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Abstract

In continuation to a recent work on the statistical–mechanical analysis of minimum mean
square error (MMSE) estimation in Gaussian noise via its relation to the mutual information
(the I–MMSE relation), here we propose a simple and more direct relationship between opti-
mum estimation and certain information measures (e.g., the information density and the Fisher
information), which can be viewed as partition functions and hence are amenable to analysis
using statistical–mechanical techniques. The proposed approach has several advantages, most
notably, its applicability to general sources and channels, as opposed to the I–MMSE relation
and its variants which hold only for certain classes of channels (e.g., additive white Gaussian
noise channels). We then demonstrate the derivation of the conditional mean estimator and
the MMSE in a few examples. Two of these examples turn out to be generalizable to a fairly
wide class of sources and channels. For this class, the proposed approach is shown to yield
an approximate conditional mean estimator and an MMSE formula that has the flavor of a
single–letter expression. We also show how our approach can easily be generalized to situations
of mismatched estimation.

Index Terms: Conditional mean estimation, minimum mean squared error, partition function,
statistical mechanics, Fisher information.

1 Introduction

Relationships between signal estimation, signal detection, and information measures, both in dis-

crete time and continuous time, have been known for decades [1],[3],[8] and have gained a remarkable

degree of revived interest and research activity in the last several years, see, e.g., [4], [5], [6], [7],

[11], [12], [13] and references therein.
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In particular, in [5], Guo, Shamai and Verdú have derived a relation between the mutual infor-

mation between the input and the output of an additive white Gaussian noise (AWGN) channel and

the minimum mean squared error (MMSE) of non–causal estimation of the channel input based on

its output. In particular, this relation, which is often called the I–MMSE relation, shows that the

derivative of the mutual information with respect to (w.r.t.) the signal–to–noise (SNR) is equal

to half of the MMSE, and it is intimately related to the de Bruijn identity [2, Sec. 17.7]. Later,

this relation has been generalized and further developed in several directions: Guo, Shamai, and

Verdú [6] and Raginsky and Coleman [12] have derived relations of the same spirit for more general

additive channels. Palomar and Verdú [11] have studied relations between the covariance matrix

of the MMSE estimator and arbitrary gradients of the mutual information for a general vector

Gaussian channel, which allows also a linear transformation of the input signal. In [7], relations

between information measures and estimation measures have been derived for Poisson channels.

More recently, Verdú [13] extended the I–MMSE relation of Gaussian noise to the paradigm of mis-

matched conditional mean estimation, that is, to deal with an estimator that is optimally matched

to a wrong probability distribution assumed on the input signal. The excess mean squared error

(MSE) due to this mismatch was shown to be related to the Kullback–Leibler divergence between

the channel output distributions corresponding to the true and the assumed input distributions

(see also [4] for a further study in this direction). In [9], the I–MMSE relation was further in-

vestigated from a statistical physics perspective, where among other results, it was demonstrated

how statistical–mechanical tools can be harnessed in order to assess the MMSE via the I–MMSE

relation of [5], using the fact that in many cases, the mutual information can be viewed as the

partition function of a certain physical system.

This paper is a further development in the above described direction of [9]. The main idea

is that, for the purpose of evaluating the covariance matrix of the MMSE estimator, one may

use a conceptually simple and more direct relationship between the MMSE covariance matrix and

other information measures, that can also be presented in the form of a certain partition function

and hence be analyzed using methods of statistical physics. The main advantage of the proposed

approach, over those of the I–MMSE relations and its variants, is its full generality: It applies, in

principle, to any joint probability function P (x,y) of the channel input signal x = (x1, . . . , xn),

to be estimated, and the channel output y = (y1, . . . , ym) (where m and n are positive integers),

2



provided that certain technical regularity conditions hold. The channel P (y|x) does not even have

to be additive, as opposed to the assumptions made in [6] and [12]. Moreover, the dimension m of

the channel output vector y does not have to be the same as the dimension n of the input vector

x.

In a nutshell, the idea is to define, for a given n–vector of real–valued parameters λ = (λ1, . . . , λn),

the ‘partition function’

Z(y,λ) =
∑

x
exp

{

n
∑

i=1

λixi

}

P (x,y),

where we have implicitly assumed that x takes on discrete values, otherwise, the sum should simply

be replaced by an integral. Now, it is straightforward to show that the gradient of lnZ(y,λ) w.r.t.

λ, computed at λ = 0, gives the conditional mean estimator x̂ = E{X |y}, whereas the expectation
of the Hessian of the same function, again, at λ = 0, gives the error covariance matrix of the MMSE

estimator. As we shall see in the sequel, lnZ(y,λ) lends itself to closed form analytic evaluation

(in the spirit of a single–letter formula) in a fairly wide spectrum of situations, using methods of

statistical mechanics. Thus, the MMSE estimator and its performance can quite easily be derived

too in these situations. Moreover, as was demonstrated extensively in [9], the statistical–mechanical

perspective on estimation–theoretic problems, may offer, not only analysis techniques, but also some

important insights with regard to threshold effects (whenever existent) via the inspection of possible

phase transitions in the parallel statistical–mechanical model.

Besides the general applicability of this approach, it has several additional advantages:

1. As mentioned in the previous paragraph, it provides, not only the MMSE error covariance

matrix, but also the conditional mean estimator itself.

2. As will be seen, several variants of these relations between estimation measures and informa-

tion measures can be offered. In some cases, one of the relations may be more convenient to

work with than the others.

3. The approach is easy to extend to the mismatched case. Furthermore, it allows mismatch in

both the source and the channel (as opposed to [13], which allows mismatch in the source

only).

3



The remaining part of this paper is organized as follows. In Section 2, we establish notation

conventions. In Section 3, we first derive the basic relations between the conditional mean esti-

mator, as well as its error covariance matrix, and the above–mentioned partition function. In the

same section, we also discuss this relation and derive a few variants that involve also information

measures, like the information density, the Fisher information, etc. We also outline the extension

to mismatched estimation. In Section 4, we provide three examples. In Section 5, we show how two

of them set the stage to the analysis of a more general class of joint distributions, P (x,y). Finally,

in Section 6, we summarize and conclude the paper.

2 Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, their

sample values will be denoted by the respective lower case letters, and their alphabets will be

denoted by the respective calligraphic letters. A similar convention will apply to random vectors

and their sample values, which will be denoted with same symbols in the bold face font. Thus, for

example, X will denote a random vector (X1, . . . ,Xn), and x = (x1, . . . , xn) is a specific vector

value in X n, the n-th Cartesian power of X . The notations yji and Y j
i , where i and j are integers

and i ≤ j, will designate segments (yi, . . . , yj) and (Yi, . . . , Yj), respectively.

Probability functions will be denoted generically by the letter P or Q. In particular, P (x,y) is

the joint probability mass function (in the discrete case) or the joint density (in the continuous case)

of the desired channel input vector x = (x1, . . . , xn) and the observed channel output vector y =

(y1, . . . , ym). Accordingly, P (x) will denote the marginal of x, P (y|x) will denote the conditional

probability mass (or density) of y given x, induced by the channel, and so on. Whenever there is

room for ambiguity, these probability functions will be subscripted by the names of the random

variables and the conditionings, according to standard notation conventions in probability theory

and information theory. Throughout the sequel, we will assume discrete valued alphabets, mostly

for the sake of simplicity and convenience. Extensions to continuous valued situations will be

straightforward with summations being replaced by integrations, etc. Indeed, some of our examples

will involve continuous valued random variables.

The expectation operator of a generic function f(x,y) w.r.t. the joint distribution P of (X ,Y )
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will be denoted by E{f(X,Y )}. The conditional expectation of the same function given that

Y = y, denoted E{f(X,Y )|Y = y}, and which is obviously identical to E{f(X,y)|Y = y}, is, of
course, a function of y. On substituting Y in this function, this becomes then a random variable

which will be denoted by E{f(X,Y )|Y }. When using vectors and matrices in a linear–algebraic

format, n–dimensional vectors, like x (and X), will be understood as column vectors, the operator

(·)T will denote vector or matrix transposition, and so, xT would be a row vector. For two positive

sequences {an} and {bn}, the notation an
·
= bn means equivalence in the exponential order, i.e.,

limn→∞
1
n log(an/bn) = 0. Finally, the indicator function of an event A will be denoted by 1{A}.

I.e., 1{A} = 1 is A occurs, and 1{Z} = 0 if not.

3 MMSE Estimation Relations

This section consists of two subsections. In the first, we derive the main basic relations and in the

second, we show how to extend the scope to the case of mismatched estimation.

3.1 Basic Relations

Let X = (X1, . . . ,Xn), and Y = (Y1, . . . , Ym) (n and m being positive integers), be two random

vectors, jointly distributed according to a given probability function P (x,y). It is further assumed

that the alphabet X , of each component of X, consists of a set of real valued numbers, i.e.,

X ⊆ IR. This assumption is obviously necessary in order to make the problem of estimating

X, in the MSE sense, a meaningful problem. The conditional mean estimator of X based on

Y , i.e., X̂ = E{X |Y } is well–known to be the optimum estimator in the MSE sense, i.e., it

minimizes the MSE E{(Xi − X̂i)
2} for all i = 1, 2, . . . , n. The MMSE in estimating Xi is then

E{(Xi − E{Xi|Y })2}, i.e., the expected conditional variance of Xi given Y . More generally,

the MMSE error covariance matrix E is an n × n matrix whose (i, j)–th element is given by

E{(Xi −E{Xi|Y })(Xj −E{Xj |Y })}. This matrix can be represented as the expectation (w.r.t.

Y ) of the conditional covariance matrix of X given Y , henceforth denoted Cov{X |Y }. I.e.,

E = E{Cov{X|Y }} = E{XXT } −E{E{X|Y } ·E{XT |Y }}.

Defining a column vector of n real valued parameters, λ = (λ1, . . . , λn)
T , consider the following
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function:

Z(y,λ)
∆
=

∑

x∈Xn

exp{λTx}P (x,y) =
∑

x∈Xn

exp{λTx}P (x)P (y|x),

where it is assumed that the sum (or integral, in the continuous case) converges uniformly at least

in some neighborhood of λ = 0.1 It is straightforward to see now that:

∂ lnZ(y|λ)
∂λi

∣

∣

∣

∣

λ=0
=

∑

x∈Xn xiP (x,y)

P (y)
=
∑

xi∈X

xiP (xi|y) = E{Xi|y}, (1)

i.e.,

E{X|y} = ∇λ lnZ(y,λ), (2)

where∇λ denotes the gradient w.r.t. λ. Similarly, upon taking second order derivatives, one obtains

∂2 lnZ(y|λ)
∂λi∂λi

∣

∣

∣

∣

λ=0
= E{XiXj|y} −E{Xi|y} ·E{Xi|y} = Cov{Xi,Xj |y},

and so,

E = E

{

∇2
λ lnZ(Y ,λ)

∣

∣

∣

∣

λ=0

}

, (3)

where ∇2
λ is the Hessian w.r.t. λ, namely, the matrix of second order derivatives w.r.t. pairs of

components of λ. Note that here and throughout the sequel, we will always refer to gradients and

Hessians of functions w.r.t. λ, computed at the point λ = 0. It will therefore be convenient to use,

for a generic function g, the shorthand notations ∇0g(λ) and ∇2
0g(λ) to designate ∇λg(λ)

∣

∣

∣

∣

λ=0
and

∇2
λ
g(λ)

∣

∣

∣

∣

λ=0
, respectively.

Another, perhaps simpler, way to look at the relations (2) and (3) is the following: Obviously,

for a given y, M(y,λ) =
∑

x eλ
TxP (x|y) is the moment generating function pertaining to the

conditional distribution of x given y and so, its derivatives relative to {λi}, computed at λ = 0,

yield the conditional moments E{Xi|y}, E{X2
i |y}, E{XiXj |y}, etc. Therefore, lnM(y,λ) is a

generator of the corresponding conditional cumulants, E{Xi|y}, Var{Xi|y}, Cov{Xi,Xj |y}, etc.
Now, observe that lnM(y,λ) differs from lnZ(y,λ) merely by the additive term lnP (y), which does

not depend on λ anyway and hence does not affect the gradient and Hessian w.r.t. λ. Therefore,

lnZ(y,λ) is a generator of conditional cumulants, exactly like lnM(y,λ). An important point,

however, is that we prefer lnZ(y,λ) over lnM(y,λ) because normally, it is more convenient to

1If this assumption is not met, one can instead, parametrize each component λi of λ as a purely imaginary number
λi = jωi (j =

√

−1), as is done in the definition of the characteristic function.
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work with the joint distribution P (x,y) (or equivalently, with the source P (x) and forward channel

P (y|x)) rather than with the backward channel (or the posterior) P (x|y).2

We next derive several alternative versions of this relation between the error covariance matrix

of the MMSE estimator and derivatives of lnZ. First, observe that Z(y,λ) is proportional to

Pλ(y) ·Θ(λ), where

Θ(λ) =
∑

x∈Xn

P (x) exp{λTx}

and Pλ(y) is the output marginal of y induced by the channel P (y|x) and the modified source

distribution Pλ(x)
∆
= eλ

TxP (x)/Θ(λ). We therefore obtain

E = E
{

∇2
0 lnZ(Y ,λ)

}

= E
{

∇2
0 ln[Pλ(Y ) ·Θ(λ)]

}

= ∇2
0 lnΘ(λ) +E

{

∇2
0 lnPλ(Y )

}

= Cov{X} − J, (4)

where Cov{X} = E{XXT }−E{X}·E{XT } is the covariance matrix of X and J is the Fisher in-

formation matrix of estimating λ based on Y , computed at the point λ = 0. The Fisher information

matrix J can also be expressed as

J = E
{

∇0 lnPλ(Y ) · ∇T
0 lnP (Y |λ)

}

.

Equivalently, we obtained

J = Cov{X} − E = E{E{X |Y } ·E{XT |Y }}.

Note that J can also be obtained as the negative expectation of the Hessian (or, equivalently, as

the covariance matrix of the gradient) of the information density [14],

iλ(x;y) = ln[P (y|x)/Pλ(y)],
2As a side remark, we shall mention also the physical perspective: if Z(y,λ) is thought of as the partition function

of a certain statistical–mechanical model (as discussed in the Introduction), where the components of λ are thought
of as certain generalized forces or fields that are acting on the individual particles, then the above relation between the
second order derivative of lnZ(y,λ) w.r.t. λi and λj and the (conditional) covariances between the corresponding
state variables, Xi and Xj , is known as one of the versions of the fluctuation–dissipation theorem in statistical
mechanics [10, p. 32, eq. (2.44)], which relates between the linear response of the system (to an infinitesimally small
perturbation in its parameters) and its fluctuations in equilibrium.
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which is again, computed at λ = 0.

Sometimes it is more convenient to square the first derivative of lnZ than to take the second

derivative. In these cases, the following relationship may be useful:

Ξ
∆
= E

{

[∇0 lnZ(Y ,λ)] · [∇0 lnZ(Y ,λ)]T
}

= E
{

[∇0 ln{P (Y |λ) ·Θ(λ)}] · [∇0 ln{P (Y |λ) ·Θ(λ)}]T
}

= E
{

[∇0 lnP (Y |λ)] · [∇0 lnP (Y |λ)]T
}

+ [∇0 lnΘ(λ)] · [∇0 lnΘ(λ)]T

= J +E{X} ·E{XT }

= Cov{X}+E{X} ·E{XT } − E

= E{XXT } − E (5)

and so,

E = E{XXT } − Ξ.

Particularizing these results to the MMSE,

mmse(X|Y )
∆
=

n
∑

i=1

E{(Xi −E{Xi|Y })2},

which is the trace of E, we have the following relations, which we formulate as a proposition.

Proposition 1. The following formulas for the MMSE hold:

mmse(X|Y ) =
n
∑

i=1

E

{

∂2 lnZ(Y ,λ)

∂λ2
i

∣

∣

∣

∣

λ=0

}

(6)

=
n
∑

i=1

[

Var{Xi}+E

{

∂2 lnP (Y |λ)
∂λ2

i

∣

∣

∣

∣

λ=0

}]

(7)

=
n
∑

i=1

[

Var{Xi} −E

{

[

∂ lnP (Y |λ)
∂λi

]2 ∣
∣

∣

∣

λ=0

}]

(8)

=
n
∑

i=1

[

E{X2
i } −E

{

[

∂ lnZ(Y ,λ)

∂λi

]2 ∣
∣

∣

∣

λ=0

}]

(9)

In the second and the third formulas, lnP (Y |λ) can be replaced by ln i(X ;Y ), thus relating the

MMSE to the information density.
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3.2 Extension to the Mismatched Case

In this short subsection, we are outlining how our approach can easily be extended to handle situ-

ations of mismatched estimation. Consider a mismatched estimator which is the conditional mean

of X given Y , based on an incorrect joint distribution Q(x,y), whereas the true joint distribution

continues to be P (x,y). Denoting by ZP (y,λ) and ZQ(y,λ) the corresponding partition functions,

and by EP and EQ, the corresponding expectations, our approach can easily be generalized to

handle this case as follows:

E = EP

{

(X −EQ{X |Y })(XT −EQ{XT |Y })
}

= EP {XXT } −EP{EP {X |Y }EQ{XT |Y }} −

EP {EQ{X |Y }EP{XT |Y }}+EP{EQ{X |Y }EQ{XT |Y }}

= EP {XXT } −EP{[∇0 lnZP (Y ,λ)] · [∇0 lnZQ(Y ,λ)]T } −

EP {[∇0 lnZQ(Y ,λ)] · [∇0 lnZP (Y ,λ)]T }+EP{[∇0 lnZQ(Y ,λ)] · [∇0 lnZQ(Y ,λ)]T }.

Thus, in particular, the MSE associated with the mismatched estimator is given by

mseQ(X |Y ) =
n
∑

i=1

[

EP {X2
i } − 2EP

{

∂ lnZP (Y ,λ)

∂λi

∣

∣

∣

∣

λ=0
· ∂ lnZQ(Y ,λ)

∂λi

∣

∣

∣

∣

λ=0

}

+ EP

{

[

∂ lnZQ(Y ,λ)

∂λi

∣

∣

∣

∣

λ=0

]2
}]

. (10)

4 Examples

In this section, we provide three examples, where we show how the log–partition function, lnZ(y,λ),

can be evaluated for large n, using methods of statistical mechanics. Using the relations derived in

Subsection 3.1, we then show how the conditional mean estimator and the MMSE can be approxi-

mated for large n.

4.1 Example 1 – A Codeword Transmitted Over an AWGN

Our first example is taken from [9, Subsection 5.2], but here we demonstrate how to derive the

conditional mean estimator and the MMSE using Proposition 1, rather than the I–MMSE relation.

For the sake of completeness and convenience, we provide here the full necessary details (with
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the appropriate modifications to accommodate the method proposed herein), including those that

already appear in [9]. As noted in [9], the analysis of this model is intimately related to one of

the statistical mechanical techniques used in the analysis of the so called random energy model

(REM) of disordered magnetic materials, a.k.a. spin glasses in the statistical physics literature (see

references in [9]).

LetX be chosen uniformly at random from a codebook C = {x0,x1, . . . ,xM−1} of sizeM = enR.

The codebook itself is also selected at random (and then revealed to the estimator) in the following

manner: Each xi is selected independently and uniformly at random from the surface of a sphere

of radius
√
nPx centered at the origin. The channel P (y|x) is an AWGN channel (hence m = n)

whose noise variance is 1/β (keeping the same notation as in [9]). I.e.,

P (y|x) =
(

β

2π

)n/2

exp

{

β

2
‖y − x‖2

}

.

Thus, for a given y, we have:

Z(y, λ) =
∑

x∈C

e−nR exp{−β‖y − x‖2/2 + λTx}

= e−nR exp[−β‖y − x0‖2/2 + λ
Tx0] +

∑

x∈C\{x0}

e−nR exp[−β‖y − x‖2/2 + λ
Tx]

∆
= Zc(y,λ) + Ze(y,λ), (11)

where, without loss of generality, x0 designates the transmitted codeword. Now, since ‖y−x0‖2 is

typically around n/β, Zc(y,λ) would typically be about e−nRe−β·n/(2β)eλ
Tx0 = e−n(R+1/2)+λTx0 .

As for Ze(y,λ), we have:

Ze(y,λ)
·
= e−nR

∫

IR
dǫN(ǫ)e−βnǫ,

where N(ǫ) is the number of codewords {x} in C − {x0} for which ‖y − x‖2/2 − λTx/β ≈ nǫ,

namely, between nǫ and n(ǫ+dǫ). Now, given y, N(ǫ) =
∑M

i=1 1{xi : ‖y−xi‖2/2− λTx/β ≈ nǫ}
is the sum of M i.i.d. Bernoulli random variables and so, its expectation is

N(ǫ) =
M
∑

i=1

Pr{‖y −Xi‖2/2− λTXi/β ≈ nǫ} = enRPr{‖y −X1‖2/2− λTX1/β ≈ nǫ}. (12)

Denoting Py = 1
n

∑n
i=1 y

2
i (typically, Py is about Px + 1/β), the event ‖y − x‖2/2− λTx/β ≈ nǫ is

equivalent to the event xT (y + λ/β) ≈ [(Px + Py)/2− ǫ]n or equivalently,

ρ(x,y)
∆
=

xT (y + λ/β)

n
√

PxP ′
y

≈
1
2(Px + Py)− ǫ

√

PxP ′
y

∆
=

Pa − ǫ

P ′
g

,

10



where have defined Pa = (Px + Py)/2 and P ′
g =

√

PxP ′
y, where P ′

y = 1
n

∑

i(yi + λi/β)
2. The

probability that a randomly chosen vector X on the sphere would have an empirical correlation

coefficient ρ with a given vector y′ = y+λ/β (that is, X falls within a cone of half angle arccos(ρ)

around y′) is exponentially exp[n2 ln(1− ρ2)]. For convenience, let us define

Γ(ρ) =
1

2
ln
(

1− ρ2
)

so that we can write

Pr{‖y −X1‖2/2− λ
TX1/β ≈ nǫ} ·

= exp

{

nΓ

(

Pa − ǫ

P ′
g

)}

.

If ǫ is such that

Γ

(

Pa − ǫ

P ′
g

)

> −R,

then the energy level ǫ will be typically populated with an exponential number of codewords,

concentrated very strongly around its mean

N(ǫ)
·
= exp

{

n

[

R+ Γ

(

Pa − ǫ

P ′
g

)]}

,

otherwise (which means that N(ǫ) is exponentially small), the energy level ǫ will not be populated

by any codewords typically. This means that the populated energy levels range between

ǫ1
∆
= Pa − P ′

g

√

1− e−2R

and

ǫ2
∆
= Pa + P ′

g

√

1− e−2R,

or equivalently, the populated values of ρ range between −ρ∗ and +ρ∗ where ρ∗ =
√
1− e−2R. By

large deviations and saddle–point methods, it follows that for a typical realization of the randomly

chosen code, we have

Ze(y,λ)
·
= e−nR max

ǫ∈[ǫ1,ǫ2]
exp

{

n

[

R+ Γ

(

Pa − ǫ

P ′
g

)

− βǫ

]}

= max
ǫ∈[ǫ1,ǫ2]

exp

{

n

[

Γ

(

Pa − ǫ

P ′
g

)

− βǫ

]}

= exp

{

n

[

max
|ρ|≤ρ∗

{

1

2
ln(1− ρ2)− β(Pa − ρP ′

g)

}

]}

. (13)
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The derivative of 1
2 ln(1− ρ2) + ρβP ′

g w.r.t. ρ vanishes within [−1, 1] at:

ρ = ρβ
∆
=
√

1 + θ2 − θ

where

θ
∆
=

1

2βP ′
g

.

This is the maximizer as long as
√
1 + θ2 − θ ≤ ρ∗, namely, θ > e−2R/2ρ∗, or equivalently, β <

ρ∗e
2R/P ′

g, which for P ′
g =

√

Px(Px + 1/β) (‖λ‖ is small), is equivalent to β < βR
∆
= (e2R − 1)/Px.

Thus, for the typical code we have

Ze(β|y) ·
=

{

exp
{

n
[

1
2 ln(1− ρ2β)− β(Pa − ρβP

′
g)
]}

, β < βR

exp{−n[R+ β(Pa − ρ∗P
′
g)]}, β ≥ βR.

Taking now into account Zc(y,λ), it is easy to see that for β ≥ βR (which means R < C), Zc(y,λ)

dominates Ze(y,λ), whereas for β < βR it is the other way around. It follows then that

Z(y,λ)
·
=







exp
{

n
[

1
2 ln(1− ρ2β)− β(Pa − ρβP

′
g)
]}

, β < βR

exp
{

−n
(

R+ 1
2

)

+ λTx0

}

, β ≥ βR.

A very similar analysis applies also to the derivative ∂
∂λi

lnZ(y,λ), which is essentially a weighted

average of xi with weights proportional to N(ǫ)e−βǫ for all ǫ ∈ [ǫ1, ǫ2]. Thus, the exponentially

dominant weight is due to the term that maximizes the exponent. Assuming that the correct code-

word x0 is dominant (Zc >> Ze, which is the case when R < C), this weighted average is obviously

dominated by the i–th component of x0, in which case the MMSE essentially vanishes. Otherwise,

for R > C, Ze dominates the partition function and the weighted average is overwhelmingly domi-

nated by the term corresponding to the maximizing ǫ, or equivalently, the maximizing ρ, which is

ρβ. This means that the conditional mean estimator of Xi is approximately given by:

E{Xi|y} ≈ ∂

∂λi

[

n

2
ln(1− ρ2β) + βρβnP

′
g

]

= − nρβ
1− ρ2β

∂ρβ
∂λi

+ βnP ′
g

∂ρβ
∂λi

+ βρβn
∂P ′

g

∂λi

= n
∂ρβ
∂λi

(

− ρβ
1− ρ2β

+ βP ′
g

)

+ βnρβ
∂P ′

g

∂λi

= nβρβ
∂P ′

g

∂λi

= βρβn ·
√
Px

2
√

Py
· 2yi
βn

12



= ρβ

√

Px

Px + 1/β
· yi

=
Px

Px + 1/β
· yi, (14)

where in the last step we have used the identity ρβ =
√

Px/(Px + 1/β), which can easily be verified.

This is simply the linear Wiener estimator that would have been applied had the input been zero–

mean, i.i.d. Gaussian, with variance 1/β (see also [9]). According to Proposition 1, the MMSE

associated with Xi is given by

E{(Xi −E{Xi|Y })2} ≈ Px −E{E2(Xi|Y )} = Px −
(

Px

Px + 1/β

)2

· (Px + 1/β) =
Px

1 + βPx
,

as expected.

4.2 Example 2 – The Curie–Weiss Model

Consider a binary source

P (x) = Cn exp







a

2n

(

n
∑

i=1

xi

)2

+ b
n
∑

i=1

xi







x ∈ {−1,+1}n

where a and b are parameters and Cn is a normalization constant, which is immaterial for our

purposes (as it is going to disappear upon taking derivatives w.r.t. {λi}, and the same comment

applies to the constants C ′
n and C ′′

n below). Let the channel be binary and symmetric, i.e.,

P (y|x) = eβxy

2 cosh(β)
, y ∈ {−1,+1}.

Then, the partition function Z(y,λ) can be represented as a one–dimensional integral using the

Hubbard–Stratonovich transform, which in turn can be assessed using saddle point methods, as is

frequently done in the statistical physics literature. Specifically, we have the following:

Z(y,λ) = C ′
n

∑

x
exp







a

2n

(

n
∑

i=1

xi

)2

+ b
n
∑

i=1

xi + β
n
∑

i=1

xiyi +
n
∑

i=1

λixi







(15)

= C ′
n

∑

x
exp







n
∑

i=1

xi(βyi + λi + b) +
a

2n

(

n
∑

i=1

xi

)2






(16)

= C ′′
n

∑

x
exp

{

n
∑

i=1

xi(βyi + λi + b)

}

·
∫ +∞

−∞
dθ exp

{

−nθ2

2a
+ θ

n
∑

i=1

xi

}

(17)

13



= C ′′
n

∫ +∞

−∞
dθe−nθ2/(2a)

∑

x
exp

{

n
∑

i=1

xi(βyi + λi + b+ θ)

}

(18)

= C ′′
n

∫ +∞

−∞
dθe−nθ2/(2a)

n
∏

i=1

[2 cosh(βyi + λi + b+ θ)] (19)

= 2nC ′′
n

∫ +∞

−∞
dθ exp

{

−nθ2

2a
+

n
∑

i=1

ln cosh(βyi + λi + b+ θ)

}

. (20)

Thus,

∂ lnZ(y,λ)

∂λi
=

∫ +∞
−∞ dθ tanh(βyi + λi + b+ θ) exp

{

−nθ2

2a +
∑n

i=1 ln cosh(βyi + λi + b+ θ)
}

∫+∞
−∞ dθ exp

{

−nθ2

2a +
∑n

i=1 ln cosh(βyi + λi + b+ θ)
}

≈ tanh(βyi + λi + b+ θ∗), (21)

where θ∗ is the maximizer of the expression at the exponent, i.e., it is the solution to the zero–

derivative equation:

θ =
a

n

n
∑

i=1

tanh(βyi + λi + b+ θ).

Thus, the MMSE estimator is:

E{Xi|y} =

∫ +∞
−∞ dθ tanh(βyi + b+ θ) exp

{

−nθ2

2a +
∑n

i=1 ln cosh(βyi + b+ θ)
}

∫+∞
−∞ dθ exp

{

−nθ2

2a +
∑n

i=1 ln cosh(βyi + b+ θ)
} (22)

≈ tanh(βyi + b+ θ∗), (23)

where now θ∗ is understood to be taken with λ = 0. For b 6= 0, the asymptotic MMSE is then

given by

lim
n→∞

mmse(X |Y )

n
= 1−E{tanh2(βY + b+ θ0)},

where θ0 is the solution to the equation

θ = aE{tanh(βY + b+ θ)},

and where Y is a binary {±1} RV, with mean m∗ tanh(β), m∗ being the dominant solution to the

equation m = tanh(am+ b), i.e., the maximizer of h2((1+m)/2) + am2/2 + bm, where h2(·) is the
binary entropy function. When b = 0, θ0 becomes a random variable which takes on, with equal

probabilities, one of two values, each one being the solution to the above displayed equation, except

that in one of them Y has mean m∗ tanh(β) and in the other, its mean is −m∗ tanh(β).

This calculation is intimately related to the Curie–Weiss model of magnetic spins [10, Subsection

2.5.2, pp. 40–44], where the parameter m plays the role of magnetization.
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4.3 Example 3 – The Generalized Multivariate Cauchy Noise Model

Let Xi ∼ N (0, σ2) be i.i.d. RV’s, and let the additive noise have a generalized multivariate Cauchy

distribution, i.e.,

P (y|x) = Cn,k

[1 + (y − x)TS(y − x)]k

where Cn,k is a normalization constant, S is a positive definite matrix, and k > 0 is chosen large

enough (as a function of n) such
∫

IRn dz/[1 + zTSz]k < ∞, i.e., k > n/2. The choice k =

(n + 1)/2 corresponds to the ordinary multivariate Cauchy distribution. Here, however, we will

require moreover that k is even large enough such that the second moments exist, i.e.,
∫

IRn dz ·
zTz/[1 + zTSz]k < ∞, which means k > n/2 + 1. For simplicity, we will take S to be the identity

matrix. However, our analysis easily extends to a general positive matrix S, as well as to a general

Gaussian vector X, not necessarily with i.i.d. components. Using the Laplace transform identity
∫∞
0 dt · tk−1e−st = Γ(k)/sk, we have:

Z(y,λ) =

∫

IRn
dxP (x)eλ

Tx · Cn,k

[1 +
∑n

i=1(yi − xi)2]k
(24)

= Cn,k

∫

IRn
dxP (x)eλ

Tx
∫ ∞

0
dt · t

k−1

Γ(k)
· e−t[1+

∑

i
(yi−xi)2] (25)

= C ′
n,k

∫ ∞

0
dt · tk−1e−t

∫

IRn
dxP (x)eλ

Tx · e−t
∑

i
(yi−xi)

2

(26)

= C ′′
n,k

∫ ∞

0
dt · tk−1e−t

n
∏

i=1

∫

IR
dxie

−x2

i /2σ
2

eλixi · e−t(yi−xi)
2

(27)

= C ′′
n,k

∫ ∞

0
dt · tk−1e−t

(

2πσ2

1 + 2tσ2

)n/2

· exp
{

−t
n
∑

i=1

y2i +
n
∑

i=1

(tyi + λi/2)
2

t+ 1/2σ2

}

. (28)

and so,

∂ lnZ(y,λ)

∂λi

∣

∣

∣

∣

λ=0
=

∫∞
0 dt · tyi

t+1/2σ2 e
−ttk−1 exp

{

−n
2 ln(1 + 2tσ2)− t

1+2tσ2

∑

i y
2
i

}

∫∞
0 dte−ttk−1 exp

{

−n
2 ln(1 + 2tσ2)− t

1+2tσ2

∑

i y
2
i

}

which can be approximated by t̂yi/(t̂+1/2σ2), where t̂ is the value of t that dominates the integral,

i.e.,

t̂ = argmaxt

[

(k − 1) ln t− n

2
ln(1 + 2tσ2)− t

1 + 2tσ2

∑

i

y2i

]

.

The derivation of the MMSE can be done in a similar manner as in the previous examples.
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5 Joint Distributions with Generalized Spherical Symmetry

Examples 2 and 3 of the previous section have one idea in common. In both of them we expressed

either the source or the channel as a one–dimensional integral over a variable (t or θ, in those

examples), where for each value of this variable, we have a product form measure, which enables,

after applying saddle point analysis on this integral, to pass to a closed–form formula, which has

the flavor of a single–letter characterization. In this section, we generalize this idea to establish a

somewhat more general framework.

Suppose that m = n and the joint distribution of X and Y is of the form

P (x,y) = Fn(
∑

i

φ(xi, yi)).

Let fn(t) be the inverse Laplace transform of Fn(s). Then, we have

Z(y,λ) =

∫

IRn
dxeλ

TxP (x,y)

=

∫

IRn
dxeλ

Tx
∫ ∞

0
dtfn(t) exp

{

−t
∑

i

φ(xi, yi)

}

=

∫ ∞

0
dtfn(t)

∫

IRn
dxeλ

Tx exp

{

−t
∑

i

φ(xi, yi)

}

=

∫ ∞

0
dtfn(t)

∏

i

∫

IR
dxie

λixi exp{−tφ(xi, yi)}. (29)

Before proceeding, we should note that by using the Laplace transform, we have essentially rep-

resented the joint distribution of X and Y as a mixture of product form measures, indexed

by t, each being proportional to exp{−t
∑

i φ(xi, yi)}. If we normalize these measures by Zn
t =

[
∑

x∈X

∑

y∈Y exp{−tφ(x, y)}]n, and define the i.i.d. probability distribution

P (x,y|t) = exp{−t
∑

i φ(xi, yi)}
Zn
t

then P (x,y) is essentially expressed here as a mixture of i.i.d. probability functions {P (x,y|t)},
where t can be thought of as a random parameter whose prior is given by wn(t) = fn(t)Z

n
t .

However, it should be kept in mind that this integral representation goes somewhat further than

being a mixture of i.i.d. distributions because fn(t), and hence also wn(t), may be negative for

some ranges of t even when Fn(s) is strictly positive for all s. For example, recall that the inverse

Laplace transform of s2/(s2 + α2) is sin(αt) (t ≥ 0), and so, for Fn(s) = αn/(s2 + α2)n, fn(t) is
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given by the n–fold convolution of sin(αt) with itself. In such cases, P (x,y) cannot be considered

a mixture of i.i.d. distributions.

Let us now denote

ρ(λ, y, t) = ln

[
∫ ∞

−∞
dxeλx−tφ(x,y)

]

,

ρ0(y, t) = ρ(0, y, t) = ln

[
∫ ∞

−∞
dxe−tφ(x,y)

]

,

and

ζ(y, t) =
∂ρ(λ, y, t)

∂λ

∣

∣

∣

∣

λ=0
=

∫

IR dx · xe−tφ(x,y)

∫

IR dx · e−tφ(x,y)
.

Then,

Z(y,λ) =

∫ ∞

0
dtfn(t)e

∑

i
ρ(λi,yi,t),

and so,

E{Xi|y} =
∂ lnZ(y,λ)

∂λi

∣

∣

∣

∣

λ=0
=

∫∞
0 dtfn(t)ζ(yi, t)e

∑

i
ρ0(yi,t)

∫∞
0 dtfn(t)e

∑

i
ρ0(yi,t)

which is approximated by ζ(yi, t̂), where t̂ is the maximizer of the expression

ln |fn(t)|+
∑

i

ρ0(yi, t).

The MMSE of estimating Xi is given by

mmse(Xi|Y ) ≈ E{X2
i } −E{ζ2(Yi, t0(t))}

where the second term is computed as follows:

E{ζ2(Yi, t0(t))} =

∫ ∞

0
dtwn(t)E{ζ2(Yi, t0(t))|t}

with the inner expectation being

E{ζ2(Yi, t0(t))|t} =

∫

IR dyeρ0(y,t)ζ2(y, t0(t))
∫

IR dyeρ0(y,t)

and with t0(t) being the value of t′ that maximizes
[

ln |fn(t′)|+ n ·
∫

IR dy · eρ0(y,t)ρ(y, t′)
∫

IR dy · eρ0(y,t)

]

.

Thus, we have characterized both the conditional mean estimator and the MMSE in the spirit of a

single–letter formula for this class of joint distributions.

The following further extensions of this formalism are conceptually straightforward:
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1. The range of the variable t may not necessarily be [0,∞). Our above analysis applies to

whatever range as long as the integrals exist.

2. The joint distribution P (x,y) may be a function of more than one statistic
∑

i φ(xi, yi), i.e.,

P (x,y) = Fn

(

n
∑

i=1

φ1(xi, yi), . . . ,
n
∑

i=1

φk(xi, yi)

)

.

In this case, one may apply a Laplace transform of a higher dimension

F (s1, . . . , sk) =

∫ ∞

0
· · ·
∫ ∞

0
dt1 · · · dtkf(t1, . . . , tk)e−s1t1−...−sktk ,

where si =
∑

i φi(xi), i = 1, 2, . . . , k.

3. The assumption that the i–th term of
∑

i φ(xi, yi) depends only on the i–th coordinate of

y is not really necessary. The derivation continues to hold, for example, if we allow more

generally the form
∑

i φ(xi, yi, yi−1, . . . , yi−k).

4. The case where φ is a quadratic form can be extended to allow a quadratic form that involves

all coordinates of x and y collectively, using a positive definite matrix S for weighting. In

other words, joint distributions with elliptic symmetry are allowed, with the form P (x,y) =

Fn[(x,y)
TS(x,y)], where (x,y) denotes the concatenated column vector of dimension (n+m)

formed by x and y, and the matrix S is of dimension (n +m) × (n +m). In this case, the

kernel is Gaussian and hence the estimator is linear for a given t.

6 Conclusion

In this paper, we have proposed a simple relation between MMSE estimation measures and a certain

expression, which can be viewed as a partition function, and hence be analyzed using methods of

statistical mechanics. This partition function is also related to several information measures, like

the information density and the Fisher information. The proposed approach has several advantages

over the I–MMSE relation and its variants:

1. It is conceptually simple and direct.

2. It applies in full generality, for every joint distribution of the desired random vector X and

its noisy observation vector Y .
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3. It provides, not only the MMSE error covariance matrix, but also the conditional mean

estimator itself x̂ = E{X |y}.

4. It offers several alternative expressions of the MMSE (see Proposition 1).

5. The approach is easy to extend to the mismatched case and it allows mismatch, not only in

the marginal of X , but in the entire joint density P (x,y).

Finally, considering earlier work on the I–MMSE relation and its various variants that were discussed

in the Introduction, it would be natural to seek relations between MMSE estimation to the Hessian

of the mutual information. One can show, using the same techniques as in Subsection 3.1, that the

following relation holds:

E = ∇2
0Iλ(X;Y ) + Cov{X} − Cov

{

(X −E{X})(X −E{X})T , ln P (Y |X)

Z(Y ,λ)

}

,

where Iλ(X ;Y ) is the mutual information induced by the joint distribution

Pλ(x,y) =
eλ

TxP (x,y)

Θ(λ)
.

Unfortunately, this relation seems somewhat more complicated and not as useful as the I–MMSE

relation of [5] or the relations proposed in Subsection 3.1 herein.
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