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Faster Recursions in Sphere Decoding

Arash Ghasemmehdi and Erik Agrell

Abstract—Most of the calculations in standard sphere decoders problem arises in ML detection for multiple-input multiple
are redundant, in the sense that they either calculate quarttes  output (MIMO) channels [9], [15]-[17], ML sequence esti-
that are never used or calculate some quantities more than ae. mation [4], quantization [18], vector perturbation in niuster

A new method, which is applicable to lattices as well as finite icati 19 d ioint detection in direct
constellations, is proposed to avoid these redundant caltations communications [19], and joint detection in direct-sequeen

while still returning the same result. Pseudocode is givenot Multiple access system [20].
facilitate immediate implementation. Simulations show that the The closest point search algorithms can be modified to find

speed gain with the proposed method increases linearly witthe  the ML point in finite constellations [6], [9], which has an
lattice dimension. At dimension 60, the new algorithms avai o 6tant application in MIMO channels. Assuming a system
about 75 % of all floating-point operations. . . . .
_ _ ~ with n transmit andn receive antennas, the new set of points
Index Terms—Closest point search, Fincke—Pohst, lattice, A (@G, /) is defined by replacing. in (1) with the finite range

Lenstra—Lenstra—Lovasz (LLL) reduction, maximum likeli- of integers
hood (ML) detection, multiple-input multiple-output (MIM O),
Schnorr—Euchner, sphere decoder. U = {Unin, Umin + 1, - . ., Umax}- 2)

The transmit set can be mapped to ABfPAM constellation
with L = Umax — Umin + 1. The received vector after an
VERY lattice is represented with itgenerator matrixG,  additive white Gaussian noise (AWGN) channel with double-
whose entries are real numbers. leandm denote the sided noise power spectral density /2 is

number of rows and columns &F respectively withn < m.
The rows ofG, which areby, ..., b,, are callechasis vectors r=uG+n, 3
and are assumed to be linearly independent vectol®" M \ynare o e U, r € R™, G € R"™™ andn € R™
The lattice of dimensiom is defined as the set of points

I. INTRODUCTION

is a vector of independent and identically distributeddj)i
MG, Z) = {uiby + ...+ unby, | u; € Z}. (1) _Gauss_ian noise w_ith vgria_nd‘é)/z In this case, ML detection
is equivalent to minimization of the metrjo- — uG/|| over all
This paper is about methods to find teesest pointin a possible pointsuG with w € . In MIMO systems where
lattice to a given vector € R™, hereafter calledeceived ysually quadrature amplitude modulation (QAM) is used, the
vector, which requires minimization of the metrigr — uG||  1.2-QAM signal constellation can be viewed as two real-valued
over all lattice pointsuG with u € Z". L-PAM constellations withu € U?", r € R*™, G € R?"*2?™,
In 1981, Pohst proposed the first closest point algorithghd n ¢ R2™,
[1], in the equivalent context of finding the shortest veatoa  For both types of applications, lattices or finite constella
translated lattice. It was improved by Fincke and Pohst Bﬁlgtionsl the calculations can be imp|emented basedGoms
[2]. The general method has later become knowrsgisere n the original Pohst algorithm and its numerous refinements
decoding,because it relies on enumerating all lattice pointsotably [2], [4], [9], or based ol = G~ ! [8], [21]. Its
inside a sphere. Mow [3], [4] and Viterbo and Biglieri [5] véer transposeH” is a generator matrix for the dual lattice.
the first to apply the Fincke—Pohst algorithm to maximum-like |n this paper, we draw attention to a hitherto unnoticed
lihood (ML) detection in communications. In 1999, Viterbgyroblem with the standard algorithms. It is illustrated ttha
and Boutros extended the algorithm to finite constellatiomge standard sphere decoder algorithms based on Pohst [2],
[6] Agrell et al. in 2002 showed that the Schnorr—Euchne[g] and SE [7], [9] enumeration Strategies perform many
(SE) enumeration strategy [7] reduces the complexity oésph excessive numerical operations. A method is proposed to
decoding compared with the Pohst enumeration [8]. avoid these unnecessary computations. However, the oavisi
During the last decade, a lot of work has been done #poposed is not related to choosing a more accurate upper
improve the efficiency of sphere decoder algorithms [9]5[14p0und on||» — wG/|| or scanning set of feasible poiniG
due to the significant usage they have found in numerous typgsa different order. We believe that the SE strategy is the
of applications. In communication theory, the closest poibest way in this regard. Our modifications instead change
Manuscript submitted May 2009; revised May 2010 and Dec0201 hPW Iat.tlce vec_tors are recurs“./ely constru_cted from lewer
A. Ghasemmehdi was with the Department of Signals and Sgstenflimensional lattices (fof&-based implementations) or how the
Chalmers University of Technology, SE-41296 Goteborgedam. He is now received vector is recursively projected onto the basis vectors
i e Dopnen of el v Corouer Cagnesouaty o (for -based mplemertatons). which accourts for most o
arash.ghasemmehdi@utoronto.ca). the floating point calculations in sphere decoding. With the
E. Agrell is with the Dept. of Signals and Systems, Chalmerivétsity proposed methods, not a single value would be calculated
of Technology, SE-41296 Goteborg, Sweden (e-mail: a@reflaimers.se).  yice or remain without any use. Standalone implementation
of the new (and old) algorithms are given in Fig. 2.
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The possible range of the layer index follows from |y,,| <
V/C, which yields

where [ ] and | | denote the round up and round down
operations respectively, which is also seen in Fig. 1.

In order to calculateZ,_; ,,—1, which will be used later
on to calculate the range of,_; (9) and the displacement
yn—1 (14), the received vector is first projected onto the
examinedn — 1)-dimensional layer (6) and then to the lattice
basis vectors (7). We use the notatiop_; for the projected
received vector, wheren — 1 denotes the dimension of the
layer that the received vector is projected on.

Thanks to the lower-triangular representation, the orthog
nal projection ofr onto the(n—1)-dimensional layer currently
being investigated affects only the last component.oThus,
it is sufficient to subtract,, from the nth element ofr to

obtain
Tn—1 = (7"1,7"2,---,7"n _yn)- (6)
Fig. 1. Snapshot of an-dimensional hypersphere, divided into a stack off his pO_Siti(_)nsrn_l exactly onE. In _analogy Wi_then =rH,
(n — 1)-dimensional layers. the projection ofr,,_; onto the basis vectors is
€En—1= rnle (7)
Il. CLOSESTPOINT SEARCH ALGORITHMS =rH - (0,...,0,yn)H

Without loss of generality, we assume th@tis a square =en —Yn(Hna, .., Hun), (8)

lower-triangular matrlxlwnh positive diagonal elemen&.[ \ynere en1 = (En11,-,En_1.m_1,u,). The important

ConsequentlyH = G is also square and lower triangulafgiement here isZ,_; ,_1, because it determines the corre-
with positive diagonal elements. We denote withy and H;; sponding range for,,

the element oiG and H, resp., at rowi and column;j < i.

The description of the sphere decoding principle in thisisac [—Hp-1m-1VC =92+ En_1pn_1] <tp_1

takes theHjbased appr.ogch. . . . < Hprn/C =2 4+ En1m1],  (9)
Every lattice can be divided into layers of lower-dimensibn

lattices. The diagonal element§;; = 1/H; equal the which follows from y2_, + y2 < C where y,_; =

distances between th@ — 1)-dimensional layers in an- (En—1,n-1— tn—1)/Hp-1,n-1

dimensional layer. The sphere decoder is applied recursively to search this
Fig. 1 illustrates am-dimensional hypersphere with radiugn — 1)-dimensional layer. Thereafter the next value in (5)

V/C centered on a vector. All lattice points inside this is generated and a nefs — 1)-dimensional layer is searched.

hypersphere lie ofn — 1)-dimensional layers, enumerated byseneralizing, the closest point in ardimensional layer is

the integeru,,. The basis vectob,, is in the same direction found by dividing the layer intqi — 1)-dimensional layers,

as the hypotenuse of the right trianglés\BC and ADEC, searching each of these separately, and then proceeding to

while all the other basis vectors;,...,b,_; lie in the the nexti-dimensional layer. We will refer to this process of

subspace spanned by one of thése- 1)-dimensional layers. decreasing and increasing@smoving down and up the layers,
Starting from dimensionn, the received vectorr = resp. The projection of onto ani-dimensional layer, where

(ri,72,...,m7n) € R™ is projected onto the lattice basis0 <i<n—1,is

vectors by, bs,...,b,. This is done by a simple matrix

multiplica%[i’or?encv;' N e, = r)}-I, Wheﬁa en = i = (11 T Tt~ Yirty - T = yn) - (10)

(Eni1, B2, Eny) € R For each(n — 1)-dimensional which differs from;,, in one coordinate only. The coeffi-

layer u,, that is to be examined, the orthogonal displacemesients of r; expressed as a linear combination of the basis
yn, from the received vector to this layer is calculated, which vectors are
is shown with the lineDE in Fig. 1. This displacement follows

from the congruence oA ABC and ADEC: e =riH (11)
(ﬂ" *Un)ﬁ _ (an _Un)”bn” N =én— Z yj(Hj’l""’Hj’n)
yn (En,n - un)an” j=itl
Eyn—un =eiy1 — Yir1(Hiv11, -, Hiy1n) (12)

g = T 4
Yn Hnm ( ) = (Eiyl,...,Ei,i,uwl,...,un). (13)
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(In a zero-dimensional layer, which is a lattice poing, ¢ FE,; for all j =1,...,% — 1, when they are not supposed to
ANG,Z) andeg = roH € Z™)) be used at that stage of the algorithm, and possibly notat all
Assuming ani-dimensional sphere similar to Fig. 1, theThe answer to this question inspired an intelligent aldonit

orthogonal displacement between the projected veet@nd to manage the projection of and updating thet; ; values,
the examined: — 1)-dimensional layer is, for any < i <n, based on following criteria:
By — e The last row ofE, e,, is calculated just once since there

Yi = (14) exists only a singlex-dimensional layer.

Hi; e When movingdown to an i-dimensional layerF; ; needs
Finally, the range ofy; for ¢ = 1,...,n — 1 is determined by to be calculated. This is done by first calculating those eslu
the projection valueE; ; as of E;; for j > i that are not already known, which we call a

column-wiseupdating strategy.

[=Hii/C = Aix1 + Big] S wi < [Hii/C = A1 + E11LJ57 e When movingup from ani-dimensional layer, the firgt+ 1

(15) elements ofe; and of the othere vectors above that row

become obsolete and should be considered as unknown in

N =y + yi2+1 R (16) the future, since the next time the algorithm will move down
_ _ ) to dimensioni, the received vector will be projected onto
is the squared distance from the received veetoto the anotheri-dimensional layer. However, the elements below
projected vectorr,_; and C' — \,1; is the squared radius remain unaffected.
Euclidean distance between the received veotornd a needs to keep track of which elements Bfare known, to

where

potential closest pointy. avoid recalculating them. We introduce the integérs . . , d,,
for this purpose, defined such that at any instaRy, is known
I11. AVOIDING REDUNDANT CALCULATIONS fori = 1,...,nandj = d;,d; + 1,...,n. Hence, when

In this section, we claim that most of the arithmetic opM0Vving down to an-dimensional layer, the row-wise updating
erations in standard sphere decoders are redundant andS{ategy (12) can be replaced by the more efficient column-
propose methods to avoid them, thus increasing the decodf¥ige UPdating strategy

§peed. The rgdundant operations are of two typestcbasgd Ej 1,=E;;—y;H,, (17)
implementations, numerous quantities are calculatedivdrie . .
never used, and fa&-based implementations, some quantitie‘?r J=diydi =1,...,i+1.

are calculated more than once. In both cases, the source of th
problem is the way the projection values are calculated. B. G-Based Decoding: Updating The Projection Values

In Sec. IV, we demonstrate by simulations how the com- also in the G-based implementations, the time-consuming
putational complexity of sphere decoder algorithms, fothbostep is to calculate the projection values, which we dendtte w
lattices and finite constellations, is reduced due to thpgsed E;; in H-based implementations, as discussed in Sec. llI-A,
methods. A small penalty is paid in terms of memory usaggdy, in G-based implementations.
and memory write operations. According to [9], which uses the same recursions as [6],

the projection value when moving down to a&uimensional

A. H-Based Decoding: Projection of The Received Vector layer is calculated as; = f;/G;,;, where f, = r,, and

Most of the numerical operations carried out in standard "
sphere decoders based &h are related to the projection of Ji=ri— Z weGl,i-
the received vector, or its lower-dimensional counterpart, k=it+1
onto the lattice basis vectors as in (11)—(13). Defining aimat In contrast to (12), this is a column-wise updating strategy
E’ whose rows areeq, ..., e,, it follows from (12) that all not the most efficient one. Moving further down the layers in
elements of this matrix are updated from the elements imn@rder to calculatep; for j < 4, one can notice that part of
diately below. However, the only elements that are requiréde sum in (18) is already calculated and does not need to
in (14) and (15) are the diagonal elemeais;. The elements be recalculated if stored in memory. Hence, we defig =
located above the diagonal &' are equal to values of; 7 — > ,_;,, urGr; for 1 <i < j <nandF,; = r; for
that have already been calculated in previous stages of the ¢ < n. As a result, (18) is equivalent to calculating
algorithm, see (13). We therefore define a matfixas the Fo B G (19)
lower-triangular part (including the diagonal) & . gL T I
The sphere decoder proposed in [8] always updates fioe j = n,n —1,...,i+ 1 and thenp; = F; ;/G, ;. If some
first ¢ elements ofe; simultaneously, which we call sow- values ofF; ; are already known, however, the recursion (19)
wise updating strategy. For instance, if move down toian can begin at somg < n, which saves operations compared
dimensional layer, we update; ; for all j = 1,...,47. These with (18).
values may be used later to upddie; for some; < ¢ after We collect the elements; ; in a lower-triangular matrix”,
moving further down the layers. But why should one projeethich is related to the lower-triangular matixby E = FH
the entire vector; onto the lattice basis vectors and calculater, equivalently,F’ = EG. The optimized projection method

(18)



proposed in Sec. llI-A to update th&; ; values, with some
minor modifications, can be similarly applied to upddig;.
The changes are as follows:

e The last row ofF' is equal to the received vecter

¢ When movingdownto ani-dimensional layerF; ; needs
to be calculated. This is done by computing (19) for=
d;,d; — 1,....,1 + 1, whered;, in analogy with the definition
above forH-based decoding, is defined as the minimufor
which F ; is known.

e When movingup from ani-dimensional layer, all elements
on theith row of F' and above that row become obsolete an
should be considered as unknown in the future, since the n
time the algorithm will move down to dimensiananotheri-
dimensional layer will be investigated. However, the elatae
below that row remain unaffected.

C. The Proposed Algorithm

Standalone representations of the old and new algorithr
G-based andH -based versions, for lattices and finite conste
lations, are given in Fig. 2, all based on the SE enumerati
strategy. The specifications are intended to be sufficietely
tailed to allow a straightforward implementation, evenhwitt
knowledge of the underlying theory.

As starting points, we use th&-based algorithm called
“Algorithm 11" in [9], labeled with 2 in Fig. 2, and the
H-based algorithm “Decode” in [8], here labeled with
The loops have been restructured for consistency betwe
the algorithms, but the calculations in Fig. 2 are exactly th
same as in [9] and [8]. Indeed, all algorithms for lattic
decoding (algorithmsdl, 3, 5, and 7) visit the same layers
u;, in the same order, and return the same regukilthough
they calculate different intermediate quantities. A sanihote
holds for decoding finite constellations (algorithias4, 6,
and8).

After the initialization, the algorithms are divided intorée
parts. In the first part, which is the firsto—while loop, we
move down the layers (decreaggas long as the squared
Euclidean distance\; (16) between the received vecter
and the projected vectar;,_; (10) is less than the squared
Euclidean distanc€' between the received vecterand the
closest lattice point detected so far. In the second parictwh
is the secondlo—whileloop, we move up in the hierarchy of
layers (increasé) as long as\; > C. Moreover, before leaving
each of these parts, we store the minimum and maximu
dimensioni that has been visited (in the variables and i,
respectively). These values are used in the last part of {
algorithm, which only belongs to the new algorithms.

The method to manage the recursive projectionepfor
the calculation ofF;; is proposed in the third and last part
after the seconavhile. This part sets the value af; to ¢ for
j=m,m+1,...,i—1andmax{d;,i} for j=1,...,m—1,
but in a way that generally requires fewer than- 1 integer
comparisons. The values @f for j > i are not updated, since
they will not be needed in the next iteration. The valdes
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keep track of which elements; ; or F;; ; are known at each in-
stant, which in turn determines the rangejofalues for which

input: n, G, r; output

inpUt: n, G7 T, Umin, Umax; Output: u € ur
input: n, H,r; output: @ € Z"
input: n, H, 7, Unin, Umax; OUtpUt: @ € U™

C=x
i=n+1
P =n

dij=n, j=1,...,n

>\n+1 =0

En’j = ZZ:]’ rkayj, ] = 1, NN 1
Foj=rj g=1,...

U = round (Fn )
U = roundc(FEy, )
4= (Enin — ) H
An = sign(y)

A; = sign(y
A; = sign(y;)
Ai =Ait1+y
Ai = Xit1 +y;
} else{
4 =
}C:)\l
} while (\; < ©)
m =1
do {
if (i =mn)
returnu and exit
else
t=1+1
y =00
Yi = 00
u; = u; + A

Ai = —Ai — 51gn(A1)

if (Umin <wu; < Umax)
y=(pi —ui)Gis

)/ Hii

yi = (Bii —us)/Hi

y= (Eii —u

else{
ui = u; + A
Ai = —Ai —blg

if (Umin <u; < Umax)

Y= (pi —u)G
)/ Hi,i
yi = (Eii —ui)/His

y=(Fii —u

Ait1 erz
i = Ait1 + Y;

) goto LOOP
goto LOOP

= (Eii —ui)/Hi H =G}

€L

,n

. -1, <0
n | sign(z) = 1. 23>0

round(z) = arg min |u — x|
UEL
roundc(x) = arg min |u — z|
ueU

n: dimension

G: a lower-triangular
nxn generator matri
with positive diagonal
elements

r: received vector

Unmin, Umax: constellation
endpoints (2)

@ = arg min ||r — uG||
u

old G-based, lattices
old G-based, finite const. [9]
old H-based, lattices [8]
old H-based, finite const.
new G-based, lattices
new G-based, finite const.
new H-based, lattices
new H-based, finite const.

0 N O U~ WN P

Fig. 2. Eight algorithms in one figure. To implement a certaigorithm,
(17) and (19) should be computed, as detailed in Sec. I114&€ only the lines labeled with the algorithm's digit .. 8.
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. . 10 T T T T T T T T
and III-B. It can be shown thai; is a decreasing sequence —— G-based old
for j =1,2,...,m, constant forj = m,m+1,...,i—1, and 1012 igg:zzg SLC‘ =t
finally increasing forj =i —1,4,...,n. - H-based ne .

Due to the well-documented performance gain that tt 10"
SE enumeration strategy brings to sphere decoders, we
ply herein the proposed refinement only to the SE strate@
However, the same refinement can be applied to the origif- 10¢ |
Pohst enumeration strategy. It is also applicable to mast,
all, of the numerous sphere decoder variants, optimal ak w
as suboptimal, that have been developed in the last decad o2 |

108 -

10%

IV. SIMULATION RESULTS 0 5 10 15 20 25 30 35 40 45 50 55 60

Herein, we evaluate the effectiveness of the proposed smauit Dimension
vector projection technique on the sphere decoder algosithrig. 3. The average number of flops needed to decode a vedtotivei old
based on SE enumeration strategy, for both lattices ane firahd new versions oG- and H-based lattice decoding algorithms, without
constellations. All eight algorithms are implemented adggg ~ "eduction
to the pseudocode presented in Fig. 2.

4.5 I T T T T T T T T T T

We base our performance comparison measure on count *[—— G-based Tlops without reduction
the number of floating point operations (flops) and integ: af a” %'}‘.22:23 2333 “x'@iﬂoh%ﬁéﬁﬁt‘ﬁgﬁ” 4
operations (intops) that each algorithm carries out tolrehe a5l 3 Cat hasen niops without Teduttion
closest lattice point. Both types of operations includeitimia] =-4-- G&H-based intops with LLL reductiop
subtraction, multiplication, division, and comparisonf mot 3r

for loop counters, whose role differs between programmirs s}
languages. Theound operation is counted as a single floating
point operation, andoundc in Sec. IV-B is counted as one
floating point operation for 2-PAM and two for 4-PAM. 1.5f

To compare the complexity of two algorithms, typically 1k o -
an old and a new one, we generaté random generator 4 " o ” x
- . 05 1 1 1 1 1 1 1 1 1 1
matrices Gy, ..., Gy, and for eachG; we generateN > B 10 15 20 25 30 35 40 45 S0 55 €0
random received vectors; 1, ..., r; n. The same vectors are Dimension

decoded using both algorlthms and the number of operations

ops(r;, Gy) is counted, which could be either flops or mtop{)l?h ;‘ut rgg&‘;';’]"ty gain with the new lattice decoding algums, with and

The average gain with the new algorithm is reported as

gain = -+ Z i opa T”’ZJ) - (20) not counted, since the preprocessing is only done once for
Zz 1 0PSnew(T5,is Gj) each lattice, regardless of the number of received vecidres.
gain with new algorithms increases linearly with dimension
A. Lattices while the reduction does not change the ratios substantiall

We generate the lattice generator matrices with randobie drawback is a somewhat larger number of intops, but the
numbers, drawn from i.i.d. zero-mean, unit-variance Gaugenalty converges to a mere’5ncrease at high dimensions.
sian distributions. The random input vectors are generatédsimulations it was observed that most of the operations in
uniformly inside a Voronoi region according to [22]. Ourthe algorithms are flops, especially as the dimension isea
simulation results are based on averaging o¥&r= 100 For instance, at dimension 60 with the difibased algorithm,
different generator matrices. The number of input vectrs the flops are roughly 10 times more than the intops. Hence,
depends on the dimensiarof the lattices. Fewer input vectorsflops dominate the complexity of the algorithms and intops
are examined in high dimensions, to the extent that we ensti@ve a relatively small effect on the overall complexity.
that the plotted curves are reasonably smooth. We also measured the running time for the algorithms.

Fig. 3 compares the number of flops for the standardind As expected, the gain increases roughly linearly with the
H-based algorithms (algorithmis and 3 in Fig. 2) with the dimension, similarly to the flops curves in Fig. 4. However,
new algorithms proposed in this paper (algorithBhand 7). the slope of the curve varies significantly between differen
Apparently, theG- and H-based implementations have abouprocessors and compilers, which is why we did not include
the same complexity, but both can be significantly improvedunning time in Fig. 4. At dimension 60, the gain ranged

The gain (20) is shown in Fig. 4 for flops and intops. Arom 1.7 (AMD processor, Visual C++ compiler) to 2.7 (Intel
preprocessing stage was applied to each lattice, repldlogg processor, GCC compiler), for th-based algorithm without
generator matrix with another generator matrix for the sameduction. We can thus safely conclude that the reduced
lattice via the so-called Lenstra—Lenstra—Lovasz (LLéguc- number of operations translates into a substantial speied ga
tion [23], [24]. The operations needed for the reductionevebut how much depends on the computer architecture.
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Fig. 5. Average gain in the number of flops with the new algonis for a
2-PAM constellation and various SNRs.
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—— G-based SNR=0dB
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411 =9— G-based SNR=10dB A
---- H-based SNR=0dB
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3.5 - -v- H-based SNR=10d| 4
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Dimension

Fig. 6. Average gain in the number of flops for a 4-PAM conatah and
various SNRs.

B. Finite Constellations
The channel model in (3) for af-PAM constellation is

considered, where the average symbol energy of the cons&g]

lation, E;, is calculated from the signal sgt- -2, — L1

1,...,451} and the SNR is defined &s,/No, whereE, =
E,/log, L is the average energy per bit aid,/2 is the
double-sided noise spectral density.

To appear in IEEE RANSACTIONS ONINFORMATION THEORY, 2011

G-based algorithms, and one of them even provided a small
but elegant improvement to the netbased algorithms.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

&l

[20]

[11]

[12]

(23]

[14]

[16]

The gain in flops is presented in Figs. 56 for 2-PAM and 4-
PAM constellations, resp., averaged over 100 random ctanfid
matrices G with i.i.d. zero-mean, unit-variance elements.
The same general conclusion as for lattices holds for finite

constellations too: The new algorithms provide a subsaantf'®

complexity gain, and the gain increases linearly with thgg)

dimension. However, in contrast to lattice decoding, thega

are here higher fo&-based implementations. Furthermore, the
gains increase at low SNR, and 4-PAM offers slightly highgsg)

gains than 2-PAM. Tentative investigations indicate tha t
gains are even higher with 8-PAM.
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