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Living at the Edge: A Large Deviations Approach
to the Outage MIMO Capacity
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Abstract—A large deviations approach is introduced, which antennas, which is captured by the ratio= M /N. Without
calculates the probability density and outage probability of |oss of generality we assume that > 1; otherwise, if

the MIMO mutual information, and is valid for large antenna . ; _ ;
numbers N. In contrast to previous asymptotic methods that B < 1, we may simply replace with pnew = pf5 in @) and
interchange the roles df/ and V.

only focused on the distribution close to itsmost probablevalue, 3 ) o .
this methodology obtains thefull distribution, including its non- If the channel matrixH varies in time according to a

Gaussian tails. The resulting distribution interpolates ketween stationary ergodic process, and coding spans an arbjtraril
the Gaussian approximation for rates R close its mean and the |grge number of fading states, then the “ergodic” channel
asymptotic distribution for large signal to noise ratios p [1]. For capacity is given by the mutual information expected value

large enough.V, this method provides the outage probability over ! . . .
the whole (R, p) parameter space. The presented analytic results E [Ix] [8]. Initially, this quantity was calculated asymptotilal

agree very well with numerical simulations over a wide rangeof ~ for large N, with 3 remaining fixed and finite. In particular,

outage probabilities, even for small N. In addition, the outage in this case,H can be viewed as a large random matrix.
probability thus obtained is more robust over a wide range ofp  Then, by applying ideas and methods from the theory of
and R than either the Gaussian or the largep approximations, random matrices, it was shown il [4] that the value of the

providing an attractive alternative in calculating the probability . . . ”
density of the MIMO mutual information. Interestingly, thi s Mutual information per antennéy (p, H)/N *freezes” to a

method also yields the eigenvalue density constrained in ¢h deterministic value in the larg®’ limit, the so-calledergodic
subset where the mutual information is fixed to R for given averagereg(p). Underlying this result is the fact that the

p- Quite remarkably, this eigenvalue density has the form oftte  very eigenvalue distribution dfiTH freezes to the celebrated
Mar €enko-Pastur distribution with square-root singularities. Mar&enko-Pastur distribution:

Index Terms—Diversitymultiplexing tradeoff (DMT), Gaus-

sian approximation, information capacity, large-system imit, p(z) = (b—z)(z —a) ©)
multiple-input multiple-output (MIMO) channels. 2rx
wherea, b = (1/B+1)? are the end-points of its support. Even
. INTRODUCTION though later the closed form solution @&fIx] for general

Considerable interest has arisen from the initial prealicti M, N was found [[5], the asymptotic form of.r4(p) was

[21, [3] that the use of multiple antennas in transmittingjanparticmaﬂy popular due to its simplicity and accuracyeev
L : : R for small number of antennas.

receiving signals can lead to substantial gains in infolonat Anoth | t reaime is when the ch | matrix i

throughput. To analyze the theoretical limits of such a MIMO hother more relevant regime IS when the channel matrixis

(Multiple Input Multiple Output) system, it has been ConVer_andom, but varies in time much more slowly than the typical

nient to focus on the case of i.i.d. Gaussian noise and inpﬁ?.dmg delay. In this case (usually referred to as the "quasi

For the MIMO channel model static” fading channel)H can be considered as a random
constant and the mutual informatiohy (H) is a random
y=Hx+z (1) variable. In this regime, the relevant performance mesic i

the “rate versus outage probability” tradeoffl [6], captiire
@3} the cumulative distribution function of 5 (H). Various
approaches [7]=[11] have shown that the mutual information
In(H) becomes asymptotically Gaussian for larye with
In =logdet (I+ pH'H). (2) mean equal to the ergodic ca}paci@érg = Nre_,g(g)_ and a
o _ _ . variance of ordef(1) in N. This Gaussian variability of the
where 1og” signifies the natural logarithmp is the signal mutual information is due to the fluctuations of the eigenesl
to noise ratio andH is the M x N channel matrix whose of the matrix around the most probable distribution destib
elements are independefiN(0, 1/N)) random variables. This py the Marcenko-Pastur law. Since this Gaussian approxima
corresponds to the case of transmitting and)M receiving tion is essentially a variation of the central limit theoreimn
. only applies within a small number of standard deviations
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with coherent detection and no channel state information
the transmitter[[2],[18], the mutual informatiaiy for a given
value of the channel matriKl takes the familiar form:
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Nevertheless, the tails of the distributions of the mutuslehavior of the mutual information distribution for arlaity p
information are important, because they correspond t@nsgi and R.
with low outage probability, where one would want to operate In this paper, we introduce a large deviations approach to
a MIMO system. This is particularly important when, for larg calculate the full asymptotic distribution @?. It is formally
p, the slopes of the outage curves are large. The interpheglid for large N, but works over the whole range of val-
between low outage and multiplexing gain was exemplifiates of R and p. This method bridges the two regions of
in the seminal paper[1] where the authors analyzed tbmall/intermediate and large signal to noise ratios within
asymptotics of the distribution of the mutual information i single framework and, in effect, it amounts to calculating
the limit of largep (keepingR/ log p fixed). They found that the rate function of the logarithm of the average moment
the asymptotic form of the logarithm of the outage probapili generating function of the mutual information. Our apploac
of the mutual informationPou(R) = P(Ixy(H) < R) is a was first introduced in the context of random matrix theory by
piecewise linear function of?/log p, interpolating between Dyson [13] and has been more recently applied in a variety of

the discrete set of values: problems [T4]4[1l7]. It is quite intuitive because it integfs
R, R, the eigenvalues cH'H as point charges on a line repelling
log Pout(Rn) ~ —log p (logp - M> <1ng - ) (4) each other logarithmically. This is the first time this apgmio

has been applied in information theory and communications.

where R,, = nlogp for integern < N < M. When, in ag a byproduct of this approach, we obtain the most probable
addition to p, N is also large,log Pou(R) in (@) becomes gjgenvalue distribution constrained on the subset of oblann
(to leading order) a continuous function &/N. It should matricesHH that have fixed total rat& and signal to noise
be pointed out that this approach generalizes the la¥ge ratio . This is a generalized Mar&enko-Pastur distribution that
asymptotics discussed above, since it provides insighbén tgives the constrained eigenvalue distribution for valueszo
distribution of the mutual information quite far from itsgle  even far from its ergodic value. It is worth pointing out that
which for largep (and largeN) is situated at/y ~ Nlogp. many of the results presented here could be set on a more
More recently, in[[12] the authors recast the DMT problefhrmal mathematical footing using tools developed [in] [18].
providing a formula to calculateg o as a function ofR  However, we will follow the less formal but more intuitive
when R lies in each linear subsegment & (4). Nevertheleg$proach developed by Dyson.
both approache5[1]. [12] do not provide the offset to theldea ' Thjs generalized Maréenko-Pastur distribution can aleo b
ing, O(log p) behavior of [#). As a result, these approachegeen as the inverse of the so-caltannon transforrfit9] in
while quite intuitive fail, often by a large margin, to praé@ e following sense: while the Shannon transform produces
an acceptable quantitative estimate Bf.; unlesslogp is the value of normalized mutual informatiofiy /N as a
extremely large. _ ~ functional of the asymptotic eigenvalue distribution Iaf H

In the meantime, all variants|[7]2[9] of the largeGaussian (the Martenko-Pastur distribution), the generalizedddako-
approximation of the mutual information fail for large  pastur distribution introduced here boils down to the asymp
Specifically, they all predict that the outage probabilitgiven iotic eigenvalue distribution dELTH for a given value of the
asymptotically by: mutual informationR = Nr, i.e., whenHH is constrained

2 2 on the subset defined by= Ix(H)/N.
__ (logp) R 5)
2log (1 —p71) \logp

where 3 = M/N > 1, an expression which is in striking” Outline
disagreement witH {4). Even though f8r= 1 the asymptotic  In the next section we will introduce the necessary mathe-
form of {@) is recovered within the Gaussian approximatiomatical methodology. In particular, SectibnTl-A descskbe
[7], [@], the discrepancy for3 # 1 indicates that the limits mapping of the joint probability distribution of eigenvak
N — oo and p — oo cannot be naively interchangedof the Wishart matrix to a Coulomb gas of charges with a
In the Gaussian approximation, one focuses on the masmtinuous density (discussed in more detail in Appeidix B)
probable eigenvalue distribution, which converges vagtel and the large-deviations analysis of the problem. Nextj@ec
the Martenko-Pastur distribution] (3). However, as candsmns [[-Bldeals with the solution of the resulting integral edoat
in @), this distribution (almost surely) produces no eigdnes that produces the most-likely eigenvalue distributiorhattils
of H'H close to zero whers > 1. Nevertheless, the analysisof the full distribution.
for largep focuses at the regime where the eigenvalues are ofif one is not particularly interested in the details of our
orderO(p~1). As a result, it is not surprising that the largée- derivation, SectiofiJl may be skipped in favor of section il
Gaussian approximation of the mutual information distiifiu  where we present our main results. Specifically, in Section
misses the correct behavior. [M-Alwe rederive the Mar€enko-Pastur distribution (that

In summary, we have two methods, the lafje-fixedp the most likely distribution without the mutual informatio
Gaussian approximation on the one hand and the largeeonstraint) to highlight the efficacy of our method. Subse-
fixed-N limit on the other, both having their own regions ofjuently, Section§ TlI-B an@ III-IC contain our results foreth
validity, and both failing to produce quantitative resuits cases3 > 1 and 3 = 1 respectively, while in Section 1II-D
the outage probability outside their respective regiorisisST we show how to calculate the outage probability directly by
one still needs an approach that correctly describes tregeutmeans of the results of the previous sections. In Se€fidn 1V

log Pou(R)




we analytically obtain previous results as limiting casés o The cumulative probability distribution (CDF) of the nor-
this method, and also examine a number of different limitingnalized mutual informatiody /N can then be written as a
cases. In SectidnlV we provide numerical comparisons of oatio of two volumes in\-space:

method to other approximations previously outlined and to v,
Monte Carlo simulations. Fy(r) = PUn/N<71)=4 (10)
. . . . . tot
The proofs of the properties dame distributions (intro-
duced in sectio_I[-A) are given in appendx] A and we = /P)\(A)G(r—IN/N) d

discuss Dyson’s original construction of the Coulomb gas

model in appendikB. AppendicEs C dntl D have been reservéderel is given by [6),0(z) is the Heaviside step function

for the exposition of some technical issues that cropped (P(z) = 1 if z > 0 and©(z) = 0 if z < 0) and the

during our calculations. Finally, Appendi E discusseshkig integrals are taken with respect to the ordinardimensional

orderO(1/N) corrections to our model and comparisons withebesgue measuréA = [, d\;. The above CDF is by

Monte Carlo simulations. definition the outage probability, i.e. the probability thihe
normalized mutual information falls below Its corresponding
probability density (PDF) can be obtained frdml(10) by takin

Il. METHODOLOGY the derivative with respect to [21]:

Our approach can roughly be divided in two main parts. - B
First, in section[I-A we reduce the original problem of Py(r) = Fy(r) = /PA()‘)(S(T_IN/N) A (11)
finding the probability distribution of the mutual inforna where we have used the fact that the (distributional) déviea
to harvesting the minimum energy of a gas of charged pasticl

(among other things we show here that the minimum energilthe step function is the Dirag-function: ©'(z) = 6(z).
configuration is unique). Then, in sectibn11-B, we will selv Our primary goal will be to usd (11) in order to obtain an

. : _ nalytic expression for the probability distribution fdiloo of
th_e _mtegral equation _that comes up and actually obtain t e mutual information/y. However, in general there is no
minimum energy configuration of the charges. standard way to evaluate integrals liké& (except for some
special cases [22]). Nevertheless, in the laNgdimit it is
A. Mapping the Problem to a Coulomb Gas possible to analyze such integrals in a systematic way. This
] o ) so-called Coulomb-gas approathl[23] is based on the inguiti
We begin by establishing the mathematical methodologjea to interpret the eigenvalues as the positions ofV
treading on the elegant footsteps bf [15]. /[20]. Our overgliositive unit charges located on a line, a picture first psego
aim will be to calculate the probability distribution of theby Dyson [L3]. Within this interpretation, the last term hret
mutual information[(R), which can be written in terms of th%xponentE(A) in @) corresponds to the logarithmic repulsion

eigenvalues\; of the Wishart matrixt'H as: energy, while the first term is the potential due to a constant
N field and the second term is the repulsion of a point charge
In(A) = Zlog(l + pAi) (6) located at the or|g|E.
1 Now, it is instructive to look at the form aE'(\) to get an

) - S intuitive understanding of the minimum energy configunatio
Note that the aforementioned probability distribution 0f¢ ) in the absence of the constraiht /N = r. As discussed
the mutual information thus depends on the joint probabiligpove, the first two terms if(A) correspond to the external
distribution function of the eigenvalues ... Ay of H'H. In  forces acting on the charges, while the last term represents

its turn, this distribution takes the well-known form: the repulsion between charges. In the absence of the charge
N repulsion the minimum energy configuration will correspond
Py(\i...Ay) = ANA(N)? H )\kM*Ne—NM (7) toall charges settling at the minimum of the external po&ént
el ie.\p =8 —1forall k=1,...,N. However, the repulsion
_ ANe*NZE()‘) ®) between charges will make them move away from that point

but still, from simple electrostatics considerations, éixeernal
whereAy is a normalization constant am(\) = [T, (A — forces will not aIIpv_v this repulsion to carry charges too far
);) is the Vandermonde determinant of the eigenvaligs away from the minimum. As a result, we expect that at the
The exponentZ()) is an energy function of the eigenvalueghinimum of E(A) all charges will be concentrated in the

{\:} that will become very useful later: neighborhood of — 1. As the number of charges increases, it
. will make sense, at least for configurations with eneFg)A)
- = (A _ close to the minimum, to expect that the charge distribution
EQ) = N zk: (e = (8= 1log Ar) © will be approximately acontinuousdistribution. As a result,
2 all sums over\ in E(X) may be replaced by integrals, and we
t 32 > log|A; — Ak expect that this will also be true in the presence of conssai
J>k as in [12).

Note that the normalization we have Chos_en is such AHa) INote that these are simply the potentials that one obtaictassical two-
corresponds roughly to the energy per eigenvalue. dimensional electrostatics.



To make this continuum limit more precise, one begins gemark2.2 Condition (ii) will be crucial to our analysis. At
conditioning the probability lawP of the eigenvalues of the first, it might appear as a mere technical necessity (see e.g.
Wishart matrixHH on the set/, = {\ : Iy(\)/N =r}, i.e. sectionI-B and appendixIC) but, in fact, it has a very deep
by considering the conditional probability lai(-| I /N = r) physical interpretation: a probability density with finiteean
and the corresponding PDF. A§ — oo, large deviations might still fail to have finite energy, making it inadmissbl
theory suggests that this density function will be sharpign physical grounds. Condition (ii) ensures tl&gp] will be
concentrated around its most probable value, i.e. the nuimim finite (see lemmal3 below).

of the energy functional{9). Then, according to Dyson, thigemark2.3 When it is not necessary to make explicit mention
minimum can be asymptotically recovered by looking at thg; the exponent, we will simply say thap is tame Similarly,
minimum of thecontinuousversion of {9): an absolutely continuous (signed) measaren R.. will be
Conjecture 1 (Coulomb Gas AssumptionAs N — oo, the called tame when its Lebesgue derivative(z) = di;—‘;”’ is
empirical distribution of charges/eigenvalues under thee r tame. Given this equivalence between continuous measures
constraint/y /N = r converges vaguely to an absolutely conand Lebesgue derivatives, we will use the two terms inter-
tinuous densityp(z) which minimizes the continuous energychangeably.

functional: Going back to the energy functionélof (I2), we can see
that condition (i) guarantees that the first term[inl (12) igein
el = /xp(x) dz —(6-1) /p(‘ﬂ logzdz (12) \hile (ii) bounds the second and third terms. This is cature

in the following:

/ p(x)p(y)log |z — y| dwdy - o

Lemma 3 (Finiteness and Continuity of). Let 2 be the
over the space of densities which satisfy the constraispace of tame functions dR, and let & be defined as in
Jo° p(x)log(1 + pz)dx = r. In other words, asV — oo, (@2). Theng&[p] < oo for all p € Q and the restriction of to

the total charge in any intervdl C R will be given by: any subspace af '*=-integrable functions with finite mean is
continuous (in thel.'*¢ norm). In other words, tame densities
o(l) = /Ip(ff)d% (13) have finite energy and tame variations in density induce lsmal

, variations in energy.
with p as above.

We prove this lemma in Append[X]A where we also give
%ome background information on tH¢ norms. For now, it
Uill be more useful to express the probability densRy: (r)

This assumption is essentially identical to the one in Msht
book [23] and has been extensively employed in the liteeat
[13]-[15]. Unfortunately, despite its simple and intuéiwna-

. . . ~ as the ratio:
ture, this assumption has resisted most attempts at a tigoro p 2y 16
proof, thereby giving birth to different approaches, sush a () = ba (16)

the one in [[18]. Nevertheless, the results obtained these Hhere, in accordance with](8[11) afdi(12), and Z are
in agreement with the ones obtained with the help of tk{ﬁe (uﬁ-normalizedbartition function

Coulomb Gas assumption and, hence, we feel that our posit

here is rather mild (see also appendix B for a more detailed %, = / ™ o~ N2elp) (17)
discussion). X,

At any rate, to make proper use of the energy functional o _N2€[p] 18
& ([@2) we must first make sure that it remains finite over a o /xDJ ¢ (18)

reasonably large class of densitigg). This leads us to the

“ and Dp denotes the path-integral measure over the domains
concept of “tameness”:

of tame densities(, X,. C Q:

Definition 2. An integrable functionp : R, — R will be

callede-tamewhen: X = {p €Q:p>0and /p(:c) dr = 1} (19)
(i) the “absolute mean” op is finite:

X, = {p exX: /p(a:) log(1 + pz) dz = 7’} . (20)

Of course, from a mathematical point of view, constructing
a measureDp over the infinite-dimensional space of functions
oo is an intricate process which is far from trivial. Path intdg
/0 p(2)['Fe da < oo (15)  were first introduced by R. Feynm&n [24] in physics and have

. N o been used there extensively over the last 70 years. We prefer
Remark2.1 The phrasing of condition (i) simply reflectsnq 1o introduce them formally but, rather, to follow a more

our m_terest in tame fun_ctlonﬁ = px that are probability jntyitive approach instead, in Appendi B.
densities of random variable¥ with values inR.. In that
case, condition (i) simply states that has finite mean: 2It is worth pointing out that the correction to the terii*&[p] in the
0o exponent isO(1) (see appendikIB for more details). Also a nice analysis of
E [X] _ / xp(x) dr < 0o m-) the mapping from the\ integrals to path integrals overcan also be found
0

| el ds < (14)

(ii) there exists some > 0 such thatp is L'*¢-integrable,
i.e.

in [20].



With all these considerations taken into account, we madtyallows us to work with{; and at the very last step set= 0
take the largeV limit and write: to obtain&g.
. 1 . 1 We are now left to find a local minimum of; and the
Jim 5 log Py(r) = lim = (log 2, —logZ)  (21)  easiest way to do this is by looking atits functional deiiet
w.r.t. p. Indeed, recall that the functional derivative 6f at

and, by invoking Varadhan's lemma [25], we obtain: p € X, is the distributiond £, [p, v, ¢, k| whose action on test

lim log Py (r) = €0 — &1(r) (22) functions¢ € Q is given b
N—oo N2 d
or, equivalently: (0L1lpl @) = | Lalp +tg)]. (30)
Py (r) ~ e~ NP (&a(r)—€0) (23) =
Note now that the expressiof[p + t¢] is well-defined
where for all p € X,, ¢ € Q, thanks to lemma]3 so that, at
€ = inf &fp| (24) Ieas.t,_ it makes sense to stgdy its behaviortas> 0 Iq_
PEX addition to that, our convexity result (lemnid 4) simplifies
&i(r) = 16an &[p] (25) things even more because,df;[p] = 0 for somep € X,,
p r

it immediately follows that{; will be attaining its global
In other words, we have reduced the problem of determinipginimum atp/{ Then, maximizing the result with respect#o
the asymptotic behavior aPy (r) to finding the minimum of and¢ simply corresponds to enforcing the normalization and

the convex functionat over the two convex domairf§ and mytual information constraints that appear[inl(26) dnd:(27)
X,. To that end, we have:

Lemma 4 (Convexity of &). Let X C Q be / p(r)dr = 1 (31)
the set of tame probability measures:X = o 0

{peQ:p>0and [p(z)dz=1}. Then, X is a convex / p(x)log(l+ px)de = r (32)
subset of the topological vector spafeand & is (strictly) 0

convex oriX. Furthermore, we must also maximize with respect :to

Again, we will postpone the proof of this lemma untiin Order to ensure thap(x) be non-negative ink,. This
appendix(A. However, an immediate corollary is that thef@Ptimization constraint can be _enforced by observing that
exists a unique charge densitywhich minimizes [24) and ¥(z) = 0 whenp(z) > 0 and vice-versa, as we shall see
(25). To find this unique solution - and the correspondir‘i@e'C’W-

(global) minima&, & (r) - it turns out to be more convenient As a result, once we manage to find a solution to the above
to work over the whole space of tame measufesand OPtimization problem, we will have:

introduce Lagrange multipliers for the two domaisand  pyynosition 5 (Uniqueness of Solution)Assume that the tame
X,. This leads to the Lagrangian functions: probability measurey satisfies the stationarity condition:

Lolp,v,c] = Elpl—c </O p(z)dx — 1) 6L[p] =0 (resp.6Lq[p] = 0) (33)
_ /Ooy(x)p(x) da (26) along with the constrainf(31) (resg. (31 (32)). Theris the
0 unique global minimum point of (P4) (resp.25)).
Li[p,v,c,k] = Lolp,v,d This proposition stems directly from the convexity®and
oo will be of considerable help to us in what follows because it
-k (/0 p(z)log(1 + px) dx — 7“) (27)  ensures that any stationary point.6f£; which satisfies the

) . o relevant constraints will be the (unique) solution to ougioral
from which we obtaint, and €, (r) by maximizing over the minimization problem.

dual parameters (non-negativity constraint); (normalization
constraint) and: (mutual information constraint):
B. Solving the Integral Equation

& = sup inf Lylp,v, (] (28)
vz0ie P Our task now will be to actuallyind the solution of [(3D),
&i(r) = sup ku;fﬁﬂp, v, c, k| (29)  subject to the constraints (31],{32). The solution &y in

. _ . ~ (29) can then be obtained by relaxing the constraint (32) and
The convexity ofCo, £1 overp ensures that it suffices to findsettingk = 0 in the final result. To that end, a brief calculation
a local minimump(x) for the corresponding Lagrangiai,

for fixed v, ¢, k. Then, any value of, c that satisfies the = 3since 0 is a locally convex space, this is just another guise of the
constraints ofp will be unique [26]. It is also worth pointing Gateaux/Fréchet derivative.

out that the only difference betweeh and &, above is that _ ‘Indeed, note that the functiom(t) = Li[p + t(q — p)],t € [0,1] is
strictly convex in[0, 1] for any choice ofp andq in X,.. Thus, if there were

the fprmer can _be seen as the ma?(imum oUefp, v, ¢, k] someq € X, with L1]q] < £1[p], we would havew’(0) = 0 (on account
keepingk = 0; this relation will come in handy later, becausef @0)) but alsow(0) > w(1), a contradiction.



(see appendixIC) for the functional derivative for the fimaal and will only give the final result here:
derivative§ £, [p] of (30) yields the integral equation:
be V(y—a)(b—y) f(y) dy + C"
Yy—

2 [Cpeogle —lde = a-(-vies @) P S T ne o (36)

— c¢—klog(1+ pz) — v(z). r— k\/(lwl“ap)(lw“bp) _ (B=LVab |~

+px x

The role of v(x) in the above equation is to enforce the 21/ (x —a)(b — x)
inequality constrainp(z) > 0 for all x > 0. It is well known
[26] that v(z) > 0 only when the probability density(x)
vanishes, while when the probability density is positivér)

has to be Z€ro. ) o ) . when the functionf is itself L"-integrable for some; > 1.
The solution of the integral equation involves the invemnsioris is always true if3 — 1, because the singular term

of the integral operator in the left-hand-side bfl(34), Whicprcajortional to( — 1) is not present in the LHS of(B5).

is no simple task, because the inversion process depends Qfl aver as we have already mentioned, the gase1 has
the supportupp(p) of the densityp(z) [27]. As discussed in s qun set of subtleties, analyzed at length in sedfiordllI-
the previous subsection (and with a fair amount of hindsig particular, we obtain two different solutions dependarg
QWhether the support o extends to0 or not (imposing the

. ) ; constraintsa = 0 or p(a) = 0 respectively), but only one
in other words, we will be assuming thaipp(p) = [a,8] of them is physically admissible (i.e. is a tame probability

where0 < a < b < oo. _ _ measure lying in the rate-constrained domair).
There is one important issue that must be mentioned hereOn the other hand, this dichotomy ceases to exist when

when the dimensions of the channel matrix attain the cfiticg > 1. Indeed, if 3 > 1 anda = 0, the LHS of [35)
valueg = 1, we will see thap exhibits two different behaviors is no longer int('egrable. However. the ’RHS BF1(38)L!+=-
depending on the values ofandp in constraint[(3). On one ;a4 raple whenever is itself =-tame, on account of the prop-

hand, we cpuld have > 0 which, by continuity, introduces gjes of the finite Hilbert transform [27] (see also app&ndi
the constrglntp(a.) = 0; on Fhe .other hand, we could glscrg)_ We thus conclude that any solution fg](35) whose support
have solutions withu = 0 (which impose no extra constraintSgyengs o cannot be tame and will thus have to be rejected.

because is assumed continuous only ¢, )). If the rater  zq 4 result, the support gffor 3 > 1 has to be bounded away
is less than some critical valug(p), it turns out that solutions ¢.0 0 thus leading to the constraipta) = 0 and proving
with @ > 0 must be rejected because they attain negatiye,. intijitive expectation above

values. In that case, we are led to solutions witk 0 which

have no such problems; the converse happens whenve, e constraint of continuity requires that the distribatje(z)

while whenr = 7. the two solutions coincide. vanish at the endpoints,b of its support. The condition
Having said that, we may return tb_(34), where we ha\’ﬁb) = 0 determines the value of in (38) resulting in the

v(xz) > 0 if and only if p(z) = 0. By restrictingz to lie in following form for p(z):

the intervalla, b], we may henceforth ignore(x) altogether.

Furthermore, to eliminate for the moment, a differentiation (z) = Vb—x 1 kp l+ap B-1 Ja
of (34) with respect tar yields: )= 2T —a (1+pz)V 1+0bp x l() )
7

op /b p(fc’)/ g =1 B—1 kp f(x) (35) The additional condition(a) =0 (whena > 0) results to

1 (b—x)(a:—a)( 3
| pT +

T—T T 1+ px )
il L 38
o 21+ pr) ) o

Q/\%h the value ofa determined (as a function éfand k) by
the equation:

whereC, C" are unknown constants to be determined by the
conditionp(b) = 0.
As we explain in AppendiXIC, this formula is valid only

compactly supported solutions that are continuou8lino);

So, starting with the general cageb > 0, we find that

where® denotes the Cauchy principal value of the intefral. p(2)
The above equation has a straightforward physical meani

it represents a balance of forces at every location x < b,

because the repulsion from all other charges of the digioibu

located atz’ (the LHS expression) is equal to the external kp . 6—1 _q (39)
forces (RHS). Fop > 1, we intuitively expect thap(x) must [0+ pa)1+pb) Vab

vanish atr = 0 because in this case the force from the finite ) ) ) )
charge density located at = 0 (the second term of(35)) Demanding thap be properly normalized as i {31), imposes

would be infinite. As a result, we intuitively expect that- 0 (1€ constraint:

for all 5 > 1; this expectation will be vindicated shortly. b dr = 97T b—2k—-2(B-1) 40
Indeed, the solution of this integral equation for general /a p(z)dr = 2 (40)

f(x) can be obtained using standard methods from the theory k

of integral equations[[27],[[28]. So as not to interrupt the 2 /(L + ap)(L + bp)

presentation, we will postpone the details until apperdix C
In Appendix[D we show thaf(39) an@(40) admit a unique
5The principle value appears because of the absolute yaluez| in @4). solution a, b for any givenk and, as a result, Propositiéh 5



guarantees the existence of a (necessarily unique) derfsity and [38) then takes the well-known forid ().

that minimizes[(29). We may also evaluate the ener@y by settingk = 0 in
Now, given the resulting solutiom(x) we can readily (43). Thus we get:

calculate the minimum enerdy/{p] itself:

1P 1
b b & = = dr+ - (a—(B—-1)1 46
eyl = [ e 3-1) [ pa)logr s o = ) @ty @D @
a a B 1 /b /b
b b - log z da — log(z — a)d
- / p(x)p(y)log |z — y| dy dx 2 Ja plellos e a plellose —a)de
1“ b B_1 b and, after some algebra, we can rewrite the above expression
= 5/ ap(x)dx — T/ p(z)log z dx in the closed form:
a a 2
k[P c — A_ @ _ p-1
+ 5 / p(@)log(1 + pz) dz + 5 (41) &0 g3 T3 Tl - los(ed) (47)
: e - , _ éG(og)+EG(gg)
where in the second line we eliminated the double integral by 2 N 5 A

substituting it from [3K¥)[[T5]. As for the value of itself, it

can be determined by evaluatiig(34) at a fixed valuer,of where A = b — a and the functionG(z, y) is given by [29]:
sayzr = a:

1
¢ = a—(B-1)loga— klog(1l+ pa) 42) Glzy) = %/0 \/t(l—t)Wdt (48)
b
- 2/a log(z — a)p(z)dx — 2y +y)log V(1 +1y—i)_+;/y(1 + )
Inserting this in[(41) then yields: T E YtV
b 1 b log | Y2 X TVT
Elp] = %/ ap(z)dr — %/ p(z)logxdx (43) + (+2y) og[ 2 }

N

1 When 3 =1, a, b in (45) take the values = 4 anda = 0,
+ 3 (k(r —log(1 + pa)) +a— (B —1)loga) and hencel(46) becomés = 3/2.

I1l. PROBABILITY DISTRIBUTIONS Py (1), Poyr(r) B. Evaluation of¢, (r): 5 > 1
. 1(r).

The central aim of the paper is to evaluate the probability ]
we need to evaluate the constantsh, k as a function ofr

2
Py (r) & Bye V(811 7¢0) (44) " andp using [39),[[@D) and(32). The values of these constants
where By is a normalization constant, whilg, () @5) and Will determine the density of eigenvalues constrained an th
&o ([@4) are the most probable values of the energy evaluagpset with fixed total rat& = N in the largeN limit. After
with and without the mutual information constraiff (32)inserting [38) into the last equation and integratifg] (82}
respectively. In this section we will calculate these valaad be expressed explicitly as
derive the corresponding eigenvalue probability derssiie)

b
that minimize the energy functiond[p]. In Section[l-4, » = / p(x)log(1l + px) dx (49)
we will derive &y and we will show how the corresponding a
densityp(z) is the Mar&enko-Pastur Distribution. In Sections log Ap + Akp (1 tpa 1+ Pa)
[M=Bland [M-C] we will calculate &, (r) for the cases? > 1 24/(1 + pa)(1 + pb) Ap 7 Ap
andj = 1 respectively. Finally, in Sectidn II[ID we will show A k 1400 a
how one can calculate the outage probabilty,;(r). + = |1- P < P ,—>

2 (1 + pa)(1 + pb) Ap A

A. Evaluation ofé, whereG(z,y) is given in [48).

As mentioned above, it is instructive to first calculate the gased on the arguments discussed in the previous section, it
most probable distribution of eigenvalues without the mbitugffices to show that there exists a distributign) in the form
information constrain{{32), which will end up being the el ¢ @8) satisfying the constraintE (31, 132). This cormss
known MarcCenko-Pastur distribution. This can be immexhat . finding values of, b, andk that satisfy[3D),[{40) and{}#9),
extracted from the analysis in Sectibn lI-B by setting= 0. \yhile at the same time maintainingz) > 0 for all € [a, b).

Solving fora, b in (39), (40) gives If such a solution exists, then according to Theofém 5 it will
) .
0 - (\/5_1) (45) be unique.

SNote that when3 = 1, the lower endpoint vanishea & 0) and a square-

2
b = (\/B + 1) root (integrable) singularity appears jirfz) in (3).



In AppendIXED we ShOW that equatl039) a (40) adIT CDF of Eigenvalues of H'H/N constrained on submanifold | (H)=r=5; B=2; p=200
a unigue solution for any. We therefore only need to show 2 e
that [49) has a solution ik for anyr > 0. ’ s

It suffices to show that the function defined solely as Z e ;
function of k by the right-hand-side of {#9) (with and b ’
expressed in terms of) takes all values in0,c0). Hence
by continuity it will attain the value- for all positive rates
r > 0. We first see that a& — —oc the solution of [(3D), 04r
@) isa ~ (VB —1)%/(plk]) and b ~ (VB + 1)/ (p|k]); |
then, inserting these solutions info [49), we see that it m 02l ; i za

5x10

be written in leading order as= §/|k|. On the other hand, o : ras ||
for k — oo @9), [@0) givea ~ /k+5—p-1/2—1 and s
b~ k+8—p~t/2 4+ 1, resulting tor =~ logkp. This 0 : 2 Eigemalue 4 s ¢
shows that the corresponding solutipfi:;r) is the unique
m|n|m|.2|ng distribution of€.|n xT ) ) Fig. 1. Cumulative distribution function (CDF) of eigerwet for a

In Fig.[d we compare this distribution with the correspondenventional and a generalizadP distribution with 3 = 2, r = 5 and
; i i iotribi it ; ; p = 200. For 8 = 2 and p = 100, the value of the ergodic mutual
N9 e”."p'”c"?" propablllty distribution function Obtame.hy information isre-g = 5.0014. Thus, the generalizetP distribution with
numerical simulations. We see that the agreement is quite 100 would correspond to the conventiondP distribution above. Also
remarkable, indicating a quick convergence to the asyrigptoplotted are the empirical CDFs for eigenvalueskt H/N conditioned on
distribution function of the eigenvalues constrained atttils the subset y < Nr. It is remarkable that even for the not-too-large antenna

T . . array systend x 10 the empirical distribution converges to the analytic resul

of the distribution of the mutual information. Furthermpte vy P 9 Y
get a feeling for the dependence of the eigenvalue distribu-
tions in terms of their parameters, in Flg. 2 we plot a fey,q following values for, b when 3 = 1:
representative examples. 5

We_ may now calpulate the vglue ﬁi: Insertingp(z) from a = (\/k +1-— 1) —p !
(38) into [43) and integrating finally gives us:

Prob(X<t)
o
&
T
N

2
o . b= (\/k: T+ 1) L (51)
a _
€ = 33 T3 log A — B log(al) (50)  As a result, the probality density functignbecomes:
2
k V1+pb— 1+ pa h— —
+ 5| r—log(1l+pa)— ( ) p(x) = P Vb-o)l=a) (52)
2 4p+\/ (1 + pa)(1 + pb) 27 1+ px
_ Akp The value of the parametér can be obtained in a unique
2/ (1 + pa)(1 + pb) way from the mutual information condition, which now reads:
Ltpay B-1.(a 1+pa r—logp=(k+1)log(k+1)— klogk —1. (53
[G(O, Ap)+ 5 G(A, Y gp = (k+1)log(k +1) g (53)
A I The monotonicity of the right-hand-side of this equatiorhwi
- = ( - p ) respect tok implies a uniquek(r) satisfying [58) and hence
2 V(1 + pa)(1+ pb) a unique set ofi,b in (&), guaranteeing uniqueness [of1(52).
a 5—1 a a In its turn, this can be used to evaluate the value of the
' [G (0’ Z) + 2 G (Z’ K)} outage exponent:

k-1 1 _1 klogk
5 (r=logp)+k—5—p7 = —
From [51) we can see that this solution can only be valid

for k > k.(z) = p~* + 2/,/p, or equivalently forr > r.(p)

C. Evaluation ofé;(r): s =1 where

The cases = 1 deserves special attention. In this case the re(p) = LH2ve log <1 71 f2 ) (55)
logarithmic repulsion from thé-function density of eigenval- p p
ues at the origin in[{12) and_(B4) is no longer present. As + 2log(1+Vp) — 1> req
discussed in Sectidn]I.B, depending on the parametensd The reason is that fok < k.(p) (or r < r.(p)) the value of
p there are two distinct types of solutions, which we treagher, becomes negative, which is unacceptable.
separately. 2) Caseff = 1 andr < r.(p): In this case we can no

1) Cases = 1 andr > r.(p): We start by attempting to longer treat: as a free variable. Instead, becapse) = 0 for
solve the problem as in the8 > 1 case, namely by looking = < 0, the charge density becomes confined at the boundary
for solutions of0 < a < b for the distribution’s support. It is « = 0. Thus, we need to look for solutions 6f{34) with= 0,
straightforward to show that the conditiofs](39) and (3&)d/i in which case the charge density has a square-root sintyulari

whereG(z, y) is given by [48). Plugging this together wifly, &, — & = . (54)

into (44) we obtainPy (r), up to the normalization constant.




Generalized Marcenko—Pastur distributions for r=5.86; =4 Generalized Marcenko Pastur distribution for p=100; B=4
T

T
== p=50
0N —— p=100
0.350 1V ~ = = p=200

8
Eigenvalue x Eigenvalue x

(a) Fixedr = 5.78 (b) Fixed p = 100

Fig. 2. Generalized/P distributions for3 = 4 and different values op andr. In (a) we plot the eigenvalue distributions for differeriues ofp and fixed
r = 5.78, which is the value of-.,.4 for the curve in the middle witlp = 100. In (b) we plot the eigenvalue distributions for fixgd= 100 and different
valuesr. We see that in the latter plot the distribution is more semsbn r rather thanp.

atz = 0 (instead of vanishing continuously). This is actuallylistribution Py () becomes:
quite natural since we expect that, for= 0 (or, equivalently, —
for r = rerg), the charge distribution should take the form of &, — &, = E < - 9) - logé — klog w
the 8 = 1 MarcCenko-Pastur density: 21 4 4 2
—(b—4) (4p~' +3b+12 60
o = . + ?.)2( )(p. +3b+12) | (.)
2m\/x We should point out that just as the solutidn](57) is not

valid for » > r.(p), the solution [(57), which we found to

Indeed, for generdl, k, the distribution becomes: be valid forr > r.(p) is not valid forr < r.(p). To see

Vh—=x kp this, it is straightforward to show that in this case the ¢ants
p(z) = (0t pa)/a <P - m) , (37) term in the last parenthesis i {57) (namely- kp//T + pb)
is negative. As a result{(57) cannot be valid for< k.(p)
and the normalization conditioh (31) implies because the charge density becomes negative at some point
b x > 0. As a result the solutions we found above are unique in
P _2 2 (58) their domains of validity. Interestingly there is a weakirdh
1 . P . .
Vi order discontinuity at the transition= r.(p), in the sense that

the first two derivatives o€, (r) with respect ta- evaluated at
- r. are continuous, while the third is discontinuous. This
is analogous to the phase transition observed ih [16].

It can easily be shown that the right-hand-side [of] (58)
increasing inb and, hence,[{38) has a unique solutionbin

for all k.
In the last casea( = 0), the mutual information condition . .
(32) can be integrated using{57) to give: D. Evaluation of the Outage Probabiliti,.(r)
In this section we will calculate the outage probability
ro— 2(k+1)log 1+ V21 +pb Poui(r) = P(Iny < Nr) from &,(r). To do this we need to

integrateexp [—N2(&,(r) — €y)] overr. Generally it is im-
1 2k : e .
- = ( /1+ pb — 1) — Zlog(1+pb). (59) possible to evaluate this integral in closed form. Neveets
4p 2 due to the presence of the factdf in the exponentPy (r)
We may use the same argument as in the previous subsecfiis raridly away from its peak and thus we may use Watson's
to show that this equation has at least one solution for algmma [30] (a special case of Varadhan's lemma), to evaluate
0 < r < ro(p). Indeed whenk = k., the right-hand-side the asymptotic value of the integral. First, we will caldela
above takes the value of. In contrast. wherk — —oo @g) the normalization factor of the distribution.
givesh ~ 4/(p|k|), in which case the right-hand-side gF159) AS We shall see in Sectidn ]V for close torerg, &:1(r) —

becomesx 1/|k|. Thus all values betweei), r.(p)) are taken o~ (r — Terg)_z/”ergv wherever is the ergodic variancé (b9)
whenk € (—oco, k.(p)). Hence by continuity it will attain the of the mutual information distribution. Therefore, we have

valuer € (0, re). _ X N g [ e_%e:‘gerwz PRORVALT
After solving forb and k as a function ofr andp, £, can ~ 0 ~

N
be calculated easily. Therefore, the exponent of the piibtyab 0 (61)
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which then gives
N

Y N(Ea(r)—¢o)
1/27T'Uerg

Py (r) =~ (62)

A. Gaussian Region = rerg(p)

The most relevant limiting case is the Gaussian regime:
after all, the Gaussian approximation, as well as the ptesen

and fixes the normalization constant [nJ(44). To calculage tRPProach assume that the number of antenNas large.

outage probabilityPyi(r) = P(Iy < Nr) to leading order
in NV, we first note that forr < reqg (r > rerg), E1(r) iS a

The difference is that our approach does not focus only
in the region of N|r — regl = O(1), where the Gaussian

decreasing (increasing) function of Therefore, to leading @PProximation should be valid. To reach that limit, we need
order, the behavior will be dominated by the value of thi® analyze the smak region of [49), [(5P) since, in the limit

exponent atr. Using Watson’s lemma once again we obtai

the following expression for the outage probability:

AV [Be-a ] (NI8’1<T>|>
SO (63)

Pout (T)

~
EY(1)Verg

whenr < req and

—N2|&i(r)—¢ _Eim? /
e ) =C0™ 587 () Q N[gi(r)]
N 50

1—

Pout(r) } (64)

&Y (r)verg
whenr > req. In the abovec’ (r) and E(r) are the first
and second derivatives @f (r) with respect tor andQ(z) is
given by

* dr 2
Qz) = ; Ee (65)

Plot of se’g(p) [third r—derivative of El(r.p) at r:rerg(p)] Vs p

Fig. 3. Dependence ofcry = &' (rerg) on p for different values off.
We see that for not too large the behavior ofser4 quickly converges to the
correct asymptotic limit[{70), included here with dasheub4.

IV. ANALYSIS OF LIMITING CASES

We will now analyze the results of the previous section in

specific limiting cases of the parameter spaper, 5). We

k = 0, both equations reduce to = 7reg(p), Where the
normalized ergodic mutual informatior,q is well known to

be [4], [7], [31]:

T‘ergzlogU-f—ﬁlog [14—5} _ (1_u71) (66)
with:
u=%(1+p(5—1)+\/(1+p(ﬁ_1))2+4p) 67)

By implicitly differentiatinga, b, k& with respect tor through
the equations that define them, and expressing their vahees a
the values of their derivatives at= r.,, we can obtain the
following expansion

2
r—r er
81 — 80 = % =+ STQ (T — Terg)g + O ((T — Terg)4)
’ (68)
where
1— 2
Verg = — log {1 - (ﬁTU)] (69)

coincides with the variance of the mutual information dlistr
tion as analyzed in[7]([9], anel.,, is the thirdtotal derivative
of &; with respect tor and evaluated at = r.,4(p). Without
the cubic term[{88) is exactly the Gaussian limit of the ralitu
information distribution discussed in various papers mast.
This Gaussian limit is valid as long as the cubic (as well as
all higher order) terms in the exponent of the probabilitg ar
smaller than unity. Since this condition dependssgp, it is
worth looking its behavior withp. In Fig.[3 we plots.,, as a
function of p. We see that it has a well-defined limit for large
p. Specifically, it has the following asymptotic form

SET“ (p) ~ Og p ]
’ { ~BE-Dwea—p17 B >1

Also, for smallp < 1 we can show thak.,, ~ —C[j/pg,
wherecg > 0 is a constant that depends gh Thus the
condition for validity of the Gaussian approximation is

6
P = Terg(p)] < ¢/ —— N3
|Serg|

(70)

(71)

will thereby be able to connect with already existing resultVe therefore see that the Gaussian approximation should not
in specific regions, and also to describe the behavior of the valid for significant deviations from.,, €.9.r = 7¢,4/2.
probability density ofPy (r) in other regions, which hitherto In contrast our large deviations (LD) approximation conés

have defied asymptotic analysis.

to be valid in that rate region as well.
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B. Largep Approximation:r < rerg C. Largep Approximation:r > rerg

Next we analyze the behavior of the probability distribatio The regime of largep and fixedg = r/logp < 1 is
of 7 in the largep limit, while keeping the ratio-/ log p finite  relevant in the analysis of the link-level outage probapili
and less tharil?lpSince in the largep limit reg ~ log p, the However, the opposite regime 9f> 1 is also of interest in a
regiong < 1 with p > 1 corresponds td: < 0, equations cellular setting with many multi-antenna users receiviagad

(40), (39) will admit the following solutions fou, b: in a TDMA fashion from a single multi-antenna base-station.
) In this context, to analyze the system level throughputs it i

y o~ B=DT (72) the higher end of the probability distribution of the linbel

4p(1—q)(B —q) mutual information that is importantl[8]_[32]. Thereforié,

b ~ 4q (73) is worthwhile to calculate the probability distribution offor

large p with ¢ > 1.

whereq = r/log p and we are assuming that< ¢ < 1. Interestingly enough, the behavior here is quite different
Now, note that the lower end of the spectrum has becorpre

~ q—1
of orderO(1/p), while the upper limit is still finite, just as Om theq < 1 case. Herds ~ p?~" and

expected. It is also interesting to calculate the proportb o ~ b+ 8 —1 2 77
eigenvalues that are in the neighborhoodzof= 1/p when ( 5 )2 7"
p — oo. Indeed, by integrating the probability distribution b~ (\/m+ 1) (78)
p(x) @8) froma = O(p~1) (Z2) to Lp~* for some (arbitrarily) .
large L we get resulting to .
N S
lim lim P(pz <L) =1—gq (74) &i—&~p P (79)

L—o0 p—o0

ind dent of3. Th [ti bability distribution of
Thus, the proportion of “small” eigenvalues is simdly- ¢, st ofi. The resulting probability distribution

in agreement with[[1]. Pluggind_(¥2)_([73) into the equation P(r) ~ N2 /p (80)
for £, then gives the expected result for the exponent:
e see that whelV is not too small, the probability of finding
Wi hat wheiV i I, th bability of findi
€1 — & ~logp[(1—q)(B —q)] (75) Iy significantly larger than its ergodic value is extremely
e . : o 2 small (in fact, doubly exponentially small in). This is the
V[&E"Ch is exactly the diversity exponent (divided By=) of manifestation of the fact that scheduling the best user in a
From the above, we see the difference between the ol \C-layer in a multi-antenna setting does not seem to pravid
asymptotic analyses discussed above. In the previoumeect?ny clear advantage. Interestingly, [8] the authors have

the eigenvalue distribution did not deviate significantign the same conclusion, even_thou_gh they assume a Gaussian
« S - distribution for Iy even for its tails. Here we see that the
the most probable Marcenko-Pastur distribution, sihosas distribution of Ix goes to zero forr in a rate even
assumed to be small. In contrast, hekejs finite, and in faster than Gau];sigan thereb makin> t;e(;gabove conclusion
particular equal tdk = 2¢ — 1 — /3, In addition, a significant ! y 9 '

portion of the eigenvalues in this subset of fixed= glog p Whlch they also reached even _strqnger. .
: This result has the following intuitive explanation. Forga
is now to become very small, of ordeyp.

. . atndr > rerg all eigenvalues of the matrild " H will be large
In the above discussion, we see that generally the exponéﬂd the only constraint imposed upon then(Td (32). Thus, we
&1(r) is not only continuous, but also differentiablesinThis y P P ' '

o L may say that all of them are constrained by the condition
is in disagreement to the prediction by [1], [12] that Whe7r)ﬁv log(1+ pAs) ~ log pAs .6 s ~ ¢ /p. In this limit, the

p — oo, the outage has a piecewise linear behavior. The Ien%tx onent is roughlyV times the sum of the eigenvalues
of these segments KR = log p, or Ar ~ log p/N. Thus for P 9 9 '

these segments to be pronounced we need o
D. Limitr — 0
N <logp (76) The final regime that is interesting to analyze is when
£0, independently op. In this regime the solution of (#9) (59)
for smallr is r ~ 3/|k| for k — —oo and the corresponding
S\é:?llues ofa, b are:

for large p. This provides a limit on the formal limitations o
our large deviations (LD) approach. In particular, cleaHg
antenna numbeN has to be large, as in the Gaussian ca
But, in contrast to the Gaussian approximation, there is no
constraint here that the deviation of the rate from the egyod
rate has to be small, as in{71). Thus swale of N at which

the method should break down is given by p for large b~ P
p, rather thanp itself. This is corroborated in the numerica
results in the next section. Surprisingly, however, theyais er
in this section shows that thferm of the DMT exponent[{4) & — & ~ —flog [ﬁ_] : (83)
is correctly predicted within the LD approach [0 [75). p

(VB-1) (81)
(\/E+ 1)2 82)

a ~

RS E

=

Iresulting in:

8In that case a MAC-layer scheduler would be transmittincheouser with
"This is the region analyzed in the diversity-multiplexirmade-off [1]. the best channel, for example.
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wheree is the Euler number. This means that the probabilifynportant in the analysis of the multiuser capacity for MIMO

distribution Py (r) has a tail of the form links in a multi-user setting with a greedy scheduler, sugh a
MN a maximum rate schedulef.][8] In such a case, the multiuser

P(r) ~ (E) (84) diversity gain comes from the opportunity the scheduler has

B to schedule transmission to users when their fading rates ar

The above behavior dPy () for smallr is easy to understand: greater than their mean. Thus it is important to understaed t
for r to be small, we need all matrix elements of the maHix tails of the distribution in this region. In Fifl 6 we obtaihthe
to be small. In fact, sincél appears in a quadratic way in thecomplementary CDF (CCDF) of the mutual information, i.e.
mutual information equatioi(2) we need AlN elements of 1— Pou:(r), for a3 x 3 setting. Here the probability of finding
H to be less tharO(,/r/p). However, there are M N real users with high rates falls faster than the Gaussian, eslpeci
degrees of freedom in th&/ x N complex matrixH. Hence in Fig.[@b for largep. We also find that the LD approximation
the allowed volume of space scales(agp)™ " as above.  follows the Monte Carlo simulations more accurately tham th
It should also be noted that the behaviB(r) ~ p~M~ Gaussian curve, especially for lower outages. In this 8dna
of the mutual information cumulative distribution funatio it is worth pointing out that the argument mentioned above
is precisely what is known as the “full diversity” of errorregarding the sign o.., would makel — P, (r) smaller
probability, i.e., the SNR exponent of error probabilityr foin the Gaussian approximation compared to the correcttresul
fixed but very small rate? while SNRp increases ip—~, We see that this only occurs for rates relatively close to the
which corresponds to the left extreme point of the Zheng-Tg€ak. In contrast, for rates greater than the critical ratp)
exponent([L]. the behavior of the numerical and the LD outage probability
changes markedly and they both become substantially smalle
V. NUMERICAL SIMULATIONS than the Gaussian curve. This is not surprising in view of the

To test the applicability of this approach, we have perfaimfahase transition occurring at= r.(p) as discussed in Section

a series of numerical simulations and have compared ouz Ia:BZZI . .
- - We next analyzed the outage probability as a function of the
deviations (LD) approach to other popular approximations.

. ... SNR. The outage has been analyzed in the large SNR limit

We start with the case of small rates In this limit . ! : .
. e . . for finite rates in[[1R2], where they have dubbed this analysis
the Gaussian approximation is guaranteed to give mislgadin

results. For example, the Gaussian approximation preelicts"flS throughput reliability tradeoff (TRT). This model prdes

finite outage probability at zero rate, while this is clearly P'ecEWISe linear function of the outage probability, whic

wrong. The LD approximation, on the other hand, correctl;?r completeness is provided below:

predicts that the outage probability goes to zero at smaib log, Pout ~ c(k)R— g(k)log, p (87)
seen in[(84). In Figd.l4 arld 5 we plot the outage probability k) = M+AN-—2k—1

of the LD approach with the Gaussian and Monte Carlo
simulations for low rates, smap and small square2(x 2 g(k) = MN —k(k+1)
and 3 x 3) antenna arrays. The comparison shows that wh
the Gaussian curves miss the correct outage, the LD cur
remain close to the simulated ones, even forihe2 MIMO

\Ilﬂwenp is large andklog, p < R < (k + 1) log, p.

V€3 his piecewise linear behavior however is observable only a

extremely high rates and SNRs, which may not necessarily be

P€ievant for realistic MIMO systems. We analyzed the case of

%r& 3x3 and6x6 arrays in Figd7 arid 8. In all three we have
bnd that the LD approximation agrees with simulationsrove

probability is consistently greater than the correct (dated)
one. The reason for this can be traced to the fact that for

g =1 angd all_;/r?lues 0f0:[ tthe th'rdl detméat';e of Fhe eXPONeNt, \yide region of rates and SNRp. Characteristic is Fid.17b,
. 1(r) — Co Wi t_respg_ct 0; cvaiuate ¢ a e’”fr'] €. Selzg(p% thwhere the TRT curve is accurate in large SNR, the Gaussian is
in @8) is negative. Disturbing away from the peaks o Sccurate in low SNR, but the LD curve is consistently closer

distribution we have to the correct outage. For thé = M = 3 case and extremely

108 Pt Gaussian (1) & — N2(r = rerg)? (85) high SNRs and rates the piecewise linear behavior predisted
out,Gaussian 2Verg TRT starts becoming visible. Nevertheless, even in thogk hi
while rates the TRT curve also fails to give quantitatively cotrec

N2 = erg)®  5erg N2 = Terg)® ) gz:zggestlmates and the LD curve is still closer to the corre
2erg 6 It is sensible to point out that here the Gaussian outage

We may thus conclude that when< r.,, and s.,, < 0 probability is consistently less than the simulated andLtbe
we should haveP,,; Gaussian > Pout- From Fig.[B we see values. In this case the argument made abovesfoy is
that for increasing, s.., decreases in absolute size, whicheversed. As can be seen in Fig. 3 for= 2 and largep
correctly predicts that the discrepancy between the Gawssihe sign ofs.,, is opposite, i.e. we have.,, > 0 and hence
and the Monte-Carlo curves (and LD) decreases for lapgerindeed we should havg,,: caussian < Pout-

We have also analyzed the probability distribution for sate In Fig.[9, we plot the logarithm of the appropriately normal-
greater than the ergodic rate > r..,. Even though this ized probability density function (PDFpy(r) as a function
region is not relevant for the outage probability evaluatibis  of the throughput- and we compare the result with the two

log Pyt(r) ~ —
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Fig. 4. Comparison of the outage probability curves for=
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M = 2 of the Large Deviation result with the Gaussian approachMandte-Carlo simulations.

The three subplots are for different SNR values: (a) wite —10dB, (b) with p = 0dB and (c) withp = 10dB. We see that for decreasingthe discrepancy
between the Gaussian curve (dashed) and the other two,D.€sdlid)) and simulated (dash-dotted) is increasing.

e
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sage
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(@) p= —10dB
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Fig. 5. Comparison of the outage probability curvesfor= M = 3 of the Large Deviation result with the Gaussian approachMadte-Carlo simulations.
The three subplots are for different SNR values: (a) with —10d B, (b) with p = 0dB and (c) withp = 10dB. We see that for decreasingthe discrepancy
between the Gaussian curve (dashed) and the other two,D.€sdlid)) and numerical (dash-dotted) is increasing. Carmg the N = 3 with the N = 2
results, we see that the former are generally closer to thelated curve, nevertheless, the Gaussian curve is alWeggycfurther away.
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Fig. 6.
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(b) Complementary CDF fop = 50dB

In these figures we depict the complementary cunweladistribution function (CCDF) of the mutual informationrfthe antenna arrag x 3.

In this region of parameters we compare the the current rdetbgy (LD) (solid) with numerical Monte-Carlo simulatier(dash-dotted) and the Gaussian
approximation (dashed). We also depict the rate vajluat which, for the given SNR, the exponent dependence ohanges from{d0) td ($4). We see that
at that point the distribution starts deviating stronglgnfr the Gaussian approximation. It should be pointed outttiiatpoint corresponds to a milchase
transition as discussed in Sectign 11-C2 and also analyzed in a diffecentext in [16]. Nevertheless, in both moderate and |BtRs the LD curve is
consistently close to the simulated curves. (a) CCDFpfer 20dB (b) CCDF forp = 50dB
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(a) Outage forNV = 3, M = 6 and R=4, 16, 28, 40, 52 bpcu (b) Outage probability only for R=16 bpcu
Fig. 7.

In these figures we depict the outage probability ashation of SNR for the antenna arryx 6. The current methodology (LD) (solid) is compared
with numerical Monte-Carlo simulations @ runs, solid with dots) and two other approximations, the 3@n (dashed) and the Throughput-Reliability-
Tradeoff (TRT) approximation (dash-dot), analyzed [inl [IPhe red stars on the TRT curve depict the points at which ities Ichange slope. (a) In this
figure, we collectively plot the curves at a number of bpcweal At this scale all three candidates behave rather walepe perhaps for the TRT curve

at the lowest bpcu value (R=4). (b) Nevertheless, zoominfpirthe R=16 bpcu case, we see that both the TRT and GausgEoxapations significantly
depart from the numerical curve, at low and high SNRs comedimgly. In contrast, the LD curve is consistently closettiie numerics.
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(a) Outage forN = M = 3, and R =4, 16, 28, 40, 52 bpcu

(b) Outage forN = M = 6, and R =4, 16, 28, 40, 52 bpcu
Fig. 8.

In these figures we depict the outage probability asnation of SNR for the antenna arrayé = M. The current methodology (LD) (solid)
is compared with numerical Monte-Carlo simulations (selith dots) and two other approximation, the Gaussian (d#jshad the Throughput-Reliability-
Tradeoff (TRT) approximation (dash-dot), analyzed [inl [1Phe red stars on the TRT curve depict the points at which itles Ichange slope. (a) Curves

for outage probability versus SNR for the antenna aay 3 for the same bpcu values as in Fig. 7. In contrast to that figiarevery large values of
SNR (p > 45dB) both the LD and Gaussian approximations deviate from tmaemics (0% runs), which exhibits a linear behavior (in a log-log pldEhis
deviation of the LD approximation is expected. Here the nemdf antennas is still quite smalM = 3), while the SNR is extremely large, making the LD
approximation (in addition to the Gaussian) not valid. |esh extreme SNRs the TRT approximation seems to have thectasiope, but also misses the

exact value of the outage probability. For more reasonabl®,She LD is quite close to the numerical plot. (b) Curves dotage probability versus SNR
for the antenna arrag x 6. In this case, the LD approximation works well even for sumtgé SNRs.

other asymptotic forms, namely the Gaussian approximatiapproximation behaves well even at these valuegvofThe
of the mutual informatior 7] and the largeasymptotic result discrepancy between the LD approximation and Monte Carlo

given by [4) [1]. We see that our result performs much betteimulations becomes smaller for largsras seen in Fid.]9.
at low outage, even at moderately large- 20dB.

In Appendix[E we provide an improved estimate on the
As discussed in the Introduction, the LD method is the coprobability distribution close its center. This estimag@iresult

rect generalization of the Gaussian approximation to eaptwf the inclusion of theD(1/N) corrections to the distribution
the tails of the distribution of the mutual information. As alerived in [7]. Fig[ ID shows the normalized probabilitytdis
result, it is expected to give increasingly accurate resaft bution function of the Gaussian approximation as well as the
the antenna numbeW increases. In the above comparisonsD approximation with and without th&(1/N) corrections.

we have compared the LD method with numerical simulatioMge see that the improved estimate behaves extremely well
focusing on its tails (low outag®,,; or low values ofl — P, ;)

when the antenna numbers are quite small, in which cases
for small antenna numbers. We have found that the Libe leading approximation (without th@(1/N) correction),
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PDF of Normalized Thioughput; =2 N = 5, SNR = 100, 10" runs Finally, it is worth pointing out that, to our knowledge,
this is the first time this methodology has been applied to
information theory and communications, and it is our belief
that it may find other applications in this field. We can
corroborate this belief by pointing out that this Coulomis ga
methodology can be generalized to other channel distabsti

as long as the resulting distribution can be written as ayrbd
of functions of the eigenvalues d'H. Another related
generalization is, for example, to include the correlatiarf

e Coronan Aoprosimaton | the channel, a problem which is considerably more difficult
T g S poamaion compared to the present one. Some preliminary mathematical
M4z a4 as a8 5 52 54 56 58 6 tools have already been developedin [34], and we will expand

Normalized Throughput r=R/N (nats/antenna) on this in the future

Fig. 9. Plot of the logarithm of the normalized probabilitistdbution curve
of the mutual information/ 5 /N for 5 = 2 and comparison to the Gaussian APPENDIXA

approximation and the large-asymptotic result obtained by](4)I[1]. The PROPERTIES OF TAME PROBABILITY MEASURES
numerical result forV = 5 follows closely our result, even at large= 100.

This appendix is largely devoted to the study of the energy
functional &:
has some small discrepancies. (This should be contrasted wi
Fig.[d, whereN = 5 and theO(1/N) correction is no longer €lp] = /xp(z) dz — (8 —1) /p(I) logzdr  (2)
necessary to provide close agreement.)
- / p(@)p(y)log |z — y| dx dy

) o wherep € Q is a tame density. As evidenced by definitidn 2
~In this paper we have used a large deviation approagfhere the concept of tameness was introduced, an extremely
[15], to calculate the probability distribution of the matu 1 norm || ||, defined by:

information of MIMO channels in the limit of large antenna
numbers. In contrast to previous approaches that focudgd on f ]l = F(2)" d r
close to the mean of the distribution] [71-[9], we also cédtal T o ’

the probability forrare eventsn the tails of the distribution, If a function / has finite " norm it is calledL"-integrable

corresponding to instances where the observed mutual—infghd the space of such functions constitutes a completervecto
mation differs byO(NN) from the most probable value of the b P

asymptotic distribution (where the Gaussian approxinmefioo space (also d?note,d_b& ) The cpmpleteness (.)f this space
: o . . : follows from Holder’s inequalitywhich we state without proof

the mutual information is invalid). We find that the distritaun and which will be of great use to US 5]

in those tails is markedly different from what happens near 9 ’

the mean and our resulting probability distribution intelegtes Ifalls < 1 £l-1lg]ls (89)

seamlessly between the Gaussian approximation for raiss cl ) N

to the ergodic mutual information and the results [Gf [1] foyvﬁlenever the exponentss > 1 areconjugate that is:r " +

large signal to noise ratios (where the outage probabidity § = *- )

given asymptotically by[14)). Our method thus provides an We Will also make heavy. use of the convolutigh+ g

analytic tool to calculate outage probabilities at any poif?€tween two functiong’ andg:

V1. CONCLUSION

(88)

in the (R,p, N) parameter space, as long &é is large
enough. We performed numerical simulations that showed (f*g)(z) = /f(x_y)g(y) dy. (90)
the robustness of our approximation over a wide range gf

PP g I? f € L' andg € L", Young’s inequality(pp. 240-241 in

parameters. hat thei uti il be finite for al
Additionally, this approach also provides the probabilit@]) states that their convolution will be finite for aimastery

distribution of eigenvalues constrained in the subset whef and also that:

the mutual information is fixed tdz for a given signal to 1+ gll- < I f11xllgll- (91)
noise ratiop. Interestingly, this eigenvalue density is of the

form of the Mar&enko-Pastur distribution with squaretroo We may now proceed with the proof of lemiilla 3 regarding
singularities. Since the outage probability is an incregsi the domain of€ and its continuity properties:

function of the rater for fixed p, we may use our approach Proof of Lemmdl3: To show that€ is finite for all tame
to evaluate the transmission rakefor a required outagé,,; functionsp € €, we will study £[p] term by term. To that
andp. Thus, if the channel is known at the transmitter, we ce@nd, letp : R — R be tame for some exponeat> 0; that
optimize the transmitted rate by waterfilling on the knowi$, assume thaf [p|'** < oo and that[ zp(z) dz < co. We
eigenvalue density that corresponds to the required outdfen have:

probability [33]. This generalization is left for a futureowk. o The first term ofE[p] is finite by definition.
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« The second term i _(12) can be written as:

‘/ Ylogxdx| < /|p )log x| dx
/ Ip(x 1ogx|dac+/ |p(x) log x| d.

Sincelogz < x for z > 1, the second integral will
be bounded from above by z|p(z)|dz < oo. As for
the first integral, set = 1+ ¢ ands = 1 + % so that
r~!4+s571 = 1. Now, if Xo,1] IS the indicator function of
[0, 1], note that |xjo,ij log z|* dz = [ |logz|* dx < oo
for all s > —1. As a result, Holder’s inequality yields:

1
| @ 1og | dz = [1p- xi0 1o 1
0

< pllite - HX[O,l] log H1+1/s < o0
(92)

on account ofp being L'*=-integrable.
« For the last term of, let D = {(z,y) € R? : y > x}
and note that:

[
: 2//D+

<[ W

y)log |z — y| dy dx

y)log|z — y||dy dx

) -log(y — x)| dy dx.  (93)

|/

Now, the innermost integral can be written in the form:

/OO lp(y)| - [log(y — )| dy

= /OO Ip(x + w) - log w| dw

Ooo -

| ekl dos [ ipeu) o wl du
0 - 1

< /0 Ip(y)| K (y

+ /00 [p(1 4+ 2 + w)log(1 + w)| dw. (94)
0

—x)dy

where K (w) is the kernel:

K(w) = {10g|w|,

O<w<l1

. (95)
otherwise.

0,

As above,K will be L*-integrable for alls > —1 and,
in particular, fors =1 + % Therefore, we will have:

/O N Ip(x

) / () [ K ( — ) dyda
= |llpl - (Ipl = K1) |,

<pllate - I * Klligaye

<|pllise - ol - 1K |11/ <00 (96)

Finally, the second integral of (P4) can be estimated by:

/ [p(1 4+ 2 + w)log(1 + w)| dw
0
S/ p(1+ 2z + w)|wdw
0
SCI/ wlp(w)|dw (97)
0

for some sufficiently large&” > 0. Then, sincep is tame
(i.e. [wlp(w)|dw < c0), we may integrate(97) over
to finally obtain that[p] < occ.

This completes the proof that[p] is finite for all tame
functionsp € Q. To show that is continuous on all subspaces
of L'*c-integrable functions with finite absolute mean, it
simply suffices to note that all our estimates &fp] are
bounded by the.'*¢ norm of p. [

Remark.If a function is in L" for somer > 1 and has finite
mean, it will necessarily be if.' as well; in this way, tame
measures form a (dense) subspfoef L'(R, ) that is similar
to the unionl J_, L'**.

We will now prove Lemmd14 showing that is not only
continuous but also convex over the (convex) donidirof
tameprobability measures.

Proof of Lemmal4:Let p, g € X be two tame probability
measures and introduce the bilinear pairing:

=] [

which is actually well-defined on the whole spdee(as can
be seen by the proof of lemrh& 3). Since the first two terms of
¢ are linear (and hence convex), it will suffice to show that:

y)log |x — y| dx dy (98)

(I =t){p,p) +tg,q) (99)

forall ¢ € (0,1). Indeed, if we leth = p—q € Q, equation[(90)
reduces to showing that the pairidg-) is an inner product
on the subspace of densities with zero total charge, i.¢. tha

(1-t)p+tq,(1—t)p+1tq) <

(¢,0) >0

(100)
for any nonzero tame) € Q with [¢(z)dz = [ (p(z) —
q(z)) dz = 0.

From the point of view of electrostatics, this is plain to:see
after all (¢, ¢) is just the self-energy of the charge density
More specifically, let us defin®; = {(z,y) : « < y} as in
the proof of lemmal3. Then we will have:

(¢, 0) -2 ; o(z)p(y)log |z — y| dx dy

—2 /OO ¢(z) /m ¢(y) log(z — y) dy d
/ / oy (101)

> y —x)dydx

where the penultimate step is an application of Holder’s

estimate and the last one follows from Young's inequalityo, if we set®(x

=Jo ¢

y) dy and integrate by parts, we
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get: N eigenvalues can be re-arrangedlirsegments. This factor
oo x oo constitutes the entropy term and, for larfyeandn,,,, we can

(p,0) > / ¢(I)/ yo(y) dy dx —/ ro(x)®(x)dr  apply Stirling’s formula to get the exponent i (104) (where
0 0 0 p(mf) = n,,/(N{) is the fraction of eigenvalues per unit

= _/ o(x) (/ ®(y) dy> dx length appearing in segment).
o 0 - We next look at the form of the energy il (9)
= / ®?(x) do — @(oo)/ D(y) dy
0 0 EAXN) ~ ¢ l {—(B—-1)1 l 105
o (102) () 2_p(m) (mt = (5 = Dlogme)  (105)
since ®(o0) = [~ ¢(z)dz = 0 = ®(0) on account of¢p + 2 Z p(ml)p(m'e)log |(m — m'){|
having zero total charge. | m#m’
1
APPENDIX B TN > p(mé)logant

CONSTRUCTION OF THECOULOMB GAS MODEL

In this appendix we will briefly show how the transitionThe last term captures the repulsive interaction betweggnei
from discrete to continuous eigenvalue measures discussetlies in the same segment The value ofa,,, represents the
in Section[I-A occurs. As in the main text, we will nottypical distance between eigenvalues in segmenin units
present any formal proof here either. However, we will argusf ¢ and therefore is a number of order unity. We may now
that treating the formally discrete distribution of eigatues let £ — 0, which will make the sums converge to integrals
appearing in[(9), as continuous in the laryelimit is quite ¢>" ~— [dz and p(mf) can be written as a continuous
reasonable. A more formal method showing the same resulhction p(z). Representing the sum over all possible states
appears in[[15]. The main reasoning, also discussed in tfe. the product of sums ifi {I04)) by Dp we can now get
main text, is that the external confining potentials defingd b
the first two terms in[{9) of(12) are strong enough to overcome,, /Dpe_mg[p]e_]vfdmp(m) log p(x) N [ dzp(z) log d(x)
the logarithmic repulsion between eigenvalues (third témm N
(@), and therefore guarantee that (with high probabiligst (106)
of the eigenvalues will be confined in a finite width regiomhered(z) = a,,¢ is the average distance between eigenvalues
near the minimum of the external potential. At the same tima{ the positiorr = m/¢. One can estimate this average inter-
this will mean that the eigenvalue density per unit length wieigenvalue distance to be
be scaling withV if N is large enough. As a result, this can
be seen as a high-density limit and therefore the continuous d(z) ~ aml ~ 1 (107)
approximation for the measure will be valid, at least clase t Np(x)

configurations whose energy is low enough. . .
In the remainder of this section we will motivate thel his was first proposed by Dysoh [13]. [15]. [23] and was

transition from the discrete to continuous eigenvalue diess Shown explicitly more recently ir [36]. It is remarkable tha
and show what kind of terms we expect to see. We start Bijth this choice ofd(z) the O(IV) dependence op(z) in the
focusing in a finite region of eigenvalues of length We then €Xponent ofi(106) vanishes. This surprising fact is trug éor
divide the integration ovek; in (I0) in L segments of length complex_matrlced:QB] in which, up to um_nterestlng conma}n
¢, such thatL.¢ = D. The length of each segmefhas to be the leading correction to th&/2&[p] term in the exponent is
small enough so that the enerd@y (9) can be well approximat@éll)-

with all eigenvalues within a given segment being placetiat t

endpoint of the segment. At the same time, it has to be large

enough so that there is a macroscopic (@€N)) number of APPENDIXC

eigenvalues inside each segment. In principle, at the end of SOLUTION OF THE VARIATIONAL EQUATION

this exercise we need to take the limit> 0 as well, however

we will discuss the subtleties of this limit later on. As auies N this appendix, we give a more detailed account of the

the integral ovefDA can be written as: solution of the variational equation:
N L L N
NN —
/DANH(ZO:H(Z)Li(ms) 0L1[pl =0
k=1 \mg=1 m=1 \n,=0 [1=1 7om!

L N where £ is the Lagrangian function of (27). To that end, if
~ ( Z ) exp [_Ng Zp(mg) log (p(mg))] ¢ € Q) is tame, we get:
m=1 m
(104) L1lp +te] = La[p] + tL1[¢]

where n,,, are the number of\;’s that appear in thenth _9¢ /¢(x)p(y) log |z — y| dy dz + O(£?)
segment, with constrain}_, n,, = N. The factorials ap- ' c (108)

pearing at the RHS of (I03) are the number of ways the

Nm =0



18

and a simple differentiation at= 0 yields: for > 1:in that case, the functiofi also extends all the way
to a = 0 and the tern@ makes it non-integrable. However,

(6L1[p], ) = 4 L1[p+ te) since the Hilbert transform preserves-integrability forr > 1
dt|y_g andp is assumed tame (and henb&"¢-integrable), equation
iy _9 ] —uldud (358) would equate an integrable function with a non-intbtga
119} // ¢(@)ply)log |z = y|dy d one, thus yielding a contradiction. Therefore, as we stated

section1I=B, solutions withu = 0 are physically inadmissible
wheng > 1.

:/gb(:c)\ll[p,:c] dz, (109)

where the expressioWl[p, z] is given by:
APPENDIXD
Up,a] = 2/p(y) log |z —y|dy — PROOF OF UNIQUENESS OF SOLUTION 0f39),(40)

+ (B—1)logx + ¢+ klog(l + px) + v(z). (110) In order to show that{39)[(40) admit a unique solution,

e start by observing that for fixe#t, 3 and z, (39) has

unique positive solutiom < b. Then, from the implicit

nction theorem, this solution can be captured in terms of

b by a smooth functiom(b) whose derivative can be obtained
. o implicitly from (89) (and which is negative). With this in ml,

2/0 p(a’)log |z —a'|de’ =z — (B — 1)logz the normalization integraj(b) = flf(b)p(:c) dz takes the form:

—c—klog(l+ px) —v(zx). (111)

Thus, for the above expression to vanish identically for aﬂ
¢ € Q, we must havel|p, z] = 0, and this is precisely{(34), fu
repaeted below:

ad)+b 1 _ 1
Having derived this stationarity equation in termspofwe  9(0) = 1 3 <P k- (B-1) <1 + PO a(b)b))
will devote the rest of this appendix to the expression (35),

also repeated below for convenience, that is obtained afterd this is actually an increasing function tefindeed, after

differentiating [3#) above: a somewhat painful calculation, one obtains:
b
p(y) p—1 kp _ _
2?/ ——dy=1—-———-——=f(x) (112) ropy P (B=1) | b—a(b)
W T—Y x 1+ px g'(b) 1 1+p a0 0| 1+ pb >0 (116)

for all = € [a,b] (cf. section[dI=B). This integral equation is _ .
known as theairfoil equationand can be studied with the helpHowever, with a(b) decreasing and bounded below By

of the finite Hilbert transform [27]: this last equation yieldg/(b) > 1/8 for large enoughb,
1 i.e. limy_,o g(b) = 400. S0, by continuity, there will be a
T[] (x) = ga/ Mdy_ (113) (necessarily) uniqué* such thatg(b*) = 1. Hence, the pair

—1y-z a* = a(b*),b = b* will be the unique solution td (39)_(#0).

If r > 1, the T-transform mapd.” to L" but, nevertheless,
it lacks a unique inverdeIndeed, the kernel of is spanned
by the functionw(z) = (1 — 22)2: T[w](z) = 0 for all

€ (—1,1). Outside this kernel, the solutiogsto the airfoil

equationT[¢] = g with ¢, g € L"[—1,1] will satisfy [27]: Here we provide an improved estimate on the probability
distribution close to the center of the distribution. Thetimate

b(x) = _lgy/l [1-y* g(y) dy + —° (114) Is a result of the inclusion thed(1/N) higher moment
T JaVl-2?y—x V1—2? corrections to the distribution derived inl [7].
wherec is an arbitrary constant that stems from the fact that It is well known [37] that to provide asymptotic corrections
any two solutions of the airfoil equation differ by a mulgpl © the limiting Gaussian distribution due to the presence of
of w(z) = (1 — 2?)" 2. small (but finite) skewness we need to change the distributio
Hence, after rescaling the intervak1,1] to [a,b], the as follows:
solution of the stationarity equatioh (35) will be given by: e ( s ( x3))

P[0 V=) (b=y)f(y) dy + ' Pr(z) = Nor
= vz (115)

on2\/(z —a)(b — x) wherev is the variance of the asymptotically Gaussian distri-
bution ands is the third moment of the distribution. Clearly,
the above distribution cannot be valid over the entire stppo
: ) Ttz : of z since the cubic polynomial will become negative for some
integration, we obtain the final result (36). _ value ofz. Nevertheless, since the third moment is small for
It is Worthwh|le to mention here again how this procedur%rgeN this value ofz will become asymptotically large.
breaks down if we allow the support pfto extend toa = 0 We may therefore apply the above formula to our model.
SThis is a remarkable difference from the case of thénite Hilbert 1 N€ value of the third moment= s3/IV has been calculated
transform which integrates over al and whichis invertible [27]. in [(60) in [7]] and it is of orderO(1/N). As a result,

APPENDIXE
O(1/N) CORRECTION TO THELD APPROXIMATION

(117)

202

3v

p(x)

whenever f is itself L'*¢-integrable. So, by substituting
flz)y=1- % — £ from (38) and performing one last
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Normalized probability distribution curves forettPDF of the mutual information for the antenna arfsly= 2, M = 4 for p = 20dB (a) and

p = 50dB (b). In addition to the LD and Gaussian approximations amdMuwonte Carlo-generated curves, we have plotted the LD appagion including
the O(1/N) correction analyzed in Appendix] E. We see that the lattevecaigrees very well with the numerical one.

the correction to the Gaussian approximation of the mutuaé] E. Biglieri, J. Proakis, and S. Shamai, “Fading channééormation-

information is given by

_ (R*NTeTg)2
e 2verg

\/ 2T Verg .

53
(1 - W(R — NTeTg) +

erg

Pn(R) = (118)

(R — Nrerg)3>

3Verg

(7]

(8]

9]
To orderO(1/N), there is also the correction to the mean otI
the mutual information[[7], which needs to be subtracted off

from Iy.

[10]

Now, to obtain the correction to the LD approximation, we
need to take into account that the large deviations function [11]
also has a cubic term fer~ r.,,, which needs to be balanced.
This can be done by adding a cubic term that cancels this tefin

for r = rerg. Thus we obtain

Nesz(gl(T)igf)) S3
P = - 5 — Ter
N(T) /—27TUerg ( 2Ugrg (T T g)
N2 S3

wheres,,, is given by [70).
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