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Learning Hidden Markov Models using
Non-Negative Matrix Factorization

George Cybenkdkellow, IEEE,and Valentino Crespiviember, IEEE

Abstract—The Baum-Welch algorithm together with its deriva- ~ Collectively, matricesA (k) andT" completely define the HMM

tives and variations has been the main technique for learnia gnd we say that a model for the HMM = ({A(k) | 1 <
Hidden Markov Models (HMM) from observational data. We k< M},T). a

present an HMM learning algorithm based on the non-negative . . .
matrix factorization (NMF) of higher order Markovian stati stics We present an algorithm fdearningan HMM from single

that is structurally different from the Baum-Welch and its asso- Of Multiple observation sequences. The traditional apgroa
ciated approaches. The described algorithm supports estiation for learning an HMM is the Baum-Welch Algorithml[1] which

of the number of recurrent states of an HMM and iterates the has been extended in a variety of ways by others [11], [12],
non-negative matrix factorization (NMF) algorithm to impr ove 3] )
the learned HMM parameters. Numerical examples are provide )

as well. Recently, a novel and promising approach to the HMM ap-

proximation problem was proposed by Finesso et al. [14]t Tha
approach is based on Anderson’s HMM stochastic realization
techniquel[15] which demonstrates that a positive facabion
of a certain Hankel matrix (consisting of observation gfrin
|. INTRODUCTION probabilities) can be used to recover the hidden Markov
Hidden Markov Models (HMM) have been successfullynodel’s probability matrices. Finesso and his coauthoesius
used to model stochastic systems arising in a variety ofi-appiecently developed non-negative matrix factorization M
cations ranging from biology to engineering to finaride [2], [ algorithms [16] to express those stochastic realizatiain-te
[3], [4], [B], [6]. Following accepted notation for repreging niques as an operational algorithm. Earlier ideas in that ve
the parameters and structure of HMM's (sek [[7], [B], [8], [1)were anticipated by Upper in 1997 [17], although that work
[10] for example), we will use the following terminology anddid not benefit from HMM stochastic realization techniques o
definitions: NMF algorithms, both of which were developed after 1997.
1) N is the number of states of the Markov chain underly- Methods based on stochastic realization techniques,dnclu
ing the HMM. The state space &= {91, ..., Sy} and ing the one presented here, are fundamentally differemn fro
the system’s state process at timis denoted byz,; Baum-Welch based methods in that the algorithms use as input
2) M is the number of distinct observables or symbol@bservation sequengerobabilitiesas opposed to raw obser-
generated by the HMM. The set of possible observabl¥ation sequencesAnderson’s and Finesso's approaches use
is V = {v1, ...,uas } and the observation process at tim&ystem realization methods while our algorithm is in theispi

t is denoted byy;. We denote byy!* the subprocess of the Myhill-Nerode [18] construction for building autotaa
' from languages. In the Myhill-Nerode construction, staiss

Index Terms—Hidden Markov Models, machine learning, non-
negative matrix factorization.

Yt Yti+1 - - Ytos

3) The joint probabilities defined as equivalence classes of pasts which produce tlee sam
futures. In an HMM, the “future” of a state is a probability
aij(k) = P(wt+1 = Sj,ye+1 = vilze = Si); distribution over future observations. Following thistiition

are the time-invariant probabilities of transitioning tdV€ derive our result in a manner that appears comparatively
stateS; at timet + 1 and emitting observation, given more concise and elementary, in relation to the aforemeetio
J

that at timet the system was in stat§;. Observation &PProaches by Anderson and Finesso.
vy, is emitted during the transition from stafé to state At a conceptual level, our algorithm operates as follows.
S;. We useA(k) = (a;;(k)) to denote the matrix of We first estimate the matrix of an observation sequencels hig
J* - 9 P . . .
state transition probabilities that emit the same symbgfder statistics. This matrix has a natural non-negativeima
k. Note thatA = 3, A(k) is the stochastic matrix factorization (NMF) [16] which can be interpreted in terms
representing the Markkov chain state process of the probability distribution of future observations givthe
4) The initial state distribution, at time= 1, is given by current state of the underlying Markov Chain. Once estichate
I = {y1,.,7n} wherey; = P(z; = S;) > 0 and these probability distributions can be used to directlyneste
S s = 1 ‘ Y= the transition probabilities of the HMM.
= 1. . .
! The estimated HMM parameters can be used, in turn, to
G. Cybenko is with the Thayer School of Engineering, DartthdDollege, compute the NMF matrix factors as well as the underlying
Hanover, NH 03755 USA e-mail: gvc@dartmouth.edu. higher order correlation matrix from data generated by the
V. Crespi is with the Department of Computer Science, Califo State . . . .
estimated HMM. We present a simple example in which an
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HMM. This is a fact that can be established by comparing thlean the original observation sequence. Note that Bauntiwel

factors computed by the NMF with the factors computed byethods require storing and repeatedly accessing thenaligi

the estimated HMM parameters. This kind of comparison @bservation sequence.

not possible with other approachésl[14]. A simple but key observation about states of an HMM is that
It is important to point out that the optimal non-negativeach state of an HMM induces a probability distribution on

matrix factorization of a positive matrix is known to be NPsymbol subsequences of any lengthSpecifically, suppose

Hard in the general casel_[19], so in practice one computs HMM, J, is in state S;, (having not yet emitted an

only locally optimal factorizations. As we will show throlng observation in that state) and consider the symbol subsegue

examples, the repeated iteration of the factorization am-t V = v; v;,...v;,. Then

sition probability estimation steps improves the factatians

) — t+s _ o .
and overall model estimation. Details are provided below. P(V1[Sig,8,A) = P(yr41 = Vs Via---Vi.

It:SfL)

is independent of under the ergodic assumption and can be

A. Preliminaries and Notation computed from thed(k)'s according to
The only input to our algorithm is an observation sequence - ,
of lengthT" of the HMM, namely: P(V|Siy,5,A) = €s,, H A(jr)1 1)
r=1
Ovr = 010:..07 wheree; denotes the€0, 1)-vector whose only nonzero entry
where©; € V is the HMM output at observation time is in positioni and1 = [1 1 ... 1]’. Call this probability

We do not assume that the observation time 1 coincides distribution on substrings of length P(-[S, s, A). It is known
with the process' initial state so that the initial distrilam of that the distributionsP(|S;, s, A) for p + s > 2N — 1 are
states is not necessarily governed Byn fact, at present complete characterizations of the ergodic states of the HMM

our algorithm is capable of learning only the ergodic piantit With respect to the observables of the HMM [23], [14].
of an HMM, namely the set of states that are recurrent, W& now focus attention on substrings tfmecedestate

Consequently, our model of an HMM refers only to th@ccupancy in the HMM'’s underlying Markov chain. Over the
transition probability component = {A(k)}, that identifies Course of a long observation sequence suctOgg, there
this ergodic partition (seé [20]. [21] for some backgroumd /S S0me probability,P(5;[U, p, A) that the HMM s in state
this concept). i given that we have just obsg_ryed the lengthsubstring

Given O;.7, we construct two summary statistics repreU = Ui Uz - vjp..These probabilities can be computed from
sented as matriceB?* and F'P>® for positive integery and the A(k)'s according to

s. RP® is simply a histogram of contiguous prefix-suffix [T, A(jr)es,,

combinations whose rows are indexed by observations subse- P(Siy|U,p, A) = PN ; (2
quences of lengtlp and columns are indexed by observation ) . o ’ ]
subsequences of length wherer is the stationary distribution of the underlying Markov

If there areM symbols in the observation alphabet, thefhain process ané(Ulp, A) = ' vy A1
RP* is an MP by M* matrix whose(i, j)th entry is the No_te that_f(_)rml_JIas Q) and_ (2) are c_Ioser_reIated to com-
number of times the prefix substring corresponding tis ~Putations arising in th_e classical Vlterbl algorithm [1].
immediately followed by the substring correspondingtdhe L&t U,V be two strings of observations of lengthand s
correspondence between strings and integers is Iexicb@radeSpeCt'VeW- Let andV be identified with integers andv as

in our examples below although any other correspondente viilreéady explained before so the(V'|U, A) = F:). Assume
do as well. V was emitted after time¢ and U immediately preceded .

The matrix FP* is simply R”* normalized to be row We chIU the prefix string a_nd/ the suffix_ _string. Then l_Jy
stochastic. Specifically, it = (g;) where g; = Zj Rf_’; applying elementary properties of probability we can write

then '} = R{j/gi for gi # 0 and Fi" = 0 for g; = 0. o~ p(yls =V | yl_pypy = U N)

Rows of RP»*, and correspondingly™®*, are zero if the prefix ’ N

corresponding to the row label is not observed in the data. _ ZP(UHS =V, = Silyl_ .y = U,N\)
= Y41 = Voli = OklYi—pt1 = Y

Zero rows of these matrices can be deleted reducing the size
of the matrices without affecting the algorithm describohe N
Accordingly, Frsis copstructed to be row stochastic. Z P(V|Sk, s, \)P(Sk|U, p, A) .
Entry F2>> is essentially an estimate @(V|U) the prob- 1
ability of observing observation sequenéé of length s,
indexed byw, following observation sequendé of length p,
indexed byu (see the work of Marton, Katalin and Shields|[22
for a study of the accuracy of such estimates). N
Note that whileR, F andG have exponentially many rows FP2 ~ > P(|Sk, 8, ) P(Sk|U, p, A) - 3)
and columns with respect tp and s, the actual number of k=1
nonzero entries in these matrices are bounded above &y If the underlying state process is ergodic then in the limit
that, stored as sparse matrices, they require no more storag7 — oo relation [3) becomes an equalé@ymost surely As

k=1

Consequently we can express the distributidif:’ ~
]P(-|U, A) as amixture
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a result of the above observations, for sufficiently lapgend In the machine learning context, we have access only to a
s, the matrix F7>* has the following properties: finite amount of observation datd (bounded). Consequently
« rank(FP*) < N, where N is the minimal number of ranlf(FPvS) will be generally higher thanV. This requir§§ a
states representing the HMM; decision about the HMM'’s ordery, not unlike that arising
« Each row of F»* is a convex combination (mixture) of in Principal component analysis (PCA) [27] to estimate the
the N generatorspP(:|S;, s, \), fori =1,2,...,N; number of components.

o Letting D be the N x M?® nonnegative matrix whose
rows are the distributions”(:|Sk, s, ), i.e., Dg. =

Il. THE ALGORITHM

P(:|Sk,s,A), for k = 1,2,.... N, we can rewrite[{8) Based on the above discussion, our algorithm is outlined

as below. Numerical examples with discussions follow the fatm
s description.
Ep? ~ [P(S1U.p,A) P(S2|U,p A) -+ P(S|Up, A)J+D 1) ComputeF”* and G from the input observation data,
Consequently, if we leC' = (c,) be the M? x N Oy.r, defined above. , _
’ 2) Estimate the number of statég, by analyzing the either

nonnegative matrix withe, , = P(Skx|U,p,\) we can
write F'P* ~ C x D. Observe thaC and D are both
(row) stochastic.

« The factorization depends on the model Moreover
factors C' and D can be computed directly from\
using [1) and[{R). Consequently, the size of the smallest
model compatible with the data is equal to prafik*),
the positive rankof F?-*. (The positive rank, prankl),
of an m x n nonnegative matrixA is the smallest
integer N such thatA factors in the product of two
nonnegative matrices of dimensionsx N and N x n
respectively.) It is known thatank(A) < prank(A) < 3)
min{m,n} and that the computation of prapk) is
NP-hard [19], [24]. So it would appear that in general
it is NP-hard to estimateV given FP-* even in ideal
conditions ' — oo) since rank(F?*) < N. How-
ever, it is not obvious how difficult it is to estimate
when prank(F?*) < rank(F?®) in the caseF”® was
built from a typical realization of an HMM. In fact,
typically rank([P(V|U)]y,v) < rank(P(V]S)s,v) <
prank([P(V|U)]u,v) but, in “noisy” conditions, we ob-
serverank(D) < prank(FP?®) < rank(FP*). We dis-
cuss an example at the end of this paper that illustrates the
open problems and challenges. One way to circumvent
the problem of guessin is to apply statistical methods
directly to the observation sequence, without building any
intermediate models as done [n [25].

To summarize this discussion, note that the ma##® is
based on the distribution of length prefixes and corre-
sponding lengths suffixes and completely characterizes an
HMM providing M? > N,s > 2N — 1. Its positive rank

is, in ideal conditions, equal to the minimal number of ftate
in the underlying Markov chain. Moreover, an appropriately
constructed factorization of'?:* exposes the state transition
and emission probabilities of the HMM. It is well known
that any twoN-state HMMs consistent with the same con-
ditional statistics[P(V'|S)]ses vey2n-1 generate the same
finite dimensional distributions and so are, in this sense,
equivalent [[26]. The algorithm presented below extracts th
state transition matriceq,A(k)}, from this factorization. In
turn, as shown above, thé(k)’'s can be used to construct the
probability distributions over suffixes that generdté*® and

so can be used to compute a new factorization. This iteration
is essentially the basis for our algorithm.

4)

FPs or diag(G) = FP*, both computed in Step 1. In the
cases in whictprank(F?*) = rank(F?*) (e.g. when
rank(F') < 2) one typical way to obtain this estimate is
to compute the SVD (singular value decomposition) of
the aforementioned matrices and then observe the rate of
decrease of the singular values. Hosufficiently large

a significant gap between th&¥*" and the(N + 1)t
largest singular value becomes appreciable. Note that
since prank> rank, an estimate based on the singular
values is a lower bound for the order of the HMM.
Estimate distribution®(-|S;, s, \), fori=1,2,..., N.

This step is achieved through the Nonnegative Matrix
Factorization (NMF) ofF'?>*, This yieldsF?* ~ C x D

with D, . ~ P(-|S;, s,\) as observed before.

Note that because of the finiteness Bf in general
prank F?*) > N. So it is necessary to solve the
approximateNMF which consists of determining' and

D of dimensionsM? x N and N x M? respectively that
minimize D;p (F?*||C % D), where

K;
D[D(KHW) = Z(Kij log WJ- - Ki; + Wij)

ij K

is the I-divergence function([7] (observe that if
1K1l = 1W1 = 1 then Dip(K||W) =
Zm K; jlog K; ;/W; ; so the |-divergence function is a
generalization of the Kullback-Leibler distance between
probability distributions). This optimization problemrca
be solved through iterative methods [16], [[28] that re-
quire initial matricex’y, Dy and can only be guaranteed
to converge to local optima. After executing this step, we
have a locally optimal estimate of the true distributions
P('lSi, S, /\)

Estimate matricesl(k), k = 1,2,..., N, from D. Let

us considerd(1) = (a;,;(1)), the other matrices are esti-
mated in a similar manner. L&t~ = v; v, - v,

be a generic sequence of- 1 observations. Then by
marginalization we can write

M
PVETIS, s —1,0) = > P(VE DS, 5,4)
k=1
Consequently, the conditional distributions over suffixes
of length s — 1, P(:|S;,s — 1,A), can be estimated
from D by adding columns ofD appropriately. Let
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H be the matrix thus obtained from» so thatH;. ~ process of the estimated model. Formally, each HMM
P(:|Si, s — 1, ). Those conditional distributions satisfyinduces a family of finite dimensional distributions
the following equality for anyy (s—1): N
N Pu(yt) =Y miP(y}lzy = Si, N)
Py VES;,8,0) = a; (1) P(VETD]S;,5-1,0). i=1
j=1 on sequences of observations of lengthwhere 7 is the
stationary distribution of the underlying state processt A
and)\’ be two HMM’s with P,, and@,, their respective induced
finite dimensional distributions. The I-divergence rate Jof
from )\’ is defined as

ThereforeP(v; - [Si,5,A) = S0, a;j(1)P(-|Sj, s —
1,)\) so we can obtain the unknown values;(1) by
solving the following systems of linear equations:

Di,l:M5*1 = AL(l) * H, 1= 1, 2, .. .,N EID = lim lDID(PnHQn)
n—,oo N

whereA; (1) = [a;,1(1) ai2(1) - -ain(1)]. Compactly \yhen the limit existsT14].

D.q.as-1 = A(1) x H. As in step2, because of the i

finiteness ofT" and working with bounded arithmeticA, A DHMM Example

precision we need to content ourselves with a solution Consider the stochastic process described by magek

that minimizes some distance (for example, the ({A(0), A(1)},T = [0 1]) with

norm) betweerD, ;.p,--1 and A; (1) x H, for all i. We ’ ’

have formulated these problems as linear programming 4 ) — { 0.5 0 } and  A(1) = { 0 05 ] _

problems using thé; norm. 0 0 10

5) Output estimated HMM\" = {A(k) |k =1,2,...,N}. This is sometimes referred to as the “Even Procéss” [30], [31

This algorithm can be iterated using the estimatédand We simulated this process and produced a sequende -of
formula [1) to compute new matrices), and D)), and then 1000 observations. Then we ran our algorithm wjth= 2 and
restarting from step above with matrice€’; andDj, as initial s = 3:

factors in the approximate NMF. In particular: 1) Build F22 from dataO:
6) ComputeD;, = [P(j]S;, s, \')]s,; using formulal[(L). 014 013 0 026 0 0 022 0.26
7) ComputeC), by solving the linear programming problem B 0 0 0 0 025 024 O 0.5

Fps = Cf x D, for a row stochasticy. 1 013 014 0 023 0 0 026 0.24

8) SetCy := C{ and Dy := Dj,. 0.08 0.07 0 0.17 0.08 0.08 0.17 0.33
9) goto 3). o ) 2) EstimateN = prank(F'). Analyze singular values df:
Another possibility for step 7) above is to computg

using formulae (2) and (3) and then use the resul@fjgand [ 0.88 048 0.033 0.011 ] .

Dj as initial guesses for the NMF algorithm. We have tried This suggestsank(F) = prank(F) = 2.
this variant but it does not produce significantly differéntl 3) Estimate distributions(-|S1,3, A1) and P(-|Ss,3, A1)

results. by solvingarg mine, p Drp(F||C * D):
0.02 0.98
I11. N UMERICAL EXAMPLES 1 0
We call an HMM “Deterministic” (DHMM) if for each state C= 0 1 ’
there exists at most one outgoing transition labeled with th 0.34 0.66

same observable. We demonstrate our method on a DHMM, on

an HMM that can be transformed into an equivalent DHMMD = [ 023 023 8 00'205 0'55 0'54 00'205 00'254 }

and also on an HMM for which such a transformation does ' ' ‘ ‘ '

not exist. We finally discuss an example that illustrates the4) Estimate matricesl(0) and A(1):

situation whenrank < prank. - 2.9¢ — 18 0 - 0.0077 0.99
It is important to note that the significant metric for leagi  A(0) = { 6.9¢ — 18 051 ] AL = { 049 0 }

an HMM is not the extent to which the transition probabilities . . :

are accurately learned but the extent to which the observatfo‘ fter_ a second |t'erat|0n of the algorithm the reconstructed

statistics are learned. This is a consequence of the fatt tﬂhatrlces become:

HMM's with different transition probabilities and diffene  4(0) = [ 0 0 } A1) = { 0.0077 0.9 }

numbers of states can produce observations sequenceswith t 5.6e —17 0.51 0.49 0

same statistics so that learning a specific transition foiiba The reconstructed model is essentially identical to thgioai

characterization is not a well-posed problem unless amditi one except for state reordering. This result is competitive

constraints to the learning problem are imposed [29]. with existing techniques specific for the machine learnifg o
In our examples we measure the accuracy of our estimaf®dMMs. For example, Shalizi et al [32], [30] demonstrated

by computing the I-divergence rate of the finite dimension#eir Causal-State Splitting Reconstruction (CS&R)achine

distributions associated with the observation processhef treconstruction algorithm on the same Even Process obgainin

original model from those associated with the observatimomparably accurate models.
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B. An HMM that has an equivalent DHMM C. An HMM that has no equivalent finite state DHMM
Consider the modek, = ({A(0), A(1)},T = [0 1]) with Consider the models = ({A(0), A(1)},T" = [1 0 0]) with
05 05 O 0 0 O
A(0) = [ 0-(?7 0-5’3 } and  A(1) = [ (1’ 8 } . A0 =] 0 05 0 and A(1)=|0 0 05
0.5 05 0 00 O

We simulated this process and produced a sequende-ef Wwe simulated this process and produced a sequende -of
10000 observations. Then we ran our algorithm wijth= 2 10000 observations. Then we ran our algorithm wjth= 4

ands = 3: ands = 5. After the first iteration we obtains:
1) Build F?:? from dataO: 0 02 08] T 0 0 0
A(0) = . (1) = | 0.1 .
031 0.14 022 0 0.22 011 0 O A(0) 8 00345 006 A() 00 8 0056
P 0.44 0.23 0.33 0 0.00 0 0 0 ' o -
029 015 023 0 022 011 0 O After the second iteration we obtait:
0 0 0 0 0 0 0 0 _ _
) 0 02 087 0 0 0
2) EstimateN. Analyze singular values af’; A(0)=1]0 03 0 |,A(1)=1] 009 0 0.56
0 041 059 | L0 0 0

[ 0.86 024 0.02 0 } As before, Figurd]l (bottom) shows the accuracy of these

estimates in terms of the I-divergence rate of the original
model from the estimated ones.

Observe that this HMM cannot be transformed into an
equivalent deterministic HMM_[33].

to estimateN. This suggests agailv = 2.
3) Estimate distribution®(-|S1, 3, A2) and P(-|S2, 3, A2).
Solveargmine p Dip(F||C * D):

0
D. Discussion of Rank vs Prank

oS O =
O = O =

We first provide an example of a stochastic matrix whose
prank differs from itsrank but that matrix does not represent
the statistics of any HMM.

044 023 033 0 O 0 0 0
D‘{o.?,o 015 022 0 022 011 0 o} R
) o F=slog 1 g1 |®01101111],
4) Reconstruct matrices, = {A(0), A(1)}: 00 1 1

A(0) = { 0.0033 0-9967] A1) = { 0 0} where @ is the Kronecker product. We can verify that
0 06691 |’ 0.3309 0 rank(F) = 3 whereasprank(F) = 4 [28]. Moreover

. . . F = CD exactly with
After a second iteration of the algorithm the reconstructed

model becomes., = {A(0), A(1)}: 05 0 05 0
a_ |05 05 0 0

- 0.0039 0.996 A 0 0 o 0 0 05 0.5
A = { 0 0.6689 ] Al = [ 0.3311 0 ] 0 05 0 05

These computed transition probabilities are differentugo and

from the transition probabilities of the original HMM used t 10 00
generate the data but the statistics of the observatioresegs 110010
are very close. FigurE]1 shows the accuracy of these esti- D= 8§10 1 0 0 @1111111].
mates in terms of the I-divergence rate of the original model 0 0 01

from the estimated ones. We computBdp (P, ||Q,)/n for
n=1,2,...,15, with P, being the finite dimensional proba-
bility distributions over sequences of observations ofjtern sFQ’S _ F — CD. Then it must be that’ — [P(S;]i,2, \)]i

emitted Aby model, and @,, those emitted by the estimate - . .
Ao and Ag, in stationary conditions (the dotted curve refer ndD = [P(k|sj’_5’/\)]j=k‘ Consider the following model
5 = {A(1), A(2)} with

to A\2). We can observe that this quantity, the divergence rédte

Assume thatF' was obtained from a typical sequence of
observations emitted by an HMM with 4 states so that

of P, from Q,,, stabilizes to a very small value (smaller than 05 0 05 0 0 0 0 0
2.5-107°) as expected. 0 0 0 0 05 0 05 0

In fact, this example is equivalent to a DHMM model asA(O) - 0 05 0 0.5 A1) = 0 0 0 O
the reader can readily check independently. 0 0 0 O 0 05 0 0.5
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X107 I-divergence rate To verify the claim we computed factors = [P(S;i, A)];

and D = [P(j|Si,5,\)]i;, for N = 4, using formulae[{1)
26 1 and [2) and then obtained?5 = C x D. Then we verified
numerically thatrank(F2%) = 3. Finally, we applied Lemma
2.4 in [28] to confirm thatprank(F?°) = 4. We also
verified the character of this model by directly applying our
algorithm to it in order to obtaiF'?> empirically (for T =
10000). An analysis of the singular values @%°, namely
[0.8530 0.4825 0.1799 0.0114], demonstrates the difficulty
of this case. The fourth singular value is nonzero due to
the finiteness ofl’. Consequently it is difficult to determine
whetherN =3 or N = 4.

D,(PJIQ)/n

IV. OPEN QUESTIONS ANDFUTURE WORK

A crucial issue is the estimation aV, the size of the
08 s m s Smallest HMM that generates the stream of data. Under ideal
Length of observation sequences conditions, " — oc), we have seen tha¥V = prank(F?-%).
x10™ I-divergence rate However, filtering out “noise” from the empirical matrix?:*
in order to have an accurate estimate of the positive rank is
an open challenge. Observe that a spectral analysis rofy,
in general, produce only a lower bound Aé.
sl | A second important issue in our methodology concerns the
computation of the approximate NMF. Existing methods are
suboptimal due to the presence of local optima. This problem
affects the accuracy of the produced estimate at eachidterat
4 of our algorithm. Consequently it is important to investea
convergence properties when stagesb of the algorithm are
iterated with new initial factor€’), Dj, to seed the approximate
NMF, usingC{ and D{, as computed according to stefps- 8,
from model)\’ that was estimated in the preceding step.
A third question concerns with properties 67 ass —
oo. In other words, can the Asymptotic Equipartition Property
, ‘ ‘ be applied to distribution®(-|.S;, s, A) so that the distribution

5 . 10 5 on the “typical” finite suffixes is uniform and the rest of the
Length of observation sequences L .
distribution is zero?

D(P[IQ )/n

Fig. 1. Accuracy of HMM'sAz, A2 (top) andXs, As (bottom). HereP, is
the distribution over sequences of observations of fixedtlten induced by V. CONCLUSION

the original model wherea®),, refers to the estimated models. The sequence . .
Dirp(Py||Qn)/n is calculated for increasing values of The dotted curves e have presented a new algorithm for learning an HMM

refer to Ao (top) andXs (bottom). from observations of the HMM'’s output. The algorithm is
structurally different from traditional Baum-Welch basap-
proaches [1],[11],[12][T13]. It is related to but diffeteinom
One can verify that\ is the only four-state model such thatecent approaches in stochastic systems realizafion Yv].
D = [P(k[S},5,\)]jx- In fact observe that the system ofelieve this method opens a new line of algorithm develogmen
equations defining\ in stage4 of the algorithm admits, in for learning HMM's and has the advantage of a estimating
this case, only one solution. Nevertheless, using forn@)a (the HMM order from spectral properties of the high order
11 11 correlation statistics of the observation sequence. The-al
[P(S;]4,2,M)]i,; = (1/4) { 11 ] ® { 11 ] #C . rithm effectively compresses data by summarizing it into a
statistical matrix. Options for recursively computing tteps
Consequently no HMM can generate of the algorithm to achieven-linealgorithms will be explored.
1) An example of prank rank for an exact HMM model: Additionally, sparse matrix algorithms can be explored for

The following four-state model is an example of an HMM space and time efficiency when the underlying matrices are
whose inducedF*5 matrix has rank3 but positive rank |arge and sparse.

prank = 4.
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