max-product will
converge and the resulting solution will be exactly the
Loopy Belief Propagation (LBP) and its variants [1], ~ max-weight matching (Theorem 1).
[2], [3] have been shown empirically to be effective in « For any edge, if there exists an optimum of LP that
solving many instances of hard problems in a wide range of assigns fractional mass to that edge, then the max-
fields. These algorithms were originally designed for exact product estimate for that edge will either oscillate or
inference (i.e. calculation of marginals/MAP estimates) i ~ be ambiguous (Theorem 2). For the entire graph, this
probability distributions whose associated graphical ei®d implies that if fractional optima exist then max-product
are tree-structured. While some progress has been made in Will fail (Corollary 1).
understanding their convergence and accuracy on general

“loopy” graphs (see [4], [5], [3] and their references), titls Most of the existing analysis of classical loopy belief
remains an active research area. propagation either prOVideS sufficient conditions for eotr

ness of solutions (e.g. [10], [4]), or provides an analy-
In this paper we study the application of the widelsis/interpretation of fixed points (e.g. [5], [3]). Howeydrere
used max-product form of LBP (or simply max-product (MPare relatively few results that provideecessaryconditions

S. Sanghavi is with UT Austin, email:sanghavi@mail.utexds.e 1This publication is the journal version of earlier resukparted in [6].
D. Malioutov is with DRW Inc., email:dmm@mit.edu. Also related are recent results by Bayati, Borgs, ChayesZauthina [7].
A. Willsky is with MIT, email:willsky@mit.edu. See the end of Section | for a discussion.



for the convergence/correctness of tiberative procedure one edge in the matching, but may have none. Independently
Theorem 2 is thus significant in this regard, and we beliewdieveloped recent results by Bayati et. al. [7] provide an
it is more general than the weighted matching and coveriadfernative proof for one of the two theorems — Theorem
problems discussed in this paper. 1 which shows that tightness of LP implies BP success —

for the conceptually harder case of perfect matchings.rThei

~ Many tantalizing connections between belief propaggroof also holds for arbitrary message update schedules.
tion and linear programming (in various forms) have been

observed/conjectured [11]. This paper provides a precse c The outline of the paper is as follows. In Section llI
nection between the two for the weighted matching problenwe set up the weighted matching problem and its LP relax-
An interesting insight in this regard, obtained from our kyor ation. We describe the max-product algorithm for weighted
is the importance of the uniqueness of the LP optimum, agatching in Section IV. The main result of the paper is
opposed to uniqueness of the IP optimum. In particular, stated and proved in Section V. In Section VI we establish
is easy to construct examples where the LP has a unighe extensions t@d-matching andr-edge-cover. Finally, in
integer optimum, but also has additional spurious fraetionSection VIl we show how max-product can be radically
optima, for which max-product fails to be informative. Asimplified to make it very amenable for implementation.
more detailed discussion of this is presented in Section V.

We extend our analysis to establish this equivalence
between max-product and LP relaxation for two related

problems: weighted-matching andr-edge-cover. Given a This paper proves new results on the correctness and

graph with edge weights and node capacibigsheweighted convergence of Loopy Belief Propagation for the weighted

b-matchingproblem is to pick the heaviest set of edges Srrf)latchin roblem on general graphs. Belief propagation and
that at mosb,; edges touch nodg for eachi € V. Similarly, gp 9 grapns. propag

if the graph has node requirements the weightedr-edge- its var|ar_1ts have proven extremely popular in pract!ce for
. : . the solution of large-scale problems in inference, coimdtra
coverproblem is to pick the lightest set of edges so that each. . ) .
; e : Satisfaction etc.; here we provide a summary of the work
node: € V has at least; edges incident on it. Theorems ; :
most directly related to this paper.

3 and 4 pertain téd-matching, and theorems 5 and 6o
edge-cover. Classical BP in graphical models has two common

S . vors - SumProduct, which is used for finding marginals of
In an insightful paper, Bayati, Shah and Sharma [1(|S dividual/small groups of variables, and MaxProduct, athi

were the first to analyze max-product for weighted matching o X :

. ; IS used for finding the global most likely assignment of
problems; they established that max-product correctlyesol = | h f X . . |
weighted matching irbipartite graphs when the optimal \{arlab €s. BOI avors are lterative message-passing- ago

rithms, designed to be exact when the graphical model is

matching is unique. Theorem 1 represents a generalizatgr,gree Analysis of their performance in graphs with cycles
of this resulf, as for bipartite graphs it is well known ) Y P grap Y

) . has been of much recent interest; existing analysis falts in
that the extreme points of the matching LP polytope aWvo methodological categories. The first category is theair
integral. This means that if the LP has a fractional optimum 9 9 ' gory

it has to also have multible intearal optima. i.e. mult Ieahalysis of fixed points of the iterative algorithm: [3] stow
P 9 P . P'€ that the fixed points of SumProduct on general graphs cor-

optimal _match|_ngs. So, requinng unique optlma n b'part'trespond to zero-gradient points of the Bethe approximation
graphs is equivalent to requiring no fractional optima for

the LP relaxation. In [9] the results of [10] were extendet the energy function. [12] Sh.OWS that the convergence of
. . . . umProduct is related to the uniqueness of the Gibbs measure
to weighted b-matchings on bipartite graphs. Theorem

. : on the infinite model represented by the computation tree.
represents the corresponding extension of our results to : .
matching on general graphs ['11] shows the c.orresponden(.:e between BP flxgd points and
' linear programming (LP) solutions for the decoding prohlem

A preliminary version [6] of this paper contained &©r MaxPr_oducton general g_raphs_, [5] establish that_thelfixe
different proof of both Theorems 1 and 2. The proofs in thR0int solutions are locally optimal, in a graph-theoregose.
paper can be adapted handle more general message update .
rules (as opposed to the “fully synchronous” case consitlere The second category of analysis, also the one taken

in this paper). Both [6] and this paper consider the case L?qf this paper, involves direct analysis of the dynamics of

N . 1 iterative procedure, to jointly establish both coneeap
imperfect” matchings, where each node can have at mas . . . ,
and relation to the correct solution. This approach was first

2[10] uses a graphical model which is different from ours torespnt used in [_10] in the context of Weighted matChing on bipar_tite
weighted matching, but this does not change the results. graphs (i.e. those that have no odd cycles). They estaldlishe

Il. RELATED WORK



that if the optimum is unique, MaxProduct always converge
to it; they also precisely bound the rate of convergenceirBhg
approach generalizes tematchings as well, as establishé
in [9]. Our paper generalizes this result to all (i.e. ng
bipartite) graphs, where the relevant notion is not unigssn 1 1 1

of the true optimum, but unigqueness of the LP relaxation.

Independent work in the recent paper [7] also establisties tH the cycle on the left, th&P has no fractional optima:
result. Our paper also establishesanversethat MaxProd- the unique optimum (1,0,0) places mass 1 on the edge with
uct will fail on edges where the LP has a fractional value #¢€ight 3, and 0 on the other two edges. The two cycles on the
some optimum. Parallel work [13] establishes this conver§@ht, however, do have fractional optima. The middle cycle

for the more general problem of finding the maximum weigr’ﬂ_as(%a 3,3) asits unique optimum, while the one on the
independent set. right has many optima: (1,0,0§3, %, 1), and every convex

combination of the two. Note that in the rightmost cycle the

A related but separate algorithmic approach to inferent® relaxation is “tight”, i.e. the optimal values & and
are the variational techniques developed by [14] (see [A5] fLP are equal. Also, théP has a unique optimum. However,
a more recent tutorial survey of this and related methods). Rhere still exist fractional optima for theP. R
ML estimation, these algorithms involve a variant of direct
coordinate descent on the dual of the LP. The algorithm in  Note that if the graph is bipartite (i.e. it contains no odd
[16] is shown to always converge to the dual optimum for beycles), then all the extreme points of th® polytope are
nary pairwise integer problems; more generally convergen®tegral. As a result, in this case, fractional optima eiist

of these algorithms is not fully understood. and only if there are multiple integral optima of the. This
is the reason our Theorem 1 is a generalization of [10].

We need the following lemma for the proof of Theorem

IIl. WEIGHTED MATCHING AND ITS LP RELAXATION 1. Its proof is obvious, and is omitted.

Suppose that we are given a graptwith edge-weights Lemma 1:Let P be the polytope of feasible solutions
w.. A matchingis any subset of edges such that the tot&r LP, and let the optimunx* be unique. Define
number of edges incident to any nodeis at most 1.
The weighted matching problens to find the matching of

largest weight. Weighted matching can be formulated as the ¢ — inf w'(z* — )
following integer program: z€P—z* |x* — x|
IP : max Z We ke,
e€E Then, it has to be that > 0.
.t <1 foralls
> ; Te= orallzeV, Remark: In the above lemmdyz™* —z| = " |2} — x|

is the ¢;-norm of the perturbation from*. The fact that the

LP has a unique optimum means that moving away from
Here E; is the set of edges incident to nodeThelinear pro- #* along any direction that remains withjn will result in a
gramming (LP) relaxatiorof the above problem is to replaceStrict linear decrease in the objective function. The camist

the constrainte. € {0,1} with the constrain < z, < 1, IS nothing but the smallest such rate of decrease. Uniqeenes
for eache € E. We denote the corresponding linear prografif «* implies thatc should be strictly positive.

by LP.

z. € {0,1} forallee FE

Remark 2: While ¢ has been defined via an infimum

In this paper, we are interested in the presence @Yer all points in the polytope, it is clear that we can replac
absence of fractional optima faP. An optimumz* of LP is this with a minimum over all extreme points of the polytope.
fractional if there exists some edge to which it assigns SO, if we consider the right-most triangle graph in Example
fractional mass, i.e. if there is ansuch thato < z* < 1. 0 above —the one with edge weights 3,1,1 — thea 1/3.
Note thatLP will have no fractional optima if and only if This is because the LP optimumis = (1,0, 0) with weight

LP has a unique optimum, and this optimum is integral. @'#* = 3, and among the other extreme points (in this case
all feasible points where each coordinate is 0, %([)17]) the

Example 0 (Fractional optima of LP): Consider, for one which achieves the minimum is the paint= (3, 3, 1),
example, the following three graphs. which has weightv'z = ;



IV. MAX-PRODUCT FORWEIGHTED MATCHING « (ESTIM) Each edgeec has estimatei’ € {0,1,?} at
time ¢:
it

The Max-product form of belief propagation is used Te = Loif "%[1] > "%[O]v
to find the most likely state — the MAP estimate — of a {et =0 !f nf[l] < ”5[0]1
probability distribution, when this distribution is knowto T =7 if me[l] = ne[0].
be a product of factors, each of which depends only on a
subset of the variables. Max-product operates by itetgtive Note that estimatei’ — 1 means that, at time,

passing messages between variables and the factors tﬂee%{(—product estimates that edgeis part of a max-weight
are a part of. In order to apply max-product, we now

) ot s t _o
formulate weighted matching oty as a MAP estimation matching, whilez, = 0 means that it is notz,, = means

. . L that Max-product cannot decide on the membership.dh
problem, by constructing a suitable probability distribat

This construction is naturally suggested by the form of thté1IS paper, we will say that the max-product estimate for an

integer programiP. Associate a binary variable, € {0,1} edge isuninformativeif its value keeps changing even after

with each edge € E, and consider the following probabilitya large amount of t'mi has passed, or if its value remains
distribution: constant and equal to ?.

p(z) o H Vi(zE,) H exp(weze), (1) _The message update rules are described above in a form

v cCE familiar to readers already acquainted with Max-produat. |
Section VIl we show that the update rules can be substantiall
simplified into a “node-to-node” protocol that is much more
amenable to implementation.

which contains a factot);(xg,) for each nodel € V, the
value of which isy;(zg,) = 1 if ZeeEi e < 1, and O
otherwise. Note that we useo referbothto the nodes o~
and factors ofp, ande to refer both to the edges @f and
variables ofp. The factory(x g, ) enforces the constraint that
at most one edge incident to notlean be assigned the value
“1”. It is easy to see that, for any, p(z) o« exp(}_, wez.)

if the set of edgeqe|z. = 1} constitute a matching i,
andp(xz) = 0 otherwise. Thus the max-weight matching o
G corresponds to the MAP estimate jf

V. MAIN RESULTS

We now state and prove the main results of this paper.
heorem 1 states that whenever the LP relaxation has no
ractional optima, max-product is successful at finding the

max-weight matching. Theorem 2, and Corollary 1, state the

The factor-graph version of the max-product algorithrﬁc_’”ve_rse: if there exist fractional optima, then max-paidu
[1] passes messages between variables and the factors Wil fail.
contain them at each iteratienFor thep in (1), each variable Theorem 1:Let G = (V, E) be a graph with nonneg-
is a member of exactly two factors. The output is an estimaéﬂve real weigHtSw on thé edges: ¢ E. If the linear

& of tthe MAZ Oftp' dV\f/e ntow .preientl\t/he max-pr(;dgct. u?(]I""tﬁrogramming relaxatiomP has no fractional optima, then
equations adapted for thein (1). We usee and (i,j) t0 o max-product estimaté is correct (i.e. it is the true max-
denote the same edge. Also, for two sdtsand B the set weight matching) for all timeg > 2@maz | wherew is

. . . c ’ max
difference is denoted by the notatioh\ 5. the maximum weight of any edge in the graph, anid as

Max-Product for Weighted Matching defined in Lemma 1.

Remark 1: Note that the requirement of “no fractional
gptima" is equivalent to saying that tHe® has a unique
optimum, and that this optimum is integral. The time after
which the estimates:® will converge to correct values is
determined by the “pointedness” of thé polytope at the

o (INIT) Sett =0 and initialize each message to 1.

o (ITER) lteratively compute new messages until conve
gence as follows:
Variable to Factor:

mithz.] = exp(zeow.) x m’_ Jxe] optimum, as represented by the constaof Lemma 1.
Factor to Variable: As noted previously, the requirement of absence of
fractional optima is in general strictly stronger than tigss
mit! [x.] = max { ¥ (zp,) H mb_[xer] of the LP relaxation. It is illustrative at this point to caahsr
TBi\e o' €E;\e the performance of max-product on the right-most graph

in Example 0O: the three-cycle with weights 2,1,1. For this
there are infinitely many optimal solutions td?: (1,0,0),

(3,3.3), and all convex combinations of the two. Thus,

Also, at eacht compute beliefs

ntlre] = exp(weze) x mi_ [z.] % mé_)e[xe}

1—e



even though the LP relaxation is tight, there exist fraalonthat Theorem 2 covers both the case when the LP relaxation
optima. For this graph, it can be easily verified (e.g. usiig tis loose (has no integral optima), and the case when the LP
computation tree interpretation below) that the estimates relaxation is tight, but multiple optima exist.

a function of time will oscillate as shown in the table below. ) . )
In general, when fractional optima exist, max-product

may converge to useful estimates for some edges and oscillat
or be uninformative for others. It follows from theorem 2ttha

1 1
o The useful estimates are exactly as predicted by the LP
relaxation: ifz. = 1 for somee € G, thenz? =1 for
; 1 2345 6 all optimax* of LP, and correspondingly if. = 0 then
- - _ xt =0.
if we =1, est!mateaf% = 10720720.. « Any edge with fractional masé < z* < 1 will not
if we=2, estimatezl = 1 ? 1 ? 1 ?. have useful estimates. However, the conversetdrue:

) ) _ ) there may exist edges that are assigned the same integral
We see that the edges with weights 1 will have estimates  ass in every max-weight matching, but for which max-
that oscillate between 0 and ?, while the edge with weight product is un-informative. Thus, in a sense Max-product
2 will oscillate between 1 and ?. The oscillatory behavior of s weaker than LP relaxation for the matching problem.
this example is not just a particular case, it holds in génera  consider the example below.
— as stated in the following theorem. We first state the most
general form of the theorem, followed by corollaries and

discussion. .

Theorem 2:Let G = (V, E) be a graph with nonnega-
tive real weightsw, on the edges € E. The corresponding
LP may, in general, have multiple optima. Then, for any
edgee in G, The uniquelLP optimum puts mas% on all six edges

in the two triangles, mass 1 on the middle edge of weight

1) If there existsany optimuma«* of LP for which the 1.1, and mass 0 on the other two edges in the path.
mass assigned to edgesatisfiesz} > 0, then the Max-product estimates oscillate between 0 and 1 on all edges
max-product estimaté’, is 1 or ? for allodd times.

2) If there existsany optimum z* of LP for which the We now proceed to prove the two theorems above. Both
mass assigned to edgesatisﬂeS$: < 1, then the proofs rely on the well-known Computation tree interprielat
max-product estimaté’ is 0 or ? for alleventimest.  Of Max-product beliefs [5], [12], which we describe first.&'h

proofs follow immediately after.

Remark: In light of this theorem, it is easy to see that
max-product yields useful estimates for all edges if ang onl _ ) ]
if eachz* has an integral value that is consistent at all optinfx Theé Computation Tree for Weighted Matching
z* of LP. This means thdtP has to have a unigque optimum,
and this optimum has to be integral. Hence, Theorem 1 is Recall the variables of the distributignin (1) corre-

tight: any deviation from the sufficient condition thereiillw SPond to edges id:, and nodes i correspond to factors.

which we denote by (¢), is defined recursively as follows:
Corollary 1: Suppose th&P has at least one fractionalT, (1) is just the edgee, the root of the tree. The two
optimum. Then, Theorem 2 implies that max-product estndpoints of the root (nodes ¢f) are the leaves of.(1).
mates will be un-informative for all edges that are assigndde tre€T.(t) at timet is generated frord, (¢t —1) by adding
non-integral mass at arlyP optimum. to each leaf of, (t — 1) a copy of each of its neighbor edges
in G, except for the neighbor edge that is already present in
In the case of non-unique optima, note that in Theoreme(t_ 1). Each edge i, is a copy of an edge i¥, and the

2 the choice of LP optimum™ is allowed to depend on, \yejghts of the edges ifi, are the same as the corresponding
the edge of interest. Thus, if there are optimand = of gqges inG.

LP such thatz, < 1 andZ. > 0, then the estimaté! will
either keep changing at every iteration, or will remain fixed For any edges and timet, the max-product estimate
at 2! =7, an uninformative estimate. It is thus easy to semccurately represents the membership of the eoiot max-




weight matchingsn the computation tre&, (¢), as opposed B. Proof of Theorem 1
to the original graphG. This is the computation tree inter-
pretation, and is stated formally in the following lemmar(fo We now prove that the uniqueness and tightness of the

a proof, see e.g. [5]). LP relaxation ensures that each estimateis 0 or 1, and
. also that the estimate corresponds to the optimal matching.
Lemma 2:For any edge: at time+, As mentioned in the introduction, this is a generalizatién o

the bipartite graph result in [10] - since it is well known
[17] that in the bipartite case all vertices of the LP polyop
are integraP Let M* be the optimal matching, ang* the
corresponding 0-1 vector that is the unique optimuniBf

« 2! =1 if and only if the root ofT.(¢) is a member of
everymax-weight matching off,(¢).

« 2! =0 if and only if the root of7.(¢) is not a member
of any max-weight matching off.(¢).

) To prove the theorem, we need to show that, for a large
o &L =7 else.

enough timet, the estimates satisfy

. . T
Remarks: The beliefsn![z.] are the max-marginals at

the root of the computation tre@,(t). If ni[1] > nt[0]
then any matching irf.(t) which excludes the root has acgnsider now any time > 2¥maz  \wherew,,,, = maxe we
c 1

suboptimal weight. Similarly, ifn[1] < nc[0], then any s the weight of the heaviest edge, ands as in Lemma 1
matching inT.(¢) including the root is suboptlmal. Howevgr,above_ Suppose that there exists an edgelM* for which
when ng[1] = n¢[0], then there exists an optimal matchinghe estimate at timeis not correcti, # 1 (i.e. it € {0,7}).

with zf = 0, and another optimal matching witkf = 1. We now show that this leads to a contradiction.

=0 forall edges e ¢ M*
! =1 for all edges e € M*

Note that max-product estimates correspond to max- \\e start with abrief outline of the proof. LetT,(t) be
weight matchings on the computation tréest), as opposed the computation tree at timefor that edgee. From Lemma
to on the original graptG. Suppose)M is a matching on 2 the fact thati! # 1 means that there exists a max-weight
the original graph(;, and T, is a computation tree. Then, matching s on 7, (¢) that does not contain the roet Due
the image of M in T, is the set of edges i, whose {5 the uniqueness of the LP optimum we can ugé to
corresponding copy inG' is a member ofM. We now modify A/ and obtain a matchingZ’ on T, (¢) which has
illustrate the ideas of this section with a simple example. strictly larger weight than\/. This contradicts the optimality

x4
Example 1 (Concepts related to computation trees): of M onT(t), and proves that, has to be equal to 1.

Consider Figure V-AG appears on the left, the numbers are  \we now give the details in full. Leb/ be the image
the edge weights and the letters are node labels. The mgx-/+ onto T.(t). By assumptione € M* in original graph
weight matching onG; is M* = {(a,b),(c,d)}, depicted @, and hence the roate M. Recall that, from Lemma 2,
in bold on G. In the center plot we show,;)(4), the 3t £ 1 implies there exists some max-weight matchihiy
computation tree at time = 4 rooted at edgda,b). Each of 7, (+) thatdoes not contaitthe root, i.e. root ¢ M. Thus
node is labeled in accordance fo its copyGh The bold the roote € M — M. From roote, build analternating path
edges in the middle tree depidt 7, the matching which is p on T, (¢) by successively adding edges as follows: first add
the image ofM/* onto T, ;) (4). The weight of this matching . then add all edges adjacentddhat are in\ — M, then

is 6.6, and it is easy to see thaty matching onT{,;)(4)  all their adjacent edges that are ;. — A/, and so forth until
that includes the root edge will have weight at most 6.6. o more edges can be added. This will occur either because
the rightmost tree, the dotted edges represehtthe max- g edges are available that maintain the alternating streict
weight matching on the tre#{, ;)(4). M has weight 7.3. In o pecause a leaf df,(t) has been reached. Note also that
this example we see that even thoughb) is in the unique p i pe a path, becaus@/ and M;. are matchings and

optimal matching inG, it turns out that roo{a, b) is not & g any node irf, (¢) can have at most one adjacent edge in
member of any max-weight matching @j, »)(4), and hence gach of the two matchings.

we have thatf;?mb) = 0. Note also that the dotted edges

are not an image of any matching in the original graph For illustration, consider Example 1 of section I¥in
This example thus illustrates how “spurious” matchingsia t this case is the edg@:, b), and M* is denoted by the bold
computation tree can lead to incorrect beliefs, and estiiat

In the example above the reason Why Max-product disagr e%Our proof below is _along sim_ila_r lines to the one in [10],_namﬁ1m
with LP relaxation is that Max-product has not yet Convergeeaoth proofs proceed via contradiction by constructing a m@timum. In

0], this new optimum is actually an alternate matching oncibvaputation
| tree; in ours it is a new LP optimum.



Fig. 1. Computation Tree figure for Example 1

edges in the leftmost figur€. The computation tre@,(4) % = 0. This proves the theorem.

at time 4 is shown in the center, with the imabg. marked

in bold. Note that the roat € AM7. In the rightmost figure is

depictedM, a max-weight matching d¢f.(¢). The alternating C. Proof of Theorem 2

path P, as defined above, would in this example be the path

adcabeda that goes from the left-most leaf to the right-most We now prove Theorem 2. Suppose part 1 is not true,
leaf. It is easy to see that this path alternates betweersedpge. there exists edge an optimumz* of LP with z* > 0,

in M — M7 and M7 — M. We now use the following lemma and an odd time at which the estimate i8! = 0. Let T,.(t)

to complete the proof of Theorem 1. be the corresponding computation tree. Using Lemma 2 this
means that the roat is not a member of any max-weight
matching ofT.(¢). Let M be some max-weight matching on
T.(t). We now define the following set of edges

Lemma 3:SupposelLP has no fractional optima. Let
M be a matching irf, (¢t) which disagrees witti/;. on the
root, i.e. roote € {M — M3} U {M} — M}. Let P be the
maximal alternating path containing the root. TheaP N E} = {¢’ € T.(t) : ¢’ ¢ M, and copy ofe’ in G hasz}, > 0}

M PN M), providedt > 2@mas _ . . :
r) >l )P - In words, E is the set of edges ifi. (¢) which are not inM,

Lemma 3 is proved in the appendix, using a perturbatiéfd whose copies i6r are assigned strictly positive mass by
argument: if lemma is false, then it is possible to pertutb the LP optimumz*.
to obtain a new feasible point € P such thatw’x > w'z*,

I N . Note that by assumption the roetc FE; and hence
thus violating the optimality and uniquenessadffor the LP . L .
Onqu ng pmatly Hiqu e ¢ M. Now, as done in the proof of Theorem 1, build a

maximal alternating patt which includes the root, and

Now consider the matching/, and change it by alternates between edgesiifiand edges iy By maximal,
“flipping” the edges inP. Specifically, letM’ = M — (PN We mean that it should not be possible to add edge? amd
M) + (PN M) be the matching containing all edgesin  Still maintain its alternating structure. Note that in gast
except the ones iP, which are replaced by the edges irio Theorem 1 we may have multiple edgesAi touching
PN Mz Itis easy to see that/’ is a matching inT, (). & node. In such a case we pick an arbitrary one of them and
Also, from Lemma 3(a) it follows thaiw(M’) > w(M). add toP. We use the following lemma:
This however, violates the assumption thidtis an optimal
matching inT,(¢). We have arrived at a contradiction, and
thus it has to be the case thet =1 for all e € M*.

Lemma 4:The weights satisfy(PNM) < w(PNEY).

The proof is included in the appendix and is similar
in principle to that of Lemma 3: if the weights are not
as specified, then it is possible to perturb to obtain a
r{ﬁasible solution olLP with strictly higher value thanc*,

us violating the assumption that is an optimum ofLP.
The fact thatt is odd is used to ensure that the perturbation
results in a feasible point.

A similar argument can be used to establish tfat 0
for all e ¢ M*. In particular, suppose that, # 0 for some
e ¢ M*. This means there exists a max-weight matchi
M in T,(t) that contains the root. Again, let M. be the
image of M* onto T, (t). Note that the root € M — M.
Let P be a maximal alternating path that the reotUsing

Lemma 3, it follows thato(P N My) > w(F N M). Now, as We now use Lemma 4 to finish the proof of part 1 of
before, defineM’ = M — (PN M) + (PN Myz). It follows  Theorem 2. Considets’ — M — (M N P) + (Ef N P),
that w(M’) > w(M), violating the assumption thal/ is \yhich is a new matching of,(¢). Lemma 4 implies that
an optimal matching il (¢). Thus the roote has to have w(M') > w(M), ie. M is also a max-weight matching



of T.(t). However, note that the roet € M’, and so this The LP relaxation of this integer program is obtained by
contradicts the fact that roat should not be in any max- replacing the constraing. € {0, 1} by the constraints.. €
weight matching off.(¢). This proves part 1 of the theorem.[0, 1] for eache € E. We will denote the resulting linear

. . . ) ) program bybLP.
Part 2 is proved in a similar fashion, with the pertur-

bation argument now requiring thatbe odd. Specifically, To apply Max-product, first consider a probability dis-
suppose part 2 is not true, then there exists an edge tribution as in (1), but withy;(zg,) now defined to be
optimum z* of LP with z} < 1, and an even time¢ at 1 if ZeeEi ze < b;, and O otherwise. The max-product
which the estimate i€! = 1. This implies that root is updates remain as specified in Section IV. The following
a member ofevery max-weight matching of.(¢). Let M two theorems are the respective generalizations of Theorem
be any such max-weight matching (), and define the 1 and 2.

following set of edges ) )
Theorem 3:If bLP has no fractional optima, then the

E; ={e' € T.(t) : ¢ ¢ M, and copy ofe’ in G hasz;, > 0}max-product estimateé’ is correct (i.e. it is the true max-
weight b-matching) for all timest > 2%“maz  where woqx
gs the maximum weight of any edge in the graph, anid
as defined in Lemma 1 (but wit® being theb-matching

In words, E3 is the set of edges iff.(¢t) which are not in

M, and whose copies i are assigned strictly positive mas

by the LP optimumz*. Note that the root € M and hence

e ¢ FE5. Let P be a maximal alternating path which includeQOIytOpe)

the roote, and alternates between edgestihand edges in Theorem 4:For any edge: in G,

E;.

1) If there existsany optimumz* of bLP for which the
mass assigned to edgesatisfiesz} > 0, then the

The proof of this lemma is similar to that of Lemma 4, max-product estimaté is 1 or ? for allodd timest.
and is given in the appendix. It uses the fact thig even. ~ 2) If there existsany optimumz™ of bLP for which the
Now, as before, consideY!’ = M — (M 0 P) + (E; N P), mass assigned to edg_esatlsﬂewz < 1, then the
which is a new matching of(¢). Lemma 5 implies that max-product estimaté’ is 0 or ? for alleventimest.
w(M') > w(M), i.e. M’ is also a max-weight matching
of T.(t). However, note that the roat ¢ M’, and so this
contradicts the fact that roetshould be in every max-weight
matching ofT.(¢). This proves part 2 of the theorem.

Lemma 5:The weights satisfyy(PNM) < w(PNE3).

The proofs of both theorems are similar to those of
Theorems 1 and 2 respectively. In particular, note thatether
will be an alternating path between any twanatchings on
the computation tree. All the alternating path and pertimba
arguments remain as before.

V1. EXTENSIONS
We now establish the extensions of Theorems 1 arI13d Weightedr-edge-cover
2 to the weightedh-matching andr-edge-cover problems.
The main ideas remain unchanged, and thus the pro%ﬁo
are outlines, with just the important differences from th
corresponding proofs for the simple matching highlighted.

The min-weightr-edge-cover problem is given by the
wing integer program: given numbers < d; for each
ﬁodez’, whered; is the degree of nodg

rlP : min E Wele,

eckE
A. Weightedh-matching s.t. Z z.>r; forallieV,
e€E;
The weighted b-matching problem is given by the z. €{0,1} foraleecFE
following integer program: given numbets > 0 for each
nodei g ger prog g b = The LP relaxation ofrlP is obtained by replacing the
’ constrainse, € {0,1} by the constraints:.. € [0,1] for each
bIP : max Z Welke, e € E. We will denote the resulting linear program biP.
e€E To apply max-product, consider the following probability
s.t. > we<b; forallieV, distribution
€L, (@) o [witee) [] expl-weze). (@)
q iI\LE; p ete),

2. €{0,1} forallee E i€V e€E



Here the factor);(zg,) for nodei takes value 1 if and only

is respectively>, <, = to 1. Thus, Lemma 6 implies that the

if > .cp, Te > 1, and O otherwise. It is easy to see that any-edge cover max-product estimate for edgeill be 1 if and

maximum ofq corresponds to a min-weightedge-cover of

only if the corresponding-matching max-product estimate

the graph. The max-product updates remain as specifiedigr0. Similarly, 0 maps to 1, and ? to ?. Thus, Theorems 5

Section 1V, except thaty, should be replaced byw.. The
two theorems are now stated below.

and 6 follow from Theorems 3 and 4 respectively.

Theorem 5:If »-LP has no fractional optima, then the

max-product estimaté? is correct (i.e. it is the true min-
costr-edge-cover) for all timeg > 27“”% wherew,,qz is
the maximum weight of any edge in the graph, and as
defined below P is the feasible polytope afLP)

w'r —w'x*
c gLr=we

in
w€P—z* |x — x|

Theorem 6:For any edge: in G,

1) If there existsany optimumz* of rLP for which the
mass assigned to edgesatisfiesz? > 0, then the
max-product estimatg? is 1 or ? for allodd timest.

2) If there existsany optimumz* of rLP for which the
mass assigned to edgesatisfiesz} < 1, then the
max-product estimatg’ is 0 or ? for alleventimest.

Theorems 5 and 6 are most easily obtained by mappi

the max-product updates for theedge-cover problem to
those of theb-matching problem. In particular, ; is the
degree of node, set

bl‘ dz‘ — T

Then, any edge will be included in the min-weight-edge-
cover if and only if it isnot included in the max-weight-

matching. The following lemma shows that there is an exact

relationship between the max-product updates forteege-
cover problem and the corresponditygnatching problem. It
can easily be proved by induction, we include the proof
the appendix.

Lemma 6:Given a weighted:-edge-cover problem, let
m denote the max-product messages andhe beliefs.

Consider now the weighteldmatching problem where edge

weights remain the same and edgh= d; —r;. Letm andn
denote the messages and beliefs for thisatching problem.
Then, we have that for timg node: and edge: € F;,

mf%e[l] mz—»e[o] ’ méaz[l] mé%l[o]
0] (1]
] T A

Note now that the estimaté! depends only on the
nel0l 1n particular, &% = 0,1,? if and only if

ne[l]

: 0
ratio i)

Ne
ne|

VIl. PROTOCOLSIMPLIFICATION

In this section we show that max-product for the
weighted matching problem can be simplified for imple-
mentation purposes. Similar simplifications have also been
performed in [9] and [10]. Recall that in the specification
given in Section IV, messages are passed between edges
and nodes. However, it would be more desirable to just have
an implementation where messages are passed only between
nodes. Towards this end, for every pair of neighboasd ;,
let e = (4, j) be the edge connecting the two, and define

()
-
n

i—e
T%e protocol with thez-messages is specified below.

t

[0]
1]

t

i—J

a

Simplified Max-Product for Weighted Matching

o (INIT) Sett =0 and initialize each.) ; =0
« (ITER) lteratively compute new messages until conver-

gence as follows:y(; = max(0,y))

t+1

g

a max

kEN (i)—j

(1w~ ak0),

in, (ESTIM) Upon convergence, output estimate for
each edge set(; ;) = 0,1 or ? if (a;—; + a;j_;) is
respectively>, < or = w;;.

The update equations férmatching and--edge-cover
can also be simplified by definings as above.

Proof of Lemma 3:

The outline of the proof is as follows: we will uge to
define a new feasible point of the LPby modifying 2*, the
unique optimum of thé&P. We obtainz by subtracting from
x?, for every edge inP N M7} and addinge for every edge
in P N M, counting repeated occurrences. The fact that the
weight w’zx is strictly less thanv’z* will prove the lemma.

Formally, We define two length¥| vectorsa and 3 as
follows: for everye’ in the original graph,
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aer = number of (copies of}’ that appear inP N M. edgee’ € M*, |zo — 25| = eaw, and for eache’ ¢ M*,
Note thata,, > 0 only for edgese’ € M*, and |z — %] = €fer. Thus we have that
ae = 0 for other edges’ ¢ M*. ¢
B = number of (copies of}y’ that appear inP N M, . B
excludingcopies that touch a leaf &f,(t). w—a*| = €| Y ac+fe| = c|P|

Note that3., > 0 only for e’ ¢ M*, andf3., =0
for e/ € M*. Thus we have that thé -norm satisfiedz — z*| > et. Now,

In the above, the leaves of trée(¢) are nodes at the lastby the definition ofc in Lemma 1,
level of T.(t), i.e. furthest away from the root. The path
P has two endpoints, and hence it can hatemost two
leaf edges inP N M. Let w; and wy be equal to the and thusuw'(a — 3) > ct. Also, wy + wy < 2wy, Thus
weights of these two edges, if they exist, angd= 0 if the we have that
corresponding edge does not exist. Then, we have that

wPNMp)—w(PNM) > ct—2Wnax

e'eG

wr* —w'zr > clx—x*| > cet,

/ . *
wlo‘ = w(PnNMy) ®)  However, by assumption > Zwmas  gnd hence it has to be
wp = wPNM)—w —w (4)  thatw(P N Mz) > w(P N M). This finishes the proof.m.

For an illustration of these definitions, look at the footfot
We are now ready to define the perturbation:det 0 be a Proof of Lemma 4:

small positive number, and . . :
P The proof of this lemma is also a perturbation argument.

r = "+ € -a) (5) For each edge’, let m. denote the number of times
appears inP N M andn,. the number of times it appears in
We now need the following auxiliary lemma, which is provedr n Ej. Define
later in the appendix.
x = a2 +e(m—n)
Lemma 7:The vectorz as defined in (5) is a feasible

point of LP, for a small enough choice af We now show that thisc is a feasible point forLP, for

small enoughe. To do so we have to check edge constraints

We now find it convenient to separately consider w8 < %o < 1 and node constraints_ . 5 z.- < 1. Consider
possible scenarios for the pathand weightsw: , wo. flrst the edge constraints. For aayc E NP, by definition,
> 0. Thus, for anym.. andn.,, makinge small enough

Case 1:w; =wy =0 can ensure thazt*,+e(m€/ —nes) > 0. On the other hand, for
anye’ € MNP, z}, <1, because a neighboring edge that

Suppose now that the statement of Lemma 3 is not trYsalongs toE; has posmve weight. Making small enough

i.e. suppose thatw(P N M;) < w(P N M). From (3) and ensures thai:*, + e(me —ne) < 1.

(4) and the assumptiom; = ws = 0, it then follows that

w'a < w’B. From (5) it then follows thaty’z > w’x*. Note Consider now the node constraints for a nadeFor

also thatr # z* because? — « # 0. We have thus obtained every copy ofv that appears in the interior @f, the mass on

a feasible pointr of the LP with weight at least as large asone edge is increased lyand on another is decreaseddy

the unique optimumc*. This is a contradiction, and henceThus the only nodes where there is a potential for constraint

for this case it has to be that(P N M) > w(P N M). violation are the endpoints d? for which the corresponding
) last edge is inP N M. Suppose that is one such endpoint,
Case 2:At least one ofw, or w; is non-zero. and assume for now thatis not a leaf node of, (). Note

now that, by construction, every edge éhe P N M has

, < 1. So, the fact that? could not be extended beyond
v means thad . z% =z}, <1, whereuv is the edge
in P (and M) touchlngv This means that the constraint at
v is inactive forz*, and so for smalk the newx will be

Forw, or ws to be non-zero, at least one endpointR)f
has to be a leaf df..(¢). The tree has depth and P contains
the root and a leaf, so the path lengt > ¢. Now, for each

4For illustration of these definitions, we refer back to exaarpbf Section .
V. The computation tree in the center shows the projecfiéh, and the feasible.
tree on the right shows a max-weight matchihg on T\, ;)(4). Suppose o o .
now P is the path starting from the left-most leaf f, ;) (4) and ending The only remaining case to check is if the endpaint

at the right-most leaf. It alternates betwe#h and 7. For this P, we of P is a leaf node ofl’ (t) If the last edge inP touching
e(t).

have that the vectors arey, ;) = 1, = 2 anda,, = 0 for all other L . . .
edgese’. B o) = 1, o Z) D and 8o 0 for alfyother edges’. The U iS in PN E}, the node constraint at will not be violated

weightsw; = wo = weight of edge(a, d). since the perturbation decreases the total mass &tote
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that, sincet is odd, this includes the case wherés a leaf The term}_ , . a. counts the number of times edges in
node at the lowest level. So, consider the final casedhiat P N M} touch (copies of) node in the computation tree.
a leaf node that is not at the lowest level in the tree, su@imilarly, > ., B counts the number of times edges in
that P ends inv with an edge inPN M. This edge has mass PN M touchi. Suppose first thatis not an endpoint of, so
strictly less than 1. The fact thatis not at the lowest level that every timeP touches it will do so with one edge in\/}.
means that is a leaf in the original graph as well, and ha n@nd one in}M. This means thad_ . ae = > cp Ber
other edges touching it. Thus it has to be that the constraéitd hence thad_ ., zer = > . cp @i . Thus the node
at nodev is not tight at the LP optimum*. This means that constraint at is not violated.

a small finitee will ensure feasibility. .
Suppose now that appears as an endpoint &%, and

Thusz is a feasible point ofP. Note that the weights (7, j) is the corresponding last edge & If (i,j) € PN
satisfy M7z, this means thad ., . B < ) . cp e, and hence
Yoeer Ter < D eep, To — SO the constraint at nodeis
not violated. If last edge(i,j) € M and it touches a leaf-
Thus, ifw(P N M) > w(P N EY), then we would have that node then it is not counted ifi,, (see hows is defined). If
w'z > w'z*, which violates the assumption that is an (i,5) € M and it ends in the interior oI (¢), then the fact
optimum ofLP. So it has to be that (PNM) < w(PNET).  that P could not be extended beyoridneans that there are
This proves the lemma. B o edges of\/; touchingi in the treeT, (t). SinceM; is the
image of M*, this means there are no edgeslifi touching
nodei in original graphG. Thus Ze,eEi xt, = 0. So, for

Let m, n andz be defined exactly as in the proof ofSmall enoughe we can ensure that) ., (B —aer) < 1,
Lemma 4 above, with; replaced byE;. By reasoning ex- €nsuring that the constraint at nodlés not violated. W
actly as above, it follows that all edge constraints z.. < 1
are satisfied, and also all node constraints are satisfiezpexc
possibly for nodes that are endpoints aP which are leafs
of T.(t) and also the last edge is in P N M. However, the
fact that the rootk is in M, and thatt is even, means that
last edgee’ € PN E3 and not inPN M. Thusz is a feasible
point of LP.

w'r —w'z* = w(PNM)—w(PnNEY)

Proof of Lemma 5:
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