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A Construction of Systematic MDS Codes
with Minimum Repair Bandwidth

Yunnan Wu

Abstract— In a distributed storage system based on erasure
coding, an important problem is the repair problem: If a node
storing a coded piece fails, in order to maintain the same level
of reliability, we need to create a new encoded piece and store it
at a new node. This paper presents a construction of systematic
(n, k)-MDS codes for2k ≤ n that achieves the minimum repair
bandwidth when repairing from k + 1 nodes.

I. I NTRODUCTION

It is well known that erasure coding can be used to effec-
tively provide reliability against node failures in a data storage
system. For instance, we can divide a file of sizeB into k
pieces, each of sizeB/k, encode them inton coded pieces
using an(n, k) maximum distance separable (MDS) code, and
store them atn nodes. Then, the original file can be recovered
from any set ofk coded pieces. This is optimal in terms of
the redundancy–reliability tradeoff becausek pieces, each of
sizeB/k, provide the minimum data for recovering the file,
which is of sizeB.

One of the challenges for erasure coding–based distributed
storage is therepair problem (introduced in [1]): If a node
storing a coded piece fails or leaves the system, in order to
maintain the same level of reliability, we need to create a new
encoded piece and store it at a new node. If the source file is
not available in the system (e.g., in an archival application),
then the repair has to be done by accessing other encoded
data only. A straightforward way to repair a failed node in
a system based on(n, k)-MDS code is to let the new node
downloadk encoded pieces from a subset of the surviving
nodes, reconstruct the original file, and compute the needed
new coded piece. In this process, the new node incurred a
network traffic ofk × B/k = B. Since network bandwidth
could be a critical resource in distributed storage systems,
an important consideration is to conserve the repair network
bandwidth.

The repair problem amounts to the partial recovery of the
code, whereas conventional erasure code design focused on
the complete recovery of the information from a subset of the
coded pieces. The consideration of the repair network traffic
gives rise to new design challenges for erasure codes. This
problem and its variants have been studied in recent years
and various code constructions have been proposed. Next we
briefly review the related existing work on the constructionof
erasure codes with reduced repair bandwidth.

In this paper, we focus on(n, k)-MDS codes, because they
achieve the optimal reliability–storage tradeoff. Via a cut-
based analysis, Dimakiset al. [1] presented a lower bound on
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the network bandwidth needed to repair one node in an(n, k)-
MDS code. Under a symmetric setup where the replacement
node downloads the same number of bits from each ofd
nodes, it is shown that the total repair traffic has to be at
least Bd

k(d−k+1) . The same bound for total repair traffic in fact
also holds even if we relax the symmetric setup; this will be
explained in Section II.

The cut lower bound on total repair traffic has been shown
in [1]–[4] to be achievable using network coding, if we adopta
relaxed notion of repair —function repair, where the repaired
code continues to be(n, k)-MDS but it may be different
from the original code before the repair. However, it is not
clear that this network coding scheme can be made always
systematic (i.e., one copy of the data exists in uncoded form).
From a practical standpoint, it is highly desirable to have the
systematic feature, so that in normal cases, data can be read
directly from the uncoded copy, without performing decoding.

Motivated in part by the pursuit of a systematic code with
reduced repair bandwidth, in [5], Wu and Dimakis formulated
a variant of the repair problem, called theexact repair prob-
lem, where the same code is always maintained before and
after the repair. For the exact repair problem, [5] presented
an interference alignment scheme and a vector version of it.
The interference alignment scheme can achieve the cut bound

Bd
k(d−k+1) for (n, 2)-MDS and the resulting code is systematic.
However, the scheme cannot achieve the cut bound for general
k.

Functional repair and exact repair are not the only possible
models. In a recent work, Rashmi K.V.et al. [6] proposed
a code construction that can achieve the cut bound ford =
k+1. The construction of [6] essentially implements a hybrid
functional and exact repair model. In the scheme, each node
stores 2 symbols,yTui and yTvi + zTui, where the2k
original information symbols are represented by two vectors
y ∈ F

k and z ∈ F
k. The vectors{ui} can be chosen as

then code vectors of an(n, k)-MDS code. If nodei fails, the
first symbolyTui is exactly reconstructed; the second symbol
yTvi + zTui is repaired to a new symbol that has the same
form yT

∗ +zTui. Since{ui} can be chosen based on any
(n, k)-MDS code, we can in particular use a systematic(n, k)-
MDS code. Thus, the code can expose half of the information
symbols,y, in uncoded form.

Having explained several repair models, we now reflect
on the practical needs again. Both the MDS feature and the
systematic feature are highly desirable in practice. However,
providing the systematic feature does not necessarily require
all symbols be exactly reconstructed. This motivates us to
explore one avenue – Look for a systematic MDS code with a
hybrid functional and exact repair model, where the systematic
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symbols are exactly reconstructed and the nonsystematic sym-
bols follow a functional repair model. Heading this direction,
in this paper we present a construction of(n, k)-MDS codes
for 2k ≤ n that achieves the minimum repair bandwidth when
repairing fromk + 1 nodes.

II. REVIEW: CUTSET BOUND ON TOTAL REPAIR TRAFFIC

In this section we describe the cut bound for total repair
traffic. The analysis amounts to a slight extension of the
analysis in [1], [2]. Specifically, in [1], [2] the replacement
node downloads the same number of bits from each ofd nodes;
in the following Lemma 1, the replacement node is allowed to
download any number of bits from the each ofd nodes. The
same bound on total network traffic still holds.

Lemma 1: ConsiderB bits being stored via an(n, k)-MDS
code atn nodes, where each node storesα = B/k bits. To
repair any failed storage node by accessingd ≥ k nodes, the
total incurred network traffic is at least Bd

k(d−k+1) .
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Fig. 1. Illustration of the proof of Lemma 1.

Proof: As in [1], [2], we consider the information flow
graph that describes the repair problem as a network com-
munication problem. The information flow graph is illustrated
in Figure 1. In this graph, each storage node is represented
by a pair of nodes, sayini and outi, connected by an edge
whose capacity isα, the storage capacity of the node. There
is a source node,s, which has the entire file. The source has
infinite capacity edges to then storage nodes before the repair.
In Figure 1, storage node1 fails and we create a new storage
node, node5, which downloadsβi bits from each of the three
surviving nodes and then storesα bits; this is represented in
Figure 1 by the edgesout2in5, out3in5, andout4in5 that enter
node5. There are alsodata collectors, each corresponding to
one request to reconstruct the original data from a subset of
the nodes. For example, the data collectort in Figure 1 has
infinite capacity edges from nodes2 and5, modeling that the
file needs to be reconstructed by accessing storage nodes2 and
5. By analyzing the cut betweens and the data collectors in
the information flow graph, we can obtain bounds on the repair
traffic. In particular, if the minimum cut betweens and a data
collectort is less than the size of the file, then we can conclude
that it is impossible to reconstruct the file, regardless of what
code we use. In the following, we use this cut argument to
establish a bound on the total network traffic.

Without loss of generality, suppose the first storage node
fails and noden+ 1 recovers the content stored at node 1 by
downloadingβi bits from nodei + 1 for i = 2, . . . , d + 1.
Consider a data collectort that connects to noden+ 1 and a

… …

…

Fig. 2. Illustration of the proposed scheme.

setP of k− 1 other nodes in{2, . . . , d+1}. Consider ans–t
cut (U,U) with

U
∆
= {t, inn+1, outn+1} ∪ {outi : i ∈ P}. (1)

This is illustrated by Figure 1. Then we obtain a bound by
requiring that the capacity of the cut is at leastB

(k − 1)α+
∑

i/∈P

βi ≥ B. (2)

For each(k − 1)-subsetP ⊆ {2, . . . , d + 1}, we can obtain
one inequality like (2). Summing up all these inequalities,we
have that:
(

d
k − 1

)

d− k + 1

d

d
∑

i=1

βi ≥

(

d
k − 1

)

(B − (k − 1)α).

Thus
d

∑

i=1

βi ≥
Bd

k(d− k + 1)
.

III. T HE CODE CONSTRUCTION

The proposed scheme is illustrated in Figure 2. LetF denote
the finite field where the code is defined in. In Figure 2,
x ∈ F

2k is a vector consisting of the2k original information
symbols. Each node stores 2 symbols,xTui andxTvi. The
vectors {ui} do not change over time. The vectors{vi}
changes over time as the code repairs. We maintain the
invariant property that the2n length-2k vectors{ui,vi} form
an (2n, 2k)-MDS code; that is, any2k vectors in the set
{ui,vi} has full rank2k. This certainly implies that then
nodes form an(n, k)-MDS code. We initialize the code using
any (2n, 2k) systematic MDS code overF.

Now we consider the situation of a repair. Without loss of
generality, suppose noden failed and is repaired by accessing
nodes1, . . . , k + 1. As illustrated in Figure 2, the replace-
ment node downloadsαix

Tui + βix
Tvi from each node of

{1, . . . , k + 1}. Using thesek + 1 downloaded symbols, the
replacement node computes two symbolsxTun andxTv′

n as
follows:

k+1
∑

i=1

(

αix
Tui + βix

Tvi

)

= xTun (3)

k+1
∑

i=1

ρi
(

αix
Tui + βix

Tvi

)

= xTv′
n (4)
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Note thatv′
n is allowed to be different fromvn; the property

that we maintain is that the repaired code continues to be an
(2n, 2k)-MDS code. Here{αi, βi, ρi} andv′

n are the variables
that we can control. The following theorem shows that we can
choose these variables so that (3) and (4) are satisfied and the
repaired code continues to be an(2n, 2k)-MDS code.

Theorem 1: Let F be a finite field whose size is greater
than

d0 = 2

(

2n− 1
2k − 1

)

. (5)

Suppose the old code specified by{ui,vi} is an (2n, 2k)-
MDS code defined overF. When noden fails, there exists an
assignment of the variables{αi, βi, ρi} such that (3) and (4)
are satisfied and the repaired code continues to be an(2n, 2k)-
MDS code.
Proof: We begin by examining the condition (3). Introduce

η
∆
= [α1, β1, . . . , αk+1, βk+1]

T (6)

A
∆
= [u1,v1, . . . ,uk+1,vk+1] . (7)

Let ηi denote thei-th entry ofη; let ai denote thei-th column
of A. Then the condition (3) can be equivalently written in
matrix form as:

Aη = un. (8)

Suppose two arbitrary entries ofη, sayηi andηj , are fixed at
arbitrary given values. Letη\{i,j} denote the subvector ofη
after removing thei-th andj-th entry andA\{i,j} denote the
submatrix ofA after removing thei-th andj-th column. Since
u1, . . . ,un,v1, . . . ,vn are code vectors of an(2n, 2k) MDS
code, any2k columns ofA have full rank2k; in particular,
A\{i,j} is invertible. Then, to satisfyAη = un with givenηi
andηj , η\{i,j} is uniquely determined as

η\{i,j} = A−1
\{i,j}[un − ηiai − ηjaj ]. (9)

Thus, the solutions to (3) have two degrees of freedom, with
exactlyF2 solutions. Given any two entries ofη, sayηi and
ηj , there is a unique solution to (3) and the other entries are
affine functions ofηi and ηj . In particular, we can consider
η1 = α1, η2 = β1 as the two free parameters after considering
(3).

After considering (3), we are left withk+3 degrees of free-
dom that we can tune. Let the variables{α1, β1, ρ1, . . . , ρk+1}
be collectively represented by a vectorξ with k+3 entries in
F. Next we examine (4). From (4),v′

n is determined as:

v′
n =

k+1
∑

i=1

ρi(αiui + βivi). (10)

It remains to prove that we can chooseξ ∈ F
k+3 such that

the new code{u1, . . . ,un,v1, . . . ,vn−1,v
′
n} continues to be

an (2n, 2k)-MDS code.
Since the old code{u1,v1, . . . ,un,vn} was an(2n, 2k)-

MDS code, we just need to prove thatv′
n can be made

linearly independent of any2k − 1 subset of U
∆
=

{u1, . . . ,un,v1, . . . ,vn−1}. For any 2k − 1 subsetS of
{1, . . . , 2n − 1}, let US denote the2k × (2k − 1) matrix

whose columns are given by the vectors inU indexed byS.
Then the(2n, 2k)-MDS condition boils down to:

∏

S⊂{1,...,2n−1}, |S|=2k−1

det ([US ,v
′
n]) 6= 0. (11)

From (10) and the discussion above, we see that each entry of
v′
n is a multivariate polynomial inξ. This implies that the left

hand side of (11) can be viewed as a multivariate polynomial
in ξ; it can be shown that the total degree of this polynomial
is at mostd0.

Claim 1: For anyS ⊂ {1, . . . , 2n− 1} with |S| = 2k− 1,
det ([US ,v

′
n]) 6= 0 for someξ ∈ F

k+3.
Proof of Claim: The replacement node downloads one

symbol each from nodes1, . . . , k+1. Each nodei of 1, . . . , k+
1 stores a pair of symbolsxTui andxTvi. The matrixUS

has2k−1 columns; we also view it as a set of2k−1 column
vectors. Thus there must exist a node, sayi∗, in 1, . . . , k+1,
satisfying eitherui∗ /∈ US or vi∗ /∈ US or both.

Supposevi∗ /∈ US for i∗ ∈ {1, . . . , k + 1}. From the
discussion earlier, given any two entries ofη, there is a unique
solution to (3). In particular, we can letαi∗ = 0 andβi∗ = 1;
this maps uniquely to one assignment ofα1 andβ1, according
to (9). We further chooseρi∗ = 1 and all otherρi = 0. With
this choice ofξ, v′

n = vi∗ . Sincevi∗ /∈ US and the old code
{u1,v1, . . . ,un,vn} was an(2n, 2k)-MDS code,

det ([US ,v
′
n]) = det ([US ,vi∗ ]) 6= 0, (12)

for this choice ofξ.
The caseui∗ /∈ US follows similarly.

Claim 1 implies thatdet ([US ,v
′
n]) is a nonzero multivari-

ate polynomial inξ, which further implies that the left hand
side of (11) is a nonzero multivariate polynomial inξ. From
the Schwartz–Zippel Theorem (quoted below as Lemma 2), for
a finite field whose size is|F| > d0, there exists an assignment
of ξ ∈ F

k+3 such that (11) holds. Thus the theorem follows.

Lemma 2 (Schwartz–Zippel Theorem (see, e.g., [7])):
Let Q(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate poly-
nomial of total degreed0 (the total degree is the maximum
degree of the additive terms and the degree of a term is the
sum of exponents of the variables). Fix any finite setS ⊆ F,
and letr1, . . . , rn be chosen independently and uniformly at
random fromS. Then if Q(x1, . . . , xn) is not equal to a zero
polynomial,

Pr[Q(r1, . . . , rn) = 0] ≤
d0
|S|

. (13)

Corollary 1 (A Systematic (n, k)-MDS Code):
The above scheme gives a construction of systematic(n, k)-
MDS codes for2k ≤ n that achieves the minimum repair
bandwidth when repairing fromk + 1 nodes.
Proof: Considern ≥ 2k. Note that in the above scheme,
we can initialize the code{u1, . . . ,un,v1, . . . ,vn} with
any (2n, 2k)-MDS code. In particular, we can use a sys-
tematic code and assign the2k systematic code vectors to
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{u1, . . . ,u2k}. Since{u1, . . . ,un} do not change over time,
the code remains a systematic(2n, 2k)-MDS code. Thus then
nodes form a systematic(n, k)-MDS code. The code repairs a
failure by downloadingk+1 symbols fromd = k+1 nodes,
with the total file size isB = 2k. This achieves the cut bound
given in Lemma 1.

A. Code Construction Algorithm

From the proof of Theorem 1 and the Schwartz–Zippel The-
orem, for a sufficiently large finite fieldF, if we independently
and uniformly draw each entry ofξ, then (11) will hold with
high probability. This can be used to develop a randomized
code construction procedure.

We initialize the code using any(2n, 2k) systematic MDS
code overF. Subsequently, for each repair, we randomly draw
a vectorξ from F

2k. For each drawing ofξ, we compute
the resultingv′

n and check whether it is linearly independent

from the

(

2n− 1
2k − 1

)

subsets of{u1, . . . ,un,v1, . . . ,vn−1}

with cardinality2k − 1. The random drawing process can be
repeated until the desired property is met.

B. Structural Comparison with Other Schemes

The above code scheme has a simple structure. It starts with
any given(2n, 2k)-MDS code, withn code vectors exactly
maintained. The othern code vectors evolve over time as the
code repairs. The invariant property is that the code is always
a (2n, 2k)-MDS code (hence an(n, k)-MDS code). We now
compare the structure of this code with other existing schemes.

Since the proposed scheme works ford = k + 1, we
only consider the cased = k + 1 in the comparison. For
d = k+1, all schemes to be discussed below store two symbols
at each node, which are linear combinations of the2k original
information symbols. Thus all these schemes can be expressed
in the same notation, wherex denotes the2k information
symbols and nodei storesxTui and xTvi. However, the
schemes differ in additional structural properties imposed to
the code and also in how the repair is done.

First, the network coding scheme for the functional repair
model [1]–[4] achieves the cut bound on total repair band-
width. The code has a looser structure compared to the code
proposed in this paper. In each repair, the two symbols can
be repaired to two new symbols. The only requirement is that
the2n code vectors always form an(n, k)-MDS. However, in
doing so, it is hard, if not impossible, to provide the systematic
feature.

Second, the interference alignment scheme for the exact
repair model [5] achieves the cut bound on total repair
bandwidth for k = 2 but not for generalk. The code is
formed by two rows of(n, k)-MDS1, each involving half of the
variables. More precisely, let the original information symbols
x be split into two vectorsy andz, each of lengthk. Then the
first row of the code is a systematic(n, k)-MDS code applied
to y and the second row is a different systematic(n, k)-MDS

1The code is viewed as a2× n matrix (see Figure 2), where the columns
correspond to then nodes.

code applied toz. The requirement is that each row is(n, k)-
MDS and certain interference cancelation condition must be
met. In this code, the firstk node store the2k systematic
symbols; in comparison, in the proposed code, the systematic
symbols are spread in the first row, across the nodes.

Third, the scheme of [6] achieves the cut bound on total
repair bandwidth. In this scheme, the2k original information
symbols are represented by two vectorsy andz, each of length
k. Each node storesyTui andyTvi+zTui. The first row of
the code, given by the vectors{ui}, do not change over time
and they can be any(n, k)-MDS code. The second row of the
code is essentially the same code{ui} applied toz plus a
linear function ofy. Here the vectors{vi} changes over time
as the code repairs; they can assume arbitrary values.
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