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Exponential decreasing rate of leaked information
In universal random privacy amplification

Masahito Hayashi

Abstract—We derive a new upper bound for Eve’s information Eve’s information:
in secret key generation from a common random number without 1
communication. This bound improves on Bennetf[F]'s bound lim __1OgIE((I)n)- (1)
based on the Renyi entropy of order 2 because the bound n—oo0 N

obtained here uses the Bnyi entropy of order 1+ s for s € [0, 1]. . . .
This bound is applied to a wire-tap channel. Then, we derive & Hayashi[8] estimates this exponent for the wire-tap chtnne

exponential upper bound for Eve’s information. Our exponertis  in the discrete memoryless case. This type of evaluation is
compared with Hayashi[8]'s exponent. For the additive casethe quite useful for estimating Eve’s information from a finite-

bound obtained here is better. The result is applied to secte&key  |ength code. The first purpose of this paper is to improve the

agreement by public discussion. previous exponent of Eve’s information.
Index Terms—exponential rate, non-asymptotic setting, secret ~ On the other hand, using the Rényi entropy of order 2,
key agreement, universal hash function, wire-tap channel Bennett et al[[[7] evaluate Eve’s information after the aqpli

tion of a universal hashing function[4]. Their result gives an
upper bound of Eve’s information for the generation of asecr
|. INTRODUCTION key from a common random number without communication.
Renner and Wolf [16] and Rennér [14] improved this approach
ANd obtained evaluations based on smooth Rényi entropy.
Renner [[14] applied his method to the security analysis of

) . . . uantum key distribution. However, no research studied the
consider a sender Alice, an authorized receiver Bob and Y

thorized ver E ho is referred t red lation between these results related to various kindsafyR
uhauthorized Teceiver EVe, Wno IS relerred to as a wire appgntroples and the above results concerning wire-tap channe
This research treats two channels, a channel to Bob an . . . .
. . . he main purpose of this paper is to generalize Bennett et al
channel to Eve; such a model is called a wire-tap channgl,, . .
. . s result and to apply it to wire-tap channel model. As the
Whereas the studies above treated the discrete memory . : .
. . IrSt step, in Sectiohll, we focus on secret key generatiomfr
case, Hayashi[8] derived a general capacity formula for an . A .
: : d a common random number without communication. Even in
arbitrary sequence of wire-tap channels. In this model,uaro , . S Y S
. tr]|s model, we highlight the exponent of Eve’s informatian i
fhie case of independent and identical distribution (igase).

information IE((I).) betweer_1 Alice’s ano! E.VGS var_|ables Wlthlp subsectioi II-A, we extend the result of Bennett et[al [7]
the code®, and is abbreviated to Eve’s information. Sever .
0 the case of the Rényi entropy of orde# s for s € [0, 1]

papers[[1H], [[16], L] in cryptography community adopt th%nd obtain a new upper bound for Eve’s information in this
leaked information criterion based on the variationalatise . PP . .
while several paper5 2] [3[. 8] [0 [L7]. 18] in inforation problem as the main theorem. We apply this bound to the i.i.d.

. . . o case. Then, derived a lower bound of the exponent of Eve’s
theory community adopt the leaked information criteriosdxh information. In subsectiof TB, we also apply Renner and
on the mutual information. As is illustrated in Appendix, il : ' PPy

: . =7 Wolf [L6]'s method to the evaluation of the exponent of Eve'’s
there exists an example where the leaked information writer . . X .
. L o information. Then, another lower bound is derived based on
based on the mutual information is more restrictive tharn tha L .
- . smooth Rényi entropy. It is shown that the lower bound based

based on variational distance. Hence, we adopt the leake

: : o . . on Rényi entropy of ordet + s is better than that based on
information criterion based on the mutual information. L
., . . smooth Rényi entropy.

As vyas shown by. C.SISZ?]’ in the discrete memqryless n Sectior1ll, based on universahash function, we derive
case, if the transmission rate is less than the capacity upper bound for Eve’s information from random coding
if we choose suitable codes, Eve's information goes to zero wire-tap channel. The method we present contrasts with
exp.onentially. That s, when the g“’ef.‘ channgl Is used Witﬁe method in Hayashi[8]. Hayadhi[8] deals with channel
Z) t'g‘:hsé Egea;_'giormagf dnéi ft(fgstyr\ggeathseu';ag: q c(;nfdsh resolvability and applies it to the security of wire-tap chal;

" v ' i P his approach was strongly motivated by Devetak [11] and
convergence, we focu_s on texponential decreasing ratef Winter et al [12]. In Sectioi IV, we show that this upper
Eve's information, which is referred to as tiexponentof bound for Eve’s information is better than Hayashi[8]'s hdu

o ) ) ) for the wire-tap channel model.
T ’;f'k Hayjsh' '-S{y W“,'Q bGrfd“a“g %ChOOI gs%f Sg@fgrmajm” SC'((;nces’ In a realistic setting, it is usual to restrict our codes tedr

OonokKu niversity, oba-Ku, endal, - s apan -ma P X X |
hayashi@math.is.tohoku.ac.jp) codes. However, no existing result gives a code satisfylieg t

HE study of secure communication in the presence of
eavesdropper began with Wyrier[10]. Following Wyne
Csiszar & Kornei[B] dealt with this topic. In this studyew
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following conditions: (1) The code is constructed by lineathis problem, fors € [0, 1], we define the functions
codes. (2) Eve’s information exponentially goes to zeromvhe .

the transmission rate is smaller than the difference betwse H1+5(X|PX) = 10%2 PX(I)HS

mutual information from Alice to Bob and that to Eve. In Sec- _ v

tion [V, we make a code satisfying the above conditions. ThatH1 +(X[V[P*Y) := —log» ~ P¥ (y) PXIY (z[y)'**

is, we make our code generated by a combination of arbitrary Ty
linear codes and privacy amplification by the concatenation — _1ng PYXY () PY (y) .
of Toeplitz matrix [6] and the identity. Under this kinds of oy

code, applying the evaluation obtained in subselll%laU ing th functi define Rénvi ent f ord
the concavity property of the key quantity given[inl Ill, we sing these functions, we can define Renyl entropy ot order

obtain another upper bound for Eve’s information. when th]eJr 5

channel is aradditive channel, i.e., the probability space and g (X1PX) g1+S(X|PX)
the set of input signals are given as the same finite module 14 (X[P7) = s

and the probability transition matri¥/, (b) corresponding to
the channel is given aB(a—b) with a probability distribution )

on the finite module. This fact holds when the channel is a Hy o (X|V[PXY) = Hyi (XY |PXY)
variant of an additive channel. I+s '_ S :

In Section[V], we also apply our result to secret key yere s no possibility for confusionPXY is omitted.

agreement with public discussion, which has been treatedNOW we focus on an ensemble of the functigisfrom A
by Ahlswede & Csiszar|2], Maurerf1], and MuramaisU[18), (1 " ' 17}, whereX denotes a random variable describing

et al. Maurer [[1] and Ahlswede & Csiszar[2] showed tha},q siochastic behavior of the functign An ensemble of the
the optimal key generation rate is the difference of con%

. ) unctionsfx is called universalwhen it satisfies the following
tional entropiesH (A|E) — H(A|B), where A, B, E are condition[2]:
the random variables for Alice, Bob, and Eve, respectively. Condition.l' v v the probability that
Csiszai[17], Rennér[14], and Naito et &l [18] mentioned th (a1) = fx(dg)ails afmogti € A p ty

- M *

existence of a bound for Eve's information that exponetytial\J;\)/z sometimes require the following additional condition:
goes to zero when the key generation rate is smaller tharbondition 2: For anyX, the cardinality offy'{i} does not
H(A|E)— H(A|B). However, no existing result clearly givesdepend on ' ' X

a lower bound for the exponential decreasing rate for Eveﬁ1iS conditi'on will be used in Section II1.

information when the key generation rate is smaller thanIndeeol when the cardinalityl| is a power of a prime power
H(A|E) — H(A|B). Applying our result, we obtain such a . P ap P
and M is another power of the same prime powgran

lower bound for the exponential decreasing rate for Evegsnsemble{fx} satisfying the both conditions is given by the

information. In this case, we apply our code to a wwe—tat?]e concatenation of Toeplitz matrix and the identi, 7)[6]

channel with a variant of additive channels. Our protocal C%nly with log, | A| — 1 random variables taking values in the

be re_gllze_d by a combination .Of a linear pode and PrVaGiite filed F,. That is, the matrixX, I) has small complexity.
amplification by the concatenation of Toeplitz matfix [6]dan The construction and its proof are given in Apperidix B.

the identity. ) ] . . When M is an arbitrary integer and the cardinalitd| is
In Appendix[A, we prove the main theorem mentioned i3y ahitrary multiple ofdZ, an ensembld fx} satisfying the

Section[]). In Appendd{B, we show that the concatenatiofioih conditions is given in the following way. First, we fix

of Toeplitz matrix [6] and the identity is a universdiashing 5 function f from A to {1,..., M} such that the cardinality

function [4]. |f~*{i}| is . We randomly choose an permutatiore 5.4
on A with the uniform distribution, wheré& 4 denotes the set
of permutation onA. So, we can make a random function
Il. SECRET KEY GENERATION WITHOUT COMMUNICATION {f ©c}.4. This ensemble satisfies the both conditions.
As is shown in the Appendik]A, we obtain the following
theorem.
Theorem 1:When the ensemble of the functiofigx } is

Firstly, we consider the secure key generation problem froRiversal, it satisfies
a common random number € A which has been partially Moo~ Hirs(A[E|PAF)
eavesdropped on by Eve. For this problem, it is assumed that H ( fx (A)|E|P*F) > log M —
Alice and Bob share a common random numbet .4, and
Eve has another random numhbege &, which is correlated =logM —
to the random numbes. The task is to extract a common § @)
random numbeyf (a) from the random number € A, which
is almost independent of Eve’s random numbet £. Here, for 0 < Vs < 1.
Alice and Bob are only allowed to apply the same functioNote that Bennett et al [7] proved this inequality for theecas
f to the common random numbere A. In order to discuss of s = 1.

and the conditional Rényi entropy of order s:

A. Method based oné#&yi entropy of ordell + s

S

es(log M—Hiy, (A|E|PHF))




Since the mutual information
I(fx(A) : E|[PYP) = H(fx(A)|P*) — H(fx(A)|E|P"F)
is bounded bylog M — H(fx(A)|E|PAF), we obtain

MSe—Hivs(AIEIPAF)
<

ExI(fx(4) : B|[PF) 0<s<1.

®)

S

This inequality implies the following theorem.
Theorem 2:There exists a functionf from A to
{1,..., M} such that
MSe—Hivs(AlB|IPF)

1(f(A): E)

S
os(log M—Hy . (A|E|PAP))

, 0<Vs<1.
(4)

S

In the following, we mainly use the

Hi,(A|E|PAF) instead of H,, (A|E|PAF). because

the usage ofHy,(A|E|P4F) requires more complicated

calculation.

Next, we consider the case when our distributiBri~»
is given by then-fold independent and identical distributio
of PAE ie, (PAF)". Ahlswede and Csiszarl[2] showed th
the optimal generation rate

G(PF)
o 1) 5 B _
;= sup lim log M | =00 n
(it |2 1| gy HUn(An))
n—oo  log M,

equals the conditional entrogy(A|E). That is, the generation

rate R = lim, o “2M~ s smaller thanH (A|E), Eve’s

guantity

i.e., the inequality
Hy(A|E|PAEY > Hypin(A|E|PAE)
holds. Then,[[2) withs = 1 yields that
Ex log M + H(E|P*F) — H(fx(A)E|PAF)
=Ex log M — H(fx(A)|E|P"F)
<Me~ Hmin(AIEIPHE) 6)
Renner and Wolf([16] introduced the smooth min-entropy:
Hy(A|BIPAE)

—_— A|E

= Q:PAgl(aS;Zlfe (ar.,IelirelQ log P*'"(ale). @)

for e > 0. This definition is different from that of Rennér [14].

Modifying the discussion by Renner and WdIf [16], we can

derive another upper bound Bfx I (fx(A) : E) based on the

smooth min-entropy,. . (A|E|PAF) in the following way.
Using the variational distana& PX, PX):

d(PX,PX) = |PY(2) = PX(2)],

"we have the continuity of the Shannon entropy in the follgvin
ense: Whenl(P¥, PX) < 1, the function

n(xz,a) := —xlogx + xa
satisfies the following inequality:
[H(X|PX) — H(X|PY)|
<n(d(P*, PY), log| X|).

Based on the variational distance, we define the following
modification:

informationI(f,(A,) : E,) goes to zero. In order to treat the

speed of this convergence, we focus on the supremum of the He¢

exponentially decreasing rate (exponeaof)I(f,(A,)
for a givenR

- Ey)

er(P*P|R)
—logI(fn(Ay) : En)| .. —logM,
(= sup {lim 08 I (fn(An) ) lim ——28 SR}.
{(fn-,lwn)} n—oo n m— o0 n
Since the relation Hiis(A|E,|(PAF)™) _

nH,,,(A|E|PAF) holds, the inequality({4) implies that
AE 7 AEy _
er(P**|R) > Jnax, Hyis(A|E|PH7) — sR

_ AE _
ax, s(Hiys(A|E|P R)

= (®)
Since 4 [, ,(A|E|PAF) = H(A|E), Eve’s informa-
tion I(f.(A,) : E,) exposn_entially goes to zero foR <
H(A|E).

B. Method based on smooth min-entropy

Rényi entropy of orde?2 H,(A|E|PA¥) is bounded by the
min-entropy
Hypin(A|E|PAEY = min

—log PAIE
a,e:PA-E(a,e)>0 o8 (a|e)’

min(A|E|PA7E)
1= max{ Humin (A|E|PYF)|d(PYE, PAE) < e}, (8)
PAE

where PA-E s a probability distribution.

For 0 < ¢ < 1/2, we choose2 satisfying the condition
in (@). Then,pé‘if((Q) = MaX(q,e)cO PAIE(gle) > ‘7%‘. We
define the joint distributionP*#(a, e) satisfying P¥ (e)
PE(e) in the following way. For this purpose, it is sufficient to
define the conditional distributio®“!” (a|e) for all e. When

(a,e) € Q, the conditional distributionP*!7 (a|e) is defined

by
~ AlE (gle
rrs { @)

When (a,¢) ¢ Q, we defineP4I7 (a|e) satisfying that

if PAIE(qle) < palZ(Q)
it PAIE(gle) > piba(9).

PAIE(ale) < PAE(ale) < @
ST (PAE(ale) — PAE(ale))
(a,e)¢0
= > (PY¥(ale) - P(ale)).
(a,e)€N



Then,d(PAF, PAF) < 2¢. Since
Hunin(A|E|PAF) > —log palE

max?

we have

H%_(A|E|PAFY > HE, (A|E|PAP).

When PA-E satisfies the condition given ifl(8),
(H(B|PYP) — H(fx(A)B|PP))
— (H(E|PYF) — H(fx(A)E|PF))]
<2n(e,log|A| - M).
Hence,
ExI(fx(A): E|PYF)
<Exlog M + H(E|P"F) — H(fx(A)E|PF)
<Exlog M + H(E|PF) — H(fx(A)E[P"F)
+ 2n(e, log| Al - M)
<MeHmin(AIBIPYE) oy (e log | A| - M)
<Me Hum(AIEIPYE) | op(e Tog | Al - M)

6/2

<Me M AFPIPTE) L an(e, log|.A] - M)

Thus, we obtain an alternative bound &fx/(fx(A)

E|PAF) as follows.
ExI(fx(A) : E|PAE)
STmin,M(A|E|PA7E)

= min Me Hun(AIEIPYS) | 2n(2¢,log |A| - M)

1/4>e>0

< min Me B
R’'>log 4| A|

+2n(2PHF{PAE (gle) > e '} log |A| - M).

Using [), we can evaluate (P4¥|R) as follows.

(PAE|R) > lim _1Og1m1n e”R(A|E|(PA E) )

n—oo n
Cramér Theorem yields that
—1 ’
lim — log(PAE)"{(PAF)"(ale) > e "F'}
oo n

n—

= max Hi, (A|E|PAF) — sR.

Thus,
lim_ _71 log P,(R') = max Hi,(A|E|PAE) — sR'.
where
Po(R)
=n(2(PE){(PAF)"(ale) = e '}, log [A]"e™).
Therefore,

lim — log Toin,enn (A|E|(PAE)™)

n—oo

= max mln{maxH1+S(A|E|PAE) sR',R' — R}.

R':R'>R

max,>o Hys(A|E|PAP) — sR' is continuous and mono-
tone decreasing concerning’ and R’ — R is continuous

and monotone increasing concerni. Thus, the above
maximum is attained whemmax,so H;,(A|E|PAF) —

sR’ = R’ — R. Let sy be the parametes attaining the
above. Then,H, . (A|E|PAF) — sgR' = R' — R and

L4 (A|E|PAE) 2y, = R'. Thus,

AE /Dl
R/rr}%%ilen{maxH1+s(A|E|P )—sR',R' — R}
1 s
- H sw(A|E|PAEY - 2R
(AP~ 1

Hy. (A|E|PAFy - 5
1 (AJBIPAR) -

- (Hi(AB|PYP) — R), (11)

(10)

where the equatio (1.0) can be checked by taking the deriva-
tive. This value is smaller than the bound given By (5). One
might want to apply the formula

e log e

min

(A) > Hl-l—s(A) +

given by Renner and WOIf[19] to the evaluation of
Tmin v (A|E|PAF). However, this application does not sim-
plify our derivation. So, we do not apply this formula.

IIl. THE WIRE-TAP CHANNEL IN A GENERAL FRAMEWORK

Next, we consider the wire-tap channel model, in which the
eavesdropper (wire-tapper), Eve and the authorized recceiv
Bob receive information from the authorized sender Alige. |
this case, in order for Eve to have less information, Alice
chooses a suitable encoding. This problem is formulated as
follows. Let Y and Z be the probability spaces of Bob
and Eve, andX be the set of alphabets sent by Alice.
Then, the main channel from Alice to Bob is described by
W£E .z +— WZE, and the wire-tapper channel from Alice
to Eve is described byv* : 2 — WZE. In this setting,
Alice choosesM distributions@,...,Qa on X, and she
generatess € X subject toQ; when she wants to send the
message € {1,...,M}. Bob prepares\/ disjoint subsets
D1, ..., Dy of Y and judges that a message iy belongs to
D;. Therefore, the tripletM, {Q1,...,Qn}, {D1,..., D })
is called a code, and is described fby Its performance is
given by the following three quantities. The first is the size
M, which is denoted by®|. The second is the average error
probability e 5 (P):

M
def 1 .
en(@) =S WE (DY),
=1

and the third is Eve’s information regarding the transrditte
messagd g (P):

def 1 def 1
In(®) = Y - DWE W), W'=Y W,



In order to calculate these values, we introduce the folgwi obtain
guantities.

PX,Y{EB(@(X,Y)) < 2Ex7ye3(¢(X,Y))}c <

N =N =

1—s
(W, p) :=1log > <Zp(:v)(Wm(y))l/“‘s’> Px v {I5(®(X,Y)) < 2Ex vI5(®(X,Y))}* <

W(s|W, p) = 1ng Zp(:v)(Wz(y))Hs W, (y)~*, Therefore, the existence of a good code is guaranteed in the
following way. That is, we give the concrete performance of

a code whose existence is shown in the above random coding
where W, (y) := 32 p(x) W, (y). The following lemma gives Method.
the properties of these quantities. Theorem 3:There exists a cod@ for any integersL, M,

Lemma 1:[13] The functionp — e*¢IW:p) is convex for and any probability distributiop on X such that

s € [-1,0], and is concave fog € [0, 1].

Proof: The convexity and concavity of —s e®(s/W:») || = M
follow f_rom the convexity and concavity of!~* for the ep(®) <2 min (ML)se¢(—s\WB,p) (13)
respective parametet [ | 0ss<l ;
. . P (s|W™,p)
Now, using _the functionsp(s) and ¢ (s), we make a . I5(®) <2 min < ' (14)
code for the wire-tap channel based on the random coding 0<s<1  Lss

method. For this purpose, we make a protocol to share a

random number. First, we generate the random cbd¥) in fact, Hayashi[[B] proved a similar result when the right
with size LM, which is described by thé& M independent -4 ciqe of is replaced . e?GIW P

and identical random variableg subject to the distribution [(24) P A

p on X. For integersk = 1,..., LM let Di(Y) be the 5 the p-fold discrete memoryless channel&?» and
maximum likelihood decoder of the codgY ). Gallager([18] 117E. of the channelsVE® and WE. the additive equation
showed that the ensemble expectation of the average ePL W B p) = na(s|W B, p) holds. Thus, there exists a code

probability concerning decoding the input messaes less ¢, for any integersl.,,, M., and any probability distribution
than (ML)*e?=*IW"p) for 0 < s < 1. Here, we choose ,, on v such that

a function fx from a function ensembld fx} satisfying
Conditions[1 and]2. After sending the random varialle

taking values in the set with the cardinalify L, Alice and @] = My, .

Bob apply the functionfx to the random variabled and e5(®) <2 min (M, L,,)%e"?(=sIW".p)
generate another piece of data of size Then, Alice and O=ssl e

Bob share random variabl (4) with size M. This protocol I5(®,) < 2 min env (W Tp) (15)
is denoted by?(X,Y)’ 0<5<1 Lss

Let F be the random variable of the output of Eve’s channel
W¥, and fg(v) be the map defined by the codgY) from  sincelim, ., w = I(p : WF), the ratemax, I(p :
the message spac{a,_. - ML} to X. Then as is shown in yB) _ 1(p: WF) can be asymptotically attained.
Appendix(D, we obtain When the sacrifice information rate B, i.e., L, = e"%,
the decreasing rate of Eve’s information is greater than
Ey ExyIp(®(X,Y)) < L sewn o<1 @2) ew(RIWE,p) = maxoc,<r sR — v(s|WF, p). Hayashi [8]
sL® derived another lower bound of this exponential decreasing

ratee,(RIWE, p) := maxg<s sR — ¢(s|WF p).
Now, we make a code for wire-tap channel by modifying the o( Rl P) 0<e<1/2 ¢l P)

above protocol®(X,Y)’". First, we choose the distribution
Qi to be the uniform distribution orfx'{i}. When Alice
wants to send the message before sending the random IV. COMPARISON WITH EXISTING BOUND
variable A, Alice generates the random numhérsubject to -
the distribution@;. Alice sends the random variablé. Bob Now, we compare the two upper boun@%% and
recovers the random variable and Applies the functiorfx.  c¢w?.»)
Then, Bob decodes Alice’s messagand this code for wire-
tap channelWW B, W ¥ is denoted byp (X, Y). Since Condition
guarantees that the cardinalitfy'{i}| does not depend
on i, the protocol®(X,Y) has the same performance as the 1> p(@) X (2)Y ()]
above protocofp (X, Y)'. z€X

Finally, we consider what code is derived from the above S(Z p($)|X($)|¢7S)1_S(Z p(x)|Y (z)]
random coding discussion. Using the Markov inequality, we zeX z€X

s for 0 < s < 1. Holder inequality with the
measurable spadgv, p) is given as

1
s

)*.



Using this inequality, we obtain Wy(z) = Wo(z — ) = P(z —x), the channel¥ is called ad-
ditive. The quantities,(R|IW %, pmix) and e, (RIWE, pix)
ZP Y)Wy (y) 7 are characterized as follows. Since

_;m W) ) ) _ e

1—s s
< <Z p(x)(We(y)) 12) <ZP(I) ‘;;:EZ%) we obtain

ew(RIW, i) = max s(R — log |X|) + Hy4o(X|P)

e’tL’(S\WE,pmix) — |X|567H1+5(X‘P) (17)

(l_t)H1+ﬁ(X‘P) (18)

1—s
= (Zp(w)(Wm(y)) 115) : = max s(R —log|X| + Hi1s(X|P))
: . . R —log|X|) + Hi4s(X|P
Taking the summand concernigg we obtain > max al og|X]) s (X1P)
0<s<1 1+s
oV (sIW " p) < cH(sIWE ) (16)  — o s(R —log|X|+ Hy14+s(X|P)) . (R|WE )
0<s<1 1+s ¢ » Pmix ),
That is, our upper bound is better than that given[by [8]. ThuShere + = s Fig. 0 shows the comparison

1+s

E
eyw(RIWE,p) > ey (RIW, p). of  cy(RIWP.pus)  and  eo(RIW. pus)  with

Next, in order to con5|derthe case when the prlvacyampg S(RIWE, pmix) = (R — log|X|) + Ha(X|P)
fication rateR is close to the mutual informatiaf(p : W), w WhICh is directly obtained from Bennett et [EI[7].
treat the difference between these bounds with the Isrm;to When R — log|X| > - (X|P)[s1

- dS S S=11

In this case, we take their Taylor expansions as follows. ew (RIWE, prix) = ey 2(RIWE, pmix

me () W (y) "

21+ I(p: W)s+ Lp: W)s* + I3(p: W)s®

ex(ﬂopent

008 -

Z (Z mez(y)lls> 006

=1+ 1(p: W)s+ Lo(p: W)s® + (Is(p: W) + L(p: W))s®, %) e, (RIW",p,.)

where 002} 7 .
‘ ‘ S €y (R|W 5pmi_x)
Lp:W):== me +(y)(log W, (y) — log Wp(y))2 05 oo 025 03 035 038845
. L 3 Fig. 1. Normal line: ey, (RIW®, pmix) (The present paper), Thick
Is(p:W):= —me 2 (y)(log W (y) — log Wy, (y)) line: eys(RIWE, pmix) (Hayashi[8]), Dashed lineiey o( RIWE, pmix)
(dBepnett et dllf]).p = 0.2, log2 — h(p) = 0.192745, log|X| —
- L1y o(X|P)|s=1 = 0.388457.
Is(p : W) ;:_Z(sz 2 (1) (log W (1))? a
) Next, we consider a more general case. Eve is assumed to
_ Oy peWaly) log Wa (y) ) have two random variables € X and z’. The first random
W (y) variable z is the output of an additive channel depending

: ; : : n the second variable’. That is, the channeW(z, z
Indeed, applying the Schwarz inequality to the inner prtbdu%an be written asiV®(z. 2') — X7 o -z ), 5Nher)e

= z VV ’ btai
(£,9) = 220 P We (y)f (y)g(y), we obtain PX-Z" is ajoint distribution. Hereinafter, this channel model is
Zp y)(log W (y Zp called a general additive channel. This channel is als@dall
=Wl =Wl a regular channél[9]. For this channel model, the inequalit

e (RIWE prix) > es(RIWE puix) holds because
prm )log W (y))2. w(RIWE, prix) > € (RIW, pmix)

ew(SIWEapmix) _ |X|se—f{1+s(X|Z"PX,Z/) (19)

Since }_, paWa(y) = Wp(z ) this inequality implies that
Is(p: W) > 0. That is,e?*¢IW ") is smaller thare?(s/W".»)
only in the third order whem is small.

Next, we consider a more specific case. A charinef V. WIRE-TAP CHANNEL WITH LINEAR CODING
is called additive when there exists a d|§tr|but|on such that In a practical sense, we need to take into account the
WE(z) = P(z — ). In this case,< (1‘:5 . can be sim- decoding time. For this purpose, we often restrict our codes
plified as follows. WhenY = Z and X is a module and to linear codes. In the following, we consider the case where

e¢(t|WE-,pmix) _ |X|t6—(1—t)HH_(X|Z |pX.2' )



the sender’s spac& has the structure of a module. First, wdor 0 < Vs < 1.
regard a submodul€; C X as an encoding for the usual Similarly, when the channél® is general additive, i.e.,
sent message, and focus on its decodj.},cc, by the WZ(z, 2/) = PX-Z'(z — z,2'), we obtain

authorized receiver. We construct a code for a wire-tap eblan

~ !
~(1=9) By, s (X|2|PX7)

®c,.0, = (IC1/Col {Quw b wiccr /s {Paj Yiwjecn /o) based FxIp(® )<|X|56

on a submodul&”; of C; as follows. The encoding),; is XIEAFC,C2(X)) = Lss

given as the uniform distribution on the cose} := = + Cs, (25)

and the decodin@), is given as the subsejzlezf@Dz/. |X|Se_f{1+s(x|z'\PXvZ’)

Next, we assume that a submodudle(X) of C; with car- Ex y/e(®c,(v)c.(x)) < Tos (26)

dinality |C2(X)| = L is generated by a random variat¥e

satisfying the following condition. foro<vs<i. _ _
Condition 3: Any elementx 7; 0 € ¢ is included in In the following discussion, we assume th&tis an n-

C»(X) with probability at mostZ- &1 dimensional vector spack; over _the finite fieldF,. T_hen,
Then, the performance of the constructed code is evaluatBg subcode’ (X) of the random linear privacy amplification

by the following theorem. can be constructed with small complexity. That is, whgn

Theorem 4:Choose the subcod8, (X) according to Con- 1S €quivalent toF7", an ensemble of the subcodés(X)
dition 3. We construct the cod@c, ¢,x) by choosing the satisfying Cond|t|or[B can be generated from only the- 1

distribution @[, to be the uniform distribution orjz] for ~independent random variables;. ..., X, on the finite
[2] Cl/Cg(X). Then, we obtain field IF, as follows.
. When |Co(X)| = ¢*, we choose the subcodg,(X) as
ExIp(® ) <€¢(S‘W Pmicn) 0<Vs<1, (20) the kernel of the the concatenation of Toeplitz matrix arel th
XIETOLG(X)) = Lss identity (X, I) of the sizem x (m — k) given in Appendix
where P, s is the uniform distribution on the subsét Bl Then, the encodingQ(s)}(zjcc /ca( X) is constructed as
Proof: This inequality can be shown by1(3) as fo|.follows When the sent messagediss Iy, it is transformed
lows. Now, we define the joint distributiorP(z,2) := to (b,z —Xb)" € F}", whereb = (b1,.. ,br) are k inde-

Puix.c; (x)WE(2). The choice ofQ(,; corresponds to a hash- pendent random varlables This process forms the encoding
ing operation satisfying Conditionl 1. Theri] (3) y|elds that Qs }z]ec:/cs(x) because the seft(b, —Xb)T[b € Fr} is

EXIE((I)Cl cz(x)) is bounded b\JCﬂ Z“PL(j @)™ P equal to Cy(X). This can be checked using the fac}g that
SHEIWE P 1) (X, I)(b,x — Xb)T = 2 and the set{(b,—Xb)"|b € F}}
= Which implies [20). . B forms ak-dimensional space.

Next, we assume that a submoddle(Y) of with cardi-  Therefore, if the error correcting codg can be constructed
nality [C1(Y)| = ML is generated by a random variabt¥e \ith effective encoding and decoding times aid is ad-
satisfying the following condition. ditive or general additive, the codec, ¢,x) for a wire-

Condition 4: The relation|C1(Y)| = ML always holds. tap channel satisfying the inequality_{24) drl(25) can be
Any elementz # 0 € X' is included inC; (Y) with probability  constructed by using random linear privacy amplification.
at most ;. Furthermore, for thei-fold discrete memoryless case of the
Choose the subcod®, (Y) and C>(X) according to Con- wire-tap channelV 2, WE, it is possible to achieve the rate
ditions[4 and B. Then, as is shown in Appendix E, we obtagr(pmlx v WB) - I(Pmlx,x : WE) by a combination of this
GV (SIWE Proise ) error correcting and random linear privacy amplificationewh
— 0<Vs<1. an error correcting code attaining the Shannon faf,;x x :
(21) wh) |sE(ava|I§;1bIe an{dzt(he chann)eVE |rs] general a;}zldnwE
e, Wh(z,2') =P x,z'). In this case, when the
Next, we consider a special class of channels. When t@crifice information rate i&, as follows from the discussion
channeW ” is additive, i.e. WF (z) = P(z—=x), (I7) implies of Section[I¥ and [(25), the exponent of Eve’s information
0[5 Fre(XIP) is greater thanmaxo<,<; “— log‘xl)’LH]* (X‘/Z P**)
S (22) maXOSsSl 1+3(R 10g|X| —|—H1+S(X|Z/|PXZ ))

Ex yIe(®c, (v)cx)) < Lss ’

Ex v Ie(®c, (v),cox)) < T

for 0 < Vs < 1. In this case, the equation
DV(S|WE, Prix.cr42) = Y(s|WE, Puix.c,) holds for anyz.

This method is very useful when the channél€ andiw ¥
are additive. However, even if the channels are not additive
! (sIWE ) i general additive, this method is still useful because itineg
Thus, [I6) and the concavity of #' (Lemmall) imply oy 4 linear code and random privacy amplification, which is
that simpler requirement than that of the random coding method
V(WP Paix.cy) < 0(SIWE, Puix.c,) < &(s|WP, Puix.x). given in the proof of Theoreriil 3 while this method cannot
' (23) attain the optimal rate.

Thus, combining[(20)[(23), anﬂ:ﬂ18) we obtain

= (X[P)

VI. SECRET KEY AGREEMENT

[ X]*e

(24) Next, following Mauref[1], we apply the above discussions

ExIg(® < . ) .
x5 (®oy,0n0x)) to secret key agreement, in which, Alice, Bob, and Eve are

Lss



assumed to have initial random variablese A4, b € B, Hence, the achievable rate of this protocol is equal to
and e € €&, respectively. The task for Alice and Bob is B 5
to share a common random variable almost independent of I(Paix,a: W) = I(Puix,a : WT)
Eve’s random variable by using a public communication. =H(PB) + H(Ppix.4) — H(P*B)
The quality is evaluated by three quantities: the size of the — (H(P®) + H(Puix.4) — H(PAF))
final common random variable, the probability that their lfina —H(PP) + H(PA) — H(PAP)

variables coincide, and the mutual information betweenddi

final variables and Eve’s random variable. In order to camstr — (H(P®)+ H(P*) — H(PF))

a protocol for this task, we assume that the.4dtas a module =I(A:B)—-I(A: E)=H(A|E)—- H(A|B),

structure (any finite set can be regarded as a cyclic group).. ) .
Then, the objective of secret key agreement can be reali2dgich was obtained by Mauréi[1] and Ahlswede-Csiszar(2].

by applying the code of a wire-tap channel as follows. Firsgere since the channeld”” and W* can be regarded as
Alice generates another uniform random variabland sends 9éneral additive, we can apply the discussion in Sedfibn V.
the random variable’ :— z — a. Then, the distribution of the That is, the bound(28) can be attained with the combination
random variables, 2’ (e, ') accessible to Bob (Eve) can beof a Iinear che and random privacy amplification, which is
regarded as the output distribution of the channel W7 9Venin Sectioi V.
(z — WZE). The channel$VZ andW¥ are given as follows.

VIl. DISCUSSION

B ) We have derived an upper bound for Eve’s information in
PP (x —2',b) secret key generation from a common random number without
WE(e,2') = PAE(z — 2’ e), (27) communication when a universahash function is applied.
Since our bound is based on the Rényi entropy of oitders
for s € [0, 1], it can be regarded as an extension of Bennett et
where P45 (a,b) (PAF (a,e)) is the joint probability between al [7]'s result with the Rényi entropy of order 2.
Alice’s initial random variablea and Bob’s (Eve’s) initial ~ Applying this bound to the wire-tap channel, we obtain an
random variableb (e). Hence, the channdl’” is general upper bound for Eve’s information, which yields an exponen-
additive. tial upper bound. This bound improves on the existing bound
Applying Theorenf to the uniform distributioR. , [8]. Further, when the error cqrrectipn code is given by _a_dim
any numbers\/ and L, there exists a cod® such that co_de and Wh.e.n the c-han-nel Is additive or gene_ral add|t.me, th
privacy amplification is given by the concatenation of Tatepl
matrix and the identity. Finally, our result has been appt®
secret key agreement with public communication.

=
R
=
&\

Il

for

@] = M

—(14s)H 1 (A|B|P*P)
1+s
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APPENDIXA
PrROOF OFTHEOREM[I

The concavity ofr — 2 implies that

M
Exe—Me:(XIPofc") _ iy > Pofx'(i)Po fx'(i)*
=1
=" P()Ex( > P(a'))

z': fx (z)=fx(2')

>

z': fx (z)=fx(2')

<Y Pa)(Ex P(a))".

Condition[1 guarantees that

1
P < n_—_
> P@)<P@)+ Y P)o
z': fx (v)=fx (z) r#z’
L1
R
Since any two positive numbens and y satisfy (¢ + y)* <

xS +ysfor0<s<I1,

(P(z)

Ex
<P(z)
1 1

—)° < P(z)® .
+ ) S P@) + o5

Hence,
~ 1 1
e 1P < 3 P@)(P@) + 4)
=3 P)* + L mexip L
~ Ms Ms

Therefore, taking the expectation with respect to the rando

variable £/, we have

1

5"

Exe*ﬁ1+s(A|E|Pfx(A)’E) <

e*HHs(A\E\PA‘E) +

(29)
The concavity of the logarithm implies

Hy, (A|E|P*F) < sH(A|E).

Thus, From[(2P), the concavity of the logarithm yields that

sExH(fx(A)|E) = ExHi(A|EIPF)

> —log EXQ*HHs(AIEIPA'E)

1
~ MS)
=slog M —log(1 + Mse—HHS(A\E\PA’E))

>slog M — Mo~ Hivs(A|EIPYF)

> 1Og(e—ﬁl+s(A\E\PA’E) +

)

where the last inequality follows from the logarithmic iedy
ity log(1 + ) < x. Therefore, we obtair{2).

APPENDIXB
TOEPLITZ MATRIX

The concatenation of Toeplitz matrix and the identi¥, I)
of sizem x (m — k) on the finite filedF, is given as follows.
First, we choose am — 1 random variablesX, ..., X,,_1
on the finite filedF,. I is the (m — k) x (m — k) identity
matrix and thek x (m — k) matrix X = (X ;) is defined by
the m — 1 random variablesy, ..., X,,_1 as follows.

Xij = Xitj-1.

This matrix is called a Toeplitz matrix.

Now, we prove that the: x (m — k) matrices(X, I) satisfy
Condition[3. More precisely, we show the following. (1) An
element(z,y)” € F! & F;(m_k) belongs to the kernel of
(X, I) with probability ¢* if 2 # 0 andy # 0. (2) It does
not belong to the kernel of the: x (m — k) matrix (X, I) if
x=0andy # 0.

Indeed, since (2) is trivial, we will show (1). For
(z1,...,2x), we let: be the minimum index such thatz; #
0. We fix thek —i random variables(; , ()1, -+, Xm—1.
That is, we show that the element,y)” belongs to the
kernel with probability ¢* when the k — i random vari-
ables X (,—r)—1,---, Xm—1 are fixed. Then, the condition
Xz + vy 0 can be expressed as the following — &


http://arxiv.org/abs/cs/0304014

conditions.

k
Xl'Il = — Z XjZCj — U1

j=i+1

Z Xjp125 —

Jj=i+1

1+1(E2

k
E Xjtm—k—2Tj — Ym—k—1
j=it1
k
Xitm—k—1Tm—k = — g Xitm—k—1Tj — Ym—k-
j=it1

Xitm—k—2Tm—f—1 = —

The (m — k)-th condition does not depend on the — k —

1 variables X;, ... X; | (n—1)—1. Hence, this condition only
depends on the variabl§; ,,,__1. Therefore, thdm — k)-th
condition holds with probabilityl /¢. Similarly, we can show
that the(m — k — 1)-th condition holds with probability /¢
under the(m — k)-th condition. Thus, thém — k)-th condition
and the(m — k — 1)-th condition hold with probabilityl /¢2.
Repeating this discussion inductively, we can concludeaha
m — k conditions hold with probability;~("™—%),

APPENDIXC
TWO LEAKED INFORMATION CRITERIA

In this appendix, we explain an example, in which, thﬁ/hend

leaked information criterion based on the variationalalise

10

is evaluated as

dy (PP PR x PP) =" PP(e)d (PP, PA,)
ecf
fZPE PA|E PmAlx Z PE PA|E PmAlx)
ecS e€Se
<2e.

In oder to evaluate the leaked information criterion based o
the mutual information, we focus on the probability

P, := PAF{a # e},
Fano inequality[22] yields that
H(EJA) <1+ P.loglé|.
SinceP, <1 —¢,
I(A:E)Y=H(E)—-H(E|A) > H(E)—1— P.log|&|
=log|&] —1— P.log|€| > —1+ elog&|.

In particular, wher€ = {0,1}"" ande = 1,

n

x PPy <2 ]
n

d,(PAE pA I(A:E)>n—1.

This example shows that even if,(P4F PA x PF)
is close to zero, there is a possibility thAtA : F) is not
close to zero. Hence, we cannot guarantee the security based
on mutual information from the security based on variationa
distance while we can guarantee the security based on varia-
tional distance from the security based on mutual inforamati
(P4, P2 ) is close to zero. Therefore, the leaked
information criterion based on the mutual information isreno

Is smaI_I but th? Ie_aked mfor_matlon cr|t(_er|on based on egyictive than that based on variational distance.
mutual information is large. This example is proposed byrShu

Watanabé[20]. The former criterion is given as][21]

d, (PAE PA x PE),

mix

is the uniform distribution otd and the variational
>, |P(x) — Q(x)|. Pinsker

whereP4, i
distance is given ad, (P, Q) :=
inequality [22] guarantees that
dy(PYE PA < PE)
<di (PP, PA x PP) +d,(P* x PP, PA x PF)
SD(PAE”PA X PE) +d1(PA Prﬁlx)
=I(A: E)® + di(P*, PL.,),
where D(P||Q) := ), P(x)(log P(z) — logQ(z)). This
inequality shows that whed, (P4, P2 ) andI(A : E)? are
close to zerod, (P4# PA x PF) is also close to zero.
Assume that the Eve’s distributio®” is the uniform
distribution, and€ = A. For any small real number > 0,
we define a subse$ C £ such thatP?(S) = 1 —e. The
conditional distributionP4!¥ is assumed to be given as

PAIE(qle) := {

whered, . is 1 whena = e, and isO otherwise. Then, the
leaked information criterion based on the variationalalise

L

e feecdS
da.e

if e8¢,
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APPENDIXD

PrROOF OF(12)
Since
=> p@)DWEIWE) <> pla)DWF|Q) (30)
holds for any distributior),
1 X
EyExyIp(®(X,Y)) < EyExjy w7 M > D(f > Wi o anIWy) (31)
k=1 k' fx (k)=fx (k)
1 X1 1
E E E
:EYEX\YW Z Z i3 Z Wf(ﬂy)(k//)(y) (10g(f Z Wfq,(y)(k/) (y)) — log W, (y))
k=1 y k7 fx (k") =fx (k) k' fx (k)= fx (k)

LM
1 1
“ExExyy ;20 Whw@osly > WE () ~log W ()

k=1 y k' fx (k)= fx (k)
LM 1 1
E E E
Z S WE L wW Jlog(F W, o0 W) + Exjy 7 > Wi o, ey (1)) — log W7 () (32)
k 1y k' #k: fx (k)= fx (k)
1 E
SEYWZZWJ‘&)(Y)(’C)(y)(IOg( Wfb(Y) M Z fq(Y) (k") IOgW (¥)) (33)
k=1 y k' #k
1 X 1
E E
= S S B WE o 0By, (0s(FWE 1y )+ 112 3 WE iy (1) — log W (3)
k=1 y k' #k
SmZZEYka(I,(Y)(k)(y)(log(fwfq,(y)( y (W) + WIARLL Z WE (@) = log W2 (1)) (34)
k=1 y k' #k
1 1
Sm Z Z Evy, W}iw)(k) (y)(IOg(EWé(Y)(k) (y) + Wf (y)) — log Wf(y)) (35)
k=1 vy
LM
1 B 1 W7 (y)
g ;En W o ) 081+ 730 5)

1 y) 1Wr(y)
LMZZZ (1+LWE y) ZZ (1+LwE(y))
k=1 y zeX Yy zeX
where the random variablg; v (k) is simplified toY. In the above derivation[ (81) follows fror_(30). {32) afhdiY3ollow
from the concavity oflog 2, and [38) and[(35) follow from Conditioi$ 1 ahH 2.
Since the inequalitie§l + x)®* < 1+ 2* andlog(1 + z) < « hold for any positiver and0 < s < 1, the inequalities

log(1 + 7) < log(1 4 «)° < log(l—i-:v ) <z (36)
S S S
hold. Using this inequality, we obtain
E leE(y) < E 1L Wi y)* _ L P (s|WE p)
;;p@)m ()log(1 + () < g;p@)m Orizzmei : (37)

which implies [12).
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APPENDIXE

PrROOF oF(Z1])
Since
1 1 1
Ig(®c, cox) = D o W7 (y) (log (=i > Wi(y) —log(—= Y W)
G| &2 (10,9 [
2 T 1 z' iz’ —x €C2(X) z'"eCy
1
z’'eC 2 /! —a' €Ca(X)
we have
EYEX\YIE((I)CH (Y),C2(X))
<EYEX\YZ— > Wiy log > Wh) —log(WE,_ ()
z'eC1(Y) x”:x’fx”GCb(X)
1
—EYEX\YZ— Z W7 (y) (log( Wﬁ(y) t7 Z Wii(y)) —log(WE, . (1))
z'eC1(Y) ' —a €Co (X)), z’ £’
1
<EYZ — Z W5 (y) (log( Lwﬁ(y) +EX|YZ Z Wi (y) —log(WE,_ . (v))  (38)
z'eC1(Y) z' iz’ —a €Co(X),x' #x'’
1 L
BT T WEe VW) gy 3 WEG) - sV ) (39)
z'eC1(Y) z"eCi\{z'}
1 1
- " S WEG B een(os(EWEW) + 517 Y0 WEW) ~losWE,_ (1)
r’'eX z”€C1(Y)\{z'}
1
_Z | X| > Wi y)(log( W W)+ g Bywecivy D W) —loeWi,, () (40)
’'eX z"e€C1(Y)\{z'}
1
_Z Z WE (y) (log( WE W)+ 17 S Why) —log(Wh. () (41)
r'eX zeX\{z'}
_Z |X| > Wi (y)(log( WE( )+ Wi ) —log(WE ()
z'eX
1 wh
—Z ZWE 1+_ Ez (y) ),
' EX L WPmix,X (y)

where Eylc is the conditional expectation concerning the random téei&X when the conditionC holds. In the above
derivation, [38) and{40) follow from the concavity bfg 2, and [39) and[{41) follow from Conditiori$ 3 ahH 4.

Using [36), we obtain(21).
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