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Belief Propagation and LP Relaxation for
Weighted Matching in General Graphs

Sujay Sanghavi,Member, IEEE,Dmitry Malioutov and Alan WillskyFellow, IEEE,

Abstract—Loopy belief propagation has been employed in
a wide variety of applications with great empirical success, but it
comes with few theoretical guarantees. In this paper we analyze
the performance of the max-product form of belief propagation
for the weighted matching problem on general graphs.

We show that the performance of max-product is exactly
characterized by the natural linear programming (LP) relax-
ation of the problem. In particular, we first show that if the LP
relaxation has no fractional optima then max-product always
converges to the correct answer. This establishes the extensionof
the recent result by Bayati, Shah and Sharma, which considered
bipartite graphs, to general graphs. Perhaps more interestingly,
we also establish a tightconverse, namely that the presence of
any fractional LP optimum implies that max-product will fail
to yield useful estimates on some of the edges.

We extend our results to the weightedb-matching and r-
edge-cover problems. We also demonstrate how to simplify the
max-product message-update equations for weighted matching,
making it easily deployable in distributed settings like wireless
or sensor networks.

Index Terms—Belief Propagation, Message Passing,
Matching, Combinatorial Optimization, Graphical Models,
Markov Random Fields

I. I NTRODUCTION

Loopy Belief Propagation (LBP) and its variants [1],
[2], [3] have been shown empirically to be effective in
solving many instances of hard problems in a wide range of
fields. These algorithms were originally designed for exact
inference (i.e. calculation of marginals/MAP estimates) in
probability distributions whose associated graphical models
are tree-structured. While some progress has been made in
understanding their convergence and accuracy on general
“loopy” graphs (see [4], [5], [3] and their references), it still
remains an active research area.

In this paper we study the application of the widely
used max-product form of LBP (or simply max-product (MP)
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algorithm), to the weighted matching problem1. Our motiva-
tion for doing so is two-fold: firstly, weighted matching is
a classical problem with much structure, and this structure
can be used to provide a much finer characterization of
max-product performance than would be possible for general
graphical models. Secondly, fast and distributed computation
of weighted matchings is often required in areas as diverse as
resource allocation, scheduling in communications networks
[8], and machine learning [9].

Given a graphG = (V,E) with non-negative weights
we on its edgese ∈ E, the weighted matching problem
is to find the heaviest set of mutually disjoint edges (i.e.
a set of edges such that no two edges share a node).
Weighted matching can be naturally formulated as an integer
program (IP). The technique oflinear programming (LP)
relaxation involves replacing the integer constraints with
linear inequality constraints. In general graphs, the linear
program for weighted matching can have fractional optima –
i.e. those that assign fractional mass to edges. The primary
contribution of this paper is an exact characterization of max-
product performance for the weighted matching problem: we
show that

• If the LP has no fractional optima (i.e. if the optimum
of LP is unique and integral), then max-product will
converge and the resulting solution will be exactly the
max-weight matching (Theorem 1).

• For any edge, if there exists an optimum of LP that
assigns fractional mass to that edge, then the max-
product estimate for that edge will either oscillate or
be ambiguous (Theorem 2). For the entire graph, this
implies that if fractional optima exist then max-product
will fail (Corollary 1).

Most of the existing analysis of classical loopy belief
propagation either provides sufficient conditions for correct-
ness of solutions (e.g. [10], [4]), or provides an analy-
sis/interpretation of fixed points (e.g. [5], [3]). However, there
are relatively few results that providenecessaryconditions

1This publication is the journal version of earlier results reported in [6].
Also related are recent results by Bayati, Borgs, Chayes andZecchina [7].
See the end of Section I for a discussion.
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for the convergence/correctness of theiterative procedure.
Theorem 2 is thus significant in this regard, and we believe
it is more general than the weighted matching and covering
problems discussed in this paper.

Many tantalizing connections between belief propaga-
tion and linear programming (in various forms) have been
observed/conjectured [11]. This paper provides a precise con-
nection between the two for the weighted matching problem.
An interesting insight in this regard, obtained from our work,
is the importance of the uniqueness of the LP optimum, as
opposed to uniqueness of the IP optimum. In particular, it
is easy to construct examples where the LP has a unique
integer optimum, but also has additional spurious fractional
optima, for which max-product fails to be informative. A
more detailed discussion of this is presented in Section V.

We extend our analysis to establish this equivalence
between max-product and LP relaxation for two related
problems: weightedb-matching andr-edge-cover. Given a
graph with edge weights and node capacitiesbi, theweighted
b-matchingproblem is to pick the heaviest set of edges so
that at mostbi edges touch nodei, for eachi ∈ V . Similarly,
if the graph has node requirementsri, the weightedr-edge-
coverproblem is to pick the lightest set of edges so that each
node i ∈ V has at leastri edges incident on it. Theorems
3 and 4 pertain tob-matching, and theorems 5 and 6 tor-
edge-cover.

In an insightful paper, Bayati, Shah and Sharma [10]
were the first to analyze max-product for weighted matching
problems; they established that max-product correctly solves
weighted matching inbipartite graphs, when the optimal
matching is unique. Theorem 1 represents a generalization
of this result2, as for bipartite graphs it is well known
that the extreme points of the matching LP polytope are
integral. This means that if the LP has a fractional optimum,
it has to also have multiple integral optima, i.e. multiple
optimal matchings. So, requiring unique optima in bipartite
graphs is equivalent to requiring no fractional optima for
the LP relaxation. In [9] the results of [10] were extended
to weighted b-matchings on bipartite graphs. Theorem 3
represents the corresponding extension of our results tob-
matching on general graphs.

A preliminary version [6] of this paper contained a
different proof of both Theorems 1 and 2. The proofs in that
paper can be adapted handle more general message update
rules (as opposed to the “fully synchronous” case considered
in this paper). Both [6] and this paper consider the case of
“imperfect” matchings, where each node can have at most

2[10] uses a graphical model which is different from ours to represent
weighted matching, but this does not change the results.

one edge in the matching, but may have none. Independently
developed recent results by Bayati et. al. [7] provide an
alternative proof for one of the two theorems – Theorem
1 which shows that tightness of LP implies BP success –
for the conceptually harder case of perfect matchings. Their
proof also holds for arbitrary message update schedules.

The outline of the paper is as follows. In Section III
we set up the weighted matching problem and its LP relax-
ation. We describe the max-product algorithm for weighted
matching in Section IV. The main result of the paper is
stated and proved in Section V. In Section VI we establish
the extensions tob-matching andr-edge-cover. Finally, in
Section VII we show how max-product can be radically
simplified to make it very amenable for implementation.

II. RELATED WORK

This paper proves new results on the correctness and
convergence of Loopy Belief Propagation for the weighted
matching problem on general graphs. Belief propagation and
its variants have proven extremely popular in practice for
the solution of large-scale problems in inference, constraint
satisfaction etc.; here we provide a summary of the work
most directly related to this paper.

Classical BP in graphical models has two common
flavors - SumProduct, which is used for finding marginals of
individual/small groups of variables, and MaxProduct, which
is used for finding the global most likely assignment of
variables. Both flavors are iterative message-passing algo-
rithms, designed to be exact when the graphical model is
a tree. Analysis of their performance in graphs with cycles
has been of much recent interest; existing analysis falls into
two methodological categories. The first category is the direct
analysis of fixed points of the iterative algorithm: [3] shows
that the fixed points of SumProduct on general graphs cor-
respond to zero-gradient points of the Bethe approximation
to the energy function. [12] shows that the convergence of
SumProduct is related to the uniqueness of the Gibbs measure
on the infinite model represented by the computation tree.
[11] shows the correspondence between BP fixed points and
linear programming (LP) solutions for the decoding problem.
For MaxProduct on general graphs, [5] establish that the fixed
point solutions are locally optimal, in a graph-theoretic sense.

The second category of analysis, also the one taken
in this paper, involves direct analysis of the dynamics of
the iterative procedure, to jointly establish both convergence
and relation to the correct solution. This approach was first
used in [10] in the context of weighted matching on bipartite
graphs (i.e. those that have no odd cycles). They established
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that if the optimum is unique, MaxProduct always converges
to it; they also precisely bound the rate of convergence. Their
approach generalizes tob-matchings as well, as established
in [9]. Our paper generalizes this result to all (i.e. not just
bipartite) graphs, where the relevant notion is not uniqueness
of the true optimum, but uniqueness of the LP relaxation.
Independent work in the recent paper [7] also establishes this
result. Our paper also establishes aconverse:that MaxProd-
uct will fail on edges where the LP has a fractional value at
some optimum. Parallel work [13] establishes this converse
for the more general problem of finding the maximum weight
independent set.

A related but separate algorithmic approach to inference
are the variational techniques developed by [14] (see [15] for
a more recent tutorial survey of this and related methods). For
ML estimation, these algorithms involve a variant of direct
coordinate descent on the dual of the LP. The algorithm in
[16] is shown to always converge to the dual optimum for bi-
nary pairwise integer problems; more generally convergence
of these algorithms is not fully understood.

III. W EIGHTED MATCHING AND ITS LP RELAXATION

Suppose that we are given a graphG with edge-weights
we. A matching is any subset of edges such that the total
number of edges incident to any nodei is at most 1.
The weighted matching problemis to find the matching of
largest weight. Weighted matching can be formulated as the
following integer program:

IP : max
∑

e∈E

wexe,

s.t.
∑

e∈Ei

xe ≤ 1 for all i ∈ V,

xe ∈ {0, 1} for all e ∈ E

HereEi is the set of edges incident to nodei. The linear pro-
gramming (LP) relaxationof the above problem is to replace
the constraintxe ∈ {0, 1} with the constraint0 ≤ xe ≤ 1,
for eache ∈ E. We denote the corresponding linear program
by LP.

In this paper, we are interested in the presence or
absence of fractional optima forLP. An optimumx∗ of LP is
fractional if there exists some edgee to which it assigns
fractional mass, i.e. if there is ane such that0 < x∗

e < 1.
Note thatLP will have no fractional optima if and only if
LP has a unique optimum, and this optimum is integral.

Example 0 (Fractional optima of LP): Consider, for
example, the following three graphs.

1

3 1

1

1 1

1

2 1

In the cycle on the left, theLP has no fractional optima:
the unique optimum (1,0,0) places mass 1 on the edge with
weight 3, and 0 on the other two edges. The two cycles on the
right, however, do have fractional optima. The middle cycle
has ( 1

2 , 1
2 , 1

2 ) as its unique optimum, while the one on the
right has many optima: (1,0,0),( 1

2 , 1
2 , 1

2 ), and every convex
combination of the two. Note that in the rightmost cycle the
LP relaxation is “tight”, i.e. the optimal values ofIP and
LP are equal. Also, theIP has a unique optimum. However,
there still exist fractional optima for theLP. ¥

Note that if the graph is bipartite (i.e. it contains no odd
cycles), then all the extreme points of theLP polytope are
integral. As a result, in this case, fractional optima existif
and only if there are multiple integral optima of theLP. This
is the reason our Theorem 1 is a generalization of [10].

We need the following lemma for the proof of Theorem
1. Its proof is obvious, and is omitted.

Lemma 1:Let P be the polytope of feasible solutions
for LP, and let the optimumx∗ be unique. Define

c = inf
x∈P−x∗

w′(x∗ − x)

|x∗ − x|

Then, it has to be thatc > 0.

Remark: In the above lemma,|x∗−x| =
∑

e |x
∗
e −xe|

is theℓ1-norm of the perturbation fromx∗. The fact that the
LP has a unique optimum means that moving away from
x∗ along any direction that remains withinP will result in a
strict linear decrease in the objective function. The constantc
is nothing but the smallest such rate of decrease. Uniqueness
of x∗ implies thatc should be strictly positive.

Remark 2: While c has been defined via an infimum
over all points in the polytope, it is clear that we can replace
this with a minimum over all extreme points of the polytope.
So, if we consider the right-most triangle graph in Example
0 above – the one with edge weights 3,1,1 – thenc = 1/3.
This is because the LP optimum isx∗ = (1, 0, 0) with weight
w′x∗ = 3, and among the other extreme points (in this case
all feasible points where each coordinate is 0, 1 or1

2 [17]) the
one which achieves the minimum is the pointx = (1

2 , 1
2 , 1

2 ),
which has weightw′x = 5

2 .
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IV. M AX -PRODUCT FORWEIGHTED MATCHING

The Max-product form of belief propagation is used
to find the most likely state – the MAP estimate – of a
probability distribution, when this distribution is knownto
be a product of factors, each of which depends only on a
subset of the variables. Max-product operates by iteratively
passing messages between variables and the factors they
are a part of. In order to apply max-product, we now
formulate weighted matching onG as a MAP estimation
problem, by constructing a suitable probability distribution.
This construction is naturally suggested by the form of the
integer programIP. Associate a binary variablexe ∈ {0, 1}
with each edgee ∈ E, and consider the following probability
distribution:

p(x) ∝
∏

i∈V

ψi(xEi
)

∏

e∈E

exp(wexe), (1)

which contains a factorψi(xEi
) for each nodei ∈ V , the

value of which isψi(xEi
) = 1 if

∑
e∈Ei

xe ≤ 1, and 0
otherwise. Note that we usei to referboth to the nodes ofG
and factors ofp, ande to refer both to the edges ofG and
variables ofp. The factorψ(xEi

) enforces the constraint that
at most one edge incident to nodei can be assigned the value
“1”. It is easy to see that, for anyx, p(x) ∝ exp(

∑
e wexe)

if the set of edges{e|xe = 1} constitute a matching inG,
and p(x) = 0 otherwise. Thus the max-weight matching of
G corresponds to the MAP estimate ofp.

The factor-graph version of the max-product algorithm
[1] passes messages between variables and the factors that
contain them at each iterationt. For thep in (1), each variable
is a member of exactly two factors. The output is an estimate
x̂ of the MAP ofp. We now present the max-product update
equations adapted for thep in (1). We usee and (i, j) to
denote the same edge. Also, for two setsA and B the set
difference is denoted by the notationA\B.

Max-Product for Weighted Matching

• (INIT) Set t = 0 and initialize each message to 1.
• (ITER) Iteratively compute new messages until conver-

gence as follows:
Variable to Factor:

mt+1
e→i[xe] = exp(xewe) × mt

j→e[xe]

Factor to Variable:

mt+1
i→e[xe] = max

xEi\e



ψi(xEi

)
∏

e′∈Ei\e

mt
e′→i[xe′ ]





Also, at eacht compute beliefs

nt
e[xe] = exp(wexe) × mt

i→e[xe] × mt
j→e[xe]

• (ESTIM) Each edgee has estimatêxt ∈ {0, 1, ?} at
time t:
x̂t

e = 1 if nt
e[1] > nt

e[0],
x̂t

e = 0 if nt
e[1] < nt

e[0],
x̂t

e =? if nt
e[1] = nt

e[0].

Note that estimatêxt
e = 1 means that, at timet,

Max-product estimates that edgee is part of a max-weight
matching, whilex̂t

e = 0 means that it is not.̂xt
e =? means

that Max-product cannot decide on the membership ofe. In
this paper, we will say that the max-product estimate for an
edge isuninformativeif its value keeps changing even after
a large amount of time has passed, or if its value remains
constant and equal to ?.

The message update rules are described above in a form
familiar to readers already acquainted with Max-product. In
Section VII we show that the update rules can be substantially
simplified into a “node-to-node” protocol that is much more
amenable to implementation.

V. M AIN RESULTS

We now state and prove the main results of this paper.
Theorem 1 states that whenever the LP relaxation has no
fractional optima, max-product is successful at finding the
max-weight matching. Theorem 2, and Corollary 1, state the
converse: if there exist fractional optima, then max-product
will fail.

Theorem 1:Let G = (V,E) be a graph with nonneg-
ative real weightswe on the edgese ∈ E. If the linear
programming relaxationLP has no fractional optima, then
the max-product estimatêxt is correct (i.e. it is the true max-
weight matching) for all timest > 2wmax

c
, wherewmax is

the maximum weight of any edge in the graph, andc is as
defined in Lemma 1.

Remark 1: Note that the requirement of “no fractional
optima” is equivalent to saying that theLP has a unique
optimum, and that this optimum is integral. The time after
which the estimateŝxt will converge to correct values is
determined by the “pointedness” of theLP polytope at the
optimum, as represented by the constantc of Lemma 1.

As noted previously, the requirement of absence of
fractional optima is in general strictly stronger than tightness
of the LP relaxation. It is illustrative at this point to consider
the performance of max-product on the right-most graph
in Example 0: the three-cycle with weights 2,1,1. For this
there are infinitely many optimal solutions toLP: (1,0,0),
( 1
2 , 1

2 , 1
2 ), and all convex combinations of the two. Thus,
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even though the LP relaxation is tight, there exist fractional
optima. For this graph, it can be easily verified (e.g. using the
computation tree interpretation below) that the estimatesas
a function of time will oscillate as shown in the table below.

2

11

t = 1 2 3 4 5 6 . . .
if we = 1, estimatex̂t

e = 1 0 ? 0 ? 0 . . .
if we = 2, estimatex̂t

e = 1 ? 1 ? 1 ? . . .

We see that the edges with weights 1 will have estimates
that oscillate between 0 and ?, while the edge with weight
2 will oscillate between 1 and ?. The oscillatory behavior of
this example is not just a particular case, it holds in general
– as stated in the following theorem. We first state the most
general form of the theorem, followed by corollaries and
discussion.

Theorem 2:Let G = (V,E) be a graph with nonnega-
tive real weightswe on the edgese ∈ E. The corresponding
LP may, in general, have multiple optima. Then, for any
edgee in G,

1) If there existsany optimum x∗ of LP for which the
mass assigned to edgee satisfiesx∗

e > 0, then the
max-product estimatêxt

e is 1 or ? for allodd times t.
2) If there existsany optimum x∗ of LP for which the

mass assigned to edgee satisfiesx∗
e < 1, then the

max-product estimatêxt
e is 0 or ? for alleventimest.

Remark: In light of this theorem, it is easy to see that
max-product yields useful estimates for all edges if and only
if eachx∗

e has an integral value that is consistent at all optima
x∗ of LP. This means thatLP has to have a unique optimum,
and this optimum has to be integral. Hence, Theorem 1 is
tight: any deviation from the sufficient condition therein will
result in useless estimates for some edges.

Corollary 1: Suppose theLP has at least one fractional
optimum. Then, Theorem 2 implies that max-product esti-
mates will be un-informative for all edges that are assigned
non-integral mass at anyLP optimum.

In the case of non-unique optima, note that in Theorem
2 the choice of LP optimumx∗ is allowed to depend one,
the edge of interest. Thus, if there are optimax and x̃ of
LP such thatxe < 1 and x̃e > 0, then the estimatêxt

e will
either keep changing at every iteration, or will remain fixed
at x̂t

e =?, an uninformative estimate. It is thus easy to see

that Theorem 2 covers both the case when the LP relaxation
is loose (has no integral optima), and the case when the LP
relaxation is tight, but multiple optima exist.

In general, when fractional optima exist, max-product
may converge to useful estimates for some edges and oscillate
or be uninformative for others. It follows from theorem 2 that

• The useful estimates are exactly as predicted by the LP
relaxation: if x̂e = 1 for somee ∈ G, thenx∗

e = 1 for
all optimax∗ of LP, and correspondingly if̂xe = 0 then
x∗

e = 0.
• Any edge with fractional mass0 < x∗

e < 1 will not
have useful estimates. However, the converse isnot true:
there may exist edges that are assigned the same integral
mass in every max-weight matching, but for which max-
product is un-informative. Thus, in a sense Max-product
is weaker than LP relaxation for the matching problem.
Consider the example below.

1

1

1

1

1

1.1

1

1

1

The uniqueLP optimum puts mass12 on all six edges
in the two triangles, mass 1 on the middle edge of weight
1.1, and mass 0 on the other two edges in the path.
Max-product estimates oscillate between 0 and 1 on all edges.

We now proceed to prove the two theorems above. Both
proofs rely on the well-known computation tree interpretation
of Max-product beliefs [5], [12], which we describe first. The
proofs follow immediately after.

A. The Computation Tree for Weighted Matching

Recall the variables of the distributionp in (1) corre-
spond to edges inG, and nodes inG correspond to factors.
For any edgee, the computation treeat time t rooted ate,
which we denote byTe(t), is defined recursively as follows:
Te(1) is just the edgee, the root of the tree. The two
endpoints of the root (nodes ofG) are the leaves ofTe(1).
The treeTe(t) at timet is generated fromTe(t−1) by adding
to each leaf ofTe(t−1) a copy of each of its neighbor edges
in G, except for the neighbor edge that is already present in
Te(t−1). Each edge inTe is a copy of an edge inG, and the
weights of the edges inTe are the same as the corresponding
edges inG.

For any edgee and timet, the max-product estimate
accurately represents the membership of the roote in max-



6

weight matchingson the computation treeTe(t), as opposed
to the original graphG. This is the computation tree inter-
pretation, and is stated formally in the following lemma (for
a proof, see e.g. [5]).

Lemma 2:For any edgee at time t,

• x̂t
e = 1 if and only if the root ofTe(t) is a member of

everymax-weight matching onTe(t).
• x̂t

e = 0 if and only if the root ofTe(t) is not a member
of any max-weight matching onTe(t).

• x̂t
e =? else.

Remarks: The beliefsnt
e[xe] are the max-marginals at

the root of the computation treeTe(t). If nt
e[1] > nt

e[0]
then any matching inTe(t) which excludes the root has a
suboptimal weight. Similarly, ifnt

e[1] < nt
e[0], then any

matching inTe(t) including the root is suboptimal. However,
when nt

e[1] = nt
e[0], then there exists an optimal matching

with xt
e = 0, and another optimal matching withxt

e = 1.

Note that max-product estimates correspond to max-
weight matchings on the computation treesTe(t), as opposed
to on the original graphG. SupposeM is a matching on
the original graphG, and Te is a computation tree. Then,
the image of M in Te is the set of edges inTe whose
corresponding copy inG is a member ofM . We now
illustrate the ideas of this section with a simple example.

Example 1 (Concepts related to computation trees):
Consider Figure V-A.G appears on the left, the numbers are
the edge weights and the letters are node labels. The max-
weight matching onG is M∗ = {(a, b), (c, d)}, depicted
in bold on G. In the center plot we showT(a,b)(4), the
computation tree at timet = 4 rooted at edge(a, b). Each
node is labeled in accordance to its copy inG. The bold
edges in the middle tree depictM∗

T , the matching which is
the image ofM∗ ontoT(a,b)(4). The weight of this matching
is 6.6, and it is easy to see thatany matching onT(a,b)(4)
that includes the root edge will have weight at most 6.6. In
the rightmost tree, the dotted edges representM , the max-
weight matching on the treeT(a,b)(4). M has weight 7.3. In
this example we see that even though(a, b) is in the unique
optimal matching inG, it turns out that root(a, b) is not a
member of any max-weight matching onT(a,b)(4), and hence
we have thatx̂4

(a,b) = 0. Note also that the dotted edges
are not an image of any matching in the original graphG.
This example thus illustrates how “spurious” matchings in the
computation tree can lead to incorrect beliefs, and estimates.
In the example above the reason why Max-product disagrees
with LP relaxation is that Max-product has not yet converged.
¥

B. Proof of Theorem 1

We now prove that the uniqueness and tightness of the
LP relaxation ensures that each estimatex̂e is 0 or 1, and
also that the estimate corresponds to the optimal matching.
As mentioned in the introduction, this is a generalization of
the bipartite graph result in [10] - since it is well known
[17] that in the bipartite case all vertices of the LP polytope
are integral.3 Let M∗ be the optimal matching, andx∗ the
corresponding 0-1 vector that is the unique optimum ofLP.

To prove the theorem, we need to show that, for a large
enough timet, the estimates satisfy

x̂t
e = 0 for all edges e /∈ M∗

x̂t
e = 1 for all edges e ∈ M∗

Consider now any timet > 2wmax

c
, wherewmax = maxe we

is the weight of the heaviest edge, andc is as in Lemma 1
above. Suppose that there exists an edgee ∈ M∗ for which
the estimate at timet is not correct:̂xt

e 6= 1 (i.e. x̂t
e ∈ {0, ?}).

We now show that this leads to a contradiction.

We start with abrief outline of the proof. LetTe(t) be
the computation tree at timet for that edgee. From Lemma
2, the fact that̂xt

e 6= 1 means that there exists a max-weight
matchingM on Te(t) that does not contain the roote. Due
to the uniqueness of the LP optimum we can useM∗ to
modify M and obtain a matchingM ′ on Te(t) which has
strictly larger weight thanM . This contradicts the optimality
of M on Te(t), and proves that̂xt

e has to be equal to 1.

We now give the details in full. LetM∗
T be the image

of M∗ ontoTe(t). By assumption,e ∈ M∗ in original graph
G, and hence the roote ∈ M∗

T . Recall that, from Lemma 2,
x̂t

e 6= 1 implies there exists some max-weight matchingM
of Te(t) thatdoes not containthe root, i.e. roote /∈ M . Thus
the roote ∈ M∗

T −M . From roote, build analternating path
P on Te(t) by successively adding edges as follows: first add
e, then add all edges adjacent toe that are inM −M∗

T , then
all their adjacent edges that are inM∗

T −M , and so forth until
no more edges can be added. This will occur either because
no edges are available that maintain the alternating structure,
or because a leaf ofTe(t) has been reached. Note also that
P will be a path, becauseM and M∗

T are matchings and
so any node inTe(t) can have at most one adjacent edge in
each of the two matchings.

For illustration, consider Example 1 of section IV.e in
this case is the edge(a, b), andM∗ is denoted by the bold

3Our proof below is along similar lines to the one in [10], namelythat
both proofs proceed via contradiction by constructing a newoptimum. In
[10], this new optimum is actually an alternate matching on thecomputation
tree; in ours it is a new LP optimum.
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Fig. 1. Computation Tree figure for Example 1

edges in the leftmost figureG. The computation treeTe(4)
at time 4 is shown in the center, with the imageM∗

T marked
in bold. Note that the roote ∈ M∗

T . In the rightmost figure is
depictedM , a max-weight matching ofTe(t). The alternating
pathP , as defined above, would in this example be the path
adcabcda that goes from the left-most leaf to the right-most
leaf. It is easy to see that this path alternates between edges
in M −M∗

T andM∗
T −M . We now use the following lemma

to complete the proof of Theorem 1.

Lemma 3:SupposeLP has no fractional optima. Let
M be a matching inTe(t) which disagrees withM∗

T on the
root, i.e. roote ∈ {M − M∗

T } ∪ {M∗
T − M}. Let P be the

maximal alternating path containing the root. Thenw(P ∩
M∗

T ) > w(P ∩ M), providedt > 2wmax

c
.

Lemma 3 is proved in the appendix, using a perturbation
argument: if lemma is false, then it is possible to perturbx∗

to obtain a new feasible pointx ∈ P such thatw′x ≥ w′x∗,
thus violating the optimality and uniqueness ofx∗ for the LP
on G.

Now consider the matchingM , and change it by
“flipping” the edges inP . Specifically, letM ′ = M − (P ∩
M) + (P ∩M∗

T ) be the matching containing all edges inM
except the ones inP , which are replaced by the edges in
P ∩ M∗

T . It is easy to see thatM ′ is a matching inTe(t).
Also, from Lemma 3(a) it follows thatw(M ′) > w(M).
This however, violates the assumption thatM is an optimal
matching inTe(t). We have arrived at a contradiction, and
thus it has to be the case thatx̂t

e = 1 for all e ∈ M∗.

A similar argument can be used to establish thatx̂t
e = 0

for all e /∈ M∗. In particular, suppose that̂xt
e 6= 0 for some

e /∈ M∗. This means there exists a max-weight matching
M in Te(t) that contains the roote. Again, let M∗

T be the
image ofM∗ onto Te(t). Note that the roote ∈ M − M∗

T .
Let P be a maximal alternating path that the roote. Using
Lemma 3, it follows thatw(P ∩M∗

T ) > w(P ∩M). Now, as
before, defineM ′ = M − (P ∩ M) + (P ∩ M∗

T ). It follows
that w(M ′) > w(M), violating the assumption thatM is
an optimal matching inTe(t). Thus the roote has to have

x̂t
e = 0. This proves the theorem.

C. Proof of Theorem 2

We now prove Theorem 2. Suppose part 1 is not true,
i.e. there exists edgee, an optimumx∗ of LP with x∗

e > 0,
and an odd timet at which the estimate iŝxt

e = 0. Let Te(t)
be the corresponding computation tree. Using Lemma 2 this
means that the roote is not a member of any max-weight
matching ofTe(t). Let M be some max-weight matching on
Te(t). We now define the following set of edges

E∗
1 = {e′ ∈ Te(t) : e′ /∈ M, and copy ofe′ in G hasx∗

e′ > 0}

In words,E∗
1 is the set of edges inTe(t) which are not inM ,

and whose copies inG are assigned strictly positive mass by
the LP optimumx∗.

Note that by assumption the roote ∈ E∗
1 and hence

e /∈ M . Now, as done in the proof of Theorem 1, build a
maximal alternating pathP which includes the roote, and
alternates between edges inM and edges inE∗

1 . By maximal,
we mean that it should not be possible to add edges toP and
still maintain its alternating structure. Note that in contrast
to Theorem 1 we may have multiple edges inE∗

1 touching
a node. In such a case we pick an arbitrary one of them and
add toP . We use the following lemma:

Lemma 4:The weights satisfyw(P∩M) ≤ w(P∩E∗
1 ).

The proof is included in the appendix and is similar
in principle to that of Lemma 3: if the weights are not
as specified, then it is possible to perturbx∗ to obtain a
feasible solution ofLP with strictly higher value thanx∗,
thus violating the assumption thatx∗ is an optimum ofLP.
The fact thatt is odd is used to ensure that the perturbation
results in a feasible point.

We now use Lemma 4 to finish the proof of part 1 of
Theorem 2. ConsiderM ′ = M − (M ∩ P ) + (E∗

1 ∩ P ),
which is a new matching ofTe(t). Lemma 4 implies that
w(M ′) ≥ w(M), i.e. M ′ is also a max-weight matching
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of Te(t). However, note that the roote ∈ M ′, and so this
contradicts the fact that roote should not be in any max-
weight matching ofTe(t). This proves part 1 of the theorem.

Part 2 is proved in a similar fashion, with the pertur-
bation argument now requiring thatt be odd. Specifically,
suppose part 2 is not true, then there exists an edgee, an
optimum x∗ of LP with x∗

e < 1, and an even timet at
which the estimate iŝxt

e = 1. This implies that roote is
a member ofevery max-weight matching ofTe(t). Let M
be any such max-weight matching inTe(t), and define the
following set of edges

E∗
2 = {e′ ∈ Te(t) : e′ /∈ M, and copy ofe′ in G hasx∗

e′ > 0}

In words,E∗
2 is the set of edges inTe(t) which are not in

M , and whose copies inG are assigned strictly positive mass
by the LP optimumx∗. Note that the roote ∈ M and hence
e /∈ E∗

2 . Let P be a maximal alternating path which includes
the roote, and alternates between edges inM and edges in
E∗

2 .

Lemma 5:The weights satisfyw(P∩M) ≤ w(P∩E∗
2 ).

The proof of this lemma is similar to that of Lemma 4,
and is given in the appendix. It uses the fact thatt is even.
Now, as before, considerM ′ = M − (M ∩ P ) + (E∗

2 ∩ P ),
which is a new matching ofTe(t). Lemma 5 implies that
w(M ′) ≥ w(M), i.e. M ′ is also a max-weight matching
of Te(t). However, note that the roote /∈ M ′, and so this
contradicts the fact that roote should be in every max-weight
matching ofTe(t). This proves part 2 of the theorem.

VI. EXTENSIONS

We now establish the extensions of Theorems 1 and
2 to the weightedb-matching andr-edge-cover problems.
The main ideas remain unchanged, and thus the proofs
are outlines, with just the important differences from the
corresponding proofs for the simple matching highlighted.

A. Weightedb-matching

The weightedb-matching problem is given by the
following integer program: given numbersbi ≥ 0 for each
nodei,

bIP : max
∑

e∈E

wexe,

s.t.
∑

e∈Ei

xe ≤ bi for all i ∈ V,

xe ∈ {0, 1} for all e ∈ E

The LP relaxation of this integer program is obtained by
replacing the constrainsxe ∈ {0, 1} by the constraintsxe ∈
[0, 1] for eache ∈ E. We will denote the resulting linear
program bybLP.

To apply Max-product, first consider a probability dis-
tribution as in (1), but withψi(xEi

) now defined to be
1 if

∑
e∈Ei

xe ≤ bi, and 0 otherwise. The max-product
updates remain as specified in Section IV. The following
two theorems are the respective generalizations of Theorems
1 and 2.

Theorem 3:If bLP has no fractional optima, then the
max-product estimatêxt is correct (i.e. it is the true max-
weight b-matching) for all timest > 2wmax

c
, wherewmax

is the maximum weight of any edge in the graph, andc is
as defined in Lemma 1 (but withP being theb-matching
polytope)

Theorem 4:For any edgee in G,

1) If there existsany optimumx∗ of bLP for which the
mass assigned to edgee satisfiesx∗

e > 0, then the
max-product estimatêxt

e is 1 or ? for allodd times t.
2) If there existsany optimumx∗ of bLP for which the

mass assigned to edgee satisfiesx∗
e < 1, then the

max-product estimatêxt
e is 0 or ? for alleventimest.

The proofs of both theorems are similar to those of
Theorems 1 and 2 respectively. In particular, note that there
will be an alternating path between any twob-matchings on
the computation tree. All the alternating path and perturbation
arguments remain as before.

B. Weightedr-edge-cover

The min-weightr-edge-cover problem is given by the
following integer program: given numbersri ≤ di for each
nodei, wheredi is the degree of nodei,

rIP : min
∑

e∈E

wexe,

s.t.
∑

e∈Ei

xe ≥ ri for all i ∈ V,

xe ∈ {0, 1} for all e ∈ E

The LP relaxation ofrIP is obtained by replacing the
constrainsxe ∈ {0, 1} by the constraintsxe ∈ [0, 1] for each
e ∈ E. We will denote the resulting linear program byrLP.
To apply max-product, consider the following probability
distribution

q(x) ∝
∏

i∈V

ψi(xEi
)

∏

e∈E

exp(−wexe), (2)
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Here the factorψi(xEi
) for nodei takes value 1 if and only

if
∑

e∈Ei
xe ≥ ri, and 0 otherwise. It is easy to see that any

maximum ofq corresponds to a min-weightr-edge-cover of
the graph. The max-product updates remain as specified in
Section IV, except thatwe should be replaced by−we. The
two theorems are now stated below.

Theorem 5:If r-LP has no fractional optima, then the
max-product estimatêxt is correct (i.e. it is the true min-
cost r-edge-cover) for all timest > 2wmax

c
, wherewmax is

the maximum weight of any edge in the graph, andc is as
defined below (P is the feasible polytope ofrLP)

c = inf
x∈P−x∗

w′x − w′x∗

|x − x∗|

Theorem 6:For any edgee in G,

1) If there existsany optimumx∗ of rLP for which the
mass assigned to edgee satisfiesx∗

e > 0, then the
max-product estimatêxt

e is 1 or ? for allodd times t.
2) If there existsany optimumx∗ of rLP for which the

mass assigned to edgee satisfiesx∗
e < 1, then the

max-product estimatêxt
e is 0 or ? for alleventimest.

Theorems 5 and 6 are most easily obtained by mapping
the max-product updates for ther-edge-cover problem to
those of theb-matching problem. In particular, ifdi is the
degree of nodei, set

bi = di − ri

Then, any edgee will be included in the min-weightr-edge-
cover if and only if it isnot included in the max-weightb-
matching. The following lemma shows that there is an exact
relationship between the max-product updates for ther-edge-
cover problem and the correspondingb-matching problem. It
can easily be proved by induction, we include the proof in
the appendix.

Lemma 6:Given a weightedr-edge-cover problem, let
m denote the max-product messages andn the beliefs.
Consider now the weightedb-matching problem where edge
weights remain the same and eachbi = di−ri. Let m̃ andñ
denote the messages and beliefs for thisb-matching problem.
Then, we have that for timet, nodei and edgee ∈ Ei,

mt
i→e[0]

mt
i→e[1]

=
m̃t

i→e[1]

m̃t
i→e[0]

,
mt

e→i[0]

mt
e→i[1]

=
m̃t

e→i[1]

m̃t
e→i[0]

and
nt

e[0]

ne[1]
=

ñt
e[1]

ñe[0]

Note now that the estimatêxt
e depends only on the

ratio ne[0]
ne[1] . In particular, x̂t

e = 0, 1, ? if and only if ne[0]
ne[1]

is respectively>,<,= to 1. Thus, Lemma 6 implies that the
r-edge cover max-product estimate for edgee will be 1 if and
only if the correspondingb-matching max-product estimate
is 0. Similarly, 0 maps to 1, and ? to ?. Thus, Theorems 5
and 6 follow from Theorems 3 and 4 respectively.

VII. PROTOCOLSIMPLIFICATION

In this section we show that max-product for the
weighted matching problem can be simplified for imple-
mentation purposes. Similar simplifications have also been
performed in [9] and [10]. Recall that in the specification
given in Section IV, messages are passed between edges
and nodes. However, it would be more desirable to just have
an implementation where messages are passed only between
nodes. Towards this end, for every pair of neighborsi andj,
let e = (i, j) be the edge connecting the two, and define

at
i→j = log

(
mt

i→e[0]

mt
i→e[1]

)

The protocol with thea-messages is specified below.

Simplified Max-Product for Weighted Matching

• (INIT) Set t = 0 and initialize eacha0
i→j = 0

• (ITER) Iteratively compute new messages until conver-
gence as follows: (y+ = max(0, y))

at+1
i→j = max

k∈N (i)−j

(
wik − at

k→i

)
+

• (ESTIM) Upon convergence, output estimatêx: for
each edge set̂x(i,j) = 0, 1 or ? if (ai→j + aj→i) is
respectively>,< or = wij .

The update equations forb-matching andr-edge-cover
can also be simplified by defininga’s as above.

Proof of Lemma 3:

The outline of the proof is as follows: we will useP to
define a new feasible pointx of the LPby modifyingx∗, the
unique optimum of theLP. We obtainx by subtractingǫ from
x∗

e′ for every edge inP ∩ M∗
T and addingǫ for every edge

in P ∩ M , counting repeated occurrences. The fact that the
weight w′x is strictly less thanw′x∗ will prove the lemma.

Formally, We define two length-|E| vectors α and β as
follows: for everye′ in the original graph,
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αe′ = number of (copies of)e′ that appear inP ∩ M∗
T .

Note thatαe′ > 0 only for edgese′ ∈ M∗, and
αe′ = 0 for other edgese′ /∈ M∗.

βe′ = number of (copies of)e′ that appear inP ∩ M ,
excludingcopies that touch a leaf ofTe(t).
Note thatβe′ > 0 only for e′ /∈ M∗, andβe′ = 0
for e′ ∈ M∗.

In the above, the leaves of treeTe(t) are nodes at the last
level of Te(t), i.e. furthest away from the root. The path
P has two endpoints, and hence it can haveat most two
leaf edges inP ∩ M . Let w1 and w2 be equal to the
weights of these two edges, if they exist, andwi = 0 if the
corresponding edge does not exist. Then, we have that

w′α = w(P ∩ M∗
T ) (3)

w′β = w(P ∩ M) − w1 − w2 (4)

For an illustration of these definitions, look at the footnote4.
We are now ready to define the perturbation: letǫ > 0 be a
small positive number, and

x = x∗ + ǫ(β − α) (5)

We now need the following auxiliary lemma, which is proved
later in the appendix.

Lemma 7:The vectorx as defined in (5) is a feasible
point of LP, for a small enough choice ofǫ.

We now find it convenient to separately consider two
possible scenarios for the pathP and weightsw1, w2.

Case 1:w1 = w2 = 0

Suppose now that the statement of Lemma 3 is not true,
i.e. suppose thatw(P ∩ M∗

T ) ≤ w(P ∩ M). From (3) and
(4), and the assumptionw1 = w2 = 0, it then follows that
w′α ≤ w′β. From (5) it then follows thatw′x ≥ w′x∗. Note
also thatx 6= x∗ becauseβ − α 6= 0. We have thus obtained
a feasible pointx of the LP with weight at least as large as
the unique optimumx∗. This is a contradiction, and hence
for this case it has to be thatw(P ∩ M∗

T ) > w(P ∩ M).

Case 2:At least one ofw1 or w2 is non-zero.

For w1 or w2 to be non-zero, at least one endpoint ofP
has to be a leaf ofTe(t). The tree has deptht, andP contains
the root and a leaf, so the path length|P | ≥ t. Now, for each

4For illustration of these definitions, we refer back to example 1 of Section
V. The computation tree in the center shows the projectionM∗

T
, and the

tree on the right shows a max-weight matchingM on T(a,b)(4). Suppose
now P is the path starting from the left-most leaf ofT(a,b)(4) and ending
at the right-most leaf. It alternates betweenM and M∗

T
. For this P , we

have that the vectors are:α(a,b) = 1, α(c,d) = 2 andαe′ = 0 for all other
edgese′. β(a,c) = 1, β(b,c) = 1 andβe′ = 0 for all other edgese′. The
weightsw1 = w2 = weight of edge(a, d).

edgee′ ∈ M∗, |xe′ − x∗
e′ | = ǫαe′ , and for eache′ /∈ M∗,

|xe′ − x∗
e′ | = ǫβe′ . Thus we have that

|x − x∗| = ǫ

(
∑

e′∈G

αe′ + βe′

)
= ǫ |P |

Thus we have that theℓ1-norm satisfies|x− x∗| ≥ ǫt. Now,
by the definition ofc in Lemma 1,

w′x∗ − w′x ≥ c|x − x∗| ≥ cǫt,

and thus,w′(α − β) ≥ ct. Also, w1 + w2 ≤ 2wmax. Thus
we have that

w(P ∩ M∗
T ) − w(P ∩ M) ≥ ct − 2wmax

However, by assumptiont > 2wmax

c
, and hence it has to be

that w(P ∩ M∗
T ) > w(P ∩ M). This finishes the proof.¥.

Proof of Lemma 4:

The proof of this lemma is also a perturbation argument.
For each edgee′, let me′ denote the number of timese′

appears inP ∩M andne′ the number of times it appears in
P ∩ E∗

1 . Define

x = x∗ + ǫ(m − n)

We now show that thisx is a feasible point forLP, for
small enoughǫ. To do so we have to check edge constraints
0 ≤ xe′ ≤ 1 and node constraints

∑
e′∈Ei

xe′ ≤ 1. Consider
first the edge constraints. For anye′ ∈ E∗

1 ∩P , by definition,
x∗

e′ > 0. Thus, for anyme′ andne′ , makingǫ small enough
can ensure thatx∗

e′ +ǫ(me′−ne′) ≥ 0. On the other hand, for
any e′ ∈ M ∩ P , x∗

e′ < 1, because a neighboring edge that
belongs toE∗

1 has positive weight. Makingǫ small enough
ensures thatx∗

e′ + ǫ(me′ − ne′) ≤ 1.

Consider now the node constraints for a nodev. For
every copy ofv that appears in the interior ofP , the mass on
one edge is increased byǫ, and on another is decreased byǫ.
Thus the only nodes where there is a potential for constraint
violation are the endpoints ofP for which the corresponding
last edge is inP ∩M . Suppose thatv is one such endpoint,
and assume for now thatv is not a leaf node ofTe(t). Note
now that, by construction, every edge ine′ ∈ P ∩ M has
x∗

e′ < 1. So, the fact thatP could not be extended beyond
v means that

∑
e′∈Ev

x∗
e′ = x∗

uv < 1, whereuv is the edge
in P (andM ) touchingv. This means that the constraint at
v is inactive forx∗, and so for smallǫ the newx will be
feasible.

The only remaining case to check is if the endpointv
of P is a leaf node ofTe(t). If the last edge inP touching
v is in P ∩E∗

1 , the node constraint atv will not be violated
since the perturbation decreases the total mass atv. Note
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that, sincet is odd, this includes the case wherev is a leaf
node at the lowest level. So, consider the final case thatv is
a leaf node that is not at the lowest level in the tree, such
thatP ends inv with an edge inP ∩M . This edge has mass
strictly less than 1. The fact thatv is not at the lowest level
means thatv is a leaf in the original graph as well, and ha no
other edges touching it. Thus it has to be that the constraint
at nodev is not tight at the LP optimumx∗. This means that
a small finiteǫ will ensure feasibility.

Thusx is a feasible point ofLP. Note that the weights
satisfy

w′x − w′x∗ = w(P ∩ M) − w(P ∩ E∗
1 )

Thus, if w(P ∩ M) > w(P ∩ E∗
1 ), then we would have that

w′x > w′x∗, which violates the assumption thatx∗ is an
optimum ofLP. So it has to be thatw(P ∩M) ≤ w(P ∩E∗

1 ).
This proves the lemma. ¥

Proof of Lemma 5:

Let m, n and x be defined exactly as in the proof of
Lemma 4 above, withE∗

1 replaced byE∗
2 . By reasoning ex-

actly as above, it follows that all edge constraints0 ≤ xe′ ≤ 1
are satisfied, and also all node constraints are satisfied except
possibly for nodesv that are endpoints ofP which are leafs
of Te(t) and also the last edgee′ is in P ∩M . However, the
fact that the roote is in M , and thatt is even, means that
last edgee′ ∈ P ∩E∗

2 and not inP ∩M . Thusx is a feasible
point of LP.

Now, as before, we have thatw′x = w′x∗ + w(P ∩
M)−w(P ∩E∗

2 ). Thus, if the lemma is not true, it follows
that w′x > w′x∗, violating the optimality ofx∗. The lemma
is thus proved. ¥

Proof of Lemma 7:

We now show thatx as defined in (5) is a feasible point
of LP, for small enoughǫ. For this we have to show that it
satisfies the edge constraints0 ≤ xe′ ≤ 1 for all edgese′ ∈ G
and the node constraints

∑
e′∈Ei

xe′ ≤ 1 for all nodesi ∈ G
(hereEi is the set of all edges touching nodei)

First the edge constraints. Ife′ ∈ M∗, then the as-
sumption thatx∗ is integral means thatx∗

e′ = 1, and hence
xe′ = 1 − ǫαe′ . Thus for small enoughǫ, it will be the case
that0 ≤ xe′ ≤ 1. On the other hand, ife′ /∈ M∗ thenx∗

e′ = 0
and xe′ = ǫβe′ . Thus, again, a small enoughǫ will ensure
0 ≤ xe′ ≤ 1.

We now turn to the node constraints. Note that
∑

e′∈Ei

xe′ =
∑

e′∈Ei

x∗
e′ + ǫ

(
∑

e′∈Ei

βe′ −
∑

e′∈Ei

αe′

)

The term
∑

e′∈Ei
αe′ counts the number of times edges in

P ∩ M∗
T touch (copies of) nodei in the computation tree.

Similarly,
∑

e′∈Ei
βe′ counts the number of times edges in

P∩M touchi. Suppose first thati is not an endpoint ofP , so
that every timeP touchesi it will do so with one edge inM∗

T

and one inM . This means that
∑

e′∈Ei
αe′ =

∑
e′∈Ei

βe′

and hence that
∑

e′∈Ei
xe′ =

∑
e′∈Ei

x∗
e′ . Thus the node

constraint ati is not violated.

Suppose now thati appears as an endpoint ofP , and
(i, j) is the corresponding last edge ofP . If (i, j) ∈ P ∩
M∗

T , this means that
∑

e′∈Ei
βe′ ≤

∑
e′∈Ei

αe′ , and hence∑
e′∈Ei

xe′ ≤
∑

e∈Ei
x∗

e′ – so the constraint at nodei is
not violated5. If last edge(i, j) ∈ M and it touches a leaf-
node then it is not counted inβe′ (see howβ is defined). If
(i, j) ∈ M and it ends in the interior ofTe(t), then the fact
that P could not be extended beyondi means that there are
no edges ofM∗

T touchingi in the treeTe(t). SinceM∗
T is the

image ofM∗, this means there are no edges inM∗ touching
node i in original graphG. Thus

∑
e′∈Ei

x∗
e′ = 0. So, for

small enoughǫ we can ensure thatǫ
∑

e′∈Ei
(βe′ −αe′) ≤ 1,

ensuring that the constraint at nodei is not violated. ¥
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