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On Minimax Robust Detection of Stationary

Gaussian Signals in White Gaussian Noise

Wenyi Zhang,Member, IEEE, and H. Vincent Poor,Fellow, IEEE

Abstract

The problem of detecting a wide-sense stationary Gaussian signal process embedded in white Gaus-

sian noise, where the power spectral density of the signal process exhibits uncertainty, is investigated.

The performance of minimax robust detection is characterized by the exponential decay rate of the miss

probability under a Neyman-Pearson criterion with a fixed false alarm probability, as the length of the

observation interval grows without bound. A dominance condition is identified for the uncertainty set

of spectral density functions, and it is established that, under the dominance condition, the resulting

minimax problem possesses a saddle point, which is achievable by the likelihood ratio tests matched

to a so-called dominated power spectral density in the uncertainty set. No convexity condition on the

uncertainty set is required to establish this result.

Index Terms

Dominance, error exponent, minimax robustness, Neyman-Pearson criterion, power spectral density,

wide-sense stationary Gaussian processes

I. INTRODUCTION

Many signal detection problems can be modeled by the following hypothesis testing problem:

H0 : Yn = Nn, n = 0, 1, . . . , N − 1,

H1 : Yn = Sn +Nn, n = 0, 1, . . . , N − 1, (1)
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whereN denotes the length of the observation interval. The noise samples{Nn} are independent

and identically distributed (i.i.d.) Gaussian random variables with zero means and variancesσ2,

i.e., Nn ∼ N(0, σ2). The stochastic signal,{Sn}, is a wide-sense stationary (WSS) Gaussian

process with mean zero and power spectral density (PSD)φ(ω), ω ∈ [−π, π].

For eachN , the hypothesis testing problem is between twoN-dimensional zero-mean Gaussian

distributions, and we shall denote a detector byδN (·), which maps theN-dimensional observation

y = [y0, y1, . . . , yN−1]
T into {H0,H1}. As N grows without bound, the detectorsδ1, δ2, . . .

constitute an infinite sequence, denoted byδ.

To characterize the discrimination capability for a specific detector sequence, a convenient

performance metric is the exponential decay rate of the missprobability (i.e., the probability of

decidingH0 whenH1 is true) asN grows without bound, under a Neyman-Pearson criterion

that the false alarm probability (i.e., the probability of decidingH1 whenH0 is true) is fixed as

a constant0 < α < 1. Mathematically, the exponential decay rate is given by

lim
N→∞

−
1

N
logProb[δN (Y ) = H0|H1]. (2)

Likelihood ratio tests (LRTs) achieve the maximal exponential decay rate, and we call this

maximum the error exponent. For the detection problem (1), the error exponent is given by (see,

e.g., [1] and references therein)

Γ =
1

4π

∫ π

−π

[

log(1 + φ(ω)/σ2)−
φ(ω)/σ2

1 + φ(ω)/σ2

]

dω, (3)

for every 0 < α < 1. Indeed,Γ is the limit of a (normalized) Kullback-Leibler distance,

(1/N)D(pN,0‖pN), asN grows without bound, wherepN,0 denotes theN-dimensional probability

density function (PDF) ofY underH0, andpN denotes theN-dimensional PDF ofY underH1,

induced by the signal PSDφ(ω).

In order to achieve (3), a sequence of LRT detectors (or frequency-domain correlation detectors

[2]) need to be built with the exact knowledge of the signal PSD φ(ω), ω ∈ [−π, π]. Due

to practical limitations, however, the knowledge ofφ(ω) may usually be imprecise. Under

such modeling uncertainty, the signal PSDφ(·) is known only to be within a setUφ of PSD

functions. Hence, neither the LRT detectors nor the frequency-domain correlation detectors can

be implemented, and it is usually desirable to design robustdetectors according to a minimax

criterion (see,e.g., [3]). The philosophy of the minimax criterion is as follows. The engineer
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first chooses a sequence of detectorsδ, and Nature subsequently responds with a model from

Uφ, which leads to the worst performance for that sequence of detectors. The engineer’s task,

naturally, is to chooseδ such that the resulting worst performance is optimized. As previously

discussed, the performance in this paper is the exponentialdecay rate of the miss detection

probability under a fixed false alarm probability. So we can define the minimax robust error

exponent as

ΓMR = max
δ∈∆α

inf
φ(·)∈Uφ

lim
N→∞

−
1

N
logProb[δN (Y ) = H0|H1], (4)

where∆α denotes the set of all the detector sequences that achieve a fixed false alarm probability

0 < α < 1.

An upper bound to the minimax robust error exponentΓMR is

Γ̄MR = inf
φ(·)∈Uφ

1

4π

∫ π

−π

[

log(1 + φ(ω)/σ2)−
φ(ω)/σ2

1 + φ(ω)/σ2

]

dω, (5)

assuming that a genie provides the actualφ(·) to the engineer before choosing the detector

sequence.

Generally speaking, genie-aided upper bounds as in (5) are not achievable for minimax

robustness problems, unless the problem possesses certainstructural properties, say, possessing a

saddle point; see,e.g., [3] and references therein for various formulations and approaches to such

minimax robustness problems. A minimax robustness problemcan be viewed as a game between

two players [4], one choosing a filter, which is the sequence of detectorsδ here, and the other

choosing an operating point which is the model realizationφ(·) here. Typically, the existence

of saddle points requires the space of operating points be a convex set; see,e.g., [4]. Robust

decision problems have been studied extensively under various criteria like Bayes risk, error

probabilities, generalized signal-to-noise ratio,etc.; see,e.g., [5]-[12]. The minimax robustness

problem (4) regarding the error exponent of detecting a stationary Gaussian process with PSD

uncertainty in white Gaussian noise has been studied (amongother more general problems) in

[13] and [14], where sufficient conditions are presented under which exponential decay rates

of false alarm and miss probabilities are guaranteed. For hypothesis testing problems in which

candidate hypotheses are characterized by moment classes,the asymptotic minimax robustness

was investigated in [15].

In this paper, we establish that, under a dominance condition among the PSDs inUφ, the

minimax robust error exponent problem (4) possesses a saddle point solution, and the minimax
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robust error exponent is achievable by the LRT detectors with respect to the so-called dominated

PSD. The dominance condition appears to be a novel property,and imposes no requirement on

the convexity ofUφ.

The main result of our paper is the following.

Theorem 1:For an arbitrary uncertainty setUφ, if there exists a PSDφ∗(·) ∈ Uφ, such that

the following dominance condition

1

2π

∫ π

−π

log

(

1 +
φ∗(ω)[φ(ω)− φ∗(ω)]

[σ2 + φ∗(ω)]2

)

dω ≥ 0 (6)

holds for everyφ(·) ∈ Uφ, then the sequence of LRT detectors with respect toφ∗(·) achieves

the minimax robust error exponent

ΓMR =
1

4π

∫ π

−π

[

log(1 + φ∗(ω)/σ2)−
φ∗(ω)/σ2

1 + φ∗(ω)/σ2

]

dω, (7)

for every false alarm probability0 < α < 1. If φ∗(·) exists, then it is unique.

Theorem 1 is surprising, since the dominance condition (6) does not requireUφ be convex,

or generated by2-alternating capacities (see,e.g., [16]), or described by moment classes (see,

e.g., [15]). Also, whenφ∗(·) exists, Theorem 1 not only suggests the existence of, but also

explicitly gives, the sequence of detectors that achieveΓMR. Furthermore, due to the concavity

of logarithmic functions, it follows that, the sequence of LRT detectors with respect toφ∗(·)

also solves the minimax robustness problem (4) when the uncertainty setUφ is enlarged to its

convex hull, yielding the same minimax robust error exponent ΓMR.

Exemplifications of the dominance condition:

• Define the lower envelope function ofUφ byEl(ω) = inf{φ(ω) : ∀φ(ω) ∈ Uφ}, ω ∈ [−π, π].

If El(·) ∈ Uφ, then it isφ∗(·).

• If φ(ω) = ρσ2 ∈ Uφ, and every element ofUφ satisfies

1

2π

∫ π

−π

log

[

φ(ω)

σ2
+

1 + 2ρ

ρ

]

dω ≥ log
(1 + ρ)2

ρ
, (8)

thenφ∗(ω) = ρσ2.

• If σ2 is substantially larger than all the elements ofUφ uniformly, i.e., very low signal-to-

noise ratio, then (6) is approximated as

1

2πσ4

∫ π

−π

φ∗(ω) [φ(ω)− φ∗(ω)] dω ≥ 0, (9)
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which leads to
∫ π

−π

[φ∗(ω)]2 dω ≤

∫ π

−π

φ∗(ω)φ(ω)dω, (10)

as the criterion forφ∗(·).

We devote the remaining parts of this paper to the proof of Theorem 1. In this section, we

outline the key ideas in the proof as follows. We start with anarbitrary finite number,K, of

PSD functions, one of them being aφ∗(·) satisfying (6), and the otherK−1 arbitrarily sampled

from Uφ, denoted{φ1(·), φ2(·), . . . , φK(·)} where we letφ1(·) = φ∗(·). Then, instead of these

K isolated PSD functions, we “convexify” the problem and consider, for eachN , the set of

mixture probability distributions over theK N-dimensional Gaussian distributions induced by

{σ2 + φ1(·), σ
2 + φ2(·), . . . , σ

2 + φK(·)}. Since this set of mixtures is a convex set, we exploit

results in the minimax robustness theory (see,e.g., [4]) to establish that, under the dominance

condition (6), the following Kullback-Leibler distance

min
r∈P

1

N
D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

rkpN,k

)

(11)

is achievable as a lower bound to the error exponent asN grows sufficiently large. Here,

pN,0 denotes theN-dimensional Gaussian noise distribution underH0, pN,k denotes theN-

dimensional Gaussian distribution induced byσ2+φk(·), r ∈ [0, 1]K denotes theK-dimensional

mixture vector satisfying
∑K

k=1 rk = 1, andP is the set of all mixture vectors. Now, asN grows

without bound, we show that, under the condition (6), the value of (11) converges to

lim
N→∞

1

N
D (pN,0 ‖pN,1 ) , (12)

which we see is the minimax robust error exponent,ΓMR by noting thatφ1(·) = φ∗(·). Since we

have established thatΓMR is achievable over the set of mixture distributions, it is also achievable

over the smaller set ofK N-dimensional Gaussian distributions induced by theK PSD functions

{σ2 + φ1(·), σ
2 + φ2(·), . . . , σ

2 + φK(·)}. From the above procedure, we establish that for every

K-point set{φ1(·), φ2(·), . . . , φK(·)} whereφ1(·) = φ∗(·), there exists a sequence of detectors

that achievesΓMR over thatK-point set.

Although the Kullback-Leibler distance with respect to themixture distribution, (11), converges

to (12), this by no means implies that the minimax robust detector sequence asymptotically

converges to the LRT for Gaussian distributions. Generallyspeaking, the minimax robust detector
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sequence may be the LRT for a sequence of mixture Gaussian distributions. In order for the

minimax robust detector sequence to be the LRT for Gaussian distributions, it is necessary for

the solution of the minimization problem (11) to be a “singleton”, i.e., all but one component of

r are zeros. Applying the Karush-Kuhn-Tucker (KKT) conditions, we show that the dominance

condition (6) also warrants that the minimization problem (11) can be solved by the sequence

of LRT detectors with respect toφ∗(·), hence concluding the proof of Theorem 1.

II. PSD UNCERTAINTY SET THAT POSSESSES ADOMINANCE STRUCTURE

For a given sample spaceΩ and its associatedσ-algebraF, we start with three arbitrary

probability measuresP0, P1 andP2, in which bothP1 andP2 are absolutely continuous with

respect toP0. We define a dominance relation as follows.

Definition 1: If it holds that
∫

Ω

dP2/dP0

dP1/dP0
dP0 ≤ 1, (13)

thenP1 is dominated byP2 with respect toP0, a condition denoted byP1

P0

≺ P2. We callP0 the

reference probability measure.

The following lemma immediately follows from Definition 1.

Lemma 1:Unless dP1/dP0 and dP2/dP0 are P0-almost surely equal, the two dominance

relationshipsP1

P0

≺ P2 andP2

P0

≺ P1 cannot simultaneously hold.

Proof: We prove Lemma 1 by contradiction. AssumeP1

P0

≺ P2 andP2

P0

≺ P1 hold simultaneously;

that is,
∫

Ω

dP2/dP0

dP1/dP0
dP0 ≤ 1,

∫

Ω

dP1/dP0

dP2/dP0
dP0 ≤ 1.

Summing these two inequalities leads to
∫

Ω

(

dP1/dP0

dP2/dP0

+
dP2/dP0

dP1/dP0

)

dP0 ≤ 2. (14)

In (14), however, the left hand side is lower bounded by
∫

Ω

(

dP1/dP0

dP2/dP0
+
dP2/dP0

dP1/dP0

)

dP0 =

∫

Ω





(
√

dP1/dP0

dP2/dP0
−

√

dP2/dP0

dP1/dP0

)2

+ 2



 dP0

≥ 2

∫

Ω

dP0 = 2. (15)
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Hence the only possible case is wheredP1/dP0 = dP2/dP0 except on a subset ofΩ whose

P0-measure is zero. But this case has already been excluded in the condition. So we arrive at a

contradiction and Lemma 1 is established.✷

Now for a set of probability measures, we can define its dominance property if it contains an

element probability measure that is dominated by all the others in the set.

Definition 2: Consider the sample spaceΩ, its associatedσ-algebraF, a reference probability

measureP0, and a set of probability measuresP. A probability measureP ∗ ∈ P is dominated

by P with respect toP0 if for every P ∈ P, P ∗
P0

≺ P . We denote the dominance relationship by

P ∗
P0

≺ P.

In light of Lemma 1, the following lemma is immediate.

Lemma 2:A probability measureP ∗ ∈ P that is dominated byP with respect toP0, if it

exists, is unique.

We also note that in general a set of probability measuresP may not contain a dominated

element. As a simple example, consider a binary sample spaceΩ = {0, 1}, over whichP0 is

given by the probability mass function (PMF)P0(0) = P0(1) = 0.5. For the setP of two PMF’s:

P1(0) = 0.9, P1(1) = 0.1; P2(0) = 0.1, P2(1) = 0.9,

it is easily verified that neitherP1 nor P0 is dominated.

For Ω = R
N , considerN-dimensional zero-mean Gaussian distributions. Fix the reference

probability measureP0 ∼ N(0, σ2
IN×N). ConsiderP1 ∼ N(0,Σ1) andP2 ∼ N(0,Σ2). From

Definition 1, let us examine the conditions forN(0,Σ1)
N(0,σ2

I)
≺ N(0,Σ2). We have,

N(0,Σ1)
N(0,σ2

I)
≺ N(0,Σ2) ⇔

∫

RN

1
(2π)N/2|Σ2|1/2

exp
[

−1
2
xTΣ−1

2 x
]

1
(2π)N/2|Σ1|1/2

exp
[

−1
2
xTΣ−1

1 x
]

1

(2πσ2)N/2
exp

[

−
1

2σ2
xTx

]

dx ≤ 1

⇒

∫

RN

1

(2πσ2)N/2

|Σ1|
1/2

|Σ2|1/2
exp

[

−
1

2
xT
(

Σ
−1
2 −Σ

−1
1 +

1

σ2
I

)

x

]

dx ≤ 1

⇒

[

|Σ1|

|Σ2| · |I+ σ2(Σ−1
2 −Σ

−1
1 )|

]1/2

≤ 1

⇒ |Σ−1
2 Σ1| ≤ |I+ σ2

(

Σ
−1
2 −Σ

−1
1

)

|. (16)

In the above steps, it is implicitly required that the matrixI+σ2
(

Σ
−1
2 −Σ

−1
1

)

is positive definite,

in order to ensure the convergence of the integral. So we havethe following two conditions for
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N(0,Σ1)
N(0,σ2

I)
≺ N(0,Σ2):

I+ σ2
(

Σ
−1
2 −Σ

−1
1

)

is positive definite; (17)

and |Σ−1
2 Σ1| ≤ |I+ σ2

(

Σ
−1
2 −Σ

−1
1

)

|. (18)

Now asN grows without bound, consider a WSS zero-mean Gaussian process{Yn} with two

possible PSDsφ1(ω) and φ2(ω), ω ∈ [−π, π]. Denote the probability measures of a length-N

segment of{Yn} underφ1(·) andφ2(·) by PN,1 andPN,2, respectively. Applying the asymptotic

properties of Toeplitz matrices (see,e.g., [18, Thm. 5.4]) to the conditions (17)-(18), we find

that if

1

2π

∫ π

−π

log
φ1(ω)

φ2(ω)
dω ≤

1

2π

∫ π

−π

log

(

1 +
σ2

φ2(ω)
−

σ2

φ1(ω)

)

dω (19)

holds, and1 + σ2/φ2(ω)− σ2/φ1(ω) is bounded away from zero for allω ∈ [−π, π], thenPN,1

is dominated byPN,2 with respect toN(0, σ2
IN×N) for all sufficiently largeN . The condition

(19) can further be rewritten as

1

2π

∫ π

−π

log

(

σ2(φ1(ω)− φ2(ω))

φ2
1(ω)

+
φ2(ω)

φ1(ω)

)

dω ≥ 0. (20)

Definition 3: Consider a set of PSD functionsS. A PSD φ∗(·) ∈ S is σ2-dominated byS if

for everyφ(·) ∈ S, 1+σ2/φ(ω)−σ2/φ∗(ω) is bounded away from zero for allω ∈ [−π, π], and

1

2π

∫ π

−π

log

(

σ2(φ∗(ω)− φ(ω))

[φ∗(ω)]2
+

φ(ω)

φ∗(ω)

)

dω ≥ 0. (21)

We denote theσ2-dominance relationship byφ∗(·)
σ2

≺ S.

For the purposes of this paper, we further focus on theσ2-translation of the PSD setS, obtained

by adding a noise floor ofσ2 to each element PSD ofS; that is,

S[σ2] =
{

σ2 + φ(·) : φ(·) ∈ S
}

. (22)

According to Definition 3,σ2 + φ∗(·) ∈ S[σ2] is dominated byS[σ2] if for every φ(·) ∈ S,

1

2π

∫ π

−π

log

(

1 +
φ∗(ω) [φ(ω)− φ∗(ω)]

[σ2 + φ∗(ω)]2

)

dω ≥ 0. (23)

This is the same as the dominance condition (6) in Theorem 1.
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III. A SYMPTOTIC BEHAVIOR OF DETECTOR SEQUENCESBASED ON GAUSSIAN M IXTURES

Consider an arbitrary finite number,K, of possible PSD functions,

S = {φ1(·), φ2(·), . . . , φK(·)}. (24)

In S, we always keep the dominated PSDφ∗(·) and index it asφ1(·);1 the other(K − 1) PSD

functions are arbitrarily sampled fromUφ. For convenience, denote the[σ2 + φk(·)]-induced

covariance matrix of theN-dimensional Gaussian distribution byσ2
IN×N +ΣN,k, and its PDF

by pN,k:

pN,k(y) =
1

(2π)N/2|σ2I+ΣN,k|1/2
exp

[

−(1/2)yT
(

σ2
I+ΣN,k

)−1
y
]

. (25)

Also denote bypN,0 the PDF of theN-dimensional Gaussian distribution underH0:

pN,0(y) =
1

(2πσ2)N/2
exp

[

−yTy/(2σ2)
]

. (26)

We consider detector sequences whose decision statistics take the following form:

gN(y; q) =
1

N
log

K
∑

k=1

qk
pN,k(y)

pN,0(y)

=
1

N
log

K
∑

k=1

qk
|I+ΣN,k/σ2|1/2

exp

[

1

2σ2
yT (σ2

I+ΣN,k)
−1
ΣN,ky

]

, (27)

where the vectorq satisfies the normalization condition
∑K

k=1 qk = 1, q1 > 0, and qk ≥ 0,

∀k 6= 1. Note that we restrict the componentq1 corresponding toφ∗(·) to be strictly positive.

Indexed byN , the considered sequence of detectors are deterministic threshold tests,

if gN(y; q) ≤ τN , δN(y) = H0; otherwise,δN(y) = H1 (28)

with thresholds{τN}. For eachN , τN is determined through the constraint that the false alarm

probability is fixed asα, i.e.,
∫

gN (y;q)>τN

pN,0(y)dy = α. (29)

In this section, we investigate the asymptotic behavior ofgN(Y ; q) whenY follows H0, as

N grows large.

1We shall use these two notations interchangeably in the sequel.
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For eachk = 1, 2, . . . , K, we can define a quantity

ψk =
1

4π

∫ π

−π

[

log
(

1 + φk(ω)/σ
2
)

−
φk(ω)/σ

2

1 + φk(ω)/σ2

]

dω. (30)

The first step in our investigation, Lemma 3, indicates thatφ∗(·) attainsmink ψk.

Lemma 3:

min
k
ψk =

1

4π

∫ π

−π

[

log
(

1 + φ∗(ω)/σ2
)

−
φ∗(ω)/σ2

1 + φ∗(ω)/σ2

]

dω. (31)

Proof: As we have noted regarding the error exponentΓ in the introduction,ψk is the limit of

1

N
D (pN,0‖pN,k) .

So in order to prove the result, we consider the following related “convexified” problem

min
r

1

N
D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

rkpN,k

)

, (32)

wherer ∈ [0, 1]K satisfies
∑K

k=1 rk = 1. If we prove that for every sufficiently largeN , theN-

dimensional probability distribution induced byφ∗(·) solves (32), then it also solves the original

problem of minimizingψk.

Since the Kullback-Leibler distance is convex with respectto its operand distributions, the

KKT conditions [17] provide necessary and sufficient conditions for optimality, as

1

N
EpN,0

[

pN,k
∑K

k=1 rkpN,k

]

+ µk − λ = 0, ∀k; (33)

µk ≥ 0, ∀k; (34)

µkrk = 0, ∀k. (35)

So, if r = [1, 0, 0, . . . , 0] (i.e., φ∗(·)) is the minimizer of(1/N)D
(

pN,0

∥

∥

∥

∑K
k=1 rkpN,k

)

, we have

µ1 = 0, which when substituted into (33) leads to

1

N
EpN,0

[

pN,1

pN,1

]

+ 0− λ = 0 ⇒ λ =
1

N
. (36)

Substitutingλ = 1/N into (33) for k 6= 1 leads to

EpN,0

[

pN,k

pN,1

]

− 1 = −Nµk ≤ 0, ∀k 6= 1. (37)

As N grows large, this results in the dominance condition (6), according to the development in

Section II. So Lemma 3 is established.✷

The following two lemmas then characterize the asymptotic behavior ofgN(Y ; q) underH0.
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Lemma 4:Under the dominance condition (6), for everyq with q1 6= 0, the threshold sequence

{τN} converges to− 1
4π

∫ π

−π

[

log (1 + φ∗(ω)/σ2)− φ∗(ω)/σ2

1+φ∗(ω)/σ2

]

dω asN → ∞, for every fixed

false alarm probability0 < α < 1.

Lemma 5:Under the dominance condition (6), for everyq with q1 6= 0, the decision statistics

satisfy

lim
N→∞

EpN,0

[

gN(Y ; q)
]

= −
1

4π

∫ π

−π

[

log
(

1 + φ∗(ω)/σ2
)

−
φ∗(ω)/σ2

1 + φ∗(ω)/σ2

]

dω. (38)

Proof of Lemma 4:In light of Lemma 3, the result would straightforwardly follow if we prove that

underH0, the sequence of decision statistics,{gN(Y ; q)}, converges to−mink ψk in probability.

We do so using a sandwich type of proof technique. On one hand,gN(Y ; q) is lower bounded

as

gN(Y ; q) =
1

N
log

K
∑

k=1

qk
pN,k(Y )

pN,0(Y )

≥
1

N
log qk

pN,k(Y )

pN,0(Y )

=
1

N
log

1

|I+ΣN,k/σ2|1/2
exp

[

1

2σ2
Y T (σ2

I+ΣN,k)
−1
ΣN,kY

]

+
log qk
N

, (39)

for every k. On noting that underH0 Y is an N-dimensional Gaussian random vector with

covariance matrixσ2
I, (39) can further be rewritten as

gN(Y ; q) ≥
1

N

[

N−1
∑

n=0

λk,nW
2
n −

N−1
∑

n=0

log µk,n

]

+
log qk
N

, (40)

where λk,n denotes then-th eigenvalue of(1/2)(σ2
I + ΣN,k)

−1
ΣN,k, µk,n denotes then-th

eigenvalue of(I+ΣN,k/σ
2)

1/2, and{Wn}
N−1
n=0 are i.i.d. zero-mean unit-variance Gaussian ran-

dom variables. Then from Chebyshev’s inequality and the asymptotic properties of Hermitian

Toeplitz matrices (see,e.g., [18]), limN→∞ gN(Y ; q) is lower bounded by

−
1

4π

∫ π

−π

[

log
(

1 + φk(ω)/σ
2
)

−
φk(ω)/σ

2

1 + φk(ω)/σ2

]

dω = −ψk

in probability, for everyk such thatqk 6= 0. So the tightest lower bound yieldslimN→∞ gN(Y ; q) ≥

−mink ψk in probability.

On the other hand, we wish to prove that for any smallǫ > 0, asN grows without bound,

gN(Y ; q) ≤ −mink ψk + ǫ with vanishingly small probability. For this, it suffices toprove that

for everyk > 1 with qk 6= 0, pN,k(Y ) is exponentially smaller thanpN,1(Y ) (which is induced
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by σ2 + φ∗(·)) with high probability. This also follows from similar steps as those used in

establishing the lower bound above. Consequently, Lemma 4 is established.✷

Proof of Lemma 5:Similar to Lemma 4, the proof is also based on a sandwich type of

technique. The lower bound ofEpN,0
[gN(Y ; q)] follows essentially the same line as in establishing

the lower bound in Lemma 4, and we have

lim
N→∞

EpN,0
[gN(Y ; q)] ≥ −

1

4π

∫ π

−π

[

log
(

1 + φ∗(ω)/σ2
)

−
φ∗(ω)/σ2

1 + φ∗(ω)/σ2

]

dω. (41)

To establish an upper bound, we note that

EpN,0

[

gN(Y ; q)
]

=
1

N
EpN,0

log
K
∑

k=1

qk
pN,k(Y )

pN,0(Y )

=
1

N
EpN,0

log

[

q1
pN,1(Y )

pN,0(Y )

]

+
1

N
EpN,0

log

[

1 +
∑

k 6=1,qk 6=0

qk
q1

pN,k(Y )

pN,1(Y )

]

. (42)

In (42), the first term converges to− 1
4π

∫ π

−π

[

log (1 + φ∗(ω)/σ2)− φ∗(ω)/σ2

1+φ∗(ω)/σ2

]

dω following the

lower bounding procedure; the second term can be upper bounded as

1

N
EpN,0

log

[

1 +
∑

k 6=1,qk 6=0

qk
q1

pN,k(Y )

pN,1(Y )

]

≤
1

N

∑

k 6=1,qk 6=0

qk
q1
EpN,0

[

pN,k(Y )

pN,1(Y )

]

, (43)

sincelog(1+x) ≤ x for all x > −1. Now it suffices to prove that for everyk 6= 1, EpN,0

[

pN,k(Y )

pN,1(Y )

]

is bounded. From the development ofσ2-dominance in Section II, for all sufficiently largeN ,

this condition is implied by the dominance condition (6). This concludes the proof of Lemma

5. ✷

IV. PROOF OFTHEOREM 1

In this section, we use the auxiliary results developed in the previous sections to establish

Theorem 1. We shall consider the hypothesis testing problem(1) over an arbitraryK-point set of

possible PSD functionsS, which containsφ∗(·) asφ1(·) and another(K−1) arbitrarily sampled

PSD functions fromUφ. Once we prove that for any suchS, LRT detectors with respect to

φ∗(·) achieve the minimax robust error exponentΓMR, for every0 < α < 1, then Theorem 1

straightforwardly follows through a contradiction argument.
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According to Chernoff’s bound, the miss probability of the decision procedure using{gN(y; q), τN}

is upper bounded by

Pr[δN (Y ) = 0|H1] ≤ exp

{

−N · sup
s≤0

[

s

N
τN −

1

N
logEpN

[

esgN (Y ;q)
]

]}

, (44)

where the expectation is with respect topN , the distribution ofY underH1. So from Lemmas 4

and 5, for anyǫ > 0, there exists a sufficiently largeNǫ, such that for allN > Nǫ, the Chernoff’s

bound gives

Pr[δN(Y ) = 0|H1] ≤ exp

{

−N · sup
s≤0

[

s

N

(

EpN,0

[

gN(Y ; q)
]

+ ǫ
)

−
1

N
logEpN

[

esgN (Y ;q)
]

]}

.(45)

As ǫ → 0, we pose the following minimax problem to optimize the minimax robustness

performance ofN-dimensional decision-making under the Neyman-Pearson criterion:

max
q

min
k=1,2,...,K

sup
s≤0

[

s

N
EpN,0

[

gN(Y ; q)
]

−
1

N
logEpN,k

[

esgN (Y ;q)
]

]

. (46)

To proceed using the minimax robustness theory [4], we augment the sets in problem (46).

Instead of restrictingq1 to be strictly positive, we considerq ∈ P, where

P =

{

x ∈ [0, 1]K :

K
∑

k=1

xk = 1

}

. (47)

Instead of considering probability distributions inducedby theK isolated PSD functions inS,

we consider the PDF ofY as a convex combination of{pN,1, pN,2, . . . , pN,K}, as

pN(y) ∈

{

K
∑

k=1

rkpN,k(y) :

K
∑

k=1

rk = 1; rk ≥ 0, ∀k

}

. (48)

Note that in generalpN corresponds to a mixture ofN-dimensional Gaussian distributions, unless

r is a “singleton”, i.e., all but one component ofr are zeros. For convenience, we write (48)

as pN(y; r) in order to reflect its dependence onr. For the detectors sequences with decision

statisticsgN(y; q) in the form (27), whenq = r, gN(y; r) is the log-likelihood ratio test (LLRT)

statistic.

Now we consider the augmented minimax problem

max
q∈P

min
r∈P

sup
s≤0

[

s

N
EpN,0

[

gN(Y ; q)
]

−
1

N
logEpN (·;r)

[

esgN (Y ;q)
]

]

. (49)

Since the sets in (46) are subsets of those in (49), if we can prove thatpN,1 (which is induced

by φ∗(·)) and its associated LRT solve (49), then they also solve (46). In the following, we prove

the minimax robustness result for (49), through following the general approach developed in [4].
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Consider the minimax problem (49) as a game, in which the utility function is

UN(q, r) = sup
s≤0

[

s

N
EpN,0

[

gN(Y ; q)
]

−
1

N
logEpN (·;r)

[

esgN (Y ;q)
]

]

.

Both the allowable filterq and the possible operating pointr are taken fromP = {x ∈ [0, 1]K :
∑K

k=1 xk = 1}, the space of allK-dimensional probability mass functions. For a givenr, we

find that a test statistic that maximizesUN (q, r) is the log-likelihood ratio functiongN(y; r) =

(1/N) · log
[

∑K
k=1 rkpN,k(y)/pN,0(y)

]

. In conjunction with the choice ofs = −N , this LLRT

statistic leads to

max
q
UN (q, r) =

1

N
D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

rkpN,k

)

. (50)

So if r∗ ∈ P minimizesD
(

pN,0

∥

∥

∥

∑K
k=1 rkpN,k

)

, it is a least favorable operating point of the

game. We now show that this least favorable operating point and its associated LLRT statistic

constitute a saddle point for the game, and hence solve the minimax robustness problem, by using

[4, Thm. 2.1]. First, the set of allK-dimensional probability mass functions,P, is a convex set by

its definition. Second, due to the concavity of logarithmic functions and the supremum operation,

the utility functionUN(q, r) is convex with respect tor on P, for everyq.

It remains to be shown that(gN(·; r∗), r∗) is a “regular pair”, that is, if for everyr ∈ P and

every sufficiently smallβ > 0, the perturbed distribution
∑K

k=1 [(1− β)r∗k + βrk] pN,k satisfies

maxq UN (q, (1−β)r∗+βr)−UN(r
∗, (1−β)r∗+βr) = o(β) whereo(β)/β → 0 asβ → 0. The

optimal test statistic in response to[(1− β)r∗ + βr] is its corresponding log-likelihood ratio

gN(y; (1− β)r∗ + βr) =
1

N
log

[

∑K
k=1 [(1− β)r∗k + βrk] pN,k(y)

pN,0(y)

]

,

and it follows that

max
q
UN(q, (1− β)r∗ + βr) =

1

N
D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

[(1− β)r∗k + βrk] pN,k

)

, (51)

which behaves forβ ≪ 1 like [19]

max
q
UN (q, (1− β)r∗ + βr)

=
1

N

{

D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

r∗kpN,k

)

+

[

1− EpN (·;r)

[

pN,0(Y )
∑K

k=1 r
∗
kpN,k(Y )

]]

· β

}

+ o(β), (52)
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where the expectation is with respect to
∑K

k=1 rkpN,k. On the other hand,UN (r
∗, (1−β)r∗+βr)

is lower bounded by settings = −N ,

UN (r
∗, (1− β)r∗ + βr)

≥
1

N

{

D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

r∗kpN,k

)

− logEpN (·;(1−β)r∗+βr)

[

pN,0(Y )
∑K

k=1 r
∗
kpN,k(Y )

]}

=
1

N

{

D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

r∗kpN,k

)

− log

[

1− β + β · EpN (·;r)

[

pN,0(Y )
∑K

k=1 r
∗
kpN,k(Y )

]]}

=
1

N

{

D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

r∗kpN,k

)

−

[

EpN (·;r)

[

pN,0(Y )
∑K

k=1 r
∗
kpN,k(Y )

]

− 1

]

· β

}

+ o(β). (53)

A direct comparison between (52) and (53) then reveals that

0 ≤ max
q
UN (q, (1− β)r∗ + βr)− UN (r

∗, (1− β)r∗ + βr) ≤ o(β),

hence establishing the regularity of(gN(·; r∗), r∗).

Finally, from Lemma 3, under the dominance condition (6), for every sufficiently largeN ,

the probability distributionpN,1 induced byφ∗(·) solves

min
r∈P

1

N
D

(

pN,0

∥

∥

∥

∥

∥

K
∑

k=1

rkpN,k

)

. (54)

So{pN,1} and its associated LRT detector sequence achieve the minimax robust error exponent.

This concludes the proof of Theorem 1.

V. CONCLUDING REMARKS

Characterizing the minimax robust error exponents of hypothesis testing problems under

modeling uncertainty has been a longstanding problem. Thisis especially the case when signal

processes exhibit temporal correlation as described by PSDs, since even if the PSD uncertainty

set is convex, the set of induced probability distributionsgenerally loses the convexity property,

which is usually pivotal to the existence of minimax robust detectors. In this paper, we have

considered the scenario of detecting a WSS Gaussian signal processes embedded in white

Gaussian noise, where the uncertainty is only with respect to the PSD of the signal process.

Our treatment of the problem is based on a dominance condition, instead of the usual convexity

condition, for the PSD uncertainty set. Under such a dominance condition, the minimax robust

detector sequence and the resulting minimax robust error exponent are both identified. Potential
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future directions of interest include extending the approach in this paper to more general detection

models, incorporating noise uncertainty or non-Gaussian signal/noise distributions, and exploring

applications of the dominance structure among probabilitydistributions in other problem settings.
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