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Abstract

Perfect Space-Time Codes (STC) are optimal codes in their original construction for Multiple

Input Multiple Output (MIMO) systems. Based on Cyclic Division Algebras (CDA), they are full-rate,

full-diversity codes, have Non-Vanishing Determinants (NVD) and hence achieve Diversity-Multiplexing

Tradeoff (DMT). In addition, these codes have led to optimaldistributed space-time codes when applied

in cooperative networks under the assumption of perfect synchronization between relays. However,

they loose their diversity when delays are introduced and thus are not delay-tolerant. In this paper,

using the cyclic division algebras of perfect codes, we construct new codes that maintain the same

properties as perfect codes in the synchronous case. Moreover, these codes preserve their full-diversity

in asynchronous transmission.

Index Terms

Cooperative Communication, Distributed Space-Time Codes, Perfect Codes, Delay-Tolerance, Cyclic

Division Algebra, Tensor product.

I. INTRODUCTION AND PROBLEM STATEMENT

During the past decade, MIMO techniques have experienced a great interest in wireless

communication systems. Using multiple antennas at the transmitter and the receiver provides

high data rates and exploits the spatial diversity in order to fight channel fadings and hence

improve the link reliability. Lately, cooperative diversity has emerged as a new form of spatial

diversity via cooperation of multiple users in the wirelesssystem [1]. While preserving the same

MIMO benefits, it counteracts the need of incorporating manyantennas into a single terminal,

especially in cellular systems and ad-hoc sensor networks,where it can be impractical for a

mobile unit to carry multiple antennas due to its size, powerand cost limitations.

http://arxiv.org/abs/1011.0474v1
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In cooperative networks, users communicate cooperativelyto transmit their information by

using distributed antennas belonging to other independentterminals. This way, a virtual MIMO

scheme is created, where a transmitter is also acting as a relay terminal, with or without some

processing, assisting another transmitter to convey its messages to a destination. The cooperative

schemes have been widely investigated by analyzing their performance through different cooper-

ative protocols [1]–[3]. These protocols fall essentiallyinto two families: Amplify-and-Forward

(AF) and Decode-and-Forward (DF). In order to achieve the cooperative diversity, space-time

coding techniques of MIMO systems have also been applied yielding many designs of distributed

space-time codes under the assumption of synchronized relay terminals [2]–[4].

However, thisa priori condition on synchronization can be quite costly in terms ofsignaling

and even hard to handle in relay networks [5], [6]. Unlike conventional MIMO transmitter,

equipped with one antenna array using one local oscillator,distributed antennas are dispersed

on different terminals, each one with its local oscillator.Thus, they are not sharing the same

timing reference, resulting in an asynchronous cooperative transmission.

On the other hand, in a synchronous transmission, the distributed STCs are constructed basi-

cally according to the rank and determinant criteria [7] andhence aim at achieving full diversity.

Note that the rows of the codeword matrix represent the different relay terminals (antennas).

So, when asynchronicity is evoked, delays are introduced between transmitted symbols from

different distributed antennas shifting the matrix rows. This matrix misalignment can cause rank

deficiency of the space-time code, and thus performance degradation.

Therefore, the codes previously designed are no more effective unless they tolerate asyn-

chronicity. Furthermore, an efficient code design should satisfy the full-diversity order for any

delay profile. This intends to guarantee full-rank codewords distance matrixi.e., its rank equal to

the number of involved relays, hence leading to the so-called delay-tolerant distributed space-time

codes [6].

II. DELAY-TOLERANT DISTRIBUTED SPACE-TIME CODES

The first designs of such codes were presented by Li and Xia [6]as full-diversity binary

Space-Time Trellis Codes (STTC) based on the Hammons-El Gamal stacking construction, its

generalization to Lu-Kumar multilevel space-time codes, and the extension of the latter codes

for more diverse AM-PSK constellations [8], [9]. Systematic construction including the shortest

STTC with minimum constraint length was also proposed in [10], as well as some delay-tolerant

short binary Space-Time Block Codes (STBC) [11]. Recently,Damen and Hammons extended
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the Threaded Algebraic Space-Time (TAST) codes to asynchronous transmission [12]. The delay-

tolerant TAST codes are based on three different thread structures where the threads are separated

by using different algebraic or transcendental numbers that guarantee a non-zero determinant of

the codewords distance matrix. An extension of this TAST framework to minimum delay length

codes was considered in [13].

Meanwhile, perfect space-time block codes that are optimalcodes originally constructed for

MIMO systems [14]–[17], were also investigated for wireless relay networks. In [18], [19], the

authors provided optimal coding schemes in the sense of DMT tradeoff [20], based cyclic division

algebras for any number of users and for different cooperative strategies. Nevertheless, all these

schemes assumed perfect synchronization between users. Then, it was in [21] that Petros and

Kumar discussed the delay-tolerant version of the optimal perfect code variants for asynchronous

transmission. They stated that delay-tolerant diagonally-restricted CDA codes and delay-tolerant

full-rate CDA codes can be obtained from previous designs bymultiplying the codeword matrix

by a random unitary matrix. This matrix can be taken specifically from an infinite set of unitary

matrices that do not have elements in the code field.

In this paper, we construct delay-tolerant distributed codes based on the perfect codes algebras

from a different point of view. The new construction is obtained from the tensor product

of two number fields, one of them being the field used for the perfect code. The codes are

designed in such a way to maintain the same properties of their corresponding perfect codes

in the synchronous transmission, namely full-rate, full-diversity and non-vanishing minimum

determinant. In addition, unlike the perfect codes, the newcodes preserve the full diversity in

the asynchronous transmission.

III. B ACKGROUND

Before addressing the STC construction, we dedicate this section to briefly review the remark-

able properties of the perfect codes as analyzed in [14]–[17]. Then, following the framework of

[6], we present the cooperative communication model of interest.

A. Perfect Space-Time Block Codes

The concept of Perfect Code was originally proposed in [14],[15] for Nt = 2, 3, 4, 6 transmit

antennas to describe a squareNt×Nt linear dispersion STCC. The perfect codes are constructed

from cyclic division algebrasA(K/F, σ, γ) of degreen = Nt defined by
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- K andF are number fields andOK,OF the corresponding ring of integers.F is called the

base field and taken asF = Q(i) or F = Q(j) since the ST code transmitsq-QAM or q-

HEX information symbols forNt = 2, 4 orNt = 3, 6, respectively. Thus, the constellations

can be seen as finite subsets of the ring of Gaussian integersOF = Z[i] or Eisenstein

integersOF = Z[j] (i =
√
−1, j = e2πi/3), respectively.

- K/F is a cyclic Galois extension ofF of degree[K : F] = n with K = Q(i, θ) or

K = Q(j, θ) a field extension appropriately chosen in order to get an existing lattice and

a division algebra, andθ an algebraic number.

- σ is the generator of the Galois groupGal(K/F), Gal(K/F) = 〈σ〉 = {σk}nk=1. For an

elementx ∈ K, the conjugates ofx areσk(x). So, the normNK/F and the traceTrK/F are

defined respectively as

NK/F(x) =

n∏

k=1

σk(x), TrK/F(x) =

n∑

k=1

σk(x). (1)

- γ ∈ F∗ = F/{0} the set of non-zero elements ofF. It is a non-norm element suitable for

the cyclic extensionK/F [15].

The cyclic division algebra is then expressed as a rightK-space

A1 = K⊕ eK⊕ e2K⊕ . . .⊕ en−1K (2)

with e ∈ A, en = γ ∈ K, γ 6= 0 and λe = eσ(λ) for all λ ∈ K. (3)

The Perfect CodesP satisfy the criteria:

• Full-rate: The code transmitsN2
t symbols drawn from QAM or HEX constellation and

thus has a rate ofR = Nt symbols per channel use (spcu).

• Full-diversity: According to the rank criterion [7], the determinant of thecodeword

distance matrixA = (Xi − Xj)(Xi − Xj)
† for any two distinct codewords is non-zero.

By code linearity, it can be reduced to

det(A) 6= 0 ⇒ det(XX†) = | det(X)|2 6= 0, X 6= 0,X ∈ C (4)

• Non-vanishing minimum determinant: The minimum determinant of any codeword

distance matrix, prior to SNR normalization, is lower bounded by a constantψ that is

independent of the constellation size

δ(C) = min
0 6=X∈C

| det(X)|2 ≥ ψ > 0 (5)

• Cubic shaping: The QAM or HEX constellations are normalized according to the power at

the transmitter so that the real vectorized codeword vectors are isomorphic to cubic lattices
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Z2N2
t or A2N2

t . In other words, the rotation matrixM encoding the information symbols

into each layer is required to be unitary to guarantee the energy efficiency of the codes. The

shaping constraint leads thus to two other properties. The first one is theUniform average

transmitted energy per antenna. The second one is theInformation losslessness as the

unitary linear dispersion matrixM allows to preserve the mutual information of the MIMO

channel.

Thanks to prominent results on diversity-multiplexing tradeoff [20], the perfect codes also

verify two other equivalent properties:

• DMT optimality: In [16], Elia et al. proved that the full-rate STCs from cyclic division

algebra having NVD property achieve the optimal DMT in Rayleigh fading channel.

• Approximate universality: Being CDA-based codes with NVD property, the perfect codes

are approximately universal and achieve DMT for arbitrary channel fading distribution.

Satisfying all these criteria, the perfect codes showed to improve the performance in terms of

error probability upon the best known codes.

B. Cooperative System Model

In the sequel, we consider a cooperative system with a sourceS communicating to a destination

D via M relaysRi in two phases as in Figure 1, and without direct links betweenthe source and

the destination. In the first phase, the source broadcasts its message to the potential relays. In the

second phase, the relays use the DF protocol to detect the source message then if successfully

detected transmit it to the destination. We assume that all the M relays are able to achieve

error free decoding which could be possible by selecting thesource-relays links, and consider

only the links that are not in outage. Note that it could also be possible that not all the relays

may successfully decode the original message, so the numberof transmitting relays is usually

assumed as a random variable. Since the relays transmissionoverlap in time and frequency, they

can cooperatively implement a distributed space-time code.

Considering only the second phase of transmission, the system is equivalent to a MIMO

scheme where the distributedM × T perfect space-time codeP is used by the relays, with

M transmit antennas one by relay, andNr receive antennas at the destination. Every time slot

t, t = 1 . . . T , the relays send theM × 1 tth column vectorXt of the codewordX and the

destination receives

Yt = HtXt +Wt, Yt,Wt ∈ CNr×1 (6)
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whereWt is the additive white Gaussian noise with i.i.d complex Gaussian variables with zero-

mean and varianceN0, ∼ Nc(0, N0), N0 = 2σ2, σ2 being the noise variance per real dimension.

Ht represents theNr ×M complex channel matrix modeled as i.i.d Gaussian random variables

with zero mean and unit variance∼ Nc(0, 1). The channel is assumed quasi-static with constant

fadings during a transmitted codeword and independent fadings between subsequent codewords.

Dealing with square STCs(M = T ), the codeword matrixXt containsM2 information symbols

s1, . . . , sM2 carved from two-dimensional QAM or HEX finite constellations denoted byS.

C. Asynchronous Cooperative Diversity

The above expression (6) is valid only when relays are synchronized. In the presence of

asynchronicity, the codeword transmission is spanned on more thanT symbol intervals due

to delays. Although the symbol synchronization is not required, we assume that the relays are

synchronized at the frame-codeword level, which can be provided by means of network feedback

signaling from the destination. Therefore, the start and the end of each codeword are aligned

for different relays by transmitting zero symbols, and hence there is no interference between

codewords transmission. We further assume that the timing errors between different relays are

integer multiples of the symbol duration and the fractionaltiming errors are absorbed in the

channel dispersion. In the codeword matrix, these delays are also filled with zeros; they are

known at the receiver but not at the transmitting relays [6].

Denoting a delay profile byd = (d1, d2, . . . , dM), a delaydi corresponds to the relative delay

of the received signal from theith relay as referenced to the earliest received relay signal.

Let dmax denotes the maximum of the relative delays, then from the receiver perspective, the

M × (T + dmax) codeword matrix was sent instead of theM × T space-time code.

D. Motivation of the Code Construction

The diversity order of any space-time code is defined by the minimum rank of the distance

codeword matrix over all pairs of distinct codewords [7]. The distributedM×T perfect codesP
are full-rate full-diversity for the synchronous transmission between the relays and the destination.

Note that in general, a transmission between source, half-duplex relays and destination will result

in rate loss. When asynchronicity is introduced, the code isno more full-rate since it is spanned

on (T + dmax) time instants. Moreover, certain delay profilesd can result in linearly dependent

rows, thus the code will loose its full-diversity property.Let us illustrate this by the following

example.
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Example of Golden Code: We consider the distributed2 × 2 Golden code transmitting4

information QAM symbolss1, s2, s3, s4 from two synchronized relays with the codeword matrix.

Xs =
1√
5


 α(s1 + s2θ) α(s3 + s4θ)

iᾱ(s3 + s4θ̄) ᾱ(s1 + s2θ̄)


 (7)

The Golden code is designed on a cyclic field extension of degree 2 over the base fieldQ(i).

Using the generator matrix of the corresponding complex2-dimensional lattice, the codeword

elements are lattice points obtained by linear combinationof pairs of symbols.

Now, let the first relay be delayed by one symbol period with respect to the secondd = (1, 0),

such that the new asynchronous codeword matrix be

Xa =
1√
5


 0 α(s1 + s2θ) α(s3 + s4θ)

iᾱ(s3 + s4θ̄) ᾱ(s1 + s2θ̄) 0


 (8)

Suppose we have two distinct codewordsX1 andX2 with s1,1 = −s1,2 = −s1 and the other

symbols equali.e., si,1 = si,2, i = 2 . . . 4. The difference between matrix codewords is defined

in both synchronous and asynchronous cases as

∆(s)s =


 2αs1 0

0 2ᾱs1


 , ∆(s)a =


 0 2αs1 0

0 2ᾱs1 0


 (9)

It can be seen that∆(s)s is a full-rank matrix whereas∆(s)a has rank one, so the Golden code

is not a delay-tolerant code.

In fact, it can be seen from the asynchronous codeword matrixXa that some symbols are

aligned at the same instant due to delays loosing thus diversity. In order to resolve this problem

of rank deficiency, our solution consists in transmitting from each antenna (relay) at each

transmission time a different combination of all the4 information symbols. This way, in the

presence of delays, we ensure that any combined symbol sent from the2 relays arrives at the

destination in at least2 different instants, hence guaranteeing the full-diversity order of the

space-time code.

A new 2× 2 STC will have then the shifted codeword matrix

Xa =



 0 f1(s1, s2, s3, s4) f2(s1, s2, s3, s4)

f3(s1, s2, s3, s4) f4(s1, s2, s3, s4) 0



 . (10)

Now, to get these4 linear combinations of the4 symbols, we need a higher dimensional lattice

(n = 4) compared to the2-dimensional lattice used for the Golden code. So, we propose to obtain

the corresponding4× 4 lattice generator matrix by the tensor product of two field extensions of

Q(i), one of them being the field extension of the Golden code.
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Following this idea, we aim at constructing, in general, newM ×M codes that are based on

CDA of theM×M perfect codes such that they maintain the same optimal properties as perfect

codes in the synchronous case. But also, these codes preserve their full-diversity in asynchronous

transmission and thus are delay-tolerant for arbitrary delay profile.

IV. CONSTRUCTION OFDELAY-TOLERANT DISTRIBUTED CODES

BASED PERFECT CODES ALGEBRAS

A. General Construction

The approach consists in constructing a division algebra isomorphic to the tensor product

(also called Kronecker product or cross-product) of two number fields of lower degrees. Other

constructions based on the crossed-product algebras have been investigated in [22], [23] either

for prime or coprime degrees of the composite algebras. In these constructions, the space-time

code was built on the cyclic product algebra. However, in thepresent construction, the higher

degree algebra is only used to derive appropriately the space-time code.

Since we intend to construct a full-rateM ×M space-time code that is based on the CDA of

the full-rateM ×M perfect code, then the first algebra to be considered is the cyclic division

algebra of the perfect codeA1(K1/F, σ1, γ1) of degreen1 =M over the base fieldF. For sake

of simplicity, we analyze in the sequel the case of Gaussian Field F = Q(i) to explain the

construction. Indeed, we consider the cyclic field extension K1 = Q(i, θ1) of degreen1 = M

over F, θ1 being an algebraic number. The principal idealIK1
⊆ OK1

is generated by an

elementα and its integral basis isB1 = (v1, v2, . . . , vM) (or if unitary, it is given byB1 =

(α, αθ1, . . . , αθ
M−1
1 )). The basis of the complex algebraic latticeΛ(IK1

) is obtained by applying

the canonical embedding toB1. Consequently, the generator matrix corresponds to the rotation

matrix in Z[i]M

M1 =
1√
p1




v1 v2 . . . vM

σ1(v1) σ1(v2) . . . σ1(vM )
...

...
. . .

...

σM−1
1 (v1) σM−1

1 (v2) . . . σM−1
1 (vM)



, (11)

where
√
p1 is a normalization factor used to guarantee the matrix unitarity.

Now, we consider another Galois extensionK2 overF of the same degreen2 =M such that its

discriminant is coprime to the one ofK1 i.e.,(dK1
, dK2

) = 1. LetK2 = Q(θ2) with θ2 an algebraic

number. The Galois group is generated byσ2 asGal(K2/F) = 〈σ2〉. The principal ideal of the
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algebra is such thatIK2
= OK2

and thus its integral basis is given byB2 = (1, θ2, . . . , θ
M−1
2 ).

The canonical embedding ofB2 gives another complex rotated lattice ofZ[i]M that is generated

by the unitary matrixM2 with
√
p2 the normalization factor,

M2 =
1√
p2




1 θ2 . . . θM−1
2

1 σ2(θ2) . . . σ2(θ
M−1
2 )

...
...

. . .
...

1 σM−1
2 (θ2) . . . σM−1

2 (θM−1
2 )



. (12)

The tensor product of both field extensions allows to build a rotated lattice in higher dimension

corresponding to the complexM2 × M2 unitary matrixM based on the previousM × M

constructions. According to [24],

Proposition 1: : Let K be the compositum of the above Galois extensions,K = K1K2 =

Q(i, θ1, θ2) of ordern = n1n2 =M2 overF as presented in Figure 2.

SinceK1 andK2 have coprime discriminants, the corresponding lattice generator matrix can

be obtained as the tensor product of the previous unitary generator matrices.

M = M2 ⊗M1 =
1√
p1p2

·



v1 · · · vM · · · v1θ
M−1
2 · · · vMθ

M−1
2

...
. . .

...
. . .

...
. . .

...
σM−1
1 (v1) · · · σM−1

1 (vM ) · · · σM−1
1 (v1)θ

M−1
2 · · · σM−1

1 (vM)θM−1
2

...
. . .

...
. . .

...
. . .

...
v1 · · · vM · · · v1σ

M−1
2 (θM−1

2 ) · · · vMσ
M−1
2 (θM−1

2 )
...

. . .
...

. . .
...

. . .
...

σM−1
1 (v1) · · · σM−1

2 (vM ) · · · σM−1
1 (v1)σ

M−1
2 (θM−1

2 ) · · · σM−1
1 (vM )σM−1

2 (θM−1
2 )




(13)
Consequently,

Proposition 2: : Let mj = [K : Kj ] = n/nj , j = 1, 2 the order of the extensions, then the

discriminant ofK is dK = dm1

K1
dm2

K2
. The minimum product distance of the lattice is derived from

the discriminant ofK as

dp,min =
1√
dK

=
1√

dm1

K1
dm2

K2

(14)

Using the matrixM, the space-time coded components are given by the linear combination

x = Ms wheres = [s1, s2, . . . , sM2]T is the information symbol vector carved from aq-QAMM2

constellation(∈ Z[i]M
2

). Then, the space-time codeword matrix is defined by distributing the

components with appropriate constant factorsφl, l = 1, . . . ,M2. It can be represented as a
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Hadamard product

X = [Φ] • [x] =




φ1x1 φM+1xM+1 · · · φM(M−1)+1xM(M−1)+1

φ2x2 φM+2xM+2 · · · φM(M−1)+2xM(M−1)+2

...
...

. . .
...

φMxM φ2Mx2M · · · φM2xM2




(15)

The key idea in the code construction is to determine the coefficients φl that allow one to

preserve the same properties of the corresponding perfect codes in synchronous transmission

(Section III-A).

• On one side, it can be seen that the new code transmitsM2 information symbols and thus

is full-rate with R =M spcu for a relays-destination transmission phase.

• On the other side, we need to find theφl factors that satisfy the rank criterion (4) in order

to havefull-diversity codes.

• Moreover, the perfect codes havenon-vanishing minimum determinants. Then, we are

interested in derivingM×M ST codes that have not only non-zero determinants, but also

these determinants do not vanish when constellation size increases.

• In order to guaranteeuniform energy distribution in the codeword, we ask thatφl verify

|φl| = 1. Choosing further the coefficientsφl ∈ OF = Z[i] yields better determinants as

obtained for the non-norm elementsγ of the perfect codes [15]. This restricts the values

of φl to φl = ±1,±i.
• It can also be noticed that the new code satisfies thecubic shaping property since the

generator matrixM of the M2-dimensional lattice is unitary, and hence the code is

information lossless.

In addition, when asynchronicity between relays is involved, the rank criterion should be also

verified for the shifted matrix and another criterion will beanalyzed that is the non-zero product

distance of the codeword matrix in order to prove that the newcodes are delay-tolerant, and

thus keep their full-diversity in asynchronous transmission.

V. NEW DELAY-TOLERANT CODES FROM2, 3, 4-DIMENSIONAL PERFECT CODES

Based on the previous approach, we consider the perfect codes proposed in [14], [15] for

dimensionsM = 2, 3, 4 to construct the new delay-tolerant codes. Then, in the nextsection, we

apply this construction for the perfect codes presented forany number of antennas in [?].
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A. 2× 2 Code based on Golden Code

The Golden Code was constructed in [14] using the cyclic division algebraA1(K1/Q(i), σ1, i)

of degree2 overF = Q(i). K1 = Q(i,
√
5) is a Galois extension of degree2. It is a2-dimensional

vector space ofQ(i) with basisB = (1, θ1), θ1 = 1+
√
5

2
being the Golden number. Its Galois

group Gal(K1/F) is generated byσ1 :
√
5 7→ −

√
5. In order to get a rotated latticeΛ(IK1

)

of Z[i]2, the principal idealIK1
= αOK1

generated byα = 1 + i − iθ1 was found. Its basis is

B1 = (α, αθ1) and its unitary generator matrix is given by

M1 =
1√
5



 α αθ1

ᾱ ᾱθ̄1



 , (16)

with θ̄1 =
1−

√
5

2
and ᾱ = 1 + i− iθ̄1 the respective conjugates ofθ1 andα.

Let K2 = Q(θ2) the cyclotomic extension of degree2 over F with θ2 = ζ8 = eiπ/4 the

primitive 8th root of unity. Its discriminantdK2
= 4 and it is coprime to the one ofK1 since

dK1
= 5. The Galois groupGal(K2/F) is generated byσ2 : ζ8 7→ −ζ8 and the integral basis of

K2 is B2 = (1, ζ8). The corresponding unitary generator matrix is

M2 =
1√
2


 1 ζ8

1 −ζ8


 (17)

Therefore,K = K1K2 = Q(i, θ1, ζ8) is the compositum of Galois extensions of degree2

each, with coprime discriminants. The4× 4 unitary matrix is obtained by the tensor product of

previous matrices as

M4 =
1√
10




α αθ1 αζ8 αθ1ζ8

ᾱ ᾱθ̄1 ᾱζ8 ᾱθ̄1ζ8

α αθ1 −αζ8 −αθ1ζ8
ᾱ ᾱθ̄1 −ᾱζ8 −ᾱθ̄1ζ8




(18)

and the codeword matrix is defined by

Γ(s) =


 φ1x1 φ3x3

φ2x2 φ4x4


 , (19)

wherexi are the components of the vectorM4s with s1, s2, s3, s4 areq-QAM symbols. We pro-

pose now to determine the coefficientsφl, l = 1, . . . , 4 that satisfy the non-vanishing determinant

criterion.
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1) Non-vanishing minimum determinant: The determinant of this codeword matrix equals

δ(s) = φ1φ4x1x4 − φ2φ3x2x3. (20)

By developingx1x4 andx2x3, we obtain

x1x4 =
1

10
NK1/F(α)

(
G(s) +

1 + i√
2

√
5s1s4 −

1 + i√
2

√
5s2s3

)
, (21)

x2x3 =
1

10
NK1/F(α)

(
G(s)− 1 + i√

2

√
5s1s4 +

1 + i√
2

√
5s2s3

)
, (22)

with

NK1/F(α) = αᾱ = 2 + i and G(s) = s21 − s22 − is23 + is24 + s1s2 − is3s4. (23)

It is interesting to note that the Golden codeword given by matrix (7) has a determinant of

δ′(s) =
1

5
NK1/F(α)G(s). (24)

Therefore, by choosingφ1 = φ3 = φ4 = 1 and φ2 = −1, the determinant of the new code

is equal to the Golden code determinant, and does not vanish when increasing the size of the

QAM constellation carved fromZ[i]. Hence, the new code achieves the diversity-multiplexing

tradeoff [16], [20].

It can also be noticed that the coefficientsφl can be changed equivalently to the coefficients of

the Fourier matrixFn = (wjk) wherew = e2iπ/n is the primitiventh root of unity. For dimension

2, we have

[Φ] =


 1 1

1 −1


 (25)

Furthermore, we have find fixed unitary matricesU andV such thatΓ = UGV for all values

of s1, s2, s3, s4 with

U =



 ζ8 0

0 −1



 , V =
1√
2



 −iζ8 −iζ8
1 −1



 . (26)

2) Delay-tolerance: In the distributed setup, each row of the code matrix is transmitted by a

different relay (Section III-B). In practical scenarios, the two relays do not share a common timing

reference, and therefore, the arrival of packets is not synchronous. As we assume synchronization

at the symbol level, the distributed code can still achieve full diversity if the differences between

matrix codewords are full rank even when the different rows are arbitrarily shifted. In what

follows, we prove that the new codeΓ satisfy this condition.
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Consider the shifted codeword matrix ofΓ

Γa =


 0 x1 x3

−x2 x4 0


 , (27)

we need to guarantee that it is full rank whens 6= 0 i.e., for any s1 6= s2 from the constellation

(rank = min(M,T + 1) = 2). This restricts to show that the2× 2 submatrix


 0 x3

−x2 0





is full rank i.e., its determinantx2x3 6= 0 whens 6= 0.

More generally, having delay profilesd = (1, 0) or (0, 1), the problem turns to prove that

the product distance in the rotated constellation associated with the matrixM4 of Γ is non-zero

overZ[i], so that any component product is non-zero. This product distance is evaluated as

dp =

4∏

j=0

|xj | = |x1x2x3x4| =
∣∣∣
1

10
αᾱ

(
G(s) +

1 + i√
2

√
5s1s4 −

1 + i√
2

√
5s2s3

)∣∣∣×

∣∣∣
1

10
αᾱ

(
G(s)− 1 + i√

2

√
5s1s4 +

1 + i√
2

√
5s2s3

)∣∣∣ =
1

20

∣∣∣∣∣G(s)
2 −

(
1 + i√

2

√
5 (s1s4 − s2s3)

)2
∣∣∣∣∣ (28)

with G(s) = s21 − s22 − is23 + is24 + s1s2 − is3s4 ∈ Z[i] for s ∈ Z[i]4.

As a direct consequence from the tensor product construction, Equation (14) gives

dp,min =
1√
dK

=
1√
5242

=
1

20

Thus, the minimum product distance is non-zero. It can also be verified indp by settings1 =

1, s2 = s3 = s4 = 0. So, dp is non-zero unlesss1 = s2 = s3 = s4 = 0, and consequently the

submatrix is full rank sincex2x3 6= 0 unlesss = 0.

Therefore, the new code unlike the Golden code keeps its full-diversity in the case of asyn-

chronous relays. However, we cannot guarantee the non-vanishing determinant property in the

asynchronous case because the expression ofx2x3 can be interpreted as a Diophantine approx-

imation of 1√
2

by rational numbers which can be made tighter by using largerconstellation

size.

B. 3× 3 Code based on 3× 3 Perfect Code

In order to construct the delay-tolerant3 × 3 code, we consider the base fieldF = Q(j)

and we useq-HEX symbols. Letθ1 = ζ7 + ζ−1
7 = 2 cos(2π

7
), with ζ7 the 7th root of unity.

The 3 × 3 perfect code was constructed using the cyclic division algebra A1(K1/F, σ1, j) of
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order 3 [15], where the relative extensionK1 = Q(j, θ1) and σ1 the generator of the cyclic

extensionK1/F with σ1 : ζ7 + ζ−1
7 7→ ζ27 + ζ−2

7 . The integral basis is given byB1 = {vk}3k=1 =

{(1+ j)+θ1, (−1−2j)+ jθ21 , (−1−2j)+(1+ j)θ1+(1+ j)θ21} and the complex latticeΛ(IK1
)

is a rotated version ofZ[j]3. It is generated by

M1 =
1√
7




v1 v2 v3

σ1(v1) σ1(v2) σ1(v3)

σ2
1(v1) σ2

1(v2) σ2
1(v3)


 . (29)

The relative discriminant ofK1 is dK1
= 49. Another extension ofF of degree3 that has

coprime discriminant withK1 is the cyclotomic extensionK2 = Q(ζ9) with ζ9 = e2iπ/9 the

primitive 9th root of unity anddK2
= 27. Its Galois groupGal(K2/F) is generated byσ2 : ζ9 7→

jζ9. The integral basis ofK2 is B2 = (1, ζ9, ζ
2
9) and the lattice generator matrix is

M2 =
1√
3




1 ζ9 ζ29

1 jζ9 j2ζ29

1 j2ζ9 jζ29


 . (30)

The compositum of both extensionsK = K1K2 = Q(j, 2 cos(2π
7
), ζ9) is of order9 overQ(j).

Then, the corresponding9-dimensional complex lattice is generated by the9× 9 unitary matrix

M9 =
1√
21




1 ζ9 ζ29

1 jζ9 j2ζ29

1 j2ζ9 jζ29


⊗




v1 v2 v3

σ1(v1) σ1(v2) σ1(v3)

σ2
1(v1) σ2

1(v2) σ2
1(v3)


 , (31)

and the3× 3 space-time code is defined by the matrix

Γ(s) =




φ1x1 φ4x4 φ7x7

φ2x2 φ5x5 φ8x8

φ3x3 φ6x6 φ9x9


 , (32)

wherexi are the components of vectorM9s, s being the information symbol vector carved from

q-HEX9 constellation.

1) Non-vanishing minimum determinant: By proceeding as previously, we need to determine

the coefficientsφl, l = 1, . . . , 9 that guarantee the non-vanishing minimum determinant. In order

to get |φl| = 1 so that a uniform average energy is transmitted per antenna,and to obtain better

values of the determinant, we limit the choice ofφl to φl = ±1,±j.
By developing the code determinant using symbolic computation under Mathematica, we find

that it has the same expression as the3 × 3 perfect code determinant by choosingφl as the
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Fourier matrix coefficients inQ(j)

Φ =




1 1 1

1 j j2

1 j2 j


 . (33)

Therefore, the3× 3 infinite codeΓ(s) has non-vanishing minimum determinant equal to

δmin(C) =
1

dK1

=
1

49
. (34)

2) Delay-tolerance: On the other hand, to prove the delay-tolerance of this code,we should

guarantee that the corresponding shifted codeword matrices are full rank. Therefore, it suffices

to verify that for each asynchronous matrix there exists a square3 × 3 matrix that is full rank

i.e., its determinant is non-zero. In fact, if we enumerate all thedelay profiles, it can be noticed

that the problem of guaranteeing full-rank shifted matrices turns to guarantee that

- All component products⊆ dp are non-zero. This condition is always verified since the

product distancedp =
∏9

i=1 |xi| 6= 0 overZ[j] asdp,min =
1√

493273
.

- All 2× 2 minors ofΓ(s) are non-zero that is equivalent to verify that the9 entries of the

cofactor matrix ofΓ are non-zero.

In order to prove the second condition, we find two unitary matricesU andV such that the

codeword matrixΓ can be written asΓ = UZV for all s, with Z is the perfect code matrix and

U andV are defined by

U =




1 0 0

0 j2ζ29 0

0 0 j2ζ9


 , V =

1√
3




1 1 1

ζ9 jζ9 j2ζ9

ζ29 j2ζ29 jζ29


 . (35)

Let define the cofactor matrix of the perfect code byZ̃. SinceZ is a finite subset of the cyclic

division algebraA1, Z̃ is also a subset ofA1 taken from the latticeΛ = OK1
⊕ eOK1

⊕ e2OK1
.

with e3 = j andOK1
is the ring of integers ofK1. Hence, the cofactor matrix can be represented

as a3×3 codeword matrix. For simplicity, we denote byz̄ = σ1(z) and ¯̄z = σ2
1(z), the conjugates

of an entry of the codeword matrix. The cofactor codeword matrix is then defined by

Z̃ =




z1 z2 z3

jz̄3 z̄1 z̄2

j ¯̄z2 j ¯̄z3 ¯̄z1


 , (36)
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where each diagonal̃Zi = M1[si, si+1, si+2]
T , i = 1, . . . , 3.

SinceΓ = UZV, we denotẽΓ its cofactor matrix. It is given bỹΓ = V†Z̃U† and satisfies

ΓΓ̃ = UZVV†Z̃U† = det(Z)I, (37)

with

U† =




1 0 0

0 ζ9 0

0 0 ζ29


 , V† =

1√
3




1 j2ζ29 j2ζ9

1 jζ29 ζ9

1 ζ29 jζ9


 . (38)

Developing the cofactor matrix̃Γ, we get

Γ̃ = V†Z̃U† =




z1 + ζ29 z̄3 + ζ9 ¯̄z2 ζ9z2 + z̄1 + ζ29 ¯̄z3 ζ29z3 + ζ9z̄2 + ¯̄z1

z1 + j2ζ29 z̄3 + jζ9 ¯̄z2 ζ9z2 + j2z̄1 + jζ29 ¯̄z3 ζ29z3 + j2ζ9z̄2 + j ¯̄z1

z1 + jζ29 z̄3 + j2ζ9 ¯̄z2 ζ9z2 + jz̄1 + j2ζ29 ¯̄z3 ζ29z3 + jζ9z̄2 + j2 ¯̄z1


 .(39)

Note that the Galois groupG = Gal(K/F) has two generatorsσ1 andσ2, it is given by

G = Gal(K1/F)×Gal(K2/F) = 〈σ1, σ2〉 = {1, σ1, σ2, σ2
1, σ

2
2, σ1σ2, σ1σ

2
2, σ

2
1σ2, σ

2
1σ

2
2}. (40)

From the expression of̃Γ (39), we define

X1=z1 + ζ29 z̄3 + ζ9 ¯̄z2, σ1σ2(X1)= z̄1 + j2ζ29 ¯̄z3 + jζ9z2, σ
2
1σ

2
2(X1)= ¯̄z1 + j2ζ9z̄2 + jζ29z3,

X2= z̄1 + ζ9z2 + ζ29 ¯̄z3, σ1σ2(X2)= ¯̄z1 + jζ9z̄2 + j2ζ29z3, σ
2
1σ

2
2(X2)=z1 + j2ζ9 ¯̄z2 + jζ29 z̄3,

X3= ¯̄z1 + ζ9z̄2 + ζ29z3, σ1σ2(X3)=z1 + jζ9 ¯̄z2 + j2ζ29 z̄3, σ
2
1σ

2
2(X3)= z̄1 + j2ζ9z2 + jζ29 ¯̄z3(41)

the elementsXi and their conjugates by the embeddings(σ1σ2)
k, k = 0, . . . , 2 with σ0

1σ
0
2(Xi) =

Xi, σ
1
1σ

1
2(Xi) = σ1σ2(Xi). We also haveX2 = σ1(X1) andX3 = σ2

1(X1) the conjugates ofX1

by the embeddingsσk
1 . Then, the cofactor matrix can be rewritten as

Γ̃ =




X1 X2 X3

σ1σ2(X3) j2σ1σ2(X1) jσ1σ2(X2)

σ2
1σ

2
2(X2) jσ2

1σ
2
2(X3) j2σ2

1σ
2
2(X1)


 =




X1 σ1(X1) σ2
1(X1)

σ2(X1) j2σ1σ2(X1) jσ2
1σ2(X1)

σ2
2(X1) jσ1σ

2
2(X1) j2σ2

1σ
2
2(X1)


 .

(42)

Finally, computing the product distance of this matrix, we get the product of all the9 entries

X̃i ∈ K that is the product of all the9 conjugates ofX1 ∈ K, and thus

dp =

9∏

i=1

|X̃i| = |NK/F(X1)| =
1√
dK

=
1√

493273
. (43)

As a result, the elements of̃Γ are all non-zero unlesss = 0 which concludes our proof on the

full-diversity of the3× 3 codeΓ, hence its delay-tolerance for any arbitrary delay profile.
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C. 4× 4 Code based on 4× 4 Perfect Code

Similarly to the 2 × 2 case, the4 × 4 code is derived overF = Q(i) based on the4 × 4

perfect code algebra. Letθ1 = ζ15 + ζ−1
15 = 2 cos(2π

15
), the relative extension isK1 = Q(i, θ1)

of degree[K1 : F] = 4 and its relative discriminant isdK1
= 1125. The cyclic Galois group

K1/F is generated byσ1 : ζ15 + ζ−1
15 7→ ζ215 + ζ−2

15 . The integral basis isB1 = {vk}4k=1 =

{(1 − 3i) + iθ21, (1 − 3i)θ1 + iθ31,−i + (−3 + 4i)θ1 + (1 − i)θ31, (−1 + i)− 3θ1 + θ21 + θ31} and

the complex rotated lattice ofZ[i]4 is generated by the unitary matrix

M1 =
1√
15




v1 v2 v3 v4

σ1(v1) σ1(v2) σ1(v3) σ1(v4)

σ2
1(v1) σ2

1(v2) σ2
1(v3) σ2

1(v4)

σ3
1(v1) σ3

1(v2) σ3
1(v3) σ3

1(v4)



. (44)

The second relative extensionK2 is chosen such that its degree is4 overF and has coprime

discriminant withK1. LetK2 = Q(ζ16) this cyclotomic extension withdK2
= 256 andζ16 = eiπ/8

the primitive16th root of unity. The cyclic Galois group is generated byσ2 : ζ16 7→ iζ16. The

integral basis ofK2 is B2 = (1, ζ16, ζ
2
16, ζ

3
16) and the lattice generator matrix inZ[i]4 is given by

M2 =
1

2




1 ζ16 ζ216 ζ316

1 iζ16 −ζ216 −iζ316
1 −ζ16 ζ216 −ζ316
1 −iζ16 −ζ216 iζ316



. (45)

Then, the tensor product of both cyclic extensions defines the compositum fieldK = K1K2 =

Q(i, 2 cos(2π
15
), ζ16) of order 16 over Q(i). Accordingly, the16-dimensional complex lattice is

generated by the16×16 unitary matrixM16 = M2⊗M1. The16 codeword elements are derived

from the linear combinationM16s of q-QAM information symbols. They are then distributed in

the 4× 4 codeword matrix and assigned the coefficientsφl, l = 1, . . . , 16 as

Γ(s) =




φ1x1 φ5x5 φ9x9 φ13x13

φ2x2 φ6x6 φ10x10 φ14x14

φ3x3 φ7x7 φ11x11 φ15x15

φ4x4 φ8x8 φ12x12 φ16x16



. (46)

1) Non-vanishing minimum determinant: The coefficientsφl are restricted to|φl| = 1 for

uniform energy transmission and should satisfy the NVD criterion. Therefore, as in previous

dimensions, computing the code determinant using symboliccomputation under Mathematica,
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we find that such coefficients corresponding to the Fourier matrix coefficients inQ(i) allow to

get a4× 4 space-time code with the same determinant as the perfect code. We have

Φ =




1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i



. (47)

Therefore, the4× 4 infinite codeΓ(s) has non-vanishing minimum determinant

δmin(C) =
1

dK1

=
1

1125
, (48)

and the4× 4 codeword matrix is defined forx1 = X by

Γ(s) =




x1 x5 x9 x13

x2 ix6 −x10 −ix14
x3 −x7 x11 −x15
x4 −ix8 −x12 ix16



=




X σ2(X) σ2
2(X) σ3

2(X)

σ1(X) iσ2σ1(X) −σ2
2σ1(X) −iσ3

2σ1(X)

σ2
1(X) −σ2σ2

1(X) σ2
2σ

2
1(X) −σ3

2σ
2
1(X)

σ3
1(X) −iσ2σ3

1(X) −σ2
2σ

3
1(X) iσ3

2σ
3
1(X)



.

(49)

2) Delay-tolerance: Now, let us examine the delay-tolerance aspect of this code.For this task,

we start by enumerating all the types of delay profiles. Consider the integer numbersa, b, c, d

with a 6= b 6= c 6= d and0 ≤ a, b, c, d ≤ 3, we can define four types of profiles as:

- Type 1 of form d = (a, b, c, d)

- Type 2 of form d = (a, a, b, c)

- Type 3 of form d = (a, a, b, b)

- Type 4 of form d = (a, a, a, b)

Each of the asynchronous shifted codeword matrices corresponding to these profiles is full

rank if and only if it includes a square4 × 4 matrix that is full ranki.e., a 4× 4 minor that is

non-zero. This will be proved in the sequel for the differentdelay profile types.

Types 1 and 4

If we consider the delay profiles of types1 and4, for instanced1 = (0, 1, 2, 3), d2 = (0, 0, 0, 1)

andd3 = (3, 0, 0, 0), the4× 4 minorsM4×4 relative to the4× 4 shifted matrices can have one

of these expressions

- The product of some components of the codeword matrixΓ:
∏

1≤l≤16

|φlxl|
- The product of one component and a3× 3 minor M3×3: φlxlM3×3
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Proof 1

In the first case, we have by construction that all component products⊆ dp =
16∏
k=1

|xk| are

non-zero sincedp,min =
1√
dK

= 1√
112542564

.

In the second case, following the same analysis of the3 × 3 space-time code, we find the

unitary matricesU andV

U =




1 0 0 0

0 −iζ316 0 0

0 0 −iζ216 0

0 0 0 −iζ16



, V =

1

2




1 1 1 1

ζ16 iζ16 −ζ16 −iζ16
ζ216 −ζ216 ζ216 −ζ216
ζ316 −iζ316 −ζ316 iζ316



, (50)

such that the new4 × 4 codeΓ can be written asΓ = UZV, Z being the4× 4 perfect code.

Then, we derive the cofactor matrix̃Γ and prove that it has non-zero entries as its product

distance is non-zero. Thus, the3× 3 minors are full-rank yielding full-rank shifted matrices.

Type 2

For delay profiles of type2, for instanced1 = (0, 0, 1, 3), d2 = (2, 2, 1, 0) andd3 = (3, 3, 0, 2),

we can find4× 4 minorsM4×4 in the relative shifted codeword matrices that are equal to

M4×4 = (φjxj)(φkxk)M2×2, (51)

whereM2×2 has its componentsφlxl such that only oneφl = ±i. So, the4 × 4 minors are

non-zero if these2× 2 minors are non-zero for anys 6= 0.

Proof 2

Let

M1 =

∣∣∣∣∣∣
x1 x5

x2 ix6

∣∣∣∣∣∣
(52)

be such2× 2 minor and consider any3× 3 minor M3×3 that includesM1, for example

M3×3 =

∣∣∣∣∣∣∣∣∣

x1 x5 x9

x2 ix6 −x10
x3 −x7 x11

∣∣∣∣∣∣∣∣∣

.

It can be expanded into

M3×3 = x11

∣∣∣∣∣∣
x1 x5

x2 ix6

∣∣∣∣∣∣
+ x7

∣∣∣∣∣∣
x1 x9

x2 −x10

∣∣∣∣∣∣
+ x3

∣∣∣∣∣∣
x5 x9

ix6 −x10

∣∣∣∣∣∣
= x11M1 + x7M2 + x3M3 (53)
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By developing the2× 2 minors, we have according to the4× 4 codeword matrix (49)

M1 = iXσ2σ1(X)− σ1(X)σ2(X)

M2 = −Xσ2
2σ1(X)− σ1(X)σ2

2(X) = −Y − σ2
2(Y )

M3 = −σ2(X)σ2
2σ1(X)− iσ2σ1(X)σ2

2(X) = iσ2(M1) (54)

then

M3×3 = σ2
2σ

2
1(X)M1 + σ2σ

2
1(X)M2 + iσ2

1(X)σ2(M1). (55)

If M1 = 0, M3×3 = σ2σ
2
1(X)M2 can be zero sinceM2 is a trace and can be zero (if

Y = γζ16, γ ∈ F1, Y ∈ K). However, we have fromProof 1 that any3 × 3 minor is non-

zero overZ[i]. Thus,M1 cannot be zero overZ[i] unlesss = 0. By a similar analysis, we can

prove that any2× 2 minor of the same form ofM1 is non-zero fors 6= 0.

Type 3

For this type, we distinguish two cases of profiles:

3I- a = 2, 3, b = 0 such asd1 = (2, 2, 0, 0),d2 = (3, 3, 0, 0)

3II- a = 1, b = 0 such asd = (1, 1, 0, 0)

In the first case, there exist4 × 4 minors that are equal to the product of two2 × 2 minors

such that theseM2×2 have there componentsφlxl with only oneφl = ±i, hence are non-zero

according toProof 2.

In the second case, the4× 4 minors are functions of2× 2 minorsM2×2 as following

M4×4 =
2∑

k=0

1∏

l=0

M2×2,k+l+1, (56)

and thus we have to prove that this sum is non-zero overZ[i]. For this task and without loss of

generality, we consider the delay profiled = (1, 1, 0, 0).

Proof 3

Let the4× 4 minor relative to this delay profile be

M4×4 =

∣∣∣∣∣∣∣∣∣∣∣

0 x1 x5 x9

0 x2 ix6 −x10
x3 −x7 x11 −x15
x4 −ix8 −x12 ix16

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
x1 x5

x2 ix6

∣∣∣∣∣∣

∣∣∣∣∣∣
x3 −x15
x4 ix16

∣∣∣∣∣∣
−

∣∣∣∣∣∣
x1 x9

x2 −x10

∣∣∣∣∣∣

∣∣∣∣∣∣
x3 x11

x4 −x12

∣∣∣∣∣∣
+

∣∣∣∣∣∣
x5 x9

ix6 −x10

∣∣∣∣∣∣

∣∣∣∣∣∣
x3 −x7
x4 −ix8

∣∣∣∣∣∣
= M1M2 −M3M4 +M5M6, (57)
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with according to the codeword matrix in Equation (49)

M1 = iXσ2σ1(X)− σ1(X)σ2(X) M2 = −iσ3
2σ

2
1(M1)

M3 = −Xσ2
2σ1(X)− σ1(X)σ2

2(X) M4 = σ2
1(M3)

M5 = iσ2(M1) M6 = −σ2
1(M1) (58)

then

M4×4 = −iM1σ
3
2σ

2
1(M1)−M3σ

2
1(M3)− iσ2(M1)σ

2
1(M1). (59)

By denoting the first term in this expressionP1 and the second termP2, then

M4×4 = P1 + P2 + σ2(P1). (60)

RecallingM3, we can notice that it can be written as

M3 = −Y − σ2
2(Y ) = −TrK/F1

(Y ) with Y = Xσ2
2σ1(X) ∈ K.

Let Y ∈ K be Y = A1 + ζ16B1 + ζ216C1 + ζ316D1 with A1, B1, C1, D1 ∈ K1. Then,

M3 = −2A1 − 2ζ216C1 = a1 + ζ8b1 with a1, b1 ∈ K1. (61)

For simplicity, we denote the conjugateσ1(x) = x̄, so we have

P2 = −M3σ
2
1(M3) = −(a1 + ζ8b1)(¯̄a1 + ζ8

¯̄b1) = −a1¯̄a1 − ζ28b1
¯̄b1 − ζ8(a1

¯̄b1 + ¯̄a1b1). (62)

Let us now examine the nested sequences of fields included in the compositum fieldK in

Figure 3. We have

F = Q(i) ⊂ L1 = Q(i,
√
5) ⊂ K1 = Q(i, θ1) ⊂ F1 = Q(i, θ1, ζ8) ⊂ K = Q(i, θ1, ζ16) (63)

F = Q(i) ⊂ L2 = Q(i, ζ8) ⊂ K2 = Q(i, ζ16) ⊂ F2 = Q(i, ζ16,
√
5) ⊂ K = Q(i, θ1, ζ16) (64)

with the perfect algebraPA = (K1/L1, σ
2
1, γ1) = K1 ⊕ u1K1, whereu21 = γ1 = i andσ1 : θ1 =

ζ15 + ζ−1
15 7→ θ21 − 2 = ζ215 + ζ−2

15 ,
√
5 7→ −

√
5. As we haveσ1(

√
5) = −

√
5, L1 is the subfield

fixed by 〈σ2
1〉 the subgroup of order[L1 : F] = 2 of the Galois group Gal(K1/F) = 〈σ1〉 [25].

On the other hand, we have the cyclotomic algebraCA = (K2/L2, σ
2
2 : ζ16 7→ −ζ16, γ2 =

1 + ζ8) = K2 ⊕ u2K2, andσ2 : ζ16 7→ iζ16, ζ8 7→ −ζ8. As we haveσ2(ζ8) = −ζ8, L2 is the

subfield fixed by〈σ2
2〉 the subgroup of order[L2 : F] = 2 of the Galois group Gal(K2/F) = 〈σ2〉

[25].
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From the nested sequence of fields(71), we can deduce that

P2 = −NK1/L1
(a1)︸ ︷︷ ︸

∈ L1

−i NK1/L1
(b1)︸ ︷︷ ︸

∈ L1︸ ︷︷ ︸
∈ L1 ⊂ K1

− ζ8︸︷︷︸
∈ F1

TrK1/L1
(a1

¯̄b1)︸ ︷︷ ︸
∈ L1︸ ︷︷ ︸

∈ F1 ⊂ K

. (65)

On the other hand, we haveP1 ∈ K, we can define it asP1 = a2 + ζ16b2 + ζ216c2 + ζ316d2 with

a2, b2, c2, d2 ∈ K1, then

P1 + σ2(P1) = 2a2︸︷︷︸
∈ K1 ⊂ K

+ ζ16(1 + i)b2︸ ︷︷ ︸
∈ K

+ ζ316(1− i)d2︸ ︷︷ ︸
∈ K

. (66)

Therefore, we can defineM4×4 as

M4×4 = P1 + σ2(P1) + P2

= (−NK1/L1
(a1)− iNK1/L1

(b1) + 2a2) + ζ16(1 + i)b2 − ζ216TrK1/L1
(a1

¯̄b1) + ζ316(1− i)d2

= A+ ζ16B + ζ216C + ζ316D (67)

with

A = −NK1/L1
(a1)− iNK1/L1

(b1) + 2a2 ∈ K1

B = (1 + i)b2 ∈ K1

C = TrK1/L1
(a1

¯̄b1) ∈ L1 ⊂ K1

D = (1− i)d2 ∈ K1 (68)

It can be seen as a vector space ofK1 with basis(1, ζ16, ζ216, ζ
3
16), and thusM4×4 = 0 if and

only if A = B = C = D = 0. This condition reduces to




A = 0 ⇒ NK1/L1
(a1) + iNK1/L1

(b1) = 2a2 (i)

B = 0 ⇒ b2 = 0 (ii)

C = 0 ⇒ TrK1/L1
(a1

¯̄b1) = 0 (iii)

D = 0 ⇒ d2 = 0 (iv)

(69)

So in order to prove that the4×4 minor is non-zero, we have to prove that the latter condition

cannot be verified. We proceed by contradiction.

For this task, we show that by assuming that(ii), (iii), (iv) are verified, we cannot have(i).

In fact, if A = 0, one particular case would be whena1 = b1 = 0, so thata2 = 0.

However, ifa1 = b1 = 0 and according to Equations (65) and(iii), we haveP2 = TrK1/F1
(Y ) =

0. Consider the general case whereX ∈ K, we can define it by

X = α + ζ16β with α, β ∈ F1, (70)
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and its conjugate byσ1(X) = ᾱ + ζ16β̄. We have then

Y = Xσ2
2σ1(X) = (α + ζ16β)(ᾱ− ζ16β̄) = (αᾱ− ζ216ββ̄) + ζ16(ᾱβ − ζ216ββ̄). (71)

SinceTrK/F1
(Y ) = 0, thusY ∈ K is of the formY = γζ16, with γ ∈ F1. Therefore, we have

αᾱ− ζ216ββ̄ = 0 ⇒ αᾱ = ζ8ββ̄. (72)

Let us now computeP1 + σ2(P1) given this condition according toP2 = 0. Recall that

P1 = −iM1σ
3
2σ

2
1(M1) with M1 = iXσ2σ1(X)−σ1(X)σ2(X), thenM1 andP1 can be reduced

to

M1 = −2αᾱ− 2ζ16αβ̄ = −2α(ᾱ+ ζ16β̄) (73)

P1 = −4α ¯̄α(ᾱ+ ζ16β̄)( ¯̄̄α− iζ16
¯̄̄
β) (74)

and

P1 + σ2(P1) = −4iα ¯̄α
(
2ᾱ ¯̄̄α + ζ16(1− i)ᾱ

¯̄̄
β + ζ16(1 + i) ¯̄̄αβ̄

)
. (75)

On the other hand, we have according to(ii), (iv)(b2 = d2 = 0) and Equation (66) that

P1 + σ2(P1) = 2a2. So, it can be simplified to

P1 + σ2(P1) = −8iαᾱ ¯̄α ¯̄̄α. (76)

Therefore,

P1 + σ2(P1) = 0 ⇒ α = 0. (77)

However,α = 0 means thatM1 = 0 as well. But, we have already proved inProof 2 that

M1 6= 0 over Z[i] unlesss = 0. Consequently,P1 + σ2(P1) 6= 0, then a2 6= 0. So Given

a1 = b1 = 0, we prove here thatA 6= 0 and thus,M4×4 cannot be zero overZ[i] for s 6= 0.

This last proof concludes the analysis on the full-rank asynchronous codeword matrices for

the different types of delay profilesi.e., the full-diversity of the4 × 4 codeΓ, hence its delay-

tolerance for arbitrary delay profiles.

VI. NEW DELAY-TOLERANT CODES FROM OTHERPERFECT CODES

We derive now delay-tolerant codes from the perfect codes presented in [17]. These latter

codes differ from the previous ones by the construction of their generator matrices and their
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non-norm elementγ1. Whereas this element was chosen as a root of unity in2, 3, 4-dimensional

perfect codes(γ1 = i, j), for the current codes it is of the form

γ1 =
π

π∗

whereπ is an element ofK1 andπ∗ its complex conjugate.π is chosen as a suitable prime in

Z[i] or Z[j] so that the elementγ1 is of unit norm and it is non-norm for the extensionK1/F.

Based on the same approach in Section (IV-A), the delay-tolerant code is constructed using

the tensor product of two number fields with the same degree and coprime discriminants. In

previous dimensions, the second field corresponds to the cyclotomic extensionK2 = Q(ζM)

whereζM is theM th root of unity since the non-norm element of the perfect code is itself a

root of unity. Consequently, the relative extension will behereK2 = Q(θ2) with θ2 = M
√
γ1 is

theM th root of the non-norm elementγ1.

A. 2× 2 Code

We consider the case of2 antennas. The corresponding2 × 2 perfect code was constructed

in [17] on the fieldF = Q(i), and thus transmitsq-QAM symbols. Letθ1 = 2 cos(2π
5
) and

K1 = Q(i, θ1) the relative extension ofF of degree[Q(i, θ1) : Q(i)] = 2. The cyclic groupK1/F

is generated byσ1 and the cyclic algebra is thenA1(K1/F, σ1, γ1) with the non-norm element

γ1 =
3 + 2i

2 + 3i

The rotated latticeZ[i]2 is obtained by a technique presented in [17], [24] differentfrom the one

used for previous perfect codes. The generator matrix is numerically given by [26]

M1 =


 −0.52573 −0.85065

−0.85065 0.52573


 . (78)

Now, letK2 = Q(θ2) the cyclotomic extension of degree2 of F with θ2 = (γ1)
1/2. Its relative

discriminant isdK2
= 52 and is coprime todK1

= 5. The cyclic Galois group generator is

σ2 : θ2 7→ −θ2 and the integral basis isB2 = (1, θ2). The rotatedZ[i]2 lattice is generated by

the unitary matrix

M2 =
1√
2


 1 θ2

1 −θ2


 . (79)

Then, the compositum of both cyclic extensions is defined byK = K1K2 = Q(i, θ1, (γ1)
1/5)

of order 4 over Q(i) and accordingly the4-dimensional complex lattice is generated by the

4 × 4 unitary matrixM4 = M2 ⊗M1. The codeword components are derived from the linear
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combinationx = M4s of q-QAM information symbols. They are then distributed in the2 × 2

codeword matrix assigned by the Fourier matrix coefficientsφl, l = 1, . . . , 4 in dimension2 in

order to guarantee the same NVD as the corresponding2 × 2 perfect code. Both matricesU

and V can also be derived by replacingζ8 by θ2. Moreover, the code construction allows to

have a non-zero product distance, yielding a delay-tolerant code that maintains its full diversity

regardless of the timing offset among its rows as shown for the previous2 × 2 delay-tolerant

code.

VII. PERFORMANCE EVALUATION OF DELAY-TOLERANT CODES

In this section, we evaluate the performance of the proposeddistributed space-time codes used

by the relays in synchronous as well as asynchronous transmission. Recalling the cooperative

system model presented in Section III-B, a virtual MIMO scheme is assumed withM transmit

antennas (one per relay) andNr receive antennas. The decoding is performed using the Sphere

Decoder as for the perfect codes in conventional MIMO transmission. However in the case of

asynchronous relays, the codewords are transmitted overT + dmax symbol intervals resulting

in rank deficiency of the channel matrix. In order to tackle this problem, the MMSE-DFE

preprocessing [27] is required to precede the lattice decoding so that the transformed channel

has always full rank.

The performance are represented in terms of codeword error rate CER and bit error rate BER

versus signal-to-noise ratioEb/N0 per receive antenna, which is adjusted as

Eb

N0

∣∣∣
dB

=
Es

N0

∣∣∣
dB

− 10 logR (80)

whereEs is the average energy per receive antenna andR is the code rate in bits per channel

use (bpcu).

A. Performance Comparison of Existent 2× 2 Codes

For 2 × 2 schemes, we consider the full-rate full-diversity existent space-time codes in this

dimension, namely the Golden codeG [14], or its variation matrixC proposed in [28]

C(s) ,
1√

2(1 + r2)



 s1 + irs4 rs2 + s3

s2 − rs3 irs1 + s4



 , r = θ1 − 1,

the Silver code (Tirkkonen-Hottinen Code) [29], [30] defined by

X = XA(s1, s2) +TWXB(s3, s4)

with X(si, sj) =



 si −s∗j
sj s∗i



 , T =



 1 0

0 −1



 , W = 1√
7



 1 + i −1 + 2i

1 + 2i 1− i




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the Sezginer-Sari code [31] defined by

S(s) =



 as1 + bs3 −cs∗2 − ds∗4

as2 + bs4 cs∗1 + ds∗3



 ,

a = c =
1√
2
, b =

(1−
√
7) + i(1 +

√
7)

4
√
2

, d = −ib,

the Damen codeD [12] defined by

D(s) =



 x1 −x3
x2 x4



 =



 as1 + bs2 − cs3 − ds4 −cs1 − ds2 − as3 − bs4

−bs1 + as2 + ds3 − cs4 −ds1 + cs2 − bs3 + as4





with a = 1√
(5+

√
5)(2+

√
2)
, b = 1√

(5−
√
5)(2+

√
2)
, c = 1√

(5+
√
5)(2−

√
2)
, d = 1√

(5−
√
5)(2−

√
2)

and the

new proposed codeΓ given in equation (19). These codes are compared in a distributed setup

with and without delays. Note that the codeD has been proved to verify the NVD criterion for

any constellation carved fromZ[i] and to be delay-tolerant [32].

In the above2×2 schemes, the codewords matrices contain4 modulated information symbols

carved from4-QAM constellation and transmitted overT = 2 channel uses. The transmission

rate is henceR = 8
2+dmax

, wheredmax = 0, 1 is the maximum delay withd = (1, 0) the delay

profile in asynchronous transmission.

Figure 4 shows the codes performances for synchronous relays (dmax = 0). Observe that the

Golden codeG (or C) outperforms all the other codes. For example, it has about1 dB and0.5

dB gains overD andT, S at a BER of10−4, respectively. Note also that the new codeΓ gives

the same performance of the Golden code.

Whereas for asynchronous relays, the situation is reversedbetween codesD andG for a delay

of one symbol period since the latter is not delay-tolerant.It can be seen in Figure 5 that both

delay-tolerant codesΓ andD provide gains of2 dB and more than3 dB over codesT andG,

S at a BER of10−4, respectively. In addition, it can be noticed thatΓ performs almost similar

to D, and it merely improves for high SNR(> 13 dB) by 0.2 dB at a BER of2× 10−5.

Using the unitary matricesU andV that provide the new codeΓ from the Golden codeG,

we can also obtain new delay-tolerant codes based onT andS codes as

Td = UTV and Sd = USV (81)

Note thatU andV are not necessarily the optimal matrices for these codes, but they allow to

have new delay-tolerant codes with the same determinants asthe initial ones. One can easily

verify as demonstrated for codeΓ that the product distances associated with these new codes
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are non-zero overZ[i]. Figure 6 depicts the performances of the new codes for asynchronous

relays with a delay of1 symbol period. It can be observed that all these delay-tolerant codes

preserve their diversity and that the codeΓ gives the best performance. At a BER of2× 10−5,

it gains about0.2 dB and0.8 dB overTd andSd, respectively.

B. Performance of 3× 3 Codes

For the 3 × 3 schemes,9 modulated symbols carved from4-HEX constellation(∈ Z[j])

are transmitted at a rate ofR = 18
3+dmax

bpcu, wheredmax = 0, 2 is the maximum delay and

d = (2, 1, 0) the delay profile in asynchronous transmission.

In Figure 7, we can observe that both the perfect code and the new codeΓ have the same

performance for synchronous relays. Whereas for asynchronous relays, the delay-tolerant code

preserves the diversity and provides a gain of5 dB over the3× 3 perfect code at CER of10−4

for dmax = 2.

VIII. C ONCLUSION

In this paper, we have proposed new delay-tolerant space-time codes based on the perfect codes

algebras. Using tensor product of the perfect code field extension with another field extension

of the same orderM over the same base field and which Galois extensions have coprime

discriminants, we build rotated lattices in higher dimension in order to constructM×M codes. A

key parameter in the construction is the coefficientsφl that allow to preserve the same properties

of the perfect codes in synchronous transmission.

We have found thatφl corresponding to the coefficients of the Fourier matrix in dimension

M yield the same non-vanishing determinants as the perfect codes. These codes besides having

full-rate, full-diversity, uniform energy per transmit antennas (|φl| = 1) and are information

lossless, they have the NVD property and thus are optimal DMTachieving in synchronous case.

In addition, for asynchronous transmission, we have provedfor M = 2, 3, 4 that the new codes

preserve their full-diversity and are delay-tolerant for arbitrary delay profiles. This property is

obtained thanks to the non-zero product distances overZ[i] or Z[j] and the full-rank minors of

the delayed matrices.
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Fig. 2. Compositum Field of the Tensor Product Algebra



31

Fig. 3. Nested Sequences of fields

5 6 7 8 9 10 11 12 13 14 15
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

C
od

ew
or

d 
E

rr
or

 R
at

e 
(C

E
R

) 
, B

it 
E

rr
or

 R
at

e 
(B

E
R

)

M=N=T=2, No delay, 4−QAM, R=4 bpcu

 

 

G or C, CER
T, CER
S, CER
D, CER
New Code, CER
G or C, BER
T, BER
S, BER
D, BER
New Code, BER

Fig. 4. Performances of the codesΓ, D, G (or C), T andS without delay



32

5 6 7 8 9 10 11 12 13 14 15
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

C
od

ew
or

d 
E

rr
or

 R
at

e 
(C

E
R

) 
, B

it 
E

rr
or

 R
at

e 
(B

E
R

)

M=N=T=2, Delay=1 symbol period, 4−QAM, R=8/3 bpcu

 

 

G or C, CER
T, CER
S, CER
D, CER
New Code , CER
G or C, BER
T, BER
S, BER
D, BER
New Code, BER

Fig. 5. Performances of the codesΓ, D, G (or C), T andS with a delay of1 symbol period

5 6 7 8 9 10 11 12 13 14 15
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

C
od

ew
or

d 
E

rr
or

 R
at

e 
(C

E
R

) 
, B

it 
E

rr
or

 R
at

e 
(B

E
R

)

M=N=T=2, Delay=1 symbol period, 4−QAM, R=8/3 bpcu

 

 

Td, CER
Sd, CER
D, CER
New Code, CER
Td, BER
Sd, BER
D, BER
New Code, BER

Fig. 6. Performances of the codesΓ, D, Td andSd with a delay of1 symbol period



33

0 2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

C
od

ew
or

d 
E

rr
or

 R
at

e 
(C

E
R

)

 

 

3x3 Perfect Code, d
max

=0

3x3 New Code, d
max

=0

3x3 Perfect Code, d
max

=2

3x3 New Code, d
max

=2

Fig. 7. Performances of3× 3 codes w/wo delay


	I Introduction and Problem Statement
	II Delay-Tolerant Distributed Space-Time Codes
	III Background
	III-A Perfect Space-Time Block Codes
	III-B Cooperative System Model
	III-C Asynchronous Cooperative Diversity
	III-D Motivation of the Code Construction

	IV Construction of Delay-Tolerant Distributed Codes based Perfect Codes Algebras
	IV-A General Construction

	V New Delay-Tolerant Codes from 2,3,4-dimensional Perfect Codes
	V-A 22 Code based on Golden Code
	V-A1 Non-vanishing minimum determinant
	V-A2 Delay-tolerance

	V-B 33 Code based on 33 Perfect Code
	V-B1 Non-vanishing minimum determinant
	V-B2 Delay-tolerance

	V-C 44 Code based on 44 Perfect Code
	V-C1 Non-vanishing minimum determinant
	V-C2 Delay-tolerance


	VI New Delay-Tolerant Codes from other Perfect Codes
	VI-A 22 Code

	VII Performance Evaluation of Delay-Tolerant codes
	VII-A Performance Comparison of Existent 22 Codes
	VII-B Performance of 33 Codes

	VIII Conclusion
	References

