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Abstract

We consider the problem of collaborative filtering from a channel coding perspective. We model the

underlying rating matrix as a finite alphabet matrix with block constant structure. The observations are

obtained from this underlying matrix through a discrete memoryless channel with a noisy part representing

noisy user behavior and an erasure part representing missing data. Moreover, the clusters over which

the underlying matrix is constant areunknown. We establish a sharp threshold result for this model: if
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the largest cluster size is smaller thanC1 log(mn) (where the rating matrix is of sizem× n), then the

underlying matrix cannot be recovered with any estimator, but if the smallest cluster size is larger than

C2 log(mn), then we show a polynomial time estimator with diminishing probability of error. In the

case of uniform cluster size, not only the order of the threshold, but also the constant is identified.

I. INTRODUCTION

As new content mushrooms at a brisk pace, finding relevant information is increasingly a challenge.

Consequently, recommendation systems are commonly being used to assist users: Amazon recommends

books, Netflix recommends movies, LinkedIn recommends professional contacts, Google recommends

webpages for a given query, etc. Such recommendation systems exploit various aspects to make sugges-

tions: popularity amongst peers, similarity of content, available user-item ratings, etc. This paper is about

collaborative filtering using the rating matrix: we are interested in making recommendations using only

available ratings given by users to the items they have experienced. In a practical system, such a rating

based collaborative filter is typically complemented by content-based analysis specific to the data.

There is vast literature on recommendation systems and collaborative filtering; see for example the

special issue [9] and the survey paper [3]. Given the massivedatasets and the lack of good statistical

model of user behavior, the dominant stream of work has been to propose methods and demonstrate their

scalability on real data sets. However, recently the NetflixPrize [1] has popularized the problem to other

research communities and several researchers have startedexploringprovably good methods. This paper

falls in the latter category: we deal with fundamental limits of collaborative filters. In the remainder of

this section, we first discuss related models and results, and then outline our model and results.

A. Related Work

The Netflix data consists of rating matrix where the rows correspond to movies and the columns

correspond to users. Only a small fraction of the entries areknown and the goal is to estimate the

missing entries, that is, this is a matrix completion problem. Several algorithms have been proposed

and tested on this data set; see for example [13]. Mathematically, without any further restriction, this is

an ill-posed problem. Motivated by this, some authors have recently considered the matrix completion

problem under the restriction of low-rank matrices. (This problem also arises in other contexts such as

location estimation in sensor networks.) This problem has attracted much attention, and in the past year

a number of results have been reported. In [5], using nuclearnorm minimization proposed in [16], an

upper bound on the number of samples needed for recovery asymptotically is derived in terms of the
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size and rank of the matrix. In [6], a lower bound is established on the number of samples needed by

any algorithm. The order of this lower bound is shown to be achievable in [12]. In [14], the problem of

matrix recovery from linear measurements (of which sampling is a special case) is considered and a new

algorithm is proposed. In [4], the problem of matrix completion under bounded noise is considered. A

semi-definite programming based algorithm is proposed and shown to have recovery error proportional

to the noise magnitude.

In this paper, we take an alternative channel coding viewpoint of the problem. Our results differ from

the above works in several aspects outlined below.

• We consider finite alphabet for the ratings and a different model for the rating matrix based on row

and column clusters.

• We consider noisy user behavior, and our goal is not to complete the missing entries, but to estimate

an underlying “block constant” matrix (in the limit as the matrix size grows).

• Since we consider a finite alphabet, even in the presence of noise, error free recovery is asymptotically

feasible. Hence, unlike [4], which considers real-valued matrices, we do not allow any distortion.

We next outline our model and results.

B. Summary of Our Model and Results

We consider a finite alphabet for the ratings. In this section, we briefly outline our model and results

without any mathematical details; the details can be found in subsequent sections.

To motivate our model, consider an ideal situation where every user rates every item without any noise.

In this ideal scenario, it is reasonable to expect that similar users rate similar items by the same value.

We therefore assume that the users (items) are clustered into groups of similar users (items, respectively).

The rating matrix in this ideal situation (sayX with sizem× n) is then a block constant matrix (where

the blocks correspond to cartesian product of row and columnclusters). The observations are obtained

from X by passing its entries through a discrete memoryless channel (DMC) consisting of an erasure

channel modeling missing data and a noisy DMC representing noisy user behavior. Moreover, the row

and column clusters areunknown. The goal is to make recommendations by estimatingX based on the

observations. The performance metric we use is the probability of block error: we make an error if any of

the entries in the estimate is erroneous. Our goal is to identify conditions under which error free recovery

is possible in the limit as the matrix size grows large. Thus we view the recommendation system problem

as a channel coding problem.
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The cluster sizes in our model represent the resolution: thelarger the cluster, the smaller are the degrees

of freedom (or rate of the channel code). If the channel is more noisy and the erasures are high, then we

can only support a small number of codewords. The challenge is to find the exact order. For our model,

we show that if the largest cluster size (defined precisely inSection III) is smaller thanC1 log(mn),

whereC1 is a constant dependent on the channel parameters, then for any estimator the probability of

error approaches one. On the other hand, if the smallest cluster size (defined precisely in Section III) is

larger thanC2 log(mn), whereC2 is a constant dependent on the channel parameters, then we give a

polynomial time algorithm that has diminishing probability of error. Thus we identify the order of the

threshold exactly. In the case of uniform cluster size, the constantsC1 andC2 are identical and thus

in this special case, even the constant is identified precisely. Moreover, for the special case of binary

ratings and uniform cluster size, the algorithm used to showthe achievability part does nor depend on

the cluster size, erasure parameter, and needs knowledge ofa worst case parameter for the noisy part

of the channel. These results are obtained by averaging overX (as per the probability law specified in

Section II).

The achievability part of our result is shown by first clustering the rows and columns, and then

estimating the matrix entries assuming that the clusteringis correct. The clustering is done by computing

a normalized Hamming metric for every pair of rows and comparing with a threshold to determine if the

rows are in same cluster or not. The converse is proved by considering the case when the clusters are

known exactly. Our results for the average case show that thethreshold is determined by the problem of

estimating entries, and relatively, clustering is an easier task (see Figure 1 for an illustration).

C. Organization of the Paper

The precise model forX and the observations is stated in Section II. The case of uniform cluster size

and binary ratings leads to sharper bounds and results. Hence results for this case are given in Section III.

The case of general alphabets and non-uniform cluster sizesis considered in Section IV. The conclusion

is given in Section V, while all the proofs are collected together in Section VI.

D. Notation

All the logarithms are to the natural base unless specified otherwise.D(µ‖ν) denotes the KL divergence

([8]) between probability mass functionsµ and ν. By T = Ω(f(n)) we mean that forn large enough,

T ≥ constant· f(n). By 1(A) we denote the indicator variable, which is 1 ifA is true and 0 otherwise.
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Fig. 1. The figure shows lower and upper bounds for the probability of error under known clustering (Theorem 2), the asymptotic

cluster size threshold from Theorem 1, and an upper bound on the clustering error (Theorem 3) for the casem = n = 106,

erasure probabilityǫ = 0.9, and binary symmetric channel with errorp = 0.25. The threshold in the clustering algorithm is

chosen to bed0 = (2p(1− p) + 1)/3 = 0.4583.

II. M ODEL AND ASSUMPTIONS

The main elements of our model are a block constant ensemble of rating matrices (whose blocks of

constancy are not known) and an observation matrix obtainedfrom the underlying rating matrix via a

noisy channel and erasures. The noise in the observations represents the inherent noise in user-item ratings

as well as the error in our model. The erasures denote missingentries. To be more precise, supposeX is

the unknownm× n rating matrix with entries from a finite alphabet, wheren is the number of buyers

andm is the number of items. LetA = {Ai}
r
i=1 andB = {Bj}

t
j=1 be partitions of[1 : m] and [1 : n]

respectively. We call the setsAi × Bj clusters and we callAi’s (Bj ’s) the row (column) clusters. We
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denote the corresponding row and column cluster sizes bymi andnj, and the number of row clusters

and the number of column clusters byr and t respectively. Thus
∑r

i=1mi = m,
∑t

j=1 nj = n.

We state our results under two sets of conditions - the set of conditions A1)-A4) and B1)-B3) below.

Conditions A1)-A4) are a special case of conditions B1)-B3). The results under A1)-A4) are sharper and

illustrate the important concepts more easily. Hence they are stated separately. We begin by stating and

discussing A1)-A4) first and then we state B1)-B3). (A few additional conditions needed in the results

are stated at appropriate places.)

Conditions A1)-A4): The conditions A1)-A4) below correspond to binary rating matrix with equal size

clusters and uniform probability of sampling entries.

A1) The entries ofX are from{0, 1}.

A2) The row (column) clusters are of equal size:mi = m0, ni = n0 for all i.

A3) X is constant over the clusterAi ×Bj and the entries are i.i.d. Bernoulli(1/2) across the clusters.

A4) The observed dataY ∈ {0, 1, e} (e denotes erasure) is obtained by passing the entries ofX through

the cascade of a binary symmetric channel (BSC) with probability of error p and an erasure channel

with erasure probabilityǫ.

The cluster sizes are representative of theresolution of X - large cluster sizes correspond to a coarse

structure with fewer degrees of freedom in choosingX, while small cluster size corresponds to a fine

structure. Condition A2) suggests that we can think of the cluster sizem0n0 as representative of the

resolution ofX and it plays a central role in our results. If we think of all permissibleX as a channel

code, then a higherm0n0 corresponds to a smaller rate code. However, in order to interpret m0n0

precisely, we also need to take into account condition A3). When the entries of the cluster are filled with

i.i.d. Bernoulli(1/2) random variables as per A3), it is likely that rows in two clusters turn out to be the

same, and hence these two row clusters can be merged to form a single bigger cluster. The following

lemma shows that if the number of clusters isΩ(log(n)), then this happens with small probability and

hence we should think ofm0n0 as the representative cluster size.

Lemma 1: If t ≥ (2 + δ) log2(n), δ > 0, then

P (Rows in two different clusters are same) ≤
1

mδ

and a similar result holds for the column clusters.

Proof: Each row is uniformly distributed over2t possibilities and rows in different clusters are

independent. Hence the probability that any given pair of rows is same is1/2t. Since there are
(r
2

)

pairs,

DRAFT July 12, 2021
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we then have

P (Rows in two different clusters are same) ≤

(r
2

)

2t
,

Sincer ≤ m, we have

P (Rows in two different clusters are same) ≤
m2

2t
.

Hence if t > (2 + δ) log2m for someδ > 0, then

P (Rows in two different clusters are same) ≤
1

mδ
.

Condition A3) also implies that in any row or column, for large matrices, roughly the number of 0s

and 1s is same. This essentially implies that the opinions are diverse for any user or item. While this

may seem unrealistic (and can indeed be fixed), we prefer the Bernoulli(1/2) model for the following

reason: under this assumption no recommendations can be extracted from any row or column alone and

thus collaborative filtering is necessary. Such a model is desirable for evaluation of collaborative filtering

schemes. Moreover, one can pre-process data so that rows andcolumns with fraction of 1s far from 1/2

are removed (because they are relatively easy to recommend)and then assumption A3) is reasonable.

We note that in condition A3), we only specify the probability law of X given the clusters; the clusters

are deterministic, even though they are unknown.

The BSC in A4) models the inherent noise in user-item ratingsas well as modeling error, while the

erasure channel models the missing data.

Conditions B1)-B3): These conditions are more general allowing any finite alphabet and non-uniform

cluster sizes.

B1) The entries ofX are from a finite alphabetA.

B2) X is constant over the clusterAi ×Bj and the entries across the clusters are i.i.d. with a uniform

distribution overA.

B3) The observed dataY ∈ A ∪ {e} (e denotes erasure) is obtained fromX as follows

a) The entries ofX are passed through a DMC with probability lawq(.|.) and output alphabet

A, resulting inX̃.

b) The entriesX̃ij are then passed through an erasure channel with erasure probability ǫ.

July 12, 2021 DRAFT
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III. B INARY RATING MATRIX

In this section, we state our results under conditions A1)-A4). The main result of this section appears

in Section III-A. It is obtained by studying two quantities:probability of error when the clustering is

known (Section III-B) and probability error in clustering for a specific algorithm (Section III-C).

A. Main Result

Our main result stated below identifies a threshold on the cluster size above which error free recovery

is asymptotically feasible but below which error free recovery is not possible.

Theorem 1: Suppose conditions A1)-A4) are true and the clusters areunknown. Let p1 = ǫ + 2(1 −

ǫ)
√

p(1− p). Suppose thatǫ < 1 andp ∈ [0, p0], p0 < 1/2.

1) Converse: If

m0n0 < (1− δ)
ln(mn)

ln(1/p1)
, δ > 0,

then P̄e → 1 for any estimator.

2) Achievability: If t = Ω(log(n)), r = Ω(log(m)), lim supm/n < ∞, lim supn/m < ∞ and

m0n0 >
ln(mn)

ln(1/p1)
,

then P̄e → 0 for the following polynomial time estimator:

• Cluster rows and columns using the algorithm of Section III-C using the thresholdd0 ∈

(2p0(1− p0), 1/2) (which does not depend onǫ,m0, n0).

• Employ majority decoding in a cluster (as in Section III-B) assuming the clustering to be

correct.

Proof: The proof is given in Section VI-A.

The result identifiesln(mn)/ ln(1/p1) as the cluster size threshold. The first part states that if the

cluster size is too small, then any estimator makes an error with high probability. The second part states

that if the cluster size is large enough, then diminishing probability of error can be achieved with a

polynomial time estimator, which does not need knowledge ofǫ,m0, n0 and needs only knowledge of

a worst case bound onp. The result is reminiscent of the channel coding theorem in the context of our

model.

The proof of Part 1) of Theorem 1 relies on lower boundingP̄e by considering the case of known

clustering (see Theorem 2 in Section III-B). The proof of Part 2) of Theorem 1 relies on showing that

for the average case, the probability of error in clusteringis much smaller than the probability of error in
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filling values when the clusters are known (see Theorem 3 in Section III-C). We illustrate this in Figure

1 by plotting various bounds: form = n = 106, m0 = n0 ranging from 10 to 150,p = 0.25 andǫ = 0.9,

we plot

• upper and lower bounds for probability of error when clustering is known (from Theorem 2),

• upper bound on probability of clustering error (from Theorem 3),

• and the asymptotic thresholdln(mn)/ ln(1/p1) (from Theorem 1).

It is seen that around the asymptotic threshold, the probability of clustering error is dominated by the

probability of error in filling values under known clustering.

B. Known Clustering

In this section, we consider the case when the clusters are known. Under this assumption, the decoder

only has to estimate the value in a cluster, and the minimum probability of error estimator under A3) is

just a majority decoder. The analysis of this decoder is elementary and we state a stronger result for a

fixed X with possibly unequal cluster sizes. Let

s∗(X) := min
i,j

mi(X)nj(X), s∗(X) := max
i,j

mi(X)nj(X),

where{mi(X)} and{nj(X)} are the row and column cluster sizes inX.

Theorem 2: Suppose conditions A1), A3) are true and in addition assume that the clusters are known.

Let

s∗(X) ≥
ln(2)

ln(1/p1)
.

Then the probability of error in filling in values satisfies

Pe|A,B(X) ≥ 1− exp

(

−
1

4

√

p

1− p

mnp
s∗(X)
1

s∗(X)(s∗(X) + 1)

)

,

Pe|A,B(X) ≤ 1− exp

(

−
2 ln(2)mnp

s∗(X)
1

s∗(X)

)

.

(1)

Suppose we are given a sequence of rating matrices of increasing size, that is,mn → ∞. Then the

following are true.

1) If

s∗(X) ≥
ln(mn)

ln(1/p1)

thenPe|A,B(X) → 0.

July 12, 2021 DRAFT
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2) If

s∗(X) ≤
(1− δ) ln(mn)

ln(1/p1)
for someδ > 0,

thenPe|A,B(X) → 1.

Proof: The proof is given in Section VI-B.

We note that when all the clusters are of the same size (which happens with high probability as per

Lemma 1), then the above result states that there is a sharp threshold: if the cluster size is smaller than

ln(mn)/ ln(1/p1), then exact recovery is not possible, but if it is larger, then we can make probability

of error as small as we wish.

Example: For m = n = 106, mi = nj = n0, ǫ = 0.9, p = 0.25, this threshold corresponds to clusters

of size about45× 45 = 2025. We plot the lower and upper bounds forPe|A,B(X) from Theorem 2 and

the threshold in Figure 1.

Remark: A finer analysis reveals that we can refine Part 2) of Theorem 2 (and hence also Part 1)

of Theorem 1) by lettingδ approach zero asm,n → ∞. The result holds as long asδm,n ln(mn) −

2 ln ln(mn) → ∞.

C. Probability of Clustering Error

To get an upper bound on the probability of errorP̄e, in this section we analyze a specific collaborative

filter: we first cluster the rows and columns using the algorithm described below and then we fill in values

using the majority decoder assuming that the clustering is correct. The majority decoder has already been

analyzed in Section III-B and for proving Part 2 of Theorem 1,we only need to analyze the probability

of error in clustering.

Clustering Algorithm: We cluster rows and columns separately. For rowsi, j, the normalized Hamming

distance over commonly sampled entries is

dij =
1

Nij

n
∑

k=1

1 (Yik 6= e, Yjk 6= e, Yik 6= Yjk) ,

whereNij is the number of commonly sampled positions in rowsi andj, given by

Nij =

n
∑

k=1

1 (Yik 6= e, Yjk 6= e) .
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Let Iij be equal to 1 if rowsi, j belong to the same cluster and let it be 0 otherwise. The algorithm

gives an estimate:

Îij =











1, dij < d0,

0, dij ≥ d0,

whered0 is a treshold whose choice will be discussed later. A similaralgorithm is used to cluster columns.

We are interested in the probability that we make an error in row clustering averaged over the probability

law on the rating matrices defined as

P̄e,rc = Pr
(

Îij 6= Iij for somei, j
)

.

We note that this is a conservative definition of clustering error. As seen in Lemma 1, there is a small

chance that rows in different clusters may be the same resulting in the merging of two clusters into a

larger one. The above definition of error does not account forthis and declares more errors. We use this

conservative definition of clustering error to simplify analysis.

Theorem 3: Suppose conditions A1)-A4) are true. Letr1 > 1, r2 ∈ (0, 1) be constants and leth∗ be

the smaller root of the quadratic equation

2µν(1− d0)h
2 + (2d0 − 2µν − 1)h+ 1− 2d0 = 0, (2)

whereµ := 2p(1 − p), ν = 1− µ. Suppose the thresholdd0 ∈ (µ, µ+ 1/2). Let

α1 = D
(

r1(1− ǫ)2||(1 − ǫ)2
)

,

α2 = D
(

r2(1− ǫ)2||(1 − ǫ)2
)

,

λ1(n0) =
1

2

(

1 +

(

1− νh∗

1− µh∗

)n0r2(1−ǫ)2
)

, and,

λ2(n0) =
1

2

(

1 + 2−n0α2

)

.

Then for the above clustering algorithm,

P̄e,rc ≤
m(m− 1)

2
max

{

P (Îij = 0
∣

∣Iij = 1), P (Îij = 1
∣

∣Iij = 0)
}

,

where

P (Îij = 0
∣

∣Iij = 1) ≤ exp
(

−nmin
{

r2(1− ǫ)2D(d0‖µ), α2

})

(3)

July 12, 2021 DRAFT
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and

P (Îij = 1
∣

∣Iij = 0) ≤ min {P1, P2} (4)

P1 =

(

1− µh∗
(1− h∗)d0

)nr1(1−ǫ)2

λ1(n0)
t + exp(−α1n) + λ2(n0)

t (5)

P2 = exp (−α3t) (6)

for a positive constantα3.

Proof: The proof is given in Section VI-C.

The proof uses the union bound and considers pairwise errors. The pairwise errors consists of two

cases: error when the pair of rows is in the same cluster and error when they are in different clusters. The

probability of the first kind of error is exponentially decaying in n. The probability of the second kind

of error is upper bounded by the minimum ofP1 andP2: while P1 is tight for finite n and largep, ǫ,

the boundP2 is useful for establishing asymptotic results (like Theorem 1) for all p, ǫ. For example, in

Figure 1, the upper bound on clustering error is dominated byP1, while the proof of Part 2) of Theorem

1 usesP2. We note that bothP1 andP2 have terms that decay exponentially inn as well ast. The terms

decaying exponentially int are related to Lemma 1 and the conservative definition of clustering error as

discussed before the statement of Theorem 3. These terms arethe origin of thet = Ω(log(n)) condition

in Part 2) of Theorem 1 and can perhaps be avoided with more sophisticated analysis; however, we prefer

to work with this condition since as per Lemma 1, the condition t = Ω(log(n)) is anyway needed for

interpretingm0n0 as the representative cluster size.

IV. GENERAL FINITE ALPHABET AND NON-UNIFORM CLUSTERS

In this section, we consider a general finite alphabetA and non-uniform cluster sizes. We work with

assumptions B1)-B3) described in the Section II and generalize the results in Section III. To state our

results, we first introduce some notation. Forp, q ∈ A, define

µpq :=
∑

yi 6=yj

q(yi|p)q(yj|q). (7)

If A1, A2 are i.i.d. uniform onA and we pass them through the DMCq(·|·) to get outputsÃ1, Ã2, then

Pr(Ã1 6= Ã2|A1 = A2) =
1

|A|

∑

p∈A

µpp =: dlb

Pr(Ã1 6= Ã2) =
1

|A|2

∑

p,q∈A

µpq =: dub.
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The following useful lemma sheds light on the relationship betweendlb anddub.

Lemma 2: For any DMC,dub ≥ dlb, with equality iff q(y|p) = q(y|q) ∀ p, q, y ∈ A.

Proof: The proof is given in Section VI-E.

We next state our main result for general finite alphabet and non-uniform cluster size.

Theorem 4: Suppose conditions B1)-B3) are true and the clusters areunknown. Then there exist

constantsp1, p2 ∈ (0, 1), p1 > p2 such that

1) Converse: If

max
i,j

minj < (1− η)
ln(mn)

ln(1/p2)
, η > 0,

then P̄e → 1 for any estimator.

2) Achievability: Suppose that there exist somey, p, q ∈ A such thatp 6= q andq(y|p) 6= q(y|q). (By

Lemma 2, this ensures thatdlb < dub.) If n2/(n2
1 +n2

2 + . . .+n2
t ) = Ω(log(m)), m2/(m2

1 +m2
2 +

. . .+m2
r) = Ω(log(n)), lim supm/n < ∞, lim supn/m < ∞ and

min
i,j

minj >
ln(mn)

ln(1/p1)
,

then P̄e → 0 for the following polynomial time estimator:

• Cluster rows and columns using the algorithm of Section III-C using the thresholdd0 ∈

(dlb, dub) (which does not depend onǫ,mi, nj).

• Employ maximum likelihood decoding in a cluster assuming the clustering is correct.

Proof: The proof is similar to Theorem 1; we now use Theorems 5 and 6 inplace of Theorems 2

and 3 respectively.

The above result again identifiesln(mn) as the exact order of the cluster size threshold for asymptotic

recovery. Similar to the binary alphabet and uniform cluster size case in Section III, the constantsp1, p2

arise from the case when the clusters are known (see Theorem 5below). The gap between the constants

p1, p2 can be made arbitrarily small: the proof of Theorem 5 identifies a constantC1 (see equation (29))

such that for anyδ > 0,

p1 = ǫ+ (1− ǫ) exp(−C1 + δ), p2 = ǫ+ (1− ǫ) exp(−C1 − δ)

is a valid choice in Theorem 4.

We next consider the case when the clusters are known and extend Theorem 2.

Theorem 5: Suppose conditions B1)-B3) are true and in addition assume that the clusters areknown.

Also let

s∗(X) ≥
ln(1/2|A|)

ln(ǫ/p2)
, (8)

July 12, 2021 DRAFT
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wherep1, p2 are as defined above. Then for a sequence of rating matrices ofincreasing sizemn → ∞,

the following are true.

1) If

s∗(X) ≥
ln(mn)

ln(1/p1)
,

thenPe|A,B(X) → 0.

2) If

s∗(X) ≤
(1− ζ) ln(mn)

ln(1/p2)
, for someζ > 0,

thenPe|A,B(X) → 1.

Proof: The proof is given in Section VI-D.

Finally, we study the performance of the clustering algorithm and extend Theorem 3.

Theorem 6: Suppose conditions B1)-B3) are true and in addition supposethat there exist somey, p, q ∈

A such thatp 6= q and q(y|p) 6= q(y|q). (By Lemma 2, this ensures thatdlb < dub.) If we choose the

thresholdd0 ∈ (dlb, dub), then

P̄e,rc ≤ c′
m(m− 1)

2
exp

(

−cn2/(n2
1 + n2

2 + . . .+ n2
t )
)

, (9)

for some positive constantsc, c′. Consequently, ifn2/(n2
1+n2

2+ . . .+n2
t ) = Ω(log(m)), thenP̄e,rc → 0

asm,n → ∞.

Proof: The proof is given in Section VI-F.

V. CONCLUSION

We take a channel coding perspective of collaborative filtering and identify the threshold on cluster

size for perfect reconstruction of the underlying rating matrix. The result is similar in flavor to some

recent results in completion of real-valued matrices. The advantage of our model is that the proofs are

relatively simple relying on Chernoff bounds and noisy userbehavior can be easily handled.

In the typical applications of recommendation systems, there is a lack of good models. We believe that

our model has two characteristics that make it suitable for analytical comparison of various methods:

a) in our model the user opinions are diverse and no single user/item reveals much information about

itself, that is, collaborative filtering is necessary; b) aswe have shown, the model is analytically tractable.

There are several directions where this model may turn out tobe useful: analysis of bit error probability

instead of block error probability, analysis of local popularity based mechanisms, etc.
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VI. PROOFS OFRESULTS

A. Proof of Theorem 1

The proof is based on Theorems 2 and 3.

WhenA,B are known, under our model all feasible rating matrices are equally likely. Hence the ML

decoder gives the minimum probability of error and so we haveP̄e ≥ E[Pe|A,B(X)]. To prove Part 1),

we lower boundE[Pe|A,B(X)]. Let T be the event thats∗(X) > m0n0. Proceeding as in Lemma 1, we

have fort ≥ (2 + δ) log2(n), r ≥ (2 + δ) log2(m), δ > 0,

Pr(T ) ≤
1

mδ
+

1

nδ
.

Hence Pr(T ) → 0. Now,

E[Pe|A,B(X)] ≥ E[Pe|A,B(X);T c].

But on the eventT c, s∗(X) = m0n0 and hence we get

P̄e ≥ E[Pe|A,B(X)] ≥ (1− Pr(T ))Pe|A,B(X). (10)

But from Part 1) of Theorem 2,Pe|A,B(X) → 1 for

m0n0 < (1− δ)
ln(mn)

ln(1/p1)
, δ > 0.

This proves Part 1).

Next we prove Part 2). LetD denote the event that the clustering is identified correctly. We note that

the probability of error in estimatingX averaged over the probability law on the block constant matrices

satisfies

P̄e ≤ E
[

Pe|A,B(X)Pr(D) + Pr(Dc)
]

≤ E
[

Pe|A,B(X)
]

+
(

P̄e,rc + P̄e,cc

)

where P̄e,cc is the probability of error in column clustering. The desired result follows from Part 2) of

Theorem 2 and Theorem 3.
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B. Proof of Theorem 2

Suppose in clusterAi×Bj we haves non erased samples. Then the probability of correct decision in

this cluster is given by

Pr(Ec
i,j,s) =

⌊ s

2
⌋

∑

q=0

(

s

q

)

pq(1− p)s−q if s is odd

=

s

2
−1
∑

q=0

(

s

q

)

pq(1− p)s−q

+
1

2

(

s
s
2

)

p
s

2 (1− p)
s

2 if s is even.

(11)

Averaging over the number of non erased samples, the probability of correct decision in clusterAi ×Bj

is given by

Pr(Ec
i,j) =

minj
∑

s=0

(

minj

s

)

ǫminj−s(1− ǫ)sPr(Ec
i,j,s). (12)

Since the erasure and BSC are memoryless

Pe|A,B(X) = Pr
(

∪r,t
i=1,j=1Ei,j

)

= 1−

r,t
∏

i=1,j=1

Pr
(

Ec
i,j

)

. (13)

Equations (11), (12), and (13) specify the probability of error.

Upper Bound: The desired upper bound is obtained by deriving a lower boundon Pr(Ec
i,j,s). First we

note that from (11),

1− Pr(Ec
i,j,s) ≤

s
∑

⌈ s

2
⌉

(

s

q

)

pq(1− p)s−q.

But for 0 ≤ p ≤ 1
2 andq ≥ s

2 , pq(1− p)s−q ≤ p
s

2 (1− p)
s

2 . Substituting this in the previous equation, we

have

Pr(Ec
i,j,s) ≥ 1− (2

√

p(1− p))s. (14)

From Equations (12) and (14), we have Pr(Ec
i,j) ≥ 1− p

minj

1 and so from (13),

Pe|A,B(X) ≤ 1−

r,t
∏

i=1,j=1

(

1− p
minj

1

)

.

We note that forx ∈ [0, 1/2], 1− x ≥ exp(−2 ln(2)x). Hence

exp



−2 ln(2)

r,t
∑

i=1,j=1

p
minj

1



 ≤

r,t
∏

i=1,j=1

(

1− p
minj

1

)

.
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Where the first inequality holds forpminj

1 ≤ 1/2. This is true sinces∗(X) ≥ ln(2)/ln(1/p1). The upper

bound follows by noting that
r,t
∑

i=1,j=1

p
minj

1 ≤ rtp
s∗(X)
1 ≤

mn

s∗(X)
p
s∗(X)
1 .

Lower Bound: The lower bound onPe|A,B(X) is obtained from an upper bound on Pr(Ec
i,j,s). From

(11),

1− Pr(Ec
i,j,s) ≥

1

2

(

s

⌈s/2⌉

)

p⌈s/2⌉(1− p)s−⌈s/2⌉,

≥
1

2(s + 1)
2sh(⌈s/2⌉/s)p⌈s/2⌉(1− p)s−⌈s/2⌉.

If s is even, we have

1− Pr(Ec
i,j,s) ≥

1

2(s + 1)

(

2
√

p(1− p)
)s

. (15)

For s odd,

h (⌈s/2⌉/s) = h(1/2 + 1/2s) ≥ 1− 1/s2,

and so

1− Pr(Ec
i,j,s) ≥

2−1/s

2(s + 1)

√

p

1− p

(

2
√

p(1− p)
)s

. (16)

From (15) and (16), we have for alls,

1− Pr(Ec
i,j,s) ≥

1

4(s + 1)

√

p

1− p

(

2
√

p(1− p)
)s

. (17)

Now from (12),

Pr(Ec
i,j) ≤ 1−

1

4

√

p

1− p

minj
∑

s=0

(

minj

s

)

ǫminj−s
(

(1− ǫ)2
√

p(1− p)
)s 1

s+ 1

≤ 1−
p
minj

1

4(minj + 1)

√

p

1− p
.

Using this bound on Pr(Ec
i,j) in (13), we have

Pe|A,B(X) ≥ 1−

r,t
∏

i=1,j=1

(

1−
p
minj

1

4(minj + 1)

√

p

1− p

)

≥ 1− exp



−
1

4

√

p

1− p

r,t
∑

i=1,j=1

p
minj

1

minj + 1



 (18)

≥ 1− exp

(

−
1

4

√

p

1− p
rt

p
s∗(X)
1

s∗(X) + 1

)

≥ 1− exp

(

−
1

4

√

p

1− p
mn

p
s∗(X)
1

s∗(X) + 1

)

,
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where in (18) we have used1− x ≤ exp(−x). This completes the proof of (1).

Asymptotics: Now consider a sequence of rating matrices of increasing size. The upper bound on error

in (1) is a decreasing function ofs∗(X). Hence if

s∗(X) ≥
ln(mn)

ln(1/p1)
,

then

Pe|A,B(X) ≤
2 ln(2) ln(1/p1)

ln(mn)
→ 0.

Now suppose

s∗(X) ≤
(1− δ) ln(mn)

ln(1/p1)
, for someδ > 0.

The lower bound on error (1) is a decreasing function ofs∗(X), and hence substituting the above upper

bound ons∗(X), we have

Pe|A,B(X) ≥ 1− exp

(

−c1
(mn)δ

(c2 + ln(mn)) ln(mn)

)

,

wherec1, c2 are some positive constants. HencePe|A,B(X) → 1 asmn → ∞.

C. Proof of Theorem 3

Recall thatNij is the number of commonly sampled positions in rowsi andj, given by

Nij =

n
∑

k=1

1 (Yik 6= e, Yjk 6= e) .

From the Chernoff bound [10, Theorem 1], we have

Pr
(

Nij > nr1(1− ǫ)2
)

≤ exp
(

−nD
(

r1(1− ǫ)2||(1 − ǫ)2
))

= exp(−nα1), and (19)

Pr
(

Nij < nr2(1− ǫ)2
)

≤ exp
(

−nD
(

r2(1− ǫ)2||(1 − ǫ)2
))

= exp(−nα2). (20)

To get a handle on the probability of error, we first analyze itconditioned on the erasure sequence and

X. Let Ē denote the erasure matrix:

Ē = [1(Yij = e)]m×n ∈ {0, 1}m×n.

Rows in Same Cluster: Consider rowsi, j of X and supposeIij = 1, i.e. i, j are in the same cluster.

We wish to evaluate the probability of error Pr(dij ≥ d0
∣

∣Iij = 1, Ē,X). In this case, the random variable

Nijdij is given by

Nijdij =
∑

Yik,Yjk 6=e
Xik=Xjk

1 (Yik 6= Yjk) .
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For any columnk such thatYik 6= e,Yjk 6= e, the indicator1(Yik 6= Yjk) has meanµ = 2p(1 − p).

Hence, the above summation hasNij i.i.d Bernoulli random variables of meanµ. An application of

Chernoff bound [10, Theorem 1] yields

Pr
(

dij ≥ d0

∣

∣

∣Iij = 1, Ē,X
)

≤ exp (−NijD(d0||µ)) . (21)

The bound is independent ofX. We only need to take the average of (21) with respect toĒ. Using (20),

we have

Pr
(

Îij = 0
∣

∣Iij = 1
)

= Pr
(

dij ≥ d0

∣

∣

∣
Iij = 1

)

≤ exp
(

−n(1− ǫ)2r2D(d0||µ)
)

+ exp(−nα2),

≤ 2 exp
(

−nmin
{

r2(1− ǫ)2D(d0‖|µ), α2

})

. (22)

Rows in Different Clusters: Next consider the caseIij = 0, i.e. rowsi andj are in different clusters.

We wish to evaluate Pr(dij ≤ d0
∣

∣Iij = 0, Ē,X). For Iij = 0 and fixedĒ, X, the random variableNijdij

is given by

Nijdij =
∑

Yik,Yjk 6=e
Xik=Xjk

1 (Yik 6= Yjk) +
∑

Yik,Yjk 6=e
Xik 6=Xjk

1 (Yik 6= Yjk) . (23)

Note that for any columnk such thatYik 6= e,Yjk 6= e, the indicator1(Yik 6= Yjk) has mean

• 2p(1 − p) = µ if Xik = Xjk, and

• p2 + (1− p)2 = ν if Xik 6= Xjk.

DefineSij as the number of columnsk such thatYik 6= e,Yjk 6= e andXik 6= Xjk. Then from (23),we

observe that the first sum in (23) hasNij−Sij i.i.d Bernoulli random variables of meanµ and the second

sum hasSij i.i.d Bernoulli random variables of meanν, all the random variables being independent.

Using the Chernoff bound, we may then write

Pr
(

dij ≤ d0

∣

∣

∣
Iij = 0, Ē,X

)

≤
(1− ν + νeθ)Sij (1− µ+ µeθ)Nij−Sij

ed0Nijθ
, for θ ≤ 0. (24)

By substitutingh = 1− exp(θ), we can rewrite the above bound as

Pr
(

dij ≤ d0

∣

∣

∣
Iij = 0, Ē,X

)

≤
(1− νh)Sij (1− µh)Nij−Sij

(1− h)d0Nij
, for 0 ≤ h < 1. (25)

We are free to choose0 ≤ h < 1 in the above bound. We chooseh such that the bound is optimized for

the average caseSij = Nij/2. For this case, the bound in (25) reduces to
(

(1− νh)(1 − µh)

(1− h)2d0

)Nij/2

.
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The value ofh that minimizes this bound can be checked to be the smaller root of the quadratic given

by (2).

Next, we take expectation in (25) with respect to the erasuresequencēE. Let sij denote the number

of columnsk such thatXik 6= Xjk. Then we have, from the Chernoff bound, as in (20),

Pr
(

Sij > sijr1(1− ǫ)2
)

≤ exp(−sijα1). (26)

Now, from (25), we have

Pr
(

dij ≤ d0

∣

∣

∣
Iij = 0, Ē,X

)

≤

(

1− µh

(1− h)d0

)Nij
(

1− νh

1− µh

)Sij

, for 0 ≤ h < 1.

Now, sinceµ < ν ≤ 1, we have
1− νh

1− µh
< 1, for h ≥ 0.

First note that the functionf(h) = (1− µh)/(1 − h)d0 for h ∈ [0, 1) has derivative

f ′(h) =
d0 − µ+ µh(1− d0)

(1− h)d0

.

Sinceµ < d0 < 1, f ′(h) > 0 and sof(h) > f(0) = 1. Hence(1 − µh)/(1 − h)d0 > 1. Now if

Sij > sijr2(1− ǫ)2 andNij < nr1(1− ǫ)2, then

Pr
(

dij ≤ d0

∣

∣

∣Iij = 0, Ē,X
)

≤

(

1− µh

(1− h)d0

)nr1(1−ǫ)2 (1− νh

1− µh

)sijr2(1−ǫ)2

, for 0 ≤ h < 1.

Combining this with (26) and (19), we have

Pr
(

dij ≤ d0

∣

∣

∣
Iij = 0,X

)

≤

(

1− µh

(1− h)d0

)nr1(1−ǫ)2 (1− νh

1− µh

)sijr2(1−ǫ)2

+ Pr
(

Sij < sijr2(1− ǫ)2
)

+ Pr
(

Nij > nr1(1− ǫ)2
)

,

≤

(

1− µh

(1− h)d0

)nr1(1−ǫ)2 (1− νh

1− µh

)sijr2(1−ǫ)2

+ exp(−sijα2) + exp(−nα1).

(27)

Sincesij = n0X, whereX is Binomial(t, 1/2), we have

E [exp(λsij)] = E [exp(λn0X)] =

(

1 + exp(λn0)

2

)t

.

Now taking expectation with respect toX in (27), we have

P (Îij = 1
∣

∣Iij = 0) = Pr
(

dij ≤ d0

∣

∣

∣
Iij = 0

)

≤

(

1− µh

(1− h)d0

)nr1(1−ǫ)2

λ1(n0)
t + λ2(n0)

t + exp(−α1n) = P1. (28)
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It remains to show that

P (Îij = 1
∣

∣Iij = 0) ≤ P2.

This result follows from (9) of Theorem 6 for the general case, which is proved in Section VI-F.

D. Proof of Theorem 5

For simplicity letY1, ..., Ys denote thes samples in blockAi × Bj. Let µa := q(·|a), a ∈ A be the

transition law of the channel for inputa and letµY denote the empirical probability mass function (PMF)

of Y1, ..., Ys. Let Eijs be the error event when the(i, j)th block hass samples. For simplicity letPs

denote the set of types with denominators [8, pp. 348] and define the set of PMFs:

Ua,b := {ν : D(ν‖µb) ≤ D(ν‖µa)} ∩ Ps, Va,b := {ν : D(ν‖µb) < D(ν‖µa)} ∩ Ps.

Upper Bound: Then

Pr(Eijs) =
1

|A|

∑

a∈A

Pr(Eijs|a)

≤
1

|A|

∑

a∈A

∑

b∈A,b6=a

Pr(D(µY ‖µb) ≤ D(µY ‖µa)|a)

≤
1

|A|

∑

a,b∈A,a6=b

∑

ν∈Ua,b

exp (−sD(ν‖µa)) ,

where in the second step we have used the union bound and in thelast step we have used [8, Theorem

11.1.4, pp. 354]. Let

C1 := lim
s→∞

−
1

s
ln





∑

a,b∈A,a6=b

∑

ν∈Ua,b

exp (−sD(ν‖µa))



 = min
a6=b

min
{ν:D(ν‖µb)≤D(ν‖µa)}

D(ν‖µa). (29)

Then forδ > 0 small, for s > s0(δ), we have

Pr(Eijs) ≤
exp (−(C1 − δ)s)

|A|
,

while for s ≤ s0 we can bound this probability by 1. Hence we have from (12),

Pr(Ec
ij) = E

[

Pr(Ec
ijs)
]

≥ E

[

1(s ≥ s0)

(

1−
exp (−(C1 − δ)s)

|A|

)]

= E

[

1−
exp (−(C1 − δ)s)

|A|

]

− E

[

1(s < s0)

(

1−
exp (−(C1 − δ)s)

|A|

)]

≥ E

[

1−
exp (−(C1 − δ)s)

|A|

]

− E [1(s < s0)]

= E

[

1−
exp (−(C1 − δ)s)

|A|

]

− Pr(s < s0). (30)
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But for large enoughminj using the Chernoff bound [10, Theorem 1],

Pr(s < s0) ≤ exp (−minjD(s0/minj||1 − ǫ)) . (31)

As minj → ∞, D(s0/minj||1− ǫ) → ln(1/ǫ). Hence given anyη > 0, for large enoughminj, we have

D(s0/minj||1− ǫ) ≥ ln(1/(ǫ + η)).

Hence, from (30) and (31),

Pr(Ec
ij) ≥ E

(

1−
exp (−(C1 − δ)s)

|A|

)

− (ǫ+ η)minj

= 1−
p
minj

1

|A|
− (ǫ+ η)minj

where we have used the fact thats is Binomial(minj, 1 − ǫ) and so the binomial expansion. Note that

ǫ < p1, and hence we can chooseη so thatǫ+ η < p1. Hence we have

Pr(Ec
ij) ≥ 1−

2p
minj

1

|A|

Using (13), we then have

Pe|A,B(X) ≤ 1−

r,t
∏

i=1,j=1

(

1− 2p
minj

1 /|A|
)

≤ 1− exp



−
4 ln(2)

|A|

r,t
∑

i=1,j=1

p
minj

1



 , (32)

where in the last step we have used1−x ≥ exp(−2 ln(2)x) for x ∈ [0, 1/2]. Note that for large enough

minj, we havepminj

1 < 1/2. But using

r,t
∑

i=1,j=1

p
minj

1 ≤ rtp
s∗(X)
1 ≤

mn

s∗(X)
p
s∗(X)
1 ,

we have,

Pe|A,B(X) ≤ 1− exp

(

−
4 ln(2)mnp

s∗(X)
1

|A|s∗(X)

)

. (33)

The RHS in (33) is a decreasing function ofs∗(X). Hence if

s∗(X) ≥
ln(mn)

ln(1/p1)
,

then

Pe|A,B(X) ≤ 1− exp

(

−
4 ln(2) ln(1/p1)

|A| ln(mn)

)

→ 0.
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Lower Bound: Next we give a lower bound on Pr(Eijs). If for eacha we consider someb 6= a, then

we get

Pr(Eijs) =
1

|A|

∑

a∈A

Pr(Eijs|a)

≥
1

|A|

∑

a∈A

Pr(D(µY ‖µb) < D(µY ‖µa)|a) ,

≥
1

|A|

∑

a∈A

∑

ν∈Va,b

exp (−sD(ν‖µa))

(s + 1)|A|
,

≥
1

|A|(minj + 1)|A|

∑

a∈A

∑

ν∈Va,b

exp (−sD(ν‖µa)) ,

where again we have used [8, Theorem 11.1.4, pp. 354] in the third step. Since we are free to chooseb,

we choose it such that

b = argmin
b6=a

min
{ν:D(ν‖µb)<D(ν‖µa)}

D(ν‖µa).

Then we see that

lim
s→∞

−
1

s
ln





∑

a∈A

∑

ν∈Va,b

exp (−sD(ν‖µa))



 = C1.

Hence forδ > 0, for s > s1(δ),

Pr(Eijs) ≥
exp (−(C1 + δ)s)

|A|(minj + 1)|A|

and for smallers we use the trivial bound that the probability is non-negative. Hence we have from (12),

Pr(Ec
ij) = E

(

Pr(Ec
ijs)
)

≤ E

(

1−
exp (−(C1 + δ)s)

|A|(minj + 1)|A|

)

+ Pr(s < s1) (34)

≤ 1−
p
minj

2

|A|(minj + 1)|A|
+ exp (−minjD(s1/minj||1 − ǫ)) (35)

≤ 1−
p
minj

2

|A|(minj + 1)|A|
+ ǫminj (36)

≤ 1−
p
minj

2

|A|
+ ǫminj ,

where in (35) we have used the Chernoff Bound [10, Theorem 1],in (36) we have used the fact that

D(s1/minj||1− ǫ) → ln(1/ǫ) monotonically and in the last step we have usedminj ≥ 0. Further, from

(8), we have

ǫminj ≤
p
minj

2

2|A|
,

and hence

Pr(Ec
ij) ≤ 1−

p
minj

2

2|A|
.
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Using (13), we then have

Pe|A,B(X) ≥ 1−

r,t
∏

i=1,j=1

(

1−
p
minj

2

2|A|

)

≥ 1− exp



−
1

2|A|

r,t
∑

i=1,j=1

p
minj

2



 , (37)

where to obtain (37) we have used1− x ≤ exp(−x). Now since

r,t
∑

i=1,j=1

p
minj

2 ≥ rtp
s∗(X)
2 ≥

mn

s∗(X)
p
s∗(X)
2 ,

we have

Pe|A,B(X) ≥ 1− exp

(

−
mn

2|A|s∗(X)
p
s∗(X)
2

)

.

The RHS above is a decreasing function ofs∗(X), and hence if

s∗(X) ≤
(1− ζ) ln(mn)

ln(1/p2)
, for someδ > 0,

we have

Pe|A,B(X) ≥ 1− exp

(

−
(mn)ζ

2|A|(1− ζ) ln(mn)

)

,

and hencePe|A,B(X) → 1 asmn → ∞.

E. Proof of Lemma 2

We recall

dub =
∑

p,q

µpq/|A|
2 =

∑

p,q

∑

y 6=z

q(y|p)q(z|q)/|A|2.

Adding and subtracting the terms corresponding toy = z, we have,

dub =
∑

p,q

∑

y,z

q(y|p)q(z|q)/|A|2

−
∑

p,q

∑

y

q(y|p)q(y|q)/|A|2

=

(

∑

p,y

q(y|p)

)2

/|A|2 −
∑

p,q

∑

y

q(y|p)q(y|q)/|A|2.
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Now,
∑

p,y q(y|p) is the sum of all entries of the transition probability matrix, and hence is equal to|A|.

So we have

dub = 1−
∑

p,q

∑

y

q(y|p)q(y|q)/|A|2

= 1−
∑

y

(

∑

p

q(y|p)

)2
/

|A|2. (38)

Similarly

dlb =
∑

p

µpp/|A| =
∑

p

∑

y 6=z

q(y|p)q(z|p)/|A|.

Adding and subtracting the terms coresponding toy = z, we have,

dlb =
∑

p

∑

y,z

q(y|p)q(z|p)/|A| −
∑

p

∑

y

q2(y|p)/|A|

=
∑

p

(

∑

y

q(y|p)

)2

/|A| −
∑

p

∑

y

q2(y|p)/|A|

= 1−
∑

y

∑

p

q2(y|p)/|A|. (39)

In the last step we have used
∑

y q(y|p) = 1 for the first term. From (38) and (39), we have

dub − dlb =
1

|A|2

∑

y



|A|
∑

p

q2(y|p)−

(

∑

p

q(y|p)

)2


 .

From the Cauchy-Schwarz inequality,
(

∑

p

q(y|p)

)2

≤ |A|
∑

p

q2(y|p),

with equality iff q(y|p) = q(y|q) for all p, q. The result then follows.

F. Proof of Theorem 6

We begin with a lemma that provides some useful upper bounds.

Lemma 3: Let Z1, Z2, Z3, . . . , Zt be i.i.d with meanµ such that0 ≤ Zi ≤ 1, ∀ i ∈ [1 : t]. Let

m1,m2, . . . ,mt andm be positive integers such that
∑

imi = m. Let

β =
1

m

t
∑

i=1

miZi.

Then the following hold for sufficiently largen.
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1) For d0 > µ,

Pr(β > d0)

≤ exp
(

−2(d0 − µ)2m2/(m2
1 +m2

2 + . . .+m2
t )
)

. (40)

2) For d0 < µ,

Pr(β < d0)

≤ exp
(

−2(d0 − µ)2m2/(m2
1 +m2

2 + . . .+m2
t )
)

.

(41)

3) For any positive constantc, there exists a positive constanta such that

E
(

exp(−cm(β − d0)
2)
)

≤ exp
(

−a(d0 − µ)2m2/(m2
1 +m2

2 + . . .+m2
t )
)

. (42)

Proof of Lemma 3: (40) and (41) are direct applications of the Chernoff bound [10, Theorem 2]. (This

particular form is also known as Hoeffding’s inequality.) To prove (42), first assume thatd0 > µ. Then

E
(

exp(−cm(β − d0)
2)
)

≤ Pr(
∣

∣β − d0
∣

∣ < (d0 − µ)/2) + exp(−cm(d0 − µ)2/4)

≤ Pr(β > d0 − (d0 − µ)/2) + exp(−cm(d0 − µ)2/4)

≤ exp
(

−(d0 − µ)2m2/2(m2
1 +m2

2 + . . .+m2
t )
)

+ exp(−cm(d0 − µ)2/4) from (40).

Now, from the Cauchy-Schwarz inequality, we have

m2/(m2
1 +m2

2 + . . . +m2
t ) ≤ t ≤ m.

This gives witha < min{1/2, c/4},

E
(

exp(−cm(β − d0)
2)
)

≤ exp
(

−a(d0 − µ)2m2/(m2
1 +m2

2 + . . .+m2
t )
)

, (43)

for sufficiently largen.

To prove (42) in the cased0 < µ, first note that (40) and (41) hold even when the random variables

take values in[−1, 0]. Then apply the above result for the random variables−Zi, i ∈ [1 : t].

As in the proof of Theorem 3, we first analyze the probability of error conditioned on the erasure

sequence andX. Let Ē denote the erasure matrix. That is,

Ē = (1(Yij = e))m×n ∈ {0, 1}m×n.
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Rows in Same Cluster: First consider case whenIij = 1, i.e. i, j are in the same cluster. We wish to

evaluate the probability of error Pr(dij ≥ d0
∣

∣Iij = 1, Ē,X). Definesij(p, p) as the number of columns

k such thatYik 6= e,Yjk 6= e andXik = p. Clearly,

∑

p

sij(p, p) = Nij .

Note that for suchk, the indicator1(Yik 6= Yjk) has meanµpp. Hence, forIij = 1 and a fixedĒ, the

random variableNijdij is given by

Nijdij =
∑

p∈A

∑

Yik,Yjk 6=e
Xik=p=Xjk

1 (Yik 6= Yjk) .

The above summation hassij(p, p) i.i.d Bernoulli random variables of meanµpp, for eachp ∈ A, all

the random variables being independent. Hence the charcterstic function ofNijdij (for Iij = 1, fixed Ē

andX) is given by

∏

p∈A

(1− µpp + µppe
θ)sij(p,p).

Using the Chernoff Bound, we have

Pr
(

dij ≥ d0

∣

∣

∣
Iij = 1, Ē,X

)

≤

∏

p(1− µpp + µppe
θ)sij(p,p)

ed0Nijθ
, for any θ ≥ 0.

By using the inequality1 + x ≤ ex, we obtain

Pr
(

dij ≥ d0

∣

∣

∣Iij = 1, Ē,X
)

≤ exp
(

Nijβij(e
θ − 1)−Nijd0θ

)

, θ ≥ 0,

where

βij =

∑

p∈A µppsij(p, p)

Nij
. (44)

Using

θ =











max{ln(d0/βij), 0} if βij 6= 0

∞ if βij = 0,
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we obtain

Pr
(

dij ≥ d0
∣

∣Iij = 1, Ē,X
)

≤



























exp
(

Nij(d0 − βij) +Nijd0 ln
(

βij

d0

))

if 0 < βij ≤ d0

1 if βij > d0

0 if βij = 0.

(45)

For tractability, we further simplify this bound. To do so wenote that for−1 < x ≤ 0 and0 < c < 1/2,

the functionf(x) = ln(1 + x)− x+ cx2 is increasing. This can be seen by noting that

f ′(x) =
x(2c− 1 + 2cx)

1 + x
.

Sincex/(1 + x) ≤ 0 and2c− 1 + 2cx < 0, we havef ′(x) ≥ 0. Henceln(1 + x)− x+ cx2 ≤ 0 in the

interval−1 < x ≤ 0. Now for 0 < βij ≤ d0, −1 < (βij − d0)/d0 ≤ 0, and so

ln

(

βij
d0

)

≤
βij − d0

d0
− c

(

βij − d0
d0

)2

.

Using this in (45), ford0 ≥ βij , we have

Pr
(

dij ≥ d0
∣

∣Iij = 1, Ē,X
)

≤ exp

(

−cNij
(βij − d0)

2

d0

)

. (46)

Taking expectation overX, we obtain

Pr
(

dij ≥ d0

∣

∣

∣Iij = 1, Ē
)

≤ Pr
(

βij > d0
∣

∣Iij = 1, Ē
)

+ E

[

exp

(

−cNij
(βij − d0)

2

d0

)

∣

∣

∣Iij = 1, Ē

]

(47)

=: T1 + T2.

We next boundT1 andT2.

For l ∈ [1 : t], let nl(Ē) denote the number of commonly sampled positions for rowsi and j in the

lth column cluster, i.e.

nl(Ē) =
∑

k in clusterl

1 (Yik 6= e, Yjk 6= e) .

Note that
t
∑

l=1

nl(Ē) = Nij
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and

sij(p, p) =
t
∑

l=1

nl(Ē)1(Xi{l} = p),

whereXi{l} is the rating vector of useri in the lth column cluster. From (44) and the above equation,

Nijβij =
∑

p∈A

µpp

t
∑

l=1

nl(Ē)1(Xi{l} = p)

=

t
∑

l=1

nl(Ē)
∑

p∈A

µpp1(Xi{l} = p), (48)

where the random variable

Zl =
∑

p∈A

µpp1(Xi{l} = p)

takes the valueµpp with probability1/|A|, for eachp ∈ A. The mean ofZl is dlb =
∑

p µpp/|A|. Further,

Zl’s are i.i.d. From (48), Lemma 3 can be applied toβ = βij , Zl, mi = ni(Ē). Using (40) of Lemma

3, we have

T1 ≤ exp
(

−a1(d0 − dlb)
2N2

ij/(n
2
1(Ē) + n2

2(Ē) + . . . + n2
t (Ē))

)

for some positive constanta1. Similarly using (42) of Lemma 3, we have

T2 ≤ exp
(

−a2(d0 − dlb)
2N2

ij/(n
2
1(Ē) + n2

2(Ē) + . . . + n2
t (Ē))

)

for some positive constanta2. From (47), we then have

Pr
(

dij ≥ d0

∣

∣

∣
Iij = 1, Ē

)

≤ T1 + T2

≤ 2 exp
(

−a(d0 − dlb)
2N2

ij/(n
2
1(Ē) + n2

2(Ē) + . . .+ n2
t (Ē))

)

for some positive constanta and for sufficiently largen. Usingnl(Ē) ≤ nl, we can loosen the bound to

Pr
(

dij ≥ d0

∣

∣

∣Iij = 1, Ē
)

≤ 2 exp
(

−a(d0 − dlb)
2N2

ij/(n
2
1 + n2

2 + . . .+ n2
t )
)

.

Taking expectation over̄E, for α = r2(1− ǫ)2 and suitable positive constantsc1, c2 andc, we have,

Pr
(

dij ≥ d0

∣

∣

∣
Iij = 1

)

≤ 2 exp
(

−a(d0 − dlb)
2α2n2/(n2

1 + n2
2 + . . . + n2

t )
)

+ Pr(Nij < nα)

≤ 2 exp
(

−c1n
2/(n2

1 + n2
2 + . . .+ n2

t )
)

+ exp(−c2n) (49)

≤ c′ exp
(

−cn2/(n2
1 + n2

2 + . . . + n2
t )
)

, (50)
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where in (49) we have used (20). (50) is obtained by a similar argument as used to obtain (43) using

Cauchy Schwarz inequality.

Rows in Different Clusters: Next consider the caseIij = 0, i.e. rowsi andj are in different clusters. The

bounding technique is similar to the case whenIij = 1. We wish to evaluate Pr(dij ≤ d0
∣

∣Iij = 0, Ē,X).

Let sij(p, q) be the number of columnsk such thatYik 6= e,Yjk 6= e,Xik = p andXjk = q. Then for

a Iij = 0 and fixedĒ, X, the random variableNijdij is given by

Nijdij =
∑

p,q∈A

∑

Yik,Yjk 6=e
Xik=p,Xjk=q

1 (Yik 6= Yjk) .

The above summation hassij(p, q) i.i.d Bernoulli random variables of meanµpq, for each(p, q) ∈ A
2,

all the random variables being independent. Using the Chernoff Bound, we may then write

Pr
(

dij ≤ d0

∣

∣

∣Iij = 0, Ē,X
)

≤

∏

p,q(1− µpq + µpqe
θ)sij(p,q)

ed0Nijθ
θ ≤ 0.

By using the inequality1 + x ≤ ex we obtain

Pr
(

dij ≤ d0

∣

∣

∣Iij = 0, Ē,X
)

≤ exp
(

Nijβij(e
θ − 1)−Nijd0θ

)

, for any θ ≤ 0,

where

βij =

∑

p,q∈A µpqsij(p, q)

Nij
. (51)

Using θ = min{ln(d0/βij), 0}, we obtain

Pr
(

dij ≤ d0
∣

∣Iij = 0, Ē,X
)

≤











exp
(

Nij(d0 − βij) +Nijd0 ln
(

βij

d0

))

if βij ≥ d0

1 if βij < d0.

(52)

But sij(p, q) ≤ Nij , and so

βij
d0

≤

∑

p,q µpq

d0
= 1 + s,

wheres is defined as

s :=

∑

p,q µpq

d0
− 1.
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So for βij ≥ d0, we have0 ≤ (βij − d0)/d0 ≤ s. But for any 0 < c < 1/(2(1 + s)), the function

f(x) = ln(1 + x)− x+ cx2 is a decreasing function on[0, s]. So we have the following

ln

(

βij
d0

)

≤
βij − d0

d0
− c

(

βij − d0
d0

)2

.

Using this in (52), forβij ≥ d0, we have

Pr
(

dij ≤ d0
∣

∣Iij = 0, Ē,X
)

≤ exp

(

−cNij
(βij − d0)

2

d0

)

. (53)

Taking expectation overX, we obtain

Pr
(

dij ≤ d0

∣

∣

∣
Iij = 0, Ē

)

≤ Pr
(

βij < d0

∣

∣

∣Iij = 0, Ē
)

+ E

[

exp

(

−cNij
(βij − d0)

2

d0

)

∣

∣

∣
Iij = 0, Ē

]

. (54)

Then we follow the same line of arguments as in the case whenIij = 1. Note that now

Nijβij =
∑

p∈A

µpp

t
∑

l=1

nl(Ē)1(Xi{l} = p)

=

t
∑

l=1

nl(Ē)
∑

p∈A

µpp1(Xi{l} = p), (55)

where the random variable

Zl =
∑

p,q∈A

µpq1(Xi{l} = p)1(Xj{l} = q)

takes the valueµpq with probability 1/|A|2. The mean ofZl is dub =
∑

p,q µpq/|A|
2. Further,Zl’s are

i.i.d Applying Lemma 3 and (20) as in the case ofIij = 1, we again have

Pr
(

dij ≤ d0

∣

∣

∣
Iij = 0

)

≤ c′ exp
(

−cn2/(n2
1 + n2

2 + . . .+ n2
t )
)

.

Since there are at mostm(m− 1)/2 pairs of rows, the result follows by the union bound.
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