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Abstract

We study a layered<-user M-hop Gaussian relay network consisting &, nodes in then'™ layer, where
M > 2and K = K; = K)+1. We observe that the time-varying nature of wireless chisnoefading can be
exploited to mitigate the inter-user interference. Theppsed amplify-and-forward relaying scheme exploits such
channel variations and works for a wide class of channetidigtons including Rayleigh fading. We show a general
achievable degrees of freedom (DoF) region for this clas&adissian relay networks. Specifically, the set of all
(d1,--- ,dk) such thatd; < 1 for all < and Zfil d; < Ks is achievable, wherd; is the DoF of thei*" source—
destination pair and(y, is the maximum integer such thafy < min,,{K,,} andM/Ky is an integer. We show
that surprisingly the achievable DoF region coincides wlith cut-set outer bound i// min,,{ K., } is an integer,
thus interference-free communication is possible in teom3oF. We further characterize an achievable DoF region
assuming multi-antenna nodes and general message seh adain coincides with the cut-set outer bound for a
certain class of networks.

Index Terms

Amplify—forward, degrees of freedom, interference mitiga, fading channel, multi-source relay network.

. INTRODUCTION

HARACTERIZING the capacity ofcaussian relay networkis one of the fundamental problems in network
information theory. However, for Gaussian relay netwotks, signal transmitted from a node will be heard by
multiple nodes (broadcast) and a node will receive a supéipo of the signals transmitted from multiple nodes
(interference) and there exist fading and noise, which ntia&goroblem complicated. To overcome such difficulties,
simplified wireless network models have been developed[iH6] that provide intuition towards an approximate
capacity characterization of single-source Gaussiary reddaworks [7], [22].
Unlike the single-source case, the capacity or an apprdricepacity characterization afulti-source Gaussian
relay networkss very challenging since the transmission of other sessagts as thanter-user interferenceDue to
the interference, the multi-source extension from theltesu [7], [22] is not straightforward. Recently, remarkab
progress has been made on multi-source problemis in_[E]-dA&]the references therein. It was proved_in [9] that
the Han—Kobayashi scheme indeed achieves the capacitg ¢fvtiruser Gaussian interference channel within one
bits/s/Hz. The capacity of th& -user Gaussian interference channel has been charadterif&0] as

+ loa(P) + oflog(P) ®

if channel coefficients are sufficiently independent andvdr&om a continuous distribution, where denotes the
signal-to-noise ratio (SNR). To show the degrees of free@@ot) or capacity pre-log term d&/2, the technique
of interference alignmenwas used, which minimizes the overall interference spacalignping multiple interfering
signals from unintended sources at each destination. Theepo of interference alignment has also been used
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Fig. 1. Example of a two-user two-hop Gaussian relay netwatiere S; and D; denote thei'™ source and its destination respectively.

to characterize the DoF of th&-user multi-antenna Gaussian interference charnel [1d]tha X-network in
which each source has independent messages for all dasim@t2]. Another alignment technique calledyodic
interference alignmentias been proposed in [13] showing that, for a broad class afire#i distributions, half of
the interference-free ergodic capacity is achievable farheuser in thei{-user Gaussian interference channel at
any SNR. Based on the inseparability of parallel interfeeechannels [14] [15], the ergodic interference alignment
scheme jointly encodes messages over two specific charstahies to align the interference. A similar concept
has been also applied for the finite field case_in [13]] [16].

The interference can not only be aligned, but it can alsccéecelled or partially cancelledor multi-hop
Gaussian relay networks. Assuming amplify-and-forwar&) felays, each destination may receive multiple copies
of an interfering signal from different paths and potemighese copies can cancel each other through a suitable
choice of the amplification factors of relays. Referericel Ha shown that partial interference cancellation using
AF relays achieves the capacity of two-user two-hop Ganssdworks within a constant bit gap in some scenarios.
Also, the interference can be completely removed so thabghienal DoF of K is achievable fork -user two-hop
Gaussian networks if the number of relays is greater tharqoaleto K2 [18].

In this paper, we study layered multi-source multi-hop Garsrelay networks. We observe that thme-varying
nature of wireless channets fading can be exploited to cancel the interference. As a simple plgroonsider a
two-user two-hop Gaussian relay network in Fig. 1 in which
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for oddt¢ and

mi=| o O =] ©

for event, whereH,,, [t] is them'" hop channel matrix at time If odd and even time slots are used separately, each
source—destination (S—D) pair can only achiéy2 DoF since there is no path between the first S—D pair for even
t and the second S-D pair for oddOn the other hand, if the relays amplify and forward thegnsis with one
symbol delay, then the interference can be completely dmacsinceH; |t + 1]H, [t] becomes the identity matrix.
Hence every S—-D pair can achieve one DoF simultaneously. &\erglize this idea to multi-source multi-hop
Gaussian relay networks for a wide class of channel didtdbs including Rayleigh fading. The key ingredient
is to set appropriate delays in AF relaying at each layer ghet overall channel matrices become diagonal
matrices with non-zero diagonal elements, which guaranigerference-free communication. Under this class of
channel distributions, we show an achievable DoF regionufiraource multi-hop Gaussian relay networks, which
characterizes the optimal DoF region if a certain conditogratisfied. This improves upon our previous result that
showed a total of’ DoF is achievable foi-user K-hop networks withK relays in each layer wheR is even
and a similar technique has been proposed for linear finitd fraulti-hop networks (see the conference papers
[18], [19]). We further characterize an achievable DoF eagdf multi-source multi-hop Gaussian relay networks
with multi-antenna nodes and general message set, whigptirmal for a certain class of networks.

This paper is organized as follows. In Sectioh Il, we explhi@ underlying system model and define the DoF
region. In Sectiof 1ll, we state the main result of this pagiee DoF region of Gaussian relay networks. In Section
[Vl we propose an AF relaying scheme and derive its achievBliglF region forK-user K-hop Gaussian relay



TABLE |

SUMMARY OF NOTATIONS

AT (ora”) Transpose ofA ( or a)
AT(oral) Conjugate transpose @§( or a)
[JA]l7( or |ja]]) Frobenius norm ofA ( or a)
tr(A) Trace of A
[A]; (i, /)™ element ofA
[A]; i"™ row vector of A

diag(a17 e 7CLn)

Diagonal matrix satisfying

[diag(ai, -+ ,an)]is = as
L, n X n identity matrix
0. 5m n x m all-zero matrix
real(a)( or imag(a)) Real (or imaginary) part of
lal Absolute value ofa
a* Complex conjugate of
la] Floor of a (|a] = max{z|z < a,z € Z})
card(A) Cardinality of A
AxB Cartesian product ofd and B

networks. In Sectiol V, we generalize this result Kouser M-hop Gaussian relay networks and show that it
characterizes the optimal DoF region if a certain condit®satisfied. We conclude this paper in Secfioh VI and
refer to Appendix | for the proof of the technical lemma andpApdix Il for the proof of the result in SectignllV
in which K is odd.

II. SYSTEM MODEL

In this section, we explain our network model and introdueeogling, relaying, and decoding functions. Based
on this model, we define the capacity region and the DoF redibroughout the paper, we will usk, a, and.A
to denote a matrix, vector, and set, respectively. ]E[éil A, denoteAg Ak _1---A;. The notations used in the
paper are summarized in Talple I.

A. Gaussian Relay Networks

We study a layered Gaussian relay network in Eig. 2 congistf/ + 1 layers with K,,, nodes in then'® layer,
whereM > 2. The nodes in the first layer and the last layer are the soamgshe destinations, respectively. Thus
K = K; = K41 is the number of S-D pairs. Let us dendtg,i, = min,,cqy,... pr413{ K} and theit™ node in
the m'" layer as noddi, m), wherei € {1,--- , K,,} andm € {1,--- , M + 1}. We assume full-duplex relays so
that all relays are able to transmit and receive simultaslgpbut the results in this paper can be straightforwardly
applied for half-duplex relays by scheduling over hops.

Consider then'™ hop transmission in which the nodes in thé" layer transmit and the nodes in the + 1)
layer receive. Letr; ,,[t] denote the transmit signal of nodg m) at timet andy; ,,[t] denote the received signal
of node(j,m + 1) at timet. Then the input—output relation of the'® hop is given by

Ko
Yimlt] = D hjimleimlt] + zjmlt], (4)
i=1
where hj; ,,[t] is the complex channel from node,m) to node(j,m + 1) at timet and z;,,[t] is the additive
noise of nodgj, m + 1) at timet. We assume that; ,,[t|'s are independent and identically distributed (i.i.d.Jlan
drawn fromA/¢(0,1). Each node should satisfy the power constrdit.e., E(|z; ,[t]|*) < P.
Let us denotex,,[t] = [w1m[t], -+ 2k, m[t])T andym[t] = Wimlt], -, yk,....m[t]]T, which are theK,, x 1
dimensional transmit signal vector and thg, ;; x 1 dimensional received signal vector of thé" hop, respectively.
Then them™ hop transmission can be represented as

Ymlt] = Hp[t]xm[t] + zm[t], (5)
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Fig. 2. Layered multi-source multi-hop Gaussian relay oeks, whereS; and D; denote thei™ source and its destination respectively
and K = K1 = KMJr1.

whereH,,,[t] is the K, 11 x K, dimensional complex channel matrix of the® hop with [H,,[t]];; = hjimt]
andz,,[t] = [z1m[t], -, 2K,.,..m[t]T is the K, 11 x 1 dimensional noise vector of the'™® hop.

In this paper, we assume time-varying channels suchithat[t]'s are i.i.d. drawn from a continuous probability
density functionfy,(-). Hence fy,,; (H) is given by]_[fi"{ HJK:T] fn([H];i), wherefy, [4(-) denotes the probability
density function off,,[t]. We further assume that channel matricesisogropically distributedi.e., fy, (1 (H) =
fa,.[1(HU1) = fu,,1n(U2H) for any unitary matricedJ; andU,. We assume that both transmitters and receivers
of the m'™™ hop causally know the global channel state information Gl to them'™ hop. That is, at time,
the nodes in then'™ layer know {H; [t],--- , Hy,[t]}e, if m < M and {H;[t],--- ,\Hpy[t]}e, if m= M +1.

Remark 1:The considered class of channel distributions includess Rayleigh fading in whiclkj; ,,,[t] follows
Nc(0,1).

Remark 2: The assumption of time-varying channels can be generatizdilock fading with coherence time
of T" symbols as long as it is big enough such that CSI is availab#l @aelevant nodes. We assurfie= 1 for
notational simplicity since our result does not explicidgpend orr".

B. Problem Statement

Based on the network model, we define a set of lengtiiock codes. LetV; be the message of th&' source
uniformly distributed over{1,--- ,2"%}, where R; is the rate of the'" S-D pair. Then g2 ... 2nfx.p)
code consists of the following encoding, relaying, and déup functions:

« (Encoding) Fori € {1,---, K}, the encoding function of thé" source, or nodéi, 1), is given by f; 1, :

{1,---,2"%} — C such that
zia[t] = fi1e(Wa), (6)

wheret € {1,--- ,n}.
« (Relaying) Form € {2,--- ,M} andi € {1,---,K,}, the relaying function of nod¢i, m) is given by
fimzt : Ct=1 — C such that

xi,m[t] = fi,m,t (yi,m—l[l]a Sy Yim—1 [t - 1]) ) (7)

wheret € {1,--- ,n}.
« (Decoding) Fori € {1,--- , K}, the decoding function of thé" destination, or nod¢i, M + 1), is given by
gi : C* = {1,--.,2"R} such that
Wi = gi (yi,m[1], -+ yim(nl) - (8)
The probability of error at thé'" destination is given byP, ; = Pr(W; # W;). A rate tuple(Ry,--- , Rx) is
said to beachievableif there exists a sequence "/, ... 2"fx.p) codes withP,; — 0 asn — oo for all



i €{1,---,K}. The capacity regiol is the closure of the set of all achievable rate tuples. Insdmme manner
as for theK-user interference channel [10], we define the DoF region as

D= {(dl,--- ,di) € REV(wy, -+ ,wi) € RE,

K K R,
. < 1 L
szdz < lim sup <(R]7.sup sz 10gP> }, (9)

i—1 P—oo -~ Rir)eC ;5

whered; is the DoF of thei*t S—D pair.

C. Multi-antenna and General Message Set

We also study a more general case in which each node is egugiemultiple antennas and each source has the
messages of all destinations. Ligt,,, denote the number of antennas of n¢den) andW, = {Wi1,--- , Wk, ..k, }
denote the set of alk; K, 1 messages, whe;; is the message from th&" source to the*™™ destination and
K| # Ky, in general. Let us denot,, = Zfi"{ Lim and Lyiy, = ming,eqq,... a1y {Lm }- Similar to Section
[I-B] the capacity regior€()V,) can be defined. The DoF region is defined as

D(Wg) = {{dji}WjiEWg € REIKMJA v{ij}WJTEWg € RflKM+17

Z wj;d;; < limsup sup Z wjiﬁ }, (10)
Wi €W, P—=oo \ {Rji}wj,ew, EC(OWy) W, eW, 08

which is a simple extension df](9). Heré;; is the DoF from theit" source to thej'" destination.

I11. M AIN RESULTS

Throughout the paper, we study the DoF region of the Gaussiag network. We simply state the main results
here and derive them in the remainder of the paper.

Theorem 1:Consider the Gaussian relay network. LIét denote the maximum integer such thaf, < K
and M /Ky is an integer. Then the set of dliy, - - - ,dx) satisfying

d; <1forie{l,--- ,K}, (11)
K
Z d; < Ky, 12)
=1
is achievable.
Proof: We refer to Sectiof V-A for the proof. [ |

Corollary 1: Consider the Gaussian relay network.Mf/ K ,;, is an integer, therD coincides with the DoF
region in Theoreni]1, wherfy, = K.

Notice that Corollary 11 is the first result characterizing tiptimal DoF region of multi-source multi-hop networks
in which M/ K ;, is an integer. The DoF regioP in Corollary[1 coincides with the DoF region assuming perfec
cooperation between the relays in each layer and, thus; theto penalty in DoF due to distributed relays. This
property can be used to characterize the DoF region of manergenetworks having multi-antenna nodes and
general message set. Hig. 3 pltof the 3-user Gaussian relay network in whidli/ K ,,;,, is an integer. The sum
DoF increases aK ,,;, increases and, in the end, each S-D pair can achieve one DoFRaieously ifK i, = K.

Theorem 2:Consider the Gaussian relay network with multi-antennaesoahd general message set. Let
denote the maximum integer such thiat < L., and M /Ly is an integer. Then the set of altl;; }w,,cw,
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Fig. 3. DoF regionD for the 3-user Gaussian relay network.

satisfying
K,
Zdji < Ljmsrforjed{l, - Ky}, (13)
=1
K
> dj < Ligforie {1, K}, (14)
j=1
K, Ky
Z Z dj; < Ly (15)
i=1 j=1
is achievable.
Proof: We refer to Sectiof V-B for the proof. [ |

Corollary 2: Consider the Gaussian relay network with multi-antennaesahd general message setVAf Ly,
is an integer, therD(W,) coincides with the DoF region in Theordrm 2, whérg = Lyin.

Corollary[2 again characterizé3(W,) if M /L., is an integer, which is the first result showing the optimal
DoF region for this class of networks. The DoF regiB(V,) in Corollary[2 coincides with DoF region assuming
perfect cooperation between the relays in each layer[Fgo# D(W,) of the 3-user Gaussian relay network in
which W, = {Wi1, Wae, Was}, L1 = L pr+1 = 2 for i € {1,2,3}, and M /Ly, is an integer.

IV. DOF REGION FORK-USER K-HOP NETWORKS

To prove the main results, we first study theuser K-hop Gaussian relay network in whidk,, = K for all
m. We propose an AF relaying scheme and derive its achievable rBgion. This result will be used to show a
general achievable DoF region in Sectioh V. In this sectioa,will be dealing with the case thd is even and
refer to Appendix Il for oddK.

A. Opportunistic Interference Cancellation

As shown in the introduction, interference-free commutiicais possible for all S-D pairs if messages are
transmitted at time; to tx such thatl'[fi1 H,[t;] becomes a diagonal matrix. The relays in each layer, however
will have to wait forever in order to group a series of chanmeltrices perfectly since channel coefficients vary
according to a continuous distribution. To resolve thishpem, we first partition the entire channel space of each
hop into subsets based on the singular value decompos8MD) and then group a series of subsets d¥ehnops.
Before describing our proposed scheme, we define the ureatd&vD.

1) Unordered SVD:Let H € C™*™ andlU,, = {A|AAT = I,,, A € C™*™} denote the set of alin x m
dimensional unitary matrices. First consider the ordere® &, : H — (U,, X,, V,) such thatUOZOVl = H.
Here, U, is the left unitary matrixX, is the diagonal matrix with ordered singular values from gheatest to the
least, andV, is the right unitary matrifl To make the ordered SVD unique, we assume that the first row of
is real and non-negative [20].

1Singular values are distinct and positive with probabibtye under the considered class of channel distributions.
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Fig. 4. DoF regiorD(W,) for the 3-user Gaussian relay network, whétg, = {W11, Wae, Wss} andL; 1 = L; m4+1 = 2 fori € {1,2,3}.

From the ordered SVD, we define the unordered SVD by introdutivo random matrice® andI'. Define
S:H — (U, X,V) such that
S(H) £ (U,er,r's,r,v,ern), (16)

where (U,, 3,,V,) = S,(H). Here,T' is a permutation matrix that is set to be onenof possible permutations
with equal probability and® = diag(e’?,--- ,e/%), whered;’s are i.i.d. and uniformly distributed ove0, 2r).
Hence, for any unitary matrice&, V and diagonal matrix® with [X];; > 0, (U, X, V) can be an instance of
S(H) if UV =H.

For a random matrid € C™*™, let fsq)(U, 3, V) denote the joint probability density function 6f(H).
Since the total number of real dimensionslf is equal tom? [20], fsa@n)(U, %, V) is defined over a manifold
of 2m? + m real dimensions embedded4m? +m dimensional Euclidean space. LAt (U), f=(X), and fy (V)
denote its marginal probability density functions, whét& 3, V) = S(H). Then the following lemma holds.

Lemma 1:Suppose thall € C™*™ is isotropically distributed. Thetfge) (U, 3, V) = fu(U) fs(Z) fv(V),
where fuy(-) = fv(-) =12, % and fs(X) = f=(ITXT) for any permutation matrif.

Proof: We refer to Appendix | for the proof. |

In essence, for isotropically distributed channel masridbe joint probability density function of (H) is given
by the product of its marginal distributions. It also shohattfsr) (U, X, V)'s are the same if their sets of singular
values are the same. This property will be used to show tleaptbbabilities of a series of grouped channel subsets
are the same in Lemnia 2 or asymptotically the same in Appeidix

2) Channel space partitioningtet us partition channel spaces of each hop. Defipe- {51{:\ k| < o,k € Z},
whered > 0 is the quantization interval and € Z. is related to the number of quantization points. Then define
Qs = {A € (CKXK|1“ea1([A]Z'j) € Bg,imag([A]ij) € Bs,1 <i,57 < K} andZ; = {A € diag(RKXl)HA]ii S
Bs,[A]i; > 0,1 <i < K}, wherecard(Qs) = (2« 4 1)2(* andcard(Zs) = (a + 1)¥.

For Us € Qy, defineQ(Us) = {A € UK‘ —-0/2 < real([A]Z-j — [Ué]ij) <6/2,—0/2 < imag([A]ij — [Ué]ij) <
/2,1 <i,j < K}. For X5 € Z;, defineZ(X5) £ {A € diag(R**)| — 6/2 < [Alii — [Bolii < 6/2,1 <i < K}.
Then, forU; € Qs, X5 € Zs, and Vs € Qg, define

S(Uy, 35, V) £ Q(Us) x I(Xs) x Q(Vy). (17)

The following lemma shows that the probability th&tH,,[t]) € S(Us, Egl),V(;) is equal to that o5 (H,,[t]) €
S(Vs, 2((52), Us) if the diagonal elements cEf;l) is a permutation of those (Egz).



Lemma 2:Suppose thaH € C™*™ is isotropically distributed. FOE((;I) € Zs and 2]((52) € ZIs, if there exists
a permutation matrid’ such thatz)gz) = I‘TZS)I‘, then Pr(S(H,,[t]) € S(U(;,Zgl),v(;)) = Pr(SHy,[t]) €
S(Vs, 2% Uy)) for all Us € Q5, and Vs € Q.
Proof: We have

Pr(S(Hn[t]) € S(Us, =", V)

@ / fu(U)dU f5(2)ds
UcQ(Uy) sez(=")

T e
VeQ(Vs)
(b

= / fv(V)dv fg(Z/)dE’
VEQ(Vs) »er(=f?)

- / fu(U)dUO
UeQ(Us)
(c)

2 Pr(S(H,,[t]) € S(Vs, 2P, Uy)), (18)

where(a) holds from Lemmall(b) is obtained by settind®’ = I'" =T" whose Jacobian is one, afd holds since
fu() = fv(-) and fs(X) = f=(T'TET), which is the result of Lemmi 1. In conclusion, Lemipa 2 holds. m

This lemma is crucially important because it will be used tbow that the probabilities of grouped channel
subsets are the same. Otherwise, a constant fraction oheharstances remains unused and this may degrade
DoF.

3) Proposed AF relaying:First, we divide a block intoB + K — 1 sub-blocks having lengthhz for each
sub-block, wherenz = 57— . The relay nodes in each layer will receive length-signals from the previous
layer and then amplify and forward them to the next layer vatie sub-block delay. That is, each length-
signal transmitted by the sources is received by the destireawith K — 1 sub-block delay. Hence the number of
effective sub-blocks is equal t8 and the overall rate is given %Rk. As n — oo, the fractional rate loss
1-— % will be negligible because we can make beth and B large enough. Thus we omit the sub-block
index in describing the proposed scheme.

Form € {1,---, K}, define

Tm(U57 257V5)
2 {t|S(Hu[t]) € S(Us, 5, V) t € {10+ ,np}}, (19)

which is the set of time indices of the'® hop such thas(H,,[t]) is in S(Us, X5, V). For transmission, each node
in the m*™® layer will use N (Us, X5, V) time indices in7,,(Us, =5, V). The detailed procedure is as follows:

« (Encoding)
For all (Ug, X5, V) € Qs x Zs x Qs, the sources transmit their messages with a standard @aussilebook
satisfying average powd? using N (Uy, X5, V) time indices in7;(Us, 35, V). If card(71(Us, X5, Vs)) <
N(Us, X5, Vy) for any (Ug, 35, V), it declares an error.
« (Relaying form = {2,--- , K})
For all (Us, X5, V) € Qs xT5 x Qs, the nodes in then'™ layer amplify and forward their received signals that
are received during,,,_1(V;, PTX;P, Us) usingN (U, 35, V) time indices in7,,(Us, s, V), whereP =
[[OIX(K—I)J 1]T7 [IK—lao(K—l)Xl]T]T- SpGCiﬁC&”y,xm[tm] = ’Ym}’m—l[tm—l]- wheret,, € Tm(U57257V5)
andt,, 1 € Tm_1(Vs, PTSsP, Us). Here,~,, > 0 is the amplification factor of then™™ hop that should be
set to satisfy the power constraift If card(7,,(Us, X5, Vs)) < N(Ug, 35, Vs) for any (Us, X5, V), it
declares an error.
« (Decoding)
The destinations decode their messages from the receigedlsifor all(Us, 35, V) € Q5 X Zs x Q5.
Remark 3:Because of" and © in (16), S(H) is random. Hence, in order to kno$(H) from H at relevant
nodes, the additional information abditand ® should be shared by the nodes. Note that these information ca
be shared with marginal overhead for block fading with bigwghT.



For the proposed scheme, messages are transmitted thraggies of particular time indices to ¢x such that

S(Us, P 135(PT)m=1 Vy) for oddm,

20
S(Vs, Pm1xg(PT)ym=1 Us) for evenm. (20)

SHy[tm]) € {

Because of the permutation mati the diagonal elements #X;P7 is cyclic shifted from the diagonal elements
of 3. Hence, interference-free communication is possible agjtrantization intervad converges to zero, which
will be proved in the next subsection.

Let F;; denote the encoding or relaying error event dng denote the decoding error event of thé S-D
pair. Notice thatFE; ; occurs if card(7,,(Us, X5, Vs)) < N(Us, X5, V) for any (Us, X5, V) or m. From the
union boundPe(Z.B) < Pr(E1;) + Pr(E2;).

B. Achievable DoF Region

In this subsection, we derive the achievable DoF region@ptioposed scheme. We will use the shorthand notation
P(Us, X5, Vs) to denotePr(S(H,,[t]) € S(Us, Xs, Vs)), which is valid sincePr(S(H,,[t]) € S(Us, s, Vs))
is the same for alln andt. We first introduce the following lemma.

Lemma 3 (Csisz and Korner): The probability that

1
n— card(Tm(U(;, 25, Vg)) — P(Ug, 25, V(g) S € (21)
B
for all Us € Qs, T5 € T5, and Vs € Qs is greater tharl — card(Qs)? card(Zs)/(4npe?).
Proof: We refer to Lemma 2.12 iri_ [21] for the proof. |

The following theorem shows that each S—D pair can achieeeloF simultaneously iVi = K = K,,,. This
theorem will be used to prove Theorefls 1 ahd 2 in Se¢tion V.
Theorem 3:Consider the Gaussian relay network in whish = K = K, for all m. Then the set of all
(di,--- ,dx) satisfying
di<lforie{l,--- K} (22)

is achievable.
Proof: We will prove the case wherE is even and refer to Appendix Il for the proof of o@d From Lemma
B, we setN(Us, X5, V) = max{|np(P(Us, X5, Vs) —€)],0}. Hence

KQ2a+ 1) (a+ 1)K
Anpe?
K2K34K2a5K2

PI‘(El i) <

) —=

23
dnpe? ’ (23)
where we useard(Q;) = (204 1)2K7, card(Zs) = (a4 1)K, and the union bound. TheN (U, X5, V) is equal
to N(Vs, PTXsP, Us) becauseP (U, X5, Vs) = P(Vs, PTXsP, Us), which is the result of Lemmi 2. Hence,
the nodes in then'" layer are able to amplify and forwald (Vs, PTS;P, Us) received signals by using the time
indices in7,,(Us, 35, V) if E;,; does not occur.
Recall that messages are transmitted through a series tdypar time indicest; to tx satisfying [20). Then,
by letting
s JUPIs5(PTY™=1VE for oddm,

Hs,, = 24
> {V(;Pm‘lz(;(PT)m‘lUg for evenm, 24

H,,[t,,] can be represented &%;,,, + A,,, whereA,, is the quantization error matrix df,,[t,,] with respect to
H; . Sincex,,[t,] = ymYm—1[tm—1], the received signal vector of the last hop is given by

K K
yrltr] = (H ’Yj) ( [Ts; + Aj))xl [t1] + zar + 2k [tk], (25)
=2 7 iR



10

where
K K K
Zap =Y ( 11 %) ( TG+ Ak)>zj—1[tj—1] (26)
j=2  k=j k=j
denotes the accumulated noise due to AF relaying. Let
SINR}™(Us, 25, Vs) £ . Ami}2 {SINR; (yi,x [tK])} (27)

where SINR; (y; k[ti]) is the signal-to-noise-and-interference ratio (SINR) loé " destination assuming that
S(Hi[t1]) € S(Us, X5, V). Therefore, since each source uses a standard Gaussidmoo&dan achievable rate
of the i** S—D pair is lower bounded by

1 )
RL(S > ’I’L_ Z log(l + SINR?HH(U(% 35, V(S))N(U(sv 35, Vé)
B
(Us,XE5,Vs)

€QsxILsx Qs
@ min _ min
> Z IOg(l + SINR‘Z (U57 2(57 Vé))P(U6> 257 Vé) € Z log(l + SINR‘Z (U57 2(57 V6))
(Us5,%5,V5s) (Us,Z5,Vs)
€QsxTsx Qs €QsxLsx Qs
® min
> Z log(1 + SINRIM®(Uj, X5, V) P(Us, s, Vi)

(Us,Z5,Vs)
€QsxLsx Qs
— 2K 0PK max {log(1 + SINRI™(Us, 5, V) } (28)
Us,X5,V
E(Q;ng Xséé

with an arbitrarily small probability of decoding errorej,P(Eg,i) — 0 asnp — oo, wheree’ = ¢ + 1/np.
Here, (a) holds sinceN (Us, X5, V) > np(P(Us, X5, V;) — €) and (b) holds sincecard(Qs) < (2« + 1)2K°
andcard(Zs) < (a + 1)%. Let SINR;(Ujs, 25, V) be the SINR of the'® destination assuming,, [t,,] = H; .,
which is a function ofUg, X5, and V. Then,
max  {log(1 + SINRM™"*(Uj;, X5, Vs))}
S5,
<  max {log(1+ SINR;(Uys, X5, Vs))}

(Us,=5,Vys)
€QsxTsx Qs

K

2

< max log | 1+ (H[Ea]ja‘) P
7=1

<log(1 + (5c)*" P), (29)

where the first inequalilty holds sinGdNR™"(Us, 4, V) is less than or equal t8INR;(Us, =5, V), the second
inequality holds from]_[f:1 H;; = (Hle[xg]jj) Ix and assumingar = Oxx1 gives an upper bound on the
achevable rate, and the third inequality holds sifi&];;| < da.
Now we set) = n;/“””{ ) (1657 ande = n;/g, which are functions ofiz. Then
§=ng/® ) S0 (30)
2K 05K 10 (1 + (5a)*K P)
2. —1/48 | —11/16
_ 9K giK ("B/ + )

_ 1/
y @ =npg

B
log(1+ Pni/ ")y 0 (31)
da = njlg/(gy{z) — 00 (32)
K2K 4K? 5K? K2K 4K? _
43;135 - 43 ng/"® 50 (33)

asnp — oo. The first condition guarantees an arbitrarily small quaation error, the second condition guarantees
an arbitrarily small rate loss due to the randomness of ablamalizations, the third condition is needed to use
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almost all channel instances for transmission, and thetHozondition guarantees an arbitrarily small probability
of encoding and relaying error.

Since we separately quantize the left unitary matrix, theuiar value matrix, and the right unitary matrix, from
20), S(H,,[t,]) converges tqUs, P 1X5(PT)™~1 Vy) for oddm and (Vs, P~ 135(PT)™~1 Uy) for even
m asé — 0. HenceH,,[t,,,] converges taHs ,,, equivalentlyA,, converges to the all-zero matrix as— 0.
Therefore,

lim SINRI™™(Us, 35, V)
6—0

(IS 2 (LS [3)5)°P
T, (T 93) te(Z2) K+

whereX: denotes the singular value matrix Hf [t;]. Here, we uséims_o ( [T/, H;[t;]) = ([T, [2];;)1x and

)

(34)

tim 5 (Jfear )
K

i(HW)[HHktk] zj1[tj-1]

k=j k=j

2

K K
=> H ’y;?) tr(X?) K7+, (35)

where the first and second inequalities hold fripA];|| < ||A|lr and||AB||r < ||A||#||B| =, respectively. Finally,
we have

N (L) (T (S)0)°P
R = nilinoo Ris 2 /(U,E,V) o8 (1 ! I+ EJK=2 (Hf:j ) tr(Z) K
(T, 72 (115, [2)5)°P ))
=F log | 1 36
p> < g ( + 1 ZJK:2 (HkK:j ~2) tr(£2)K—j+1 (36)

is achievable with probability one.
Now consider an achievable DoF region. For apy- 0 andc, > 0,

) fu(U) f=(Z) fv(V)dUdEdV

a(log P)™ < [[Hp[tm] |7 < culog P (37)
with probability one asP — oo. To satisfy the power constrail?, we sety2, = (log P)~! for m € {2,--- , M}.
Then
E(’wim[tm”z)

= (log P) " E(|yim—1[tm—1][*)
= (log P)~ 'E E(|[Hp—1[tm-1]liXm—-1[tm-1] + 2im— 1[tm—1”2)
< (log P) " (I Hpm—1 [tin-1] | FE([%m—1 [tm—1]lI*) + 1)
(38)
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Consider the case whene = 2. We haveF (|z; [t2]|?) < (log P)~L(||Hy [t1]||% K P+1) sinceE(||x1[t1]]|%) < K P.
Hence, from [(37),E(|z; 2[t2]|?) < P with probability one as? — oo. By applying the same analysis recursively,
we can show that?(|z; . [tm]|?) < P for all m with probability one asP — oo. Therefore, from[(36) and
72, = (log P)~! and by using the facts th:ﬂf:l[z]jj > 0 andtr(X?) = ||H;[t1]|% < ¢, log P with probability
one,d; = limp_,o, R;/log P = 1 is achievable with probability one for alle {1,--- , K}, which completes the
proof. |

V. DOF REGION FORGENERAL NETWORKS
Based on the result in Sectign]lV, we prove Theoréims 1[and 2Camdllaries 1 andl2.

A. DoF Region of Gaussian Relay Networks

In this subsection, we prove Theorém 1 and Corolldry 1. Fomtsider the DoF region in Theorém 1. The DoF
region given by [(I1) and_(12) has corner poi(, - - - ,dj};) such thatzifild;? = Ky, andd; € {0,1} for all
i€ {l,---,K}. Hence, to achievéd;,--- ,d}), only Ky, S-D pairs withd} = 1 participate in communication.
We can also choosEy, nodes in each of the remaining layers becaldse< K., < K,,. As a result, the reduced
network consists ofs; nodes in each layer. Then, we can apply the proposed schethésteeduced network
over M /Ky times becaus@//Ky is an integer. Hence one DoF is achievable for each of theespondingKs,
S-D pairs, where we use the result of Theofém 3. Therefdie; - - ,d},) is achievable. Note that any point on
the dominant face can be achieved by time sharing betweerkcppints. In conclusion, Theorem 1 holds.

Now consider Corollary11. From the condition thaf/ K, is an integer, we hav&y, = K,,;,. Hence, the
achievability is straightforward from Theordm 1. The caiseecan be shown from a simple cut-set outer bound.
Let us first consider the cut dividing thi& source and the rest of nodes. Then the rate of'th&—-D pair is upper
bounded byK x 1 single-input multiple-output (SIMO) capacity, which g&/é; < 1 fori € {1,--- , K}. From
the cut dividing the nodes up to the'" layer and the rest of nodeg,jfi1 R; is upper bounded by, 1 x K,
multiple-input multiple-output (MIMO) capacity. Hence vabtain Zfil d; < min{K,,, K,,,+1} and considering
alme{1,--- ,M} givesti1 d; < Kpin. In conclusion, Corollary]1 holds.

B. Multi-antenna and General Message Set

In this subsection, we prove Theoréi 2 and Corollary 2. Fomtsider the DoF region in Theorérh 2. Assume a
specific order of{; Ky, messages im/,. We can sequentially allocatel;; }v,, <)y, according to this order and,
for a givend;;, we can maximally allocate available DoF dg; while satisfying [(IB) to[(15). Then the resulting
{d};}w,.ew, is one of the corner points dP(W,). Since eachl}; is an integer, we can choosk; antennas at
the i*t source andf;; antennas at thg'! destination and pair them ay; virtual S-D pairs. As a result, we
can establish a total oEf(:ll K:“{“ dz; virtual S-D pairs becaus@d;; }w,.ew, satisfies[(I8) and_(14). We can
also choose a total of =" j=1 " d;; antennas in each of the remaining layers becdu§gw,,cw, satisfies
(I5) andLy, < Lyin < L,,. The resulting reduced network consists@fil1 Z;@{“ d;l. virtual S-D pairs with
Zf(:ll f:”{“ d;; relays in each layer. Then we can apply the proposed schentestaeduced network over
M/ Ly, times becaus@//Ly is an integer. As a result, all virtual S-D pairs can achieve DoF from the result
of Theorent]l, meaning thdi}; }w,.ew, is achievable. Note that any point in the dominant face caadbgeved
by time sharing between corner points, which completes thefp

Consider Corollari/I2. Becauds; = L.,i,, the achievability is straightforward from Theoréin 2. Tloewerse can
be shown from the cut-set outer bound. From the cut dividimegjt" destination and the rest of nodés,*", R;;
is upper bounded by.,s x L;y+1 MIMO capacity, which givesZiK:l1 dji < Ljpy1forje {1, Ky}
From the cut dividing the'® source and the rest of nodegj.{:”j+1 Rj; is upper bounded by.; ; x Ly MIMO
capacity, which giveiﬁj+1 dji < L;y fori e {1,---,K;}. Lastly, from the cut dividing the nodes up to the
m'™ layer and the rest of nodegfill ]K:”j“ Rj; is upper bounded by.,, x L,,4+1 MIMO capacity, which
gives Y1 SR djy < min{ L, Lips1 } for m € {1,---, M}. Hence, we havé ) S dj; < L. In
conclusion, Corollary]2 holds.
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VI. CONCLUDING REMARKS
A. Summary

In this paper, we study layereH-user M-hop Gaussian relay networks. The proposed AF relayingoéspl
channel fluctuation to cancel the inter-user interferemmkv@orks for any isotropically distributed channel matsice
including i.i.d. Rayleigh fading. Under this class of chahdistributions, we show a general achievable DoF region,
which characterizes the optimal DoF regiom\if/ K,,;, is an integer. We further consider the DoF region of more
general networks with multi-antenna nodes and generalagesset. Our achievable DoF region again characterizes
the optimal DoF region if\// L, is an integer.

B. Discussions

The proposed channel matching using the unordered SVD waaggally for i.i.d. channel coefficients whose
channel matrices are isotropically distributed. Spedificé# we take any Kg x Kg sub-channels at each hop,
the probability density functions of these sub-channelukhbe the same and isotropically distributed, where
Ks < Knin- When channel coefficients are arbitrarily correlateds¢éheonditions generally do not hold. However,
we can still apply the opportunistic interference cantiella For this case, other channel matching may provide a
larger achievable DoF region than the proposed matchingdepending on channel correlations.

In this paper, we consider opportunistic interference eliation based on the AF relaying. Although the proposed
scheme achieves the optimal DoF region for a class of nesydrthe number of S—D pairs is relatively greater than
the number of hops, then applying the interference alignimefi2] at each hop based on the decode-and-forward
relaying can provide a larger total DoF than the proposeérseh Furthermore, compress-and-forward_in [7]] [22]
or compute-and-forward in_[23] may also outperform the pgad scheme in finite SNR regime.

APPENDIX |
PROBABILITY DENSITY FUNCTIONS OFUNORDEREDSVD

In this appendix, we prove Lemnia 1. Lt &) (U,, X0, V,) denote the joint probability density function of
S,(H). Since the first row ol, is real and non-negatives, 1) (U, X0, V) is defined ovem? real dimensions
[20]. Consider any unitary matricds(Y), U®, v(1) V(2 and any diagonal matrices™, 32 with distinct and
positive diagonal elements such tHat? = TTS(T for a permutation matrid'. We have

fsn) (UMW, =M v)

© s (O 2. V)

- (27T)mm1!.](z<1>)fH(U(I)E(l)V(m)

- (27r)mm1!.](2(1>)fH(UlU(”E(”V(l”U2)

< (27T)mm1!J(Z(2))f (U0 BIVEN

() fsan (UR), 20 V@), (39)

where ( gl),Zgl),Vgl)) = S, (UM xMvMT) and
1
[Tic; (N2 = X7 TIZ A

denotes the Jacobian froH to S,(H) [20] and ); is thei'" largest singular value . Here, (a) holds since
the probability density function o® in (@6) is given byfe(®) = -+, I' is set to one of then! candidates,

2m)m?
and the Jacobian fron§(H) to S,(H) is one, (b) is obtained byU"sN vVt — tWs®OVOL (0) holds
for any unitary matricesU; and Uy, (d) holds by settingU; = UATTUW! and U; = VIWTVET and
from the fact thatJ(=()) = J(23)), (e) holds by the same steps showing thfage) (UL, =M, vIl)) =

J(E) =

(40)
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S(Hl[tl]) = (U7 E,V) S(Hl[tl]) = (Uv 27V)
S(Hslts]) = (V,PEPT,U) S(Hs[ts]) = (W, PEZPT U)
\

v

S(H;ts) = (U, P?X(PT)% V) S(H;[t]) = (V,P*S(PT)%, W)
(a) (b)

Fig. 5. Channel grouping rules used for evEn(a) and oddK (b), where the quantization effect is ignored for simplelarption.

me(U(l)Z(l)V(l)T). From [39).fsa) (U, X, V) can be represented #g (U) f=(X) fv(V), wherefs(X)

is given by fx(I7ST) and fu(-) = fv(-) = [T, S22 since the volume off,, is given by[]™, % [20]. In
conclusion, Lemma&ll1 holds.

APPENDIX I
DOF REGION FORK-USER K-HOP NETWORKS IN WHICH K |s ODD

In this appendix, we prove that Theoréin 3 holds for dddwhere K > 3. The DoF region in Theorem 3 is
trivially achievable if K = 1. For intuitive explanation, consider the case in whigh= 3. If we apply the same
channel grouping rule used for evén as shown in Figl]5. (a), then messages are transmitted thrawsgries of
particular time indices; to t3 such that

3
Hi[t3|Ha[to]Hy[t1] = (H[F]n)UVT, (41)

which is in general not a diagonal matrix. Hence we apply thenoel grouping rule as shown in Fig. 5. (b). Then

3
H 13 F [t H 1] = (T 100 )T (42)

i=1

and interference-free communication is possible. Howeber channel space partitioning &f; used for evenk
cannot guarantee that the probabilities of grouped chasuimets are the same. To guarantee the same probabilities
of grouped channel subsets, different partitioning metbbdl is proposed in this appendix.

We first introduce the quantization of a unitary matrix in thext two subsections and explain the channel
space partitioning method and grouping rule. Then we amaltgzachievable DoF region. We will use asymptotic
relationships between two sequendg$n)} and {g(n)}. We write f(n) < g(n) if limsup,,_,..f(n)/g(n) <1
and f(n) = g(n) if liminf, 00 f(n)/g(n) = limsup, . f(n)/g(n) = 1.

Quantization of Hypersphere

Let R,, = {al|lal| = 1,a € R™*!}, wherem > 2. Then consider the quantization ofc R,,. We first divide
the set of angles defined in the hypersphere coordinatesi Eof2,--- ,m — 1}, defined;(ky,--- ,ki—1,01) =
9 , where0 < 6; < 1 andk; € Z. Fori € {1,--- ,m — 2}, define

ITi] 0015(19151')

t7i(k17 T 7k2)

= [(ki — 1/2)8; + /2, (ki +1/2)6; + 7/2), (43)
where|k;| < |+ arccos(5;/®™ )| — 1. Define

jm—l(kla T >km—1)
= [(km—l - 1/2)5777,—1 + 7, (km—l + 1/2)5777,—1 + 77)7 (44)
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wherek,,—1 € Z and |k,,—1| < Lﬁj — 1. From now on,(kq,--- , kn,—1) Will be assumed to be in the range
specified above.
Let us define a quantized vectdiky,--- ,kn_1) = [F1,- - ,7m]’, Where

i—1
( sin(k;o; +m/2) | cos(kid; + 7/2) (45)

J=1
72m—l =
J

m—2
= (H sin(k;0; + 77/2)) sin(kpy,_10m_1 + 7). (47)

J=1

fori={1,--- ,m—2},
—2

3

sin(k;0; + 7T/2)) co8(kpm—10m—1 + ), (46)
1

and

Then denote7 ™ (#(ky, -+ km_1)) = Ji(k1) x Fo(k1,k2) X -+ X Tn_1(k1,-- ,km_1). FOrr € R,,, the
quantizerA,, is defined such that\,,(r) = t(ki,---,kn—1) if there exists(ky, -, k,—1) satisfyingr €
T (#(k1,- -+, km_1)), otherwise it declares an error. We show that the followingpprties hold as the quanti-
zation intervald; converges to zero, which will be used to prove Lenitha 5.

Lemma 4:Suppose thab; is a function ofn such thatd;(n) — 0 asn — oo. Then the following properties
hold:

1) If r is uniformly distributed ovefR,,,
(61(n))™ T (m/2 + 1)

Pr(Ap(r) = t(k1, - ,km—1)) = /3 (48)
mm
for any (kq,- - , km—1), WhereI'(-) denotes the Gamma function.
2) If r is uniformly distributed ovefR,,, Pr(lim, . [[r — Ay, (r)]| =0) = 1.

Proof: ConS|der the first property. Sinaeis uniformly distributed overR,,, Pr(r € 7™ (+)) is given as the
volume of 7(™)(+) divided by the volume ofR,,. Then

vol(7 "™ (&)

(H 5) (ni'[z (sin(k;6; +7/2))™ 1 )

=1
=0 (49)
where H’Z‘lz(sin(kiéi + m/2))™~1=% is the Jacobian of the volume of the hypersphere. Therdfof@\,,(r) =
£) = 3 Lm/2HD) \where we us@ol(R.,) = =222 [20].

mrm /2 = 7F(m/2+1
Consider the second property. From the facts that

H}Cax{k,di} = 5 forie {1,---,m— 2},

max{ky—10m-1} = T, (50)
we have
> vol(T™ (k- kne1))) = vol(Ryp,) (51)
TR N
and, as a result, the outage probability tends to zero m&reases.

Assume no outage from now on. Let= [ry,--- , 7|7 and A,,(r) = [f1,---,7n,]7. First consider the case
wherem > 3. From|k;| < + arccos(éi/(z(m_m)) in @3), cos(k;d;) > 51/(2(m ) wherei € {1,---,m —2}. By
applying this inequality in the definition af;, we haves; < 51~ 1)/(2m-2) for i € {1,--- ,m — 1}. From the
hyperspherical coordinates, we also have

ary = 229 g (52)

Op1
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drs — Z d(sin ¢y - - .;j(;@_l cos ¢i)d¢j (53)
j=1 J
forie{2,---,m—1}, and
m—1 . . .
-y dehar "Slg(ff‘? S n) o, (54)
j=1

which gives|dr;| < 23:1 |dp;| fori e {1,--- ,m— 1} andydrmy <> ' |do;|. Thereforejr; — 7| < Z

(i — 1)5i_(i_1)/(2(m_2)) < (m—1)/6 forie {1,-- -1} Slmllarly Fm = Fm| < 3055 L5, < (m 1)\/5_.
This meandim,,_, [|[r — Ay (r)]] =0 n — co. The second property also holds for = 2 S|nce|r1 — 7| < &
and|ry — 7| < & for this case. In conclusion, Lemria 4 holds. [ |

Quantization of Unitary Matrix

From the hypersphere quantizer, we recursively quaifizels,,. First considenn € C™*! with |ju| = 1. Similar
to 7™ (&), we can defingZ ™ () in them dimensional complex space. ThAn,, (u) = @ quantizes1 by treating

it as a2m dimensional real vector. Let = [uy,--- ,u;,|’. Fori € {1,--- ,m—1}, we define then x m dimensional
matrix T;(u) such that[T; =Ty = —— [Ty ()] = it
" i(w) T T [f d( )]1<z+|1>| T | OI<t hﬂ(zﬂ;{ o
[T (W)] i1y 64+1) = TerteT and set the rest of diagonal elements as ones and the re gbnal elements
as zeros. Hereg; = u; anda; € Ry is the first element oi(]_[Z l; j(u)u for i € {2,--- ,m — 1}. Then

defineT(u) = ]_[2”11 T;(u). Note thatT (u)u = [1, le(m_l)] becausé[‘( ) Is a unitary matrix. The quantizer
Apxm : U — U is defined as follows:
° SetUll =U.
o Forie{l,---,m},
Let u; denote the first column vector &f’.
Quantizeu; such thatA,,_,1)(u;) = 4; if there existst; satisfyingu; < JCm=+1)) (@), otherwise
declare an error.
If ¢ € {L,--- — 1}, setU;, as T(u;)U; by removing the first column and the first row vectors of
T(ug)UgE That is,

1 0 ;
T(uW)U, = Lx(m=i) | 55
( 2) 7 O(m—i)xl U;—i—l ( )
End.
e SetA,,xm(U)=U = [ay, - ,04,], wheret; =} and
= TH(@a)) - - [0, [T (& _,)[0, [TT(a]_,)[0, ai"]"]"]" (56)

forie{2,---,m}.
By using Lemmad}4, we show that the following lemma holds asati@ntization intervab, converges to zero.
These properties will be used to prove Theofém 3 for &dd

Lemma 5: Suppose thab; is a function ofn such thaté;(n) — 0 asn — oo. Then the following properties
hold:

1) If U is uniformly distributed ovet/,,,

PT(Ame(U) mxm( ))

(o) 5

i=1 i=1

for any V € U,, such thatA,,,.,,, (V) exists.

2Here T'(u}) is the (m — i + 1) x (m — 4 + 1) dimensional matrix.
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2) If U is uniformly distributed ovet/,),,
Pr(1im [[U = Ay (0) |7 = 0) = 1. (58)
Proof: Consider the first property. From the first property of Lenita 4
Pr(Apmxm(U) = Amxm(V))

T sEmT P (4 2)
1 2(m—it 1)gm—it+l

(T 2m-i)+1 o (1= 1)!
— (21;[151 + ) ( o ) (59)

i=1

LetU = [uy, - ,uy] andA, ., (U) = [y, - -+, Q). SinceAy,,(u;) = @y, from the second property of Lemma
4, 0; — u; with probability one as» — oo. Then considem; and ty satisfying Ay, —1)(uy) = @5, where
T(up)ug = [0,uf ] and T(;)iz = [0,04]7. Here, T(u;)uy = [0,uf ] is obtained from[(B5) ana} = uy
and T ()t = [0,45 17 is obtained from[(56) and) = ;. SinceT(:) is a continuous function and; — wuy
with probability one,T(i1;) — T(u;) with probability one as: — oo. From the second property of Lemrnh 4,
u, — u), with probability one. By using these two facts, we have

ty = T(ap) 0, a5 |7 — T(uy)'[0, uf 1" = uy (60)

with probability one as: — oo. By applying the same analysis recursively, we can showhéim, . ||U —
Apxm(U)|lF = 0) = 1. In conclusion, Lemma]5 holds. [ |

DoF Region for OddK’

In this subsection, we prove that Theorem 3 holds for éddwe will briefly describe the differences from the
proposed scheme for eveti in Section V. First, we quantize unitary matrices by usihg tjuantizer described
in the previous subsection. Based on the new quantizer, weleneQ; and Q(Uy) as in Sectioi IV, where, we
again useQs and Q(Uj;) notations for notational convenience. Specificadly, is the set of all quantization points
of Axxk(A) for A € Ui and Q(Uy) is the set of allA € Uk satisfyingAxxx(A) = Us, whereU; € Q.
Then we can modify Lemmia 2 as follows: Suppose thais a function ofn such thaty; (n) — 0 asn — co. For
Egl) € Zs and Eff) € Iy, if there exists a permutation matrlx such thatsz) = I‘TE((;I)I‘, then

Pr(S(H,[t]) € (UL, =, viD))

@ pr(U,[t] € QUY)) Pr(S,lt] € (=)

Pr(V,[t] € Q(ViY))
®) @) (2)
= Pr(Up[t] € Q(U”)) Pr(Z,t] € Z(=57))

Pr(Vilt] € Q(VY))

=Pr(S(Hp[t)) € SUY, =P, Vi) (61)

for all Ugl),U((f),Vgl),fo) € Qs, whereS(H,,[t]) denoteqU,, [t], £, [t], Vi [t]). Here,(a) holds from Lemma
[, (b) holds sinceU,,[t] and V,,[t] are uniformly distributed ovel/r (Lemmall) and from the first property of
Lemmalb.
Second, we apply the different channel grouping by modifyime relaying of the proposed scheme in Section
[Vlas follows:
« (Relaying form = {2,--- , K})
For all (Us, X5, V) € Qs x5 x Qs, the nodes in then™ layer amplify and forward their received signals that
are received duringJU;segngq(Vg,PTZ(;P,U;;) using N (Uy, X5, V) time indices in7,,(Us, 35, Vs).
If m = K, it is also satisfied that these signals are received dwipg:o, 7:(V}, (PT)X~13;P5~1 Uy) at
the first hop.
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Similar to [20), messages are transmitted throtigto ¢ such that
S(Hy[tm]) € S(Uspm, P I E5(PTY™ 1 Vs ), (62)

whereUs = V52, Uso = Vs3,--- ,Us g1 = Vs i, and Vs = Us . Hence interference-free communication
is again possible if the quantization intervalandd, converge to zero.

Then almost the same proof for ev&hin Theorem B can be applied for odd. We briefly explain the differences.
Let Puin(Zs) = miny,co, v,c0, reor P(Us, ITEsT, V;5), whereQr denotes the set of all permutation matrices.
SetN(Us, 35, Vs) = max{|npPunin(Xs) — €,0]}. Since N (Us, 35, Vy) is the same for alUs € Q;, Vs € Qs,
andT € Or, every transmit signal can be delivered to the final destnatif £, ; does not occur. Because of
the different quantization of unitary matricasyrd(Qs) < (?5—’1T)2K2 since the number of points d&f used in [(4B)
and [43) is less than or equal §. Then by setting); = o', we havecard(Qs) < (2m)2K° o2K7 | For even
K, card(Qs) < (20 + 1257 < 32K72K* was used. Hencé = nj;" /29 o = nl/5%) ande = nj;'/?
again satisfy the conditions (30) to (33). Lastly,ras — oo (equivalently,d; — 0 andé — 0), P(Us, X5, Vy)
is asymptotically the same for all; € Qs5, Vs € Qs, andI' € Qr and the quantization errors converge to zero
with probability one, where we use the first and second pt@seof Lemmdb. Therefore, we can derive the same
equation as in[(36). In conclusion, Theorem 3 holds for &dd
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