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A Construction of Systematic MDS Codes
with Minimum Repair Bandwidth

Yunnan Wu

Abstract—In a distributed storage system based on erasure the network bandwidth needed to repair one node itvan)-
coding, an important problem is the repair problem: If a node MDS code. Under a symmetric setup where the replacement
storing a coded piece fails, in order to maintain the same et node downloads the same number of bits from eachi of

of reliability, we need to create a new encoded piece and swiit o . .
at a new node. This paper presents a construction of systemat nodes, it d's shown that the total repair traffic has to be at

(n, k)-MDS codes for 2k < n that achieves the minimum repair leastz72i—. The same bound for total repair traffic in fact
bandwidth when repairing from & + 1 nodes. also holds even if we relax the symmetric setup; this will be
explained in Sectioflll.

The cut lower bound on total repair traffic has been shown
) i in [1]-[4] to be achievable using network coding, if we adapt
~ Itis well known that erasure coding can be used to effegsaxed notion of repair —function repair, where the repaired
tively provide reliability against node failures in a datarage qde continues to bén, k)-MDS but it may be different
system. For instance, we can divide a file of sizeinto k' fom the original code before the repair. However, it is not
pieces, each of siz&/k, encode them inta coded pieces (jear that this network coding scheme can be made always
using an(n, k) maximum distance separable (MDS) code, a;&g/stematic (i.e., one copy of the data exists in uncoded)form
store them at nodes. Then, the original file can be recovereghom 4 practical standpoint, it is highly desirable to hdwe t
from any set ofk coded pieces. This is optimal in terms oy stematic feature, so that in normal cases, data can be read
the redundancy—reliability tradeoff becausepieces, each of i ectly from the uncoded copy, without performing decagin
size B/k, provide the minimum data for recovering the file, \jotivated in part by the pursuit of a systematic code with
which is of sizeB. . ~ reduced repair bandwidth, in [5], Wu and Dimakis formulated

One of the chal_lenges for erasure cod!ng—based distributed ariant of the repair problem, called theact repair prob-
storage is theepair problem (introduced in [1]): If a node o where the same code is always maintained before and
storing a coded piece fails or leaves the system, in order ey the repair. For the exact repair problem, [5] presente
maintain the same level of reliability, we need to created ney, interference alignment scheme and a vector version of it.
encoded piece and store it at a new node. If the source filerige interference alignment scheme can achieve the cut bound

not available i_n the system (e.g., in an archival applicgtio Bg+1) for (n,2)-MDS and the resulting code is systematic.
then the repair has to be done by accessing other enco

' ) ) g ever, the scheme cannot achieve the cut bound for general
data only. A straightforward way to repair a failed node in

a system based ofn, k)-MDS code is to let the new node Eynctional repair and exact repair are not the only possible
downloadk encoded pieces from a subset of the survivingqdels. In a recent work. Rashmi K. g al. [6] proposed

nodes, reconstruct the original file, and compute the neededyde construction that can achieve the cut boundifer

new coded piece. In this process, the new node incurredca 1 The construction of [6] essentially implements a hybrid
network traffic ofk x B/k = B. Since network bandwidth fnctional and exact repair model. In the scheme, each node
could be a critical resource in distributed storage systemggres 2 symbolsy”w; and yTv; + 2Tu;, where the2k
an important consideration is to conserve the repair Nn&wq§iginal information symbols are represented by two vextor
bandwidth. _ y € F¥ andz € F*. The vectors{u;} can be chosen as
The repair problem amounts to the partial recovery of thfe , code vectors of afin, k)-MDS code. If node fails, the
code, whereas conventional _erasure_code design focused;p symboly”u; is exactly reconstructed; the second symbol
the complete recovery of the information from a subset of t%l?vi + 2T, is repaired to a new symbol that has the same
coded pieces. The consideration of the repair network ¢raff, yT % +2Tu;. Since{u;} can be chosen based on any
gives rise to new design challenges for erasure codes. TO&?k)—MDS code, we can in particular use a systemiids)-

problem and its variants have been studied in recent yefss code. Thus, the code can expose half of the information
and various code constructions have been proposed. NeXté’Wnbols y, in uncoded form.

briefly review the related existing work on the constructign Having explained several repair models, we now reflect

erasure codes with reduced repair bandwidth. on the practical needs again. Both the MDS feature and the
In this paper, we focus ofn, k)-MDS codes, because theygystematic feature are highly desirable in practice. Hawev
achieve the optimal reliability—storage tradeoff. Via a-cuproyiding the systematic feature does not necessarilyirequ
based analysis, Dimak al. [1] presented a lower bound ong symhols be exactly reconstructed. This motivates us to
Yunnan Wu is with Microsoft Research, One Microsoft Way, Redd, explore one avenue — Look for a SyStematiC MDS code with a
WA, 98052.yunnanwu@microsoft . com. hybrid functional and exact repair model, where the systema
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symbols are exactly reconstructed and the nonsystematie sy T Ner
bols follow a functional repair model. Heading this directj

u,

=
in this paper we present a construction(ef k)-MDS codes T "o
for 2k < n that achieves the minimum repair bandwidth when

repairing fromk + 1 nodes. arwTuy + faTo e k@ eyt + e v

II. REVIEW: CUTSETBOUND ON TOTAL REPAIR TRAFFIC

In this section we describe the cut bound for total repair
traffic. The analysis amounts to a slight extension of the
analysis in [1], [2]. Specifically, in [1], [2] the replacemte
node downloads the same number of bits from eachrafdes; Fig. 2. lllustration of the proposed scheme.
in the following Lemmd1L, the replacement node is allowed to
download any number of bits from the eachdhodes. The
same bound on total network traffic still holds.

Lemma 1: ConsiderB bits being stored via afn, k)-MDS
code atn nodes, where each node stores= B/k bits. To T2 {t,inny1,0utn,+1} U{out; : i € P}. Q)
repair any failed storage node by accessing k nodes, the
total incurred network traffic is at Ieaﬂ%ﬂ).

setP of k—1 other nodes if(2,...,d+1}. Consider ans—t
cut (U, U) with

This is illustrated by Figur€ll. Then we obtain a bound by
requiring that the capacity of the cut is at ledst

(k—1)a+> Bi>B. @)
i¢P
For each(k — 1)-subsetP C {2,...,d + 1}, we can obtain
one inequality like[(R). Summing up all these inequalities,

have that:
d
d d—k+1 d

( k—1 )TZE&Z ( k—1 >(B_(k_1)a)'

Fig. 1. lllustration of the proof of Lemmia 1. Thus
Proof: As in [1], [2], we consider the information flow d Bd
graph that describes the repair problem as a network com- Zﬂi z k(d—k+1) u
=1

munication problem. The information flow graph is illus&at
in Figure[1. In this graph, each storage node is represented I1l. THE CODE CONSTRUCTION

by a pair of nodes, sayn; andout;, connected by an edge The proposed scheme is illustrated in Fidure 2.IL eéfenote
whose capacity ig, the storage capacity of the node. Therghe finite field where the code is defined in. In Figlfe 2,
is a source nOd%, which has the entire file. The source ha& c FQk is a vector Consisting of thek 0|’igina| information
infinite capacity edges to thestorage nodes before the repairsymbo|s_ Each node stores 2 symbatdu,; andz”v;. The

In Figure[1, storage nodkefails and we create a new storaggectors {u;} do not change over time. The vectof®,}
node, node, which downloadgJ; bits from each of the three changes over time as the code repairs. We maintain the
surviving nodes and then storesbits; this is represented injnvariant property that thern length2k vectors{u;, v} form
Figure1 by the edgesutsins, outsins, andoutsins thatenter an (2p,2k)-MDS code; that is, any2k vectors in the set
node5. There are alsalata collectors, each corresponding to {u;,v;} has full rank2k. This certainly implies that the
one request to reconstruct the original data from a subsetrfdes form ar(n, k)-MDS code. We initialize the code using
the nodes. For example, the data colleatdn Figure[1 has any (2n, 2k) systematic MDS code ovéf.

infinite capacity edges from nodesand5, modeling that the  Now we consider the situation of a repair. Without loss of
file needs to be reconstructed by accessing storage Ra®s generality, suppose nodefailed and is repaired by accessing
5. By analyzing the cut betweenand the data collectors innodest, ...,k + 1. As illustrated in Figurél2, the replace-
the information flow graph, we can obtain bounds on the repaifent node downloads;z” u; + 8;z v, from each node of
traffic. In particular, if the minimum cut betweenand a data {1,... % + 1}. Using thesek + 1 downloaded symbols, the

collectort is less than the size of the file, then we can concludgplacement node computes two symhefsu,, and zTv! as
that it is impossible to reconstruct the file, regardless b&v follows:

code we use. In the following, we use this cut argument to k1

establish a bound on the total network traffic. Z (ainui + Bin'Ui) =z u, ()
Without loss of generality, suppose the first storage node i=1

fails and noden + 1 recovers the content stored at node 1 by k+1

downloading; bits from nodei + 1 for i = 2,...,d + 1. Zpi (ixTu; + Bix"v;) = a0, (4)

Consider a data collectdrthat connects to node+ 1 and a i=1



Note thatv!, is allowed to be different fromv,,; the property whose columns are given by the vectorsldnindexed bysS.
that we maintain is that the repaired code continues to be &hen the(2n, 2k)-MDS condition boils down to:
(2n, 2k)-MDS code. Herd «;, 8;, p;} andv!, are the variables

that we can control. The following theorem shows that we can H det ([Us,vy]) #0.  (11)
choose these variables so tHdt (3) ddd (4) are satisfied and th SC{l,....2n—1}, |5]=2k—1
repaired code continues to be @m, 2k)-MDS code. From [10) and the discussion above, we see that each entry of
Theorem 1: Let F be a finite field whose size is greater’, is a multivariate polynomial i§. This implies that the left
than hand side of[(T]1) can be viewed as a multivariate polynomial
m—1 in &; it can be shown that the total degree of this polynomial
do =2 ( 2% — 1 ) : ®) isat mostdy.

. . Claim 1: For anyS c {1,...,2n— 1} with |S| =2k —1,
Suppose the old code specified bw;,v;} is an (2n, 2k)- det ([Us,v]) # 0 for some¢ e F*+3,
MDS code defined oveF. When node. fails, there exists an  pyqq¢ (’)f nCIaim: The replacement node downloads one
assignment of the variablesy;, 5;, pi} such that[(B) and{4) sympol each from nodess. . ., k-+1. Each nodé of 1, ... . , k+
are satisfied and the repaired code continues to Herarek)- 1 stores a pair of symbols”u; and zTv;. The matrixU g
MDS code. o - has2k — 1 columns; we also view it as a set & — 1 column
Proof: We begin by examining the conditionl (3). Introduceyactors. Thus there must exist a node, gayin 1,...,k+ 1,
A T satisfying eitheru;- ¢ Ugs or v;» ¢ Ug or both.
= . 6
K A [, By s Qs B © Supposev;- ¢ Ug for i* € {1,...,k + 1}. From the
A= [ug, v, U1, Vkgn] - (7) discussion earlier, given any two entriesrpfthere is a unique
‘ . ) . , solution to [[(B). In particular, we can let;- = 0 and 3;- = 1;
Let; denote tha-th entry ofr; let a; denote tha-th column ;. maps uniquely to one assignmentgfand;, according
of A. Then the condition[{3) can be equivalently written i, @). We further choosp; — 1 and all otherp; — 0. With
matrix form as: this choice of¢, v], = v;«. Sincewv;- ¢ Ug and the old code
An =u,. (8) {u1,v1,...,u,,v,} was an(2n,2k)-MDS code,

Suppose two arbitrary entries gf sayr; andr;, are fixed at det ([Us,vy,]) = det ([Us, vi-]) # 0, (12)
arbitrary given values. Lek, (; ;; denote the subvector of
after removing the-th and;j-th entry andA, (; ;; denote the
submatrix ofA after removing thé-th and;-th column. Since
uy,..., Uy, v1,...,v, are code vectors of afen, 2k) MDS
code, any2k columns of A have full rank2k; in particular,
A\, Is invertible. Then, to satisfyAn = u,, with givenn;
andmn;, m\(; ;; is uniquely determined as

for this choice of¢.
The caseu; ¢ Ug follows similarly. [ |

Claim[1 implies thatlet ([U s, v},]) is a nonzero multivari-
ate polynomial ing, which further implies that the left hand
side of [11) is a nonzero multivariate polynomialgn From
the Schwartz—Zippel Theorem (quoted below as Lefma 2), for
M iig) = A\_{li,j}[“n — nia; — nja;l. (9) afinite field whose size iff| > do, there exists an assignment

) of & € F**3 such that[(I11) holds. Thus the theorem follows.
Thus, the solutions td 3) have two degrees of freedom, wigh

exactlyF? solutions. Given any two entries ef, sayn; and

n;, there is a unique solution t@1(3) and the other entries are emma 2 (Schwartz—Zippel Theorem (see, e.g., [7])):
affine functions ofp; andn;. In particular, we can considerl_et Qz1,...,xn) € Flay,..., 2, be a multivariate poly-

m = a1,z = fi as the two free parameters after considering,mia| of total degreel, (the total degree is the maximum

Q. o ) degree of the additive terms and the degree of a term is the
After considering[(B), we are left with-+3 degrees of free- g,m of exponents of the variables). Fix any finite Set F,
dom that we can tune. Let the variablgs;, 51,1, -, pk+1}  and letr,...,r, be chosen independently and uniformly at
be collectively represented by a vectowith k£ + 3 entries in - .anqom froms. Then if Q(a1, ..., 2,) is not equal to a zero
F. Next we examinel{4). Froni](4);,, is determined as: polynomial
v, = Y pilagui + Bivy). (10) PiQ(ry,...,m) =0] < 5k (13)
i=1
It remains to prove that we can choogec F*3 such that Corollary 1 (A Systematic (n, k)-MDS Code):
the new codg{us, ..., un, v1,...,v,—1,v,} coOntinues to be The above scheme gives a construction of systentatié)-
an (2n, 2k)-MDS code. MDS codes for2k < n that achieves the minimum repair
Since the old codguy, v, ..., un, v, } Was an(2n,2k)-  bandwidth when repairing fror + 1 nodes.
MDS code, we just need to prove thaf, can be made proof: Considern > 2k. Note that in the above scheme,
linearly independent of any2k — 1 subset of U £ we can initialize the code{uy, ..., Up,v1,...,0,} With
{u1,...,un,v1,...,v,_1}. FOr any 2k — 1 subsetS of any (2n,2k)-MDS code. In particular, we can use a sys-

{1,...,2n — 1}, let Us denote the2k x (2k — 1) matrix tematic code and assign ti¥: systematic code vectors to



{u1,...,uz;}. Since{u,...,u,} do not change over time, code applied tez. The requirement is that each row(is, k)-

the code remains a systematit:, 2k)-MDS code. Thus the MDS and certain interference cancelation condition must be

nodes form a systematie, k)-MDS code. The code repairs amet. In this code, the firsk node store thek systematic

failure by downloading: + 1 symbols fromd = k + 1 nodes, symbols; in comparison, in the proposed code, the systemati

with the total file size isB = 2k. This achieves the cut boundsymbols are spread in the first row, across the nodes.

given in LemmdlL. ] Third, the scheme of [6] achieves the cut bound on total
repair bandwidth. In this scheme, tB& original information
symbols are represented by two vectgrandz, each of length

A. Code Construction Algorithm k. Each node storeg” u; andy”v; + z7u;. The first row of

From the proof of Theorefd 1 and the Schwartz—Zippel ThE1€ code, given by the vectofs:;}, do not change over time
orem, for a sufficiently large finite fielH, if we independently and th_ey can b? anfn, k)-MDS code. The s_econd row of the
and uniformly draw each entry &, then [Z1) will hold with c°de is essentially the same cofie;} applied toz plus a

high probability. This can be used to develop a randomizgaear function Ofy_' Here the vectorgo; } Ch_anges over time
code construction procedure. as the code repairs; they can assume arbitrary values.

We initialize the code using an{2n, 2k) systematic MDS
code overF. Subsequently, for each repair, we randomly draw REFERENCES

a vector¢ from F2. For each drawing ok, we compute [1] A. G. Dimakis, P. G. Godfrey, M. J. Wainwright, and K. Ram-
the resultingv’, and check whether it is linearly independent  chandran, “Network coding for peer-to-peer storage,HEE
m—1 Proc. INFOCOM, Anchorage, Alaska, May 2007.
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[3] Y. Wu, A. G. Dimakis, and K. Ramchandran. “Deterministic

B. Sructural Comparison with Other Schemes regenerating codes for distributed storage,” Alterton Con-
ference on Control, Computing, and Communication, Urbana-

The above code scheme has a simple structure. It starts with champaign, IL, September 2007.
any given(2n, 2k)-MDS code, withn code vectors exactly [4] Y. Wu. “Existence and construction of capacity-achieyi
maintained. The other code vectors evolve over time as the  network codes for distributed storage,” IEEE Int'l Symp.
code repairs. The invariant property is that the code isygwa _ 0 Information Theory (ISIT), Seoul, Korea, June 2009.

from the subsets of uq, ..., u,, vy, ..

a (2n, 2k)-MDS code (hence afn, k)-MDS code). We now [5] Y. Wu and A. G. Dimakis. “Reducing repair traffic for erasu
compare the structure of this code with other existing sa@®em
Since the proposed scheme works for= &k + 1, we
only consider the casé = k + 1 in the comparison. For
d = k+1, all schemes to be discussed below store two symboﬂﬁ

at each node, which are linear combinations ofZheriginal

(6]

coding-based storage via interference alignment,fHEE Int’|
Symp. on Information Theory (ISIT), Seoul, Korea, June 20009.
Rashmi K.V., N. B. Shah, P. V. Kumar, and K. Ramchandran
“Exact Regenerating Codes for Distributed Storage,” Rnépr
available at http://arxiv.org/abs/0906.4913, June 2009.

R. Motwani and P. RaghavamiRandomized Algorithms. Cam-
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information symbols. Thus all these schemes can be exgresse
in the same notation, where denotes the2k information
symbols and nodeé storesz”wu; and 2”7 v;. However, the
schemes differ in additional structural properties impote

the code and also in how the repair is done.

First, the network coding scheme for the functional repair
model [1]-[4] achieves the cut bound on total repair band-
width. The code has a looser structure compared to the code
proposed in this paper. In each repair, the two symbols can
be repaired to two new symbols. The only requirement is that
the 2n code vectors always form gm, k)-MDS. However, in
doing so, it is hard, if notimpossible, to provide the sysiéim
feature.

Second, the interference alignment scheme for the exact
repair model [5] achieves the cut bound on total repair
bandwidth fork = 2 but not for generalk. The code is
formed by two rows ofn, k)-MDS, each involving half of the
variables. More precisely, let the original informatiomsyols
x be split into two vectorgy andz, each of lengthk. Then the
first row of the code is a systematia, k)-MDS code applied
to y and the second row is a different systematick)-MDS

1The code is viewed as 2x n matrix (see Figurgl2), where the columns
correspond to the: nodes.
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