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Abstract—We consider the problem of broadcast with common For broadcast and multiple access channels, a precise prob-
messages, and focus on the case that the common messagem formulation was given in a recent work by Grokop and
rate R, ie., the rate of the message intended for all the 1gq 7] calledmulticast region, which provides a framework
receivers in the setA, is the same for all the setA of the same y . .
cardinality. Instead of attempting to characterize the camcity _to answer the above questlon._ Complete solutions were found
region of general broadcast channels, we only consider the in [1] for broadcast and multiple access channels vtitio
structure of the capacity region that any broadcast channel andthree users, but the problem remains open for more than
should bear. The concept of latent capacity region is useful three users. We believe this problem formulation reveals a
in capturing these underlying constraints, and we provide a \qre general concept not limited to only these two channels,

complete characterization of the latent capacity region fo the . . .
symmetric broadcast problem. The converse proof of this tipt and thus rename it as the latent capacity (or latent achivab

characterization relies on a deterministic broadcast chanel rate) region problem to make explicit this generality. Our
model. The achievability proof generalizes the familiar rde perspective is different from [1] in that we wish to highligh

transfer argument to include more involved erasure correclon  the importance of the latent capacity region concept in its
coding among messages, thus revealing an inherent conne@tti  «4yimum implication” meaning, and thus we shall define the
between broadcast with common message and erasure corremi S . . .
codes region in an alternative (but equivalent) manner to emeasi
o this perspective; our interest in this problem is partialle to
mégg:XeTermS_BroadcaSt channel, common message, individual 5 gpservation made during an earlier wdrk [2], as we shall
ge. discuss shortly.

One may wonder how a single achievable rate vector
. INTRODUCTION (R;,R5,...,Ry) can imply the achievability of a certain
) ] ) ] _region. In some cases, it is perhaps best explained by the
One central theme in multi-user information theory (IT) i§amiliar rate transfer argument, that the rate to transiminc
the pursuit of singIe-IettQrcharacterizations of the capacity,q, messages can be used to transmit individual messages

regions for channel coding problems, or the achievablereate j,qaad, and vice versa. For example, for a two user broadcas
gions (possibly under certain distortion constraints)source pannel. if a common message ra‘ﬁg , and individual
) 1,2}

coding problems. However, some useful properties of thegg,ssage rateR?,, andRy,, are achievable, respectively, then
regions can be identified, e.g., convexity, even when aeing; is ot difficult to see that the region 6R (1 21, Ry1y. Rez)

Ietterkcharaﬁte;:zatlﬁn IS no_t avauable. AN mmet?a;esﬂ]m ﬁiven below is achievable by transferring between common
to ask is whether there exist other properties of the capacll.  individual rates (see also [1])

region that do not rely on a single letter characterization.

The following question is of interest in this regard: in a Rpi9y + Ry < Ry oy + Ry
particular muin-u?er IT Erob_lem, can the_achle_\_/ablllty of Ry + Rpay < Rjy 5y + Riyp
rate vector(R;, R;, ..., Ry ) imply the achievability of any R Rty 4 Ry < REv o+ RE o 4+ R
rate vector in some regiBR (R, R;, ..., RY), regardless of {2p 77 Ty AR = a2y T Ay T ey

the exact probabilistic channel model? We show that indepdwever, for more than two users, such a naive rate transfer
this is true for the symmetric broadcast problem, and thisgument is not sufficient, and additional processing islade
region can be rather non-trivial. We denote the largest af observed in[]1] for the three user case. In fact, this was

such regionsR(R7, R;,...,Ry) as C(R1, R5,...,Ry) in exactly the perspective taken inl [1], where the goal is to
a channel coding problem, and call it thatent capacity exhaust all such rate transfer operations. The perspdaties
region implied by (R, R3,..., R}y); the latent achievable in [1] and that taken here are complementary to each other, an

rate region can be similarly defined, possibly under certaibne may suit certain problems better than the other. Because
distortion constraints, for a source coding problem thoiighof this relation, it is not surprising that the achievalilit
is not our main focus. proof of our result also relies on a generalized version of
o rate transfer operations. We shall show that when more users
(en(igﬁ‘:oﬁlfér'zs‘ggrdgﬂoﬁfs'Reseamh‘ Florham Park, NJ 07938A ¢ involved, such generalized rate transfer operationires
1The emphasis on single letter is largely because such kircharacteri- ~ Strategic application of erasure correction codes, whevials
zation is usually computable. an inherent connection between erasure correction codes an

“Apparently the region defined by; < R} is implied in a channel coding proadcast with common messages. More specifically, in this
problem, but this trivial case is not interesting. Note heredo not take the

subscript of rateR} to have any specific meaning associated with the us<¥V0”<_- we shall Iargely S_tay in the framework df [1]’ and
indices, but merely as an integer label to enumerate the fatguestion. provide a complete solution to th&-user broadcast channel
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the inner bound approximation is exactly the latent cagacit
region implied by a single rate pair.

The second reason making this concept important is even
if it does not lead to a single-letter characterization or an
approximate characterization, it can still provide insggimto
the problem. One such example is that the capacity region
can always be written as the (possibly uncountable) union of
latent capacity regions, which places certain constraimts
the geometry of the achievable region. For the above example

of successive refinement source coding, we show in[Big. 1 a
\ possible rate region on the left, and an impossible rateoregi
on the right. The one on the right is impossible because the
R R, black dot is in the achievable region, thus the latent capaci
! region implied by it (given by the thin line) must be also in
Fig. 1. The bold curve gives the rate region: while the lef @npossible, the the region, which is not satisfied by the region depicted on
right one is impossible for the successive refinement soewdéing problem. the right. This important observation was also discussed in
(11'23 thin lines give the latent capacity region associatatl each small black [1] (see Corollary 4_3)' and we do not elaborate it further.
Nevertheless, it is rather clear that the latent capacigyore
indeed provides fundamental and useful property of the rate

. . " region, in addition to the well-known convexity.
latent capacity region problem under an additional symynetr

constraint, whereas only cases with two and three users were
solved in [1] without such a constraint.

The characterization of latent capacity/rate region isamp
tant in multi-user IT for two reasons. First, it may facitga
fmdmg a_smgle-letter characterlzat_lon or an approxinteli@- ., quce the notion of latent capacity region in this cahte
acterization. For example, a rate-distortion region ctiariza- .
tion for the problem of multi-stage successive refinemetttwi " a general K-user broadcast channel, the conditional
degraded decoder side information was given in the form BfoPability distribution is given as

Il. PROBLEM DEFINITION AND PRELIMINARIES

We first define the symmetric broadcast problem, and then

bounds on sum-rates [2] as p(y1[1727]7y2[1727]77yK[1727”x[1527]) (2)
iRi > iI(X. Win|[ W1, Wa,s e, Win_1, Yin) where the index in the brackgt, 2, ...] is used to denote time;
= ’ U ’ ’ the random variables have alphab&t§ #1, ..., %5, and the

1<m<N. receivers are indexed aks2,..., K. The alphabets can be

discrete or continuous, and the channel can be memoryless or
On the other hand, it seems impossible to establish dirdotly otherwise; for our purpose, it is perhaps beneficial, thaugh
converse for a characterization in the form of bounds on eagcessary, to limit the attention to cases where the channel
individual incremental rate_[3], despite the fact that th® t transition process is (block) stationary and ergodic. We us
characterizations are equivalent [2]. This is not a coiecik, script letters to denote sets, and particularly,and B are
and it is not difficult to show that the latent rate region fofeserved for subsets @f; = {1,2,...,K}, i.e.,
this problem has exactly the following form, assuming non-

negativity of the rates ABC{L2,..., K} 3)
m m |A| is used to denote the cardinality of sétA length+ vector
> Ri>) R, 1<m<N. (1) X[1,2,...,n] is sometimes written a¥™; for a K dimensional
i=1 i=1 vector (Ry, Ro, ..., Ri), we sometimes write it simply aR.

Intuitively, when a rate vectqi?;, R3, ..., Ry ) is achievable, Let {W4, A C Zx} be 2K mutually independent and

its latent capacity/rate region gives the largest achievaluniformly distributed messages, whel€, is the message
region thus implied, i.e., maximally utilizes it, which mayintended for all the receivers in the set, for notational

help simplify the representation of the region when takingonvenience, we includéV, but will assume it to be a
the union over auxiliary random variables. Similarly, when constant. For each = 1,2, ..., K, define the set of random
approximate characterization is needed, a good inner bowatiables
may be found by choosing one or several good (auxiliary cod-

ing) distributions in an information theoretic coding sotee Wi = {Wa, Ak € A} )
which lead to one or several rate vectors, and then taking theus )V, is the collection of messages that theh receiver

convex hull of their latent rate regions. One simple exampighould decode. We also define the following set of random
is in [4], where an approximate characterization for theesidyariables

information scalable source coding problem was given for —
general sources under the squared error distortion measwute Wy = {Wa, Al > k}. (5)



More specifically forK” = 3, we have thus the problem is meaningful.

Wi = {W1, Wiz, Wis, Wias )} . Definition[3 makes clgar the_“maX|maI |mpl|cat|on" mean-
Wy = {Wa, Wia, Wag, Wias )} ing of the latent capacity region. In multi-user IT, usually
27 172, P12, P28, TV 123 a coding scheme is given by fixing some auxiliary random

Wy = {W3, Wiz, Waz, Wias} variables, and then showing a single rate vector is achievab
Wi =W UW, UW; with certain random codes; the task of maximizing the impli-
Wa = {Wia, Wi, Was, Wias} cation region of this single point is sometimes mingled with
— the conditions under which this single point is achievalblee
W3 = {Wia3}, (6)

concept of latent capacity region can be used to delineata.th

where we have slightly abused the notation by writing, e.g., The following lemma is needed in the converse proof.
Wiy asWy. The setst* and X'; are defined similarly for Lemmal (K-way submodularity): Let  {U,,i _
length.» random vectors. In this work, we only consider th Y Y): : v -

,2,...,N} be a set of mutually independent random
case that the rates of messad€g are the same for all SUChvariabIes and{V,,i — 1,2 N} be a set of random
messages where the sgt has the same cardinality. More ' S

. . variables jointly distributed with it. Letj;, i = 1,2,..., K
forma!ly., .the problem is defined as follows. . be subsets ofy. Then
Definition 1. An (n, Ry, Ra,...,Rx) symmetric broad-

. K

cast code consists of an encoder ZH(VM € GulUii € Gy) > ZH(Vi,i c §k|Ui7i c @g),
f: Tonri g — X", (7) k=1 k=1

AgK 2 (11)

whereRy £ 0 and K decoders, where

gk Y — H VRYIE (8) Gk = U (G5 NG, NN G, ). (12)

{j1.92,-Jk } STk

A:ke A
resulting in the decoded messages atktth receiver{ W, 4 : This lemma is a direct consequence of the sub-modularity
k € A}, and the decoding error probability of at least onef the conditional entropy function, when the random vegab
message at one receiver being conditioned on are independent (a proof is given in
K Appendix[8), and theK-way submodularity property of any
P = Pr(U U (Wi # W, A}> _ ) submodular function given in_[5].
k=1 A:ke A

Definition 2: A rate vectorR is symmetrically achievable
if there exists a sequence of, R) codes withP{™ — 0. The
closure of the set of symmetrically achievable rate ved®rs [Il. M AIN RESULT
called the symmetric broadcast capacity region, denoted as
Co(y1,ys,....yxc|z)» OF Simply asC,,.
Note that secrecy constraint is not considered in the defini-Our main result is a complete characterization of the latent
tion. Next we define the latent capacity region for this peol Ccapacity region for the symmetric broadcast problem. To
present this region, a few more quantities need to be defined

Definition 3: For a given rate vectaR*, the collection of first. Let us define the following up-exchange rate 46t j

rate vectorsR(R") is called the latent capacity region for K-\ "‘/j-1
symmetric broadcast implied biz*, denoted ag(R*), if the bij = (j B z> (j B z‘)’ (13)
following two conditions are satisfied) (For any broadcast o
channel,R* € C, impliesR(R*) C C,; (ii) There exists a set @nd the down-exchange rate for- j
of channels{p, }, such thatR" € C,, andR(R*) 2, Cp.,. i UK -
For the second condition, we essentially wish to find one bij = (Z j) (z‘—j )7 (14)

particular channel such thaR(R*) > C,. However this ,
does not quite serve the purpose since this channel might define¢;; = 1. The up/down exchange rates; ;

difficult to realize, however it can always be approximate%lssentlally describe the ratio when converting certaire typ

by a sequence of channels. The above definition is slighflySSages into other types. For example wiién= 3, the
different from the one in[[1], which is common messagd/i23 can be used to convey individual in-

formation to the three users, and vice versa, but the coinwers
C(R") = ﬂ Cp. (10) of such rates is not always ratio one. It will become clear in
pR*€C, the achievable proof how such conversion can be done in a

It can be easily verified that they are equivalent. The problgMost efficient manner.
we wish to solve is the characterization ®fR™). It is clear DefineC*(R") to be the set of rate vectoR satisfying the
that the regionC(R*) is uniquely defined for anyR*, and following conditions with someK? non-negative quantities



Tijgs (Z,j) S IK X IK,

K
Ry > rij, i=12,... K, (15)

Jj=1
K

O_RJSZQSUTU, j:1,2,,K (16)
=1

Roughly speaking, the ratg ; is that taken from level-
rate R} but used to transmit level-messages. We have the
following theorem.

Theoreml: For any non-negative rate vectors
(RY,R;3,..., R} ), we have

C(Ri,R5,...,R%x)=C"(R},R5,...,Ry). (17)

Example: for K = 2, it is straightforward to seep; o =1, _ _ o
i.e., the same amount of individual message rate for eaagh uSg 2 The latent capacity region implied by rate veator2, 2).
can be used to transmit a common message;¢and= 1/2,
i.e., to split a common message into two equal parts, each to
transmit a separate individual message for one user.

Example: for K = 3, it can be verified using Fourier-
Motzkin elimination [7] thatC* (R}, R7, ..., R},) is given by
the non-negative rates satisfying

Proof of forward part for Theorem Since (R”) is
achievable on any channel, there exists a sequence of codes
with such rates with?{™ — 0, and we will use these codes
to construct a set of codes to approach any rate vectors in

3R; + 6R2 + 2R3 < 3R} + 6R; + 2R3, C*(R™). This is done by essentially relabeling and adding
2R, + 2Ry + 1Rs < 2R} + 2R} + 1R}, erasure correction codes on the messages.
1Ry + 2Ry + 1R3 < 1R} + 2R5 + 1R3, Observe that the messaggd’ 4, |.A| =i} can also be used
3R + 3Ry + 1R3 < 3Ry +3R; + 1R, (1) to transmit common messages to the subsets with cardinality
smaller or larger thari. Moreover, we can use part of the
A typical shape is given in Figll2 witfR}, R;, R5) = rate R, denoted as- ;, for this purpose, to transmit some
(1,2,2). The computation is tedious and thus omitted hermessages{wg, |A| = j}, thus increasingR;. Such an

The same result can also be reduced from that given'in [1] fgperation will cause a conversion of ratg; for i-user subset
the asymmetric case. It is clear that this region is nonditiv messages into ratg_;r; ; for j-user subset messages, with an
and it is not at all clear a priori why these rate combinationgchange rate; ;. The regiorC*(R*) is precisely the result of
should be considered. allowing this kind of pairwise exchange on the rate ved®t

In [1], the region is characterized by investigating thehus we only need to show that the exchange ratgsgiven

distinct universal encoding/decoding operations, whigadk before Theorerfil1 is indeed valid, then the existing sequence
to the concept of extremal rays. Because the latent capagitychannel codes can be used directly.
region in question is a polytope, it can be characterized by
its faces, edges, or vertices. The extremal rays are ealgnti
the edges of this polytope. However this proof approach
[1] appears rather difficult to generalize for more than ¢hr
users since the number of edges quickly becomes very lar
and thus we introduce the parametric characterizafiongad)
(16) to avoid this difficulty. We first consider the cage< j. For a subseB of Zx where
Notice that the exchange rate is pairwise, suggesting & thB| = j, there are a total 0@) subset of3 with cardinality;
symmetric setting there is no need to convert rates joistly,, denote the collection of such subsets2&s. For a particular
useWio and W5 to send the same messadg.s. In the rest userk € B, it can decode (with high probability) the messages
of the paper, we shall prove Theor&in 1. The naive approach{é¥ 4 : k € A C B}, i.e,, (Zj) such messages. To transmit
finding the planes of the rate region and derive its upper attte common messag®/, if we can guarantee that when
lower bounds is not appropriate for genefsl particularly receiving any(!~}) messages out of thé) messages in the

for the purpose of converse. Instead, we utilize the stractuiset25?, the message is decodable, then it is clear that indeed

It is clear that we only need to consider the following
oblem: on a channel witl®; = R and R, = 0 for k& # 1,

ow do we transmit messagéd’ 4, |A| = j}, and how much
te R; can be supported? We will only need to distinguish
0 cases < j ori > j, since it is cleaw, ; = 1.

of the regionC*(R") to give a proof. any receivers in the sé can decode the messagés. This is
an erasure correction problem anc(@j), ({j)) maximum
IV. PROOF OF THEFORWARD PART FOR THEOREMI[I] distance separable (MDS) code can satisfy this requirement

The proof of the forward part of Theordth 1, i.e., the fact thathich indeed exists when the codeword length is sufficiently
C*(R") satisfies the first condition in Definitidn 3 is relatively)arge. Furthermore, since each subgetf cardinalityi is a

straightforward. subset of( ) sets of cardinalityj, only (?jj)fl of the rate



R4 can be used for each MDS code. This yields » X
X, — | 1
1 1 X
K-\~ j -1 _>X12 Receiver 1
Rj = j—i i—1 R, = d)”Rl (19) X, ——» x13
- - ’ 123
Next consider the cage> j. Let B be a subset dfx where Xs > —X,
[B| = i. The common messagg can be shared uniformly . , > X15 Receiver 2
between |ts(?) subsets of cardinality, for transmitting their '>><<zs
“individual” message. Since each subseof cardinality j is Xig— 123
a subset of distincﬁ(_‘?) sets of cardinality, it can take part —X,
1—J Xy »X
in such sharing(lfjj?) times. This yields 5.2 Recsiverd
1 Xy —>X23
N — K— . 123
R; = (Z> < . ])Rz = ¢ ;1. (20)
J =] Fig. 3. The deterministic broadcast chan#él= 3 from [I].
Taking into account the existence of good MDS code, and the
fact thatC, is a closed set, the proof is complete. [ ]

In [], it was observed that in order to efficiently transfer 11iS iS indeed our proof approach, however before giving

rates, sometimes a modulo two addition is needed, simif® rather long proof for the general case, we first prove a
to that seen in butterfly network of network codirig [6]. Th&&W rate combinations foi’ = 3, which illustrates the basic
MDS codes we use in the above proof can be understoodt%%h”'ques as well as facilitates better understandmgu'gfh

a generalization of the modulo two addition, which itself i€€ Proof of the case fofd = 3 can also be found in_[1],
essentially a(3,2) MDS code. It is worth noting that other OUr prc_)of given here is different and in fact more _structured
coding/processing may also be useful for converting raté’gh'Ch is geared toward the general case. After this example,

however, MDS codes are sufficient in solving the symmetrft few necessary tools and intermediate results are provided
broadcast problem. and finally we give the converse proof of Theorgm 1.

V. PROOF OF THECONVERSEPART FOR THEOREM(]] A. Bounding Two Rate Combinations for K = 3

The converse proof of Theordnh 1 requires more work. For We give an outline of the proof for the first two inequalities
simplicity we shall assumgfa’s are all integers; if this is not in the example given after Theordrh 1.
the case, a sequence of channels need to be considered, andProof:
we shall return to this technical point after the proof.

We only need to provide one particular channel tRdt e
C, and R(R™) 2 C,. The channel is the deterministic one
considered in[[1], extended to th&-user case; see Fi@l 3
for the caseK = 3. More precisely, let the channel input be
the collection of{ X 4, A C Zx}. The alphabet ofX 4 where

3nR} + 6nR; + 2nR;
R 1g
Z3 4 H(X") + 3 ZH(XmX?z&Wus)

] i=1

<
—

—~

ol o
[

a)

. L > W, ;
|A| = k is Z,r; . The k-th channel output’, is given by - _1[H(Xl W) + HOV:)]
Vi = {Xa:ke A} (21) J
) L +§ZH(X1'”|X{L23,W123)—”5
Denote this deterministic channel a& In order to prove the i=1
converse part for Theoref 1, we need to estaldlistiR*) 2 ®) 9 3
C,- for this channel. = 2nR; + 4nRa + 2nR3 + 3 Z H(XMW;)
For any A = Ay, As,..., A where A; > 0, define the i=1
following quantity 18
K +§Z;H(Xi"|W123) — H(X{53|Wias) — nd
Be+(A) = B > AxRy, (22) © ) )
k=1 > 2nRy +4nRy + 2nR3 + gH(X123|W123)
and similarly 13
K + 3 Z[H(Wi|W123) + HX!"W;)]
Be(A) = max > AgRy. (23) i=1
o — H(X153|Wi23) — nd’
It is clear that bottC*(R*) andC,- are convex regions, and = 3nRy + 6nRy + 2nR3 — nd’
thus if we can prove the following theorem, then the converse 13 1
of Theoren 1L directly follows. +13 S H@AMNW,) - 3 H (X1 Wi2s)
Theorem?2: For any A where A; > 0, i=1
(@)
Be-(A) > Be(A). (24) > 3nRy +6nRy +2nR3 — nd’, (25)



where (a) is by Fano’s inequality, (b) is by adding and® 2 3 4 ° | |
subtracting the same term, (c) is by applying Fano's inetyual ‘X7 —F
on the third term, and noticing that Lemrhh 1 together with M

the fact of the channel being discrete implies that,
Fig. 4. An illustration of the optimal extremal solutionwstture. The longer

and bolder marks give the s&t

3

> H@X W)
i=1

> H (X Wh) + H(X (5[ Wa) + H(X o3| Wias) Lemmas: For any integers, j, k, we havep; r. > ¢; jd; k.

n -1 75 with equality only when the sequenég j, k) is monatonic.

> H(X {5 |W HX 26 ’

> max{H (X 53| Wiaz), H(X, | W2)} @) ™ Lemmas: For anyk > j, we have(k +1) (s 7)) ki1, =
and (d) is again by the inequalities ih_{26). This completq&(K;l)%J_

i inati . K- —\ 1

the proof_ for the first rate combination. For the second rate| o;yma7: For anyi < j, (7)) (IJ( N7 =g,
combination, we have

The above lemmas (particularly Lemmadl[12-5) may be
6nR* + 6nR; + 3nR; best understood as a currency exchange system where up-
3 3 converting (or down-converting) many times results in the
> ZH(XZLW;Wﬁ‘FZH(Xin) same final exchange rate as a single step conversion, but
= P up-converting mixed with down-converting to the original
(@) 3 currency results in a loss. The proofs of these lemmas are

> Y H(X]P[X,Ws) + 3nRy + 6nRy + 3nRy given in Appendi{B.
=1
+ H(X3|Wa) — nd C. Extremal Solutions and the Effective Rate Set

3
=Y H(X["X;Ws) — 3H (X5 [W2)
i=1

To prove the converse part of Theorém 2, we proceed in
two steps: first we identify some special optimal solutioms f
the maximization probleni(22) with certain desired proigsit

+3nRy + 6nR; + 3nRs + H(X5 W) — nd then show thatBe-(A) is an upper bound to the quantity
> 6nRy + 6nRy + 3nRkR3 — nd’ Bc(A). In this subsection we discuss the first step.
3 Definition 4: A non-negative setting of; ; satisfying [I5)
+ Z H(X!"Xy|[WiWs) — 2H(TZ|W2)] is called extremal if the following conditions holg For each
i=1 i=1,2,..., K, there exists a uniquge Zx such that; ; =
®) , R; andr;, = 0 for k # 4. (i) If r;; = R > 0, then
> 6nRy + 6nRsy + 3nR3 — nd’, (27)

rj5 = Rj. (i) If 7, ; = Rf > 0, then for anyk such that
where (a) is because df(26), and in (b) we applied Lefima®ax(i,j) > k >min(i, j), rej = Ri.

Lemmas8: The solutions to the maximization problem22)
include one that is extremal.

The lemma is intuitively true since a linear optimization

roblem has an optimal solution at its corner point. The

and then omit the first term since the chan,n(_al is discrete; tBgncept of extremal solution makes the definition of corner

rest of the inequalities i (27) are by Fano’s inequality.m iy in the problem context more precise. A proof is given
This proof illustrates several main components of the progf Appendix(B.

for the general case. Firstly, the rate combination need®t0  pefinition 5: In an optimal extremal solution, the effective

written as summations under appropriate proportions BH¥0 rate set is defined a8 2 {i € Zx : r;; > 0 for somej}.

the K-way submodularity lemma needs to strategically usefhe elements of¢ in an increasing order are denoted as

and thirdly there are connections between different lapérs €1, €0, €.

messages and thus terms may be canceled among them. For th@mmals implies there exists a specific structure of rate
general K-user problem, the bounding becomes much MO change in the optimal extremal solutions.

complicated, and we will rely on the optimal solutiély« (A) Lemma9: For an optimal extremal solution:
to provide necessary structure and guidance.

3
Z H(XX5 [ WiWs) > H(X|[Wh) + 2H (X5 [Ws), (28)

=1

o There exist a partition of the sequentg, ..., K, la-
beled asS;, Ss, ..., Si¢|, each consisting a consecutive

B. Several Properties of ¢; ; sequence of integers, amde S;.

We begin with a few properties on the exchange rate. ¢ For k€S, V\{e havery.e, = Rj. o

Lemma2: For any integers, j, k such thatl < i < j < This structure is analogous to scalar quantization to some
k < K, we haveg; o, = dir. - extent, as illustrated in Figl] 4.

Lemma3: For any integers, j, k such thatl < i < j <
k < K, we havepy joj = ¢p,i. D. Proof of the Converse Part of Theorem[2

Lemmad4: For any integers, j such thatl <i < j < K, Proof: For a fixed vectorA, let {#; ;} be an optimal

we haveo; ;¢;; =i/j < 1. extremal solution for the maximization problem22), artdfle



be its effective rate set and I8, Sz, . . ., Sj¢| be the partition Lemmall on the second term. For notational simplicity, we
sets; for convenience, denote the smallest element in the sall ignore the small quantity in the sequel.

S; asl; and the largest element as. Assuming a sequence Slightly further expanding the first term i (32) and sub-
of length. codes is given with diminishing error probability.stituting it in L, give us [38). More generally, we claim that
Let X; and X; be defined similarly a3V; and)V;. The proof for m such thatu, — 1 > m > e, — 1, (34) holds, which we
consists of two layers of inductions. We start from the inngrove by induction. Clearly it holds fom = u; — 1 since it
layer, and then put the pieces together in the outer layer. is exactly [38) in this case. Suppose it holds for= m*, we
shall prove it also holds fom = m* — 1. Putting [32) into
(34), we havel(35) given on the next page. In order to simplify
(39), first notice thatiy .« + bi.m++1 = bg,m~, and

Define the following quantity fork = 1,2,...,|&|, for
which lower bounds will be derived

up—1 K
L2 Y ang ) HXX W) b (K 1) ) Acy s Gurens (o 1)
j=e i=1 m* | m*er K—1
' K m Aek (uk—l)
D HXP X, Wai1), (29) @ . Ao Gurers Om
i=1 ek Ae,
where (i) ¢m* o — Aek+1jm*,ek+1 ’ (36)
a2 Pjer Pitlen j=e wn — 1 ek
= (G I G Ry Tk where (a) is by LemmBl7 and (b) is by Lemida 2. It follows
(; A s that
A Uk, Ck €k+1 Y UE,Ck41
Okyup = =) T L (30) K o K o
=1 okt -1 ke Y HOViWane 1) + bime 11y HOV, W= 11)
and for convenience we have definet,, ., = 0 and ile =1
Bjreie) 41 £ 0. Note that all the coefficients in front of the 5 K-1
entropy functions are non-negative: those in the first sum-"— Ok Z}H(WZ|W’”*) + Kby m* —1 B
mation are straightforward to verify by using the definition Z;(
of ¢;;, and for the last term we on_ly n_eed to observe that _ D ZH(Wi|Wm*)
Acy Puy. e, = Acriy Pun,eny, DY the optimality of the extremal =
solution. For convenience let us also define Ao e o
+ nK ¢m* er — Rm*- (37)
A (bj e Aek+1¢uk7ek+1 . ' Aek
bk,j: KLl - Za’kla =€y, Uk, i
(j—l) Aey, (uk 1) Furthermore, notice that
(31) m*
which are clearly non-negative quantities. We are intexkst ke Y H(X] Wi) = agmem™ H(X gy 1 [Wine 41)
these quantitieg’'s because they are directly related with the =1
rate combination being considered, as we shall see shortly. mtl
y . + bk 11 Z (X7 Vi)
We start by writing the following
K o m” o
ZH(in|X?+1Wj+1) = br,m~ ZH(Xi IW;)
i=1 =1
K n + (bk,m*-kl - ak,m*m*)H(T;*JrﬂWm*-H)
:Z (X |Xj+1WJ+1)+KH( j+1|WJ+1) mo
=1 = brme > H(X] W)
_KH( 7+1|WJ+1) =1
K A€k+1 ¢uk,€k+1 el A
=3 H(X" X[ W) — KH(X, W) T H(X e 1 Wieg1),  (38)

N
Il
-

K where the last step is due to
HW; W) + Y HA X W0, W)

IVE
'M“

*
bk,m*+1 — Q,m*T

=1 =1
* m* e Aek 1¢uk,€k 1 * ¥m*.e
KH( J+1|WJ+1) no =(m +1)¢(Kt17)k - A+ (11{-1)+ -m EbK—'lk)
(b) K o o m* €k \up—1 m*—1
> ZH(Wi|Wj+1) + ZH(Xi Wi) _ _A€k+1¢uka€k+1 (39)
i—1 i—1 o A, (K_ll) ’
B \ug—
]H( j+1|WJ+1) no, (32)

where the last equality is by Lemrha 6. Combinihgl (35)J (37)
where (a) is by Fano’s inequality, and (b) is by applyingnd [38), we havd (40), proving that the claim](34) is indeed



true. following inequality holds

k
Letting m = e, — 1, we can write [(4l1) on this page. By g (4 > A b —A ‘ R*
breaking the second term as given [l(42), where in the last” (4) 23D [Acic ~ ey B ] B

L. i=1j€S8;
step we apply Lemmil 7 and Leminla 2, and noticing that for €| _ K
the third term G Ae —
l Y Ae Y bRyt ﬁ S HW, W)
Cko k e i=k+1 =l n (ek+1—l) i=1
brey D H(X] Vi) > bre, Y H(X W), ) -
. - ! +——fs > HX W) (48)
implied by the discrete nature of the channel, we can further nK(eM_l) =1

write (43) on the next page.
We again take an induction approach to prove this claim.
This concludes the inner layer induction, and next we turrhe claim is clearly true fok = |€] — 1. Now suppose[(48)
to the outer layer. First notice that the optimality of ertid js true for k = k*, and we seek to show it is also true for

solution and LemmaA]9 together imply that k = k* — 1. For notational simplicity, let us define
€]
Cik = Ae,Pje; — Ae ey 49
Bo+(A) = Ae, > 6 R}, O ph = A A Qs o
i—1 jes; We first prove the following inequality
k* E*—1 A
We first write [45) Whe_re the inequality can b_e justified Z Z cjr RS > Z Z cjre—1R; + n[’“{ Li«. (50)
as follows. Observe that in the second summation, for anyi=1 jes; i=1 jeS;

k > e, the random variables( 4 with [A| = k appear 14 g this, we need to count in the second term the number
only in the lastK —.k + 1 terms in thnglljter summation. appearance of random variabl&s, for all |A| = m, for
Each inner summation has a total &f(7;") such terms, gy fixed m, such thatm € Z,,,.. This is similar to [45), but
which implies such random variables are counted a total Qlfghtly more involved. Form such thatug- > m > ep-

Aecie Kjec times. Thus by the cardinality of the alphabetsy j easily seen that there are a totaltgf ,,, K (X~1) such

the normalized entropy is upper bounded By. Through & 3ndom variables irx-, implying the following amount of
similar argument, it is not difficult to verify that fot < es;, R* is accounted for
all the terms are accounted for. Furthermore, notice that by"
the optimality of the extremal solution, for anye S;, we Acy. b K<K - 1) — A ¢ _A &
) . . . . K k*,m 1 e Pm,epx epx 1 Pmieps 19
have Ac, ¢je; > Aez Pjepe» and thus the first summation is m
non-negative. (51)
_ ) ) where we have used (86). This indeed is the difference

We next apply [(48) withi: = |£] in (45), and write [(46) petween the left hand side dF{50) and the first term on the
on the next page, because we hayg = K, Ac.,, =0 DY yight hand side, in terms oR%,. For the casen < e, the
definition, and following amount of R, is accounted for

Pe e el 1
! (e\i\—ll) (exi;—ll) K Ten m—1 e P ek w1 Omoeie 1)
(52)
More generally, we claim fok = 0,1,...,|€| — 1, the where we have used the derivation In](42). This is again
up—1 K e A (b
L 2 Z Qk.,j ZH(Xin|Xj+1Wj+l) +nk ((buk;ek - %) Ruk
j=ex i=1 €k
K Ug
+arun Yy HOWViWa) + ik, Y HE V) = upar,u, H(X o War1)- (33)
i=1 =1
L= a; Y HA X W) +nK Y (¢j,ek - %) Rj+bemi1 Y HOWilWni1)
— i=1 j=m+1 k i=1
flasy e viEvel —>n vl Ae ¢u e el i v
+bemir Y HX Vi) = gt H(X g, 1| Wy 1) — % > H@ [ Win). (34)
i— €k \up—1 i=m+1




m*—1 K K m*
Li> Y ar; ¥ HX X W) + arme Y HWilWie11) + agme ZH X, W)
j=ex i=1 i=1 =1
= Q= H (X e [Wine 1) + nK Z <¢j78k - H;liw) Rj + bg,m»+1 ZH(Wi|Wm*+1)
j=m*+1 ek i=1

m*+1 e — o A ¢ up—1 e

+ b1 Y HAG W) = wgagu, H(X g, 1 [Wat1) — W > H@ W) (35)
P er \up—1)  i=m*+1

_—

L >
b= Z A, :
J=¢€k =1

j=m*

K Uk K
o A Pje _
arg Y HX X W) +nK Y (qu-,ek - M) Rj + b= Y HOWi[ W)
=1

< —n — —n — Ae Qbu e wl —n =
+ b Y HX W) = urtt o H(X 1 Wy 1) — W Y HX Wig), (40)
=1 €k \up—1 i=m

- Aek 19j,er+1
Li >nK ) <¢j,ek—¢)3 +bkekZHW|Wek)+bkekZHX W)

Jj=ek Acy i=1
e Ae, .. & wel
— g, HEL 1 Wy 1) — W N H@, Win): (41)
€k \up—1 i=ep

=1 7=l

K €k — 1
_ K—
Dher, Y HWilWe,) = bpe,nK ( )R + by, ekZH WiWy,)
A

& ! K 1) €k41 ¢uk7ek+l (K 1) K
—uac S (g - et U S owL
=D et (up_1)

J=l uk—1 i=1
er—1 A (b K o

=nK ) («ﬁj,ek - T) R+ be, Y HOV, W), (42)
j=lk k i=1

precisely the difference between the left hand sidé_of (5d) ain (a) we used Lemmia 7, and (b) is because

the first term on the right hand side, in terms Bf,. Thus A A,
(B0) is indeed true. inbew-,ew + %oy
n nK(ek*+171)
— Aek* _ Aek*+1 ¢uk7ek*+1 Aek*+1
K-1 K-1
K (k* 1) nk (uk 1) nk (ek*ﬂfl)
. . . Aek* Aek*+1 (uI:* —11)
Now we proceed with the proof of (48) through induction = K(E D) (K1 Durrernrsr — T T~
by assuming it holds fok = £*, and write [GB) on the top of nK (j.73) (uk*—l) (ek*+1_1)
this page by applyind (43). In order to simplify {53), simila ~ _ Ae,. (55)
terms need to be combined, for which we write](54), where nK(,f i)

o A€ ek 41
L >nK > (aﬁj,e,c—%)fz +bkekZHW|wlk>+bkekZHX W)
€k =1

7=l
ukfl

vl I Ae 1¢u ,€L4-1 ——n —
= ukka H (X 1 [Wayoi1) = — 58 (K’il’“* > H@X L Wig). (43)
€k

uk—l) i=eg
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[€]-1 Ae‘g‘ K ¢j,€‘g‘ ¢lj+1,€‘g‘ a n=n T
BC*(A Z Z €1¢j e; e‘g‘d)] e‘g‘] + W Z (Kfl) - (Kfl) ZH(‘XZ |Xj+le+1)
=1 S j:e‘g‘ j*l j =1
€=
= e byen| B4 ey 45
- Z Z Acibje: €\£\¢Ja€\s\] i T nk el (45)
i=1 jeS§;

|€]-1 ulg| A b
Be-(A) 2 Z Z [Ae,bje. — Ae\f\‘bﬂ%ewsd Rj + Ac Z <¢J¥8£ - %) R

i=1 jES; J=lje| “lel
lig|
A%b ZHWW +ZHXW)—&WLG HX, W )
[€],ee 1\8\ nk [E1Q]E | ug g +11"Vujg+1
=1 =1

u‘g‘ —1

Ae Ae ¢u e —n N
[€] |€14+1 |E]:€1E14+1 HX :
nkK AE‘E‘ ( K-1 ) Z ( 1+1|W +1)

u‘g‘fl i:e‘g‘
|£‘71 K A K
_ * el A7
= Z Z I:A61',¢j;€i - Ae‘g\(bj,e‘gd Rj + Ae‘g\ Z (bj,e‘g\Rj + m ZH(WAWZ‘E‘)
i=1 jES; j=lig elg|—1/ i=1
.
+ —E_ NTH@T W), (46)
nK(e‘g‘ 1) =1
k*—1 Up* Ae ije
Bee(A) > Y Y R+ A Y («ﬁj,e,c* - A—) R;
=1 je8; G=lp* Cr*
| Ao & A .
o ZH WilWi,.) + > H(X] W) e i g H (X, 1 W 1)
=1 =1
A (b wpr —1 I |€]
Tk 41 VUR* Ok 41 Z H(X  Wig) + Z A, Z bj.e: R
nK(uk*—l) i=ep* i=k*+1 i=l;
A lix 1
+ —E N HW W, ek*“ (X V) 53
R(E )Z Wiein) + R(E Z | (53)
epx41—1/) i=1 ek*Jrl 1 1=1
where the last step is again by Lemfia 7. solution, we have
Aek*+1 ¢uk* +1epx 41 > Aek* (buk* +1,ep% (58)

and thus[(5P) follows, where (a) is by Lemina 4, and the final

Next consider the summatioh (56) where we have split th
equality is by[[58). Now combining (53}, (b4), (5€). {5%)ch
last term and combined it with the other terms, and uged (5 ) completes the induction proof T 48) for— k* — 1.

moreover, some termi (X [W;) fori = [ +1, ..., e;- are
ignored because they are non-negative by the discreteenatunyriting (@8) for k& = 0, we have
of the channel. Observe that for the last term in the righthan

; I€]
side of [56)
BC* > ZAel Z d’] e1
Aek*+1 _ Aek*+1 (buk* 8k*+1
RLED) ek .
epry1—1 Up* —1 A
_— H H( X
Aek*+1¢uk* R4l Aek*+1¢uk*,ek*+l . + TLK(K 1) <Z W |Wl1 + Z |W )>
= =0. (57) ei—1) \i=1 i=1
nK(uk*—l) 1€
For the second term in the right hand side [of] (56), notice > ZAel Z% e R, (60)

that ug- + 1 € Sk«41, thus by the optimality of the extremal
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Up

2
Aek* Z (d’j,ek* - %) R + A(}? bk* €L * ZH W |Wlk* Z AAeI Z (bg eI

=l e

=1 i=k*+1 7=l
A K
+ Sk A HW; w .
() 2 O
Upg* A K o |€]
= Z (Aek* (ijek* - Aek*+1¢j=ek*+l) Rj + nfk(j bk*vek* ZH(W1|Wlk* Z Ae1 Z ¢j el
=l i=1 i=k*+1 7=l
Ae,. i — L A, (K-1
bl S W) + —( )R,
TRy 2 T o e )
@ A =
a €L* 11 Tas
Z A, Z Gj.e; 5 + < K “be ep T W) ZH(WZ|WII¢*)
i=k* ep*41—1 i=1
0 I€] A K o
> A, Z Bje B + —E—= > HWi[W,..), (54)
1=k* ( *—1) =1
A Ly

3

ep* =N A, . — —
nIk{ bix e ZH()Q W) — ﬁuk*ak*,uk*H(Xuk*+1|Wuw+l)
=1

Upx —1 lix 41

Ae * U * €1 % ——n — Ae *
_ LenPus e > HX L Win) + ——5—= > H@ W)
nK(uk*—l) i=ep* nK(ek*+]—l) i=1
Lo
Ay A o
ek* ZH X |W ( k* 41 e U Qe ) H(X |W )
K—1 yUp* wpx 41 Upx +1
k* 1 i=1 nK(ek*+lfl) ni ’ * *

K( K—1 ) - TLK( i:;k* H(T?+1|Wi+l)7 (56)

ep*y1—1

Upx —1
Aoy Aepe i Gure oo s
+
n

Up* —1)

Aek*+1 _ Aek* U+ Af = Aek*+1 Aek* Uk~ <¢uk* JCR* Aek*+1 ¢“k* vek*+1>
K—1 TUET U K—1 - K—1\ K—1
K(ek*+1—l) ni nK(ek*+1—l) ni (uk* —1) Aek* (uk*—l)

- (uk* + 1)Aek*+1 (buk* ep*p1 Aek* Uk (buk* N

nK(uk* 71)
(a) Aek*+1 ¢uk*+1 epxy1 Aek* U~ Qbuk* . Qbuk* 1w

nk (uk* 71)¢uk* +1,upx

>0, (59)

where the second inequality is because the first term time channel erase&: — 1) of them. This channel is not
the parenthesis degenerates to zero, and the second is @omemoryless channel anymore, however, our definition is
negative. Notice that for any € S;, by the optimality of sufficiently general to include such a case, and the converse
the given extremal solutiord; < A, ¢;..,, thus by the non- proof can be used without any change.

negativeness of rat&;’s, we arrive at

2

VI. CONCLUSION
Be (A >ZA&Z¢WR >ZAR (61)
We consider the latent capacity region of the symmetric
This completes the proof. m Droadcast problem, which gives the maximum implication

region for a specific achievable rate vector. A complete
For the case tha2’’s are not integers, we can insteadharacterization is provided, for which the converse proof

consider a sequence of channels with memory, for which thalies on a deterministic channel model, and deriving upper
alphabet sizes aré™’ii, however, for eachn channel use, bounds for any bounding plane of the rate region. The forward
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proof reveals an inherent connection between broadcakt wit APPENDIXB
common messages and erasure correction codes. PROOF OF THELEMMAS

We believe the latent capacity region (or latent rate region
is a general concept, and can be applied to other problem.
In [1], the multiple access channel is also considered far tw
and three-user case. It is conceivable that the technicee us  pyoof of Lemma2
in this work can be used to generalize their results for the N .
multiple access channel. Another interesting case may ée th . (K - l> (j - 1) <K —J </€ - 1)
k

interference channel, where the well-known Han-Kobayashi' "’ ji—1 j—i k—j k—3j
region [9] is indeed the projection of a rate region for the  (j —i)/(K — j)!(j — 1)! (k — j)U(K — k)!(k — 1)!
coding problem with common messages. A careful analysis of ™ (5 —)1(; —i)I(i — 1)! (K — j)!(k — j)!(j — 1)!
the latent capacity region for the general interferencenobh (K — k)l(k — 1) (k — i)!
may yield further insight into the problem. DR i k- (66)
]
Proof of Lemma [3
ACKNOWLEDGMENT
=5 ) () ()
k,j%j, . . . ..
The author wishes to thank the anonymous reviewers for k—3j k —J/ N Ty N T
their comments which help improve the presentation of this ~ _ (k= )'J!(K —j)! (5 —)4!(K —i)!
paper. kl(k — )UK — k) (5 — i)WK= 5)!
(K =) (k=)
T R(K = k) (k=) = Ok (67)
APPENDIXA u
SUBMODULARITY PROPERTY OF CONDITIONAL ENTROPY Proof of Lemma[4 By the definition of¢;, ;, it is easy
to verify that
Lemmal0: Let Uy, Us,..., Uy be a set of mutually in- R ] (68)
dependent random variables, and 1ét V5,...,Vy be N Pijbii = 3 <4
random variables jointly distributed with them. L6t be a -
subset ofZy, i.e.,G C Zy. The conditional entropy function _
Hvy(G) £ H(V;,i € G|U;,i € G) is a submodular function, Proof of Lemma® The case = k is exactly Lemmal4,
i.e., for anyGi, G, C Iy, thus we only need to consider the cas¢ k; we may also

assumeg # ¢ andj # k since these cases are trivial. The order
Hyw(91) + Hyju(92) = Hyju(91 U G2) + Hyju(91 0 G2)- of 4, 4,k can be arbitrary, but since the proof only relies on
Lemmal2[B andl4, we may assume without loss of generality

Proof: Notice that i < j. Thus we have the only three cases. k1¥ ¢ < j: by

Hy\y(G1) + Hyy(G2) Lemmal3 and4, we have; > ¢; 1¢i jbji = bijdjk- (2)
= H(V,,Ui,i € G1) + H(V;,Uy,i € Go) i<k<j: by LemmaDZ anfl4, we hg\@k > GikPh.jbjk =
CH(Uii € G) — H(Us,i € Ga), (62) bi,j 05k ()i < j < k: the equality is implied by Lemmid 2.
[ |
and
Proof of Lemma[6t
Hyy(G1UGa) + Hy |y (G1 N Ga) o1
= H(V;,Uiyi € G1UGa) + H(V;, Uiyi € G1 N Ga) (k + 1)(k )mﬂ,]
CHULI€GUG) - HULI€GinG). (83) g e ik - ik 1— )t
The mutual independence amolfgs gives S (k-D(K —E)(k+1—-)H(K -k —1D!(k+ 1)
H(U,,i € Gr) + H(Usi € G) g <{fK— 1>]i({(K—j>;j! — (69)
=H(U;,i € G1UG) + H(U;,i € G1 NGa). (64) (k= DIE — WK =k = 1)k
Slmllarly, we have
The submodularity of unconditioned entropy function of-ran | |
dom variables is well-knowri_[8], which gives k K- ¢k - k(K = DK = U = 5)'5!
YRNK — k- 1)'(k J)'(K k)!k!
> H(V;, Ui € G1UGe) + H(V;, Ui i € G1NG2)  (65) IS )'(K k: 1)k (70)

and the proof is thus complete. H proving the lemma. [ ]
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Proof of Lemmal[t We only need to write the following ;' < ¢, from (Z3) and Lemm@&]2 arid 3, we have

(K - 1> <K - 1>1 (K =D - DK =) Ajdikdr; > Ajgig, and Ay idij > Ajdr j, (76)

i—1 j-1 (i - })!(Kl_ ONE _,1')! N which lead tog; . ¢x; > 1, contradicting Lemmal4, thus this
G-D (K=)W=9" jsan impossible case. Case @k j’ < k, from (78) and

T =D -0 (K =) Lemmal2, we have
1\ (K -\ "

B <j' >< ~ Z) =¢ij. (T1)  Ajbijdjndr; = Ajdiy, and Ajdpj > Ajor,;,
j—i)\j—i (77)

which lead to¢; 1o ; > 1, thus this is another impossible

Proof of Lemmal8 Suppose an arbitrary optimal solution.gqe  case (3) > k, from (78) and Lemma&l2, we have that
of the maximization problem(22) is given, we shall nexy, this case

transform it into an extremal one which is also optimal.
For condition {), we may assum&; > 0 because otherwise Ajidng = Aj ik (78)
the statement is tri\_/ial_. Observe that for any optimal sohut thus the new solution that, ; = r;; andrj, ;, = 0 does not
the second inequality ii (16) must hold with equality, beseau gecrease the quantity being optimized. Thus the conditions
otherwise the quantity being maximized can strictly inseea (j), (ii) and ii) are indeed satisfied simultaneously by some

First suppose for certaif) there exist distinc§, j» such that optimal solution. The lemma is proved. m
rij, > 0 andr; j, > 0, then we must have

Ajl ¢i,j1 Tijw — Aj2¢i,j2ri,j23 (72) REFERENCES
. . ., [1] L. Grokop and D.N.C. Tse, “Fundamental constraints onlticast
because otherwise, e.g.,f held, then |ett|n9"i,j2 =Tig Tt capacity regions,” preprint,_ arXiv:0809.2835v1.
rij, and r; s =0 strictly increases the quantity being [2] C. Tian and S. Diggavi, “On multistage successive refiaemfor

imi ; ; i ; Wyner-Ziv source coding with degraded side informatidi&EE Trans.
maximized in [(2R). However, if{12) is true, the new solution Information Theory, vol. 53, no. 8, pp. 2946-2960, Aug. 2007.

given above doe_s not decrease the quantity being maXimiqu]- Y. Steinberg and N. Merhav, “On successive refinementttierWyner-
thus a new solution can be found such that there exist no such Zziv problem,”|EEE Trans. Information Theory, vol. 50, no. 8, pp. 1636

. . . P P 1654, Aug. 2004.
two dIStInCtjl’jQ' Given this is true, it is clear that for each [4] C. Tian and S. Diggavi, “Side-information scalable smicoding,”|EEE
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ri . = 0 (with otherr; ; values unchanged) can not decrease PP 49760 Jan 1981.

the guantity being maximized. To see this, we only need to
observe that

Aok R > Argi 051 Ry > Ajdi iRy, (74)

which is by Lemmdb and_(¥3). Thus the conditiofjsand
(ii) are indeed satisfied by some optimal solution, and from
here on we shall only consider such solutions.

For condition {ii), we only discuss the case< j, because
the other case > j is similar. The fact that; ; > 0
implies A; R} < A;¢; ;R;. We may assumée; > 0 because
otherwise the statement is trivial. Take an arbitrarysuch
thati < k < j, we may have, ;; = R for somej’, and the
value of ;' may bej’ < i, i < 5/ < k or 3/ < k; note that we
can assumg’ # i since conditionif afore-proved. It is easy
to see that we must havé; > 0 and A;; > 0. The fact that
r;; > 0 andrg j > 0 imply that

Ajgij > Ajidij, and Ay i > Ajdr ;. (75)

The three cases are now discussed individually next. C3se (1
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