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Rate–Distortion Function via Minimum Mean
Square Error Estimation

Neri Merhav

Abstract—We derive a simple general parametric representa-
tion of the rate–distortion function of a memoryless source, where
both the rate and the distortion are given by integrals whose
integrands include the minimum mean square error (MMSE) of
the distortion ∆ = d(X,Y ) based on the source symbolX ,
with respect to a certain joint distribution of these two random
variables. At first glance, these relations may seem somewhat
similar to the I–MMSE relations due to Guo, Shamai and Verdú,
but they are, in fact, quite different. The new relations among
rate, distortion, and MMSE are discussed from several aspects,
and more importantly, it is demonstrated that they can sometimes
be rather useful for obtaining non–trivial upper and lower
bounds on the rate–distortion function, as well as for determining
the exact asymptotic behavior for very low and for very large
distortion. Analogous MMSE relations hold for channel capacity
as well.

Index Terms—Rate–distortion function, Legendre transform,
estimation, minimum mean square error.

I. I NTRODUCTION

I T has been well known for many years that the derivation of
the rate–distortion function of a given source and distortion

measure, does not lend itself to closed form expressions,
even in the memoryless case, except for a few very simple
examples [1],[2],[3],[5]. This has triggered the derivation of
some upper and lower bounds, both for memoryless sources
and for sources with memory.

One of the most important lower bounds on the rate–
distortion function, which is applicable for difference distor-
tion measures (i.e., distortion functions that depend on their
two arguments only through the difference between them),
is the Shannon lower bound in its different forms, e.g., the
discrete Shannon lower bound, the continuous Shannon lower
bound, and the vector Shannon lower bound. This family of
bounds is especially useful for semi-norm–based distortion
measures [5, Section 4.8]. The Wyner–Ziv lower bound [14]
for a source with memory is a convenient bound, which
is based on the rate–distortion function of the memoryless
source formed from the product measure pertaining to the
single–letter marginal distribution of the original source and
it may be combined elegantly with the Shannon lower bound.
The autoregressive lower bound asserts that the rate–distortion
function of an autoregressive source is lower bounded by the
rate–distortion function of its innovation process, whichis
again, a memoryless source.

Upper bounds are conceptually easier to derive, as they may
result from the performance analysis of a concrete coding
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scheme, or from random coding with respect to (w.r.t.) an
arbitrary random coding distribution, etc. One well known
example is the Gaussian upper bound, which upper bounds
the rate–distortion function of an arbitrary memoryless (zero–
mean) source w.r.t. the squared error distortion measure bythe
rate–distortion function of the Gaussian source with the same
second moment. If the original source has memory, then the
same principle generalizes with the corresponding Gaussian
source having the same autocorrelation function as the original
source [1, Section 4.6].

In this paper, we focus on a simple general parametric
representation of the rate–distortion function which seems to
set the stage for the derivation of a rather wide family of
both upper bounds and lower bounds on the rate–distortion
function. In this parametric representation, both the rateand
the distortion are given by integrals whose integrands include
the minimum mean square error (MMSE) of the distortion
based on the source symbol, with respect to a certain joint
distribution of these two random variables. More concretely,
given a memoryless source designated by a random variable
(RV) X , governed by a probability function1 p(x), a reproduc-
tion variableY , governed by a probability functionq(y), and
a distortion measured(x, y), the rate and the distortion can be
represented parametrically via a real parameters ∈ [0,∞) as
follows:

Ds = D0 −
∫ s

0

dŝ · mmsês(∆|X)

= D∞ +

∫ ∞

s

dŝ · mmsês(∆|X) (1)

and

Rq(Ds) =

∫ s

0

dŝ · ŝ · mmsês(∆|X)

= Rq(D∞)−
∫ ∞

s

dŝ · ŝ · mmsês(∆|X), (2)

whereDs is the distortion pertaining to parameter values,
Rq(Ds) is the rate–distortion function w.r.t. reproduction dis-
tribution q, computed atDs, ∆ = d(X,Y ), and mmses(∆|X)
is the MMSE of estimating∆ based onX , where the joint
probability function of (X,∆) is induced by the following
joint probability function of(X,Y ):

ps(x, y) = p(x) · ws(y|x) = p(x) · q(y)e
−sd(x,y)

Zx(s)
(3)

1Here, and throughout the sequel, the term “probability function” refers to
a probability mass function in the discrete case and to a probability density
function in the continuous case.
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where Zx(s) is a normalization constant, given by
∫

dyq(y)e−sd(x,y) in the continuous case, or
∑

y q(y)e
−sd(x,y)

in the discrete case.
At first glance, eq. (2) looks somewhat similar to the I–

MMSE relation of [6], which relates the mutual information
between the input and the output of an additive white Gaussian
noise (AWGN) channel and the MMSE of estimating the
channel input based on the noisy channel output. As we
discuss later on, however, eq. (2) is actually very different
from the I-MMSE relation in many respects. In this context,
it is important to emphasize that a relation analogous to (2)
applies also to channel capacity, as will be discussed in the
sequel.

The relations (1) and (2) have actually already been raised in
a companion paper [9] (see also [10] for a conference version).
Their derivation there was triggered and inspired by certain
analogies between the rate–distortion problem and statistical
mechanics, which were the main theme of that work. However,
the significance and the usefulness of these rate–distortion-
MMSE relations were not explored in [9] and [10].

It is the purpose of the present work to study these re-
lations more closely and to demonstrate their utility, which
is, as said before, in deriving upper and lower bounds. The
underlying idea is that bounds onRq(D) (and sometimes
also onR(D) = minq Rq(D)) may be obtained via relatively
simple bounds on the MMSE of∆ based onX . These bounds
can either be simple technical bounds on the expression of
the MMSE itself, or bounds that stem from pure estimation–
theoretic considerations. For example, upper bounds may be
derived by analyzing the MMSE of a certain sub-optimum
estimator, e.g., a linear estimator, which is easy to analyze.
Lower bounds can be taken from the available plethora of
lower bounds offered by estimation theory, e.g., the Cramér–
Rao lower bound.

Indeed, an important part of this work is a section of
examples, where it is demonstrated how to use the proposed
relations and derive explicit bounds from them. In one of these
examples, we derive two sets of upper and lower bounds,
one for a certain range of low distortions and the other, for
high distortion values. At both edge-points of the interval
of distortion values of interest, the corresponding upper and
lower bound asymptotically approach the limiting value with
the same leading term, and so, they sandwich the exact
asymptotic behavior of the rate–distortion function, bothin
the low distortion limit and in the high distortion limit.

The outline of this paper is as follows. In Section II, we
establish notation conventions. In Section III, we formally
present the main result, prove it, and discuss its significance
from the above–mentioned aspects. In Section IV, we provide
a few examples that demonstrate the usefulness of the MMSE
relations. Finally, in Section V, we summarize and conclude.

II. N OTATION CONVENTIONS

Throughout this paper, RV’s will be denoted by capital
letters, their sample values will be denoted by the respective
lower case letters, and their alphabets will be denoted by the
respective calligraphic letters. For example,X is a random

variable,x is a specific realization ofX , andX is the alphabet
in whichX andx take on values. This alphabet may be finite,
countably infinite, or a continuum, like the real lineIR or an
interval [a, b] ⊂ IR.

Sources and channels will be denoted generically by the
letter p, or q, which will designate also their corresponding
probability functions, i.e., a probability density function (pdf)
in the continuous case, or a probability mass function (pmf)
in the discrete case. Information–theoretic quantities, like
entropies and mutual informations, will be denoted according
to the usual conventions of the information theory literature,
e.g., H(X), I(X ;Y ), and so on. If a RV is continuous–
valued, then its differential entropy and conditional differential
entropy will be denoted withh instead ofH , i.e., h(X)
is the conditional differential entropy ofX , h(X |Y ) is the
conditional differential entropy ofX givenY , and so on. The
expectation operator will be denoted, as usual, byE{·}.

Given a source RVX , governed by a probability func-
tion p(x), x ∈ X , a reproduction RVY , governed by a
probability functionq(y), y ∈ Y, and a distortion measure
d : X × Y → IR+, we define the rate–distortion function of
X w.r.t. distortion measured and reproduction distributionq
as

Rq(D)
∆
= min I(X ;Y ), (4)

where X ∼ p and the minimum is across all channels
{w(y|x), x ∈ X , y ∈ Y} that satisfyE{d(X,Y )} ≤ D
and E{w(y|X)} = q(y) for all y ∈ Y. Clearly, the rate–
distortion function,R(D), is given byR(D) = infq Rq(D).

We will also use the notation∆
∆
= d(X,Y ). Obviously, since

X andY are RV’s, then so is∆.

III. MMSE RELATIONS: BASIC RESULT AND DISCUSSION

Throughout this section, our definitions will assume that
both X andY are finite alphabets. Extensions to continuous
alphabets will be obtained by a limit of fine quantizations,
with summations eventually being replaced by integrations.

Referring to the notation defined in Section II, for a given
positive reals, define the conditional probability function

ws(y|x) ∆
=
q(y)e−sd(x,y)

Zx(s)
(5)

where
Zx(s)

∆
=
∑

y∈Y

q(y)e−sd(x,y) (6)

and the joint pmf

ps(x, y) = p(x)ws(y|x). (7)

Further, let

mmses(∆|X) = Es{[∆−E{∆|X}]2}
= Es{[d(X,Y )−Es{d(X,Y )|X}]2}(8)

whereEs{·} is the expectation operator w.r.t.{ps(x, y)}, and
definingψ(x) as the conditional expectationEs{d(x, Y )|X =
x} w.r.t. {ws(y|x)}, Es{d(X,Y )|X} is defined asψ(X).

Our main result, in this section, is the following (the proof
appears in the Appendix):
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Theorem 1:The functionRq(D) can be represented para-
metrically via the parameters ∈ [0,∞) as follows:

(a) The distortion is obtained by

Ds = D0 −
∫ s

0

dŝ · mmsês(∆|X)

= D∞ +

∫ ∞

s

dŝ · mmsês(∆|X) (9)

where
D0 =

∑

x,y

p(x)q(y)d(x, y) (10)

and
D∞ =

∑

x

p(x)min
y
d(x, y). (11)

(b) The rate is given by

Rq(Ds)

=

∫ s

0

dŝ · ŝ · mmsês(∆|X)

= Rq(D∞)−
∫ ∞

s

dŝ · ŝ · mmsês(∆|X). (12)

In the remaining part of this section, we discuss the
significance and the implications of Theorem 1 from several
aspects.

Some General Technical Comments

The parameters has the geometric meaning of the negative
local slope of the functionRq(D). This is easily seen by
taking the derivatives of (9) and (12), i.e., dRq(Ds)/ds =
s · mmses(∆|X) and dDs/ds = −mmses(∆|X), whose ratio
is R′

q(Ds) = −s. This means also that the parameters plays
the same role as in the well known parametric representa-
tions of [1] and [5], which is to say that it can also be
thought of as the Lagrange multiplier of the minimization
of [I(X ;Y ) + sE{d(X,Y )}] subject to the reproduction
distribution constraint.

On a related note, we point out that Theorem 1 is based on
the following representation ofRq(D):

Rq(D) = −min
s≥0

[

sD +
∑

x∈X

p(x) lnZx(s)

]

, (13)

which we prove in the Appendix as the first step in the proof
of Theorem 1.

It should be emphasized that the pmfq, that plays a role
in the definition ofwŝ(y|x) (and hence also the definition of
mmsês(∆|X)) should be keptfixedthroughout the integration,
independently of the integration variablês, since it is the
same pmf as in the definition ofRq(D). Thus, even ifq is
known to be optimum for a given target distortionD (and
then it yields R(D)), the pmf q must be kept unaltered
throughout the integration, in spite of the fact that for other
values ofŝ (which correspond to other distortion levels), the
optimum reproduction pmf might be different. In particular,
note that the marginal ofY , that is induced from the joint pmf

ps(x, y), may not necessarily agree withq. Thus, pŝ(x, y)
should only be considered as an auxiliary joint distribution
that defines mmsês(∆|X).

Using Theorem 1 for Bounds onRq(D)

As was briefly explained in the Introduction (and will also
be demonstrated in the next section), Theorem 1 may set
the stage for the derivation of upper and lower bounds to
Rq(D) for a general reproduction distributionq, and hence
also for the rate–distortion functionR(D) when the optimum
q is happened to be known or is easily derivable (e.g., from
symmetry and convexity considerations).

The basic underlying idea is that bounds onRq(D) may be
induced from bounds on mmseŝ(∆|X) across the integration
interval. The bounds on the MMSE may either be derived from
purely technical considerations, upon analyzing the expression
of the MMSE directly, or by using estimation–theoretic tools.
In the latter case, lower bounds may be obtained from funda-
mental lower bounds to the MMSE, like the Bayesian Cramér–
Rao bound, or more advanced lower bounds available from the
estimation theory literature, for example, the Weiss–Weinstein
bound [12],[13], whenever applicable. Upper bounds may be
obtained by analyzing the mean square error (MSE) of a
specific (sub-optimum) estimator, which is relatively easyto
analyze, or more generally by analyzing the performance of
the best estimator within a certain limited class of estimators,
like the class of linear estimators of the ‘observation’X , or a
certain fixed function ofX .

In Theorem 1 we have deliberately presented two integral
forms for both the rate and the distortion. AsDs is
monotonically decreasing andRq(Ds) is monotonically
increasing ins, the integrals at the first lines of both eqs. (9)
and (12), which include relatively small values ofŝ, naturally
lend themselves to derivation of bounds in the low–rate
(high distortion) regime, whereas the second lines of these
equations are more suitable in low–distortion (high resolution)
region. For example, to derive an upper bound onRq(D) in
the high–distortion range, one would need a lower bound on
mmsês(∆|X) to be used in the first line of (9) and an upper
bound on mmsês(∆|X) to be substituted into the first line of
(12). If one can then derive, from the former, an upper bound
on s as a function ofD, and substitute it into the upper bound
on the rate in terms ons, then this will result in an upper
bound toRq(D). A similar kind of reasoning is applicable
to the derivation of other types of bounds. This point will be
demonstrated mainly in Examples C and D in the next section.

Comparison to the I–MMSE Relations

In the more conceptual level, item (b) of Theorem 1 may
remind the familiar reader about well–known results due to
Guo, Shamai and Verdú [6], which are referred to as I–MMSE
relations (as well as later works that generalize these relations).
The similarity between eq. (12) and the I–MMSE relation (in
its basic form) is that in both cases a mutual information
is expressed as an integral whose integrand includes the
MMSE of a certain random variable (or vector) given some
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observation(s). However, to the best of our judgment, this is
the only similarity.

In order to sharpen the comparison between the two rela-
tions, it is instructive to look at the special case where all
random variables are Gaussian and the distortion measure
is quadratic: In the context of Theorem 1, considerY to
be a zero–mean Gaussian RV with varianceσ2

y , and let
d(x, y) = (x − y)2. As will be seen in Example B of the
next section, this then means thatws(y|x) can be described
by the additive Gaussian channelY = aX + Z, where
a = 2sσ2

y/(1 + 2sσ2
y) andZ is a zero–mean Gaussian RV,

independent ofX , and with varianceσ2
y/(1+2sσ2

y). Here, we
have∆ = (Y −X)2 = [Z − (1− a)X ]2. Thus, the integrand
of (12) includes the MMSE in estimating[Z − (1 − a)X ]2

based on thechannel inputX . It is therefore about estimating
a certain function ofZ andX , whereX is the observation at
hand andZ is independent ofX .

This is very different from the paradigm of the I–MMSE
relation: there the channel isY =

√
snrX + Z, whereZ

is standard normal, the integration variable issnr, and the
estimated RV isX (or equivalently,Z) based on thechannel
output, Y . Also, by comparing the two channels, it is readily
seen that the integration variables, in our setting, can be
related to the integration variable,snr, of the I-MMSE relation
according to

snr=
4s2

σ2
y(1 + 2sσ2

y)
, (14)

and so, the relation between the two integration variables is
highly non–linear. We therefore observe that the two MMSE
results are fairly different.

Analogous MMSE Formula for Channel Capacity

Eq. (13) can be understood conveniently as an achievable
rate using a simple random coding argument (see Appendix):
The coding rateR should be (slightly larger than) the
large deviations rate function of the probability of the event
{∑n

i=1 d(xi, Yi) ≤ nD}, where (x1, . . . , xn) is a typical
source sequence and(Y1, . . . , Yn) are drawn i.i.d. fromq.
As is well known, a similar random coding argument applies
to channel coding (see also [8]): Channel capacity can be
obtained as the large deviations rate function of the event
{∑n

i=1 d(Xi, yi) ≤ nD}, where now(y1, . . . , yn) is a channel
output sequence typical toq, (X1, . . . , Xn) are drawn i.i.d.
according to a given input pmf{p(x)}, the distortion measure
is chosen to bed(x, y) = − lnw(y|x) ({w(y|x)} being the
channel transition probabilities) andD = H(Y |X). Thus, the
analogue of (13) is

Cp = −min
s≥0



sH(Y |X) +
∑

y∈Y

q(y) lnZy(s)



 (15)

where

Zy(s) =
∑

x∈X

p(x)ws(y|x) (16)

and the minimizings is alwayss∗ = 1. Consequently, the

corresponding integrated MMSE formula would read

Cp =

∫ 1

0

ds · s · mmses[ln p(Y |X)|Y ], (17)

where mmses[ln p(Y |X)|Y ] is defined w.r.t. the joint pmf

qs(x, y) = q(y)vs(x|y) = q(y) · p(x)w
s(y|x)

Zy(s)
. (18)

Eq. (17) seems to be less useful than the analogous rate–
distortion formulas, for a very simple reason: Since the
channel is given, then once the input pmfp is given too
(which is required for the use of (17)), one can simply
compute the mutual information, which is easier than
applying (17). This is different from the situation in the
rate–distortion problem, where even if bothp andq are given,
in order to computeRq(D) in the direct way, one still needs
to minimize the mutual information w.r.t. the channel between
X andY . Eq. (17) is therefore presented here merely for the
purpose of drawing the duality.

Analogies With Statistical Mechanics

As was shown in [11] and further advocated in [8], the
Legendre relation (13) has a natural statistical–mechanical in-
terpretation, whereZx(s) plays the role of a partition function
of a system (indexed byx), d(x, y) is an energy function
(Hamiltonian) ands plays the role of inverse temperature
(normally denoted byβ in the Physics literature). The mini-
mizing s is then the equilibrium inverse temperature when|X |
systems (each indexed byx, with n(x) = np(x) particles and
HamiltonianEx(y) = d(x, y)) are brought into thermal contact
and a total energy ofnD is split among them. In this case,
−Rq(D) is the thermodynamical entropy of the combined
system and the MMSE, which is dDs/ds, is intimately related
to the heat capacity of the system.

An alternative, though similar, interpretation was given in
[9],[10], where the parameters was interpreted as being
proportional to a generalized force acting on the system (e.g.,
pressure or magnetic field), and the distortion variable is the
conjugate physical quantity influenced by this force (e.g.,
volume in the case of pressure, or magnetization in the case
of a magnetic field). In this case, the minimizings means
the equal force that each one of the various subsystems is
applying on the others when they are brought into contact and
they equilibrate (e.g., equal pressures between two volumes of
a gas separated by piston which is free to move). In this case,
−Rq(D) is interpreted as the free energy of the system, and
the MMSE formulas are intimately related to the fluctuation–
dissipation theorem in statistical mechanics.

More concretely, it was shown in [9] that given a source
distribution and a distortion measure, we can describe (at least
conceptually) a concrete physical system that emulates the
rate–distortion problem in the following manner: When no
force is applied to the system, its total length isnD0, where
n is the number of particles in the system (and also the block
length in the rate–distortion problem), andD0 is as defined
above. If one applies to the system a contracting force, that
increases from zero to some final valueλ, such that the length
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of the system shrinks tonD, whereD < D0 is analogous to
a prescribed distortion level, then the following two factshold
true: (i) An achievable lower boundon the total amount of
mechanical work that must be carried out by the contracting
force in order to shrink the system to lengthnD, is given by

W ≥ nkTRq(D), (19)

wherek is Boltzmann’s constant andT is the temperature. (ii)
The final forceλ is related toD according toλ = kTR′

q(D),
where R′

q(·) is the derivative ofRq(·). Thus, the rate–
distortion function plays the role of a fundamental limit, not
only in Information Theory, but in Physics as well.

IV. EXAMPLES

In this section, we provide a few examples for the use
of Theorem 1. The first two examples are simple and well
known, and their purpose is just to demonstrate how to use
this theorem in order to calculate rate–distortion functions.
The third example is aimed to demonstrate how Theorem
1 can be useful as a new method to evaluate the behavior
of a certain rate–distortion function (which is apparentlynot
straightforward to derive otherwise) at both the low distortion
(a.k.a. high resolution) regime and the high distortion regime.
Specifically, we first derive, for this example, upper and lower
bounds onR(D), which are applicable in certain ranges
of high–distortion. These bounds have the same asymptotic
behavior asD tends to its maximum possible value, and so,
they sandwich the exact high–distortion asymptotic behavior
of the true rate–distortion function. A similar analysis in
then carried out in the low distortion range, and again, the
two bounds have the same limiting behavior in the very low
distortion limit. In the fourth and last example, we show how
Theorem 1 can easily be used to evaluate the high–resolution
behavior of the rate distortion function for a general power–
law distortion measure of the formd(x, y) = |x− y|r.

A. Binary Symmetric Source and Hamming Distortion

Perhaps the simplest example is that of the binary symmetric
source (BSS) and the Hamming distortion measure. In this
case, the optimumq is also symmetric. Here∆ = d(X,Y ) is
a binary RV with

Pr{∆ = 1|X − x} =
e−s

1 + e−s
(20)

independently ofx. Thus, the MMSE estimator ofd(X,Y )
based onX is

∆̂ =
e−s

1 + e−s
, (21)

regardless ofX , and so the resulting MMSE (which is simply
the variance in this case) is easily found to be

mmses(∆|X) =
e−s

(1 + e−s)2
. (22)

Accordingly,

D =
1

2
−
∫ s

0

e−ŝdŝ
(1 + e−ŝ)2

=
e−s

1 + e−s
(23)

and

R(D) =

∫ s

0

ŝe−ŝdŝ
(1 + e−ŝ)2

= ln 2 +
ses

1 + es
− ln(1 + es)

= ln 2− h2

(

es

1 + es

)

= ln 2− h2(D), (24)

whereh2(u) = −u lnu−(1−u) ln(1−u) is the binary entropy
function.

B. Quadratic distortion and Gaussian Reproduction

Another classic example concerns a general source with
σ2
x = E{X2} < ∞, the quadratic distortiond(x, y) =

(x − y)2, and a Gaussian reproduction distribution, namely,
q(y) is the pdf of a zero–mean Gaussian RV with variance
σ2
y = σ2

x − D, for a givenD < σ2
x. In this case, it well

known thatRq(D) = 1
2 ln

σ2
x

D (even without assuming that the
sourceX is Gaussian). We now demonstrate how this result
is obtained from the MMSE formula of Theorem 1.2

First, observe that sinceq(y) is the pdf pertaining to
N (0, σ2

x −D), then

ws(y|x) =
q(y)e−s(y−x)2

∫ +∞

−∞
dy′q(y′)e−s(y′−x)2

(25)

is easily found to correspond to the Gaussian additive channel

Y =
2s(σ2

x −D)

1 + 2s(σ2
x −D)

·X + Z (26)

whereZ is a zero–mean Gaussian RV with varianceσ2
z =

(σ2
x − D)/[1 + 2s(σ2

x − D)], andZ is uncorrelated withX .
Now,

∆ = (Y −X)2

=

[

Y − 2s(σ2
x −D)

1 + 2s(σ2
x −D)

·X − X

1 + 2s(σ2
x −D)

]2

= (Z − αX)2

= Z2 − 2αXZ + α2X2 (27)

whereα
∆
= 1/[1 + 2s(σ2

x − D)]. Thus, the MMSE estimator
of ∆ givenX is obtained by

∆̂ = E{∆|X}
= E{Z2|X} − 2αXE{Z|X}+ α2X2

= E{Z2} − 2αXE{Z}+ α2X2

= E{Z2}+ α2X2

= σ2
z + α2X2, (28)

2We are not arguing here that this is the simplest way to calculateRq(D)
in this example, the purpose is merely to demonstrate how Theorem 1 can be
used.
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which yields

mmses{∆|X}
= E{(∆̂−∆)2}
= E{(σ2

z + α2X2 − Z2 + 2αXZ − α2X2)2}
= 2σ4

z + 4α2σ2
xσ

2
z

=
2(σ2

x −D)2

[1 + 2s(σ2
x −D)]2

+
4σ2

x(σ
2
x −D)

[1 + 2s(σ2
x −D)]3

. (29)

Now, in our case,D0 = σ2
x + σ2

y = 2σ2
x − D, and so, for

s = 1/(2D), we get

Ds = D0 −
∫ s

0

dŝ · mmsês(∆|X)

= 2σ2
x −D −

2(σ2
x −D)2

∫ 1/2D

0

dŝ
[1 + 2ŝ(σ2

x −D)]2
−

4σ2
x(σ

2
x −D)

∫ 1/2D

0

dŝ
[1 + 2ŝ(σ2

x −D)]3

= 2σ2
x −D +

(σ2
x −D)

[

1

1 + 2s(σ2
x −D)

]1/2D

0

+

σ2
x

{

1

[1 + 2s(σ2
x −D)]2

}1/2D

0

(30)

which, after some straightforward algebra, givesDs = D. I.e.,
s andD are indeed related bys = 1/(2D), or D = 1/(2s).
Finally,

Rq(D) =

∫ s

0

dŝ · ŝ · mmsês(∆|X)

= 2(σ2
x −D)2

∫ 1/2D

0

ŝdŝ
[1 + 2ŝ(σ2

x −D)]2
+

4σ2
x(σ

2
x −D)

∫ 1/2D

0

ŝdŝ
[1 + 2ŝ(σ2

x −D)]3

=
1

2

{

ln[1 + 2s(σ2
x −D)]+

1

1 + 2s(σ2
x −D)

}1/2D

0

+

σ2
x

σ2
x −D

[

1

2[1 + 2s(σ2
x −D)]2

−

1

1 + 2s(σ2
x −D)

]1/2D

0

(31)

which yields, after a simple algebraic manipulation,Rq(D) =
1
2 ln

σ2
x

D .

C. Quadratic Distortion and Binary Reproduction

In this example, we again assume the quadratic distortion
measure, but now, instead of Gaussian reproduction code-
words, we impose binary reproduction,y ∈ {−a,+a}, where
a is a given constant.3 Clearly, if the pdf of the sourceX is
symmetric about the origin, then the best output distribution

3The derivation, in this example, can be extended to apply also to larger
finite reproduction alphabets.

is also symmetric, i.e.,q(+a) = q(−a) = 1/2. Thus,
Rq(D) = R(D) for every D, given this choice ofq. The
channelws(y|x) is now given by

ws(y|x) =
e−s(y−x)2

e−s(x−a)2 + e−s(x+a)2
=

e2sxy

2 cosh(2asx)
. (32)

Note that in this case, the minimum possible distortion (ob-
tained fors → ∞) is given byD∞ = E{[X − asgn(X)]2}.
Thus, the rate–distortion function is actually defined onlyfor
D ≥ D∞. The maximum distortion of interest isD0 =
σ2
x + a2, pertaining to the choices = 0, whereX andY are

independent. To the best of our knowledge, there is no closed
form expression forR(D) in this example. The parametric
representation ofDs andR(Ds), both as functions ofs, does
not seem to lend itself to an explicit formula ofR(D). The
reason is that

Ds = E{(Y −X)2}
= σ2

x + a2 − 2E{XY }
= σ2

x + a2 − 2E{X ·E{Y |X}}
= σ2

x + a2 − 2aE{X tanh(2asX)} (33)

and there is no apparent closed–form expression ofs a function
of D, which can be substituted into the expression ofR(Ds).

Consider the MMSE estimator of∆ = (Y −X)2 = X2 +
a2 − 2XY :

∆̂ = E{(Y −X)2|X}
= X2 + a2 − 2XE{Y |X}
= X2 + a2 − 2aX tanh(2asX). (34)

The MMSE is then

mmses(∆|X) = E{[2X(Y − a tanh(2asX))]2}
= 4a2[σ2

x −E{X2 tanh2(2asX)}].(35)

We first use this expression to obtain upper and lower bounds
onR(D) which are asymptotically exact in the range of high
distortion levels (smalls). Subsequently, we do the same for
the range of low distortion (larges).

High Distortion.Consider first the high distortion regime. For
smalls, we can safely upper boundtanh2(2asX) by (2asX)2

and get

mmses(∆|X) ≥ 4a2(σ2
x − 4a2s2E{X4})

= 4a2σ2
x − 16a4ρ4xs

2 (36)

whereρ4x
∆
= E{X4}. This results in the following lower bound

to R(Ds):

R(Ds) =

∫ s

0

dŝ · ŝ · mmsês(∆|X)

≥
∫ s

0

dŝ · ŝ[4a2σ2
x − 16a4ρ4xŝ

2]

= 2a2σ2
xs

2 − 4a4ρ4xs
4 ∆
= r(s). (37)

To get a lower bound toDs, we need an upper bound to the
MMSE. An obvious upper bound (which is tight for smalls)
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is given by4a2σ2
x, which yields:

Ds = D0 −
∫ s

0

dŝ · mmsês(∆|X)

≥ D0 −
∫ s

0

dŝ · (4a2σ2
x)

= D0 − 4a2σ2
xs (38)

or
s ≥ D0 −Ds

4a2σ2
x

. (39)

Consider now the ranges ∈ [0, σx/(2aρ
2
x)], which is the range

wherer(s) is monotonically increasing as a function ofs. In
this range, a lower bound ons would yield a lower bound
on r(s), and hence a lower bound toR(Ds). Specifically, for
s ∈ [0, σx/(2aρ

2
x)], we get

R(Ds) ≥ r(s)

≥ r

(

D0 −Ds

4a2σ2
x

)

=
(D0 −Ds)

2

8a2σ2
x

− ρ4x(D0 −Ds)
4

64a4σ8
x

. (40)

In other words, we obtain the lower bound

R(D) ≥ (D0 −D)2

8a2σ2
x

− ρ4x(D0 −D)4

64a4σ8
x

∆
= RL(D). (41)

for the range of distortionsD ∈ [D0 − 2aσ3
x/ρ

2
x, D0]. It is

obvious that, at least in some range of high distortion levels,
this bound is better than the Shannon lower bound,

RS(D) = h(X)− 1

2
ln(2πeD), (42)

where h(X) is the differential entropy ofX . This can be
seen right away from the fact thatRS(D) vanishes atD =
(2πe)−1e2h(X) ≤ σ2

x, whereas the boundRL(D) of (41)
vanishes atD0 = σ2

x + a2, which is strictly larger.
By applying the above–mentioned upper bound to the

MMSE in the rate equation, and the lower bound to the MMSE
– in the distortion equation, we can also get an upper bound
to R(D) in the high–distortion range, in a similar manner.
Specifically,

R(Ds) ≤
∫ s

0

dŝ · ŝ(4a2σ2
x) = 2a2σ2

xs
2, (43)

and

Ds ≤ D0 −
∫ s

0

dŝ(4a2σ2
x − 16a4ρ4xŝ

2)

= D0 − 4a2σ2
xs+

16

3
a4ρ4xs

3 ∆
= δ(s). (44)

Considering again the ranges ∈ [0, σx/(2aρ
2
x)], whereδ(s)

is monotonically decreasing, the inverse functionδ−1(D) is
monotonically decreasing as well, and so an upper bound on
R(D) will be obtained by substitutingδ−1(D) instead ofs
in the bound on the rate, i.e.,R(D) ≤ 2a2σ2

x[δ
−1(D)]2.

To obtain an explicit expression forδ−1(D), we need to
solve a cubic equation ins and select the relevant solution
among the three. Fortunately, since this cubic equation has
no quadratic term, the expression of the solution can be found

trigonometrically and it is relatively simple (see, e.g., [7, p. 9]):
Specifically, the cubic equations3+As+B = 0 has solutions
of the forms = m cos θ, wherem = 2

√

−A/3 andθ is any
solution to the equationcos(3θ) = 3B

Am . In other words, the
three solutions to the above cubic equation aresi = m cos θi,
where

θi =
1

3
cos−1

(

3B

Am

)

+
2π(i − 1)

3
, i = 1, 2, 3, (45)

with cos−1(t) being defined as the unique solution to the
equationcosα = t in the rangeα ∈ [0, π]. In our case,

A = − 3σ2
x

4a2ρ4x
, B =

3(D0 −D)

16a4ρ4x
, (46)

and so, the relevant solution fors (i.e., the one that tends to
zero asD → D0), which is δ−1(D), is given by

δ−1(D)

=
σx
aρ2x

cos

[

1

3
cos−1

(

3ρ2x(D −D0)

4aσ3
x

)

+
4π

3

]

=
σx
aρ2x

cos

[

1

3

(

π

2
+ sin−1

(

3ρ2x(D0 −D)

4aσ3
x

))

+
4π

3

]

=
σx
aρ2x

sin

[

1

3
sin−1

(

3ρ2x(D0 −D)

4aσ3
x

)]

, (47)

where sin−1(t) is defined as the unique solution to the
equationsinα = t in the rangeα ∈ [−π/2, π/2]. This yields
the upper bound

R(D) ≤ 2σ4
x

ρ4x
sin2

[

1

3
sin−1

(

3ρ2x(D0 −D)

4aσ3
x

)]

∆
= RU (D). (48)

for the range of distortionsD ∈ [D0 − 4aσ3
x/(3ρ

2
x), D0].

For very smalls, since the upper and the lower bound to
the MMSE asymptotically coincide (namely, mmses(∆|X) ≈
4a2σ2

x), then bothRU (D) and RL(D) exhibit the same
behavior nearD = D0, and hence so does the true rate–
distortion function,R(D), which is

R(D) ≈ (D0 −D)2

8a2σ2
x

(49)

or, stated more rigorously,

lim
D↑D0

R(D)

(D0 −D)2
=

1

8a2σ2
x

. (50)

Note that the high–distortion behavior ofR(D) depends on
the pdf ofX only via its second order momentσ2

x. On the
other hand, the upper and lower bounds,RU (D) andRL(D),
depend only onσ2

x and the fourth order moment,ρ4x.
In Fig. 1, we display the upper boundRU (D) (solid curve)

and the lower boundRL(D) (dashed curve) for the choice
σ2
x = a2 = 1 (henceD0 = σ2

x + a2 = 2) andρ4x = 3, which
is suitable for the Gaussian source. The range of displayed
distortions,[1.25, 2], is part of the range where both bounds
are valid in this numerical example. As can be seen, the
functionsRL(D) andRU (D) are very close throughout the
interval [1.7, 2], which is a fairly wide range of distortion
levels. The corresponding Shannon lower bound, in this case,
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which isRS(D) = max{0, 12 ln 1
D }, vanishes for allD ≥ 1

and hence also in the range displayed in the graph.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 1. The upper boundRU (D) (solid curve) and the lower boundRL(D)
(dashed curve) in the high–distortion regime forσ2

x = a2 = 1 andρ4x = 3.
The Shannon lower bound vanishes in this distortion range.

Low Distortion.We now consider the small distortion regime,
wheres is very large. Define the function

f(u) =

(

1− u

1 + u

)2

u ∈ [0, 1) (51)

and consider the Taylor series expansion off(u) aroundu =
0, which, for the sake of convenience, will be represented as

f(u) = 1−
∞
∑

n=1

φnu
n (52)

The coefficients{φn} will be determined explicitly in the
sequel. Now, clearly,tanh2(2asx) ≡ f(e−4as|x|), and so we
have

mmses(∆|X)

= 4a2
[

σ2
x −E{X2f(exp{−4as|X |})}

]

= 4a2

[

σ2
x −E

{

X2

(

1−
∞
∑

n=1

φne
−4ans|X|

)}]

= 4a2
∞
∑

n=1

φnE
{

X2e−4ans|X|
}

. (53)

To continue from this point, we will have to letX assume
a certain pdf. For convenience, let us selectX to have the
Laplacian pdf with parameterθ, i.e.,

p(x) =
θ

2
e−θ|x|. (54)

We then obtain

mmses(∆|X) = 2a2θ

∞
∑

n=1

φn

∫ +∞

−∞

x2e−(θ+4ans)|x|dx

= 8a2θ
∞
∑

n=1

φn
(θ + 4ans)3

. (55)

Thus,

R(Ds)

= R(D∞)−
∫ ∞

s

dŝ · ŝ · mmses(∆|X)

= 1− 8a2θ

∞
∑

n=1

φn ·
∫ ∞

s

dŝ · ŝ
(θ + 4anŝ)3

= 1− θ

2

∞
∑

n=1

φn
n2

[

1

θ + 4ans
− θ

2(θ + 4ans)2

]

. (56)

Thus far, our derivation has been exact. We now make an
approximation that applies for larges by neglecting the terms
proportional to(θ + 4ans)−2 and by neglectingθ compared
to 4ans in the denominators of1/(θ+ 4ans). This results in
the approximation

R(Ds) ≈ R̃(Ds)
∆
= 1− θ

8as

∞
∑

n=1

φn
n3
. (57)

Let us denoteC
∆
= θ

8a

∑∞
n=1

φn

n3 . Then,R̃(Ds) = 1 − C/s.
Applying a similar calculation toDs = D∞ +

∫∞

s
dŝ ·

mmsehs(∆|X), yields, in a similar manner, the approximation

Ds ≈ D̃s
∆
= D∞ +

C

2s2
. (58)

It is easy now to expresss as a function ofD and substitute
into the rate equation to obtain

R(D) ≈ 1−
√

2C(D −D∞). (59)

Finally, it remains to determine the coefficients{φn} and then
the constantC. The coefficients can easily be obtained by
using the identity(1 + u)−1 =

∑∞
n=0(−1)nun (u ∈ [0, 1)),

which yields, after simple algebra,φn = 4n(−1)n+1. Thus,

C =
θ

2a

∞
∑

n=1

(−1)n+1

n2
=
π2θ

24a
. (60)

and we have obtained a precise characterization ofR(D) in
the high–resolution regime:

lim
D↓D∞

1−R(D)√
D −D∞

=
√
2C =

π

2
·
√

θ

3a
. (61)

By applying a somewhat more refined analysis, one obtains
(similarly as in the above derivation in the high distortion
regime) upper and lower bounds toR(Ds) andDs, this time,
as polynomials in1/s. These again lend themselves to the
derivation of upper and lower bounds onR(D), which are
applicable in certain intervals of low distortion. Specifically,
the resulting upper bound is

R(D) ≤ 1−
√

2C(D −D∞) + C1(D −D∞), (62)
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whereC1 = 9θ
π2a

∑∞
n=1

(−1)n+1

n3 , and it is valid in the range
D ∈ [D∞, D∞ + C/(2C2

1 )]. The obtained lower bound is

R(D) ≥ 1−
√

6C(D −D∞)

2 cos

[

1
3 sin

−1

(

2C1

√

6(D−D∞)
C

)

+ π
6

] , (63)

and it applies to the rangeD ∈ [D∞, D∞+C/(12C2
1 )]. Both

bounds have the same leading term in asymptotic behavior,
which supports eq. (61). The details of this derivation are
omitted since they are very similar to those of the high–
distortion analysis.

D. High Resolution for a GeneralLr Distortion Measure

Consider the case where the distortion measure is given by
the Lr metric, d(x, y) = |x − y|r for some fixedr > 0. Let
the reproduction symbols be selected independently at random
according to the uniform pdf

q(y) =

{

1
2A |y| ≤ A
0 elsewhere

(64)

Then

ws(y|x) =
e−s|y−x|r

∫ +A

−A dy′ · e−s|y′−x|r
(65)

and so

Ds =

∫ +∞

−∞

dxp(x) ·
∫ +A

−A dy · |x− y|re−s|y−x|r

∫ +A

−A dy · e−s|y−x|r

= −
∫ +∞

−∞

dxp(x) · ∂
∂s

ln

[

∫ +A

−A

dy · e−s|y−x|r

]

.(66)

Now, in the high–resolution limit, wheres is very large, the
integrande−s|y−x|r decays very rapidly asy takes values away
from x, and so, for everyx ∈ (−A,+A) (which for large
enoughA, is the dominant interval for the outer integral over
p(x)dx), the boundaries,−A and +A, of the inner integral
can be extended to−∞ and +∞ within a negligible error
term (whose derivative w.r.t.s is negligible too). Having done
this, the inner integral no longer depends onx, which also
means that the outer integration overx becomes superfluous.
This results in

Ds = − ∂

∂s
ln

[
∫ +∞

−∞

dy · e−s|y|r
]

= − ∂

∂s
ln

[

s−1/r

∫ +∞

−∞

d(s1/ry)e−|s1/ry|r
]

= − ∂

∂s
ln

[

s−1/r

∫ +∞

−∞

dt · e−|t|r
]

= − ∂

∂s
ln(s−1/r)

=
1

rs
. (67)

Thus,

mmses(∆|X) = −dDs

ds
=

1

rs2
, (68)

which yields

dRq(Ds)

ds
= s · mmses(∆|X) =

1

rs
(69)

and so

Rq(Ds) = K +
1

r
ln s

= K +
1

r
ln

(

1

rDs

)

(70)

whereK is an integration constant. We have therefore obtained
that in the high–resolution limit, the rate–distortion function
w.r.t. q behaves according to

Rq(D) = K ′ − 1

r
lnD. (71)

with K ′ = K − (ln r)/r. While this simple derivation does
not determine yet the constantK ′, it does provide the correct
characteristics of the dependence ofRq(D) uponD for small
D. For the case of quadratic distortion, wherer = 2, one
easily identifies the familiar factor of1/2 in front of the log–
distortion term.

The exact constantK (or K ′) can be determined by
returning to the original expression ofRq(D) as the Legendre
transform of the log–moment generating function of the distor-
tion (eq. (13), and setting theres = 1/(rD) as the minimizing
s for the givenD. The resulting expression turns out to be

K ′ = ln

[

rA

Γ(1/r)

]

− 1

r
ln(er). (72)

V. CONCLUSION

In this paper, we derived relations between the rate–
distortion functionRq(D) and the MMSE in estimating the
distortion given the source symbol. These relations have been
discussed from several aspects, and it was demonstrated how
they can be used to obtain upper and lower bounds onRq(D),
as well as the exact asymptotic behavior in very high and very
low distortion.

The bounds derived in our examples were induced from
purely mathematical bounds on the expression of the MMSE
directly. We have not explored, however, examples of bounds
on Rq(D) that stem from estimation–theoretic bounds on
the MMSE, as was described in Section III. In future work,
it would be interesting to explore the usefulness of such
bounds as well. Another interesting direction for further work
would be to make an attempt to extend our results to rate–
distortion functions pertaining to more involved settings, such
as successive refinement coding, and situations that include
side information.

APPENDIX

Proof of Theorem 1.
Consider a random selection of a codebook ofM = enR

codewords, where the various codewords are drawn indepen-
dently, and each codeword,Y = (Y1, . . . , Yn), is drawn
according to the product measureQ(y) =

∏n
i=1 q(yi). Let

x = (x1, . . . , xn) be a typical source vector, i.e., the number
of times each symbolx ∈ X appears inx is (very close
to) np(x). We now ask what is the probability of the event
{∑n

i=1 d(xi, Yi) ≤ nD}? As this is a large deviations event
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wheneverD <
∑

x,y p(x)q(y)d(x, y), this probability must
decay exponentially with some rate functionIq(D) > 0, i.e.,

Iq(D) = lim
n→∞

[

− 1

n
lnPr

{

n
∑

i=1

d(xi, Yi) ≤ nD

}]

. (73)

The functionIq(D) can be determined in two ways. The first
is by the method of types [3], which easily yields

Iq(D) = min[I(X ;Y ′) +D(q′‖q)], (74)

where the Y ′ is an auxiliary random variable governed
by q′(y) =

∑

x∈X p(x)w(y|x) and the minimum is over
all conditional pmf’s {w(y|x)} that satisfy the inequality
∑

x∈X p(x)
∑

y∈Y w(y|x)d(x, y) ≤ D. The second method
is based on large deviations theory [4] (see also [8]), which
yields

Iq(D) = −min
s≥0

[

sD +
∑

x∈X

p(x) lnZx(s)

]

. (75)

We first argue thatIq(D) = Rq(D). The inequalityIq(D) ≤
Rq(D) is obvious, asRq(D) is obtained by confining the
minimization over the channels in (74) so as to comply with
the additional constraint that

∑

x∈X p(x)w(y|x) = q(y) for
all y ∈ Y. The reversed inequality,Iq(D) ≥ Rq(D), is
obtained by the following coding argument: On the one hand,
a trivial extension of the converse to the rate–distortion coding
theorem [2, p. 317], shows thatRq(D) is a lower bound
to the rate–distortion performance of any code that satisfies
1
n

∑n
i=1 Pr{Yi = y} = q(y) for all y ∈ Y.4 On the other

hand, we next show thatIq(D) is an achievable rate for codes
in this class.

Consider the the random coding mechanism described in the
first paragraph of this proof, withR = Iq(D) + ǫ, with ǫ > 0
being arbitrarily small. Since the probability that for a single
randomly drawn codeword, Pr{∑n

i=1 d(xi, Yi) ≤ nD} is of
the exponential order ofe−nIq(D), then the random selection
of a codebook of sizeen[Iq(D)+ǫ] constitutesen[Iq(D)+ǫ]

independent trials of an experiment whose probability of
success is of the exponential order ofe−nIq(D). Using standard
random coding arguments, the probability that at least one
codeword, in that codebook, would fall within distancenD
from the given typicalx becomes overwhelmingly large as
n→ ∞. Since this randomly selected codebook satisfies also
1
n

∑n
i=1 Pr{Yi = y} → q(y) in probability (asn → ∞) for

all y ∈ Y (by the weak law of large numbers), thenIq(D)
is an achievable rate within the class of codes that satisfy
1
n

∑n
i=1 Pr{Yi = y} → q(y) for all i.

Thus, Iq(D) ≥ Rq(D), which together with the reversed
inequality proved above, yields the equalityIq(D) = Rq(D).

4To see why this is true, consider the functionsδk(y), y, k ∈ Y (each of
which is defined as equal one fory = k and zero otherwise) as|Y| distortion
measures, indexed byk ∈ Y , and consider the rate–distortion function w.r.t.
the usual distortion constraint and the|Y| additional “distortion constraints”
E{δk(Y )} ≤ q(k) for all k ∈ Y , which, when satisfied, they all must be
achieved with equality (since they must sum to unity). The rate–distortion
function w.r.t. these|Y| + 1 constraints, which is exactlyRq(D), is easily
shown (using the standard method) to be jointly convex inD andq.

Consequently, according to eq. (75), we have established the
relation5

Rq(D) = −min
s≥0

[

sD +
∑

x∈X

p(x) lnZx(s)

]

. (76)

As this minimization problem is a convex problem (lnZx(s)
is convex ins), the minimizings for a givenD is obtained
by taking the derivative of the r.h.s., which leads to

D = −
∑

x∈X

p(x) · ∂ lnZx(s)

∂s

=
∑

x∈X

p(x) ·
∑

y∈Y q(y)d(x, y)e
−sd(x,y)

∑

y∈Y q(y)e
−sd(x,y)

. (77)

This equation yields the distortion levelD for a given value
of the minimizings in eq. (76). Let us then denote

Ds =
∑

x∈X

p(x) ·
∑

y∈Y q(y)d(x, y)e
−sd(x,y)

∑

y∈Y q(y)e
−sd(x,y)

. (78)

This notation obviously means that

Rq(Ds) = −sDs −
∑

x∈X

p(x) lnZx(s). (79)

Taking the derivative of (78), we readily obtain

dDs

ds
=

∑

x∈X

p(x)
∂

∂s

[

∑

y∈Y q(y)d(x, y)e
−sd(x,y)

∑

y∈Y q(y)e
−sd(x,y)

]

= −
∑

x∈X

p(x)

[

∑

y∈Y q(y)d
2(x, y)e−sd(x,y)

∑

y∈Y q(y)e
−sd(x,y)

−

(

∑

y∈Y q(y)d(x, y)e
−sd(x,y)

∑

y∈Y q(y)e
−sd(x,y)

)2




= −
∑

x∈X

p(x) · Vars{d(x, Y )|X = x}

= −mmses(∆|X), (80)

where Vars{d(x, Y )|X = x} is the variance ofd(x, Y ) w.r.t.
the conditional pmf{ws(y|x)}. The last line follows from
the fact the expectation of Vars{d(X,Y )|X} w.r.t. {p(x)}
is exactly the MMSE ofd(X,Y ) based onX . The integral
forms of this equation are then precisely as in part (a) of the
theorem with the corresponding integration constants. Finally,
differentiating both sides of eq. (79), we get

dR(Ds)

ds
= −s · dDs

ds
−Ds −

∑

x∈X

p(x) · ∂ lnZx(s)

∂s

= −s · dDs

ds
−Ds +Ds

= −s · dDs

ds
= s · mmses(∆|X), (81)

which when integrated back, yields part (b) of the theorem.
This completes the proof of Theorem 1.

5 Eq. (76) appears also in [5, p. 90, Corollary 4.2.3], with a completely
different proof, for the special case whereq minimizes both sides of the
equation (and hence it refers toR(D)). However, the extension of that proof to
a genericq is not apparent to be straightforward because here the minimization
over the channels is limited by the reproduction distribution constraint.
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