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Learning Hidden Markov Models using
Non-Negative Matrix Factorization

George Cybenko,Fellow, IEEE,and Valentino Crespi,Member, IEEE

Abstract—The Baum-Welch algorithm together with its deriva-
tives and variations has been the main technique for learning
Hidden Markov Models (HMM) from observational data. We
present an HMM learning algorithm based on the non-negative
matrix factorization (NMF) of higher order Markovian stati stics
that is structurally different from the Baum-Welch and its a sso-
ciated approaches. The described algorithm supports estimation
of the number of recurrent states of an HMM and iterates the
non-negative matrix factorization (NMF) algorithm to impr ove
the learned HMM parameters. Numerical examples are provided
as well.

Index Terms—Hidden Markov Models, machine learning, non-
negative matrix factorization.

I. I NTRODUCTION

Hidden Markov Models (HMM) have been successfully
used to model stochastic systems arising in a variety of appli-
cations ranging from biology to engineering to finance [1], [2],
[3], [4], [5], [6]. Following accepted notation for representing
the parameters and structure of HMM’s (see [7], [8], [9], [1],
[10] for example), we will use the following terminology and
definitions:

1) N is the number of states of the Markov chain underly-
ing the HMM. The state space isS = {S1, ..., SN} and
the system’s state process at timet is denoted byxt;

2) M is the number of distinct observables or symbols
generated by the HMM. The set of possible observables
is V = {v1, ..., vM} and the observation process at time
t is denoted byyt. We denote byyt2t1 the subprocess
yt1yt1+1 . . . yt2 ;

3) The joint probabilities

aij(k) = P (xt+1 = Sj , yt+1 = vk|xt = Si);

are the time-invariant probabilities of transitioning to
stateSj at timet+1 and emitting observationvk given
that at timet the system was in stateSi. Observation
vk is emitted during the transition from stateSi to state
Sj . We useA(k) = (aij(k)) to denote the matrix of
state transition probabilities that emit the same symbol
vk. Note thatA =

∑

k A(k) is the stochastic matrix
representing the Markov chain state processxt.

4) The initial state distribution, at timet = 1, is given by
Γ = {γ1, ..., γN} where γi = P (x1 = Si) ≥ 0 and
∑

i γi = 1.
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Collectively, matricesA(k) andΓ completely define the HMM
and we say that a model for the HMM isλ = ({A(k) | 1 ≤
k ≤ M},Γ).

We present an algorithm forlearningan HMM from single
or multiple observation sequences. The traditional approach
for learning an HMM is the Baum-Welch Algorithm [1] which
has been extended in a variety of ways by others [11], [12],
[13].

Recently, a novel and promising approach to the HMM ap-
proximation problem was proposed by Finesso et al. [14]. That
approach is based on Anderson’s HMM stochastic realization
technique [15] which demonstrates that a positive factorization
of a certain Hankel matrix (consisting of observation string
probabilities) can be used to recover the hidden Markov
model’s probability matrices. Finesso and his coauthors used
recently developed non-negative matrix factorization (NMF)
algorithms [16] to express those stochastic realization tech-
niques as an operational algorithm. Earlier ideas in that vein
were anticipated by Upper in 1997 [17], although that work
did not benefit from HMM stochastic realization techniques or
NMF algorithms, both of which were developed after 1997.

Methods based on stochastic realization techniques, includ-
ing the one presented here, are fundamentally different from
Baum-Welch based methods in that the algorithms use as input
observation sequenceprobabilities as opposed to raw obser-
vation sequences. Anderson’s and Finesso’s approaches use
system realization methods while our algorithm is in the spirit
of the Myhill-Nerode [18] construction for building automata
from languages. In the Myhill-Nerode construction, statesare
defined as equivalence classes of pasts which produce the same
futures. In an HMM, the “future” of a state is a probability
distribution over future observations. Following this intuition
we derive our result in a manner that appears comparatively
more concise and elementary, in relation to the aforementioned
approaches by Anderson and Finesso.

At a conceptual level, our algorithm operates as follows.
We first estimate the matrix of an observation sequence’s high
order statistics. This matrix has a natural non-negative matrix
factorization (NMF) [16] which can be interpreted in terms
of the probability distribution of future observations given the
current state of the underlying Markov Chain. Once estimated,
these probability distributions can be used to directly estimate
the transition probabilities of the HMM.

The estimated HMM parameters can be used, in turn, to
compute the NMF matrix factors as well as the underlying
higher order correlation matrix from data generated by the
estimated HMM. We present a simple example in which an
NMF factorization is exact but does not correspond to any
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HMM. This is a fact that can be established by comparing the
factors computed by the NMF with the factors computed by
the estimated HMM parameters. This kind of comparison is
not possible with other approaches [14].

It is important to point out that the optimal non-negative
matrix factorization of a positive matrix is known to be NP-
Hard in the general case [19], so in practice one computes
only locally optimal factorizations. As we will show through
examples, the repeated iteration of the factorization and tran-
sition probability estimation steps improves the factorizations
and overall model estimation. Details are provided below.

A. Preliminaries and Notation

The only input to our algorithm is an observation sequence
of lengthT of the HMM, namely:

O1:T = O1O2...OT

whereOt ∈ V is the HMM output at observation timet.
We do not assume that the observation timet = 1 coincides

with the process’ initial state so that the initial distribution of
states is not necessarily governed byΓ. In fact, at present,
our algorithm is capable of learning only the ergodic partition
of an HMM, namely the set of states that are recurrent.
Consequently, our model of an HMM refers only to the
transition probability componentλ = {A(k)}k that identifies
this ergodic partition (see [20], [21] for some background on
this concept).

Given O1:T , we construct two summary statistics repre-
sented as matricesRp,s andF p,s for positive integersp and
s. Rp,s is simply a histogram of contiguous prefix-suffix
combinations whose rows are indexed by observations subse-
quences of lengthp and columns are indexed by observation
subsequences of lengths.

If there areM symbols in the observation alphabet, then
Rp,s is an Mp by M s matrix whose(i, j)th entry is the
number of times the prefix substring corresponding toi is
immediately followed by the substring corresponding toj. The
correspondence between strings and integers is lexicographic
in our examples below although any other correspondence will
do as well.

The matrix F p,s is simply Rp,s normalized to be row
stochastic. Specifically, ifG = (gi) where gi =

∑

j R
p,s
i,j

thenF p,s
i,j = Rp,s

i,j /gi for gi 6= 0 andF p,s
i,j = 0 for gi = 0.

Rows ofRp,s, and correspondinglyF p,s, are zero if the prefix
corresponding to the row label is not observed in the data.
Zero rows of these matrices can be deleted reducing the size
of the matrices without affecting the algorithm describe below.
Accordingly,F p,s is constructed to be row stochastic.

Entry F p,s
u,v is essentially an estimate ofP (V |U) the prob-

ability of observing observation sequenceV of length s,
indexed byv, following observation sequenceU of lengthp,
indexed byu (see the work of Marton, Katalin and Shields [22]
for a study of the accuracy of such estimates).

Note that whileR, F andG have exponentially many rows
and columns with respect top and s, the actual number of
nonzero entries in these matrices are bounded above byT so
that, stored as sparse matrices, they require no more storage

than the original observation sequence. Note that Baum-Welch
methods require storing and repeatedly accessing the original
observation sequence.

A simple but key observation about states of an HMM is that
each state of an HMM induces a probability distribution on
symbol subsequences of any lengths. Specifically, suppose
an HMM, λ, is in state Si0 (having not yet emitted an
observation in that state) and consider the symbol subsequence
V = vj1vj2 ...vjs . Then

P (V |Si0 , s, λ) = P (yt+s
t+1 = vj1vj2 ...vjs |xt = Si0)

is independent oft under the ergodic assumption and can be
computed from theA(k)’s according to

P (V |Si0 , s, λ) = e′Si0

s
∏

r=1

A(jr)1 , (1)

whereei denotes the(0, 1)-vector whose only nonzero entry
is in position i and 1 = [1 1 . . . 1]′. Call this probability
distribution on substrings of lengths, P (·|Si, s, λ). It is known
that the distributionsP (·|Si, s, λ) for p + s ≥ 2N − 1 are
complete characterizations of the ergodic states of the HMM
with respect to the observables of the HMM [23], [14].

We now focus attention on substrings thatprecedestate
occupancy in the HMM’s underlying Markov chain. Over the
course of a long observation sequence such asO1:T , there
is some probability,P (Si|U, p, λ) that the HMM is in state
i given that we have just observed the lengthp substring
U = vj1vj2 . . . vjp . These probabilities can be computed from
theA(k)’s according to

P (Si0 |U, p, λ) =
π′

∏p

r=1 A(jr)esi0
P (U |p, λ)

, (2)

whereπ is the stationary distribution of the underlying Markov
chain process andP (U |p, λ) = π′

∏p

r=1 A(jr)1.
Note that formulas (1) and (2) are closely related to com-

putations arising in the classical Viterbi algorithm [1].
Let U, V be two strings of observations of lengthp and s

respectively. LetU andV be identified with integersu andv as
already explained before so thatP (V |U, λ) = F p,s

u,v . Assume
V was emitted after timet andU immediately precededV .
We call U the prefix string andV the suffix string. Then by
applying elementary properties of probability we can write:

F p,s
u,v ∼ P (yt+s

t+1 = V | ytt−p+1 = U, λ)

=
N
∑

k=1

P (yt+s
t+1 = V, xt = Sk|y

t
t−p+1 = U, λ)

=

N
∑

k=1

P (V |Sk, s, λ)P (Sk|U, p, λ) .

Consequently we can express the distributionF p,s
u,: ∼

P (·|U, λ) as amixture

F p,s
u,: ∼

N
∑

k=1

P (·|Sk, s, λ)P (Sk|U, p, λ) . (3)

If the underlying state processxt is ergodic then in the limit
asT → ∞ relation (3) becomes an equalityalmost surely. As
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a result of the above observations, for sufficiently largep and
s, the matrixF p,s has the following properties:

• rank(F p,s) ≤ N , whereN is the minimal number of
states representing the HMM,λ;

• Each row ofF p,s is a convex combination (mixture) of
theN generators,P (·|Si, s, λ), for i = 1, 2, . . . , N .;

• Letting D be theN × M s nonnegative matrix whose
rows are the distributionsP (·|Sk, s, λ), i.e., Dk,: =
P (·|Sk, s, λ), for k = 1, 2, . . . , N , we can rewrite (3)
as

F p,s
u,: ∼ [P (S1|U, p, λ) P (S2|U, p, λ) · · · P (SN |U, p, λ)]∗D .

Consequently, if we letC = (cu,k) be theMp × N
nonnegative matrix withcu,k = P (Sk|U, p, λ) we can
write F p,s ∼ C ∗ D. Observe thatC and D are both
(row) stochastic.

• The factorization depends on the modelλ. Moreover
factors C and D can be computed directly fromλ
using (1) and (2). Consequently, the size of the smallest
model compatible with the data is equal to prank(F p,s),
the positive rankof F p,s. (The positive rank, prank(A),
of an m × n nonnegative matrixA is the smallest
integer N such thatA factors in the product of two
nonnegative matrices of dimensionsm × N andN × n
respectively.) It is known thatrank(A) ≤ prank(A) ≤
min{m,n} and that the computation of prank(A) is
NP-hard [19], [24]. So it would appear that in general
it is NP-hard to estimateN given F p,s even in ideal
conditions (T → ∞) since rank(F p,s) ≤ N . How-
ever, it is not obvious how difficult it is to estimate
when prank(F p,s) < rank(F p,s) in the caseF p,s was
built from a typical realization of an HMM. In fact,
typically rank([P (V |U)]U,V ) ≤ rank(P (V |S)S,V ) ≤
prank([P (V |U)]U,V ) but, in “noisy” conditions, we ob-
serverank(D) ≤ prank(F p,s) < rank(F p,s). We dis-
cuss an example at the end of this paper that illustrates the
open problems and challenges. One way to circumvent
the problem of guessingN is to apply statistical methods
directly to the observation sequence, without building any
intermediate models as done in [25].

To summarize this discussion, note that the matrixF p,s is
based on the distribution of lengthp prefixes and corre-
sponding lengths suffixes and completely characterizes an
HMM providing Mp ≥ N, s ≥ 2N − 1. Its positive rank
is, in ideal conditions, equal to the minimal number of states
in the underlying Markov chain. Moreover, an appropriately
constructed factorization ofF p,s exposes the state transition
and emission probabilities of the HMM. It is well known
that any twoN -state HMMs consistent with the same con-
ditional statistics[P (V |S)]S∈S,V ∈V2N−1 generate the same
finite dimensional distributions and so are, in this sense,
equivalent [26]. The algorithm presented below extracts the
state transition matrices,{A(k)}k from this factorization. In
turn, as shown above, theA(k)’s can be used to construct the
probability distributions over suffixes that generateF p,s and
so can be used to compute a new factorization. This iteration
is essentially the basis for our algorithm.

In the machine learning context, we have access only to a
finite amount of observation data (T bounded). Consequently
rank(F p,s) will be generally higher thanN . This requires a
decision about the HMM’s order,N , not unlike that arising
in principal component analysis (PCA) [27] to estimate the
number of components.

II. T HE ALGORITHM

Based on the above discussion, our algorithm is outlined
below. Numerical examples with discussions follow the formal
description.

1) ComputeF p,s andG from the input observation data,
O1:T , defined above.

2) Estimate the number of states,N , by analyzing the either
F p,s or diag(G)∗F p,s, both computed in Step 1. In the
cases in whichprank(F p,s) = rank(F p,s) (e.g. when
rank(F ) ≤ 2) one typical way to obtain this estimate is
to compute the SVD (singular value decomposition) of
the aforementioned matrices and then observe the rate of
decrease of the singular values. ForT sufficiently large
a significant gap between theN th and the(N + 1)th

largest singular value becomes appreciable. Note that
since prank≥ rank, an estimate based on the singular
values is a lower bound for the order of the HMM.

3) Estimate distributionsP (·|Si, s, λ), for i = 1, 2, . . . , N .
This step is achieved through the Nonnegative Matrix
Factorization (NMF) ofF p,s. This yieldsF p,s ≈ C ∗D
with Di,: ≈ P (·|Si, s, λ) as observed before.
Note that because of the finiteness ofT in general
prank(F p,s) > N . So it is necessary to solve the
approximateNMF which consists of determiningC and
D of dimensionsMp×N andN×M s respectively that
minimizeDID(F p,s||C ∗D), where

DID(K||W ) =
∑

ij

(Kij log
Kij

Wij

−Kij +Wij)

is the I-divergence function [7] (observe that if
1
′K1 = 1

′W1 = 1 then DID(K||W ) =
∑

i,j Ki,j logKi,j/Wi,j so the I-divergence function is a
generalization of the Kullback-Leibler distance between
probability distributions). This optimization problem can
be solved through iterative methods [16], [28] that re-
quire initial matricesC0, D0 and can only be guaranteed
to converge to local optima. After executing this step, we
have a locally optimal estimate of the true distributions
P (·|Si, s, λ).

4) Estimate matricesA(k), k = 1, 2, . . . , N , from D. Let
us considerA(1) = (ai,j(1)), the other matrices are esti-
mated in a similar manner. LetV (s−1) = vj1vj2 · · · vjs−1

be a generic sequence ofs − 1 observations. Then by
marginalization we can write

P (V (s−1)|Si, s− 1, λ) =

M
∑

k=1

P (V (s−1)vk|Si, s, λ) .

Consequently, the conditional distributions over suffixes
of length s − 1, P (·|Si, s − 1, λ), can be estimated
from D by adding columns ofD appropriately. Let
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H be the matrix thus obtained fromD so thatHi,: ≈
P (·|Si, s− 1, λ). Those conditional distributions satisfy
the following equality for anyV (s−1):

P (v1V
(s−1)|Si, s, λ) =

N
∑

j=1

ai,j(1)P (V (s−1)|Sj , s−1, λ).

ThereforeP (v1 · |Si, s, λ) =
∑N

j=1 ai,j(1)P (·|Sj , s −
1, λ) so we can obtain the unknown valuesai,j(1) by
solving the following systems of linear equations:

Di,1:Ms−1 = Ai,:(1) ∗H, i = 1, 2, . . . , N

whereAi,:(1) = [ai,1(1) ai,2(1) · · · ai,N (1)]. Compactly
D:,1:Ms−1 = A(1) ∗ H . As in step2, because of the
finiteness ofT and working with bounded arithmetic
precision we need to content ourselves with a solution
that minimizes some distance (for example, theL1

norm) betweenDi,1:Ms−1 andAi,:(1) ∗H , for all i. We
have formulated these problems as linear programming
problems using theL1 norm.

5) Output estimated HMMλ′ = {A(k) | k = 1, 2, . . . , N}.

This algorithm can be iterated using the estimatedλ′ and
formula (1) to compute new matricesC′

0 and D′
0, and then

restarting from step3 above with matricesC′
0 andD′

0 as initial
factors in the approximate NMF. In particular:

6) ComputeD′
0 = [P (j|Si, s, λ

′)]i,j using formula (1).
7) ComputeC′

0 by solving the linear programming problem
F p,s = C′

0 ∗D
′
0, for a row stochasticC′

0.
8) SetC0 := C′

0 andD0 := D′
0.

9) goto 3).

Another possibility for step 7) above is to computeC′
0

using formulae (2) and (3) and then use the resultingC′
0 and

D′
0 as initial guesses for the NMF algorithm. We have tried

this variant but it does not produce significantly differentfinal
results.

III. N UMERICAL EXAMPLES

We call an HMM “Deterministic” (DHMM) if for each state
there exists at most one outgoing transition labeled with the
same observable. We demonstrate our method on a DHMM, on
an HMM that can be transformed into an equivalent DHMM
and also on an HMM for which such a transformation does
not exist. We finally discuss an example that illustrates the
situation whenrank < prank.

It is important to note that the significant metric for learning
an HMM is not the extent to which the transition probabilities
are accurately learned but the extent to which the observation
statistics are learned. This is a consequence of the fact that
HMM’s with different transition probabilities and different
numbers of states can produce observations sequences with the
same statistics so that learning a specific transition probability
characterization is not a well-posed problem unless additional
constraints to the learning problem are imposed [29].

In our examples we measure the accuracy of our estimates
by computing the I-divergence rate of the finite dimensional
distributions associated with the observation process of the
original model from those associated with the observation

process of the estimated model. Formally, each HMMλ
induces a family of finite dimensional distributions

Pn(y
n
1 ) =

N
∑

i=1

πiP (yn1 |x1 = Si, λ)

on sequences of observations of lengthn, where π is the
stationary distribution of the underlying state process. Let λ
andλ′ be two HMM’s withPn andQn their respective induced
finite dimensional distributions. The I-divergence rate ofλ
from λ′ is defined as

DID = lim
n→∞

1

n
DID(Pn||Qn)

when the limit exists [14].

A. A DHMM Example

Consider the stochastic process described by modelλ1 =
({A(0), A(1)},Γ = [0 1]) with

A(0) =

[

0.5 0
0 0

]

and A(1) =

[

0 0.5
1 0

]

.

This is sometimes referred to as the “Even Process” [30], [31].
We simulated this process and produced a sequence ofT =
1000 observations. Then we ran our algorithm withp = 2 and
s = 3:

1) Build F 2,3 from dataO:

F =









0.14 0.13 0 0.26 0 0 0.22 0.26
0 0 0 0 0.25 0.24 0 0.5

0.13 0.14 0 0.23 0 0 0.26 0.24
0.08 0.07 0 0.17 0.08 0.08 0.17 0.33









2) EstimateN = prank(F ). Analyze singular values ofF :
[

0.88 0.48 0.033 0.011
]

.

This suggestsrank(F ) = prank(F ) = 2.
3) Estimate distributionsP (·|S1, 3, λ1) andP (·|S2, 3, λ1)

by solvingargminC,D DID(F ||C ∗D):

C =









0.02 0.98
1 0
0 1

0.34 0.66









,

D =

[

0 0 0 0.0 0.25 0.24 0.0 0.5
0.13 0.13 0 0.25 0 0 0.25 0.24

]

4) Estimate matricesA(0) andA(1):

Ã(0) =

[

2.2e− 18 0
6.9e− 18 0.51

]

, Ã(1) =

[

0.0077 0.99
0.49 0

]

.

After a second iteration of the algorithm the reconstructed
matrices become:

Â(0) =

[

0 0
5.6e− 17 0.51

]

Â(1) =

[

0.0077 0.99
0.49 0

]

.

The reconstructed model is essentially identical to the original
one except for state reordering. This result is competitive
with existing techniques specific for the machine learning of
DHMMs. For example, Shalizi et al [32], [30] demonstrated
their Causal-State Splitting Reconstruction (CSSR)ǫ-machine
reconstruction algorithm on the same Even Process obtaining
comparably accurate models.
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B. An HMM that has an equivalent DHMM

Consider the modelλ2 = ({A(0), A(1)},Γ = [0 1]) with

A(0) =

[

0.67 0.33
0 0

]

and A(1) =

[

0 0
1 0

]

.

We simulated this process and produced a sequence ofT =
10000 observations. Then we ran our algorithm withp = 2
ands = 3:

1) Build F 2,3 from dataO:

F =









0.31 0.14 0.22 0 0.22 0.11 0 0
0.44 0.23 0.33 0 0.00 0 0 0
0.29 0.15 0.23 0 0.22 0.11 0 0
0 0 0 0 0 0 0 0









2) EstimateN . Analyze singular values ofF :

[

0.86 0.24 0.02 0
]

to estimateN . This suggests againN = 2.
3) Estimate distributionsP (·|S1, 3, λ2) andP (·|S2, 3, λ2).

SolveargminC,D DID(F ||C ∗D):

C =









0 1
1 0
0 1
0 0









,

D =

[

0.44 0.23 0.33 0 0 0 0 0
0.30 0.15 0.22 0 0.22 0.11 0 0

]

4) Reconstruct matrices̃λ2 = {Ã(0), Ã(1)}:

Ã(0) =

[

0.0033 0.9967
0 0.6691

]

, Ã(1) =

[

0 0
0.3309 0

]

.

After a second iteration of the algorithm the reconstructed
model becomeŝλ2 = {Â(0), Â(1)}:

Â(0) =

[

0.0039 0.996
0 0.6689

]

, Â(1) =

[

0 0
0.3311 0

]

.

These computed transition probabilities are different enough
from the transition probabilities of the original HMM used to
generate the data but the statistics of the observation sequences
are very close. Figure 1 shows the accuracy of these esti-
mates in terms of the I-divergence rate of the original model
from the estimated ones. We computedDID(Pn||Qn)/n for
n = 1, 2, . . . , 15, with Pn being the finite dimensional proba-
bility distributions over sequences of observations of length n
emitted by modelλ2 andQn those emitted by the estimates
λ̃2 and λ̂2, in stationary conditions (the dotted curve refers
to λ̃2). We can observe that this quantity, the divergence rate
of Pn from Qn, stabilizes to a very small value (smaller than
2.5 · 10−5) as expected.

In fact, this example is equivalent to a DHMM model as
the reader can readily check independently.

C. An HMM that has no equivalent finite state DHMM

Consider the modelλ3 = ({A(0), A(1)},Γ = [1 0 0]) with

A(0) =





0.5 0.5 0
0 0.5 0
0.5 0.5 0



 and A(1) =





0 0 0
0 0 0.5
0 0 0



 .

We simulated this process and produced a sequence ofT =
10000 observations. Then we ran our algorithm withp = 4
ands = 5. After the first iteration we obtaiñλ3:

Ã(0) =





0 0.2 0.8
0 0.35 0
0 0.4 0.6



 , Ã(1) =





0 0 0
0.1 0 0.56
0 0 0



 .

After the second iteration we obtain̂λ3:

Â(0) =





0 0.2 0.8
0 0.36 0
0 0.41 0.59



 , Â(1) =





0 0 0
0.09 0 0.56
0 0 0



 .

As before, Figure 1 (bottom) shows the accuracy of these
estimates in terms of the I-divergence rate of the original
model from the estimated ones.

Observe that this HMM cannot be transformed into an
equivalent deterministic HMM [33].

D. Discussion of Rank vs Prank

We first provide an example of a stochastic matrix whose
prank differs from itsrank but that matrix does not represent
the statistics of any HMM.

F =
1

16
·









1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1









⊗ [1 1 1 1 1 1 1 1] ,

where ⊗ is the Kronecker product. We can verify that
rank(F ) = 3 whereasprank(F ) = 4 [28]. Moreover
F = CD exactly with

C =









0.5 0 0.5 0
0.5 0.5 0 0
0 0 0.5 0.5
0 0.5 0 0.5









and

D =
1

8









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









⊗ [1 1 1 1 1 1 1 1] .

Assume thatF was obtained from a typical sequence of
observations emitted by an HMMλ with 4 states so that
F 2,5 = F = CD. Then it must be thatC = [P (Sj |i, 2, λ)]i,j
and D = [P (k|Sj , 5, λ)]j,k. Consider the following model
λ = {A(1), A(2)} with

A(0) =









0.5 0 0.5 0
0 0 0 0
0 0.5 0 0.5
0 0 0 0









, A(1) =









0 0 0 0
0.5 0 0.5 0
0 0 0 0
0 0.5 0 0.5









.
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Fig. 1. Accuracy of HMM’sλ̃2, λ̂2 (top) andλ̃3, λ̂3 (bottom). HerePn is
the distribution over sequences of observations of fixed length n induced by
the original model whereasQn refers to the estimated models. The sequence
DID(Pn||Qn)/n is calculated for increasing values ofn. The dotted curves
refer to λ̃2 (top) andλ̃3 (bottom).

One can verify thatλ is the only four-state model such that
D = [P (k|Sj , 5, λ)]j,k. In fact observe that the system of
equations definingλ in stage4 of the algorithm admits, in
this case, only one solution. Nevertheless, using formula (2):

[P (Sj |i, 2, λ)]i,j = (1/4) ∗

[

1 1
1 1

]

⊗

[

1 1
1 1

]

6= C .

Consequently no HMM can generateF .
1) An example of prank> rank for an exact HMM model:

The following four-state modelλ is an example of an HMM
whose inducedF 2,5 matrix has rank3 but positive rank
prank = 4:

A(0) =









0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, A(1) =









0 0.5 0 0
0 0 1 0
0 0 0 1
1 0 0 0









.

To verify the claim we computed factorsC = [P (Sj |i, λ)]i,j
and D = [P (j|Si, 5, λ)]i,j , for N = 4, using formulae (1)
and (2) and then obtainedF 2,5 = C ∗ D. Then we verified
numerically thatrank(F 2,5) = 3. Finally, we applied Lemma
2.4 in [28] to confirm thatprank(F 2,5) = 4. We also
verified the character of this model by directly applying our
algorithm to it in order to obtainF 2,5 empirically (for T =
10000). An analysis of the singular values ofF 2,5, namely
[0.8530 0.4825 0.1799 0.0114], demonstrates the difficulty
of this case. The fourth singular value is nonzero due to
the finiteness ofT . Consequently it is difficult to determine
whetherN = 3 or N = 4.

IV. OPEN QUESTIONS ANDFUTURE WORK

A crucial issue is the estimation ofN , the size of the
smallest HMM that generates the stream of data. Under ideal
conditions, (T → ∞), we have seen thatN = prank(F p,s).
However, filtering out “noise” from the empirical matrixF p,s

in order to have an accurate estimate of the positive rank is
an open challenge. Observe that a spectral analysis ofF may,
in general, produce only a lower bound toN .

A second important issue in our methodology concerns the
computation of the approximate NMF. Existing methods are
suboptimal due to the presence of local optima. This problem
affects the accuracy of the produced estimate at each iteration
of our algorithm. Consequently it is important to investigate
convergence properties when stages3−5 of the algorithm are
iterated with new initial factorsC′

0, D
′
0 to seed the approximate

NMF, usingC′
0 andD′

0 as computed according to steps6−8,
from modelλ′ that was estimated in the preceding step.

A third question concerns with properties ofF p,s as s →
∞. In other words, can the Asymptotic Equipartition Property
be applied to distributionsP (·|Si, s, λ) so that the distribution
on the “typical” finite suffixes is uniform and the rest of the
distribution is zero?

V. CONCLUSION

We have presented a new algorithm for learning an HMM
from observations of the HMM’s output. The algorithm is
structurally different from traditional Baum-Welch basedap-
proaches [1], [11], [12], [13]. It is related to but different from
recent approaches in stochastic systems realization [14].We
believe this method opens a new line of algorithm development
for learning HMM’s and has the advantage of a estimating
the HMM order from spectral properties of the high order
correlation statistics of the observation sequence. The algo-
rithm effectively compresses data by summarizing it into a
statistical matrix. Options for recursively computing thesteps
of the algorithm to achieveon-linealgorithms will be explored.
Additionally, sparse matrix algorithms can be explored for
space and time efficiency when the underlying matrices are
large and sparse.
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