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Abstract

It is well known that the presence of double scattering dgggahe performance of a MIMO channel,
in terms of both the multiplexing gain and the diversity gdimthis paper, a closed-form expression of
the diversity-multiplexing tradeoff (DMT) of double scating MIMO channels is obtained. It is shown
that, for a channel witmt transmit antennas)r receive antennas andgs scatterers, the DMT only
depends on the ordered version of the tripla, ns, nr), for arbitrarynr, ns andng. The condition
under which the double scattering channel has the same DMfieasingle scattering channel is also

established.

. INTRODUCTION AND PROBLEM DESCRIPTION

Multiple antennas are known as an important means to inerehannel capacity and to
mitigate channel fadings [1], [2]. The tradeoff between theltiplexing gain and the diversity
gain for Rayleigh MIMO channels in the high SNR regime is elcterized by the diversity-
multiplexing tradeoff (DMT) proposed by Zheng and Tse [3pviever, the independent and
identically distributed (i.i.d.) Gaussian property of thetries of MIMO channels is only estab-
lished under an idealistic assumption. Recently, a moremg¢model which shows the scattering
structure in the propagation environment has been propd@$edhis model considers the rank
deficiency as well as the fading correlation, by charadtegizhe channel matrix as a product
of two statistically independent complex Gaussian madrice

The presence of double scattering degrades considerabpettiormance promised by MIMO

channels, for both the multiplexing gain and the diversiting Intuitively, the performance
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of double scattering MIMO channels is not better than eitiher transmitter-scatterers or the
scatterers-receiver channel. One interesting questidwigat is the impact of double scattering
on the channel’'s capability of capturing diversity and pecbeg multiplexing gain in the high
SNR regime ?”This question is answered in this work, by studying the DM @auble scattering
MIMO channels.

More precisely, the main contribution of this work is to pide a closed-form expression
of the DMT for general double-scattering MIMO channels. dt shown that, for a MIMO
channel withnt transmit antennas,s scatterers andg receive antennas, the DMT only depends
on the ordered triple ofnt,ns,ng). This property can be seen as a generalization of the
reciprocity of MIMO channels. It is also shown that the ugymemd on the channel diversity

orderntnsnr/ max {nr,ns, nr} is usually not achievable, unless foir, ns, ng) satisfying
2max {nt,ns,nr} + 1 > nt + ns+ ng.

In this paper, we use boldface lower case lettets denote vectors, boldface capital lettdds
to denote matrice<’ ' represents the complex Gaussian random varighlel-]" respectively
denote the matrix transposition and conjugated transposiperations||-|| is the vector norm.
(r)" meansmax(0,z). Det(M) is the absolute value of the determinakt (M ). The square
root P'/? of a positive semi-definite matriP is defined as a positive semi-definite matrix such
that P = P'/? (PI/Q)T. The dot equal operatet denotes asymptotic equality in the high SNR
regime,i.e.,

. _ logpr . logp,
pL=p; means |lm log SNR ol log SNR’

The rest of the paper is organized as follows. Section llophices the channel model,
some preliminaries on complex Wishart matrices and the DSBction Il studies the DMT
of Rayleigh product channels, a particular case of the adosbhttering channel. The DMT of a
general double scattering channel is provided in SectiarSi&€tion V draws a brief conclusion

on this work and the Appendix is dedicated to some lemmas lagid proofs.
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[I. SYSTEM MODEL AND PRELIMINARIES
A. Channel Model

In this paper, we consider the double scattering MIMO chbawith nt transmit antennass

scatterers andg receive antennas in the following form

y=VCSNRHz + 2 (2)
with
H2®/°H &/’ H,8)" )

wherex € C"" is the transmitted signal with i.i.d. unit variance entrigse C"r represents the
received signalz € C™® is the AWGN withz ~ CN(0,1); the constrant” is the normalization
factor such thabNR is the average Signal to Noise Ratio per receive antefhac C"r*"s
andH, € C"s*"T are statistically independent matrices with i.i.d. uniti@ace Gaussian entries.
Correlations at each node are characterize@py®s and®r which are assumed to be positive
definite matriceswith respective dimensionsr x nr, ns x ng andng x ng. We denote such a

channel, ant, ns,ng) channel hereafter.

B. Wishart Matrices

Definition 1 (Wishart Matrix): The m x m random matrix = HH' is a (central) complex
Wishart matrix withn. degrees of freedom and covariance maitjXdenoted a8/ ~ W, (n, %)),
if the columns of them x n matrix H are zero-mean independent complex Gaussian vectors
with covariance matrix.

Theorem 1 ([5]-[8]): Let W be a central complex Wishart matii¥ ~ W,,(n,X), where
the eigenvalues oE are distinct and their ordered values are> ... > pu,,, > 0. Let A\; >
...> ), > 0 be the ordered positive eigenvaluestfwith ¢ = min{m,n}. The joint p.d.f. of
Ais

Ko nDet [e /1] ﬁ pmnm\nem ﬁ (3

i=1 i<j

Ai — A
i —

1The correlation matrices are positive semi-definite in galnédowever, it is always possible to have an equivalennokh
model of positive definitab’s and Gaussian matriceld;’s of reduced dimensions, using the eigenvalue decompaosdf the
correlation matrices and the unitarily invariance prop@ft Gaussian matrices. In this case, the effective numbeenennas

and scatterers are;, ng andng, i.e., the respective ranks d+, ®z and ®s.
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for n > m, and

m n

- 1
GmaDet(E) ][ =) [T =) (4)
i<j Hi = 1y i<j
for n < m with
1 1 -2 1, —2on
1 1 oo ,U/gn_n_ ,u/gﬂ—n— e m . ,u/gn—n— e
E£ (5)
T
K,,, andG,,, are normalization factors. In particular, f&r= I, the joint p.d.f. is
q q
Pm,ne_zi)\i H )\Lm_"‘ H()\Z - )\j)2' (6)
i=1 i<j

C. Diversity-Multiplexing Tradeoff
Definition 2 (Multiplexing and diversity gains [3])A coding scheme{C(SNR)} is said to

achievemultiplexing gainr anddiversity gaind if
R(SNR) . log Ps(SNR)
o TogSNR 7 A T SR
where R(SNR) is the data rate measured by bits per channel use (PCU)Pgi3iNR) is the

average error probability using a maximum likelihood (Mlgcdder.

=—d

For any linear fading Gaussian channel
y=VSNRHz + 2

wherez is an AWGN withE{zz'} = I andz is subject to the input power constraint{ [zz"} <
1, the DMT d(r) can be found as the exponent of the outage probability in igje BNR regime,

e,
Pou(rlog SNR) = Prob{log det (I + SNRHH') < rlog SNR}
— Prob{det (I + SNR HH') < SNR'"}
= SNR™", 7)

Lemma 1 (Calculation of diversity-multiplexing tradeoffonsider a linear fading Gaussian
channel defined byH for which det (I+ SNRHH') is a function ofv, a vector of positive

random variables. Then, the DMA(r) of this channel can be calculated as

d(r) = oi(gfr) e(ar)
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wherea; = —logv;/log SNR is the exponent of;, O(«, r) is the outage event set in terms of

a andr in the high SNR regime, and(«) is the exponential order of the p.dif. () of «,
e,
Pal(a) = SNR™(),
Proof: This lemma is justified by (7) using Laplace’s method, as show[3]. [ |
As an example, the DMT of ang x nt Rayleigh MIMO channel is a piecewise-linear function
connecting the pointék, d(k)), k = 0,1, ..., min{ng, nr}, where [3]

d(k) = (nr — k)(nt — k). (8)

IIl. DIVERSITY-MULTIPLEXING TRADEOFF OFRAYLEIGH PrRODUCT CHANNELS

In this section, we study a special case of the double soajt&fIMO channel, whera, &5
and ®r are identity matrices. We call it a Rayleigh product channel

Theorem 2:Let H £ H,H, with H, ¢ C™! and H, € C*™ being independent Gaussian
matrices with i.i.d.CA(0,1) entries. Defing M, N, L) be the ordered version @fn, n,1) with
M < N < L. Then, the diversity-multiplexing tradeoff of the fadingannel

SNR
y=\/—Hz+z2
Im

is a piecewise-linear function connecting the poifitsd(k)),k = 0,..., M, where

(M — A - fWJ
4

d(k) = (M = k)(N — k) — { (9)

with A & [ — N.
Before going to the proof, some remarks can be made about MhE & a Rayleigh product
channel.
Remark 1:From (9), we note that
1) The DMT does not depend on the trigle, n, ) but only on the ordered tripleM, N, L),
which can be seen as a generalization of the reciprocitygrtpp2] of MIMO channels;
2) The DMT of a Rayleigh product channel is always inferiothat of an)M x N Rayleigh
channel,i.e., d(k) is upperbounded by(k) = (M — k)(N — k);

3) The upperbound(k) is achieved fork > M — A — 1, which means that/(k) coincides

with d(k) at least for the last section of the curve;
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4) WhenL+1 > M+ N, the Rayleigh product channel has exactly the same DMT pedoce

as anM x N Rayleigh channel;

5) Finally, as a consequence of the previous observatiomyéeRh product channel is always

equivalent to anV x 1 Rayleigh channel when/ = 1.
We should point out that the relation between the Gaussidmgdound and the outage bound
studied in [3] is intimately related to the Rayleigh prodabannel. In [3], it is shown that the
Gaussian codeword matrix should be long enough to achiev®MT of the Rayleigh MIMO
channel. The code length condition is exactly the same asathdition provided by observation 4
in the remark above.

As in [3], the DMT is obtained from the p.d.f. of the eigenvedof@Q,, = HH', which depends
on (m,n,l). For now, we know thaQ, = H H| ~ W,(m,I). Let us define the eigenvalues of
Q. @Sy > ... > finim)- ThEN,Qy = <H2Q}/2> (HQQ}/Q)T has the same eigenvalues as
Q¢ £ GG’ with G 2 Q1*H}. By definition, conditionned of;, we haveQg; ~ W,(n,Q,).
Therefore, from now on, we can study the eigenvaldes- ... > Aping,m,»}0f Qg, Whose joint
p.d.f. only depends on the eigenvalue<hf according to Theorem 1. In the rest of this section,

we prove Theorem 2 in two casesnin{m,n} > [ andmin{m,n} <.

A. Themin{m,n} > [ Case

In this case, we can exchange and n, by the reciprocity property of MIMO channels.

Without loss of generality, we assume that> n. From (3) and (6), we get the joint p.d.f. of
(A, )

l !
p&u()‘v .“) = Cl,m,n H M;n_n_lA?_l H ()‘i - )‘j)(Mz‘ - Mj)
i=1

i<j

l
- exp (— ZMZ> Det [6_)‘1/’“} ,
i=1
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A

whereC; ,, . is the normalization factor. Defing = — log \;/log SNR and; £ — log 11;/ log SNR

fori=1,...,1. Then, we have

l
Pap(er, B) = Cipmn(log SNR)? T SNR™ (D2 gNR (m=m)f:
i=1
l
T (SNR™ — SNR™)(SNR™% — SNR™%)

1<J
l
. exp (— 3 SNR‘ﬁi> Det [eXp (—SNR—@—BZ?)} .

i=1
First, we only considers; > 0,Vi, since otherwiseexp (— EiSNR‘BZ’) would decay expo-
nentially with SNR [3]. The high SNR exponent of the quantiBet [exp <—SNR‘(°‘J"5’L')>} is
calculated in Lemma 2. From (20), we only need to consigder 5;,Vi, so thatp, g(c, 3)
does not decay exponentially. Finally, by Lemma 1, the D¥#) can be obtained by solving

the optimization problem

d(r) = inf 10
(r) O(g’lﬁ’r)e(aﬁ) (10)
with
A l n ap < - <, .
Ola, B,7) =1 (o, B) : g (1— ) <r,6 - <5,%2B¢20,V@
- L << B
and

l

l l
o, B) 2 (n—it+ Do+ (m—n+1—0)Bi+ Y (- )" (11)
i=1

i=1 1<j
The optimization problem (10) can be solved in two steps:rid Gptimal3 by fixing «, and

then 2) optimizex. Let us start from the feasible region

0<Bi=a1<Bh=mw< - <F=q (12)

l
in which we haveZ(ozi — ;)" = 0. Note that for each, the feasibility conditions require that
1<J
B; should only move to the left in terms of its positidrelative to thea,’s and thats; should
never be on the left of; for ; > j. Each times; passes an; from right to Ieft,EKj(ai —B)"
increases byy, — ;, which increases the coefficient of by 1 and decreases the coefficient

of 5, by 1. To minimize the value of(«, 3), §; is allowed to passy; only when the current
The position here refers to the position in the inequalitgiotof o;’s and 8;'s in increasing order, as the one in (12).
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coefficient of 3; in (11) is positivé. The maximum number of; that can be “freed” bys; is
j—1,1.e, a;_1,...,a;. Note that the initial coefficient of; is m —n+1— j and is decreasing
with j while the number; — 1 is increasing withj. Let j* be the largest number such that
m—n+1—7j > j—1. Obviously, forj < j*, «;_1,...,a; can be freed and the final coefficients
of 3jism—n+I-2j—1 (> 0)andg; = 0. Forj > j*, 3; can only freen; 1, ..., @ (m-nti—j)
and the final coefficient of; is 0. Substituting the optimal solution&’s back into (11), we get

l

(o) = Z(n —i+ 14+ (13)

=1
wherec; can be found with the help of Fig. 1(a). Finally, we have

4a):hgfm<n+1—2m%V+i+§”_mJ)%

i=1

l
+ Y (ntl+1-20)q

i=l—(m—n)+1
where the coefficient ofy; is non-negative and is non-increasing withHence, the optimal

solutionisa; =1,i=k+1,...,l anda; =0,: =1,..., k, from which we can verify that

a(k) = (1= K)(n — k) - W =) J - a4

B. Themin{m,n} <[ Case

Again, by the reciprocity property, we assume that m. However, we should study the
m > [ case and then < [ case separately. We start with the former case.
1) Then <1 < m Case: From (4) and (6), we get the joint p.d.f. A, )

l l
p>\7H(A7 l’l’) = Bl,m,n H ,U;n_l H (,UZ — ,u])
§ =1 1<J (15)
JT N = X)) Det (B)

1<j

3When the coefficient off; in (11) is positive, decreasing; decreases(a, 3).
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(a) Themin{m,n} > [ case (b) Themin{m,n} < [ case

Fig. 1. For eachy, the black dots represent thes that are freed bys;. For eachi, the number of black dots; is the
coefficient ofa;. Thus, fori < g(1), ci = |g~'(i)| — [f~'(3)| +1; and fori > g(1), ci =1 — [f~'(3)] + 1.

where B, ,,, ,, is the normalization factor. Same procedure as the prewass and Lemma 3
lead to the following asymptotical p.d.f. dtx, 3)

Pasle, B) = (log SNR)' " H gNR—(n—itDa

i=1

1 l
. H SNR—(l-i-m—n—i)ozi H SNR—(l+m+1—2i)Oéi
i=1

= i=n+2

n l n
T TT SNR™=%" T] SNR™ ()"

i=1 j=n+1 i<j
l n

P <— > SNR‘&) exp (- > SNR‘(O“‘B'L')> .
i=1 i=1

does not decay exponentially. Finally, the DMTr) can be obtained by solving the optimization
problem (10) with

As before, we only conside$; > 0,Vi, ando; > 3;, for i = 1,...,n, in order thatp, g(a, 3)

O, B,r) = {(O"ﬁ): Z(l_o‘i)+ s Sa"’,ai > f3; > 0,fori = 1,...,n}

<r
~ << B
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10

and
n n+1

(o, B) =) (n+1—i)a;i+ > (I+m—n—1i)p;

i=1 i=1

l n 1
+ > AmA1=208+> > (o= By)F (16)

i=n+2 i=1j=n+1

+ (i = B
1<J
The optimization procedure is exactly the same as in theiquswase. With the optimat,’s,

we have

n

(o) = Z(n —i+1+¢)oy (17)

=1
wherec; can be found with the help of Fig. 1(b). Finally, we have

e(a)zl_(fn) <n+1—2i+ VHJrém_n)Dai

i=1
+ ) (ntl+1-20)q

i=l—(m—n)+1

where the coefficient ofy; is non-negative and is non-increasing withHence, the optimal

solutionisa; =1,i=k+1,...,landa = 0,7 =1,..., k, from which we have
_ T — )+2
d(k) = (1 — k)(n — k) — V(" (m 4” k)] J . (18)
2) Then < m < [ Case: In this case,u,,+1 = --- = p; = 0 with probability 1. Let

p = [p -+ - )" be the vector of the nonzero eigenvalue)ef The conditional p.d.fpx,(A|p)
is given by Lemma 4. The p.d.f. gi being known from (6), we get the joint p.d.f. OA, )
in exactly the same form as (15), except thandm are interchanged. We have directly

[m—a—ww—mww, (19)

ﬂ@z@n—@m—k%-{ :

IV. DIVERSITY-MULTIPLEXING TRADEOFF OFDOUBLE SCATTERING MIMO CHANNELS

In this section, we study the DMT of a general double scaitedhannel, where the antenna
and scatterer correlatiords;, 5 and® are non-trivial.
It is intuitive to expect that the DMT is independent of theretation matrices, as long as

they are not singular, since the DMT is an asymptotical perémce measure. First of all, it is
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11

easy to show that the antenna correlatidasand ®r do not affect the tradeoff. To see this,

note that
det(I+ SNRHH') = det(I + SNR®Y’H,®y*H &+ H &y H,®Y?)
= det(I+ SNR®Y’H,®Y H HI®Y H®\”)
= det(I+ SNRH|®Y H,H,®Y°H,)

where®; and ®r disappear in the high SNR analysis. Now, it remains to shat®g has no
impact on the high SNR analysis. The following propositi@amfirms this statement.

Proposition 1: Let M be anym x n random matrix andl’ be anym x m non-singular
matrix whose singular values satisfy,i,(T) = omax(T') = SNR’. Defineq £ min{m,n} and
M 2 TM. Letoy(M) > ... > 0,(M) > 0 andoy(M) > ... > o,(M) > 0 be the distinct
ordered singular values dff and M, Then, we have

oi(M) =o0;(M), Vi.

Proof: For m > n, we consider the left polar decompositidd = UM,, whereU
is am x n matrix with orthonormal columns antf, a n x n positive definite matrix with
oi(M) = 0;(M,) fori = 1,....,n. Let TU = VT, be the left polar decomposition &U.
Then, we haver;(M) = 0;(ToM,) fori =1,... n.

For m < n, we make a right polar decompositidd = MU', whereU is an x m matrix
with orthonormal columns andf, a m x m positive definite matrix withr;(M) = o;(M,) for
i=1,...,n. Then, we haver;(M) = o;,(ToM,) for i =1,...,n with Ty £ T.

In both cases, the original problem is equivalent to shovirag
O'i(TQMQ) iO'i(Mo), for i = 1,...,q,

with Ty and M, now invertible. LetA and B in Lemma 5 beT, and M, respectively. By
applying (28) and (29) of appendix, we have

0i(Mo)on(To) < 0i(M) < 0;(Mg)o1(T),

from which we prove the proposition sineg(T,) = o,,(T,) = SNR” ando;(M) = 0;(M,). ®
This proposition says that any invertible transformatioithwwounded (asymptotically in high

SNR regime) eigenvalues does not change the asymptotiddl pf the singular values of a
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12

random matrix. According to this proposition, we know thae singular values 01>§/2H1 have
the same asymptotical p.d.f. as the onedqf which leads to the main result of this work.

Theorem 3:For a(nt, ns, nr) double scattering MIMO channel (1) witH defined in (2), the
diversity-multiplexing tradeoff is a piecewise-lineanfition connecting the pointg, d(k)), k =
0,...,M with d(k) being defined in (9), wherg\, N, L) is the ordered version dfir, ns, ng)
with M < N < L.

Proof: This is a direct consequence of Theorem 2, since the eig:}sli&tfﬁ/al‘(<1>§/2H1)(‘I%/zHl)T
have the same asymptotical p.d.f. as thafafH ;. [ |
Note that all observations in Remark 1 apply for the geneoalbte scattering MIMO channel.
In particular, the optimality conditiod. + 1 > M + N in observation 4 of Remark 1 in terms
of (nt,ns,nr) is

2max {nt,ns,nr} + 1 > nt + ns + ng,

which is also the condition under which the maximum chaniardity ordemnsng/ max {nr, ns, nr}
is achieved. Moreover, this theorem implies that antenrsxatterer correlation does not, indeed,
have any impact on the DMT of a double scattering channebrg &s the correlation matrices
are non-singular. Finally, in the singular correlation ntas case, it is straightfoward to show
that Theorem 3 is still true, but wither, ns, nr) replaced by(n4, ngs, ng), the respective ranks

of the correlation matrices.

V. CONCLUSION

We studied, in this paper, the DMT of a double scattering MiN@nnel and showed that,
as long as the correlation matrices are non singular, it isaletp the DMT of a Rayleigh
MIMO product channel. This DMT is always lower than the oneadfingle scatteringf x ns,
ns X nr Or nt X nr) MIMO channel and it is equal to that one for certain valueshef channel
parameters. This result is not only interesting for itsbift it also helps to the calculation of
the DMT of MIMO Amplify-and-Forward [9] cooperative charleeas the relayed link can be
seen as a Rayleigh MIMO product channel.
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APPENDIX
Lemma 2:
Det [exp <—SNR‘(%‘52)>]
t,j=1
I (20)
= oxp | — Y SNR™(7) ) GNR™Eics (=),
=1
Proof:
l
Let us defineD; £ Det [exp (—SNR‘(‘“J"BZ')H and we have
2,7=1
-e—SNR*(O‘l*51)+SNR*<‘1F51) o 6—SNR*(°‘1*17ﬁ1)+SNR*(°‘l*51) 1_
. . . . 5. —(a;—=8;)
D; = Det : .. : e 2 SNR™
e—SNR*(O‘l**Bl)—i-SNR*(“l*Bl) o e—SNR7<Ql*17*Bl)+SNR’(°‘l’5l) 1
[ e—SNR*(’”*Bl) . e—SNR*Wl*f@'l) L e_SNR*(azflfﬁl) - e_SNR*(alflfﬁl) 0-
. : E : | _sNR—(a—8D
= Det o~ SNR™ (et =F1
e_SNRf(alfﬁl,l) - e_SNRf(alf,ﬁ‘l) o e_SNR*(al,lfﬁlfl) . e_SNR*(alflfﬁl) O
e—SNR*(O‘lfﬁl) o e_SNR*(O‘lﬂ*Bl) 1
i e—SNR*(’”*Bl) (1 . e—SNR*(“1*BI)> L e_SNR*(an*Bl) (1 . e—SNRf(al*1761)>
. . . . _ —(a;=8yp)
= Det : " : e SNRT T
e_SNR*(alfﬁlfl) (1 . e_SNRf(a1761)> o e_SNR*(alflfﬁl—l) (1 o e_SNR*(al—I*BI)>
-1
_ —(a;=87) _ —(a; =By
— o~SNR(F1 H(l_e SNR~ (@i Z>Dz—1
i=1

where the equations are obtained by iterating the ideStitR ™ 4+ SNR™" = SNR™ for a < b.
Sincel — e~® ~ z for = close to0*, we havel — e=SNR™ ™ = gNR=(®=A) if o, > 6, and
1—e~SNRT@=%) - gNRO otherwise. As shown in the recursive relation above, we magea; >
B;, Vi, in order thatD, does not decay exponentially. Thus, we haye= SNR‘Zi<l(°‘i‘5l)+Dl_1,

and in a recursive manner, we get (20).
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Lemma 3:
n+1

Det E HSNR (I+m—n—i)a; H SNR™ (I+m+1-2i)ay

i=n+2

i=1
ﬁ ﬁ |\|R—(sz'—5j)+1£[S|\||:g—(0éi—5j)+

1<j
. exp — Z SNR_(al_BZ)> .
i=1

,Ul_(l_n_l) cee 1 e Mmoo Ll e A/

Det(Z) Hu””Det : : : . (21)

,Ul_(l_n_l) oo 1 e M/ Lo e A/l

Proof: First, we have

Then, let us denote the determinant in the right hand sid@Df 4sD and we rewrite it as

[ dgll—"—l) o0 e MmN/ . g=a/m _ g=Aa/m ]
D = Det (22)
dl(l—_lnl_l) coe 0 e Moy N/ L g An ey = An/m
py Y e~ M /m o e~ /1
-dgll_”_l) - dgll) e~ M/ L. emA/m |
= Det : KPR : : [T (@—e/m) (23)
e U O R /RS vy

whered!"”) £ ;7% — ;=% and the product term in (23) is obtained since e~ (¢/m—Xi/k) =

1—e~/m for all j < [. Let us denote the determinant in (23)as Theg by multiplying the first
= 1— ﬂ

of D, becomes all.. Now, by eliminating the flrst— 2 “1"s of the first column by substracting

all rows by the last row as in (22) and (23), we haye" 'D; =[], (1 — e /") D;_;. By

(I-n—1)

column inD; with i~"~* and noting that:, "~ 1d ~ 1, the first column
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continuing reducing the dimension, we get

n+1
Det(E) = Det e A/‘“ . _IH,uﬁ nt H =
it=n-+2
H H A/HJ
=1 j=n+1
from which we prove the lemma, by applying (20). [ ]

Lemma 4:Let W be a central complex Wishart mati¥ ~ W,,(n,X) with n < m, where
the ordered eigenvalues &farep; > ... > > i1 = ... = iy = 0 with [ > n. The joint

p.d.f. of the ordered positive eigenvalugs> ... > )\, of W equals

l n

- 1
i<j Hi = 1y i<j
with ) . N
L T e N (C S
=2 (25)
l—n—1 l—n—1 -4 l—n—1 —2n
1 [/ ,Uz ,Uz e M . Ml e M

Proof: We can prove it by successively applying the 'Hospital rwIEh Ly -+ s fgg1 — 0
on the expression in (4). Let us prove by induction that
Det(= Det(=2
lim et(Z) =— (=) i
it =0 [T (s = 11y) L (i = 15)
Forl =m —1, (26) is obviously true. Then, assuming that (26) holds feeg!/, then, as long

(26)

as! —1>n, we have

Det(”) . Det(El)
lim —m———— = lim =
MLm= 0 H2<J (ki = p15) p=0 Hi<j(:ui — i)
_ Det(El_l) (27)
1—
[T (i — )
where (27) is deduced from (26). [ |

Lemma 5:Let A and B be twom x m non-singular matrices. For any x n matrix M,
let o;(M) be theith largest singular value oM and n;(M) be theith smallest oneif,
oi(M) = n,:1-;(M)). Then, we have

oirj-1(AB) < 0i(A)o;(B) (28)
Nivj—1(AB) = 1;(A) 1;(B) (29)
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for1 <{i,j} <mandi+j<m+1.
Proof: Let AB = UQ be the left polar decomposition &B with U unitary and@ positive

definite. Then, we hav§ = U'AB ando;(Q) = 0:(AB), Vi. The quadratic formx'Qz can be
bounded as

©'Qz|* = |(AUz)' (Bz)|’
< |A'Uz|*|Bz|? (30)
= (x]iQAml) (“"TQB“’)

wherezx, 2 Uz, Q, = AA"andQg = BB'. The eigenvalue decomposition @f, and@y gives

Qa=) 0l(A)zz and
i=1

Qp = Em: o} (B)yy,
i=1
where z; and y, are eigenvectors of), and @z, respectively. Now, taking;, = U'z;, for
k=1,...,i—landx, =y,_, . fork =4, ... i+j-2,wehaveyr Lz, fork=1,... i+j-2,
(Uz)'Qa (Uz) < 0} (A) || (31)
2'Qpz < o} (B) |lz|*. (32)

From (30), (31) and (32) and the Courant-Fischer theoren) {&6 get

1 2
2(AB) < max TP 24)52B).

.

from which we have (28).
Note that for any invertible matrid/, we haven;(M) = o; ' (M "). By applying this equality
and using the inequality (28), it is straightfoward to ged)(after some simple manipulations.

REFERENCES

[1] J. Foschini, G. Golden, R. Valenzuela, and P. Wolnians®ymplified processing for high spectral efficiency wirgde
communication employing multi-element arraylFEE J. Select. Areas Communol. 17, pp. 1841-1852, Nov. 1999.

[2] E. Telatar, “Capacity of multi-antenna Gaussian chéh&urop. Trans. Telecommun., ETWol. 10, no. 6, pp. 585-596,
Nov. 1999.

[3] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: Aifdamental tradeoff in multiple-antenna channelEEE
Trans. Inform. Theoryvol. 49, no. 5, pp. 1073-1096, May 2003.

September 25, 2018 DRAFT



17

[4] D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj,ut@oor MIMO wireless channels: Models and performance
prediction,” IEEE Trans. Communyvol. 50, pp. 1926-1934, Dec. 2002.

[5] A. T. James, “Distributions of matrix variates and lateoots derived from normal sample#hnals of Math. Statisti¢s
vol. 35, pp. 475-501, 1964.

[6] H. Gao and P. J. Smith, “A determinant representationtliierdistribution of quadratic forms in complex normal vestb
J. Multivariate Analysisvol. 73, pp. 155-165, May 2000.

[7] S. H. Simon, A. L. Moustakas, and L. Marinelli, “Capaciand character expansions: Moment generating function and
other exact results for MIMO correlated channels,” 2004nl[i@e]. Available: http://mars.bell-labs.com/cm/msattimars/
papers/simommgf/simon.pdf

[8] A. M. Tulino and S. Verdu, “Random matrix theory and wass communications,Foundations and Trends in
Communications and Information Thepmpol. 1, no. 1, pp. 1-182, 2004.

[9] S. Yang and J.-C. Belfiore, “Optimal space-time codestf@ MIMO amplify-and-forward cooperative channel,” Sept.
2005, submitted tdEEE Trans. Inform. Theory{Online]. Available: http://fr.arxiv.org/pdf/cs.ITEDI006

[10] R. A. Horn and C. R. JohnsoMatrix Analysis New York: Cambridge, 1985.

September 25, 2018 DRAFT



