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Exponential decreasing rate of leaked information
in universal random privacy amplification

Masahito Hayashi

Abstract—We derive a new upper bound for Eve’s information
in secret key generation from a common random number without
communication. This bound improves on Bennett[7]’s bound
based on the Ŕenyi entropy of order 2 because the bound
obtained here uses the Ŕenyi entropy of order 1+s for s ∈ [0, 1].
This bound is applied to a wire-tap channel. Then, we derive an
exponential upper bound for Eve’s information. Our exponent is
compared with Hayashi[8]’s exponent. For the additive case, the
bound obtained here is better. The result is applied to secret key
agreement by public discussion.

Index Terms—exponential rate, non-asymptotic setting, secret
key agreement, universal hash function, wire-tap channel

I. I NTRODUCTION

T HE study of secure communication in the presence of an
eavesdropper began with Wyner[10]. Following Wyner,

Csiszár & Körner[3] dealt with this topic. In this study, we
consider a sender Alice, an authorized receiver Bob and an
unauthorized receiver Eve, who is referred to as a wire-tapper.
This research treats two channels, a channel to Bob and a
channel to Eve; such a model is called a wire-tap channel.
Whereas the studies above treated the discrete memoryless
case, Hayashi[8] derived a general capacity formula for an
arbitrary sequence of wire-tap channels. In this model, amount
of Eve’s accessible information is evaluated by the mutual
informationIE(Φ) between Alice’s and Eve’s variables with
the codeΦ, and is abbreviated to Eve’s information. Several
papers [14], [16], [21] in cryptography community adopt the
leaked information criterion based on the variational distance
while several papers [2], [3], [8], [10], [17], [18] in information
theory community adopt the leaked information criterion based
on the mutual information. As is illustrated in Appendix III,
there exists an example where the leaked information criterion
based on the mutual information is more restrictive than that
based on variational distance. Hence, we adopt the leaked
information criterion based on the mutual information.

As was shown by Csiszár [17], in the discrete memoryless
case, if the transmission rate is less than the capacity and
if we choose suitable codes, Eve’s information goes to zero
exponentially. That is, when the given channel is used with
n times, Eve’s informationIE(Φn) with a suitable code
Φn behaves ase−nr. In order to estimate the speed of the
convergence, we focus on theexponential decreasing rateof
Eve’s information, which is referred to as theexponentof
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Eve’s information:

lim
n→∞

−1

n
log IE(Φn). (1)

Hayashi[8] estimates this exponent for the wire-tap channels
in the discrete memoryless case. This type of evaluation is
quite useful for estimating Eve’s information from a finite-
length code. The first purpose of this paper is to improve the
previous exponent of Eve’s information.

On the other hand, using the Rényi entropy of order 2,
Bennett et al [7] evaluate Eve’s information after the applica-
tion of a universal2 hashing function[4]. Their result gives an
upper bound of Eve’s information for the generation of a secret
key from a common random number without communication.
Renner and Wolf [16] and Renner [14] improved this approach
and obtained evaluations based on smooth Rényi entropy.
Renner [14] applied his method to the security analysis of
quantum key distribution. However, no research studied the
relation between these results related to various kinds of Rényi
entropies and the above results concerning wire-tap channel.

The main purpose of this paper is to generalize Bennett et al
[7]’s result and to apply it to wire-tap channel model. As the
first step, in Section II, we focus on secret key generation from
a common random number without communication. Even in
this model, we highlight the exponent of Eve’s information in
the case of independent and identical distribution (i.i.d.case).
In subsection II-A, we extend the result of Bennett et al [7]
to the case of the Rényi entropy of order1 + s for s ∈ [0, 1]
and obtain a new upper bound for Eve’s information in this
problem as the main theorem. We apply this bound to the i.i.d.
case. Then, derived a lower bound of the exponent of Eve’s
information. In subsection II-B, we also apply Renner and
Wolf [16]’s method to the evaluation of the exponent of Eve’s
information. Then, another lower bound is derived based on
smooth Rényi entropy. It is shown that the lower bound based
on Rényi entropy of order1 + s is better than that based on
smooth Rényi entropy.

In Section III, based on universal2 hash function, we derive
an upper bound for Eve’s information from random coding
in a wire-tap channel. The method we present contrasts with
the method in Hayashi[8]. Hayashi[8] deals with channel
resolvability and applies it to the security of wire-tap channel;
This approach was strongly motivated by Devetak [11] and
Winter et al [12]. In Section IV, we show that this upper
bound for Eve’s information is better than Hayashi[8]’s bound
for the wire-tap channel model.

In a realistic setting, it is usual to restrict our codes to linear
codes. However, no existing result gives a code satisfying the
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following conditions: (1) The code is constructed by linear
codes. (2) Eve’s information exponentially goes to zero when
the transmission rate is smaller than the difference between the
mutual information from Alice to Bob and that to Eve. In Sec-
tion V, we make a code satisfying the above conditions. That
is, we make our code generated by a combination of arbitrary
linear codes and privacy amplification by the concatenation
of Toeplitz matrix [6] and the identity. Under this kinds of
code, applying the evaluation obtained in subsection II-A and
the concavity property of the key quantity given in III, we
obtain another upper bound for Eve’s information. when the
channel is anadditivechannel, i.e., the probability space and
the set of input signals are given as the same finite module
and the probability transition matrixWa(b) corresponding to
the channel is given asP (a−b) with a probability distribution
on the finite module. This fact holds when the channel is a
variant of an additive channel.

In Section VI, we also apply our result to secret key
agreement with public discussion, which has been treated
by Ahlswede & Csiszár[2], Maurer[1], and Muramatsu[15]
et al. Maurer [1] and Ahlswede & Csiszár[2] showed that
the optimal key generation rate is the difference of condi-
tional entropiesH(A|E) − H(A|B), where A, B, E are
the random variables for Alice, Bob, and Eve, respectively.
Csiszár[17], Renner[14], and Naito et al [18] mentioned the
existence of a bound for Eve’s information that exponentially
goes to zero when the key generation rate is smaller than
H(A|E)−H(A|B). However, no existing result clearly gives
a lower bound for the exponential decreasing rate for Eve’s
information when the key generation rate is smaller than
H(A|E) − H(A|B). Applying our result, we obtain such a
lower bound for the exponential decreasing rate for Eve’s
information. In this case, we apply our code to a wire-tap
channel with a variant of additive channels. Our protocol can
be realized by a combination of a linear code and privacy
amplification by the concatenation of Toeplitz matrix [6] and
the identity.

In Appendix A, we prove the main theorem mentioned in
Section II. In Appendix B, we show that the concatenation
of Toeplitz matrix [6] and the identity is a universal2 hashing
function [4].

II. SECRET KEY GENERATION WITHOUT COMMUNICATION

A. Method based on Ŕenyi entropy of order1 + s

Firstly, we consider the secure key generation problem from
a common random numbera ∈ A which has been partially
eavesdropped on by Eve. For this problem, it is assumed that
Alice and Bob share a common random numbera ∈ A, and
Eve has another random numbere ∈ E , which is correlated
to the random numbera. The task is to extract a common
random numberf(a) from the random numbera ∈ A, which
is almost independent of Eve’s random numbere ∈ E . Here,
Alice and Bob are only allowed to apply the same function
f to the common random numbera ∈ A. In order to discuss

this problem, fors ∈ [0, 1], we define the functions

H̃1+s(X |PX) := − log
∑

x

PX(x)1+s

H̃1+s(X |Y |PX,Y ) := − log
∑

x,y

P Y (y)PX|Y (x|y)1+s

= − log
∑

x,y

PX,Y (x, y)1+sP Y (y)−s.

Using these functions, we can define Rényi entropy of order
1 + s

H1+s(X |PX) :=
H̃1+s(X |PX)

s

and the conditional Rényi entropy of order1 + s:

H1+s(X |Y |PX,Y ) :=
H̃1+s(X |Y |PX,Y )

s
.

If there is no possibility for confusion,PX,Y is omitted.
Now, we focus on an ensemble of the functionsfX from A

to {1, . . . ,M}, whereX denotes a random variable describing
the stochastic behavior of the functionf . An ensemble of the
functionsfX is called universal2 when it satisfies the following
condition[4]:

Condition 1: ∀a1 6= ∀a2 ∈ A, the probability that
fX(a1) = fX(a2) is at most 1

M .
We sometimes require the following additional condition:

Condition 2: For anyX, the cardinality off−1
X

{i} does not
depend oni.
This condition will be used in Section III.

Indeed, when the cardinality|A| is a power of a prime power
q andM is another power of the same prime powerq, an
ensemble{fX} satisfying the both conditions is given by the
the concatenation of Toeplitz matrix and the identity(X, I)[6]
only with logq |A| − 1 random variables taking values in the
finite filedFq. That is, the matrix(X, I) has small complexity.
The construction and its proof are given in Appendix B.

WhenM is an arbitrary integer and the cardinality|A| is
an arbitrary multiple ofM , an ensemble{fX} satisfying the
both conditions is given in the following way. First, we fix
a functionf from A to {1, . . . ,M} such that the cardinality
|f−1{i}| is |A|

M . We randomly choose an permutationσ ∈ SA

on A with the uniform distribution, whereSA denotes the set
of permutation onA. So, we can make a random function
{f ◦ σ}A. This ensemble satisfies the both conditions.

As is shown in the Appendix A, we obtain the following
theorem.

Theorem 1:When the ensemble of the functions{fX} is
universal2, it satisfies

EXH(fX(A)|E|PA,E) ≥ logM −
M se−H̃1+s(A|E|PA,E)

s

= logM −
es(logM−H1+s(A|E|PA,E))

s
(2)

for 0 < ∀s ≤ 1.
Note that Bennett et al [7] proved this inequality for the case
of s = 1.
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Since the mutual information

I(fX(A) : E|PA,E) := H(fX(A)|PA)−H(fX(A)|E|PA,E)

is bounded bylogM −H(fX(A)|E|PA,E), we obtain

EXI(fX(A) : E|PA,E) ≤
M se−H̃1+s(A|E|PA,E)

s
, 0 < s ≤ 1.

(3)

This inequality implies the following theorem.
Theorem 2:There exists a functionf from A to

{1, . . . ,M} such that

I(f(A) : E) ≤
M se−H̃1+s(A|E|PA,E)

s

=
es(logM−H1+s(A|E|PA,E))

s
, 0 ≤ ∀s ≤ 1.

(4)

In the following, we mainly use the quantity
H̃1+s(A|E|PA,E) instead of H1+s(A|E|PA,E). because
the usage ofH1+s(A|E|PA,E) requires more complicated
calculation.

Next, we consider the case when our distributionPAnEn

is given by then-fold independent and identical distribution
of PAE , i.e, (PA,E)n. Ahlswede and Csiszár [2] showed that
the optimal generation rate

G(PAE)

:= sup
{(fn,Mn)}











lim
n→∞

logMn

n

∣

∣

∣

∣

∣

∣

∣

lim
n→∞

I(fn(An) : En)

n
= 0

lim
n→∞

H(fn(An))

logMn
= 1











equals the conditional entropyH(A|E). That is, the generation
rate R = limn→∞

logMn

n is smaller thanH(A|E), Eve’s
informationI(fn(An) : En) goes to zero. In order to treat the
speed of this convergence, we focus on the supremum of the
exponentially decreasing rate (exponent)of I(fn(An) : En)
for a givenR

eI(P
AE |R)

:= sup
{(fn,Mn)}

{

lim
n→∞

− log I(fn(An) : En)

n

∣

∣

∣

∣

lim
n→∞

− logMn

n
≤R

}

.

Since the relation H̃1+s(An|En|(P
A,E)n) =

nH̃1+s(A|E|PA,E) holds, the inequality (4) implies that

eI(P
AE |R) ≥ max

0≤s≤1
H̃1+s(A|E|PA,E)− sR

= max
0≤s≤1

s(H1+s(A|E|PA,E −R) (5)

Since d
dsH̃1+s(A|E|PA,E)

∣

∣

∣

s=0
= H(A|E), Eve’s informa-

tion I(fn(An) : En) exponentially goes to zero forR <
H(A|E).

B. Method based on smooth min-entropy

Rényi entropy of order2 H2(A|E|PA,E) is bounded by the
min-entropy

Hmin(A|E|PA,E) := min
a,e:PA,E(a,e)>0

− logPA|E(a|e),

i.e., the inequality

H2(A|E|PA,E) ≥ Hmin(A|E|PA,E)

holds. Then, (2) withs = 1 yields that

EX logM +H(E|PA,E)−H(fX(A)E|PA,E)

=EX logM −H(fX(A)|E|PA,E)

≤Me−Hmin(A|E|PA,E). (6)

Renner and Wolf [16] introduced the smooth min-entropy:

Hǫ
min(A|E|PA,E)

:= max
Ω:PA,E(Ω)≥1−ǫ

min
(a,e)∈Ω

− logPA|E(a|e). (7)

for ǫ ≥ 0. This definition is different from that of Renner [14].
Modifying the discussion by Renner and Wolf [16], we can
derive another upper bound ofEXI(fX(A) : E) based on the
smooth min-entropyHǫ

min(A|E|PA,E) in the following way.
Using the variational distanced(PX , P̃X):

d(PX , P̃X) :=
∑

x

|PX(x)− P̃X(x)|,

we have the continuity of the Shannon entropy in the following
sense: Whend(PX , P̃X) ≤ 1

e , the function

η(x, a) := −x log x+ xa

satisfies the following inequality:

|H(X |P̃X)−H(X |PX)|

≤η(d(PX , P̃X), log |X |).

Based on the variational distance, we define the following
modification:

Ĥǫ
min(A|E|PA,E)

:= max
P̃A,E

{Hmin(A|E|P̃A,E)|d(P̃A,E , PA,E) ≤ ǫ}, (8)

whereP̃A,E is a probability distribution.
For 0 < ǫ < 1/2, we chooseΩ satisfying the condition

in (7). Then,pA|E
max(Ω) := max(a,e)∈Ω P

A|E(a|e) ≥ 1
|A| . We

define the joint distributionP̃A,E(a, e) satisfying P̃E(e) =
PE(e) in the following way. For this purpose, it is sufficient to
define the conditional distributioñPA|E(a|e) for all e. When
(a, e) ∈ Ω, the conditional distributioñPA|E(a|e) is defined
by

P̃A|E(a|e) :=

{

PA|E(a|e) if PA|E(a|e) ≤ p
A|E
max(Ω)

p
A|E
max(Ω) if PA|E(a|e) > p

A|E
max(Ω).

When (a, e) /∈ Ω, we defineP̃A|E(a|e) satisfying that

PA|E(a|e) ≤ P̃A|E(a|e) ≤
1

|A|
,

∑

(a,e)/∈Ω

(P̃A|E(a|e)− PA|E(a|e))

=
∑

(a,e)∈Ω

(PA|E(a|e)− P̃A|E(a|e)).
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Then,d(P̃A,E , PA,E) ≤ 2ǫ. Since

Hmin(A|E|P̃A,E) ≥ − log pA|E
max,

we have

Ĥ2ǫ
min(A|E|PA,E) ≥ Hǫ

min(A|E|PA,E).

When P̃A,E satisfies the condition given in (8),

|(H(E|PA,E)−H(fX(A)E|PA,E))

− (H(E|P̃A,E)−H(fX(A)E|P̃A,E))|

≤2η(ǫ, log |A| ·M).

Hence,

EXI(fX(A) : E|PA,E)

≤EX logM +H(E|PA,E)−H(fX(A)E|PA,E)

≤EX logM +H(E|P̃A,E)−H(fX(A)E|P̃A,E)

+ 2η(ǫ, log |A| ·M)

≤Me−Hmin(A|E|P̃A,E) + 2η(ǫ, log |A| ·M)

≤Me−Ĥ
ǫ
min(A|E|PA,E) + 2η(ǫ, log |A| ·M)

≤Me−H
ǫ/2
min(A|E|PA,E) + 2η(ǫ, log |A| ·M).

Thus, we obtain an alternative bound ofEXI(fX(A) :
E|PA,E) as follows.

EXI(fX(A) : E|PA,E)

≤Imin,M (A|E|PA,E)

:= min
1/4>ǫ>0

Me−H
ǫ
min(A|E|PA,E) + 2η(2ǫ, log |A| ·M)

≤ min
R′≥log 4|A|

Me−R
′

+ 2η(2PA,E{PA|E(a|e) ≥ e−R
′

}, log |A| ·M). (9)

Using (9), we can evaluateeI(PAE |R) as follows.

eI(P
AE |R) ≥ lim

n→∞

−1

n
log Imin,enR(A|E|(PA,E)n)

Cramér Theorem yields that

lim
n→∞

−1

n
log(PA,E)n{(PA|E)n(a|e) ≥ e−nR

′

}

=max
s≥0

H̃1+s(A|E|PA,E)− sR′.

Thus,

lim
n→∞

−1

n
logPn(R

′) = max
s≥0

H̃1+s(A|E|PA,E)− sR′.

where

Pn(R
′)

:=η(2(PA,E)n{(PA|E)n(a|e) ≥ e−nR
′

}, log |A|nenR).

Therefore,

lim
n→∞

−1

n
log Imin,enR(A|E|(PA,E)n)

= max
R′:R′≥R

min{max
s≥0

H̃1+s(A|E|PA,E)− sR′, R′ −R}.

maxs≥0 H̃1+s(A|E|PA,E) − sR′ is continuous and mono-
tone decreasing concerningR′ and R′ − R is continuous

and monotone increasing concerningR′. Thus, the above
maximum is attained whenmaxs≥0 H̃1+s(A|E|PA,E) −
sR′ = R′ − R. Let s0 be the parameters attaining the
above. Then,H̃1+s0(A|E|PA,E) − s0R

′ = R′ − R and
d
dsH̃1+s0(A|E|PA,E)|s=s0 = R′. Thus,

max
R′:R′≥R

min{max
s≥0

H̃1+s(A|E|PA,E)− sR′, R′ −R}

=
1

1 + s0
H̃1+s0(A|E|PA,E)−

s0
1 + s0

R

=max
s≥0

1

1 + s
H̃1+s(A|E|PA,E)−

s

1 + s
R (10)

=max
s≥0

s

1 + s
(H1+s(A|E|PA,E)−R), (11)

where the equation (10) can be checked by taking the deriva-
tive. This value is smaller than the bound given by (5). One
might want to apply the formula

Hǫ
min(A) ≥ H1+s(A) +

log ǫ

s

given by Renner and Wolf[19] to the evaluation of
Imin,M (A|E|PA,E). However, this application does not sim-
plify our derivation. So, we do not apply this formula.

III. T HE WIRE-TAP CHANNEL IN A GENERAL FRAMEWORK

Next, we consider the wire-tap channel model, in which the
eavesdropper (wire-tapper), Eve and the authorized receiver
Bob receive information from the authorized sender Alice. In
this case, in order for Eve to have less information, Alice
chooses a suitable encoding. This problem is formulated as
follows. Let Y and Z be the probability spaces of Bob
and Eve, andX be the set of alphabets sent by Alice.
Then, the main channel from Alice to Bob is described by
WB : x 7→ WB

x , and the wire-tapper channel from Alice
to Eve is described byWE : x 7→ WE

x . In this setting,
Alice choosesM distributionsQ1, . . . , QM on X , and she
generatesx ∈ X subject toQi when she wants to send the
messagei ∈ {1, . . . ,M}. Bob preparesM disjoint subsets
D1, . . . ,DM of Y and judges that a message isi if y belongs to
Di. Therefore, the triplet(M, {Q1, . . . , QM}, {D1, . . . ,DM})
is called a code, and is described byΦ. Its performance is
given by the following three quantities. The first is the size
M , which is denoted by|Φ|. The second is the average error
probability ǫB(Φ):

ǫB(Φ)
def
=

1

M

M
∑

i=1

WB
Qi (D

c
i ),

and the third is Eve’s information regarding the transmitted
messageIE(Φ):

IE(Φ)
def
=
∑

i

1

M
D(WE

Qi‖W
E
Φ ), WE

Φ
def
=
∑

i

1

M
WE
Qi .
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In order to calculate these values, we introduce the following
quantities.

φ(s|W, p) := log
∑

y

(

∑

x

p(x)(Wx(y))
1/(1−s)

)1−s

ψ(s|W, p) := log
∑

y

(

∑

x

p(x)(Wx(y))
1+s

)

Wp(y)
−s,

whereWp(y) :=
∑

x p(x)Wx(y). The following lemma gives
the properties of these quantities.

Lemma 1: [13] The functionp 7→ eφ(s|W,p) is convex for
s ∈ [−1, 0], and is concave fors ∈ [0, 1].

Proof: The convexity and concavity ofp 7→ eφ(s|W,p)

follow from the convexity and concavity ofx1−s for the
respective parameters.

Now, using the functionsφ(s) and ψ(s), we make a
code for the wire-tap channel based on the random coding
method. For this purpose, we make a protocol to share a
random number. First, we generate the random codeΦ(Y)
with size LM , which is described by theLM independent
and identical random variablesY subject to the distribution
p on X . For integersk = 1, . . . , LM let D′

k(Y) be the
maximum likelihood decoder of the codeΦ(Y). Gallager [13]
showed that the ensemble expectation of the average error
probability concerning decoding the input messageA is less
than (ML)seφ(−s|W

B ,p) for 0 ≤ s ≤ 1. Here, we choose
a function fX from a function ensemble{fX} satisfying
Conditions 1 and 2. After sending the random variableA
taking values in the set with the cardinalityML, Alice and
Bob apply the functionfX to the random variableA and
generate another piece of data of sizeM . Then, Alice and
Bob share random variablefX(A) with sizeM . This protocol
is denoted byΦ(X,Y)′

LetE be the random variable of the output of Eve’s channel
WE , andfΦ(Y) be the map defined by the codeΦ(Y) from
the message space{1, . . . ,ML} to X . Then as is shown in
Appendix D, we obtain

EYEX|YIE(Φ(X,Y)′) ≤
1

sLs
eψ(s|W,p) 0 < s ≤ 1. (12)

Now, we make a code for wire-tap channel by modifying the
above protocolΦ(X,Y)′. First, we choose the distribution
Qi to be the uniform distribution onf−1

X
{i}. When Alice

wants to send the messagei, before sending the random
variableA, Alice generates the random numberA subject to
the distributionQi. Alice sends the random variableA. Bob
recovers the random variableA and Applies the functionfX.
Then, Bob decodes Alice’s messagei, and this code for wire-
tap channelWB,WE is denoted byΦ(X,Y). Since Condition
2 guarantees that the cardinality|f−1

X
{i}| does not depend

on i, the protocolΦ(X,Y) has the same performance as the
above protocolΦ(X,Y)′.

Finally, we consider what code is derived from the above
random coding discussion. Using the Markov inequality, we

obtain

PX,Y{ǫB(Φ(X,Y)) ≤ 2EX,YǫB(Φ(X,Y))}c <
1

2

PX,Y{IE(Φ(X,Y)) ≤ 2EX,YIE(Φ(X,Y))}c <
1

2
.

Therefore, the existence of a good code is guaranteed in the
following way. That is, we give the concrete performance of
a code whose existence is shown in the above random coding
method.

Theorem 3:There exists a codeΦ for any integersL,M ,
and any probability distributionp on X such that

|Φ| =M

ǫB(Φ) ≤ 2 min
0≤s≤1

(ML)seφ(−s|W
B ,p) (13)

IE(Φ) ≤ 2 min
0≤s≤1

eψ(s|W
E ,p)

Lss
. (14)

In fact, Hayashi [8] proved a similar result when the right

hand side of (14) is replaced by2min0≤s≤1/2
eφ(s|W

E,p)

Lss .

In the n-fold discrete memoryless channelsWBn and
WEn of the channelsWB and WE , the additive equation
φ(s|WBn , p) = nφ(s|WB , p) holds. Thus, there exists a code
Φn for any integersLn,Mn, and any probability distribution
p on X such that

|Φn| =Mn

ǫB(Φ) ≤ 2 min
0≤s≤1

(MnLn)
senφ(−s|W

B ,p)

IE(Φn) ≤ 2 min
0≤s≤1

enψ(s|W
E ,p)

Lsns
. (15)

Since lims→0
ψ(s|WE ,p)

s = I(p : WE), the ratemaxp I(p :
WB)− I(p :WE) can be asymptotically attained.

When the sacrifice information rate isR, i.e., Ln ∼= enR,
the decreasing rate of Eve’s information is greater than
eψ(R|W

E , p) := max0≤s≤1 sR − ψ(s|WE , p). Hayashi [8]
derived another lower bound of this exponential decreasing
rateeφ(R|WE , p) := max0≤s≤1/2 sR− φ(s|WE , p).

IV. COMPARISON WITH EXISTING BOUND

Now, we compare the two upper boundse
ψ(s|WE,p)

Lss and
eφ(s|W

E,p)

Lss for 0 < s ≤ 1. Hölder inequality with the
measurable space(X , p) is given as

|
∑

x∈X

p(x)X(x)Y (x)|

≤(
∑

x∈X

p(x)|X(x)|
1

1−s )1−s(
∑

x∈X

p(x)|Y (x)|
1
s )s.
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Using this inequality, we obtain
∑

x

p(x)(Wx(y))
1+sWp(y)

−s

=
∑

x

p(x)Wx(y)(
Wx(y)

Wp(y)
)s

≤

(

∑

x

p(x)(Wx(y))
1

1−s

)1−s(
∑

x

p(x)
Wx(y)

Wp(y)

)s

=

(

∑

x

p(x)(Wx(y))
1

1−s

)1−s

.

Taking the summand concerningy, we obtain

eψ(s|W
E ,p) ≤ eφ(s|W

E ,p). (16)

That is, our upper bound is better than that given by [8]. Thus,
eψ(R|W

E , p) ≥ eφ(R|W
E , p).

Next, in order to consider the case when the privacy ampli-
fication rateR is close to the mutual informationI(p :W ), we
treat the difference between these bounds with the limits→ 0.
In this case, we take their Taylor expansions as follows.
∑

x,y

pxWx(y)
1+sWp(y)

−s

∼=1 + I(p :W )s+ I2(p :W )s2 + I3(p :W )s3

∑

y

(

∑

x

pxWx(y)
1

1−s

)1−s

∼=1 + I(p :W )s+ I2(p :W )s2 + (I3(p : W ) + Ĩ3(p :W ))s3,

where

I2(p : W ) :=
1

2

∑

x,y

pxWx(y)(logWx(y)− logWp(y))
2

I3(p : W ) :=
1

6

∑

x,y

pxWx(y)(logWx(y)− logWp(y))
3

Ĩ3(p : W ) :=
1

2

∑

y

(

∑

x

pxWx(y)(logWx(y))
2

−
(
∑

x pxWx(y) logWx(y))
2

Wp(y)

)

.

Indeed, applying the Schwarz inequality to the inner product
〈f, g〉 :=

∑

x pxWx(y)f(y)g(y), we obtain

(
∑

x

pxWx(y)(logWx(y))
2) · (

∑

x

pxWx(y))

≥(
∑

x

pxWx(y) logWx(y))
2.

Since
∑

x pxWx(y) = Wp(x), this inequality implies that
Ĩ3(p :W ) ≥ 0. That is,eψ(s|W

E ,p) is smaller thaneφ(s|W
E ,p)

only in the third order whens is small.
Next, we consider a more specific case. A channelWE

is called additive when there exists a distribution such that
WE
x (z) = P (z − x). In this case,e

ψ(s|WE,p)

Lss can be sim-
plified as follows. WhenX = Z and X is a module and

Wx(z) =W0(z−x) = P (z−x), the channelW is called ad-
ditive. The quantitieseψ(R|WE , pmix) and eφ(R|WE , pmix)
are characterized as follows. Since

eψ(s|W
E ,pmix) = |X |se−H̃1+s(X|P ) (17)

eφ(t|W
E ,pmix) = |X |te

−(1−t)H̃
1+ t

1−t
(X|P )

, (18)

we obtain

eψ(R|W
E , pmix) = max

0≤s≤1
s(R− log |X |) + H̃1+s(X |P )

= max
0≤s≤1

s(R− log |X |+H1+s(X |P ))

≥ max
0≤s≤1

s(R− log |X |) + H̃1+s(X |P )

1 + s

= max
0≤s≤1

s(R− log |X |+H1+s(X |P ))

1 + s
= eφ(R|W

E , pmix),

where t = s
1+s . Fig. 1 shows the comparison

of eψ(R|W
E , pmix) and eφ(R|W

E , pmix) with
eψ,2(R|W

E , pmix) := (R − log |X |) + H2(X |P ),
which is directly obtained from Bennett et al[7].
When R − log |X | ≥ − d

dsH̃1+s(X |P )|s=1,
eψ(R|W

E , pmix) = eψ,2(R|W
E , pmix).

���� �����	
� ��� ��� ���� ��������
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Fig. 1. Normal line: eψ(R|WE , pmix) (The present paper), Thick
line: eφ(R|WE , pmix) (Hayashi[8]), Dashed line:eψ,2(R|WE , pmix)
(Bennett et al[7]).p = 0.2, log 2 − h(p) = 0.192745, log |X | −
d
ds

H̃1+s(X|P )|s=1 = 0.388457.

Next, we consider a more general case. Eve is assumed to
have two random variablesz ∈ X and z′. The first random
variable z is the output of an additive channel depending
on the second variablez′. That is, the channelWE

x (z, z′)
can be written asWE

x (z, z′) = PX,Z
′

(z − x, z′), where
PX,Z

′

is a joint distribution. Hereinafter, this channel model is
called a general additive channel. This channel is also called
a regular channel[9]. For this channel model, the inequality
eψ(R|W

E , pmix) ≥ eφ(R|W
E , pmix) holds because

eψ(s|W
E ,pmix) = |X |se−H̃1+s(X|Z′|PX,Z

′
) (19)

eφ(t|W
E ,pmix) = |X |te

−(1−t)H̃
1+ t

1−t
(X|Z′|PX,Z

′
)
.

V. W IRE-TAP CHANNEL WITH LINEAR CODING

In a practical sense, we need to take into account the
decoding time. For this purpose, we often restrict our codes
to linear codes. In the following, we consider the case where
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the sender’s spaceX has the structure of a module. First, we
regard a submoduleC1 ⊂ X as an encoding for the usual
sent message, and focus on its decoding{Dx}x∈C1 by the
authorized receiver. We construct a code for a wire-tap channel
ΦC1,C2 = (|C1/C2|, {Q[x]}[x]∈C1/C2

, {D[x]}[x]∈C1/C2
) based

on a submoduleC2 of C1 as follows. The encodingQ[x] is
given as the uniform distribution on the coset[x] := x+ C2,
and the decodingD[x] is given as the subset∪x′∈x+C2Dx′ .
Next, we assume that a submoduleC2(X) of C1 with car-
dinality |C2(X)| = L is generated by a random variableX
satisfying the following condition.

Condition 3: Any elementx 6= 0 ∈ C1 is included in
C2(X) with probability at most L|C1|

.
Then, the performance of the constructed code is evaluated

by the following theorem.
Theorem 4:Choose the subcodeC2(X) according to Con-

dition 3. We construct the codeΦC1,C2(X) by choosing the
distribution Q[x] to be the uniform distribution on[x] for
[x] ∈ C1/C2(X). Then, we obtain

EXIE(ΦC1,C2(X)) ≤
eψ(s|W

E ,Pmix,C1 )

Lss
0 < ∀s < 1, (20)

wherePmix,S is the uniform distribution on the subsetS.
Proof: This inequality can be shown by (3) as fol-

lows. Now, we define the joint distributionP (x, z) :=
Pmix,C1(x)W

E
x (z). The choice ofQ[x] corresponds to a hash-

ing operation satisfying Condition 1. Then, (3) yields that

EXIE(ΦC1,C2(X)) is bounded by
|C1|

s∑
x,z P (z,x)1+sP (z)−s

Lss =

e
ψ(s|WE,Pmix,C1

)

Lss , which implies (20).
Next, we assume that a submoduleC1(Y) of with cardi-

nality |C1(Y)| = ML is generated by a random variableY
satisfying the following condition.

Condition 4: The relation|C1(Y)| = ML always holds.
Any elementx 6= 0 ∈ X is included inC1(Y) with probability
at most M|X | .

Choose the subcodeC1(Y) andC2(X) according to Con-
ditions 4 and 3. Then, as is shown in Appendix E, we obtain

EX,YIE(ΦC1(Y),C2(X)) ≤
eψ(s|W

E ,Pmix,X )

Lss
, 0 < ∀s < 1.

(21)

Next, we consider a special class of channels. When the
channelWE is additive, i.e.,WE

x (z) = P (z−x), (17) implies

EX,YIE(ΦC1(Y),C2(X)) ≤
|X |se−H̃1+s(X|P )

Lss
(22)

for 0 < ∀s ≤ 1. In this case, the equation
ψ(s|WE , Pmix,C1+x) = ψ(s|WE , Pmix,C1) holds for anyx.
Thus, (16) and the concavity ofeφ(s|W

E ,p) (Lemma 1) imply
that

ψ(s|WE , Pmix,C1) ≤ φ(s|WE , Pmix,C1) ≤ φ(s|WE , Pmix,X ).
(23)

Thus, combining (20), (23), and (18), we obtain

EXIE(ΦC1,C2(X)) ≤
|X |se

−(1−s)H̃1+ s
1−s

(X|P )

Lss
(24)

for 0 < ∀s ≤ 1.
Similarly, when the channelWE is general additive, i.e.,

WE
x (z, z′) = PX,Z

′

(z − x, z′), we obtain

EXIE(ΦC1,C2(X)) ≤
|X |se

−(1−s)H̃1+ s
1−s

(X|Z′|PX,Z
′
)

Lss
(25)

EX,YIE(ΦC1(Y),C2(X)) ≤
|X |se−H̃1+s(X|Z′|PX,Z

′
)

Lss
(26)

for 0 < ∀s < 1.
In the following discussion, we assume thatX is an n-

dimensional vector spaceFnq over the finite fieldFq. Then,
the subcodeC2(X) of the random linear privacy amplification
can be constructed with small complexity. That is, whenC1

is equivalent toFmq , an ensemble of the subcodesC2(X)
satisfying Condition 3 can be generated from only them− 1
independent random variablesX1, . . . , Xm−1 on the finite
field Fq as follows.

When |C2(X)| = qk, we choose the subcodeC2(X) as
the kernel of the the concatenation of Toeplitz matrix and the
identity (X, I) of the sizem × (m − k) given in Appendix
B. Then, the encoding{Q[x]}[x]∈C1/C2(X) is constructed as
follows. When the sent message isx ∈ F

k
q , it is transformed

to (b, x − Xb)T ∈ F
m
q , whereb = (b1, . . . , bk) are k inde-

pendent random variables. This process forms the encoding
{Q[x]}[x]∈C1/C2(X) because the set{(b,−Xb)T |b ∈ F

k
q} is

equal toC2(X). This can be checked using the fact that
(X, I)(b, x − Xb)T = x and the set{(b,−Xb)T |b ∈ F

k
q}

forms ak-dimensional space.
Therefore, if the error correcting codeC1 can be constructed

with effective encoding and decoding times andWE is ad-
ditive or general additive, the codeΦC1,C2(X) for a wire-
tap channel satisfying the inequality (24) or (25) can be
constructed by using random linear privacy amplification.

Furthermore, for then-fold discrete memoryless case of the
wire-tap channelWB,WE , it is possible to achieve the rate
I(Pmix,X :WB)− I(Pmix,X :WE) by a combination of this
error correcting and random linear privacy amplification when
an error correcting code attaining the Shannon rateI(Pmix,X :
WB) is available and the channelWE is general additive,
i.e., WE

x (z, z′) = PX,Z
′

(z − x, z′). In this case, when the
sacrifice information rate isR, as follows from the discussion
of Section IV and (25), the exponent of Eve’s information

is greater thanmax0≤s≤1
s(R−log |X |)+H̃1+s(X|Z′|PX,Z

′
)

1+s =

max0≤s≤1
s

1+s (R− log |X |+H1+s(X |Z ′|PX,Z
′

)).
This method is very useful when the channelsWB andWE

are additive. However, even if the channels are not additiveor
general additive, this method is still useful because it requires
only a linear code and random privacy amplification, which is
simpler requirement than that of the random coding method
given in the proof of Theorem 3 while this method cannot
attain the optimal rate.

VI. SECRET KEY AGREEMENT

Next, following Maurer[1], we apply the above discussions
to secret key agreement, in which, Alice, Bob, and Eve are
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assumed to have initial random variablesa ∈ A, b ∈ B,
and e ∈ E , respectively. The task for Alice and Bob is
to share a common random variable almost independent of
Eve’s random variablee by using a public communication.
The quality is evaluated by three quantities: the size of the
final common random variable, the probability that their final
variables coincide, and the mutual information between Alice’s
final variables and Eve’s random variable. In order to construct
a protocol for this task, we assume that the setA has a module
structure (any finite set can be regarded as a cyclic group).
Then, the objective of secret key agreement can be realized
by applying the code of a wire-tap channel as follows. First,
Alice generates another uniform random variablex and sends
the random variablex′ := x− a. Then, the distribution of the
random variablesb, x′ (e, x′) accessible to Bob (Eve) can be
regarded as the output distribution of the channelx 7→ WB

x

(x 7→WE
x ). The channelsWB andWE are given as follows.

WB
x (b, x′) = PAB(x− x′, b)

WE
x (e, x′) = PAE(x− x′, e), (27)

wherePAB(a, b) (PAE(a, e)) is the joint probability between
Alice’s initial random variablea and Bob’s (Eve’s) initial
random variableb (e). Hence, the channelWE is general
additive.

Applying Theorem 3 to the uniform distributionPAmix, for
any numbersM andL, there exists a codeΦ such that

|Φ| =M

ǫB(Φ) ≤ 2 min
0≤s≤1

(ML)s|A|−se
−(1+s)H̃ 1

1+s
(A|B|PA,B)

IE(Φ) ≤ 2 min
0≤s≤1

|A|se−H̃1+s(A|E|PA,E)

sLs

becauseeφ(−s|W
B ,Pmix,A) = |A|−se

−(1+s)H̃ 1
1+s

(A|B|PA,B)
.

and ψ(s|WE , Pmix,A) = s log |A| − H̃1+s(A|E|PA,E) =
s(log |A| −H1+s(A|E|PA,E)).

In particular, whenX is an n-dimensional vector space
F
n
q over the finite fieldFq and the joint distribution between
A and B(E) is the n-fold independent and identical dis-
tribution (i.i.d.) of PA,B (PA,E), respectively, the relation
H̃1+s(A

n|En|(PA,E)n) = nH̃1+s(A|E|PA,E) holds. Thus,
there exists a codeΦn for any integersLn,Mn, and any
probability distributionp on X such that

|Φn| =Mn

ǫB(Φ) ≤ 2 min
0≤s≤1

(MnLn)
s|A|−nse

−n(1+s)H̃ 1
1+s

(A|B|PA,B)

IE(Φn) ≤ 2 min
0≤s≤1

|A|nse−nH̃1+s(A|E|PA,E)

sLsn
. (28)

Hence, the achievable rate of this protocol is equal to

I(Pmix,A :WB)− I(Pmix,A :WE)

=H(PB) +H(Pmix,A)−H(PA,B)

− (H(PE) +H(Pmix,A)−H(PA,E))

=H(PB) +H(PA)−H(PA,B)

− (H(PE) +H(PA)−H(PA,E))

=I(A : B)− I(A : E) = H(A|E) −H(A|B),

which was obtained by Maurer[1] and Ahlswede-Csiszár[2].
Here, since the channelsWB andWE can be regarded as
general additive, we can apply the discussion in Section V.
That is, the bound (28) can be attained with the combination
of a linear code and random privacy amplification, which is
given in Section V.

VII. D ISCUSSION

We have derived an upper bound for Eve’s information in
secret key generation from a common random number without
communication when a universal2 hash function is applied.
Since our bound is based on the Rényi entropy of order1+ s
for s ∈ [0, 1], it can be regarded as an extension of Bennett et
al [7]’s result with the Rényi entropy of order 2.

Applying this bound to the wire-tap channel, we obtain an
upper bound for Eve’s information, which yields an exponen-
tial upper bound. This bound improves on the existing bound
[8]. Further, when the error correction code is given by a linear
code and when the channel is additive or general additive, the
privacy amplification is given by the concatenation of Toeplitz
matrix and the identity. Finally, our result has been applied to
secret key agreement with public communication.
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APPENDIX A
PROOF OFTHEOREM 1

The concavity ofx 7→ xs implies that

EXe
−H̃1+s(X|P◦f−1

X
) = EX

M
∑

i=1

P ◦ f−1
X

(i)P ◦ f−1
X

(i)s

=
∑

x

P (x)EX(
∑

x′:fX(x)=fX(x′)

P (x′))s

≤
∑

x

P (x)(EX

∑

x′:fX(x)=fX(x′)

P (x′))s.

Condition 1 guarantees that

EX

∑

x′:fX(x)=fX(x′)

P (x′) ≤P (x) +
∑

x 6=x′

P (x′)
1

M

≤P (x) +
1

M
.

Since any two positive numbersx and y satisfy (x + y)s ≤
xs + ys for 0 ≤ s ≤ 1,

(P (x) +
1

M
)s ≤ P (x)s +

1

M s
.

Hence,

EXe
−H̃1+s(X|P◦f−1

X
) ≤

∑

x

P (x)(P (x)s +
1

M s
)

=
∑

x

P (x)1+s +
1

M s
= e−H̃1+s(X|P ) +

1

M s
.

Therefore, taking the expectation with respect to the random
variableE, we have

EXe
−H̃1+s(A|E|P fX(A),E) ≤ e−H̃1+s(A|E|PA,E) +

1

M s
. (29)

The concavity of the logarithm implies

H̃1+s(A|E|PA,E) ≤ sH(A|E).

Thus, From (29), the concavity of the logarithm yields that

sEXH(fX(A)|E) ≥ EXH̃1+s(A|E|PA,E)

≥− log EXe
−H̃1+s(A|E|PA,E)

≥− log(e−H̃1+s(A|E|PA,E) +
1

M s
)

=s logM − log(1 +M se−H̃1+s(A|E|PA,E))

≥s logM −M se−H̃1+s(A|E|PA,E),

where the last inequality follows from the logarithmic inequal-
ity log(1 + x) ≤ x. Therefore, we obtain (2).

APPENDIX B
TOEPLITZ MATRIX

The concatenation of Toeplitz matrix and the identity(X, I)
of sizem× (m− k) on the finite filedFq is given as follows.
First, we choose anm − 1 random variablesX1, . . . , Xm−1

on the finite filedFq. I is the (m − k) × (m − k) identity
matrix and thek × (m− k) matrix X = (Xi,j) is defined by
them− 1 random variablesX1, . . . , Xm−1 as follows.

Xi,j = Xi+j−1.

This matrix is called a Toeplitz matrix.
Now, we prove that them×(m−k) matrices(X, I) satisfy

Condition 3. More precisely, we show the following. (1) An
element(x, y)T ∈ F

k
q ⊕ F

−(m−k)
q belongs to the kernel of

(X, I) with probability qk if x 6= 0 and y 6= 0. (2) It does
not belong to the kernel of them× (m− k) matrix (X, I) if
x = 0 andy 6= 0.

Indeed, since (2) is trivial, we will show (1). Forx =
(x1, . . . , xk), we let i be the minimum indexi such thatxi 6=
0. We fix thek− i random variablesXi+(m−k)−1, . . . , Xm−1.
That is, we show that the element(x, y)T belongs to the
kernel with probability qk when the k − i random vari-
ablesXi+(m−k)−1, . . . , Xm−1 are fixed. Then, the condition
Xx + y = 0 can be expressed as the followingm − k

http://arxiv.org/abs/cs/0304014
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conditions.

Xix1 = −

k
∑

j=i+1

Xjxj − y1

Xi+1x2 = −

k
∑

j=i+1

Xj+1xj − y2

...

Xi+m−k−2xm−k−1 = −

k
∑

j=i+1

Xj+m−k−2xj − ym−k−1

Xi+m−k−1xm−k = −

k
∑

j=i+1

Xj+m−k−1xj − ym−k.

The (m − k)-th condition does not depend on them − k −
1 variablesXi, . . . Xi+(m−k)−1. Hence, this condition only
depends on the variableXi+m−k−1. Therefore, the(m−k)-th
condition holds with probability1/q. Similarly, we can show
that the(m − k − 1)-th condition holds with probability1/q
under the(m−k)-th condition. Thus, the(m−k)-th condition
and the(m− k − 1)-th condition hold with probability1/q2.
Repeating this discussion inductively, we can conclude that all
m− k conditions hold with probabilityq−(m−k).

APPENDIX C
TWO LEAKED INFORMATION CRITERIA

In this appendix, we explain an example, in which, the
leaked information criterion based on the variational distance
is small but the leaked information criterion based on the
mutual information is large. This example is proposed by Shun
Watanabe[20]. The former criterion is given as [21]

d1(P
A,E , PAmix × PE),

wherePAmix is the uniform distribution onA and the variational
distance is given asd1(P,Q) :=

∑

x |P (x) − Q(x)|. Pinsker
inequality [22] guarantees that

d1(P
A,E, PAmix × PE)

≤d1(P
A,E, PA × PE) + d1(P

A × PE , PAmix × PE)

≤D(PA,E‖PA × PE)2 + d1(P
A, PAmix)

=I(A : E)2 + d1(P
A, PAmix),

where D(P‖Q) :=
∑

x P (x)(logP (x) − logQ(x)). This
inequality shows that whend1(PA, PAmix) andI(A : E)2 are
close to zero,d1(PA,E , PAmix × PE) is also close to zero.

Assume that the Eve’s distributionPE is the uniform
distribution, andE = A. For any small real numberǫ > 0,
we define a subsetS ⊂ E such thatPE(S) = 1 − ǫ. The
conditional distributionPA|E is assumed to be given as

PA|E(a|e) :=

{ 1
|E| if e ∈ S

δa,e if ∈ Sc,

where δa,e is 1 when a = e, and is0 otherwise. Then, the
leaked information criterion based on the variational distance

is evaluated as

d1(P
A,E , PAmix × PE) =

∑

e∈E

PE(e)d1(P
A|E , PAmix)

=
∑

e∈S

PE(e)d1(P
A|E , PAmix) +

∑

e∈Sc

PE(e)d1(P
A|E , PAmix)

≤2ǫ.

In oder to evaluate the leaked information criterion based on
the mutual information, we focus on the probability

Pe := PA,E{a 6= e}.

Fano inequality[22] yields that

H(E|A) ≤ 1 + Pe log |E|.

SincePe ≤ 1− ǫ,

I(A : E) = H(E)−H(E|A) ≥ H(E)− 1− Pe log |E|

= log |E| − 1− Pe log |E| ≥ −1 + ǫ log |E|.

In particular, whenE = {0, 1}n
2

andǫ = 1
n ,

d1(P
A,E , PAmix × PE) ≤

2

n
, I(A : E) ≥ n− 1.

This example shows that even ifd1(PA,E, PAmix × PE)
is close to zero, there is a possibility thatI(A : E) is not
close to zero. Hence, we cannot guarantee the security based
on mutual information from the security based on variational
distance while we can guarantee the security based on varia-
tional distance from the security based on mutual information
when d1(PA, PAmix) is close to zero. Therefore, the leaked
information criterion based on the mutual information is more
restrictive than that based on variational distance.
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APPENDIX D
PROOF OF(12)

Since

I(p,W ) =
∑

x

p(x)D(WE
x ‖WE

p ) ≤
∑

x

p(x)D(WE
x ‖Q) (30)

holds for any distributionQ,

EYEX|YIE(Φ(X,Y)′) ≤ EYEX|Y
1

LM

LM
∑

k=1

D(
1

L

∑

k′ :fX(k′)=fX(k)

WE
fΦ(Y)(k′)

‖WE
p ) (31)

=EYEX|Y
1

LM

LM
∑

k=1

∑

y

1

L

∑

k′′ :fX(k′′)=fX(k)

WE
fΦ(Y)(k′′)

(y)(log(
1

L

∑

k′:fX(k′)=fX(k)

WE
fΦ(Y)(k′)

(y))− logWE
p (y))

=EYEX|Y
1

LM

LM
∑

k=1

∑

y

WE
fΦ(Y)(k)

(y)(log(
1

L

∑

k′ :fX(k′)=fX(k)

WE
fΦ(Y)(k′)

(y))− logWE
p (y))

≤EY

1

LM

LM
∑

k=1

∑

y

WE
fΦ(Y)(k)

(y)(log(
1

L
WE
fΦ(Y)(k)

(y) + EX|Y
1

L

∑

k′ 6=k:fX(k′)=fX(k)

WE
fΦ(Y)(k′)

(y))− logWE
p (y)) (32)

≤EY

1

LM

LM
∑

k=1

∑

y

WE
fΦ(Y)(k)

(y)(log(
1

L
WE
fΦ(Y)(k)

(y) +
1

ML

∑

k′ 6=k

WE
fΦ(Y)(k′)

(y))− logWE
p (y)) (33)

=
1

LM

LM
∑

k=1

∑

y

EYk
WE
fΦ(Y)(k)

(y)EY|Yk
(log(

1

L
WE
fΦ(Y)(k)

(y) +
1

ML

∑

k′ 6=k

WE
fΦ(Y)(k′)

(y))− logWE
p (y))

≤
1

LM

LM
∑

k=1

∑

y

EYk
WE
fΦ(Y)(k)

(y)(log(
1

L
WE
fΦ(Y)(k)

(y) +
1

ML
EY|Yk

∑

k′ 6=k

WE
fΦ(Y)(k′)

(y))− logWE
p (y)) (34)

≤
1

LM

LM
∑

k=1

∑

y

EYk
WE
fΦ(Y)(k)

(y)(log(
1

L
WE
fΦ(Y)(k)

(y) +WE
p (y))− logWE

p (y)) (35)

=
1

LM

LM
∑

k=1

∑

y

EYk
WE
fΦ(Y)(k)

(y) log(1 +
1

L

WE
x (y)

WE
p (y)

)

=
1

LM

LM
∑

k=1

∑

y

∑

x∈X

p(x)WE
x (y) log(1 +

1

L

WE
x (y)

WE
p (y)

) =
∑

y

∑

x∈X

p(x)WE
x (y) log(1 +

1

L

WE
x (y)

WE
p (y)

),

where the random variablefΦ(Y)(k) is simplified toYk. In the above derivation, (31) follows from (30), (32) and (34) follow
from the concavity oflog x, and (33) and (35) follow from Conditions 1 and 2.
Since the inequalities(1 + x)s ≤ 1 + xs and log(1 + x) ≤ x hold for any positivex and0 < s ≤ 1, the inequalities

log(1 + x) ≤
log(1 + x)s

s
≤

log(1 + xs)

s
≤
xs

s
(36)

hold. Using this inequality, we obtain

∑

y

∑

x∈X

p(x)WE
x (y) log(1 +

1

L

WE
x (y)

WE
p (y)

) ≤
∑

y

∑

x∈X

p(x)WE
x (y)

1

sLs
WE
x (y)s

WE
p (y)s

) =
1

sLs
eψ(s|W

E ,p), (37)

which implies (12).
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APPENDIX E
PROOF OF(21)

Since

IE(ΦC1,C2(X)) =
∑

y

1

|C1|

∑

x′∈C1

WE
x′ (y)(log(

1

|C2(X)|

∑

x′′:x′−x′′∈C2(X)

WE
x′′(y))− log(

1

|C1|

∑

x′′′∈C1

WE
x′′(y)))

≤
∑

y

1

|C1|

∑

x′∈C1

WE
x′ (y)(log(

1

|C2(X)|

∑

x′′:x′−x′′∈C2(X)

WE
x′′(y))− log(WE

Pmix,X
(y))),

we have

EYEX|YIE(ΦC1(Y),C2(X))

≤EYEX|Y

∑

y

1

ML

∑

x′∈C1(Y)

WE
x′ (y)(log(

1

L

∑

x′′:x′−x′′∈C2(X)

WE
x′′(y))− log(WE

Pmix,X
(y)))

=EYEX|Y

∑

y

1

ML

∑

x′∈C1(Y)

WE
x′ (y)(log(

1

L
WE
x′ (y) +

1

L

∑

x′′:x′−x′′∈C2(X),x′ 6=x′′

WE
x′′(y))− log(WE

Pmix,X
(y)))

≤EY

∑

y

1

ML

∑

x′∈C1(Y)

WE
x′ (y)(log(

1

L
WE
x′ (y) + EX|Y

1

L

∑

x′′:x′−x′′∈C2(X),x′ 6=x′′

WE
x′′(y))− log(WE

Pmix,X
(y))) (38)

≤EY

∑

y

1

ML

∑

x′∈C1(Y)

WE
x′ (y)(log(

1

L
WE
x′ (y) +

1

L

L

ML

∑

x′′∈C1\{x′}

WE
x′′(y))− log(WE

Pmix,X
(y))) (39)

=
∑

y

1

|X |

∑

x′∈X

WE
x′ (y)EY|x′∈C1(Y)(log(

1

L
WE
x′ (y) +

1

ML

∑

x′′∈C1(Y)\{x′}

WE
x′′(y))− log(WE

Pmix,X
(y)))

≤
∑

y

1

|X |

∑

x′∈X

WE
x′ (y)(log(

1

L
WE
x′ (y) +

1

ML
EY|x′∈C1(Y)

∑

x′′∈C1(Y)\{x′}

WE
x′′(y))− log(WE

Pmix,X
(y))) (40)

≤
∑

y

1

|X |

∑

x′∈X

WE
x′ (y)(log(

1

L
WE
x′ (y) +

1

|X |

∑

x′′∈X\{x′}

WE
x′′(y))− log(WE

Pmix,X
(y))) (41)

≤
∑

y

1

|X |

∑

x′∈X

WE
x′ (y)(log(

1

L
WE
x′ (y) +WE

Pmix,X
(y))− log(WE

Pmix,X
(y)))

=
∑

y

1

|X |

∑

x′∈X

WE
x′ (y) log(1 +

1

L

WE
x′ (y)

WE
Pmix,X

(y)
),

whereEY|C is the conditional expectation concerning the random variable X when the conditionC holds. In the above
derivation, (38) and (40) follow from the concavity oflog x, and (39) and (41) follow from Conditions 3 and 4.
Using (36), we obtain (21).
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