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A digital interface for Gaussian relay and
interference networks: Lifting codes from the

discrete superposition model
M. Anand, Student Member, IEEE, and P. R. Kumar, Fellow, IEEE

Abstract—For every Gaussian network, there exists a corre-
sponding deterministic network called the discrete superposition
network [1]. We show that this discrete superposition network
provides a near-optimal digital interface for operating a class
consisting of many Gaussian networks in the sense that any code
for the discrete superposition network can be naturally lifted to
a corresponding code for the Gaussian network, while achieving
a rate that is no more than a constant number of bits lesser than
the rate it achieves for the discrete superposition network. This
constant depends only on the number of nodes in the network
and not on the channel gains or SNR. Moreover the capacities
of the two networks are within a constant of each other, again
independent of channel gains and SNR. We show that the class
of Gaussian networks for which this interface property holds
includes relay networks with a single source-destination pair,
interference networks, multicast networks, and the counterparts
of these networks with multiple transmit and receive antennas.

The code for the Gaussian relay network can be obtained
from any code for the discrete superposition network simply by
pruning it. This lifting scheme establishes that the superposition
model can indeed potentially serve as a strong surrogate for
designing codes for Gaussian relay networks.

We present similar results for the K×K Gaussian interference
network, MIMO Gaussian interference networks, MIMO Gaus-
sian relay networks, and multicast networks, with the constant
gap depending additionally on the number of antennas in case
of MIMO networks.

Index Terms—approximate capacity, deterministic model, dis-
crete superposition model, interference networks, relay networks

I. INTRODUCTION

Computing the capacities of wireless networks is a
formidable problem. It has been a central theme of network in-
formation theory, where research has attempted to characterize
the information-theoretic limits of data transmission in various
abstract models of networks. Of potentially equal importance,
and also of great interest, has been the problem of construction
of optimal coding schemes which achieve the promised rates.
However, except for some examples of networks like the MAC
channel [33], [34] and the broadcast channel [31], [32], it has
so far not been possible to accurately compute the capacities
of even simple networks like the relay channel [14], [15]
involving a small number of nodes.
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This has motivated the pioneering line of work in [4]–[7]
which aims at developing a class of noiseless deterministic net-
works that can serve as surrogates for Gaussian networks and
suggest near-optimal coding schemes for Gaussian networks.
Here the stringent goals of network information theory are
relaxed by allowing for answers which are within a bounded
gap of the capacity. By bounded gap is meant a constant that
is independent of the channel gains or SNR, and is a function
of only the number of nodes in the network. This relaxation
in the problem has yielded new insights which have inspired
construction of near-optimal coding schemes and improved our
understanding of the fundamental limits imposed by various
network configurations [3], [11], [8], [30], [10].

In this paper, we focus on rigorously studying the use of
deterministic models both for approximating the capacity of
relay and interference networks, as well as for the construction
of coding schemes. We prove that a particular deterministic
model, called the discrete superposition model, can serve as a
digital interface for operating these Gaussian networks in that
any coding scheme for this discrete superposition model can
be naturally lifted to the Gaussian networks with no more than
a bounded loss in the rate for each user.

A. Relay networks
The relay channel was introduced by Van der Muelen in

[14], and certain achievable rates were determined. Cover and
El Gamal [15] subsequently studied the network in detail
and developed two coding schemes which are now known
as decode-and-forward and compress-and-forward. They also
provided an upper bound on the capacity of the relay channel;
which is now referred to as the cut-set bound. The cut-set
bound was developed in full generality for networks in [16],
[13].

The decode-and-forward scheme was extended to networks
with many relays in [17], [18], and compress-and-forward was
extended to larger networks in [19]. All these papers intro-
duced certain novelties in existing coding schemes, though the
best upper bound on the capacity of relay networks continues
to be the cut-set bound. These schemes do not generally
provide a guarantee of near optimality, in the sense that the gap
between the achievable rates for any of these coding schemes
and the cut-set bound could be arbitrarily high as a function
of SNR. So, in effect, it has not been clear whether it is the
cut-set bound that is weak or whether it is the coding schemes
that are not exploiting all the features available in the wireless
network.
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This impasse motivated the work of [4], which studied
coding schemes with provable guarantees on performance.
This was done through the approach of introducing a linear
deterministic model, where the linearity is over a finite field.
The linear deterministic model captures the broadcast and in-
terference aspects of wireless networks. The capacity of linear
deterministic relay networks was determined to be precisely
the same as the cut-set bound, which was additionally shown
to be achievable by random coding at the nodes. Further,
coding schemes were developed for general deterministic
relay networks in [5], where the received signal at a node
is a function of the signals transmitted by the neighboring
nodes. The coding schemes for the linear deterministic model
motivated the construction of coding schemes for Gaussian
relay networks in [3], [6], [7], which are provably near-optimal
for relay networks in the sense that they achieve all rates
within a bounded gap from the cut-set bound. This result
also establishes as a corollary that the cut-set bound for the
Gaussian relay network is indeed approximately the capacity
of the Gaussian relay network. Recently, the gap of between
the achievable rate for the relay network and the cut-set bound
has been further reduced by a generalization of compress-and-
forward [9].

However, the above-mentioned results do not establish the
closeness of the capacities of the linear deterministic network
and the Gaussian network. Also, the near-optimal coding
schemes for the Gaussian network are certainly inspired by
the coding scheme for the linear deterministic counterpart, but
there is no rigorous procedure to design a coding scheme for
the Gaussian network given a coding scheme for the linear
deterministic network, and consequently also no procedure
for lifting codes from one to the other while preserving
near-optimality. Hence it is unclear if a deterministic model
only serves to aid the intuition in the construction of coding
schemes for Gaussian networks, or if there is a more funda-
mental connection between the capacities of the deterministic
network and the Gaussian network. More importantly, it is
not clear if a coding strategy for a deterministic model can be
explicitly used for designing a coding strategy for the Gaussian
network that achieves comparable performance. We answer
these questions in the affirmative here.

The linear deterministic model however does not approx-
imate the capacity of Gaussian networks in general [3], [7],
[1]. The question that therefore arises is whether there is a
procedure for constructing for every Gaussian relay network
a corresponding deterministic network in such a way that
the capacities of the Gaussian and the deterministic network
are within a bounded gap. This has been done in [3], [7]
and [1] via different models. In the truncated deterministic
model in [3], [7] the channel gains and inputs are complex
valued, while the complex channel output has integer real
and imaginary parts. The model used in [1], the discrete
superposition model, is a somewhat more discrete model in
the sense that channel gains and inputs are discrete valued.
Hence corresponding to any Gaussian network, one can indeed
construct a discrete superposition network which has the same
topology as the Gaussian network and captures the effects of
broadcast, interference, and attenuation by channel gains in

a wireless network (see Section II-C). As mentioned in [3],
[1], the bounded gap in capacities of the deterministic and
Gaussian model does not necessarily imply a correspondence
between coding schemes for the two models.

The next question that arises in this program of rigorous ap-
proximation of Gaussian networks by deterministic networks
is whether one can also rigorously recover, with performance
not decreasing by more than a constant number of bits, near-
optimal coding schemes for Gaussian relay networks from
coding schemes for discrete superposition relay networks. We
establish this result in the affirmative. In fact, we show a
stronger property that every coding scheme for the discrete
superposition network can be simply mapped to a similar
scheme for the Gaussian relay network in such a way that it
continues to provide comparable performance. The lifting pro-
cedure therefore works uniformly over the class of all coding
schemes, producing uniformly close performance. The lifting
procedure is particularly natural and consists essentially of just
pruning the codewords and using jointly typical decoding.

Thus the discrete superposition model provides a near-
optimal digital interface for operating a Gaussian relay net-
work. We extend this correspondence to MIMO relay networks
and multicast networks. The superposition model may poten-
tially be easier to design codes for than the Gaussian model
since noise has been eliminated from the network and the sets
of inputs and outputs are finite. Potentially, perhaps, wireless
network coding could be useful in studying superposition
networks, and subsequently Gaussian networks. This remains
an open and intriguing question.

B. Interference networks
Interference networks have received much attention recently,

following the results in [20]. In [20], the capacity of the
interference channel with two transmitters and two receivers
is determined within a constant gap of 1 bit. The near-optimal
coding scheme in [20] is a specific choice among the myriad
strategies proposed in [21]. A simpler proof of the result in
[20] is provided in [24]. This was independently strengthened
in [26], [27], and [28] where treating the interference as noise
is shown to be capacity achieving for a restricted range of the
parameters corresponding to a low interference regime. The
capacity region of the 2×2 deterministic interference channel
was determined in [22]. In [8], it is shown that the capacities of
the linear deterministic interference channel and the Gaussian
interference channel are within a bounded gap. A variant of the
discrete superposition model was first used in [8] in a sequence
of networks that reduced the 2 × 2 Gaussian interference
channel to a linear deterministic interference channel.

Much less is known for Gaussian interference networks
with more than two users. The number of degrees of freedom
of the time-varying interference channel was characterized
in [25] using the idea of interference alignment, and they
were characterized for specific interference channels with fixed
gains in [30]. Generalized degrees-of-freedom region of the
fully symmetric many-user interference channel was computed
in [29]. In general, the capacity region of the interference
networks with three or more users is unknown, even to within
a constant gap.
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In this paper we prove that the rate region of the Gaussian
interference network and the corresponding discrete superpo-
sition interference network are within a bounded number of
bits. In fact, this correspondence extends to the case where the
nodes have multiple transmit and receive antennas.

We can also prove the stronger result that the discrete
superposition model provides a digital interface for operating
the Gaussian interference network, in the sense, as above, that
any coding scheme for the discrete superposition interference
network can be lifted naturally to a scheme for the Gaussian
interference network, with no more than a bounded loss in the
rate for each user. This correspondence is extended to MIMO
Gaussian interference networks where nodes can have multiple
transmit and receive antennas.

C. Outline of the paper

In Section II, we introduce the various models used in this
paper, viz. the Gaussian model, the linear deterministic model,
and the discrete superposition model.

We develop the digital interface property for operating
Gaussian relay networks using the discrete superposition
model (Section III). The capacities of the Gaussian and
discrete superposition relay networks are within a bounded
gap. We rigorously prove a procedure for lifting any code for
the discrete superposition relay network to the Gaussian relay
network, and prove that there is no more than a bounded loss
in the rate (Section III-B).

We show in Section IV that the rate regions of the Gaussian
interference network and the discrete superposition interfer-
ence networks are within a bounded gap. This proof subsumes
the procedure for lifting a code from the discrete superposition
interference network to the Gaussian interference network.

We also address the near-optimality of the digital interface
defined by the discrete superposition model for MIMO
channels, MIMO relay networks, MIMO interference
networks, and multicast networks (Section V).

Notation: We will denote all random variables by lower
case letters. Random vectors will be denoted by underbars,
for example, as x = (x1, x2, . . . , xm, . . . , xN ). If x is a
complex vector, then the m-th term in the vector is given by
xm = xmR + ıxmI , where xmR and xmI are the respective
real and imaginary parts of xm.

We denote the quantization of a complex number x by [x],
where

[x] := sign(xR)b|xR|c+ ı sign(xI)b|xI |c. (1)

In the above, b·c is the standard floor function.
Abusing notation, we will use the same letter to refer to

the random variable and its realization. All logarithms in the
paper are to the base 2.

II. MODELS FOR NETWORKS

A. Gaussian networks

We begin by describing the class of Gaussian networks
of interest. We consider a wireless network represented as a
directed graph (V, E), where V represents the set of nodes, and

the directed edges in E correspond to wireless links. In the case
of relay networks, we label the nodes in V as {0, 1, . . . ,M},
where 0 is the source, M is the destination, and the remaining
are relay nodes. In the case of K×K interference networks, we
divide the nodes in V into two sets; the first set {1, 2, . . . ,K}
consisting of the transmitters, and the second set {1, 2, . . . ,K}
consisting of the receivers. Though we use the same numbers
to denote the sources and the destinations, it will be clear from
the context which node we are referring to.

Denote by hij the complex channel gain for link (i, j) ∈ E .
Let the complex number xi denote the transmission of node
i. Every node has an average power constraint, taken to be 1.
Node j receives

yj =
∑

i∈N (j)

hijxi + zj , (2)

where N (j) = {i : (i, j) ∈ E} is the set of its neighbors,
zj is CN (0, 1) complex white Gaussian noise independent of
transmitted signals, and hij = hijR + ıhijI .

For MIMO networks, the nodes are allowed to have multiple
transmit and receive antennas. The transmitted and received
signals are described by vectors, where the number of elements
in the vector corresponds to the number of transmit/receive
antennas.

B. The linear deterministic model

The linear deterministic model was introduced in [4] as
an approximate model to capture certain aspects of wireless
networks. It should be noted that the linearity is with respect
to the finite field F2.

The linear deterministic model is constructed based on the
given Gaussian network as follows. We begin by choosing all
the inputs and outputs of channels to be binary vectors of
length max(i,j)∈Eblog |hij |2c. Each link with channel gain h
in the Gaussian network is replaced by a matrix that shifts
the input vector, allowing blog |h|2c most significant bits of
the input to pass through. At a receiver, shifted binary vectors
from multiple inputs are added bit by bit over the binary field.
This models the partially destructive nature of interference in
wireless. Modeling the broadcast feature of wireless networks,
a node transmits the same vector on all outgoing links, albeit
with different attenuations.

As an example, consider the Gaussian network in Fig. 1(a)
and the corresponding linear deterministic network in
Fig. 1(b). All inputs and outputs of channels are vectors in
F2 of length 3. The channel is simply a linear transformation
over the binary field. In the sequel, we will consider the high
SNR scaling of a Gaussian network as all the channel gains
{hij : (i, j) ∈ E} are scaled by a large positive constant γ to
give γhij : (i, j) ∈ E . We will study the relationship between
the capacities of the high SNR scaled network and the linear
deterministic approximation.

1) Inability of the linear deterministic model to capture
phase and power: The linear deterministic model cannot
capture the received signal power in certain Gaussian networks
[3], [1]. Also, it does not capture the phase of the channel gain
in a Gaussian network [1], as shown below via an example.
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(a) Example of a Gaussian network.
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(b) Linear deterministic network.
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(c) Discrete superposition network.

Fig. 1. A Gaussian network, linear deterministic counterpart, and discrete
superposition network.

Due to these facts, in general, the model does not approximate
the capacity of a Gaussian network to within a bounded
number of bits.
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(a) A Gaussian network.
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(b) Portion of deterministic network.

Fig. 2. Example showing that the linear deterministic model does not
approximate the capacity of the Gaussian network to within a bounded number
of bits.

Example: It is known that the cut-set bound is a near-
optimal measure of the capacity of both the Gaussian and
the linear deterministic network [3], [5]. Now consider the
Gaussian network in Fig. 2 where the channels marked as
∞ have very high capacity. For this network, the cut-set
bound is determined by the mutual information across the cut

Ω = {0, 1, 2}, which is given by1

I(xΩ; yΩc |xΩc) = log |I +HH†|
= 4 log |h|+O(1), as |h| → ∞,

with

H =

[
−h h
h h

]
.

Hence, the capacity of the network is approximately 4 log |h|.
A portion of the linear deterministic model for the Gaussian

network is shown in Fig. 2(b). The capacity of the linear
deterministic network is the rank of the transfer matrix of
Ω = {0, 1, 2} which is b2 log |h|c.

The gap between the capacities of the Gaussian network in
Fig. 2(a) and its linear deterministic counterpart is therefore
2 log |h|+O(1). It is unbounded as |h| → ∞.

The main reason for the unboundedness of the gap is that
the linear deterministic model only considers the magnitude
of a channel gain and effectively replaces each channel gain
by a power of 2 that is nearest to its magnitude. Hence it
does not capture the phase of the channel gain in Fig. 2(a).
Constructing the deterministic model over a larger prime field
(than F2) does not circumvent this problem.

C. The discrete superposition model

The above example motivates the search for a deterministic
model that does approximate the capacity of a Gaussian
network to within a bounded number of bits. We now describe
such a model. We associate a noiseless deterministic model
with a Gaussian network, as follows. Let

n := max
(i,j)∈E

max{blog |hijR|c, blog |hijI |c}. (3)

The inputs to the deterministic model are complex valued,
with both real and imaginary parts taking values from the
2n equally spaced discrete points {0, 2−n, . . . , 1 − 2−n},
scaled by 1/

√
2. The real or imaginary part of an input

can accordingly be represented with the binary representation
x = 1√

2

∑n
k=1 2−kx(k), with each x(i) ∈ F2.

Next we quantize the real and imaginary parts of channel
gains in the Gaussian network to integers by neglecting their
fractional parts, as in (1). The resulting quantized channel gain
for link (i, j) is given by [hij ].

The operation of the channel in the discrete superposition
model is as follows. The channel between two nodes i and
j in the discrete superposition network multiplies the input
by the corresponding channel gain [hij ] and quantizes the
product by neglecting the fractional components of both real
and imaginary parts, i.e., it forms [[hij ]xi]. Note that [[hij ]xi]
lies in Z + ıZ. These values are then added up at a receiver
by the standard summation over Z + ıZ. The received signal
at node j is therefore given by

y
′
j =

∑
i∈N (j)

[[hij ]xi]. (4)

1We chose i.i.d. N (0, 1) inputs since this choice maximizes the mutual
information, up to a constant [6].
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Note that this model retains the essential superposition
property of the wireless channel. Quantization of channel
coefficients does not substantially change the channel matrix
in the high SNR regime. Also, the blurring effect of noise is
captured by constraining the inputs to positive fractions that
can be represented by finite bits, as well as by quantization of
the channel output.

Finally we note that the inputs in the discrete superposition
model are restricted to be peak power constrained by the same
value as the average power constraint on the transmit signals
in the original Gaussian network. An important property of
the discrete superposition model is therefore that the transmit
signals in it are thus also valid for transmission in the Gaussian
network. That is, encoder outputs in the discrete superposition
network can also be used in the Gaussian network. We will see
later in the sequel that this is important when we show how
coding strategies in the discrete superposition network can be
mapped to coding strategies in the Gaussian network.

For example, consider the Gaussian relay network in
Fig. 1(a) and its discrete superposition counterpart in Fig. 1(c).
The discrete superposition model preserves multiplication by
channel gains and the superposition property of the channel,
with the Gaussian noise replaced by quantization of outputs.

The discrete superposition model was first used in [8] in a
sequence of networks that reduced the Gaussian interference
channel to a linear deterministic interference channel. Here,
it was shown that the capacities of the two-user Gaussian
interference channel and the discrete superposition model of
the same network are within a bounded gap. The model was
generalized and given the name of a superposition model in
[1] to distinguish it from the linear (over a vector space)
deterministic model.

III. A DIGITAL INTERFACE FOR GAUSSIAN RELAY
NETWORKS

In this section, we study the class of Gaussian relay net-
works with a single source-destination pair. Here, the aim is
to prove that the discrete superposition model for the relay
network provides a near-optimal digital interface for operating
the network. An example of a Gaussian relay network, with
source 0, and destination 6 is shown in Fig. 1(a). In general, we
consider networks with M + 1 nodes, with the nodes labeled
as 0, 1, . . . ,M , where node 0 is the source, node M is the
destination, and the remaining nodes are relay nodes. The relay
nodes have no information of their own to transmit, and assist
the source in transmitting its data to the destination.

The description of a coding scheme for a relay network
is somewhat involved due to the functions applied on the
incoming data by the relay nodes. Also, due to the presence
of cycles in the network, the encoding functions of the nodes
can vary with time. In general, we define a (2NR, N) code
for a relay network to be an encoding function for the source

x0 : {1, 2, . . . , 2NR} → XN ,
where X is the input alphabet of the channel, and a set of
encoding functions for relay node k,

gk,m : Ym−1
k → X , for m = 1, 2, . . . , N, k = 1, 2, . . . ,M−1,

where Yk is the alphabet of node k’s received signal. For sake
of simplicity, we assume that the input alphabet of each relay
node is the same. As mentioned before, the encoding function
of a relay node can vary with time, and the transmitted symbols
can depend on all the received symbols previously received by
the relay. The destination M ’s decoding function is given by

gM : YNM → {1, 2, . . . , 2NR},

where YM is the alphabet of the received signal of the M -th
node. Let M be a random variable uniformly distributed on
{1, 2, . . . , 2NR} that corresponds to the message that source 0
wants to communicate. Then M is mapped to the codeword
x0(M). The average probability of error is given by

Pe = Pr(gM (y
M

) 6= M),

where y
M

is the signal received by the destination node M .
The capacity of the relay channel is the supremum of all rates
R such that for any ε > 0, there exists a blocklength N for
which Pe < ε.

It is easy to show that any achievable rate below the capacity
can be described by a multi-letter mutual information term:

Lemma 3.1: A rate R lies in the capacity region of the
relay network if and only if there exists a blocklength N , a
distribution p(x0), and a set of distributions {p(xk|yk), k =
1, 2, . . . ,M − 1} conforming to the causal constraints on the
encoding functions at the relays as mentioned above such that

R <
1

N
I(x0; y

M
), (5)

where y
M

is the received signal at the destination.

Proof: We note a subtlety in computing the mutual in-
formation I(x0; y

M
) where the effect of the various encoding

functions applied at the relay nodes is captured in the joint
distribution of x0 and y

M
.

Suppose we are given a distribution p(x0) on input vectors
of length N and a set of relay encoding functions {p(xk|yk)}.
Construct a collection of 2mNR codewords for the source
where each codeword is constructed by independently picking
m vectors, each of length N , with the distribution p(x0)
and appending them to get codewords of length mN . The
encoding functions at the intermediate relay nodes are given by
the transition probability kernels {p(xk|yk)}. The destination
decodes by looking for a codeword jointly typical with its
reception. Using standard random coding arguments (see [35]),
the probability of error can be made arbitrarily small by
considering large enough m. This proves the achievability of
the rate.

For proving the converse, fix a (2NR, N) code and observe:

NR = H(M)

= I(M; y
M

) +H(y
M
|M)

≤ I(M; y
M

) + 1 + PeNR (6)
≤ I(x0; y

M
) + 1 + PeNR, (7)

where we used Fano’s lemma in (6) and the data processing
inequality in (7). Since the rate R is achievable, Pe can be
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made arbitrarily small for sufficiently large N . On dividing
both sides of (7) by N , we get the converse.

The subtlety in the above proof regarding the mappings at
the encoders makes the proof of the near-optimality of using
the discrete superposition model as a digital interface for relay
networks more involved than in the case of the interference
channel, which is analyzed subsequently in a later section.

The next theorem indicates the relevance of the discrete
superposition model in analyzing relay networks.

Theorem 3.2: Consider the relay network described above.
The capacity CG of the Gaussian relay network and the
capacity CD of the discrete superposition relay network is
within a bounded gap of κR bits where

κR = O(M logM). (8)

Note that the above theorem does not establish any cor-
respondence between coding schemes for the two networks.
We prove the converse part of the theorem next, i.e., CD ≥
CG − O(M logM), while the remainder of the proof is
presented in the subsequent section via a stronger argument
concerning the lifting of coding schemes from the discrete
superposition model to the Gaussian model.

A. Capacity(Discrete superposition network) ≥ Capac-
ity(Gaussian network), to within an additive constant

Lemma 3.3: Let CG be the capacity of the Gaussian relay
network, and CD be the capacity of the discrete superposition
relay network. Then,

CD ≥ CG −O(M logM). (9)

Proof: The cut-set bound [16] on the capacity in a
single source-destination pair relay network, with source 0 and
destination M , is given by

C ≤ max
p(x0,x1,...,xM−1)

min
Ω∈Λ

I(xΩ; yΩc |xΩc), (10)

where C is capacity of the network and Λ is the set of all
partitions of V with 0 ∈ Ω and M ∈ Ωc. In [7] it is proved that
the cut-set bound for a Gaussian network is achievable up to a
bounded gap, where the gap is at most O(M logM). It is also
proved that while computing the cut-set bound for a Gaussian
relay network, we can choose the random variables in the
optimization to be i.i.d. complex Gaussian CN (0, 1). With this
choice, the cut-set bound evaluates to within O(M logM) of
the maximum value.

It is also proved in [7] that the cut-set bound is achievable
for a general class of deterministic networks, of which the
discrete superposition network is a special case, when the
maximization in the cut-set bound is restricted to independent
random variables.

We consider a particular cut in a network. We start with
the Gaussian model and choose the random variables corre-
sponding to the cut to be i.i.d. Gaussian. We reduce the Gaus-
sian network to a discrete superposition network in stages,
bounding the loss in mutual information across the cut at each

stage. At the end, we will have a distribution for the inputs
for the discrete superposition network where all the inputs are
independent. We will prove that the total loss in the mutual
information as a result of these transformations is at most
O(M logM). Repeating this across all the cuts in the network
proves that the capacity of the discrete superposition network
is within O(M logM) bits of the capacity of the Gaussian
network.

Now consider a cut Ω containing P nodes (including the
source) and Ωc containing Q nodes (including the destination),
where P +Q = M +1. For the sake of simplicity, we assume
that all the nodes in Ω are connected to all the nodes in Ωc,
and the nodes in Ωc are not connected among themselves2.
The received signals in Ωc are given by

yj =

P−1∑
i=0

hijxi + zj , j = P, . . . ,M. (11)

Choose xi as i.i.d. CN (0, 1). Each transmitted signal xi
can be split into its quantized part [xi] and fractional part x̃i,
where

x̃i := xi − [xi].

We discard the quantized part [xi] of all the transmitted signals
and and retain x̃i. Since xi’s satisfies a unit average power
constraint, x̃i’s also satisfies a unit average power constraint.
Define

ỹj :=

P−1∑
i=0

hij x̃i + zj , j = P, . . . ,M. (12)

The discarded portion of the received signals is given by

ŷj :=

P−1∑
i=0

hij [xi], j = P, . . . ,M. (13)

The mutual information across the cut Ω for channels (11) and
(12) can be compared as

I(xΩ; yΩc) ≤ I(xΩ; ỹΩc , ŷΩc)

≤ I(x̃Ω, [xΩ]; ỹΩc , ŷΩc)

= I(x̃Ω, [xΩ]; ỹΩc) + I(x̃Ω, [xΩ]; ŷΩc |ỹΩc)

= I(x̃Ω; ỹΩc) + I(x̃Ω, [xΩ]; ŷΩc |ỹΩc) (14)
≤ I(x̃Ω; ỹΩc) +H(ŷΩc)

≤ I(x̃Ω; ỹΩc) +

P−1∑
i=0

H([xi]), (15)

where (14) follows because [xΩ]→ x̃Ω → ỹΩc form a Markov
chain, and (15) holds because ŷj is a function of {[xi]} from
(13). It is proved in the appendix that H([xi]) ≤ 6; hence
we get

I(x̃Ω; ỹΩc) ≥ I(xΩ; yΩc)− 6P. (16)

Since x̃iR and x̃iI lie in (−1, 1), we obtain positive inputs
by adding 1 to each. This is equivalent to adding

∑
i hij(1+ı)

2This ensures that I(xΩ; yΩc |xΩc ) = I(xΩ; yΩc ). The more general case
can also be similarly handled.
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to ỹj . We also divide by 2
√

2 throughout to get:

(ỹj +

P−1∑
i=0

hij(1 + ı))/2
√

2

=

P−1∑
i=0

hij(x̃i + 1 + ı)/2
√

2 + zj/2
√

2. (17)

Lets denote the vector of (1 + ı)’s as νΩ and note that

I(x̃Ω; ỹΩc)

= I

(
x̃Ω,

x̃Ω + νΩ

2
√

2
; ỹΩc

)
= I

(
x̃Ω,

x̃Ω + νΩ

2
√

2
; ỹΩc ,

ỹΩc + (
∑
i hij(1 + ı))j

2
√

2

)
= I

(
x̃Ω + νΩ

2
√

2
;
ỹΩc + (

∑
i hij(1 + ı))j

2
√

2

)
.

To avoid introducing new notation, for the rest of the proof
we abuse notation and denote the left hand side of (17) by yj ,
(x̃i + (1 + ı))/2

√
2 by xi, and zj/2

√
2 by zj , for all j.

With the new notation, |xi| ≤ 1, with positive real and
imaginary parts, and zj is distributed as CN (0, 1/8).

The features of the model that we next address are:
1) channel gains are quantized to lie in Z + ıZ,
2) real and imaginary parts of the scaled inputs are re-

stricted to

n := max
(i,j)∈E

max{blog |hijR|c, blog |hijI |c} (18)

bits,
3) there is no AWGN, and
4) outputs are quantized to lie in Z + ıZ.

Let the binary expansion of
√

2xiR be 0.xiR(1)xiR(2) . . .,
i.e.,

xiR =:
1√
2

∞∑
p=1

2−pxiR(p). (19)

The received signal in the discrete superposition channel only
retains the following relevant portion of the input signals:

y
′
j =

P−1∑
i=0

[[hij ]x
′
i], j = 0, . . . , P − 1, (20)

where

x
′
iR :=

1√
2

n∑
p=1

xiR(p)2−p,

x
′
iI :=

1√
2

n∑
p=1

xiI(p)2
−p,

with n defined in (3). To obtain (20) we subtracted δj from
yj , where

δj :=

P−1∑
i=0

(
hij(xi − x

′
i) + (hij − [hij ])x

′
i + (21)

([hij ]x
′
i − [[hij ]x

′
i])
)

+ zj

=:

P−1∑
i=0

wij + zj

=: vj + zj .

To bound the loss in the mutual information across the cut in
the discrete superposition network from the original Gaussian
interference network, we have

I(xΩ; yΩc)

≤ I(xΩ; yΩc , y
′
Ωc , δΩc)

= I(xΩ; y
′
Ωc , δΩc)

= I(xΩ; y
′
Ωc) + I(xΩ; δΩc |y′Ωc)

= I(xΩ; y
′
Ωc) + h(δΩc |y′Ωc)− h(δΩc |y′Ωc , xΩ)

≤ I(x
′
Ω; y

′
Ωc) + h(δΩc)− h(δΩc |y′Ωc , xΩ, νΩ)

≤ I(x
′
Ω; y

′
Ωc) +

M∑
j=P

(h(δj)− h(zj))

= I(x
′
Ω; y

′
Ωc) +

M∑
j=P

I(vj ; δj).

By bounding the magnitudes of the terms in (21), we get
|wij | ≤ 3

√
2. So, I(vj ; δj) is at most the mutual informa-

tion of a Gaussian MISO channel with average input power
constraint less than (3

√
2)2P ≤ 18P and

I(vj ; δj) ≤ log(1 + 18P/(1/8))

< log(1 + 144P ). (22)

Hence we get

I(x
′
Ω; y

′
Ωc) ≥ I(xΩ; yΩc)−Q log(1 + 144P ). (23)

Note that I(x
′
j ; y

′

j
) is the mutual information across the cut

Ω in the discrete superposition network. By accumulating the
losses in transforming the inputs for the Gaussian channel into
the corresponding inputs for the deterministic channel in (16)
and (23), we obtain

I(x
′
Ω; y

′
Ωc) ≥ I(xΩ; yΩc)−O(M logM), (24)

where xΩ and yΩc in the above equation are the respective
channel inputs and outputs in the original Gaussian cut. Also,
we began by choosing the inputs xi in the Gaussian network to
be i.i.d. Gaussian CN (0, 1). At the end of the transformations,
the channel inputs in the discrete superposition network x

′
i are

also independent. This completes the proof.

B. Lifting a coding scheme for the discrete superposition
network to the Gaussian network

A coding strategy for either the Gaussian or superposition
relay network specifies codewords transmitted by the source,
a mapping from the received signal to a transmit signal for
every relay node, and a decoding function for the destination.
For sake of simplicity of exposition, we assume that the graph
describing the network is acyclic and that the relays employ
time-invariant encoding functions. Later, in Section. III-D6,
we mention how to handle more general encoding functions.

We describe how to lift a coding strategy for the discrete
superposition network to a strategy for the Gaussian network.

Consider a (2NR, N) code for the discrete superposition
network with zero probability of error, for a certain N .
The probability of error can be reduced to zero due to the
deterministic nature of the network; see Sec. III-D1.
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Denote the block of N transmissions at node j in the
discrete superposition network by an N -dimensional transmit
vector xj , and similarly the received vector by y

′

j
. All signals

in the discrete superposition network are a (deterministic)
function of the codeword x0 transmitted by the source.

Next, we build a (2mNR,mN) code, denoted by C0, for
the discrete superposition network, with every mN -length
codeword constructed by adjoining m codewords from the old
code, for a large m. This is again a rate R code since it simply
uses the old code m times on the superposition network. We
can visualize the construction of codewords in C0 by referring
to Fig. 3.

In the (2mNR,mN) code, node j
1) breaks up its received signal, denoted by y

′

j
, into m

blocks of length N ,
2) applies the mapping used in the (2NR, N) code on each

of the m blocks to generate m blocks of transmit signals,
3) and adjoins m blocks of transmit signals to construct a

new transmit signal, denoted by xj , of length mN .

Transmit signal in the (2mN(R−κ
′
R), N) code

Fig. 3. Relationship among the signals transmitted by node j.

As shown in Fig. 3, the relationship between various signals
associated with the transmission of node j is akin to packeti-
zation in computer networks.

A subset of the codewords of C0, defined below, forms the
set of codewords of the code for the Gaussian relay network.

Pruning the set of codewords: Node j has a finite set of ε-
strongly typical y

′

j
’s (see [35]) in the code for the superposi-

tion network. We randomly, i.e., independently and uniformly,
pick a 2−m(Nκ+2η) fraction of them and denote the resulting
set by Sj . κ > 0 is defined later in (30) as a function only
of the number of nodes in the network and not the channel
gains, while η > 0 is specified later and can be made arbitrarily
small. We repeat this pruning procedure for all the nodes.

Denote the intersection of the inverse images of Sj in C0,
for j = 1, 2, · · · ,M , by CG. Transmission of any vector in CG
results in the received vector at node j belonging to Sj in the
discrete superposition network. CG forms the set of codewords
for the Gaussian network.

Encoding and decoding procedure in the Gaussian network:
The source in the Gaussian network transmits a codeword
x0 from CG. Assume throughout that node 1 can listen, i.e.,
has a link, to the source. Node 1 receives a noisy signal and
decodes to a vector in S1. We will specify in the sequel how
this decoding is to be done. Then, using the encoding function
from C0, it constructs its transmit signal. All relay nodes
operate in a similar way. Finally, the destination decodes its
noisy reception to a signal in SM , and maps it to a codeword
by simply using the decoding function from C0.

Note that we are operating the Gaussian network over the
digital interface naturally defined by the signals transmitted
and received in the corresponding discrete superposition net-
work.

We summarize the main result concerning the lifting pro-
cedure in Theorem 3.4.

Theorem 3.4: Consider a Gaussian network with a single
source-destination pair and M − 1 relay nodes, and consider
a code for the discrete superposition model of the network that
communicates at a rate R.

Then, the lifting procedure and the digital interface defined
by the discrete superposition model yield a code for the orig-
inal Gaussian network that communicates at a rate R − κ′R,
where

κ
′
R := M(log(6M − 1) + 10). (25)

It should be noted that κ
′
R does not depend on the channel

gains. Therefore, the above theorem provides a lifting pro-
cedure that attains a rate in the Gaussian network within a
bounded amount of R at any SNR.

The theorem also proves that the capacity of the Gaussian
network is at least as large as the capacity of the discrete su-
perposition network, up to a bounded gap κ

′
R. This completes

the proof of Theorem 3.2. Also, the above theorem applies
to any coding scheme for the superposition network and, in
particular, to an optimal scheme. Since the capacities of the
Gaussian and the superposition network are within a bounded
gap, the optimal scheme for the superposition network can be
lifted to obtain a near-optimal coding scheme for the Gaussian
network.

C. A genie-based argument

Before delving into the details of the proof, we start with
a genie-based argument explaining the ideas behind the proof
of Theorem 3.4. The theorem is subsequently proved in detail
in Sec. III-D.

The arguments presented next are not a proof of the theo-
rem, but are the basis of our understanding of the relationship
between the Gaussian and the discrete superposition model,
and motivate the search for a technique to lift a code from the
superposition network to the Gaussian network.

Consider the networks in Fig. 1(a) and Fig. 1(c). For
simplicity, assume node 1 transmits a symbol x1 and node
2 transmits a symbol x2 (instead of a block of symbols each)
from the alphabet for the discrete superposition network. Node
3 receives

y
′
3 = [[h13]x1] + [[h23]x2]

in the discrete superposition network in Fig. 1(c), and it
receives

y3 = h13x1 + h23x2 + z3

in the Gaussian network in Fig. 1(a). Rewriting y3, we get

y3 = y
′
3 + (h13x1 − [h13]x1) + ([h13]x1 − [[h13]x1])

+ (h23x2 − [h23]x2) + ([h23]x2 − [[h23]x2]) + z3

=: y
′
3 + v3 + z3. (26)
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Here we have replaced the actual values of the channel gains
with appropriate variables. By definition y

′
3 lies in Z + ıZ.

Hence y
′
3 can be recovered from y3, the quantized values [v3]

and [z3] respectively of v3 and z3, and the quantized carry c3
obtained from adding the fractional parts of v3 and z3, with

c3 := [(v3 − [v3]) + (z3 − [z3])]. (27)

[v3] and [z3] are defined as quantized functions of v3 and z3,
as in (1).

So,
y
′
3 = [y3]− [v3]− [z3]− c3,

and

H(y
′
3|y3) ≤ H([v3]) +H([z3]) +H(c3), (28)

Now, let

v3 = w13 + w23,

where

wk3 := (hk3xk− [hk3]xk)+([hk3]xk− [[hk3]xk]), k = 1, 2.

Since |hk3 − [hk3]| ≤
√

2 and |xk| ≤ 1, the magnitude of
v3 is less than 2(2

√
2). [v3R] and [v3I ] lie in {−5,−4, . . . , 5},

and H([v3]) ≤ log(22). The real and imaginary parts of the
carry lie in {0,±1}, hence H(c3) ≤ 3. Since z3 is distributed
as CN (0, 1), from Lemma 7.1 in the appendix, H([z3]) ≤ 6.
Adding up all the entropies and substituting in (28), we get
the upper bound

H(y
′
3|y3) ≤ 14.

These computations can be repeated for all the nodes in
Gaussian network. In general, if there are M incoming signals
at a relay node j, then the magnitude of vj is less M(2

√
2),

where vj is similarly defined, as in (26), with respect to the
signal received by node j. Hence, vjR and vjI will lie in the
set {−3M + 1,−3M + 2, . . . , 3M − 1} then

H(y
′
j |yj) ≤ H([vj ]) +H([zj ]) +H(cj) (29)

≤ log(6M − 1) + 10,

where cj is defined, as in (27), with respect to the signal
received by node j. Let

κ := log(6M − 1) + 10 (30)

be a function of the total number of nodes and independent of
channel gains (or SNR). Now we use a code designed for the
superposition network in the Gaussian network. If there were
a genie providing H(y

′
j |yj) bits of data corresponding to the

received signal to node j in every channel use, then node j
can recover y

′

j
from y

j
. Since the genie provides at most κ

bits to every node, it provides a total of at most Mκ = κ
′
R

bits per channel use.
Hence, with the genie’s aid, a code designed for the discrete

superposition network can be used in the Gaussian network at
any SNR. Our proof below prunes a fraction of the codewords
representing the information that the genie would have pro-
vided, so that the decoding can work even without the genie.

D. Proof of Theorem 3.4

1) Zero probability of error: Consider the (2NR, N) code
for the superposition network and assume that it has an average
probability of error δ, where 0 ≤ δ < 1/2. Since the
superposition network is a noiseless network, each codeword is
either always decoded correctly or always decoded incorrectly.
Since δ < 1/2, less than half of the codewords are always
decoded incorrectly. Discarding them results in a code where
all codewords can be successfully decoded, with a small loss
in the rate. So, without loss of generality, we assume that the
(2NR, N) code (and thus also the (2mNR,mN) code) for the
superposition network has zero probability of error.
x0, the random variable corresponding to the codeword, has

a uniform distribution with H(x0) = NR, and induces a
distribution on the remaining variables in the network.

2) Operating over blocks of length mN : In the
(2mNR,mN) code, we assume that every node buffers mN of
its received symbols, eventually constructing a transmit signal
of length mN , and transmits it over the next mN channel
uses.

For the network in Fig. 1(a), this is possible since nodes
can be grouped into levels such that only nodes at one level
communicate with another level. For example, nodes 1 and 2
in Fig. 1(a) can buffer their reception till node 0 completes its
transmission, then construct their transmit signals, and transmit
to nodes 3 and 4 over the next mN channel uses.

For a general network, we need to differentiate between
signals received by a node at various time instants to account
for causality in construction of their transmit signals. This
requires slightly modifying the procedure; see Sec. III-D6.

3) Pruning the code with respect to node 1: Each y
′

j
(or

xj) in C0 is generated by n independent samples from the
distribution of y

′

j
(or xj). Choose ε > 0. For a sufficiently

large m, node 1 has a collection of at most 2m(H(y
′
1
)+ε2) and

at least 2m(H(y
′
1
)−ε2) ε-strongly typical received vectors in the

discrete superposition network corresponding to C0 (see [35]),
where ε2 > 0. As ε → 0, ε2 → 0. With η set to ε2, we
construct S1 by randomly selecting a 2−m(Nκ+2η) fraction
of this collection. We do this by choosing a subset uniformly
among all the subsets of the appropriate size. |S1| can be upper
bounded as follows (see (29)–(30)):

|S1| ≤ 2m(H(y
′
1
)+ε2) 2−m(Nκ+2η)

≤ 2m(H(y
′
1
)−H(y

′
1
|y

1
)−ε2) = 2m(I(y

′
1
;y

1
)−ε2).

Similarly, we can show that |S1| ≥ 2m(H(y
′
1
)−Nκ−3ε2).

For a large n, the number of codewords in C0 jointly ε-
strongly typical with a particular y

′

1
can be bounded inde-

pendently of the chosen y
′

1
; see [35]. The desired set has

2m(H(x0|y
′
1
)±ε2) codewords for a particular y

′

1
, i.e., transmis-

sion of one of those codewords in the superposition network
results in node 1 receiving the chosen y

′

1
. Due to the deter-

ministic nature of the channel, the sets of codewords in C0
jointly typical with two different vectors in S1 form disjoint
sets. To construct C0,1, we pick the set of all codewords in C0
that are jointly ε-strongly typical with some vector in S1. We
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have,

|C0,1| =
∑

y′
1
∈S1

(# of codewords in C0 jointly
ε-strongly typical with y

′

1
)

≤
∑

y′
1
∈S1

2m(H(x0|y
′
1
)+ε2)

≤ 2m(H(y
′
1
)−Nκ−ε2) × 2m(H(x0|y

′
1
)+ε2) (31)

= 2m(H(x0,y
′
1
)−Nκ) (32)

= 2m(H(x0)−Nκ), (33)

where (33) follows since H(y
′

1
|x0) = 0. Similarly, we can

show that |C0,1| ≥ 2m(H(x0)−Nκ−4ε2).

C0

y
′

1

Set of y
′

1
’sCodewords

S1

with each y
′

1

jointly ε − typical
2mH(x0|y′

1
) codewords

Fig. 4. Pictorial representation of pruning with respect to node 1.

If the source transmits a codeword from C0,1 in the Gaussian
network, then the signal y

1
received by node 1 can be regarded

as a noisy version of the signal y
′

1
it would have received

in the superposition network, as shown in (26). Therefore,
we define a channel with input y

′

1
and output y

1
. Node 1

decodes by finding a vector in S1 that is jointly weakly ε-
typical with the received vector in the Gaussian network3.
Since |S1| ≤ 2m(I(y

′
1
;y

1
)−ε2), decoding is successful with

block error probability less than ζ, where ζ → 0 as n→∞.
4) Further pruning the set of codewords with respect to

node 2: There are 2m(H(y
′
2
|y′

1
)±ε2) vectors in the set of y

′

2
’s

at node 2 that are jointly ε-strongly typical with a particular
y
′

1
∈ S1. Since we constructed S2 by randomly choosing a

subset containing a 2−m(Nκ+2ε2) fraction of the set of all y
′

2
’s,

for a large n, there are 2m(H(y
′
2
|y′

1
)−Nκ±3ε2) vectors in S2

jointly ε-strongly typical with each y
′

1
∈ S1. Hence, there

are 2m(H(y
′
1
,y
′
2
)−2Nκ±6ε2) jointly ε-strongly typical vectors in

S1 × S2 with high probability (whp) as n→∞.
Now, 2m(H(x0|y

′
1
,y
′
2
)±ε2) codewords in C0 are jointly ε-

strongly typical with each ε-strongly typical tuple in S1×S2.
We iterate the procedure in the previous subsection by collect-
ing the codewords in C0 which are jointly ε-strongly typical
with the ε-strongly typical tuples in S1×S2, and denote this set
by C0,1,2. Naturally, C0,1,2 is a subset of C0,1. As in (31)–(33),
we obtain |C0,1,2| is about 2m(H(x0)−2Nκ±7ε2) whp.

If the source transmits a codeword from C0,1,2, then nodes
1 and 2 can correctly decode to vectors in S1 and S2

3Since y
1

is a continuous signal, we use weak typicality to define the
decoding operation. Note that strongly typical sequences are also weakly
typical; hence sequences in S1 are weakly typical.

C0

Set of y
′

1
’s

Codewords S1

S2

y
′

1

y
′

2

C0,1

Set of y
′

2
’s

ε − typical with each (y
′

1
,y

′

2
)

2mH(x0|y′
2
,y

′
1
) codewords jointly

Fig. 5. Pictorial representation of further pruning with respect to node 2.

respectively, with high probability for a large n, since |Sj | ≤
2
m(I(y

′
j
;y

j
)−ε2) for j ∈ {1, 2}.

5) Further pruning with respect to the remaining nodes:
The same procedure is repeated with respect to the remaining
nodes in the network. In the end, we obtain a collection of
at most 2m(H(x0)−MNκ+εM ) and at least 2m(H(x0)−MNκ−εM )

codewords whp, denoted by C0,1,··· ,M =: CG, where εM > 0.
Note that εM → 0 as ε → 0. Transmission of a codeword in
CG results in the received signal at node j in the superposition
network belonging to the set Sj .

Now, if CG is used on the Gaussian network with encoding
and decoding procedures at all nodes as described above, then
the destination can decode to the transmitted codeword whp.
Thus, on the Gaussian network, CG achieves the rate

H(x0)/N −Mκ− εM/M = R−Mκ− εM/M
= R− κ′R − εM/M, (34)

where εM can be made arbitrarily small.
6) Interleaving the codewords for general networks: As

mentioned in Sec. III-D2, we need to slightly modify the
lifting procedure for relay networks which have irregular level
sets that do not permit straightforward buffering of received
symbols at a node.

In this case, codewords in C0 are constructed by adjoining
N blocks of m symbols each, where the first block x0(1)
consists only of the first symbols of m codewords of the
(2NR, N) code, the second block x0(2) consists only of the
second symbols of the same codewords, and so on. The source
transmits x0(t)’s in the order of increasing t.

In the (2NR, N) code, let y
′
j(t), t = 1, . . . , N , denote the

t-th symbol received by node j. We adjoin the t-th received
symbols from m uses of the code to construct y

′

j
(t). Since

xj(t), the t-th symbol transmitted by node j, is a function
of {y′j(p)}t−1

p=1, node j can construct xj(t), vector consisting
of the t-th transmit symbols from m uses of the code, after
receiving {y′

j
(p)}t−1

p=1, .
Essentially, we interleave the symbols from m uses of the

same code to ensure that the nodes can buffer their receptions.
In order to lift the coding scheme to the Gaussian network,

we prune C0 by randomly picking a 2−m(κ+2η)-fraction of the
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set of ε-strongly typical y
′

j
(t), for all t, for all j, and collecting

the codewords jointly ε-strongly typical with them to form CG.
In the Gaussian network, each node buffers its reception

for m time units, decodes to the appropriate y
′

j
(t), constructs

xj(t + 1), transmits it on the next m time units. The des-
tination decodes individual m-length blocks to get y

′

M
(t),

t = 1, 2, . . . , N , and decodes to a codeword in CG after de-
interleaving {y′

M
(t)}.

This completes the proof of Theorem 3.4.

IV. A DIGITAL INTERFACE FOR GAUSSIAN INTERFERENCE
CHANNELS

In this section we show that the capacity regions of the
Gaussian interference channel and the discrete superposition
interference channel are within a bounded number of bits,
independent of channel gains or SNR. This result was proved
for the case of 2 × 2 interference channel (and a slightly
different deterministic model) in [8], and we use some of
the techniques here. Also, similar to the case of the relay
network, we develop a systematic way to ‘lift’ any code for
the discrete superposition interference network to the Gaussian
interference network, and establish that it does so with no more
than a bounded loss in the rate.

1 

2 

K 

1 

2 

K 

…
 

…
 

Fig. 6. K ×K interference network.

Consider the K×K Gaussian interference network shown in
Fig. 6. There are K sources, labeled 1, 2, . . . ,K, who want to
transmit data to K destinations, labeled 1, 2, . . . ,K. All the
sources are independent of each other, and the k-th source
wants to transmit information only to the k-th destination.
At the k-th destination, the transmissions by other sources
interfere with the transmission of the k-th source. Let xi be
the signal transmitted by the i-th source, for i = 1, 2, . . . ,K.
The received signal at the j-th destination is

yj =

K∑
k=1

hkj xk + zj , j = 1, 2, . . . ,K, (35)

where zj is CN (0, 1).
Consider the corresponding discrete superposition model

for this interference channel. The received signal at the j-th
destination in the discrete superposition model is

yj =

K∑
k=1

[[hkj ]xk], j = 1, 2, . . . ,K, (36)

where [hkj ] is the quantized version of hkj .

Consider a block code for the interference network, either
the Gaussian version or the discrete superposition version.
Such a (2NR1 , 2NR2 , . . . , 2NRK , N) code for the interference
channel is defined by an encoding function for each source

xk : {1, 2, . . . , 2NRk} → XN , for k = 1, 2, . . . ,K,

where X is the input alphabet of the channel, and a decoding
function for each destination

gk : YNk → {1, 2, . . . , 2NRk}, for k = 1, 2, . . . ,K,

where Yk is the output alphabet of the channel at destination
node k. Let Mj be a random variable uniformly distributed
on {1, 2, . . . , 2NRj}, for each j, corresponding to the message
that source j wants to communicate to destination j. Mj is
mapped to the codeword xj(Mj). The average probability of
error is given by

Pe = Pr(gk(y
k
) 6= Mk, for some k),

where y
k

is the signal received by destination k. The capacity
region is the collection of all rate tuples R such that for any
ε > 0, there exists a blocklength N for which Pe < ε.

All rate vectors in the capacity region are referred to as
achievable rate vectors. The next lemma states the equivalence
between achievable rate vectors and a collection of multi-letter
mutual information terms.

Lemma 4.1: A rate vector R lies in the capacity region of
the K × K interference channel if and only if there exists
a blocklength N , and a collection of independent random
variables {xk, k = 1, 2, . . . ,K} such that

Rk <
1

N
I(xk; y

k
), for k = 1, 2, . . . ,K, (37)

where y
k

is the received signal at the k-th receiver.

Proof: The proof of this lemma is similar to the proof
of Lemma 3.1, and we need to consider the rate achieved by
every source-destination pair individually. We skip the details.

The main result of this section is:

Theorem 4.2: Consider the K × K interference channel
described above. The capacity region of the Gaussian interfer-
ence channel and the discrete superposition interference chan-
nel are within a bounded gap, where the gap is independent
of channel gains or SNR.

If RG is a rate vector in the capacity region of the
Gaussian interference channel, then there is a rate vector RD
in the capacity region of the discrete superposition interference
channel such that

|Rk,G −Rk,D| ≤ κI , for k = 1, 2, . . . ,K, (38)

where
κI := 6K + log(144K + 1). (39)

Conversely, a coding scheme for the discrete superposition
interference channel corresponding to a rate vector RD can
be lifted to the Gaussian interference channel to obtain an
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achievable rate vector RG with a loss of at most κ
′
I bits,

where
κ
′
I := log(6K − 1) + 10. (40)

We prove the theorem in a series of steps. First, using
Lemma 4.1, we convert any achievable rate tuple for either
the Gaussian or discrete superposition network into a set of
mutual information terms. Then, by analyzing these mutual
information terms, we prove that any coding scheme for the
Gaussian channel can be transformed into a coding scheme
for the discrete superposition channel, with at most a bounded
loss in the rate. Similarly, we prove that any coding scheme for
the discrete superposition interference channel (DSIC) can be
lifted to the Gaussian interference channel (GIC), again with
at most a bounded loss in the rate.

A. Capacity(DSIC) ⊆ Capacity(GIC), to within an additive
constant

To begin, we prove that the capacity region of the discrete
superposition interference network is at least as large as that of
the Gaussian interference network, minus a constant number
of bits.

Lemma 4.3: Let RG be a vector in the capacity region
of the Gaussian interference channel. Then, there exists a
rate vector RD in the capacity of the discrete superposition
interference channel such that

RDk ≥ RGk − κI , for k = 1, 2, . . . ,K, (41)

with κI defined in (39).

Proof: From Lemma 4.1, we know that we can replace
any achievable rate vector RG by a collection of mutual
information terms {I(xk; y

k
), k = 1, 2, . . . ,K}. We perform

a series of approximations to convert the mutual information
I(xj ; yj) corresponding to the rate of the j-th source to a
mutual information term for the discrete superposition interfer-
ence channel, incurring a loss no more than a bounded amount.
Rest of the arguments are similar to the proof in Section III-A.

The received signal at the j-th receiver in the Gaussian
interference channel is

y
j

=

K∑
k=1

hkj xk + zj , (42)

with the transmitted signals satisfying an average unit power
constraint.

Note that xk = (xk1, xk2, . . . , xkN ), and each xkm can be
split into its quantized part [xkm] and fractional part x̃km,
where

x̃km := xkm − [xkm].

We discard [xkm] and retain x̃km. Since xkm satisfies a unit
average power constraint, x̃km also satisfies a unit average
power constraint. Define

ỹ
j

:=

K∑
k=1

hkj x̃k + zj . (43)

Denote the discarded portion of the received signal by

ŷ
j

:=

K∑
k=1

hkj [xk]. (44)

Comparing the mutual information corresponding to the j-th
source-destination pair for channels (42) and (43), we get

NRGj = I(xj ; yj)

≤ I(xj ; ỹj , ŷj)

≤ I(x̃j , [xj ]; ỹj , ŷj)

= I(x̃j , [xj ]; ỹj) + I(x̃j , [xj ]; ŷj |ỹj)
= I(x̃j ; ỹj) + I(x̃j , [xj ]; ŷj |ỹj) (45)

≤ I(x̃j ; ỹj) +H(ŷ
j
)

≤ I(x̃j ; ỹj) +

K∑
k=1

H([xk]), (46)

where (45) follows because [xj ] → x̃j → ỹ
j

form a Markov
chain, and (46) holds because ŷjn is a function of {[xkn]}
from (44). It is proved in the appendix that H([xkm]) ≤ 6,
hence we get

I(x̃j ; ỹj) ≥ I(xj ; yj)− 6KN. (47)

Since x̃kmR and x̃kmI lie in (−1, 1), we obtain positive
inputs by adding 1 to each. This is equivalent to adding∑
k hkj(1 + ı) to ỹjm. Denoting by ν the vector of (1 + ı)’s,

we also divide by 2
√

2 throughout to get:

(ỹ
j

+
∑
k

hkjν)/2
√

2

=
∑
k

hkj(x̃k + ν)/2
√

2 + zj/2
√

2. (48)

Note that

I(x̃j ; ỹj) = I

(
x̃j ,

x̃j + ν

2
√

2
; ỹ
j

)
= I

(
x̃j ,

x̃j + ν

2
√

2
; ỹ
j
,
ỹ
j

+
∑
k hkjν

2
√

2

)

= I

(
x̃j + ν

2
√

2
;
ỹ
j

+
∑
k hkjν

2
√

2

)
.

To avoid introducing new notation, for the rest of the proof
we abuse notation and denote the left hand side of (48) by y

j
,

(x̃k + ν)/2
√

2 by xk, and zj/2
√

2 by zj , for all j.
With the new notation, |xkm| ≤ 1, with positive real and

imaginary parts, and zjm is distributed as CN (0, 1/8).
The features of the model that we next address are:
1) channel gains are quantized to lie in Z + ıZ,
2) real and imaginary parts of the scaled inputs are re-

stricted to

n := max
(i,j)∈E

max{blog |hijR|c, blog |hijI |c}

bits,
3) there is no AWGN, and
4) outputs are quantized to lie in Z + ıZ.
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Let the binary expansion of
√

2xkmR be
0.xkmR(1)xkmR(2) . . ., i.e.,

xkmR =:
1√
2

∞∑
p=1

2−pxkmR(p).

The received signal in the discrete superposition channel only
retains the following relevant portion of the input signals:

y
′

j
=

∑
k

[[hkj ]x
′
k], (49)

where

x
′
kmR :=

1√
2

n∑
p=1

xkmR(p)2−p,

x
′
kmI :=

1√
2

n∑
p=1

xkmI(p)2
−p,

with n defined in (3). To obtain (49) we subtracted δj from
y
j
, where

δj :=

K∑
k=1

(
hkj(xk − x

′
k) + (hkj − [hkj ])x

′
k + (50)

([hkj ]x
′
k − [[hkj ]x

′
k])
)

+ zj

=:
∑
k

wkj + zj

=: vj + zj ,

To bound the loss in the mutual information in the discrete
superposition network from the original Gaussian interference
network, we have

I(xj ; yj) ≤ I(xj ; yj , y
′

j
, δj)

= I(xj ; y
′

j
, δj)

= I(xj ; y
′

j
) + I(xj ; δj |y

′

j
)

= I(x
′
j ; y

′

j
) + h(δj |y

′

j
)− h(δj |y

′

j
, xj)

≤ I(x
′
j ; y

′

j
) + h(δj)− h(δj |y

′

j
, xj , vj)

= I(x
′
j ; y

′

j
) + h(δj)− h(zj)

= I(x
′
j ; y

′

j
) + I(vj ; δj).

By bounding the magnitudes of the terms in (50), we get
|wkjm| ≤ 3

√
2. So, I(vj ; δj) is the mutual information of N

uses of a Gaussian MISO channel with average input power
constraint less than (3

√
2)2K ≤ 18K and

I(vj ; δj) ≤ N log(1 + 18K/(1/8))

< N log(1 + 144K). (51)

Note that I(x
′
j ; y

′

j
) is the mutual information between the

input and output of the j-th source-destination pair in the
discrete superposition interference channel. By Lemma 4.1,
this mutual information translates into an achievable rate
RDj = I(x

′
j ; y

′

j
)/N . By accumulating the losses in transform-

ing the inputs for the Gaussian channel into the corresponding
inputs for the deterministic channel, we obtain

RDj ≥ RGj − (6K + log(1 + 144K)), (52)

thereby proving the lemma.

B. Capacity(GIC) ⊆ Capacity(DSIC), to within an additive
constant

Next we prove that the capacity region of the Gaussian inter-
ference channel is at least as large as that of the discrete super-
position interference channel, to within an additive constant.
Once again, we prove this by converting a coding scheme
for the discrete superposition interference channel to a mutual
information expression using Lemma 4.1, and bounding the
loss in the mutual information when transforming the discrete
superposition model to the Gaussian model. The proof of the
lemma below contains all the ideas on lifting a code from the
discrete superposition model to the Gaussian model, and we
explicitly mention them in a subsequent subsection.

Lemma 4.4: Let RD be a vector in the capacity region of
the discrete superposition interference channel. Then, there
exists a rate vector RG in the capacity of the Gaussian
interference channel such that

RGk ≥ RDk − κ
′
I , (53)

for k = 1, 2, . . . ,K, where κ
′
I is defined in (40).

Proof: Pick any coding scheme for the discrete super-
position interference channel which achieves the rate tuple
RD. From Lemma 4.1, we know that this corresponds to
a collection of mutual information terms {I(xk; y

′

k
), k =

1, 2, . . . ,K}. Note that here xk corresponds to the input of the
k-th source in the discrete superposition interference network,
and y

k
corresponds to the output of the k-th destination in the

discrete superposition network. Now, we use the same input
distribution on the Gaussian interference network and show
that the mutual information corresponding to the rate of the j-
th source does not decrease by more than a bounded amount.
The same arguments will be applicable to the remaining
mutual information terms.

Since every element of the vector xk satisfies a peak power
constraint, it also satisfies an average power constraint. Hence
it can be used as an input to the Gaussian channel to get

y
j

=
∑
k

hkjxk + zj . (54)

Since we know that

y
′

j
=
∑
k

[[hkj ]xk], (55)

we have

y
j

=: y
′

i
+

K∑
k=1

wkj + zj

=: y
′

i
+ vj + zj , (56)

where wkj is defined as

wkj := (hkj − [hkj ])xk + ([hkj ]xk − [[hkj ]xk])).

By definition y
′

j
is a vector of entries from Z+ ıZ. Hence y

′

j
can be recovered from y

j
, the quantized values of vj and zj ,
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and the vector of carries cj obtained from adding the fractional
parts of vj and zj . So,

I(xj ; y
′

j
)

≤ I(xj ; yj , [vj ], [zj ], ci)

≤ I(xj ; yj) +H([vj ]) +H([zj ]) +H(cj), (57)

where [vj ] and [zj ] are defined as quantized functions of vj
and zj . Similar to the arguments preceding (29), we get

H([vj ]) ≤ N log(12K − 2),

H(cj) ≤ 3N,

H([zj ]) ≤ 6N.

In (57), I(xj ; yj) corresponds to N times the rate RGj
achieved on the Gaussian interference channel by the j-th
source. Therefore we get

RGj ≥ RDj − log(6K − 1)− 10.

Lemmas 4.3 and 4.4 together complete the proof of Theo-
rem 4.2.

C. Lifting codewords to the Gaussian interference network

Since the construction of a digital interface and the pro-
cedure of lifting codewords from the discrete superposition
interference channel to the Gaussian interference channel was
implicit in the proof of the above lemma, we summarize the
procedure below:
• Consider any coding scheme for the discrete superposi-

tion interference channel that achieves a rate tuple RD
with probability of error ε. Using Lemma 4.1, it can
be converted to a collection of mutual information terms
{I(xk; y

′

k
)}, where the k-th term corresponds to the rate

of the k-th source-destination pair, and a collection of
independent input distributions {p(xk)}, where the k-th
distribution corresponds to the input distribution for the
k-th source. The input distribution p(xk) is over N -length
vectors, where N is the length of the codewords for the
discrete superposition interference channel.

• We construct a mN -length codeword for the k-th
source by picking m vectors independently with the
distribution p(xk), and adjoining them. We construct
2mN(RDj−κ

′
I) codewords this way. This set forms the

(2mN(RDj−κ
′
I),mN) code for the j-th source in the

Gaussian interference network. Similar to the lifting
procedure for the relay network, we can visualize the
construction of codewords in the (2mN(RDj−κ

′
I),mN)

code by referring to Fig. 3.
• In the Gaussian interference channel, with joint typical

decoding, the k-th decoder can recover the codeword
transmitted by the k-th source with probability of error
less than ε, as we allow m to tend to∞. This is essentially
proved in Lemma 4.4.

Therefore, we can operate the Gaussian interference channel
on the digital interface defined by the signals transmitted and

received in the discrete superposition interference channel.
We can use techniques similar to the proof of Theorem 3.4
to prove Lemma 4.4, but we chose to present the simpler
proof involving manipulating mutual information terms di-
rectly. From Lemmas 4.3 and 4.4, we know that the capacities
of both the networks are within a bounded gap. Hence, if
we choose a near capacity-achieving coding scheme for the
discrete superposition interference network, we can transform
it by following the above procedure for lifting codewords
and obtain a near-optimal digital interface for operating the
Gaussian interference network.

V. DIGITAL INTERFACES FOR SOME OTHER NETWORKS

In this section, we list some other networks for which the
discrete superposition model provides a near-optimal digital
interface, and where codes can be lifted from the discrete
superposition counterpart to the Gaussian network.

A. MIMO networks

From the results in [1] and [2], it is easy to see that MIMO
channels are well-approximated by the discrete superposition
model in the capacity sense, and we can lift codes from a
MIMO discrete superposition channel to a Gaussian MIMO
channel. This correspondence extends to more general MIMO
networks too.

1) MIMO relay networks: MIMO relay networks can be
handled in the same way as in Section III, by treating
each transmitted/received signal as a collection of vectors,
where the size of the collection depends on the number of
transmit/receive antennas.

For simplicity, consider a relay network where every node
has two transmit and two receive antennas. All transmitted
and received signals are a pair of vectors in both the Gaus-
sian and discrete superposition model for this network. For
example, node j’s received signal in the Gaussian model is
y
j

= [y
j,1
,y

j,2
]. The channel on a particular wireless

link (i, j) is specified by four channel gains, {hk,lij }, where
k ∈ {1, 2} indexes the transmit antennas of i and l ∈ {1, 2}
indexes the receive antennas of j. Assuming that the noises at
both receive antennas are distributed as CN (0, 1), we have

y
j,l

=
∑

i∈N (j)

(h1,l
ij xi,1 + h2,l

ij xi,2) + zj,l, l = 1, 2. (58)

We state the counterpart of Theorems 3.2 and 3.4.

Theorem 5.1: Consider a relay network where every node
has a maximum of L transmit or receive antennas. The
capacity CG of the Gaussian relay network and the capacity
CD of the discrete superposition relay network is within a
bounded gap of κR,L bits where

κR,L = O(LM log(LM)). (59)

Furthermore, a coding scheme for the discrete superposition
MIMO relay network can be lifted to the Gaussian MIMO
relay network with a loss of κ

′
R,L bits in the rate, where

κ
′
R,L := LM(log(6LM − 1) + 10). (60)



15

Proof: The arguments in Section III unchanged to this
model by replacing every vector with its corresponding tuple
of vectors. A simple way to derive the above results is to
replace each set of L antennas at a transmitter or receiver
by a collection of L virtual nodes. Now there are a total of
LM virtual nodes in the network. The bound in (59) follows
by replacing M with LM in Theorem 3.2. In order to lift
the code from the discrete superposition MIMO network to
the Gaussian relay network, we need to prune the source’s
codebook with respect to all the virtual nodes. Hence (60)
follows by replacing M in (25) with LM .

2) MIMO interference networks: The results in Theo-
rem 4.2 can be extended to K×K interference channels where
each transmitter and destination have multiple antennas. Once
again, the constant determining the bounded gap is a function
of the number of nodes in the network, as well as the number
of transmit and receive antennas at the various nodes.

Theorem 5.2: Consider the K × K MIMO interference
channel described above, where every node has a maximum
of L antennas. The capacity region of the Gaussian MIMO
interference channel and the discrete superposition MIMO
interference channel are within a bounded gap of κI,L bits,
where

κI,L := 6LK + L log(144LK + 1). (61)

Furthermore, a coding scheme for the discrete superposition
MIMO interference channel can be lifted to the Gaussian
MIMO interference channel with a loss of κ

′
I,L bits in the

rate, where

κ
′
I,L := L(log(6LK − 1) + 10). (62)

Proof: The proof of this theorem is similar to that of
Theorem 4.2. We can treat each transmitting antenna and
receiving antenna as a virtual node. For proving (61), we
compare with (46) and note that in this case there are at most
KL virtual transmitters that contribute 6LK to the bound.
Since there are L virtual receivers at every node and each one
contributes log(144LK+1) to the bound, where the arguments
are similar to those preceding (51), the total contribution of
the virtual receivers is L log(144LK + 1). Adding up the two
contributions, we get the bound in (61).

The bound in (62) can be proved using the techniques in
Lemma 4.4. Each of the L virtual receivers at a particular
receiver contributes log(6LK − 1) + 10 to the bound, with a
total of contribution of L(log(6LK − 1) + 10) due to all the
virtual receivers at a node.

B. Multicast
Consider a relay network with M+1 nodes, with the nodes

labeled as 0, 1, . . . ,M , where node 0 is the source and it
wants to communicate the same information to a subset of the
remaining nodes. The other nodes which are not the intended
recipients act as relays. It is known that the cut-set bound
is the capacity of such multicast networks, up to an additive
constant [3], [7].

Theorem 5.3: Consider a multicast relay network men-
tioned above. The capacity CG of the Gaussian relay network
and the capacity CD of the discrete superposition relay
network is within a bounded gap of κM bits where

κM = O(M log(M)). (63)

Furthermore, a coding scheme for the discrete superposition
multicast relay network can be lifted to the Gaussian multicast
relay network with a loss of κ

′
M bits in the rate, where

κ
′
M := M(log(6M − 1) + 10). (64)

Proof: From the results in [3] and [1], it is easy to
prove the bound in (63). The basic idea is that the cut-set
bound is approximately achievable for Gaussian and discrete
superposition networks. Hence we need to prove that the
cut-set bounds for the Gaussian network and the discrete
superposition network are within a bounded gap. This is
proved in Theorem 3.2.

For proving the results in (64), we choose a coding scheme
for the multicast discrete superposition network. The key to
lifting the coding scheme to the Gaussian network is that all
the intended destinations in a multicast network are decoding
the same data. Hence if we prune the source’s codebook with
respect to all the nodes, as in the proof of Theorem 3.4, then
the pruned code can be decoded on the Gaussian network. We
skip the details.

We can extend the above theorem to the case when the
nodes have multiple transmit and receive antennas.

VI. CONCLUDING REMARKS

One of the main problems in network information theory
is computing the capacity region of a large network with
many sources, many destinations, and arbitrary data transmis-
sion requirements. Currently, this looks like no more than a
distant possibility. As suggested by [7], a possibly simpler
aim is to approximate a general network with a deterministic
model, perhaps with the discrete superposition model. We
have proved that the discrete superposition model serves as
a near-optimal digital interface for designing codes for the
Gaussian relay network and the Gaussian interference network.
This transforms the problem of designing near-optimal codes
for the Gaussian network to designing near-optimal codes for
the discrete counterpart. Also, the problem of computing the
capacity of the Gaussian network is reduced to a combinatorial
problem of computing the capacity of a discrete network.
In case of the relay network, even though we already know
near-optimal coding schemes for the network, it may still be
helpful to construct simple codes for its discrete superposition
counterpart. Such simple schemes can be directly translated,
via the lifting procedure proposed earlier, to construct simple
coding schemes for the original Gaussian network. In the case
of the Gaussian interference network, computing the capacity
region of the 3×3 discrete superposition interference channel
will yield the capacity region of the original Gaussian network
to within a constant, and will improve our understanding
of larger practical interference networks. We have not been
able to prove the near-optimality of the discrete superposition
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model in approximating the capacity of a general Gaussian
network.

A better understanding of the limits of approximating Gaus-
sian networks with noiseless deterministic models will help us
in computing the fundamental limits of wireless networks with
many users and may also help in designing coding schemes
for them.

VII. APPENDIX

A. Maximum entropy under a unit power constraint

Lemma 7.1: Let x be a random variable whose domain is
Z+ ıZ, with E[|x|2] ≤ 1. Then the entropy of x is bounded
as H(x) ≤ 6.

Proof: The entropy of x can be bounded as

H(x) = H(xR + ıxI)

≤ H(xR) +H(xI).

Now

H(xR) = H(sign(xR), |xR|2)

≤ H(sign(xR)) +H(|xR|2)

≤ 1 +H(|xR|2).

Let z = |xR|2. The domain of z is the set of non-negative
integers. Since E[|x|2] ≤ 1, and E[z] = E[|xR|2] ≤ 1.
If E[z] < 1, then p(z = 0) > 0. Since the alphabet of
z is countably infinite, there is always a k ∈ Z+ with
p(z = k) < p(z = 0), with the LHS possibly zero. Now
mixing the probability distribution of z by replacing each
of p(z = 0) and p(z = k) by the average of the two
probabilities will increase the entropy (see [35]), and will
also increase the mean. Hence the entropy of z, subject to
E[z] ≤ 1, is maximized when E[z] = 1. For a given
mean, the geometric distribution maximizes the entropy among
all discrete distributions (see [35]). Since the entropy of a
geometric random variable over the non-negative integers with
unit mean is 2, H(|xR|2) = H(z) ≤ 2.

Hence H(xR) ≤ 3. Similarly, we can prove that H(xI) ≤
3. Combining the two bounds, we get the statement of the
lemma.
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