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Abstract

The Shannon cipher system is studied in the context of ges@uaces using a notion of computational secrecy
introduced by Merhav & Arikan. Bounds are derived on limjtiexponents of guessing moments for general sources.
The bounds are shown to be tight for iid, Markov, and unifilaurges, thus recovering some known results. A
close relationship between error exponents and correciditeg exponents for fixed rate source compression on
the one hand and exponents for guessing moments on the @hédrid established.

Index Terms

cipher systems, correct decoding exponent, error exppngbtmation spectrum, key rate, length function,
large deviations, secrecy, sources with memory, fixedgatece coding

. INTRODUCTION

We consider the classical cipher system of Shannon [1].Xet= (X, ---, X,,) be a message where
each letter takes values on a finite XefThis message should be communicated securely from a trs@sm
to a receiver, both of which have access to a common secur&’key k purely random bits independent
of X™. The transmitter computes the cryptogradm= f,,(X",U*) and sends it to the receiver over a
public channel. The cryptogram may be of variable lengthe €hcryption functionf,, is invertible for
any fixedU*. The receiver, knowing” and U*, computesX™ = f, (Y, U*). The functionsf,, and f,*
are published. A wiretapping attacker has access to theaggamY’, knows f,, and /!, and attempts
to identify X™ without knowledge ofU*. The attacker can use knowledge of the statistics{6f We
assume that the attacker has a test mechanism that tells hether a guesX” is correct or not. For
example, the attacker may wish to attack an encrypted padswwgersonal information to gain access to,
say, a computer account, or a bank account via internet, tassified databasée![2]. In these situations,
successful entry into the system provides the natural testhamism. We assume that the attacker is
allowed an unlimited number of guesses. Tkey ratefor the cipher system i = k(In2)/n nat of
secrecy per message (or source) letter.

Merhav & Arikan [2] studied discrete memoryless sources &N the above setting and characterized
the best attainable moments of the number of guesses rdduwran attacker. In particular, they showed
that for a DMS with the governing single letter PMFon X, the value of the optimal exponent for the
pth moment(p > 0) is given by

E(R, p) = max {pmin{H(Q), B} — D(Q || P)}. (1)

The maximization is over all PMF§ on X, H(Q) is the Shannon entropy @, and D(Q || P) is the
Kullback-Leibler divergence betweep and P. They also showed thdt(R, p) increases linearly iR for
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R < H(P), continues to increase in a concave fashionffor [H(P), H'], where H' is a threshold, and

is constant forR > H'. Unlike the classical equivocation rate analysis, atypsemuences do affect the
behavior of E(R, p) for R € [H(P), H'] and perfect secrecy is obtained, i.e., cryptogram is uptaied
with the message, only foR > H > H(P). Merhav & Arikan also determined the best achievable
performance based on the probability of a large deviatiothennumber of guesses, and showed that it
equals the Legendre-Fenchel transformigfr, p) as a function ofp. Sundaresarn [3] extended the above
results to unifilar sources. Hayashi & Yamamoto [4] provediog theorems for the Shannon cipher
system with correlated outputs{™, Z") where the wiretapper is interested ki while the receiver in
A

In this paper, we extend Merhav & Arikan’s notion of compidaal secrecy|[2] to general sources.
One motivation is that secret messages typically come frloennatural languages which are modeled
well as sources with memory, for e.g., a Markov source of appate order. Another motivation is that
the study of general sources clearly brings out the conmedietween guessing and compression, as
discussed next.

As with other studies of general sourcésformation spectrunplays crucial role in this paper. We
show thatE(R, p) is closely related to (a) the error exponent of a rAteeurce code, and (b) the correct
decoding exponent of a rate-source code, when exponentiated probabilities are comrsld@see Sec.
[I-B2). In particular, the exponents in (a) and (b) appeattie first and second terms below when we
rewrite E(R, p) for a DMS as

E(R,p) = R— min D P),
(R,p) maX{p o imn Q1 P)

L (H(Q) - D@ Py .
This brings out the fundamental connection between sourding exponents and key-rate constrained
guessing exponents. Further, unlike the case for the pildlgatf a large deviation in the number of
guesses [2, Sec. V], both the error exponent and the coresxtdihg exponent determing(R, p). We
extend the above result to general sources by getting uppkloaver bounds o (R, p). We then show
that these are tight for DMS, Markov and unifilar sources. Dbends may be of interest even if they
are not tight because the upper bound specifies the amourifodf meed by an attacker and the lower
bound specifies the secrecy strength of the cryptosystendesigner.

The limiting case a® | 0 in (b) yields classical framework for probability of cortedecoding. This
special case is related to the work of Han [5] and Iriyama [Bovwstudied the dual problem of rates
required to meet a specified error exponent or a specifie@aodecoding exponent.

The paper is organized as follows. Sectloh Il relates oublpra to a modification of Campbell’'s
compression problem|[7]. Sectiénllll gives bounds on thet$iraf exponential rate of guessing moments,
in terms of information spectrum quantities. Secfion IV laates the bounds for some specific examples.
Section Y concludes the paper with additional remarks. 8race given in the appendices.

[I. GUESSING WITH KEY-RATE CONSTRAINTS AND SOURCE COMPRESSION

In this section, we make a precise statement of our problaetheatablish a connection between guessing
and source compression subject to a new cost criterion.

Let X" denote the set of messages afdiX") the set of PMFs orX". By a source, we mean a
sequence of PMF§P, : n € N), wherd P, € M(X"). Let X" denote a message put out by the source
and U* the secure key of purely random bits independent af”. Recall that the transmitter computes
the cryptogramy” = f,,(X™, U*) and sends it to the receiver over a public channel.

2Sometimes we us@x~ in place of P, when we refer to the distribution of the random vect6F.



For a given cryptograny’ = y, define aguessing strategy
GN( | y) X" — {1727' o 7|X|n}

as a bijection that denotes the order in which elementX'dfare guessedG, (z" | y) = [ indicates
that 2™ is the/th guess, when the cryptograms With knowledge ofP,, the encryption functiory,,
and the cryptograny’, the attacker can exhaustively calculate the posteridogbilities of all plaintexts
Pxny(- | v) given the cryptogram. The attacker's optimal guessingtessais then to guess in the
decreasing order of these posterior probabilitids.y (- | ). Let us denote this optimal attack strategy
asGy,. The key rate for the system 8 = k(In2)/n nats of secrecy per source letter. L}, : n € N)
denote the sequence of encryption functions, whedkenotes the set of natural numbers. This sequence is
known to the attacker. We assume that the attacker empleyaftiiementioned optimal guessing strategy.
For a givenp > 0, key rateR > 0, define the normalized guessing exponent

1
E4(R, p) = sup ~ InE[Gy, (X" | V)]
n n
The supremum is taken over all encryption functions. Furihefine performance limits of guessing
moments as in_[2]:

E{(R, p) := limsup EJ(R, p) )
n—o0

EJ(R, p) := liminf EJ(R, p). (3)
n—o0

We next define the related compression quantities. A lengtietion ,, : X” — N is a mapping that

satisfies Kraft's inequality:
3 expy{—La(z")} <1,
zneXn
where the code alphabet is taken to be binaryand{a} = 2*. (We shall usexp to denote the inverse of
the natural logarithnin). Every length function yields an attack strategy with afenance characterized
as follows.

Proposition 1: Let L, be ané/ length function oiX”. There is a guessing ligt,, such that for any
encryption functionf,,, we hav

Gn(z" |y) < 2expy{min{L,(z"),nR/(In2)}}
= 2exp{min{L,(z")In2,nR}}.

Proof: We use a technique of Merhav & Arikanl[2]. L&t denote the guessing function that
ignores the cryptogram and proceeds in the increasing aflér, lengths. Supposé:;, proceeds in

the orderz?, z%,---. By [8, Prop. 2], we need at moskp,{L,(z")} guesses to identify" (This is a
simple consequence of the fact that there are at mqst{ L, (z")} strings of length less than or equal
to L, (z")).

As an alternative attack, consider the exhaustive keyeheattack defined by the following guessing list:

fn_l (yvulf)7f7:1 (y7u§)7

whereu?, u%, - - - is an arbitrary ordering of the keys. This strategy idertifi¢ in at mostexp{nR} =
expo{nR/(In2)} guesses. Finally, let, (- | y) be the list that alternates between the two lists, skipping
those already guessed, i.e., the one that proceeds in tke ord

2 f 0 (eud) e o (ysus) 4)
Clearly, for everyz™, we need at most twice the minimum over the two individuaklis ]

*We reiterate thaf? is measured in nats.



We now look at a weak converse in the expected sense to thee alefirst state without proof the
following lemma which associates a length function to angsging function (see [8, Prop. 1]).
Lemma 2:Given a guessing functio’,,, there exists a length functioh;, satisfying

LGn (xn) —-1- 10g2 Cn S 10g2 Gn(xn) S LGn(xn)v (5)

where
‘X‘"

1
cn:;;.

For a proof, we refer the reader 10 [8, Prop. 1]. We then haeefdiiowing proposition.
Proposition 3: Fix n € N, p > 0. There is an encryption functiofi, and a length functiorl.,, such
that every guessing strate@y,, (and in particulariGG,) satisfies

ElGX"[Y)]

—— in{L, (X")In2 .
oo domin {La (X 2, n R}

Proof: See AppendiX_A. The proof is an extension of Merhav & Arikapi®of of [2, Th.1] to
sources with memory. The idea is to identify an encryptiorcima@ism that maps messages of roughly
equal probability to each other. Our proof also suggestssgmptotically optimal encryption strategy for

sources with memory. [ |
Remark 1:Note thatc,, < 1+ nln|X]|, so that
1 n 1
22 -0 ( OgQ”) = o(1), (6)
n n
a fact that will be put to good use in the sequel. O

Propositions 11 and] 3 naturally suggest the following codingblem: identify
EX(R,p) := rrLlin = InE [exp {pmin {L,(X")In2,nR}}|. (7)
n /rl/

The minimum is taken over all length functions. We may intetpghe cost of using lengtl,, (z") as
exp {min{L,(2")In2,nR}}, i.e., the cost is exponential ih,, but saturates atxp{nR} and so all
lengths larger than R nats (i.e.,nR/(In2) bits) enjoy the saturated cost. Thélj(R, p) is the minimum
normalized exponent of theth moment of this new compression cost. In analogy wiih (2) ) we
define

By (R, p) = limsup E; (R, p)

n—oo

E} (R, p) = liminf E} (R, p)
n—oo

The following is a corollary to Propositions 1 ahd 3, and teda? (R, p) and E; (R, p).
Corollary 4: For a givenR, p > 0, we have

IES(R,p) — EX(R, p)] < 2(U4en)"@Hp)) @)

n .



Proof: Let L’ be the length function that achievé® (R, p). Using Propositioll, and after taking
expectation, we have the guessing stratégythat satisfies

E[exp {pmin {L}(X")In2,nR}}]|

1
> sup —E G, (X" |Y)”]
fu 2P
1 n
> sing[an(X | Y)]
1

(4¢n)?(2+ p)
for somef, andL,, given by Propositionl3,
1 : * n
mlﬁl lexp {pmin{L;(X")In2,nR}}].
Take logarithms, normalize by, usec, > 1 andp > 0 to get [8). [ |
We now state the equivalence between compression and ggessi
Theorem 5 (Guessing-Compression Equivalené®y. anyp > 0 and R > 0, we haveE?(R,p) =
Eg(Rv p) and ElS(Rv p) = Elg(Rv p)'
Proof: From Corollary 4 and {6), magnitude of the difference betwEg(R, p) and £ (R, p) decays
asO((Inn)/n) and vanishes as — co. u
Thus, the problem of finding the optimal guessing exponetitessame as that of finding the optimal
exponent for the coding problem il (7). Whén > In|X]|, the coding problem in[{7) reduces to the
one considered by Campbell in| [7]; this is a case where pesitrecy is obtained and is studied|in [8].
Propositior L shows that the optimal length function attegrthe minimum in[(¥) yields an asymptotically
optimal attack strategy on the cipher system. Moreoveretiwyption strategy in the proof of Proposition
(see Appendix_A) is asymptotically optimal, from the desigs point of view.
In the rest of the paper we focus on the equivalent compnegsioblem and find bounds oh? and
Ep.

E [exp {pmin {L,(X")In2,nR}}|

1. GROWTH EXPONENT FOR THEMODIFIED COMPRESSIONPROBLEM

We begin with some words on notation. Recall thlet(X") denotes the set of PMFs aX". The
Shannon entropy for &, € M(X") is

H(P,) == Y Py(z")InP,(a")

neXn

and the Rényi entropy of order £ 1 is

Ho(Py) = 5 i ~In ( > Pn(x")o‘> . ©)

zneXn

The Kullback-Leibler divergence or relative entropy betwawo PMFs(Q,, and P, is

g @n(2")
D(Qu || P,) = {% Q") T Qu < By

00, otherwise,

where ),, < P, means(),, is absolutely continuous with respect 19,. We shall use(X" : n € N)
to denote a sequence of random variablesxén with corresponding sequence of probability measures
denoted byX := (Px» : n € N). ThusX is a source an™ its n-letter message output. Abusing notation,



we let M(XY) denote the set of all sequenc¥s= (Py- : n € N) of probability measures, and for each
B := (B, CX":n e N), we define

M(B) := {Y € M(X) : lim Pyn(B,) = 1}.

n— o0

In the rest of this sectioiX is a fixed source. For any € M(B) andp > 0, define

. 1
Eu(Y, X, p) i= limsup —{pH (Py) = D(Pys | Px:)}

n—oo

and )
E(Y.,X,p) :=liminf —{pH (Pyn) — D(Pyn
n—oo M

Pya)}.

We next state a large deviation result that plays a key rokaénderivation of bounds of’? and E;.
Proposition 6: For all p > 0 andB = (B,, C X" : n € N), we have

1 1
1+ p)li 2 P (") = E.(Y,X, 10
(1+ p)limsup nz; o (@) = max Bu(Y, X, p) (10)
(1+p) liminflln Z P%(z") = max E(Y,X,p) (11)
oo n L X YeM(B) T

The maximum-achieving distribution i ([10) arid 11) is tleise X* = (P%. : n € N) given by
P
Pro() = — 2L 12)
Zy”EBn P)lf;tp (yn)
Proof: See AppendixB. [

Remark 2: This proposition is a generalization of Iriyama’s [6, Prdg,. which is obtained by setting
p=0. O

A. Upper Bound on&;

We first obtain an upper bound ohA?. We useEx-[-] to denote the expectation with respect to
distribution Pyn.

Proposition 7 (Upper Bound)Let R > 0 andp > 0. Then
E(R,p) < mi —0)R E. (Y, X, 0)]|.
w(Bp) < min ) (p — ) e, ( )

Proof: We first recall the useful variational formulal [9, Prop. 2]4.

InExn [exp{U(X")}]
= sup {Ey«[U(Y")] = D(Pyn || Px»)} (13)

Pyn



for any U : X* — R, whereR denotes set of real numbers. For notational convenientel(1€") :=
D(Pyn || Px»). Observe that

InExn [exp {pmin{L,(X")In2,nR}}]

= iup[pEyn min{L,(Y")In2,nR}| — d(Y")] (14)
< ?Dug[p min{Ey~ [L,(Y")In2],nR} — d(Y™")] (15)

= sup{ min [(p OnR + OEyn [L,(Y")In2]

- d(Y”)} (16)

= min sup {(p —0)nR+ 0Ey« [L,(Y")In 2]

0<0<p Pyn
- d<Y“>} 17)

= Juin {(p —0)nR + up {GEY" [Ln(Y") In2]
—cﬂYﬂ}}.

In the above sequence of inequalitiés,] (14) follows fromtagational formula[(133) with
U(z™) = pmin{L,(z")In2,nR}.

Inequality [15) follows from Jensen’s inequality because{-, nR} is concave for a fixedh R. Equality
(@8) follows from the identity

pmin{a,b} = Or<nei£1p{9a + (p— 0)b}.

Equality (17) follows because the term within braces isdimim 6 for a fixed Py», concave inPy» for a
fixed 0, and the setd), p] and M (X") are compact and convex; these permit an interchange of slip an
inf, thanks to a minmax theorem [10, Cor. 2, p. 53]. Takinfjover L,,, and interchanging thiaf over

L, and themin over 6, we get

i{lf InExn [exp {pmin{L,(Y")In2,nR}}|

< min {(p O)nR + 1nf sup {GEyn [L,(Y")In?2]
0<6<p Ln Pyn
——ﬂYﬂ}}

= min {(p — 0)nR + sup {9 iBf Eyn [L,(Y™)In2]

0<0<p Pyn
- d(Y")} + 0(1)} (18)

— min {(,0 — )R + sup {eH(pyn)

Ogegp PY’!L

- d(Y”)} + 0(1)} (19)

0<0<p

— min {(p O)nR +0H 1 (Px) +O(1 )} (20)



Equality (18) follows because the function inside the inbesices is concave i#y-~», asymptotically
linear in L,, (see proof of([8, Prop. 6]), and1(X") is compact; this allows us to interchangg¢ and
sup. Inequality [19) follows becausaf of expected compression lengths over all prefix codes isinvith
In 2 nats (1 bit) of entropy. The last equality follows from thellkeown variational characterization of
Rényi entropy,

SI»DUP{QH(PYH)—D(PW | Pxn)} = 0H 1 (Pxn), (21)

v

a fact that can also be gleaned from the variational fornil®. (Divide both sides of (20) by and take
limit supremum as: — oo to get

E;(R,p)

6
< limsup min {(p—Q)RjLEHlie(PXn)}

n—oo 0<0<p

1
< min {(p—@)R+9hmsup _HlJer(Pxn)}

0<6<p n—oo 1

= Orgelgp{(p 9)R+Y$‘§N)E“(Y’X’9)}’

where the last inequality follows from Propositibh 6 and themula for Rényi entropy. This completes

the proof. [ |
From the above proof it is clear that the upper bound holds wguality, when Jensen’s inequality

holds with equality in[(I5), i.e, the random varialfle/n) min{L,(X")In2, nR} tends asymptotically to

a constant. This would happen, for example, when normalezembded lengths concentrate around the

entropy rate of the source.

B. Lower Bound orE}

We now derive a lower bound aofif. For a given distributiorPy» arrange the elements of s&t in the
decreasing order of theify~-probabilities as done in Sundaresan [3, Sec. IV]. Enuradiet sequences
from 1 to |X|". Henceforth refer to a message by its index. LgtY™) denote the firsi\/ = |exp{nR}|
elements in the list. We denote the probability of this setfhy, i.e.,

Fyn = Z PYn(.In),
zn€Tr(Y™)

and the probability of the complement of this §&t(Y™) by F¢.. Let the restriction ofPy« to this set
Tr(Y™) be Py... Let L? denote the length function that attaifi (R, p) in (7). As the length functions
are uniquely decipherable we hawep,{L} (i)} > i.

Proposition 8 (Lower Bound)For a givenp > 0 and rateR > 0, we have

n—oo N

1
E}(R, p) > max {pRJrliminf—lnF)c(n,

1+ p)lminf~ln 3 Pﬁ(ﬂ)}. 22)

n—oo N
an€TR(X™)

Remark 3: The first term contains limit infimum of the error exponent forateR source code. The
second exponent is the correct decoding exponent for aitatede wherp | 0. O



Proof: The variational formulal(13) applied to the functiéf{z™) = p min{ L, (z") In2,nR} gives
ij{lf InExn [exp {pmin {L,(X")In2,nR}}]

= ij{lf sup{pEyn»[min{L,(Y")In2,nR}| — d(Y")}
n Pyn
> sup {piilf Eyn [min{L,(X")In2,nR}| — d(Y")}
Pyn n

(23)

where the interchange of inf and sup yields the lower boun@3®). Fix a distributionP,» and consider
the first term in[(2B). Using the enumeration indicated abewe may write

ij{lf Eyn [min{L,(Y")In2,nR}|

x|

— Z Py (i) min{L? (i) In 2, n R}

M x|
= > Pee(i)min{L;(i)In2,nR} + > Pra(i)nR

=1 i=M+1

M
> > Pye(i)In Gy (i) + nREY. (24)

=1

M .
.P n

> Fyn ; ]);yil) Lg:(i)In2 —1In2 — In(1 + nln X))

+ nREyn (25)
> FynH(Pj.) —In2—In(1+nln|X|) +nRFj.. (26)

Inequality [24) follows because
L'({)In2 > 1ni = In G} (7)

with G the guessing strategy that guesses in decreasing ord@r-oprobabilities.Lq- in (25) denotes
the length function given by Lemnid 2. Inequality |(26) folvom the source coding theorem’s lower
bound. Substitutd (26) i _(23), normalize hy and take limit infimum to get

E (R, p)
> liminf = sup {prnH(P{m) + FynpnR — d(Y")}.

n—oo M Pyn

Py» may be thought of as a triplet made &%.., Fy», and the restriction ofy» to T5(Y™). We now
perform the optimization

sup {pFy H(P) + FfupnR — d(Y")} (27)

v
in four steps.
Step 1: We first optimize over permutations of probabilities oveirgs. Fy», F¢., H(Py«), andH (Py..)
remain unchanged over these permutations. Observe that

—d(Y") = H(Pyn) + 3 Pya(y") In Py (y™),

and so the maximum for-d(Y™) is attained when the permutation that ord€¥s.(-) in decreasing order
also ordersPy«(-) in decreasing order. In particuldfg(Y™) equalsTr(X").
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Step 2: We now optimize over restriction aPy» to 75(Y™). For a fixed Fy«, the log-sum inequality
yields

Py(a” Ft.
Z Py (") In == (z) > Fnln ="

e eT(X") Pren(am) Fie
with equality if and only if Py (2) = Py (2™) 22 for all 2" € T§(Px»).
xn

Step 3: To optimize overP;,, rewrite [27) as

sup {prnH(P{m) + Fy.pnR

IR ST PTONIR S 1()
;Pw (i) In NG MZHPW(Z)l P (7;)}

= sup {prnH(P{/n) + FynpnR

P{/n ,Fyn

M .
. PYn(Z) F}C/n}
— Py« (7) In ~ — Fo.In 28

; Y () Pxn(l) Y F)c(n ( )

= sup {prnH(P{/n) + Fy.pnR

/
PynvFYn

—FynD(Ph || Pln) — D(Fyn||FXn)} (29)

T+p

= sup {prnHL(P)/{n) + Fy.pnR

Fyn

—D(Fy» || FX")}- (30)

Equality (28) is obtained by substituting the attained Ioteund in Step 2. IN.(29)P.. and P%.. denote
conditional distributions ofP,» and Px~» given Tx(Y™) and Tr(X™), respectively, wherd z(Y") =
Tr(X™) as argued in Step 1D(Fy-||Fx=) denotes the divergence between binary random variables
whose probabilities arg Fy»,1 — Fy«»} and {Fx»,1 — Fxn»} respectively. Finally we used variational
characterization of Rényi entropy given [n{21) to arrivg(@0).
Step 4: We now optimize ovetty« € [0, 1]. Let Z be a binary random variable defined as

7 pH#(P)/@) with probability Fyn,

| pnR with probability 1 — Fy»

By Er,.[Z] we mean the expectation & with respect to the above distribution. SinZeis a positive
random variable, the variational formula yields

Fyn

Fxn)} =InEp,, [exp{Z}].
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Continuing with the chain of equalities frorh_(30) we get

sup {Fyan Pin) + FonpnR — D(Fyn || FXn)}

Fyn 141’13 (

M 14+p
=1In< F5.exp{nRp} + Fxn <Z Py e (z))

i=1

1

M 1+p
= ln{F)c(n exp{nRp} + (Z Pﬁ(i)) } (31)

i=1

Finally normalize both sides df (81) by, take limit infimum, and apply [11, Lemma 1.2.15], which stat
that the exponential rate of a sum is governed by the maximiutmeandividual terms’ exponential rates,
to get the desired result. [ |

In the subsequent subsections we further lower bound eatiedivo terms under max on the right-
hand side ofi(22). For an arbitrary source we first recall theee coding error exponent. We also identify
the growth rate of sum of exponentiated probabilities of¢beect decoding set. We then relate these to
the terms in the lower bound obtained [n(22). We largelyoiwlithe approach and notation of Iriyama
[6], which we now describe.

GivenX = (Px» : n € N) andY = (Py~ : n € N), we define the upper divergenég,(- || -) and lower
divergenceD;(- || -) by

1
n—oo 1

1
n—oo 1,

For aY = (Py« : n € N), denote thespectral sup-entropy-ratfs, Sec. Il], [12] as

— 1 1
=] 2 i —In —— =
H(Y) :=inf {9 Jim Pr {n In P (V) > 9} 0} ;

and thespectral inf-entropy-rates

. 1 1
Also define, as in[6, Sec. Il], the following quantity whicktdrmines the performance under mismatched
compression:
. 1 1

1) Decoding Error Exponentin this subsection we recall the decoding error exponenfifed-rate
encoding of an arbitrary source. We identify the first ternfdiB) as composed of the exponent of minimum
probability of decoding error, and obtain a lower bound foror alternatively an upper bound on the
error exponent. This is made precise in the following de@ns.

By an (n, M,, ¢,)-code we mean an encoding mapping

¢nxn_){1727 7Mn}

and a decoding mapping
Un o {1,2,--- M, } - X"



12

with probability of errore,, := Pr{¢,(¢,(X™)) # X"}. R is r-achievable if for allp > 0 there exists a
sequence ofn, M, ¢,)-codes such that

1 1
limsup—In— > r (32)
n—oo T €n
1
limsup—InM, < R+mn. (33)

n—oo 1

The infimum fixed-length coding ratier exponent- is
R(r|X) = inf{R : R is r-achievablé.

On the other hand, theupremum fixed-length coding exponémtrate R is
E(R|X) = sup{r : R is r-achievablé.

See Iriyamal[6] and Han [12, Sec. 1.9] for a pessimistic dafimifor fixed rate source coding, i.e., the

liminf in place of limsup in [[3R). See also Iriyama & lhara J1f8r both the pessimistic and optimistic

definitions. These works obtained bounds on the infimum gpcdite. In particular, Iriyama [6, Eqn. (13)],

Iriyama & lhara [13, Eqn. (12)] obtained lower bounds on th&mum coding rateR(r|X) under the

optimistic definition, the definition of interest to us. Wewever work with the error exponent, and obtain

an upper bound on supremum coding exponent. This sufficemater lbound the first term in_(22).
Clearly, M,, = |exp{nR}] satisfies[(33), and with

li 1 L
ro = lim sup — log —,

R is ry-achievable. It follows from the definition df(R|X) that

1 A
limsup —In — < E(R|X)

n—oo Xn
so that )
liminf — In F§, > —E(R|X).
n—oo nN
The following proposition upper bounds the supremum codixigonent.
Proposition 9: For any rateR > 0,
. < .
ERIX) < | f  Du(Y || X) (34)
Proof: See Appendix . A n
Remark 4:When R > In |X]|, the probability of decoding errat, = 0, so thatE(R|X) = +oo. The
right-hand side is an infimum over an empty set and-i® by convention, and the proposition holds for
such R as well.
One can also show the alternative bound
E(R|X) < inf D, (Y || X). (35)
Y:R(Y,X)—D.(Y|X)>R
See the end of AppendiX C on how to prove this. This result @belthe functional inverse of Iriyamal's [6,
Eqn. (13)], while Proposition]9 is the functional inverseldjama & lhara’s [13, Egn. (12)]. Proposition
@9, as we will soon see, provides a more natural extension i@Ar& Merhav's expression foE (R, p)
to general sources. O
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2) Correct Decoding ExponentVe now study a generalization of the exponential rate fobabdity
of correct decoding.
For a given(n, M, ¢,)-code, let

Ay =A{2" € X" (on(2™)) = 2"}

denote the set of correctly decoded sequences. For a gived, R is (r, p)-admissible if for every; > 0
there exists a sequence (f, M,,, ¢,)-codes such that

1 1
TR 2 P 2 (36)
) 1
limsup —In M,, < R +n. (37)
n—oo 1

Unlike the exponent for the probability of error, herean be positive or negative. Tirdimum fixed-length
admissible ratdor a givenr andp > 0 is

R*(r, p|X) = inf{R : R is (r, p)-admissiblé.
It is easy to see that the seR : R is (r, p)-admissiblé is closed and sd&@*(r, p|X) is (r, p)-admissible.
The supremum fixed-length coding exponémta givenR andp is

E*(R, p|X) = sup{r: R is (r, p)-admissiblé.

Remark 5:The choice of limit infimum in[(36) makes the definition of adsibility pessimistic. For
p 4 0, the above definitions reduce to the special case of exp@heate for probability of correct
decoding (se€ [12, Sec. 1.10]). O
Clearly, A,, should beTr(X™) to maximize the left-hand side df (36), and hence

* _ o] T (n
E*(R, p|X) = (14 p) hrrlgg.}f—ln Z Py (™).
an€TR(X™)
The following proposition gives an expression 6t( R, p|X) and generalizes$ [6, Thm. 4] to any arbitrary

p > 0. En route to its derivation we find the expression fo1(r, p|X).
Proposition 10: For anyp > 0, we have

R*(r, p|X) = inf H(Y) (38)

Y:E (Y X,p)>r

E*(R7p|X) = sup El(Yaxvp) (39)
Y H(Y)<R

Proof: See AppendixD. [

C. Summary of Bounds afii and E;

We now combine Proposition$[7410 of the previous subseztiorobtain the main result of the paper.
Theorem 11:For a givenp > 0 and R > 0,

max {pR — inf  D,(Y || X),
Y:H(Y)>R

sup El(vaap)}

Y H(Y)<R
< Ei(R,p) < EX(R,p)
< min {(p — )R + max B, (Y, X, 9)} . (40)
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Proof: The last inequality was proved in Propositidn 7. Proposifioindicates that

E} (R, p)
> max {pR + lim inf l In Fn,
n—oo N
1 1
(14 p)liminf —1In Py’ (x”)}
nmee " eTR(X™)
> max{pR — E(RIX), E'(R, pIX) } (41)
> max {pR — inf  D,(Y | X),
Y:H(Y)>R
sup E, <Y7 X7 p)}? (42)
Y:H(Y)<R
where [41) follows from the lower bound ofi(R|X) and the definition ofE*(R, p|X), and [42) from
Propositions 9 and10. n

IV. EXAMPLES

In this section we evaluate the bounds for some examplesaithey are tight, and recover some known
results.

Example 1 (Perfect Secrecyfirst consider the perfect secrecy case, for example, In |X|. Because
of Remarlk4 and because we may t#ke p in the upper bound i (40), the limiting exponential rate of
guessing moments simplifies to

Sngl<Y7X7p> < Els<R7p)

< EXR,p) < max E.(Y,X,p).

On account of{(111) in Propositidn 6, sup in the left-most tésrachieved. From Propositién 6, upper and
lower bounds are times the liminf and limsup Rényi entropy rates of orqér. In a related work we
proved in [8, Prop. 7] that whenever ti@ormation spectrunof the source satisfies the large deviation
property with rate functiord, the Rényi entropy rate converges and limiting guessinmpegnt equals the
Legendre-Fenchel dual of the scaled rate functign) := (1 + p)I(t), i.e.,

E(R,p) = E}(R,p) = igﬂg{pt — L)}

In the next examples, we consider the c#se In |X].

Example 2 (An iid source)This example was first studied by Merhav & Arikan [2]. Recd&lat an
iid source is one for whiclP,(z") = [[_, Pi(z;), where P, denotes the marginal of;. We will now
evaluate each term in_(40).

We first argue that

inf D,(Y|X)= inf D(Py| P). (43)
Y:H(Y)>R Py:H(Py)>R
To prove that the left-hand side ih (43) is less than or eqouiahe right-hand side, lety € M(X) be
such thatH (Py) > R. Construct an iid sourc® = (P, : n € N) such thatPy, = Py forall 1 <i <n.
The iid property easily implies that

D,(Y || X) = D(Py || P),
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and the law of large numbers for iid random variables yields
H(Y)=H(Py)>R. (44)

From (44), we have that the infimum on the left-hand sidd_o) {¢2ver a larger set. We can therefore
conclude that £” holds in (43).
To prove " in (43) we use the result (see [12, Th. 1.7.2])

H(Y) < H(Y) = lim inf ~ H(Pys)

n—oo N
to get that the infimum over a larger set is smaller, i.e.,
inf D,(Y|X)> inf DY | X). (45)
Y:H(Y)>R Y:H,(Y)>R
Because of((45) it is sufficient to prove
inf D,(Y|X)> inf D(Py | P). (46)
Y:H(Y)>R Py:H(Py)>R

Let Y be such thatH,(Y) > R. Construct a sourc& such that, Py, = Py, for 1 < i < n and

Vi,Ys,--- .Y, are independent. L& be another source such that, Z,, - - - , Z, is an iid sequence with
distribution

1 < ,
PZJ':EZPY“ j:1,2,'~',n.
i=1

As the marginals of’™ and Y with independent components are the same, it easily follvors the
formula for Kullback-Leibler divergence that
D(Pyn || Pxn) = D(Pyn || Pyn) + D(Pyn || Pxn)
D(Py. || Pxn)
> D(Py || Pr)
=1

nD(PZ1 || P1)7 (47)

v

v

where [(47) follows from the convexity of divergence. Frone ttoncavity of Shannon entropy, we also
have

H(Pyn) < H(Py,) <nH(Py,). (48)
=1
Normalize byn take limsup in[(4l7) and liminf in_(48) to g€?, (Y || X) > D(Py, || P1) andH(Pz) > R
for a Py, that is a limit point of the sequende ' >""" | Py,,n € N). From these we conclude that{46)

holds. This proved (43).
Following a similar procedure as above, we can bound ther éénms in [40) for an iid source as

sup El(Y7 Xa p)

Y H(Y)<R
> sup  {pH(Py)—D(Fy || P)} (49)
Py:H(Py)<R
and
Sup E(Y,X,0) = s}gp{GH (Py) = D(Py || P1)} (50)
Y
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Substitution of [(4B8) and (49) in the lower bound bfl(40) y&ld

E}(R,p) > max{pR — inf  D(Fy | P),

Py:H(Py)>R

swp  {pH(P) — D(Py | H)}}

Py:H(Py)<R
= sup {pmin{H (Py), R} — D(Py || 1)} . (51)
Similarly substitution of[(50) in the upper bound 6&f (40) e
EL(R, p)
< i {0 = )+ suptor(ry) - DUy | P}

= S}Dlp { m'gp{(p —0)R+0H(Py)} — D(Py || Pl)}

0<6
(52)
= sup {pmin{H(Fy), R} = D(Py || A1)} (53)

where the interchange of sup and min[in](52) holds becaustutiotion within braces is linear ifi and
concave inPy. From [51) and[(53), we recover Merhav & Arikan’s result (&y &in iid sourcel[2, Eqn.

©l

Example 3 (Markov source)in this example we focus on an irreducible stationary Markowurce
taking values orX and having a transition probability matrix

Let M,(X?) denote the set oftationaryPMFs defined by

M, (x%) = {@ e M (x):
Z Qz1,7) = Z Q(z,z9), Vo € X}.
r1€X x2€eX
Denote the common marginal lgyand let

_ ) Q- r1), if g(x1) #0,
n(- [ 21) '_{ | 1/|)§/§€|1,( ) Iotgérvgise

We may then denot€) = ¢ x n, wheregq is the distribution ofX; andn the conditional distribution of
X5 given X;. Following steps similar to the iid case, we have

E;=E = suwp {pmin{H(y|q), R}~ D0y | 7| g},
QEM,(X2)

where

H(nlq)=> q@)H(n(| ).

zeX
is the conditional one-step entropy, and
D(n| 7 |q) =2 a@)Dn(-|z1) || 7(-| z1)).
r1€X

For a unifilar source the underlying state space forms a Mackain and the entropy and divergence of
the source equals those of the underlying Markov state spaoee [14, Thm. 6.4.2]. The arguments for
the Markov source are now directly applicable to a unifilanrse.
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V. CONCLUSION

We saw the close connection between the problem of guesssograe realization given a cryptogram
and the problem of compression with saturated exponerdgbcThe latter is a modification of a problem
posed by Campbell [7]. Moreover, the exponents for bothah@®blems coincide. This exponent is
determined by the error exponent and a generalization akecbdecoding exponent for fixed length
block source codes.

We end this paper with some open questions.

« The equivalence between guessing and compression exihieifgite alphabet size assumption. Can
this be relaxed?

« How do the results of this paper extend to the case with recainde information? Can the result of
Hayashi & Yamamoto be extended to general sources?

« If guessing to within a distortion is allowed, can the resiflMerhav & Arikan [15] be extended to
general sources? Both cases of perfect secrecy and kegenasérained secrecy remain open.

APPENDIX A
PROOF OFPROPOSITION3

Let P, be any PMF onX". Enumerate the elements Bf* from 1 to |X|™ in the decreasing order of
their P,-probabilities. LetM = exp{nR} denote the number of distinct key strings. For conveniemee,
shall assume that/ is a power of 2 so that the number of key bits= nR/(In2) is an integer. The
general case will be easily handled towards the end of tltuSose

If M does not dividgX|", append a few dummy messages of zero probability to makeuhwer of
messagesV a multiple of M. Further, index the messages from ONo— 1. Henceforth, we identify a
message:” by its index.

Divide the messages into groups &f so that message: belongs to groud}, wherej = [m/M|,
and || is the floor function. Enumerate the key streams from Q/4c- 1, so that0 < u < M — 1. The
function f,, is now defined as follows. Fan = jM + i set

FGM +i,u) 2 M + (i D),

where: @ u is the bit-wise XOR operation. Thus messages in groppre encrypted to messages in the
same group. The indexidentifying the specific message in groiip i.e., the last: = nR/(In 2) bits of
m, are encrypted via bit-wise XOR with the key stream. Giueand the cryptogram, decryption is clear
— perform bit-wise XOR withu on the lasthR/(In 2) bits of y.

Given a cryptograny, the only information that the attacker gleans is that thesage belongs to the
group determined by. Indeed, ify € T}, then

1
PAY =y} = —P.{X" € T}}.

and therefore P )
PAX" =m |V =y} = { Pawery /M=
0, otherwise
which decreases with for m € 7T}, because of our enumeration in the decreasing order of pildies,
and is O form ¢ T;. The attacker’s best strate@y;, (- | y) is therefore to restrict his guessesZpand
guess in the ordefM, jM +1,--- ,jM + M — 1. Thus, when:™ = j M + i, the optimal attack strategy
requiresi + 1 guesses.
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We now analyze the performance of this attack strategy dswisl

E[Gy, (X"Y)"]
N/M—-1M-1

= Y > PBAX"=jM+i}(i+1)
j=0 =0

N/M-1 M—1
Y PAXT =+ )M - 1}(i+ 1) (54)
j=0 =0

N/M—1

J=0

v

M1+P

v

(55)

= (j+ )M +i}M*

v
I\H
s
(]
™
=
>
S

(56)
= Z P{X" =m}M" (57)
m=M
where [(54) follows because the arrangement in the decpasder of probabilities implies that
PAX"=jM +i} > P{X"=(j +1)M — 1}
fori=0,---,M — 1. Inequality [55) follows because

M-1

A{l—i-p
E +1P—§ P>/ P dz = .
) 7 Z Z = 1—|—p

Inequality [56) follows because the decreasmg probghélitangement implies

M-1

PAX" = (G +1)M —1}>—ZP{X"— (J+1)M + i},

Inequality [57) follows because we take, (X" = m) = 0 for all the further dummy messages with
indicesm > N. Thus [5Y) implies that
N-1
> PAX" =m} (min{m + 1, M})’
m=0
M-1 N-1

= Y PAX"=m}(m+1)"+ Y PAX"=m}M"

m=0 m=M
< E[Gr, (X"Y) 1+ (L4 p)E[Gy, (X"[Y)’]
2+ p)E |Gy, (X"[Y)7]. (58)
Let G be the guessing function that guesses in the decreasing @irdg-probabilities without regard to
Y, i.e.,G(m)=m+ 1. Let Ly be the associated length function, given in Lenita 2. Now [G8¢ &nd
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Lemmal2 to get

ElGy, ()i Y]
z o ,F [(min {G(X™), M})"]

- (e )

E [exp {pmin {Le(X")In2,nR}}],

1
= Qe+ )

(59)

where the last inequality follows by pulling o@t,, and recognizing thatc, M > M > exp{nR}. Since
Gy, is the strategy that minimizé&[G(X" | Y)?], the proof is complete for the cases whiea- nR/(In 2)
is an integer.

WhennR/(In2) is not an integer, choose = [nR/(In2)]. Then M = exp,{k} > exp{nR}, and it
immediately follows that inequality_(59) continues to holthis completes the proof. [ |

APPENDIX B
PROOF OFPROPOSITIONG

We begin with the following lemma. Recall thatt (X) is the set of all probability measures &and
M(B) the subset oiM (X)) with support setB C X:

M(B) = {v e M(X) : »(B) = 1}.

Lemma 12:For anyp > 0,u € M(X) andB C X

1
1+ p)ln T (x) = max {pH(v)— D(v .
(Ut p)n 3 w757 (x) = mae {pH() = DO || )
Remark 6:[6, Lemma 1] is the special case whenr= 0. O
Proof: Let yp(x) = &35 1{z € B}. We then have
(1+p)In > prée(x)
zeB
= (1+p) Iy upe(a) + Inp(B)
zeB

= (1+p) max){z P v(z)In !

veM(B) | £ 1+p

D] uB>} T Inp(B) (60)

= (o) s {00+ D | 1)

D | m} (61)

= max {pH() = D(v || 1} . (62)
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where [[60) follows from the variational formula for Rénynteopy of ;3. The maximum achieving
distribution in [62) isu* € M(B) given by

u“()

> yeB u (y)

a fact that is easily verified via direct substitution. [ |
We now prove [(Il1); proof of[(10) is similar and therefore dedt We begin by showing<” in

(@A1). LetX* = (P%. : n € N) € M(B) be as defined in_(12). It is straightforward to verify by direc
substitution that

() = Hz € B},

_1
(L+p)In Y Pl (") = pH(Piu) = D(Pia || Pxo).

Z’nEBn
Normalize byn and take limit infimum, and use the definition 8f(X*, X, p) to get

(14 p) hmlnf In Z P;(TJ’ ™)

n—oo M
x"eBy

= E(X*,X,p) (63)

< E(Y, X
- Ygl/\é/l(i(B) l( p)

To prove >"in (1), letY = (Py» : n € N) € M(B) be an arbitrary sequence. We may assume
that for all sufficiently largen, Py» < Px» holds; otherwise®; (Y, X, p) = —oc and the inequality ="
holds automatically. Defin&™* = (P, : n € N) € M(B) by

Pyn(y")
P
Y (y ) Pyn( )
It is clear thatPy,, € M(B,) for everyn. From Lemmd_1R2, we have
_1
(1+p)n Y Py (a")
z"eBy,

= max {pH(Pyn) = D(Pyn || Px»)}

PyneM(Bn)
> pH(Pp.) — D(P || Pxn). (64)

—=1{y" € B,}.
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We now study each term on the right-hand sidelof (64). Theopgtterm is lower bounded as follows:
pH (Py)

_ p n 1
+ pln Py« (B,,)

+ pln Pyn(B,,)

_ P ) — Pyn (B¢ v | BS
_ PYH(BH){H(PY) Py (BS)H(Pyn|BY)

P
> ———— S H(Pyn) — Pyn(B;)nIn|X
> ) = BB

(65)
The divergence term is upper bounded, as in the proof ofritgya [6, Prop. 1], as follows:
D(Pyu || Pxn)
= —InPyn(B,)
) 5
= —InPy(B,) + Pynt Bn)D(Pyn Pyn)
- o 5 P B
< —InPy(B,) + ﬁp(m Py)
_ PYn(Blgzn—(;Sn(Bn) (66)
< —InPy(B)+ ﬁp(m Py)
+ ﬁ (67)

To get [66), we used the fact thatz > 1 — 2 for all z > 0 and in inequality[(67) we used the relation
Pyn(BS) — Pxn(BS) > —1.
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Substitution of [(6b) and(67) in_(64) and the fact that,, .., Py~»(B,) = 1 yield

o] ™ on
(1+ p)liminf —1In Z P (™)

n—oco N
" E€By,

> Jiminf ~ {pH(Py) — D(Py- || Px) — O(1))

n—oo

= El(Y, X, p)

Since the choice o¥ = (Py» : n € N) € M(B) was arbitrary, we have proved>" in (IL1).
From (63) and[(11), the maximum is attained Ky, the distribution defined if(12). This completes
the proof. [ |

APPENDIX C
PROOF OFPROPOSITIOND

Iriyama & Ihara showed the following lower bound on the infimeoding rate ([13, Th.3, Eqn. (12)]):
sup  H(Y) < R(r|X). (68)

Y:D,.(Y|X)<r

We claim that[(6B) is equivalent t&_(34). This proves the psition.
We first show that[(88) implies (B4). Fix the sour¥e Let R be a given rate. Consider an arbitrary
candidate exponent and an arbitrary sourc¥. We argue that

R is r-achievable and?(Y) > R —=r < D,(Y || X). (69)

Taking the infimum on the right-hand side 6f{69) owérwith H(Y) > R, and then the supremum over

r will yield (84).
To argue [(6B) by contraposition, we shall show that

r> D,(Y || X)
= either R is notr-achievable ot H(Y) < R,

or equivalently, we shall show that

r>D,(Y || X)andH(Y) > R
= R is notr-achievable

But the conditions on the left-hand side imply

sup  H(Y)> R,

Y:D.(Y|X)<r

which together with[(88) yield®2(r|X) > R, and this is the same as sayifigis notr-achievable. This

completes the proof of (68% (34). (This direction suffices to prove Proposition 9). Thegh of the

other direction is analogous. [ |
To prove the upper bound in(85), we begin with Iriyama’s [6nE(13)], which is

sup  {R(Y,X) — Dy(Y || X)} < R(r|X),

Y: D, (Y| X)<r

instead of [(6B). The rest of the proof is completely analegmuthe proof of Propositionl 9.
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APPENDIX D
PROOF OFPROPOSITIONIO

We use the following notations in this proof. For ed8h= (B, : n € N) define

1
|IB| := limsup — In |B,,|

n—oo TN

and S(Y) == {B lim Pyu(B,) =1}

Note thatB € S(Y) & Y € M(B). We will first prove [38). Define a set

B(r, p|X) = {B = (B,:neN):

(1+4p) lim inf > In > Pyt > r}. (70)
n—oo MN e eB,
Then, by definition,
R*(r, p|X) = inf {|B| : B € B(r, p|X)} . (71)

Fix a B € B(r, p|X). Propositiof 6 then implies
1 1
(1+ p)lim inf ~ In ; Pyir (z)

= E (Y, X, p).
Y:]r?»ne%}%Y) (Y, X, p)

We can therefore conclude usirig (70) that the following sgtivelence holds:
BroX)= U s (72)

Ey (nyvp)ZT

From (71) and[(72) we get

R*(r,pX) = inf{|B[:Be [J S(Y)}
>

El(vavp
= i%f{|B| cE(Y, X, p)>r,BeS(Y)}
= inf H(Y),

Y:E (Y, X,p)>r
where last equality follows because
H(Y)=inf{|B|: B e S(Y)}

as proved by Han & Verd(i [16]. This provds [38).
We now prove[(39). We first show that R is (r, p)-admissible then < supzv)<r L1(Y, X, p).
Since R is (r, p)-admissible, definition of2*(r, p|X) and [38) imply

R > R*(r, p|X) = inf H(Y),

Y:E (Y, X,p)>r
i.e., for all§ > 0 there exists & such that

E(Y,X,p)>r and H(Y) < R+,



24

which further implies that

r< sup E(Y,X,p).
H(Y)<R+6

Sinced was arbitrary, letting | 0 yields

r S sup El (Y7 Xa p)a
H(Y)<R

and the converse part is proved.
For the direct part it is sufficient to show that givepany R with

r:= sup E(Y,X, p),
H(Y)<R

is (r, p)-admissible. By choice of, for all § > 0, there exists & such that

E(Y,X,p)>r—¢ and H(Y) <R.

This implies that

inf  H(Y)<R.

Ei(Y,X,p)>r—8 N

Sinced was arbitrary, lev | 0 and use[(38) to get

i.e.

(1]
(2]

(3]

(4]
(5]
(6]

[7]
(8]

(9]
[10]
[11]
[12]
[13]

[14]
[15]
[16]

R> inf H(Y)=Rr,pX),

El(vavp)Zr

, is (r, p)-admissible. This completes the proof. [ |
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