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Abstract

Perfect Space-Time Codes (STC) are optimal codes in th&jinat construction for Multiple
Input Multiple Output (MIMO) systems. Based on Cyclic Dima Algebras (CDA), they are full-rate,
full-diversity codes, have Non-Vanishing Determinant¥(y and hence achieve Diversity-Multiplexing
Tradeoff (DMT). In addition, these codes have led to optidiatributed space-time codes when applied
in cooperative networks under the assumption of perfecttaymization between relays. However,
they loose their diversity when delays are introduced and #re not delay-tolerant. In this paper,
using the cyclic division algebras of perfect codes, we trans new codes that maintain the same
properties as perfect codes in the synchronous case. Mendbese codes preserve their full-diversity

in asynchronous transmission.
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|. INTRODUCTION AND PROBLEM STATEMENT

During the past decade, MIMO techniques have experiencedeat gnterest in wireless
communication systems. Using multiple antennas at thesitnéter and the receiver provides
high data rates and exploits the spatial diversity in oraefight channel fadings and hence
improve the link reliability. Lately, cooperative divergihas emerged as a new form of spatial
diversity via cooperation of multiple users in the wirelegstem|[[1]. While preserving the same
MIMO benefits, it counteracts the need of incorporating mantennas into a single terminal,
especially in cellular systems and ad-hoc sensor netwevkere it can be impractical for a

mobile unit to carry multiple antennas due to its size, poamdl cost limitations.
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In cooperative networks, users communicate cooperatiicelyansmit their information by
using distributed antennas belonging to other indepentemtinals. This way, a virtual MIMO
scheme is created, where a transmitter is also acting asa teximinal, with or without some
processing, assisting another transmitter to convey itssages to a destination. The cooperative
schemes have been widely investigated by analyzing theionpeance through different cooper-
ative protocols([1]-+[B]. These protocols fall essentiatiyo two families: Amplify-and-Forward
(AF) and Decode-and-Forward (DF). In order to achieve thepeaative diversity, space-time
coding techniques of MIMO systems have also been appliddigggmany designs of distributed
space-time codes under the assumption of synchronizeyl teslminals [2]-]4].

However, thisa priori condition on synchronization can be quite costly in termsighaling
and even hard to handle in relay networks [5], [6]. Unlike vamtional MIMO transmitter,
equipped with one antenna array using one local oscillaistributed antennas are dispersed
on different terminals, each one with its local oscillatdhus, they are not sharing the same
timing reference, resulting in an asynchronous cooperdtansmission.

On the other hand, in a synchronous transmission, the lais¢dl STCs are constructed basi-
cally according to the rank and determinant criteria [7] aedce aim at achieving full diversity.
Note that the rows of the codeword matrix represent the rdifferelay terminals (antennas).
So, when asynchronicity is evoked, delays are introduceaddsn transmitted symbols from
different distributed antennas shifting the matrix rowhisImatrix misalignment can cause rank
deficiency of the space-time code, and thus performanceadation.

Therefore, the codes previously designed are no more sfeanless they tolerate asyn-
chronicity. Furthermore, an efficient code design shoutéfathe full-diversity order for any
delay profile. This intends to guarantee full-rank codewatdtance matrix.e., its rank equal to
the number of involved relays, hence leading to the so-@daétay-tolerant distributed space-time

codes [[6].

II. DELAY-TOLERANT DISTRIBUTED SPACE-TIME CODES

The first designs of such codes were presented by Li and [Xia$6{ull-diversity binary
Space-Time Trellis Codes (STTC) based on the Hammons-ElaGatacking construction, its
generalization to Lu-Kumar multilevel space-time codey] #¢he extension of the latter codes
for more diverse AM-PSK constellations [8], [9]. Systematonstruction including the shortest
STTC with minimum constraint length was also proposed irj,[&6 well as some delay-tolerant

short binary Space-Time Block Codes (STBC)I[11]. Recemymen and Hammons extended



the Threaded Algebraic Space-Time (TAST) codes to asyncumtransmission [12]. The delay-
tolerant TAST codes are based on three different threadtstes where the threads are separated
by using different algebraic or transcendental numbersgharantee a non-zero determinant of
the codewords distance matrix. An extension of this TASTiwork to minimum delay length
codes was considered in_[13].

Meanwhile, perfect space-time block codes that are optoudes originally constructed for
MIMO systems [[14]-[1[7], were also investigated for wiraleslay networks. In_[18],[19], the
authors provided optimal coding schemes in the sense of D&tieoff [20], based cyclic division
algebras for any number of users and for different cooparatirategies. Nevertheless, all these
schemes assumed perfect synchronization between usess, iftwas in [[21] that Petros and
Kumar discussed the delay-tolerant version of the optiredigat code variants for asynchronous
transmission. They stated that delay-tolerant diagowraklyricted CDA codes and delay-tolerant
full-rate CDA codes can be obtained from previous designmbitiplying the codeword matrix
by a random unitary matrix. This matrix can be taken spedifideom an infinite set of unitary
matrices that do not have elements in the code field.

In this paper, we construct delay-tolerant distributedesoblased on the perfect codes algebras
from a different point of view. The new construction is obkd from the tensor product
of two number fields, one of them being the field used for thdegercode. The codes are
designed in such a way to maintain the same properties of tieeiesponding perfect codes
in the synchronous transmission, namely full-rate, fulledsity and non-vanishing minimum
determinant. In addition, unlike the perfect codes, the nedes preserve the full diversity in

the asynchronous transmission.

I1l. BACKGROUND

Before addressing the STC construction, we dedicate tbitoseto briefly review the remark-
able properties of the perfect codes as analyzed in [14]-en, following the framework of

[6], we present the cooperative communication model ofrestie

A. Perfect Space-Time Block Codes

The concept of Perfect Code was originally proposed in [[(d] for N; = 2, 3,4, 6 transmit
antennas to describe a squafex N, linear dispersion STC. The perfect codes are constructed

from cyclic division algebrasA(K/F, o,~) of degreen = N, defined by



K andF are number fields an@, Or the corresponding ring of integerB.is called the
base field and taken &= Q(i) or F = Q(7) since the ST code transmigsQAM or ¢-

HEX information symbols forV, = 2,4 or N, = 3, 6, respectively. Thus, the constellations

can be seen as finite subsets of the ring of Gaussian inté€gers Z[i] or Eisenstein
integersOr = Z[j] (i = v/—1,j = €*™/3), respectively.

- K/F is a cyclic Galois extension of of degree[K : F| = n with K = Q(,0) or
K = Q(y, ) a field extension appropriately chosen in order to get artiegisattice and
a division algebra, and an algebraic number.

- o is the generator of the Galois grownl(K/F), Gal(K/F) = (o) = {o*}?_,. For an
elementz € K, the conjugates of arec*(x). So, the normVg & and the tracélry  are

defined respectively as
New(x) = [[ o (@), Trsm(z) = oF(). (1)
k=1 k=1

- v e F* =TF/{0} the set of non-zero elements Bf It is a non-norm element suitable for
the cyclic extensiorK/F [15].

The cyclic division algebra is then expressed as a rigtgpace
A =KoeK®e’Kd ... e K (2)
with e€ 4,e" =y € K,7v#0 and le=-ec(A) forall X eK. 3)

The Perfect Code® satisfy the criteria:

e Full-rate: The code transmitv? symbols drawn from QAM or HEX constellation and
thus has a rate oR = IV, symbols per channel use (spcu).

e Full-diversity: According to the rank criterion_[7], the determinant of tbedeword
distance matrixA = (X; — X;)(X; — X;)' for any two distinct codewords is non-zero.

By code linearity, it can be reduced to
det(A) #0 = det(XX") =|det(X)]*#0, X#0,XcC (4)

e Non-vanishing minimum determinant: The minimum determinant of any codeword
distance matrix, prior to SNR normalization, is lower boeddoy a constant) that is

independent of the constellation size

§(C) = min |det(X)]* > >0 (5)

0£XeC
e Cubic shaping: The QAM or HEX constellations are normalized accordingt® power at

the transmitter so that the real vectorized codeword ve@&n¥ isomorphic to cubic lattices



72N or A2V | In other words, the rotation matrixI encoding the information symbols
into each layer is required to be unitary to guarantee theggredficiency of the codes. The
shaping constraint leads thus to two other properties. Thiedne is théJniform average
transmitted energy per antenna. The second one is tHe&for mation losslessness as the
unitary linear dispersion matrixI allows to preserve the mutual information of the MIMO
channel.

Thanks to prominent results on diversity-multiplexingdeaff [20], the perfect codes also

verify two other equivalent properties:

e DMT optimality: In [16], Elia et al. proved that the full-rate STCs from cyclic division
algebra having NVD property achieve the optimal DMT in Raytefading channel.

e Approximate universality: Being CDA-based codes with NVD property, the perfect codes
are approximately universal and achieve DMT for arbitramarinel fading distribution.

Satisfying all these criteria, the perfect codes showednjarove the performance in terms of

error probability upon the best known codes.

B. Cooperative System Model

In the sequel, we consider a cooperative system with a sGuroenmunicating to a destination
D via M relaysR; in two phases as in Figuie 1, and without direct links betwersource and
the destination. In the first phase, the source broadcastsassage to the potential relays. In the
second phase, the relays use the DF protocol to detect thheesmessage then if successfully
detected transmit it to the destination. We assume thathallM relays are able to achieve
error free decoding which could be possible by selectingsthérce-relays links, and consider
only the links that are not in outage. Note that it could alsopossible that not all the relays
may successfully decode the original message, so the nuofliEnsmitting relays is usually
assumed as a random variable. Since the relays transmseoiap in time and frequency, they
can cooperatively implement a distributed space-time code

Considering only the second phase of transmission, theersysts equivalent to a MIMO
scheme where the distributed x T perfect space-time codP is used by the relays, with
M transmit antennas one by relay, aii receive antennas at the destination. Every time slot
t,t = 1...T, the relays send thé/ x 1 ¢ column vectorX, of the codewordX and the
destination receives

Y, =HX, +W, Y, W,ecC"*! (6)



whereW, is the additive white Gaussian noise with i.i.d complex Ggars variables with zero-
mean and varianc®, ~ N.(0, Ny), Ny = 202, o2 being the noise variance per real dimension.
H, represents th&/, x M complex channel matrix modeled as i.i.d Gaussian randomhlas
with zero mean and unit varianee N.(0, 1). The channel is assumed quasi-static with constant
fadings during a transmitted codeword and independentdasdbetween subsequent codewords.
Dealing with square STC&V = T), the codeword matri¥X, contains)/? information symbols

s1,...,sy2 carved from two-dimensional QAM or HEX finite constellattodenoted bys.

C. Asynchronous Cooperative Diversity

The above expressiof](6) is valid only when relays are symibed. In the presence of
asynchronicity, the codeword transmission is spanned orertttan7 symbol intervals due
to delays. Although the symbol synchronization is not reegii we assume that the relays are
synchronized at the frame-codeword level, which can beigeavby means of network feedback
signaling from the destination. Therefore, the start arel éhd of each codeword are aligned
for different relays by transmitting zero symbols, and leetizere is no interference between
codewords transmission. We further assume that the timiragsebetween different relays are
integer multiples of the symbol duration and the fractiotiading errors are absorbed in the
channel dispersion. In the codeword matrix, these delagsatso filled with zeros; they are
known at the receiver but not at the transmitting relays [6].

Denoting a delay profile b9 = (91,02,...,01/), @ delayd; corresponds to the relative delay
of the received signal from thé" relay as referenced to the earliest received relay signal.
Let 0,,.. denotes the maximum of the relative delays, then from theivec perspective, the

M x (T 4 dmax) codeword matrix was sent instead of theé x 7' space-time code.

D. Motivation of the Code Construction

The diversity order of any space-time code is defined by th@mum rank of the distance
codeword matrix over all pairs of distinct codewords [7]€eTdistributedM x T' perfect codes?
are full-rate full-diversity for the synchronous transei between the relays and the destination.
Note that in general, a transmission between source, biales relays and destination will result
in rate loss. When asynchronicity is introduced, the cod®isnore full-rate since it is spanned
on (T + d,.x) time instants. Moreover, certain delay profieesan result in linearly dependent
rows, thus the code will loose its full-diversity properbet us illustrate this by the following

example.



Example of Golden Code: We consider the distribute?l x 2 Golden code transmitting

information QAM symbolssy, s, s3, s4 from two synchronized relays with the codeword matrix.

1 a(s; + s20)  a(ss+ s40)
o NG ia(s3 + 540) a(s) + s20) ")
The Golden code is designed on a cyclic field extension ofaedegover the base field(q).
Using the generator matrix of the corresponding compakmensional lattice, the codeword
elements are lattice points obtained by linear combinadiopairs of symbols.
Now, let the first relay be delayed by one symbol period witpeet to the secor= (1, 0),

such that the new asynchronous codeword matrix be

1 0 a(s; + s90) alss + s40
Xa _ ) ( 1 27) ( 3 4 ) (8)
\/g id(Sg + 540) @(81 + 820) 0
Suppose we have two distinct codewods and X, with s;; = —s; 5 = —s; and the other

symbols equal.e, s;1 = s;2,7 = 2...4. The difference between matrix codewords is defined

in both synchronous and asynchronous cases as

2081 0 0 2as; 0
Afs)s = ) , Als)a = ) 9)
0 2081 0 2as; O
It can be seen thah(s), is a full-rank matrix whereag\(s), has rank one, so the Golden code
is not a delay-tolerant code.

In fact, it can be seen from the asynchronous codeword ma3igixhat some symbols are
aligned at the same instant due to delays loosing thus diyelrs order to resolve this problem
of rank deficiency, our solution consists in transmittingnfr each antenna (relay) at each
transmission time a different combination of all thenformation symbols. This way, in the
presence of delays, we ensure that any combined symbol mantthe 2 relays arrives at the
destination in at leas? different instants, hence guaranteeing the full-divgrsitder of the
space-time code.

A new 2 x 2 STC will have then the shifted codeword matrix

X, = 0 f1(517 S2, 53, 54) f2(51, 52, 53, 54) . (10)
f3(81,52,83,84)  fa(s1, 82,83, 54) 0
Now, to get thesd linear combinations of thé symbols, we need a higher dimensional lattice
(n = 4) compared to the-dimensional lattice used for the Golden code. So, we p@posbtain
the corresponding x 4 lattice generator matrix by the tensor product of two fielteagions of

Q(i), one of them being the field extension of the Golden code.



Following this idea, we aim at constructing, in general, neWwx M codes that are based on
CDA of the M x M perfect codes such that they maintain the same optimal grepas perfect
codes in the synchronous case. But also, these codes mréksenvfull-diversity in asynchronous

transmission and thus are delay-tolerant for arbitrarpyl@irofile.

IV. CONSTRUCTION OFDELAY-TOLERANT DISTRIBUTED CODES

BASED PERFECT CODES ALGEBRAS
A. General Construction

The approach consists in constructing a division algebwanggphic to the tensor product
(also called Kronecker product or cross-product) of two hanfields of lower degrees. Other
constructions based on the crossed-product algebras le@reibvestigated in [22]| [23] either
for prime or coprime degrees of the composite algebras. ésdlconstructions, the space-time
code was built on the cyclic product algebra. However, inghesent construction, the higher
degree algebra is only used to derive appropriately theespare code.

Since we intend to construct a full-ralé x M space-time code that is based on the CDA of
the full-rate M x M perfect code, then the first algebra to be considered is tbkcayivision
algebra of the perfect codd; (K, /F,o,v,) of degreen; = M over the base field. For sake
of simplicity, we analyze in the sequel the case of Gaussietd F = Q(i) to explain the
construction. Indeed, we consider the cyclic field extemdio = Q(i,6,) of degreen, = M
over IF, ¢, being an algebraic number. The principal id€al, C Ok, is generated by an
elementa and its integral basis i8; = (v1,vs,...,vy) (Or if unitary, it is given byB; =
(o, by, ..., a0M™1)). The basis of the complex algebraic lattitéZy, ) is obtained by applying
the canonical embedding 18,. Consequently, the generator matrix corresponds to tlaioat

matrix in Z[iM

(2 (%) . Vmr
Ml _ L 0'1(1)1) 0'1(2}2) O'l(UM) ’ (11)
VD1 : : :
i a{\/[_l(vl) a{\/[_l(vg) . Ufw_l(vM) |

where,/p; is a normalization factor used to guarantee the matrix tityta
Now, we consider another Galois extensiénoverF of the same degree, = M such that its
discriminant is coprime to the one &, i.e., (dk,, dk,) = 1. LetKy = Q(6-) with 6, an algebraic

number. The Galois group is generatedddyas Gal(Ky/F) = (02). The principal ideal of the



algebra is such thafx, = Ok, and thus its integral basis is given B = (1,60,,...,6'7").
The canonical embedding &f, gives another complex rotated lattice | that is generated

by the unitary matrixM, with ,/p; the normalization factor,

6 gy
1 0 03!
M2 _ L 02( 2) O'2( 2 ) (12)
VP2 :
L1 037 (0:) oy (07

The tensor product of both field extensions allows to buildtated lattice in higher dimension
corresponding to the compleX/? x AM? unitary matrix M based on the previousd/ x M
constructions. According to_[24],

Proposition 1: : Let K be the compositum of the above Galois extensidss KK, =
Q(i, 0y, 0,) of ordern = nyn, = M? overF as presented in Figufé 2.
SinceK; andK, have coprime discriminants, the corresponding latticeeggior matrix can

be obtained as the tensor product of the previous unitargrgésr matrices.

1
M=M,M, = .
\V/P1P2
[ U1 VM vlﬁé”_l UMHéW_l ]
o’} (o) a1’ (vm) o' (o)l ol o)y
o U T s (e vyoy N0 )
Lo o) e oy o) - e T o) ) - ai”‘l(vM)aé”‘l(Gz?“l)(ls)
Consequently,

Proposition 2: : Let m; = [K: K;] = n/n;, j = 1,2 the order of the extensions, then the

discriminant ofK is dx = di'!di?. The minimum product distance of the lattice is derived from

the discriminant ofK as
1

Ve A7y
Using the matrixM, the space-time coded components are given by the lineabioation
x = Ms wheres = [sq, sy, .

dp,min =

(14)

.., su2]T is the information symbol vector carved fromy@QAMM”
constellation(e Z[i]™*). Then, the space-time codeword matrix is defined by didiriguthe

components with appropriate constant facteysl = 1,..., M2 It can be represented as a
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Hadamard product

¢171 Pmp1Tmer e d)M(Mfl)JrlxM(Mfl)Jrl
X — [CI)] o [x] _ ¢2.$2 ¢M+2.1‘M+2 ¢M(M71)+2.1‘M(Mfl)+2 (15)
L OumTrr PavTonr v O VERGYE i

The key idea in the code construction is to determine theficceits ¢; that allow one to

preserve the same properties of the corresponding peréeletscin synchronous transmission
(Section1IT-A).

On one side, it can be seen that the new code transiitsformation symbols and thus
is full-rate with R = M spcu for a relays-destination transmission phase.

On the other side, we need to find thefactors that satisfy the rank criterionl (4) in order
to havefull-diversity codes.

Moreover, the perfect codes hawen-vanishing minimum determinants. Then, we are
interested in deriving/ x M ST codes that have not only non-zero determinants, but also
these determinants do not vanish when constellation szeases.

In order to guaranteaniform energy distribution in the codeword, we ask thaji verify

|¢1| = 1. Choosing further the coefficienty € Or = Z][i| yields better determinants as
obtained for the non-norm elemenisof the perfect codes [15]. This restricts the values
of ¢; to ¢, = £1, +i.

It can also be noticed that the new code satisfiesctiigc shaping property since the
generator matrixM of the M2-dimensional lattice is unitary, and hence the code is

information lossless.

In addition, when asynchronicity between relays is invdivihe rank criterion should be also

verified for the shifted matrix and another criterion will &ealyzed that is the non-zero product

distance of the codeword matrix in order to prove that the wedes are delay-tolerant, and

thus keep their full-diversity in asynchronous transnassi

V. NEW DELAY-TOLERANT CODES FROMZ2, 3, 4-DIMENSIONAL PERFECTCODES

Based on the previous approach, we consider the perfecs quagosed in[[14],[[15] for

dimensionsM = 2, 3, 4 to construct the new delay-tolerant codes. Then, in the sestion, we

apply this construction for the perfect codes presentedfigr number of antennas if?][
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A. 2 x 2 Code based on Golden Code
The Golden Code was constructed|inl[14] using the cyclicstbvi algebrad, (K, /Q(i), o1, 1)

of degree2 overF = Q(i). K; = Q(i,/5) is a Galois extension of degreelt is a2-dimensional
vector space of)(:) with basisB = (1,6,), 6; = 1+—2\/3 being the Golden number. Its Galois
group Gal(K, /F) is generated by, : v/5 — —+/5. In order to get a rotated lattic&(Z, )
of Z[i)?, the principal idealZy, = aOk, generated byy = 1 + i — i, was found. Its basis is

B; = (o, afy) and its unitary generator matrix is given by

M, = L | @ ah (16)
1 — —F= _ 5
V5 | a ab,

with 6, = 1‘2‘/5 anda = 1 + i — i6, the respective conjugates &f and o.

Let K, = Q(6,) the cyclotomic extension of degrezover F with 6, = (s = €™/* the
primitive 8 root of unity. Its discriminanilx, = 4 and it is coprime to the one &, since
dx, = 5. The Galois grougzal(K,/F) is generated by, : (s — —(s and the integral basis of

K, is By = (1, (s). The corresponding unitary generator matrix is

1 I G
M, = — 17
2 \/Q 1 _<8 ( )

Therefore, K = KK, = Q(i,61,(s) is the compositum of Galois extensions of degee
each, with coprime discriminants. THex 4 unitary matrix is obtained by the tensor product of

previous matrices as

a af;  ady ab (s ]

a ab as  abi(s

1
M, = —— (18)
\/E « 0491 —OZC8 —oa91C8
L a aby —as —abis |
and the codeword matrix is defined by
T(s) = P11 P33 ’ (19)
oy a4

wherex; are the components of the vectol,s with sy, s5, s3, 54 areq-QAM symbols. We pro-
pose now to determine the coefficiedts! = 1,.. ., 4 that satisfy the non-vanishing determinant

criterion.
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1) Non-vanishing minimum determinant: The determinant of this codeword matrix equals

0(8) = 1047174 — P2h37273. (20)

By developingz,z, andzsx3, we obtain

1 141 141
= — G —Vd — —=V) 21
T1T4 10 Kl/]F(a)( (s) + \/é\/_5154 \/5\/_5253)7 (21)

1 141 141
rors = — Nk, r(a Gs——\/gss+—\/gss), 22
s = oNeala) (G(6) — VB + Vs @2)

with

Ni,r(a) =aa=2+i and G(s) = s] — s3 —is; + is] + s152 — 15354 (23)

It is interesting to note that the Golden codeword given byrixd?7) has a determinant of

§(5) = £ N, e(@)G(s). (24)

Therefore, by choosing, = ¢3 = ¢, = 1 and ¢, = —1, the determinant of the new code
is equal to the Golden code determinant, and does not vartigm wicreasing the size of the
QAM constellation carved fronZ[:]. Hence, the new code achieves the diversity-multiplexing
tradeoff [16], [20].

It can also be noticed that the coefficiegiscan be changed equivalently to the coefficients of
the Fourier matrixF, = (w’*) wherew = e2™/™ is the primitiven’ root of unity. For dimension

2, we have

(@] = (25)

Furthermore, we have find fixed unitary matridésandV such thafl' = UGV for all values

of S1, S2, 83, S4 with

¢s O 1 —iCs  —1(g
U= V= — . 26
0 —1 V2 1 -1 (26)

2) Delay-tolerance: In the distributed setup, each row of the code matrix is tratied by a
different relay (SectionIIl-B). In practical scenarioettwo relays do not share a common timing
reference, and therefore, the arrival of packets is notleymous. As we assume synchronization
at the symbol level, the distributed code can still achiedkdiversity if the differences between
matrix codewords are full rank even when the different rowe arbitrarily shifted. In what

follows, we prove that the new code satisfy this condition.
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Consider the shifted codeword matrix Bf

0 = «x
T, = N 27)
—X2 X4 O
we need to guarantee that it is full rank wheet 0 i.e, for anys; # s, from the constellation

(rank = min(M, T + 1) = 2). This restricts to show that thzx 2 submatrix

0 3
—z9 0
is full rank i.e, its determinantsyz; # 0 whens # 0.
More generally, having delay profiles = (1,0) or (0,1), the problem turns to prove that
the product distance in the rotated constellation asstiaith the matrixM 4 of T is non-zero

over Z[i], so that any component product is non-zero. This produtaniie is evaluated as

4
1 1+14 1414
d, = Ti| = |z1xom3T :’—adGs+ V55154 — ——/5sys ’x
p jHO|J| | 2122734 10 (G(s) 7 154~ 5 253)

1 1+i 1+ s [1+i 2
EO‘O‘(G(S) - W\/gspﬂ + W\/ESQS?))’ G(s)” — ( 2 V5 (s154 — 3253))

with G(s) = s — s3 — is3 +is; + s150 — is3s4 € Z[i] for s € Z[i]*.

(28)

1
20

As a direct consequence from the tensor product constrydiiquation[(14) gives
P S S
Tl VR 20

Thus, the minimum product distance is non-zero. It can atswdsified ind, by settings; =

1,89 = s3 = s4, = 0. S0, d, iS non-zero unless; = s, = s3 = s, = 0, and consequently the
submatrix is full rank since,x3 # 0 unlesss = 0.

Therefore, the new code unlike the Golden code keeps itslivdlrsity in the case of asyn-
chronous relays. However, we cannot guarantee the noshiagi determinant property in the
asynchronous case because the expressianagfcan be interpreted as a Diophantine approx-
imation of % by rational numbers which can be made tighter by using laoperstellation

size.

B. 3 x 3 Code based on 3 x 3 Perfect Code

In order to construct the delay-toleraBtx 3 code, we consider the base fidlkl= Q(j)

and we use;-HEX symbols. Lett; = (; + ;' = 2cos(2), with ¢; the 7 root of unity.

The 3 x 3 perfect code was constructed using the cyclic division lai@ed, (K, /F, 0y, j) of
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order 3 [15], where the relative extensidd; = Q(j,0;) and o; the generator of the cyclic
extensionkK; /F with o, : ¢; + ¢!+ (2 + (2. The integral basis is given b§; = {v,}3_, =
{(A+5)+601,(=1—=25)+ 7607, (=1 —25) + (1 +5)6, + (1+ )67} and the complex lattica (Zx, )

is a rotated version df[j]?. It is generated by

U1 V2 U3
M, = W 01(01) 01(02) 01(03) : (29)
ot(v1) of(va) o7 (vs)
The relative discriminant oK, is dx, = 49. Another extension of* of degree3 that has
coprime discriminant withK, is the cyclotomic extensiofK, = Q(() with ¢y = €%/ the
primitive 9t root of unity anddx, = 27. Its Galois groupGal(K,/F) is generated by : (o —

jCo- The integral basis oK is By = (1, (o, ¢3) and the lattice generator matrix is

. I CRN ¢
Mp= 2| 16 7G| (30)
1 % G

The compositum of both extensiofis= K; K, = Q(j, 2 cos(%£), () is of order9 over Q(j).

Then, the correspondingrdimensional complex lattice is generated by ¢he 9 unitary matrix

1 ¢ ¢ U Uy U3
Mo = Vol i 7@ | © | ou(v) oi(ve) oi(vs) | (31)
L j%C j6G oi(v1) of(va) of(vs)

and the3 x 3 space-time code is defined by the matrix

G111 Qary  Gra7
L(s) = | ¢ozs o5x5 ¢su5 | (32)
G323 eTs  PoTy
wherez; are the components of vectdys, s being the information symbol vector carved from

g-HEX? constellation.

1) Non-vanishing minimum determinant: By proceeding as previously, we need to determine
the coefficientsp;, [ = 1, ..., 9 that guarantee the non-vanishing minimum determinantrdero
to get|¢;| = 1 so that a uniform average energy is transmitted per antemuh{o obtain better
values of the determinant, we limit the choicedg@fto ¢, = +1, £5.

By developing the code determinant using symbolic compartainder Mathematica, we find

that it has the same expression as Bhe 3 perfect code determinant by choosing as the
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Fourier matrix coefficients iQ(y)

1 1 1
b = 1 3 j2 . (33)
Lg%

Therefore, the3 x 3 infinite codeI'(s) has non-vanishing minimum determinant equal to

1 1

Omin(C) = g 19

(34)

2) Delay-tolerance: On the other hand, to prove the delay-tolerance of this cageshould
guarantee that the corresponding shifted codeword matdoe full rank. Therefore, it suffices
to verify that for each asynchronous matrix there existswasep x 3 matrix that is full rank
i.e., its determinant is non-zero. In fact, if we enumerate alldb&y profiles, it can be noticed

that the problem of guaranteeing full-rank shifted masit@ns to guarantee that

- All component productsC d,, are non-zero. This condition is always verified since the

product distancel, = [],_, || # 0 over Z[j] asdy min = TR
- All 2 x 2 minors ofI'(s) are non-zero that is equivalent to verify that thentries of the

cofactor matrix ofl" are non-zero.
In order to prove the second condition, we find two unitaryrmoas U and V such that the

codeword matrix" can be written a¥' = UZV for all s, with Z is the perfect code matrix and
U andV are defined by

1 0 0 1 1 1
1
U=10 j72¢ 0 , V= 73 Co jCo J%C |- (35)
0 0 5% NN

Let define the cofactor matrix of the perfect code%ySinceZ is a finite subset of the cyclic
division algebraA,, 7 is also a subset oft; taken from the lattice\ = Ok, ® eOk, ® *Ok,.
with e3 = j and O, is the ring of integers oK;. Hence, the cofactor matrix can be represented
as a3 x 3 codeword matrix. For simplicity, we denote by= o,(z) andz = ¢%(z), the conjugates

of an entry of the codeword matrix. The cofactor codewordrixas then defined by

Z1 Z9 z3

Z=|jz3 z1 Z |, (36)



16

where each diagonzi- = M, [si, Sip1, Sip0)?, i =1,...,3.
SinceTl’ = UZV, we denotel its cofactor matrix. It is given b)f‘ = VIZU' and satisfies

I'T = UZVV'ZU' = det(Z)1, (37)
with
1 0 0 1 522 §2G
1 .
U'=10¢ o0 ,VT:ﬁ 1§ ¢ |- (38)
00 ¢ L& G

Developing the cofactor matrik, we get

21+ (373 + (2o Coza + 21 + (323 @23+ Goza+ &
r=vizu' = 214 5232 + jCoZa Coza + 221 + (37 (B2 + 5%Coz + 72 | -(39)
21+ §C3% + j2Coza Coza+ j21 + 232 (32 + joza + 125

Note that the Galois groufr = Gal(K/F) has two generators, andos, it is given by

G = Gal(K,/F) x Gal(Ky/F) = (01, 09) = {1,01,09,07,03,0102,0105,0:09,0105}.  (40)
From the expression dr (39), we define

Xi=21+ %3+ CoZa, 0109(X1) =21 + j2(2%Z5 + jCoza, 0r03(X1) =21 + j2CoZs + j(22s,

Xo=721 4 Gz + (J23, 0102(Xa) =21 + jCoZ 4§23, 0705(Xa) =21+ j7CoZ2 + (5%,

X3=21 + (o2 + (Jzs, 0102(X3) =21 + jloZa + 2323, 0705(X3) =21 + j7Coze + j()7441)

the elementsX; and their conjugates by the embeddiigso, )", k = 0, ..., 2 with o009(X;) =
X, o104 (X;) = 0109(X;). We also haveX, = 0,(X;) and X3 = 07(X)) the conjugates of;

by the embeddings?. Then, the cofactor matrix can be rewritten as

X1 XQ X3 X1 UI(XI) O'%(Xl)
L= 0102(X3) j%0102(X1) joroa(Xa) | = | 02(X1) jP0102(X1) joioa(X1)
0105(Xy) joio3(Xs) jPoio3(X1) 03(X1) joo5(Xy) jPoio3(Xy)

(42)

Finally, computing the product distance of this matrix, wet the product of all th® entries

X; € K that is the product of all thé conjugates ofX; € K, and thus
1 1

T Vi VagRr

As a result, the elements @f are all non-zero unless= 0 which concludes our proof on the

9
dy = [ [ 1] = | Nigse(X1)] (43)
=1

full-diversity of the3 x 3 codeT’, hence its delay-tolerance for any arbitrary delay profile.
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C. 4 x 4 Code based on 4 x 4 Perfect Code

Similarly to the2 x 2 case, thetl x 4 code is derived oveF = Q(i) based on thel x 4
perfect code algebra. Lé, = (15 + (5" = 2cos(2), the relative extension i&; = Q(i,6;)
of degree[K; : F] = 4 and its relative discriminant idx, = 1125. The cyclic Galois group
K,/F is generated by, : (15 + (5" — (& + (5> The integral basis i3, = {v.}{_, =
{(1 = 3i) + 02, (1 — 3i)0, +i03, —i + (=3 + 4i)0, + (1 — )03, (=1 +14) — 30, + 6?2 + 63} and

the complex rotated lattice ¢f[i]* is generated by the unitary matrix

V1 Vo U3 V4
1 o1(v1) o1(v2) o1(vs) o1(vs)
M; = — ) (44)
VIS | o2(v1) o3(va) o3(vs) o3(vs)

_Uf’(vl) Uf(w) Uf(vs) Uf(m)_

The second relative extensid®, is chosen such that its degreedi®over F and has coprime
discriminant withK;, . Let K, = Q((y6) this cyclotomic extension withy, = 256 and (s = e™/®
the primitive 16!* root of unity. The cyclic Galois group is generated dy: (s — (5. The

integral basis ofK, is By = (1, (16, ¢%, (i) and the lattice generator matrix #{i]* is given by

1 C16 C126 C?ﬁ
1 1 . _ 2 53
M; = s ?6 Z<;6 (45)
1 _Clﬁ C16 _Clﬁ
| 1 —iCe —Cie  CTs

Then, the tensor product of both cyclic extensions definextmpositum fieldK = KK, =
Q(i,2cos(32), ¢16) of order 16 over Q(i). Accordingly, thel6-dimensional complex lattice is
generated by thé6 x 16 unitary matrixM ;s = M>,®M;. The 16 codeword elements are derived
from the linear combinatiotVlss of ¢-QAM information symbols. They are then distributed in

the 4 x 4 codeword matrix and assigned the coefficiepptd = 1,...,16 as

O1T1 Os5T5  GoTg  P13T13

I‘(s): G2s PeTg Pr0T10 PraTia _ (46)

O3z Orx7 GuTu P15T15

_<Z54SC4 G8rs  Q12T12  P16T16

1) Non-vanishing minimum determinant: The coefficientsy, are restricted td¢,| = 1 for
uniform energy transmission and should satisfy the NVDedan. Therefore, as in previous

dimensions, computing the code determinant using symluolioputation under Mathematica,
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we find that such coefficients corresponding to the Fouridrimaoefficients inQ(:) allow to

get a4 x 4 space-time code with the same determinant as the perfeet ¥del have

101 1 1]
& — 1 + -1 — (47)
1 -1 1 -1
|1 = =1 ¢ |
Therefore, thel x 4 infinite codeI'(s) has non-vanishing minimum determinant
1 1
Ouin(C) = 7= = 1355 (48)
and the4 x 4 codeword matrix is defined for; = X by
[ 1 Ts Ty T13 | [ X o2(X) 75(X) a3(X) |
I'(s) = To  iTg —Tig —iTia _ o1(X) doy01(X) —0301(X) —iodo(X)
T3 —I7 Tz —Ti15 U%(X) _020%()() a%a%(X) _USU%(X)
| Ty —irg —T1p QT | i o3 (X) —iogoi(X) —o0i03(X) ioso(X) |
(49)

2) Delay-tolerance: Now, let us examine the delay-tolerance aspect of this déalethis task,
we start by enumerating all the types of delay profiles. GQisrsthe integer numbers b, ¢, d
with a # b # ¢ # d and0 < a,b, ¢, d < 3, we can define four types of profiles as:

- Type1l of form @ = (a, b, ¢, d)
- Type 2 of form @ = (a,a, b, c)
- Type 3 of form © = (a,a, b, b)
- Type4 of form @ = (a,a,a,b)

Each of the asynchronous shifted codeword matrices camnespg to these profiles is full

rank if and only if it includes a square x 4 matrix that is full ranki.e., a 4 x 4 minor that is

non-zero. This will be proved in the sequel for the differdetay profile types.

Types 1 and 4

If we consider the delay profiles of typésind4, for instanced; = (0, 1,2, 3), 9, = (0,0,0, 1)
andd; = (3,0,0,0), the4 x 4 minors M, relative to thed x 4 shifted matrices can have one

of these expressions

- The product of some components of the codeword matrix [[ |¢;x]
1<1<16
- The product of one component and & 3 minor Msys: ¢y Msys
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Proof 1

16
In the first case, we have by construction that all componendiyctsC d, = [] |zx| are
k=1

: S U N
NON-Z€ro SiNCel, min = = = rgsigmat-

In the second case, following the same analysis of3he3 space-time code, we find the

unitary matricesU and'V

1 0 0 0 1 1 1 1

0 —i¢s 0 0 Ge s —Cie —iCie

0 0 =ik O (s —Cis s —Cio
0 0 0 —iCe | (s —iCls —Cs iCis

such that the newt x 4 codeI’ can be written a¥® = UZV, Z being the4 x 4 perfect code.

(50)

Then, we derive the cofactor matrk and prove that it has non-zero entries as its product

distance is non-zero. Thus, tBex 3 minors are full-rank yielding full-rank shifted matrices.

Type 2
For delay profiles of type, for instanced; = (0,0, 1,3), 9, = (2,2,1,0) andd; = (3, 3,0, 2),

we can find4 x 4 minors My in the relative shifted codeword matrices that are equal to

Masca = (957;) (Prpvr) Maxa, (51)

where M,,, has its componentg;z; such that only one) = +i. So, the4 x 4 minors are
non-zero if thes& x 2 minors are non-zero for any+ 0.

Proof 2
Let

Tr1 Ts
M1 = (52)
i) i[[’@
be such2 x 2 minor and consider any x 3 minor Ms,3 that includesM;, for example

T Ty T9
Msys = | 9 iz —T10
I3 —T7 Tn

It can be expanded into

I Is 1 Ty Ts Ty
Msxz = zn . + T7 +x3|
T 1Tg To —X10 1Tg —XT10

= oMy + 27 Mo+ 23 M; (53)
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By developing the x 2 minors, we have according to thex 4 codeword matrix[(49)

My = iXo901(X) — 01(X)o2(X)

My = —Xoi01(X) — 01 (X)o3(X) = ~Y —a5(Y)

Mz = —09(X)os01(X) —ioe01 (X))o (X) = ioy (M) (54)
then

Mays = 0202(X)My + 0903 (X) My + ioi(X)oa(M,). (55)

If M; = 0, Msx3 = 0907(X)M, can be zero sinceM, is a trace and can be zero (if
Y = (6,7 € F1,Y € K). However, we have fronProof 1 that any3 x 3 minor is non-
zero overZ[i]. Thus, M, cannot be zero ovéL[i] unlesss = 0. By a similar analysis, we can

prove that any2 x 2 minor of the same form of\; is non-zero fors # 0.

Type 3

For this type, we distinguish two cases of profiles:

3l- a=2,3,b=0 such ad; = (2,2,0,0),9, = (3,3,0,0)
3ll- a=1,b=0such asd = (1,1,0,0)

In the first case, there exidtx 4 minors that are equal to the product of t@o< 2 minors
such that these\,,, have there componentgz; with only one¢, = +i, hence are non-zero
according toProof 2.

In the second case, thiex 4 minors are functions o2 x 2 minors M, as following
2

1
M4><4 = Z H M2><2,k;+l+17 (56)

k=0 =0
and thus we have to prove that this sum is non-zero @&r For this task and without loss of

generality, we consider the delay profie= (1,1,0,0).
Proof 3
Let the4 x 4 minor relative to this delay profile be

0 I T5 T9

0 ) il‘@ —X10
M4><4 -

T3 —x7r T —L1s

Ty —i[[’g —T12 ile

T1 Ts T3 —T15 1 Ty T3  T11 " Ly Ly T3 —I7
To il‘@ Ty il‘lﬁ T2 —T10 Ty —T12 i[[’@ —Z10 Ty —i[[’g

= MMy — MsMy + MsMs, (57)
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with according to the codeword matrix in Equatidn|(49)

M =iXoy01(X) — 01(X)oo(X) My = —iosoi (M)

Mz = —-X020,(X) — 01(X)o2(X) My = 02 (M3)

M = ioy(M;) Mg = —03(M,) (58)
then

Muss = —iM030H (M) — M302(Ms) — ioa(M;)o?(My). (59)

By denoting the first term in this expressi®h and the second termR,, then
Muys =P1 + Py + 02(Pr). (60)
Recalling M3, we can notice that it can be written as
Mz ==Y —0a3(Y) = —Trgp,(Y) with Y = Xo301(X) € K.
LetY e KbeY = Ay + (1681 + (§5C1 + (D1 with Ay, By, Cy, Dy € K. Then,
Mz = —2A4; —2(3C = ay + (sby with  ap,b; € K. (61)
For simplicity, we denote the conjugate(x) = z, so we have
Py = —M302 (M) = —(ar + Csbr) (@1 + Gsbr) = —arar — C2bibi — Cs(arby + aibr).  (62)

Let us now examine the nested sequences of fields includeldeirtampositum fieldk in

Figure[3. We have

F=Q(i) CL; =Q(,V5) C Ky =Q(i,0;) CFy =Q(i,61,(s) C K=Q(4,61,(16) (63)
F=Q(i) CLy=Q(¢) C Ky =Q(i,6) CFa=Q(i, 16, vV5) C K= Q4,01 r6) (64)

with the perfect algebr® A = (K, /L, 0%, v1) = K; ® v K, whereu? =, =i andoy : 0; =
Cis + (5t = 02 — 2 = & + (55, V5 — —V/5. As we haver, (v/5) = —/5, L, is the subfield
fixed by (0?) the subgroup of ord€lf.; : F] = 2 of the Galois group G&K, /F) = (o1) [25].

On the other hand, we have the cyclotomic algetvh = (Ky /Ly, 02 : (16 — —Ci6, 72 =
14 () = Ky @ usKy, andoy @ (16 — (16, (s — —(s- As we haveos((s) = —(s, L is the
subfield fixed by(c3) the subgroup of orddiL, : F] = 2 of the Galois group G&K, /F) = (03)
[25].
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From the nested sequence of field4), we can deduce that

Py = =N,/ (@) =i N,y (01) = Gs T, (arhy) - (65)
€Ly €L SR €L
€ ]leC K1 € ]F;rC K

On the other hand, we hav® € K, we can define it a®; = ay + (16b2 + (e + (Fsda With
as, bz, Ca, d2 c Kl, then

Pi+02(P1) = 2a0 +Ge(1+ i)b%+Cf’6(1 - i)d%- (66)
€Ki CK c K €K

Therefore, we can defing1,,, as
M4><4 == P1 + 0'2(731) + PQ

= (=N, /1 (@1) = iNg, 1, (b1) + 202) + Gio(1 + )by — (s Trg, s, (@rhy) + ¢Hs(1 — i)da

= A+ (6B + ({C + (gD (67)
with
A = —Ng(a1) —iNg, (1) + 202 € Ky
B = (1+i)b, € Ky
C = TrKl/Ll(allz)l) e L, ¢ K
D = (1-i)ds € K, (68)

It can be seen as a vector spacekgfwith basis(1, (14, (%, (i), and thusM .4 = 0 if and

only if A= B = C = D = 0. This condition reduces to

p

A=0 = Ng,u,(a1)+iNg (b)) =2a2  (7)
B=0 = by=0 (i)

C=0 = Trg,,(ab)=0 (i)

D=0 = dy=0 (i)

(69)

\

So in order to prove that thex 4 minor is non-zero, we have to prove that the latter condition

cannot be verified. We proceed by contradiction.

For this task, we show that by assuming thay}, (iii), (iv) are verified, we cannot have).
In fact, if A =0, one particular case would be when= b; = 0, so thata, = 0.
However, ifa; = b; = 0 and according to Equations (65) afidi), we haveP, = Trk, /p, (Y) =

0. Consider the general case whefec K, we can define it by

X =« + ClGB with a, 6 € Fl, (70)
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and its conjugate by (X) = a + (163. We have then
Y = Xo301(X) = (a+ GeB) (@ — G6B) = (aa — ({5688) + Ge(aB — (sB8).  (71)
SinceTrg/r, (Y) = 0, thusY € K is of the formY = ~(6, with v € ;. Therefore, we have
ad — (BB =0 = aa=(pP. (72)

Let us now computeP; + o2(P;) given this condition according t®, = 0. Recall that
P = —iMyo3o? (M) with My = iX 090, (X)—0,(X)o2(X), thenM; andP; can be reduced

to

My = —2aa — 208 = —2a(a + (i65) (73)
Pr = —daa(a+ (eb)(a— iClGE) (74)

and
P14 02(P1) = —diaa (26454 + Gio(1 — i)@é + Gio(1 + i)éB). (75)

On the other hand, we have according (i0), (iv)(be = dy = 0) and Equation[(66) that
P14+ 02(P1) = 2ay. So, it can be simplified to

Py + 0o(P1) = —Sicaaa. (76)

Therefore,
P1—|—O'2(7Dl) =0 = a=0. (77)

However,a = 0 means thatM; = 0 as well. But, we have already proved Rroof 2 that
M; # 0 over Z[i] unlesss = 0. ConsequentlyP; + o5(P;) # 0, thenas # 0. So Given

a; = by = 0, we prove here thatl # 0 and thus,M,,4 cannot be zero ovéL|[i| for s # 0.

This last proof concludes the analysis on the full-rank aByonous codeword matrices for
the different types of delay profilase, the full-diversity of the4 x 4 codel, hence its delay-

tolerance for arbitrary delay profiles.

VI. NEw DELAY-TOLERANT CODES FROM OTHERPERFECT CODES

We derive now delay-tolerant codes from the perfect codesgmted in[[17]. These latter

codes differ from the previous ones by the construction eifrtiyenerator matrices and their
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non-norm element;. Whereas this element was chosen as a root of unity 3n4-dimensional
perfect codesy; = ¢, j), for the current codes it is of the form

™

71:;

wherer is an element ofK; and«* its complex conjugater is chosen as a suitable prime in
Zl[i] or Z[j] so that the element; is of unit norm and it is non-norm for the extensi&h /F.
Based on the same approach in Sectlon (1V-A), the delayantecode is constructed using
the tensor product of two number fields with the same degrelecaprime discriminants. In
previous dimensions, the second field corresponds to thitoyaic extensionK, = Q(¢M)
where ¢ is the M*" root of unity since the non-norm element of the perfect cadiself a
root of unity. Consequently, the relative extension will here K, = Q(6,) with 6, = ¥/77 is

the M*™ root of the non-norm element,.

A. 2 x 2 Code

We consider the case af antennas. The correspondifig< 2 perfect code was constructed
in [17] on the fieldF = Q(:), and thus transmitg-QAM symbols. Letf; = 2cos(2§) and
K; = Q(i, 6,) the relative extension df of degre€/Q(i, 6;) : Q(i)] = 2. The cyclic grougk, /F
is generated by, and the cyclic algebra is theA; (K, /F, o1, ;) with the non-norm element

342
2430

The rotated lattic&[4]? is obtained by a technique presentedin [17]) [24] diffefenin the one

1

used for previous perfect codes. The generator matrix isemigally given by [26]

—0.52573 —0.85065
M, = . (78)
—0.85065 0.52573

Now, letK, = Q(6-) the cyclotomic extension of degréeof F with 6, = (v,)'/2. Its relative
discriminant isdx, = 52 and is coprime tadx, = 5. The cyclic Galois group generator is
oy : B — —0, and the integral basis B, = (1, 6,). The rotatedZ[i]? lattice is generated by

the unitary matrix

My~ L[t (79)
9 = —= .
V2 |1 —0,

Then, the compositum of both cyclic extensions is definedby KK, = Q(i, 0y, (71)'/°)
of order 4 over Q(i) and accordingly thel-dimensional complex lattice is generated by the

4 x 4 unitary matrixM, = M, ® M;. The codeword components are derived from the linear
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combinationx = Mys of ¢-QAM information symbols. They are then distributed in the 2
codeword matrix assigned by the Fourier matrix coefficients = 1,...,4 in dimension2 in
order to guarantee the same NVD as the correspongling? perfect code. Both matrices
and V can also be derived by replacing by 6;,. Moreover, the code construction allows to
have a non-zero product distance, yielding a delay-toterade that maintains its full diversity
regardless of the timing offset among its rows as shown fergtrevious2 x 2 delay-tolerant

code.

VIl. PERFORMANCE EVALUATION OF DELAY-TOLERANT CODES

In this section, we evaluate the performance of the propdstdbuted space-time codes used
by the relays in synchronous as well as asynchronous trasgmi Recalling the cooperative
system model presented in Section IlI-B, a virtual MIMO goleeis assumed witld/ transmit
antennas (one per relay) ald receive antennas. The decoding is performed using the &pher
Decoder as for the perfect codes in conventional MIMO trassion. However in the case of
asynchronous relays, the codewords are transmitted Bven,,., Symbol intervals resulting
in rank deficiency of the channel matrix. In order to tacklés tproblem, the MMSE-DFE
preprocessing [27] is required to precede the lattice dagoso that the transformed channel
has always full rank.

The performance are represented in terms of codeword ext®IQER and bit error rate BER

versus signal-to-noise rati, /N, per receive antenna, which is adjusted as
Eb Es

M’dB - Ny
where E; is the average energy per receive antenna fand the code rate in bits per channel

—10log R (80)
dB

use (bpcu).

A. Performance Comparison of Existent 2 x 2 Codes

For 2 x 2 schemes, we consider the full-rate full-diversity existepace-time codes in this

dimension, namely the Golden coég [14], or its variation matrixC proposed in[[28]
1 S1+1irsy 1S9+ S3

C(s) &2 —— ,r=101—1,
200 +72) | sy —rsy irs, 4 sq

the Silver code (Tirkkonen-Hottinen Cod¢) [29], [30] detiney
X = Xa(s1,52) + TWXp(s3, 54)

5; —S; 1 0 1+: —1+42¢
with X(Si,Sj): J s T = , W:%

s; s; 0 —1 1+ 22 1—1
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the Sezginer-Sari code [31] defined by
b * *
(S) asy + 083 —CSy — (1‘84 ’

asy + bsy  cs} 4 dsj

1 (1= V7)) +i(1+V7)

a=c=—=,b= , d = —1b,
V2 442
the Damen cod® [12] defined by
T —x as; + bsy — csg — ds —c8y — dsy — ass — bs
D(s) 1 3| _ 1 2 3 4 1 2 3 4
To X4 —bsy + asy + dss — csy  —ds; + ¢Sy — bsy + asy
with a = and the

1 h = 1 c = 1 d = 1
V(5B (24+v2) V(-VE)(2+v2) VE+HVB)(2-Vv2) V(5-V5)(2-V32)

new proposed codF given in equation[(19). These codes are compared in a distdbsetup
with and without delays. Note that the collehas been proved to verify the NVD criterion for
any constellation carved from[i| and to be delay-tolerant [32].

In the above x 2 schemes, the codewords matrices confamodulated information symbols
carved from4-QAM constellation and transmitted ové&r = 2 channel uses. The transmission

rate is hencekR = , whered,,., = 0,1 is the maximum delay witlh = (1,0) the delay

profile in asynchronous transmission.

Figure[4 shows the codes performances for synchronoussr@lay, = 0). Observe that the
Golden codeG (or C) outperforms all the other codes. For example, it has abaB and0.5
dB gains oveD andT, S at a BER of10~*, respectively. Note also that the new cddeives
the same performance of the Golden code.

Whereas for asynchronous relays, the situation is revdrstdeen codeB® andG for a delay
of one symbol period since the latter is not delay-tolerintan be seen in Figuid 5 that both
delay-tolerant codeF andD provide gains oR dB and more thar dB over codesI’ and G,
S at a BER of10~4, respectively. In addition, it can be noticed tHaperforms almost similar
to D, and it merely improves for high SNR> 13 dB) by 0.2 dB at a BER of2 x 107°.

Using the unitary matrice¥) andV that provide the new codE from the Golden codé&s,

we can also obtain new delay-tolerant codes base@ @md S codes as
T,=UTV and S, =USV (81)

Note thatU andV are not necessarily the optimal matrices for these codeshby allow to
have new delay-tolerant codes with the same determinantiseasiitial ones. One can easily

verify as demonstrated for codé that the product distances associated with these new codes
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are non-zero over.[i|. Figure[6 depicts the performances of the new codes for &synous
relays with a delay ofl symbol period. It can be observed that all these delaydaotecodes
preserve their diversity and that the cobeagives the best performance. At a BER Dk 1077,
it gains about).2 dB and0.8 dB overT, andS,, respectively.

B. Performance of 3 x 3 Codes

For the 3 x 3 schemes9 modulated symbols carved fromHEX constellation(e Z[j])

are transmitted at a rate df = 3+;im bpcu, whered,... = 0,2 is the maximum delay and

0 = (2,1,0) the delay profile in asynchronous transmission.

In Figure[J, we can observe that both the perfect code and déinecodel’ have the same
performance for synchronous relays. Whereas for asynonsorelays, the delay-tolerant code
preserves the diversity and provides a gairb @B over the3 x 3 perfect code at CER af)—*

for 0pax = 2.

VIII. CONCLUSION

In this paper, we have proposed new delay-tolerant spatedodes based on the perfect codes
algebras. Using tensor product of the perfect code fieldnsida with another field extension
of the same ordefM/ over the same base field and which Galois extensions havenwpr
discriminants, we build rotated lattices in higher dimensn order to construct/ x M codes. A
key parameter in the construction is the coefficieftthat allow to preserve the same properties
of the perfect codes in synchronous transmission.

We have found that, corresponding to the coefficients of the Fourier matrix imeinsion
M vyield the same non-vanishing determinants as the perfetgscd’ hese codes besides having
full-rate, full-diversity, uniform energy per transmit tannas (;| = 1) and are information
lossless, they have the NVD property and thus are optimal [2Hieving in synchronous case.

In addition, for asynchronous transmission, we have préoed/ = 2, 3, 4 that the new codes
preserve their full-diversity and are delay-tolerant fobimary delay profiles. This property is
obtained thanks to the non-zero product distances BYigror Z[j] and the full-rank minors of

the delayed matrices.
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