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Diversity-Multiplexing Tradeoff of Double

Scattering MIMO Channels

Sheng Yang and Jean-Claude Belfiore

Abstract

It is well known that the presence of double scattering degrades the performance of a MIMO channel,

in terms of both the multiplexing gain and the diversity gain. In this paper, a closed-form expression of

the diversity-multiplexing tradeoff (DMT) of double scattering MIMO channels is obtained. It is shown

that, for a channel withnT transmit antennas,nR receive antennas andnS scatterers, the DMT only

depends on the ordered version of the triple(nT, nS, nR), for arbitrarynT, nS andnR. The condition

under which the double scattering channel has the same DMT asthe single scattering channel is also

established.

I. INTRODUCTION AND PROBLEM DESCRIPTION

Multiple antennas are known as an important means to increase channel capacity and to

mitigate channel fadings [1], [2]. The tradeoff between themultiplexing gain and the diversity

gain for Rayleigh MIMO channels in the high SNR regime is characterized by the diversity-

multiplexing tradeoff (DMT) proposed by Zheng and Tse [3]. However, the independent and

identically distributed (i.i.d.) Gaussian property of theentries of MIMO channels is only estab-

lished under an idealistic assumption. Recently, a more general model which shows the scattering

structure in the propagation environment has been proposed[4]. This model considers the rank

deficiency as well as the fading correlation, by characterizing the channel matrix as a product

of two statistically independent complex Gaussian matrices.

The presence of double scattering degrades considerably the performance promised by MIMO

channels, for both the multiplexing gain and the diversity gain. Intuitively, the performance
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nications and Electronics,́Ecole Nationale Supérieure des Télécommunications, 46, rue Barrault, 75013 Paris, France (e-mail:

syang@enst.fr; belfiore@enst.fr).

September 25, 2018 DRAFT

http://arxiv.org/abs/cs/0603124v2


2

of double scattering MIMO channels is not better than eitherthe transmitter-scatterers or the

scatterers-receiver channel. One interesting question is: “what is the impact of double scattering

on the channel’s capability of capturing diversity and providing multiplexing gain in the high

SNR regime ?”. This question is answered in this work, by studying the DMT of double scattering

MIMO channels.

More precisely, the main contribution of this work is to provide a closed-form expression

of the DMT for general double-scattering MIMO channels. It is shown that, for a MIMO

channel withnT transmit antennas,nS scatterers andnR receive antennas, the DMT only depends

on the ordered triple of(nT, nS, nR). This property can be seen as a generalization of the

reciprocity of MIMO channels. It is also shown that the upperbound on the channel diversity

ordernTnSnR/max {nT, nS, nR} is usually not achievable, unless for(nT, nS, nR) satisfying

2max {nT, nS, nR}+ 1 ≥ nT + nS + nR.

In this paper, we use boldface lower case lettersvvv to denote vectors, boldface capital lettersMMM

to denote matrices.CN represents the complex Gaussian random variable.[·]T, [·]† respectively

denote the matrix transposition and conjugated transposition operations.‖·‖ is the vector norm.

(x)+ meansmax(0, x). Det(MMM) is the absolute value of the determinantdet(MMM). The square

rootPPP 1/2 of a positive semi-definite matrixPPP is defined as a positive semi-definite matrix such

thatPPP = PPP 1/2
(

PPP 1/2
)†

. The dot equal operator
.
= denotes asymptotic equality in the high SNR

regime,i.e.,

p1
.
= p2 means lim

SNR→∞

log p1
log SNR

= lim
SNR→∞

log p2
log SNR

.

The rest of the paper is organized as follows. Section II introduces the channel model,

some preliminaries on complex Wishart matrices and the DMT.Section III studies the DMT

of Rayleigh product channels, a particular case of the double scattering channel. The DMT of a

general double scattering channel is provided in Section IV. Section V draws a brief conclusion

on this work and the Appendix is dedicated to some lemmas and their proofs.
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II. SYSTEM MODEL AND PRELIMINARIES

A. Channel Model

In this paper, we consider the double scattering MIMO channel with nT transmit antennas,nS

scatterers andnR receive antennas in the following form

yyy =
√
C SNRHHHxxx+ zzz (1)

with

HHH , ΦΦΦ
1/2
R HHH1ΦΦΦ

1/2
S HHH2ΦΦΦ

1/2
T (2)

wherexxx ∈ CnT is the transmitted signal with i.i.d. unit variance entries; yyy ∈ CnR represents the

received signal;zzz ∈ CnR is the AWGN withzzz ∼ CN (0, I); the constrantC is the normalization

factor such thatSNR is the average Signal to Noise Ratio per receive antenna.HHH1 ∈ CnR×nS

andHHH2 ∈ CnS×nT are statistically independent matrices with i.i.d. unit variance Gaussian entries.

Correlations at each node are characterized byΦΦΦT, ΦΦΦS andΦΦΦR which are assumed to be positive

definite matrices1 with respective dimensionsnT × nT, nS × nS andnR × nR. We denote such a

channel, a(nT, nS, nR) channel hereafter.

B. Wishart Matrices

Definition 1 (Wishart Matrix):Them×m random matrixWWW =HHHHHH† is a (central) complex

Wishart matrix withn degrees of freedom and covariance matrixΣΣΣ, (denoted asWWW ∼ Wm(n,ΣΣΣ)),

if the columns of them × n matrix HHH are zero-mean independent complex Gaussian vectors

with covariance matrixΣΣΣ.

Theorem 1 ([5]–[8]): Let WWW be a central complex Wishart matrixWWW ∼ Wm(n,ΣΣΣ), where

the eigenvalues ofΣΣΣ are distinct and their ordered values areµ1 > . . . > µm > 0. Let λ1 >

. . . > λq > 0 be the ordered positive eigenvalues ofWWW with q , min{m,n}. The joint p.d.f. of

λ is

Km,nDet
[

e−λj/µi
]

m
∏

i=1

µm−n−1
i λn−m

i

m
∏

i<j

λi − λj

µi − µj

(3)

1The correlation matrices are positive semi-definite in general. However, it is always possible to have an equivalent channel

model of positive definiteΦΦΦ’s and Gaussian matricesHHHi’s of reduced dimensions, using the eigenvalue decomposition of the

correlation matrices and the unitarily invariance property of Gaussian matrices. In this case, the effective numbers of antennas

and scatterers aren′
T, n′

R andn′
S, i.e., the respective ranks ofΦΦΦT, ΦΦΦR andΦΦΦS.
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for n ≥ m, and

Gm,nDet(ΞΞΞ)
m
∏

i<j

1

(µi − µj)

n
∏

i<j

(λi − λj) (4)

for n < m with

ΞΞΞ ,













1 µ1 · · · µm−n−1
1 µm−n−1

1 e
−

λ1
µ1 · · · µm−n−1

1 e
−λn

µ1

...
...

. . .
...

...
. . .

...

1 µm · · · µm−n−1
m µm−n−1

m e−
λ1
µm · · · µm−n−1

m e−
λn
µm













. (5)

Km,n andGm,n are normalization factors. In particular, forΣΣΣ = I, the joint p.d.f. is

Pm,ne
−
∑

i λi

q
∏

i=1

λ
|m−n|
i

q
∏

i<j

(λi − λj)
2. (6)

C. Diversity-Multiplexing Tradeoff

Definition 2 (Multiplexing and diversity gains [3]):A coding scheme{C(SNR)} is said to

achievemultiplexing gainr anddiversity gaind if

lim
SNR→∞

R(SNR)

log SNR
= r and lim

SNR→∞

logPe(SNR)

log SNR
= −d

whereR(SNR) is the data rate measured by bits per channel use (PCU) andPe(SNR) is the

average error probability using a maximum likelihood (ML) decoder.

For any linear fading Gaussian channel

yyy =
√
SNRHHHxxx+ zzz

wherezzz is an AWGN withE
{

zzzzzz†
}

= I andxxx is subject to the input power constraint Tr{E [xxxxxx†]} ≤
1, the DMTd(r) can be found as the exponent of the outage probability in the high SNR regime,

i.e.,

Pout(r log SNR)
.
= Prob

{

log det (I+ SNRHHHHHH†) ≤ r log SNR
}

= Prob
{

det (I+ SNRHHHHHH†) ≤ SNR
r
}

.
= SNR

−d(r). (7)

Lemma 1 (Calculation of diversity-multiplexing tradeoff): Consider a linear fading Gaussian

channel defined byHHH for which det (I+ SNRHHHHHH†) is a function ofvvv, a vector of positive

random variables. Then, the DMTd(r) of this channel can be calculated as

d(r) = inf
O(α,r)

ε(α)

September 25, 2018 DRAFT



5

whereαi , − log vi/ log SNR is the exponent ofvi, O(α, r) is the outage event set in terms of

α and r in the high SNR regime, andε(α) is the exponential order of the p.d.f.pα(α) of α,

i.e.,

pα(α)
.
= SNR

−ε(α).

Proof: This lemma is justified by (7) using Laplace’s method, as shown in [3].

As an example, the DMT of annR×nT Rayleigh MIMO channel is a piecewise-linear function

connecting the points(k, d(k)), k = 0, 1, . . . ,min{nR, nT}, where [3]

d(k) = (nR − k)(nT − k). (8)

III. D IVERSITY-MULTIPLEXING TRADEOFF OFRAYLEIGH PRODUCT CHANNELS

In this section, we study a special case of the double scattering MIMO channel, whereΦΦΦT,ΦΦΦS

andΦΦΦR are identity matrices. We call it a Rayleigh product channel.

Theorem 2:Let HHH , HHH2HHH1 with HHH2 ∈ Cn×l andHHH1 ∈ Cl×m being independent Gaussian

matrices with i.i.d.CN (0, 1) entries. Define(M,N,L) be the ordered version of(m,n, l) with

M ≤ N ≤ L. Then, the diversity-multiplexing tradeoff of the fading channel

yyy =

√

SNR

l m
HHHxxx+ zzz

is a piecewise-linear function connecting the points(k, d(k)), k = 0, . . . ,M , where

d(k) = (M − k)(N − k)−
⌊

[(M −∆− k)+]
2

4

⌋

(9)

with ∆ , L−N .

Before going to the proof, some remarks can be made about the DMT of a Rayleigh product

channel.

Remark 1:From (9), we note that

1) The DMT does not depend on the triple(m,n, l) but only on the ordered triple(M,N,L),

which can be seen as a generalization of the reciprocity property [2] of MIMO channels;

2) The DMT of a Rayleigh product channel is always inferior tothat of anM ×N Rayleigh

channel,i.e., d(k) is upperbounded bȳd(k) , (M − k)(N − k);

3) The upperbound̄d(k) is achieved fork ≥ M − ∆ − 1, which means thatd(k) coincides

with d̄(k) at least for the last section of the curve;

September 25, 2018 DRAFT
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4) WhenL+1 ≥ M+N , the Rayleigh product channel has exactly the same DMT performance

as anM ×N Rayleigh channel;

5) Finally, as a consequence of the previous observation, a Rayleigh product channel is always

equivalent to anN × 1 Rayleigh channel whenM = 1.

We should point out that the relation between the Gaussian coding bound and the outage bound

studied in [3] is intimately related to the Rayleigh productchannel. In [3], it is shown that the

Gaussian codeword matrix should be long enough to achieve the DMT of the Rayleigh MIMO

channel. The code length condition is exactly the same as thecondition provided by observation 4

in the remark above.

As in [3], the DMT is obtained from the p.d.f. of the eigenvalues ofQQQHHH ,HHHHHH†, which depends

on (m,n, l). For now, we know thatQQQ1 , HHH1HHH
†

1 ∼ Wl(m, I). Let us define the eigenvalues of

QQQ1 as µ1 > . . . > µmin{l,m}. Then,QQQHHH =
(

HHH2QQQ
1/2
1

)(

HHH2QQQ
1/2
1

)†

has the same eigenvalues as

QQQGGG , GGGGGG† with GGG , QQQ
1/2
1 HHH†

2. By definition, conditionned onHHH1, we haveQQQGGG ∼ Wl(n,QQQ1).

Therefore, from now on, we can study the eigenvaluesλ1 > . . . > λmin{l,m,n}of QQQGGG, whose joint

p.d.f. only depends on the eigenvalues ofQQQ1, according to Theorem 1. In the rest of this section,

we prove Theorem 2 in two cases :min{m,n} ≥ l andmin{m,n} < l.

A. Themin{m,n} ≥ l Case

In this case, we can exchangem and n, by the reciprocity property of MIMO channels.

Without loss of generality, we assume thatm ≥ n. From (3) and (6), we get the joint p.d.f. of

(λ,µ)

pλ,µ(λ,µ) = Cl,m,n

l
∏

i=1

µm−n−1
i λn−l

i

l
∏

i<j

(λi − λj)(µi − µj)

· exp
(

−
l
∑

i=1

µi

)

Det
[

e−λj/µi
]

,

September 25, 2018 DRAFT
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whereCl,m,n is the normalization factor. Defineαi , − log λi/ log SNR andβi , − log µi/ log SNR

for i = 1, . . . , l. Then, we have

pα,β(α,β) = Cl,m,n(log SNR)
2l

l
∏

i=1

SNR
−(n−l+1)αiSNR

−(m−n)βi

·
l
∏

i<j

(SNR−αi − SNR
−αj )(SNR−βi − SNR

−βj)

· exp
(

−
l
∑

i=1

SNR
−βi

)

Det
[

exp
(

−SNR
−(αj−βi)

)]

.

First, we only considerβi ≥ 0, ∀i, since otherwise,exp
(

−∑i SNR
−βi
)

would decay expo-

nentially with SNR [3]. The high SNR exponent of the quantityDet
[

exp
(

−SNR
−(αj−βi)

)]

is

calculated in Lemma 2. From (20), we only need to considerαi ≥ βi, ∀i, so thatpα,β(α,β)

does not decay exponentially. Finally, by Lemma 1, the DMTd(r) can be obtained by solving

the optimization problem

d(r) = inf
O(α,β,r)

ǫ(α,β) (10)

with

O(α,β, r) ,

{

(α,β) :
l
∑

i=1

(1− αi)
+ < r,

α1 ≤ · · · ≤ αl,

β1 ≤ · · · ≤ βl

, αi ≥ βi ≥ 0, ∀i
}

and

ǫ(α,β) ,

l
∑

i=1

(n− i+ 1)αi +

l
∑

i=1

(m− n + l − i)βi +

l
∑

i<j

(αi − βj)
+. (11)

The optimization problem (10) can be solved in two steps: 1) find optimalβ by fixing α, and

then 2) optimizeα. Let us start from the feasible region

0 ≤ β1 = α1 ≤ β2 = α2 ≤ · · · ≤ βl = αl (12)

in which we have
l
∑

i<j

(αi−βj)
+ = 0. Note that for eachj, the feasibility conditions require that

βj should only move to the left in terms of its positions2 relative to theαi’s and thatβi should

never be on the left ofβj for i > j. Each timeβj passes anαi from right to left,
∑

i<j(αi−βj)
+

increases byαi − βj , which increases the coefficient ofαi by 1 and decreases the coefficient

of βj by 1. To minimize the value ofǫ(α,β), βj is allowed to passαi only when the current

2The position here refers to the position in the inequality chain of αi’s andβi’s in increasing order, as the one in (12).

September 25, 2018 DRAFT
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coefficient ofβj in (11) is positive3. The maximum number ofαi that can be “freed” byβj is

j− 1, i.e., αj−1, . . . , α1. Note that the initial coefficient ofβj is m−n+ l− j and is decreasing

with j while the numberj − 1 is increasing withj. Let j∗ be the largest number such that

m−n+ l− j ≥ j−1. Obviously, forj ≤ j∗, αj−1, . . . , α1 can be freed and the final coefficients

of βj is m−n+ l−2j−1 (≥ 0) andβ∗
j = 0. For j > j∗, βj can only freeαj−1, . . . , αj−(m−n+l−j)

and the final coefficient ofβj is 0. Substituting the optimal solutionsβ∗
j ’s back into (11), we get

ǫ(α) =

l
∑

i=1

(n− i+ 1 + ci)αi (13)

whereci can be found with the help of Fig. 1(a). Finally, we have

ǫ(α) =

l−(m−n)
∑

i=1

(

n + 1− 2i+

⌊

l + i+ (m− n)

2

⌋)

αi

+
l
∑

i=l−(m−n)+1

(n + l + 1− 2i)αi

where the coefficient ofαi is non-negative and is non-increasing withi. Hence, the optimal

solution isα∗
i = 1, i = k + 1, . . . , l andα∗

i = 0, i = 1, . . . , k, from which we can verify that

d(k) = (l − k)(n− k)−
⌊

[(l − (m− n)− k)+]
2

4

⌋

. (14)

B. Themin{m,n} < l Case

Again, by the reciprocity property, we assume thatn ≤ m. However, we should study the

m ≥ l case and them < l case separately. We start with the former case.

1) Then < l ≤ m Case: From (4) and (6), we get the joint p.d.f. of(λ,µ)

pλ,µ(λ,µ) = Bl,m,n

l
∏

i=1

µm−l
i

l
∏

i<j

(µi − µj)

·
n
∏

i<j

(λi − λj)Det (ΞΞΞ)

(15)

3When the coefficient ofβj in (11) is positive, decreasingβj decreasesǫ(α,β).
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(b) Themin{m,n} < l case

Fig. 1. For eachj, the black dots represent theα’s that are freed byβj . For eachi, the number of black dotsci is the

coefficient ofαi. Thus, fori ≤ g(l), ci =
⌊

g−1(i)
⌋

−
⌈

f−1(i)
⌉

+ 1; and for i > g(l), ci = l −
⌈

f−1(i)
⌉

+ 1.

whereBl,m,n is the normalization factor. Same procedure as the previouscase and Lemma 3

lead to the following asymptotical p.d.f. of(α,β)

pα,β(α,β)
.
= (log SNR)l+n

n
∏

i=1

SNR
−(n−i+1)αi

·
n+1
∏

i=1

SNR
−(l+m−n−i)αi

l
∏

i=n+2

SNR
−(l+m+1−2i)αi

·
n
∏

i=1

l
∏

j=n+1

SNR
−(αi−βj)

+
n
∏

i<j

SNR
−(αi−βj)

+

· exp
(

−
l
∑

i=1

SNR
−βi

)

exp

(

−
n
∑

i=1

SNR
−(αi−βi)

)

.

As before, we only considerβi ≥ 0, ∀i, andαi ≥ βi, for i = 1, . . . , n, in order thatpα,β(α,β)

does not decay exponentially. Finally, the DMTd(r) can be obtained by solving the optimization

problem (10) with

O(α,β, r) ,

{

(α,β) :

n
∑

i=1

(1− αi)
+ < r,

α1 ≤ · · · ≤ αn,

β1 ≤ · · · ≤ βl
, αi ≥ βi ≥ 0, for i = 1, . . . , n

}

September 25, 2018 DRAFT
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and

ǫ(α,β) =
n
∑

i=1

(n+ 1− i)αi +
n+1
∑

i=1

(l +m− n− i)βi

+
l
∑

i=n+2

(l +m+ 1− 2i)βi +
n
∑

i=1

l
∑

j=n+1

(αi − βj)
+

+

n
∑

i<j

(αi − βj)
+.

(16)

The optimization procedure is exactly the same as in the previous case. With the optimalβj ’s,

we have

ǫ(α) =
n
∑

i=1

(n− i+ 1 + ci)αi (17)

whereci can be found with the help of Fig. 1(b). Finally, we have

ǫ(α) =

l−(m−n)
∑

i=1

(

n + 1− 2i+

⌊

l + i+ (m− n)

2

⌋)

αi

+

n
∑

i=l−(m−n)+1

(n + l + 1− 2i)αi

where the coefficient ofαi is non-negative and is non-increasing withi. Hence, the optimal

solution isα∗
i = 1, i = k + 1, . . . , l andα∗

i = 0, i = 1, . . . , k, from which we have

d(k) = (l − k)(n− k)−
⌊

[(n− (m− l)− k)+]
2

4

⌋

. (18)

2) The n ≤ m < l Case: In this case,µm+1 = · · · = µl = 0 with probability 1. Let

µ , [µ1 · · ·µm]
T be the vector of the nonzero eigenvalues ofQQQ1. The conditional p.d.f.pλ|µ(λ|µ)

is given by Lemma 4. The p.d.f. ofµ being known from (6), we get the joint p.d.f. of(λ,µ)

in exactly the same form as (15), except thatl andm are interchanged. We have directly

d(k) = (m− k)(n− k)−
⌊

[(n− (l −m)− k)+]
2

4

⌋

. (19)

IV. D IVERSITY-MULTIPLEXING TRADEOFF OFDOUBLE SCATTERING MIMO CHANNELS

In this section, we study the DMT of a general double scattering channel, where the antenna

and scatterer correlationsΦΦΦT, ΦΦΦS andΦΦΦR are non-trivial.

It is intuitive to expect that the DMT is independent of the correlation matrices, as long as

they are not singular, since the DMT is an asymptotical performance measure. First of all, it is

September 25, 2018 DRAFT
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easy to show that the antenna correlationsΦΦΦT andΦΦΦR do not affect the tradeoff. To see this,

note that

det(I+ SNRHHHHHH†) = det(I+ SNRΦΦΦ
1/2
R HHH2ΦΦΦ

1/2
S HHH1ΦΦΦTHHH

†

1ΦΦΦ
1/2
S HHH†

2ΦΦΦ
1/2
R )

.
= det(I+ SNRΦΦΦ

1/2
R HHH2ΦΦΦ

1/2
S HHH1HHH

†

1ΦΦΦ
1/2
S HHH†

2ΦΦΦ
1/2
R )

.
= det(I+ SNRHHH†

1ΦΦΦ
1/2
S HHH†

2HHH2ΦΦΦ
1/2
S HHH1)

whereΦΦΦT andΦΦΦR disappear in the high SNR analysis. Now, it remains to show thatΦΦΦS has no

impact on the high SNR analysis. The following proposition confirms this statement.

Proposition 1: Let MMM be anym × n random matrix andTTT be anym × m non-singular

matrix whose singular values satisfyσmin(TTT )
.
= σmax(TTT )

.
= SNR

0. Define q , min{m,n} and

M̃̃M̃M , TTTMMM . Let σ1(MMM) > . . . > σq(MMM) > 0 and σ1(M̃̃M̃M) > . . . > σq(M̃̃M̃M) > 0 be the distinct

ordered singular values ofMMM andM̃̃M̃M , Then, we have

σi(M̃̃M̃M)
.
= σi(MMM), ∀i.

Proof: For m ≥ n, we consider the left polar decompositionMMM = UUUMMM0, whereUUU

is a m × n matrix with orthonormal columns andMMM 0 a n × n positive definite matrix with

σi(MMM) = σi(MMM 0) for i = 1, . . . , n. Let TTTUUU = VVV TTT 0 be the left polar decomposition ofTTTUUU .

Then, we haveσi(M̃̃M̃M) = σi(TTT 0MMM 0) for i = 1, . . . , n.

For m < n, we make a right polar decompositionMMM = MMM0UUU
† , whereUUU is a n×m matrix

with orthonormal columns andMMM 0 a m×m positive definite matrix withσi(MMM) = σi(MMM0) for

i = 1, . . . , n. Then, we haveσi(M̃̃M̃M) = σi(TTT 0MMM 0) for i = 1, . . . , n with TTT 0 , TTT .

In both cases, the original problem is equivalent to showingthat

σi(TTT 0MMM 0)
.
= σi(MMM 0), for i = 1, . . . , q,

with TTT 0 andMMM0 now invertible. LetAAA andBBB in Lemma 5 beTTT 0 andMMM 0, respectively. By

applying (28) and (29) of appendix, we have

σi(MMM 0)σm(TTT 0) ≤ σi(M̃̃M̃M) ≤ σi(MMM0)σ1(TTT 0),

from which we prove the proposition sinceσ1(TTT 0)
.
= σm(TTT 0)

.
= SNR

0 andσi(MMM) = σi(MMM 0).

This proposition says that any invertible transformation with bounded (asymptotically in high

SNR regime) eigenvalues does not change the asymptotical p.d.f. of the singular values of a
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random matrix. According to this proposition, we know that the singular values ofΦΦΦ1/2
S HHH1 have

the same asymptotical p.d.f. as the ones ofHHH1, which leads to the main result of this work.

Theorem 3:For a(nT, nS, nR) double scattering MIMO channel (1) withHHH defined in (2), the

diversity-multiplexing tradeoff is a piecewise-linear function connecting the points(k, d(k)), k =

0, . . . ,M with d(k) being defined in (9), where(M,N,L) is the ordered version of(nT, nS, nR)

with M ≤ N ≤ L.

Proof: This is a direct consequence of Theorem 2, since the eigenvalues of(ΦΦΦ1/2
S HHH1)(ΦΦΦ

1/2
S HHH1)

†

have the same asymptotical p.d.f. as that ofHHH1HHH
†

1.

Note that all observations in Remark 1 apply for the general double scattering MIMO channel.

In particular, the optimality conditionL+ 1 ≥ M + N in observation 4 of Remark 1 in terms

of (nT, nS, nR) is

2max {nT, nS, nR}+ 1 ≥ nT + nS + nR,

which is also the condition under which the maximum channel diversity ordernTnSnR/max {nT, nS, nR}
is achieved. Moreover, this theorem implies that antenna orscatterer correlation does not, indeed,

have any impact on the DMT of a double scattering channel, as long as the correlation matrices

are non-singular. Finally, in the singular correlation matrices case, it is straightfoward to show

that Theorem 3 is still true, but with(nT, nS, nR) replaced by(n′
T, n

′
S, n

′
R), the respective ranks

of the correlation matrices.

V. CONCLUSION

We studied, in this paper, the DMT of a double scattering MIMOchannel and showed that,

as long as the correlation matrices are non singular, it is equal to the DMT of a Rayleigh

MIMO product channel. This DMT is always lower than the one ofa single scattering (nT ×nS,

nS× nR or nT × nR) MIMO channel and it is equal to that one for certain values ofthe channel

parameters. This result is not only interesting for itself,but it also helps to the calculation of

the DMT of MIMO Amplify-and-Forward [9] cooperative channels as the relayed link can be

seen as a Rayleigh MIMO product channel.
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APPENDIX

Lemma 2:

Det
[

exp
(

−SNR
−(αj−βi)

)]l

i,j=1

.
= exp

(

−
l
∑

i=1

SNR
−(αi−βi)

)

SNR
−
∑l

i<j(αi−βj)+ .

(20)

Proof:

Let us defineDl , Det
[

exp
(

−SNR
−(αj−βi)

)]l

i,j=1
and we have

Dl = Det













e−SNR
−(α1−β1)+SNR

−(αl−β1) · · · e−SNR
−(αl−1−β1)+SNR

−(αl−β1) 1

...
. . .

...
...

e−SNR
−(α1−βl)+SNR

−(αl−βl) · · · e−SNR
−(αl−1−βl)+SNR

−(αl−βl) 1













e−
∑

i SNR
−(αl−βi)

.
= Det





















e−SNR
−(α1−β1) − e−SNR

−(α1−βl) · · · e−SNR
−(αl−1−β1) − e−SNR

−(αl−1−βl)

0

...
. . .

...
...

e−SNR
−(α1−βl−1) − e−SNR

−(α1−βl) · · · e−SNR
−(αl−1−βl−1) − e−SNR

−(αl−1−βl)

0

e−SNR
−(α1−βl) · · · e−SNR

−(αl−1−βl)

1





















e−SNR
−(αl−βl)

.
= Det













e−SNR
−(α1−β1)

(

1− e−SNR
−(α1−βl)

)

· · · e−SNR
−(αl−1−β1)

(

1− e−SNR
−(αl−1−βl)

)

...
. . .

...

e−SNR
−(α1−βl−1)

(

1− e−SNR
−(α1−βl)

)

· · · e−SNR
−(αl−1−βl−1)

(

1− e−SNR
−(αl−1−βl)

)













e−SNR
−(αl−βl)

= e−SNR
−(αl−βl)

l−1
∏

i=1

(

1− e−SNR
−(αi−βl)

)

Dl−1

where the equations are obtained by iterating the identitySNR
−a ± SNR

−b .
= SNR

−a for a < b.

Since1 − e−x ≈ x for x close to0+, we have1 − e−SNR
−(αi−βl) .

= SNR
−(αi−βl) if αi > βl and

1−e−SNR
−(αi−βl) .

= SNR
0 otherwise. As shown in the recursive relation above, we musthaveαi ≥

βi, ∀i, in order thatDl does not decay exponentially. Thus, we haveDl
.
= SNR

−
∑

i<l(αi−βl)
+

Dl−1,

and in a recursive manner, we get (20).
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Lemma 3:

Det (ΞΞΞ)
.
=

n+1
∏

i=1

SNR
−(l+m−n−i)αi

l
∏

i=n+2

SNR
−(l+m+1−2i)αi

·
n
∏

i=1

l
∏

j=n+1

SNR
−(αi−βj)+

n
∏

i<j

SNR
−(αi−βj)+

· exp
(

−
n
∑

i=1

SNR
−(αi−βi)

)

.

Proof: First, we have

Det(ΞΞΞ) =
l
∏

i=1

µl−n−1
i Det















µ
−(l−n−1)
1 · · · 1 e−λ1/µ1 · · · e−λn/µ1

...
. . .

...
...

. . .
...

µ
−(l−n−1)
l · · · 1 e−λ1/µl · · · e−λn/µl















. (21)

Then, let us denote the determinant in the right hand side of (21) asD and we rewrite it as

D = Det





















d
(l−n−1)
1,l · · · 0 e−λ1/µ1 − e−λ1/µl · · · e−λn/µ1 − e−λn/µl

...
. . .

...
...

. ..
...

d
(l−n−1)
l−1,l · · · 0 e−λ1/µl−1 − e−λ1/µl · · · e−λn/µl−1 − e−λn/µl

µ
−(l−n−1)
l · · · 1 e−λ1/µl · · · e−λn/µl





















(22)

.
= Det















d
(l−n−1)
1,l · · · d

(1)
1,l e−λ1/µ1 · · · e−λn/µ1

...
. . .

...
...

. ..
...

d
(l−n−1)
l−1,l · · · d

(1)
l−1,l e−λ1/µl−1 · · · e−λn/µl−1















n
∏

i=1

(

1− e−λi/µl
)

(23)

whered(k)i,j , µ−k
i − µ−k

j and the product term in (23) is obtained since1 − e−(λi/µl−λi/µj) .
=

1−e−λi/µl for all j < l. Let us denote the determinant in (23) asDl. Then, by multiplying the first

column inDl with µl−n−1
l and noting thatµl−n−1

l d
(l−n−1)
i,l = 1−

(

µl

µi

)l−n−1

≈ 1, the first column

of Dl becomes all1. Now, by eliminating the firstl− 2 “1”s of the first column by substracting

all rows by the last row as in (22) and (23), we haveµl−n−1
l Dl

.
=
∏n

i=1

(

1− e−λi/µl
)

Dl−1. By
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continuing reducing the dimension, we get

Det(ΞΞΞ)
.
= Det

[

e−λj/µi
]n

i,j=1

n+1
∏

i=1

µl−n−1
i

l
∏

i=n+2

µl−i
i

·
n
∏

i=1

l
∏

j=n+1

(

1− e−λi/µj
)

from which we prove the lemma, by applying (20).

Lemma 4:Let WWW be a central complex Wishart matrixWWW ∼ Wm(n,ΣΣΣ) with n < m, where

the ordered eigenvalues ofΣΣΣ areµ1 > . . . > µl > µl+1 = . . . = µm = 0 with l ≥ n. The joint

p.d.f. of the ordered positive eigenvaluesλ1 > . . . > λn of WWW equals

Gm,nDet(ΞΞΞl)
l
∏

i<j

1

(µi − µj)

n
∏

i<j

(λi − λj) (24)

with

ΞΞΞl ,













1 µ1 · · · µl−n−1
1 µl−n−1

1 e
−

λ1
µ1 · · · µl−n−1

1 e
−λn

µ1

...
...

. . .
...

...
. . .

...

1 µl · · · µl−n−1
l µl−n−1

l e
−

λ1
µl · · · µl−n−1

l e
−λn

µl













. (25)

Proof: We can prove it by successively applying the l’Hospital rulewith µm, . . . , µl+1 → 0

on the expression in (4). Let us prove by induction that

lim
µl+1,...,µm→0

Det(ΞΞΞ)
∏m

i<j(µi − µj)
=

Det(ΞΞΞl)
∏l

i<j(µi − µj)
. (26)

For l = m− 1, (26) is obviously true. Then, assuming that (26) holds for given l, then, as long

as l − 1 ≥ n, we have

lim
µl,...,µm→0

Det(ΞΞΞ)
∏m

i<j(µi − µj)
= lim

µl→0

Det(ΞΞΞl)
∏l

i<j(µi − µj)

=
Det(ΞΞΞl−1)

∏l−1
i<j(µi − µj)

(27)

where (27) is deduced from (26).

Lemma 5:Let AAA andBBB be two m × m non-singular matrices. For anyn × n matrix MMM ,

let σi(MMM) be the ith largest singular value ofMMM and ηi(MMM) be the ith smallest one (i.e.,

σi(MMM) = ηn+1−i(MMM)). Then, we have

σi+j−1(AAABBB) ≤ σi(AAA) σj(BBB) (28)

ηi+j−1(AAABBB) ≥ ηi(AAA) ηj(BBB) (29)
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for 1 ≤ {i, j} ≤ m and i+ j ≤ m+ 1.

Proof: LetAAABBB = UUUQQQ be the left polar decomposition ofAAABBB with UUU unitary andQQQ positive

definite. Then, we haveQQQ = UUU †AAABBB andσi(QQQ) = σi(AAABBB), ∀i. The quadratic formxxx†QQQxxx can be

bounded as

|xxx†QQQxxx|2 =
∣

∣(AAA†UUUxxx)
†
(BBBxxx)

∣

∣

2

≤ ‖AAA†UUUxxx‖2 ‖BBBxxx‖2

= (xxx†

1QQQAAAxxx1) (xxx
†QQQBBBxxx)

(30)

wherexxx1 , UUUxxx, QQQAAA , AAAAAA† andQQQBBB , BBBBBB†. The eigenvalue decomposition ofQQQAAA andQQQBBB gives

QQQAAA =

m
∑

i=1

σ2
i (AAA)zzzizzz

†

i and

QQQBBB =

m
∑

i=1

σ2
i (BBB)yyyiyyy

†

i

where zzzi and yyyi are eigenvectors ofQQQAAA and QQQBBB, respectively. Now, takingxxxk = UUU †zzzk for

k = 1, . . . , i−1 andxxxk = yyyk−i+1 for k = i, . . . , i+j−2, we have,∀xxx ⊥ xxxk for k = 1, . . . , i+j−2,

(UUUxxx)†QQQAAA (UUUxxx) ≤ σ2
i (AAA) ‖xxx‖2 (31)

xxx†QQQBBBxxx ≤ σ2
j (BBB) ‖xxx‖2 . (32)

From (30), (31) and (32) and the Courant-Fischer theorem [10], we get

σ2
i (AAABBB) ≤ max

xxx⊥xxx1,...,xxxi+j−2

|xxx†QQQxxx|2

‖xxx‖4
≤ σ2

i (AAA)σ
2
j (BBB),

from which we have (28).

Note that for any invertible matrixMMM , we haveηi(MMM) = σ−1
i (MMM−1). By applying this equality

and using the inequality (28), it is straightfoward to get (29) after some simple manipulations.
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