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Rate—Distortion Function via Minimum Mean
Square Error Estimation

Neri Merhav

Abstract—We derive a simple general parametric representa- scheme, or from random coding with respect to (w.r.t.) an
tion of the rate—distortion function of a memoryless sourcewhere  arbitrary random coding distribution, etc. One well known
both the rate and the distortion are given by integrals whose gyample is the Gaussian upper bound, which upper bounds
integrands include the minimum mean square error (MMSE) of th te—distortion functi f bit |
the distortion A = d(X,Y) based on the source symbolX, € rate—distortion function of an arbitrary memory ess ¢z
with respect to a certain joint distribution of these two random Mean) source w.r.t. the squared error distortion measuteeoy
variables. At first glance, these relations may seem somewha rate—distortion function of the Gaussian source with thaea
similar to the I-MMSE relations due to Guo, Shamai and Verdl, second moment. If the original source has memory, then the
but they are, in fact, quite different. The new relations amag same principle generalizes with the corresponding Gaussia

rate, distortion, and MMSE are discussed from several aspés, having th ¢ lation functi thénal
and more importantly, it is demonstrated that they can someimes ~ SOU'C€ having theé same autocorrelation function as the atig

be rather useful for obtaining non-trivial upper and lower sourcel[l, Section 4.6].
bounds on the rate—distortion function, as well as for detemining In this paper, we focus on a simple general parametric
the exact asymptotic behavior for very low and for very large representation of the rate—distortion function which seém
dlstortlllon. Analogous MMSE relations hold for channel capaity set the stage for the derivation of a rather wide family of
as well. . .
- _ both upper bounds and lower bounds on the rate—distortion
Index Terms—Rate—distortion function, Legendre transform,  fynction. In this parametric representation, both the eatd
estimation, minimum mean square error. the distortion are given by integrals whose integrandsuhel
the minimum mean square error (MMSE) of the distortion
. INTRODUCTION based on the source symbol, with respect to a certain joint
. distribution of these two random variables. More concietel
I T has been well known for many years that the derivation gfy ey 2 memoryless source designated by a random variable
the rate—distortion functlpn of a given source and dlsmor_tl (RV) X, governed by a probability functiﬁm(:c), a reproduc-
measure, does not lend itself to closed form expressiogs,, variableY’, governed by a probability functiop(y), and

even in the memoryless case, except for a few very simpl&yjsiortion measuré(z, y), the rate and the distortion can be

examples[[LL[2]I[3]I[5]. This has triggered the derivatiof represented parametrically via a real parameter[0, o) as
some upper and lower bounds, both for memoryless SOUrGER s ’

and for sources with memory.

One of the most important lower bounds on the rate— D,
distortion function, which is applicable for differencesttir-
tion measures (i.e., distortion functions that depend air th
two arguments only through the difference between them),
is the Shannon lower bound in its different forms, e.g., the
discrete Shannon lower bound, the continuous Shannon lo/f8F
bound, and the vector Shannon lower bound. This family of
bounds is especially useful for semi-norm—based distortio Rq(Ds)
measures_ |5, Section 4.8]. The Wyner—Ziv lower bound [14] oo
for a source with memory is a convenient bound, which = R¢(Dw) —/ ds-s-mmse(AlX), (2)
is based on the rate—distortion function of the memoryless ®
source formed from the product measure pertaining to tdiere D, is the distortion pertaining to parameter valsie
single—letter marginal distribution of the original sogrand R,(D;) is the rate—distortion function w.r.t. reproduction dis-
it may be combined elegantly with the Shannon lower bountgibution ¢, computed aD,, A = d(X,Y’), and mmsgA|X)
The autoregressive lower bound asserts that the ratertiisto is the MMSE of estimatingA based onX, where the joint
function of an autoregressive source is lower bounded by tpeobability function of (X, A) is induced by the following
rate—distortion function of its innovation process, whish joint probability function of(X,Y"):
again, a memoryless source.

Do—/ ds-mmse(A|X)
0

= D +/OO ds - mmse(A|X) ()

/ ds- §-mmse(A|X)
0

aly)e 0

Upper bounds are conceptually easier to derive, as they may  p(z,y) = p(z) - ws(ylz) = p(z) - - ©)
result from the performance analysis of a concrete coding 2(s)
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where Z,(s) is a normalization constant, given byvariable, is a specific realization ok, andX is the alphabet
[ dyg(y)e~**=¥) in the continuous case, 9, q(y)e~***¥) in which X andz take on values. This alphabet may be finite,
in the discrete case. ‘ countably infinite, or a continuum, like the real lifi¢ or an
At first glance, eq.[{2) looks somewhat similar to the linterval[a,b] C R.
MMSE relation of [6], which relates the mutual information Sources and channels will be denoted generically by the
between the input and the output of an additive white Ganssiketter p, or ¢, which will designate also their corresponding
noise (AWGN) channel and the MMSE of estimating therobability functions, i.e., a probability density furani (pdf)
channel input based on the noisy channel output. As wethe continuous case, or a probability mass function (pmf)
discuss later on, however, edl (2) is actually very differem the discrete case. Information—theoretic quantitigiee |
from the I-MMSE relation in many respects. In this contexgntropies and mutual informations, will be denoted accaydi
it is important to emphasize that a relation analogoug o (&) the usual conventions of the information theory literafu
applies also to channel capacity, as will be discussed in teg., H(X), I(X;Y), and so on. If a RV is continuous—
sequel. valued, then its differential entropy and conditional elifintial
The relationg[{l1) and{2) have actually already been raisedentropy will be denoted with: instead of H, i.e., h(X)
a companion paper|[9] (see al$o0][10] for a conference vexsiois the conditional differential entropy ok, A(X|Y) is the
Their derivation there was triggered and inspired by certatonditional differential entropy oK givenY’, and so on. The
analogies between the rate—distortion problem and staiist expectation operator will be denoted, as usual Fby}.
mechanics, which were the main theme of that work. However,Given a source RVX, governed by a probability func-
the significance and the usefulness of these rate—distertition p(xz), * € X, a reproduction RVY, governed by a
MMSE relations were not explored in|[9] and [10]. probability functiong(y), y € Y, and a distortion measure
It is the purpose of the present work to study these rd-: X x Y — IR™, we define the rate—distortion function of
lations more closely and to demonstrate their utility, whicX w.r.t. distortion measuré and reproduction distribution
is, as said before, in deriving upper and lower bounds. Tiaé A
underlying idea is that bounds oR,(D) (and sometimes Ry(D) =minI(X;Y), (4)
also onR(D) = min, R,(D)) may be obtained via relatively

can oiher be Smple techical bounds o the exprassion U2 © € . y € V) that SatSYBLI(X.V)} < D
P P and E{w(y|X)} = q(y) for all y € Y. Clearly, the rate—

the MMSE itself, or bounds that stem from pure estimation . . N .
theoretic considerations. For example, upper bounds may %tortlon function, (D), is g|vAen by R(D) = infy Ry(D).

derived by analyzing the MMSE of a certain sub-optimur{/® Will also use the notatiot = d(X,Y). Obviously, since

estimator, e.g., a linear estimator, which is easy to amalyzt @ndY are RV's, then so is\.

Lower bounds can be taken from the available plethora of

lower bounds offered by estimation theory, e.g., the Cramélll- MMSE RELATIONS: BASIC RESULT AND DISCUSSION

Rao lower bound. Throughout this section, our definitions will assume that
Indeed, an important part of this work is a section dfoth X and) are finite alphabets. Extensions to continuous

examples, where it is demonstrated how to use the proposdghabets will be obtained by a limit of fine quantizations,

relations and derive explicit bounds from them. In one ofthewith summations eventually being replaced by integrations

examples, we derive two sets of upper and lower boundsReferring to the notation defined in Sectioh I, for a given

one for a certain range of low distortions and the other, faositive reals, define the conditional probability function

high distortion values. At both edge-points of the interval A qly)e—sd@w)

where X ~ p and the minimum is across all channels

of distortion values of interest, the corresponding uppet a ws(y|x) (5)
lower bound asymptotically approach the limiting valuehwit Z(s)

the same leading term, and so, they sandwich the exadiere

asymptotic behavior of the rate—distortion function, bath Zo(s) 2 gly)esd@=v) (6)
the low distortion limit and in the high distortion limit. yey

The outline of this paper is as follows. In Section I, weyq the joint pmf
establish notation conventions. In Section Ill, we formall
present the main result, prove it, and discuss its signifiean ps(,y) = p(x)ws (y[x). (7)
from the above—mentioned aspects. In Section IV, we provi%e ther. let
a few examples that demonstrate the usefulness of the MM E '
relations. Finally, in Section V, we summarize and conclude mmse(A|X) = E,{[A - E{A|X}]?}

= Es{[d(Xv Y) - Es{d(Xv Y)|X}]2}(8)

Il. NOTATION CONVENTIONS whereE{-} is the expectation operator w.r{tos(z, y)}, and

Throughout this paper, RV’s will be denoted by capitadlefiningy(z) as the conditional expectatidi,{d(z,Y)|X =
letters, their sample values will be denoted by the respectic} w.r.t. {w;(y|z)}, Es{d(X,Y)|X} is defined as)(X).
lower case letters, and their alphabets will be denoted by th Our main result, in this section, is the following (the proof
respective calligraphic letters. For exampl€, is a random appears in the Appendix):



ps(x,y), may not necessarily agree with Thus, ps(x,y)
Theorem 1:The functionR,(D) can be represented parashould only be considered as an auxiliary joint distribmitio
metrically via the parameter € [0, c0) as follows: that defines mmsgéA | X).
(@) The distortion is obtained by
s Using Theorem 1 for Bounds af, (D)
D, = Dy —/ ds - mmse(A|X)
o As was briefly explained in the Introduction (and will also
_ Doo"’/ ds - mmse (A[X) (9) be demonstrated in the .next section), Theofdm 1 may set
s the stage for the derivation of upper and lower bounds to
R,(D) for a general reproduction distributiopy and hence

where
— also for the rate—distortion functioR(D) when the optimum
Do = zzy:p(x)q(y)d(Ly) (10) q is happened to be known or is easily derivable (e.g., from
symmetry and convexity considerations).
and The basic underlying idea is that bounds By D) may be
Doo = Zp(x) myin d(z,y). (11) induced from bounds on mmgeé\| X) across the integration
x interval. The bounds on the MMSE may either be derived from
(b) The rate is given by purely technical considerations, upon analyzing the esgioe
Ry(Ds) of the MMSE directly, or by using estimation—theoretic ol
q S

; In the latter case, lower bounds may be obtained from funda-

/ ds - 3 - mmse(A|X) mental lower bounds to the MMSE, like the Bayesian Cramér—

0 Rao bound, or more advanced lower bounds available from the
— R.(Ds)— ds. 5. AlX). (12) estimation theory literature, for example, the Weiss—\égim

o(Doc) /S 55 - mmsg(A[X). (12) bound [12])[18], whenever applicable. Upper bounds may be

In the remaining part of this section, we discuss th@Ptained by analyzing the mean square error (MSE) of a

significance and the implications of Theorem 1 from severP€Ccific (sub-optimum) estimator, which is relatively easy
aspects. analyze, or more generally by analyzing the performance of

the best estimator within a certain limited class of estorsgt
like the class of linear estimators of the ‘observatiah’ or a
certain fixed function ofX.

The parametes has the geometric meaning of the negative In Theorem 1 we have deliberately prese.nted two iqtegral
local slope of the functionR,(D). This is easily seen by forms for both the rate and the distortion. AB; is

taking the derivatives of {9) and {12), i.e.Rg(D.)/ds = monotonically decreasing and?,(D,) is monotonically
s-mmse(A|X) and d, /ds = —mmse(A|X), whose ratio increasing ins, the integrals at the first lines of both edd. (9)

is R.(D,) = —s. This means also that the parameteplays and [12), which include r_elat_lvely small value_sg)fnaturally
nd themselves to derivation of bounds in the low-rate

the same role as in the well known parametric represen % . - . X
P P g igh distortion) regime, whereas the second lines of these

tions of [1] and [5], which is to say that it can also b , , , . : . .
thought of as the Lagrange multiplier of the minimizatioffduations are more suitable in low-distortion (high retioi)

of [I(X;Y) + sE{d(X,Y)}] subject to the reproduction region. For_ example, to derive an upper boundRy{D) in
distribution constraint. the high—distortion range, one V\_/oulo_l need a lower bound on
On a related note, we point out that Theofgm 1 is based WSQ(NX) to be used in the f|rs_t line _OEKQ) a”?' an upper
the following representation ok, (D): bound on mmsgA|X) to be substituted into the first line of
(@2). If one can then derive, from the former, an upper bound
on s as a function ofD, and substitute it into the upper bound
’ (13)  on the rate in terms or, then this will result in an upper
bound to R,(D). A similar kind of reasoning is applicable
which we prove in the Appendix as the first step in the prodd the derivation of other types of bounds. This point will be
of Theorem 1. demonstrated mainly in Examples C and D in the next section.
It should be emphasized that the ppfthat plays a role
in the definition ofw;(y|z) (and hence also the definition ofComparison to the I-MMSE Relations
mmse (A| X)) should be keptixedthroughout the integration,
independently of the integration variabke since it is the  In the more conceptual level, item (b) of Theorem 1 may
same pmf as in the definition dk,(D). Thus, even ifg is remind the familiar reader about well-known results due to
known to be optimum for a given target distortidn (and Guo, Shamai and Verdl[6], which are referred to as I-MMSE
then it yields R(D)), the pmf ¢ must be kept unaltered relations (as well as later works that generalize theséioals).
throughout the integration, in spite of the fact that foresth The similarity between egl_(1.2) and the I-MMSE relation (in
values ofs§ (which correspond to other distortion levels), thés basic form) is that in both cases a mutual information
optimum reproduction pmf might be different. In particylaris expressed as an integral whose integrand includes the
note that the marginal df, that is induced from the joint pmf MMSE of a certain random variable (or vector) given some

Some General Technical Comments

R,(D) = —min sD+ ;Kp(x) In Z,(s)




observation(s). However, to the best of our judgment, this ¢orresponding integrated MMSE formula would read
the only similarity. 1
In order to sharpen the comparison between the two rela- Cp :/ ds-s-mmse[lnp(Y|X)|Y], (17)
tions, it is instructive to look at the special case where all 0
random variables are Gaussian and the distortion measwtgere mmsgln p(Y|X)|Y] is defined w.r.t. the joint pmf

is quadratic: In the context of Theorem 1, considérto p(x)w® (y]z)
be a zero-mean Gaussian RV with variangg and let gs(z,y) = q(y)vs(zly) = qly) - 7 J (18)
d(z,y) = (z — y)?. As will be seen in Example B of the u(s)

next section, this then means that(y|z) can be described Eq. (I7) seems to be less useful than the analogous rate—

by the additive Gaussian chann®l = aX + Z, where distortion formulas, for a very simple reason: Since the

a = 230—2/(1 + 2502 2) and Z is a zero—mean Gaussian RvVchannel is given, then once the input pmfis given too

mdependent ofX, and with VarlanC®2/(1+280) Here, we (which is required for the use of(IL7)), one can simply

haveA = (Y - X)2 =[Z - (1 —a)X] Thus, the integrand compute the mutual information, which is easier than

of (I2) includes the MMSE in estimatingZ — (1 — a)X]?> applying [1T). This is different from the situation in the

based on thehannel inputX. It is therefore about estimating rate—distortion problem, where even if bgttandq are given,

a certain function ofZ and X, whereX is the observation at in order to compute?, (D) in the direct way, one still needs

hand andZ is independent ofX. to minimize the mutual information w.r.t. the channel begwe
This is very different from the paradigm of the I-MMSEX andY. Eq. [IT) is therefore presented here merely for the

relation: there the channel i = ./sniX + Z, where Z purpose of drawing the duality.

is standard normal, the integration variablesisr, and the

estimated RV isX (or equivalently,Z) based on thehannel Analogies With Statistical Mechanics

output Y. Also, by comparing the two channels, it is readily

seen that the integration variable in our setting, can be As was shown in[[11] and further advocated in [8], the

related to the integration variablenr, of the I-MMSE relation Legendre relatior (13) has a natural statistical-mechirie

according to terpretation, whereZ,.(s) plays the role of a partition function
452 of a system (indexed by), d(x,y) is an energy function
= A 2s02) (14)  (Hamiltonian) ands plays the role of inverse temperature
Yy Yy

(normally denoted by3 in the Physics literature). The mini-
and so, the relation between the two integration variatdesmizing s is then the equilibrium inverse temperature what
highly non—linear. We therefore observe that the two MMSEystems (each indexed hy with n(z) = np(z) particles and

results are fairly different. Hamiltoniané, (y) = d(z, y)) are brought into thermal contact
and a total energy ofiD is split among them. In this case,
Analogous MMSE Formula for Channel Capacity —R4(D) is the thermodynamical entropy of the combined

system and the MMSE, which is/tl /ds, is intimately related
Eg. (I3) can be understood conveniently as an achievaldethe heat capacity of the system.

rate using a simple random coding argument (see Appendix)An alternative, though similar, interpretation was given i
The coding rateR should be (slightly larger than) the[9].[10], where the parametes was interpreted as being
large deviations rate function of the probability of the mve proportional to a generalized force acting on the system,(e.
{370 d(x;,Y;) < nD}, where (zq,...,z,) is a typical pressure or magnetic field), and the distortion variabléés t
source sequence andi,...,Y,) are drawn ii.d. fromg. conjugate physical quantity influenced by this force (e.g.,
As is well known, a similar random coding argument applieglume in the case of pressure, or magnetization in the case
to channel coding (see alsbl [8]): Channel capacity can b&a magnetic field). In this case, the minimizisgmeans
obtained as the large deviations rate function of the evdhe equal force that each one of the various subsystems is
{3°" , d(Xi,y:) <nD}, where now(ys, ..., y,) is achannel applying on the others when they are brought into contact and

output sequence typical tg, (X1,...,X,) are drawn i.i.d. they equilibrate (e.g., equal pressures between two vauwhe
according to a given input prdfp(z)}, the distortion measure a gas separated by piston which is free to move). In this case,
is chosen to bel(z,y) = —Inw(y|lr) {w(y|z)} being the —R,(D) is interpreted as the free energy of the system, and
channel transition probabilities) add = H(Y|X). Thus, the the MMSE formulas are intimately related to the fluctuation—
analogue of[(13) is dissipation theorem in statistical mechanics.
More concretely, it was shown inl[9] that given a source
distribution and a distortion measure, we can describeséat |
Cp = —mlg sH(Y|X) + Z )In.Z,(s) (15)  conceptually) a concrete physical system that emulates the
yey rate—distortion problem in the following manner: When no
where force is applied to the system, its total lengthni®,, where

n is the number of particles in the system (and also the block
Zp “(ylo) (16) length in the rate—distortion problem), atg}, is as defined
vex above. If one applies to the system a contracting force, that

and the minimizings is alwayss* = 1. Consequently, the increases from zero to some final valuesuch that the length



of the system shrinks te D, whereD < Dy is analogous to and
a prescribed distortion level, then the following two faltdd

true: (i) An achievable lower boundn the total amount of R(D) = /S Lsd‘?
mechanical work that must be carried out by the contracting o (I+e*)?
force in order to shrink the system to lengtl®, is given by = In2+ s _ In(1 + €°)
1+4e
W > nkTR,(D), (19) s
— 2 h (_>
wherek is Boltzmann’s constant arifl is the temperature. (ii) L+e®

The final force) is related toD according toA = kTR, (D), = In2 - hy(D), (24)
where R;(-) is the derivative of R,(-). Thus, the rate- _ )

distortion function plays the role of a fundamental limigtn Wherehs(u) = —ulnu—(1—wu)In(1-u)is the binary entropy
only in Information Theory, but in Physics as well. function.

IV. EXAMPLES - . . .
B. Quadratic distortion and Gaussian Reproduction

In this section, we provide a few examples for the use ) )
of Theorem 1. The first two examples are simple and well Another classic example concerns a general source with
known, and their purpose is just to demonstrate how to ugeé = E{X?} < oo, the quadratic distortioni(z,y) =
this theorem in order to calculate rate-distortion furmwio (¢ — ¥)? and a Gaussian reproduction distribution, namely,
The third example is aimed to demonstrate how Theoretfy) iS the pdf of a zero-mean Gaussian RV with variance
1 can be useful as a new method to evaluate the behavior = o> — D, for a gvenD < os. In this case, it well
of a certain rate—distortion function (which is apparemttyt known thatR (D) = éln% (even without assuming that the
straightforward to derive otherwise) at both the low di§tor sourceX is Gaussian). We now demonstrate how this result
(a.k.a. high resolution) regime and the high distortiorimey is obtained from the MMSE formula of Theorenf] 1.
Specifically, we first derive, for this example, upper anddow  First, observe that sincg(y) is the pdf pertaining to
bounds onR(D), which are applicable in certain ranges\/(0,02 — D), then
of high—distortion. These bounds have the same asymptotic
behavior asD tends to its maximum possible value, and so, qly)esw=—=)°
they sandwich the exact high—distortion asymptotic besravi ws(yle) = —3 dy'q(y )e—s(v'—)?
of the true rate—distortion function. A similar analysis in -
then carried out in the low distortion range, and again, the easily found to correspond to the Gaussian additive aklann
two bounds have the same limiting behavior in the very low

(25)

distortion limit. In the fourth and last example, we show how B 2s(02 — D) X4 7 (26)
Theorem 1 can easily be used to evaluate the high—resolution - 1+2s(02 - D)
behavior of the rate distortion function for a general pewer . . _ .
law distortion measure of the foral(x,y) = |z — y|". where Z is a zero-mean Gaussian RV with variange =
(62 — D)/[1 + 2s(02 — D)], and Z is uncorrelated withX.
A. Binary Symmetric Source and Hamming Distortion Now,
Perhaps the simplest example is that of the binary symmetriac. = (v — X)?
source (BSS) and the Hamming distortion measure. In this 25(02 — D) X 2
case, the optimum is also symmetric. HeréA = d(X,Y) is = |Y - — - X - 5
a binary RV with 1+ 2s(c2 — D) 1+2s(c2 - D)
. = (Z-aX)?
PHA = 1|X —a} = 7 i _ (20) = 2% -2aX7+a2X? 27)
e S
independently ofc. Thus, the MMSE estimator of(X,Y) wherea = 1/[1 + 2s(¢2 — D)]. Thus, the MMSE estimator
based onX is . of A given X is obtained by
Aet, (21) A
I+es A = E{A|X}
regardless ofX', and so the resulting MMSE (which is simply = E{ZQ|X} —20XE{Z|X}+ oa2X?
the variance in this case) is easily found to be = E{Z?) — 2aXE{Z} + a*X?
—Ss _ 2 2y 2
mmsg(A|X)=67752. (22) = B{Z}+a’X
(I+e9) = o2 +a*X? (28)
Accordingly,
1 e—4%ds oS 2We are not arguing here that this is the simplest way to catieut, (D)

s _
_ / _ (23) in this example, the purpose is merely to demonstrate howorEhe 1 can be
o ( used.



which yields

mmse{A|X}

= EB{(A-1)%})

= FE{(0?+a*X? - 7%+ 2aX7Z — o*X?)?}

= 2cr;1 + 4042032505

_ _2Ak-DP | 4X(ei-D) g
[1+2s(c2—D)]2 [1+2s(c2—D)3

Now, in our case,Dy = o2 + 0, = 202 — D, and so, for
s=1/(2D), we get

Dy = DO—/ ds - mmse(A|X)
0

= 202-D—

oo [
v 0 [1+23(c2 — D))?

5 o 1/2D ds

4 - D

o2(0: = D) /0 112302 _D)P
= 202-D+

1 1/2D

2

-yl

-0, *

1 1/2D
2

N, G0
which, after some straightforward algebra, gives= D. l.e.,
s and D are indeed related by = 1/(2D), or D = 1/(2s).
Finally,

R,D) = /Sd§-§~mmsg(A|X)

0
1/2D 5ds
B 5 2 5ds
= 2oz - D) /0 0 +25(c2—D)P

1/2D 5ds
46%(62 — D
20 -0 [ e

= % {In[1 + 2s(c2 — D)]+

1 1/2D
1+ 25(02 — D) }0 +
o2 1 _
02— D |2[1+ 25(02 — D)2
1 1/2D
1 31
1+2S(0%—D):|0 (31)

which yields, after a simple algebraic manipulatidt(D) =
Lin ﬁ
2 D

C. Quadratic Distortion and Binary Reproduction

In this example, we again assume the quadratic distortion
measure, but now, instead of Gaussian reproduction code-

words, we impose binary reproductiope {—a, +a}, where
a is a given constaﬁ.ClearIy, if the pdf of the sourc& is

symmetric about the origin, then the best output distrdouti

3The derivation, in this example, can be extended to apply islarger
finite reproduction alphabets.

is also symmetric, i.e.g(+a) = q¢(—a) = 1/2. Thus,
R,(D) = R(D) for every D, given this choice ofg. The
channelw, (y|x) is now given by

e—s(y—m)2 ermy

T2 cosh(2asz)’

Note that in this case, the minimum possible distortion (ob-
tained fors — o) is given by D, = E{[X — asgn(X)]?}.
Thus, the rate—distortion function is actually defined oialy

D > D,. The maximum distortion of interest i®, =

o2 + a?, pertaining to the choice = 0, whereX andY are
independent. To the best of our knowledge, there is no closed
form expression forR(D) in this example. The parametric
representation oD and R(D;), both as functions of, does

not seem to lend itself to an explicit formula &f(D). The
reason is that

ws(y|r) = (32)

e—s(z—a)? + e—s(z+a)?

= o2+4a®>-2E{XY}
= o2+a®>-2E{X-E{Y|X}}

= 024 a® - 2aE{X tanh(2asX)} (33)

and there is no apparent closed—form expressicrediunction
of D, which can be substituted into the expressiorRdD;).

Consider the MMSE estimator ak = (Y — X)? = X2 +
a? - 2XY:

A = E{Y -X)?X}
= X?+a® - 2XE{Y|X}

X? 4+ a® — 2aX tanh(2asX). (34)

The MMSE is then

mmsg(A|X) = E{[2X(Y — atanh(2asX))]*}

4a*[0? — E{X?tanh®(2asX)}](35)

We first use this expression to obtain upper and lower bounds
on R(D) which are asymptotically exact in the range of high
distortion levels (smalk). Subsequently, we do the same for
the range of low distortion (large).

High Distortion. Consider first the high distortion regime. For
smalls, we can safely upper boundnh?(2asX) by (2asX)?

and get
mmse(A|X) > 4a*(0? — 4a*s’E{X"})

= 4a*0? —16a*pis® (36)

wherep? = E{X*}. This results in the following lower bound
to R(D;):

R(Ds) = /Odé-é-mmsg(NX)

> / ds - 5[4a’0? — 16a*pt5?)
0

= 2a%0%s® —4a’plst = r(s).

37)

To get a lower bound td,, we need an upper bound to the
MMSE. An obvious upper bound (which is tight for sma)l



is given by4a?02, which yields: trigonometrically and it is relatively simple (see, e.@.,p. 9]):

s Specifically, the cubic equatios¥ + As+ B = 0 has solutions
D, = Dy —/ ds - mmse(A|X) of the forms = mcos 6, wherem = 2,/—A/3 and#@ is any
. solution to the equationos(36) = 3£ . In other words, the
> Dy — / ds - (4a%02) three solutions to the above cubic equation gre- m cos 6;,
02 ) where
= Dog—4a‘ois (38) 1 B 2m(i — 1
; = = cos™* 3B +M, 1=1,2,3, (45)
or 3 Am 3
Dy — Dy
2 e (39) with cos~!(t) being defined as the unique solution to the
N equationcos « = t in the rangex € [0, 7]. In our case,
Consider now the rangec [0, .. /(2ap?)], which is the range )
wherer(s) is monotonically increasing as a function afin A= — 305 ’ - 3(Do — D)’ (46)
this range, a lower bound os would yield a lower bound 4a?pj 16a*p3
onr(s), and hence a lower bound ®(D,). Specifically, for and so, the relevant solution fer(i.e., the one that tends to
s €10,0./(2ap?)], we get zero asD — D), which is§~1(D), is given by
R(Ds) = r(s) §~1(D)
DO_DS Oy 1 1 3pi(D—D0) 4
=7 < 10202 > = o O [5 (7@03 ) * ﬂ
(Do — Dy)*  pg(Do — Dy)* o 1/(m 3p2(Dy — D) 4m
-2 . (40 = 2= (T gint 2P\ o — ) Sl
8@20'% 640/40? ( ) = ap% COS |:3 (2 —+ sin ( 4@0.% )) + 3 :|
In other words, we obtain the lower bound or . [1 . 4 (3p2(Dg— D)
, | b b . = W Sin g S 44&0_3 ) (47)
Dy—D - = T
R(D)Z( 02 2) _pz( 04 8 ) éRL(D) (41) 1 . . . .
8a‘oy 64a*of where sin~'(¢) is defined as the unique solution to the

for the range of distortiond € [Dy — 2a0?/p2, Do) It is equationsin @ = ¢ in the rangex € [—7/2,7/2]. This yields
obvious that, at least in some range of high distortion vef® upper bound

this bound is better than the Shannon lower bound, 4 9 3
1 R(D) < 2? sin’ F sin~! <W)]
Rs(D) = h(X) — 5 In(2meD), (42) N Pq a3

where h(X) is the differential entropy ofX. This can be . . 5 )

seen right away from the fact thdts(D) vanishes ath = O the range of distortion® & [Dy — 4aa3/(3p5), Do).

(%e)—lezh(x) < 2, whereas the boundt, (D) of (@) For very smalls, since the_ upper and the lower bound to
the MMSE asymptotically coincide (namely, mm6&a|X) ~

vanishes atDy = o2 + a2, which is strictly larger. 5 o o
By applying the above—mentioned upper bound to tHE 7). then both Ry (D) and R.(D) exhibit the same

MMSE in the rate equation, and the lower bound to the MMsgehavior nearD = Dy, and hence so does the true rate—
— in the distortion equation, we can also get an upper boufigtortion function,?(D), which is

to R(D) in the high—distortion range, in a similar manner. (Dg — D)?
Specifically, R(D) » — 55— (49)
R(D,) < /S ds - 3(4a202) = 2a%02s? 43) O stated more rigorously,
0 R(D) 1
and D1 Dy (Do — D)2 8a202’ (50)
Ds < Dy —/ ds(4a’0? — 16apts?) Note that the high—distortion behavior (D) depends on
0

the pdf of X only via its second order moment. On the
= Do —4a%02s+ Ea4pi33 EY (s).  (44) other hand, the upper and lower boundts;(D) and Ry (D),
3 depend only orr2 and the fourth order momen.

Considering again the rangee [0,0./(2ap?)], whered(s) In Fig.[d, we display the upper bouril; (D) (solid curve)
is monotonically decreasing, the inverse functibnt(D) is and the lower boundz, (D) (dashed curve) for the choice
monotonically decreasing as well, and so an upper bound @h= a? = 1 (henceDy = 02 + a® = 2) and p% = 3, which
R(D) will be obtained by substituting=!(D) instead ofs is suitable for the Gaussian source. The range of displayed
in the bound on the rate, i.eR(D) < 2a?02[6~(D)]?. distortions,[1.25,2], is part of the range where both bounds
To obtain an explicit expression fof~!(D), we need to are valid in this numerical example. As can be seen, the
solve a cubic equation i and select the relevant solutionfunctions Ry (D) and Ry (D) are very close throughout the
among the three. Fortunately, since this cubic equation hagerval [1.7,2], which is a fairly wide range of distortion
no quadratic term, the expression of the solution can bedoulevels. The corresponding Shannon lower bound, in this,case



which is Rg(D) = max{0, 1 In &}, vanishes for allD > 1 We then obtain
and hence also in the range displayed in the graph.

o +oo
mmse(A|X) = 2a292¢n/ z2e~ (OHdans)lzlgy,

0.14

29 55
8a Z 9+4ans (55)

Thus,
R(Ds)
= R(D) —/ ds-§-mmse(A|X)

- > ds-s
— 1-8a20S ¢ | —5
Sa Z ¢ /S (0 + 4ans)3

0 0
T2 g [9+4ans ©2(0 4 dans)? | (56)

Thus far, our derivation has been exact. We now make an
approximation that applies for largeby neglecting the terms
proportional to(# + 4ans)~2 and by neglecting compared

to 4ans in the denominators of /(6 4 4ans). This results in

the approximation

0.1r

0.06

0.041

(iz 13 14 15 16 17 18 19 2 0 © ¢
R(D;) = R(Ds) =1 - o— > n—g (57)
Fig. 1. The upper boun&; (D) (solid curve) and the lower bounl;, (D)
(dashed curve) in the high—distortion regime & = a2 = 1 and p% = 3. A _
The Shannon lower bound vanishes in this distortion range. Let us denotel = 8i ZZO 1 ¢_g Then,R(D;s) =1 - C/s.
a = n

Applying a similar calculation toD;, = D, + f:o ds -
Low Distortion.We now consider the small distortion regimemmse,s(A|X), yields, in a similar manner, the approximation

wheres is very large. Define the function C
Dy~ D, 2 Do, ot 5 (58)
1—u\?
fu) = <1 . u> u€l0,1) (51) It is easy now to expressas a function ofD and substitute
into the rate equation to obtain

and consider the Taylor series expansiory6d) aroundu =
0, which, for the sake of convenience, will be represented as

o Finally, it remains to determine the coefficiedts, } and then
u)=1- Z(bnu" (52) the constantC. The coefficients can easily be obtained by
using the identity(1 + «)~' = "0 (=1)"u™ (u € [0, 1)),
which yields, after simple algebra,, = 4n(—1)"*!. Thus,

R(D) ~1—+/2C(D - Do). (59)

The coefficients{¢,,} will be determined explicitly in the

sequel. Now, clearlytanh?(2asz) = f(e~*e*I*l), and so we (=t %
have ¢= 2a r; n? T 24a’ (60)
mmse (A|X) and we have obtained a precise characterizatio®@?) in
— 442 [Ui _ E{XQf(exp{—4as|X|})}] the high—resolution regime:
=~ _ . 1—-R(D) T 0
_ 2 2 2 _ 4ans| X | _ _ . s
= 4a [am E {X <1 ;(bne )H Jim =D Va2e 5 \/ 2 (61)
i dans By applying a somewhat more refined analysis, one obtains
= 1a®Y 6. {Xze 4 |X\}_ (53) (similarly as in the above derivation in the high distortion
n=1

regime) upper and lower bounds B(D,) and Dy, this time,

To continue from this point, we will have to le¥ assume @s polynomials inl/s. These again lend themselves to the

a certain pdf. For convenience, let us seléttto have the derivation of upper and lower bounds di(D), which are
Laplacian pdf with paramete, i.e., applicable in certain intervals of low distortion. Spediflg,

the resulting upper bound is

0
plr) = eI, (54) R(D)<1—+2C(D=Dw)+Ci(D—Dy), (62)



whereC; = 2£ S (’173:“, and it is valid in the range and so

1
R, (D, K+ -Ins
6C(D — Do) o(Ds) r

>1- , (63) 1 1
2 cos [% sin~? <2C“/76(DCD°°)) + %} K+ - In (TDS) (70)

and it applies to the rangB € [Doo, Doo + C/(12C2)]. Both wherekK is an integration constant. We have therefore obtained

bounds have the same leading term in asymptotic behavi$¥@t in the high—resolution limit, the rate—distortion éion
which supports eq.[{61). The details of this derivation aMI-t. ¢ behaves according to

omitted since they are very similar to those of the high— L1
distortion analysis. Ry(D) =K' — - InD. (71)

with K/ = K — (Inr)/r. While this simple derivation does

not determine yet the constait, it does provide the correct

Consider the case where the distortion measure is given Qy, .o taristics of the dependencefdf( D) upon D for small

the L metric,.d(:v,y) = |z —y|" for some fixedr > 0. Let 1 For the case of quadratic distortion, where= 2, one
the reproduction symbols be selected independently abmndeasily identifies the familiar factor af/2 in front of the log—
according to the uniform pdf distortion term.

D. High Resolution for a General” Distortion Measure

Lyl < A The exact constanfX (or K’) can be determined by
() =9 &* (64)
Y= 0 elsewhere returning to the original expression &,(D) as the Legendre
Then transform of the log—moment generating function of theatist
e—sly—zl" tion (eq. [IB), and setting these= 1/(rD) as the minimizing
ws(ylz) = erA dy’ - e sy —al” (65) 5 for the givenD. The resulting expression turns out to be
—_A :
A 1
and so K'=In [—T ] — = In(er). (72)
+A r—sly—z|" F(l/’l’) r
+oo fiAdy-|x—y|e Y
D, = / dxp(x) - A -
—o0 Sy dy - emsly==l V. CONCLUSION
+oo P +A N i i i —
_ dep(z) - 2 In dy - e—<Iv-2I" {66) _In t_h|s paper, we derived relations I_Jetwe_en t_he rate
oo Os A distortion functionR,(D) and the MMSE in estimating the

distortion given the source symbol. These relations haes be
discussed from several aspects, and it was demonstrated how
they can be used to obtain upper and lower boundBgiD),

as well as the exact asymptotic behavior in very high and very
low distortion.

The bounds derived in our examples were induced from
purely mathematical bounds on the expression of the MMSE
directly. We have not explored, however, examples of bounds
on R,(D) that stem from estimation—theoretic bounds on

Now, in the high-resolution limit, where is very large, the
integrande—*1¥—*|" decays very rapidly agtakes values away
from x, and so, for everyr € (—A,+A) (which for large
enoughA, is the dominant interval for the outer integral ove
p(z)dzx), the boundariesi-A and 4+ A, of the inner integral
can be extended te-oo and +oo within a negligible error
term (whose derivative w.r.k is negligible too). Having done
this, the inner integral no longer depends #nwhich also
means that the outer integration owebecomes superfluous.

This results in Fhe MMSE, as was Qescribed in Section Ill. In future work,
e it would be interesting to explore the usefulness of such
D, = _2 In / dy - e—syT:| bounds as well. Another interesting direction for furtherkv
0s  |J_oo would be to make an attempt to extend our results to rate—
o | I i Foo Ur sy distortion functions pertaining to more involved settingsch
T /_OO d(s/"y)e ‘ ] as successive refinement coding, and situations that ieclud
P - y oo i side information.
= —gln s /_OO dt-e }
9 ) APPENDIX
= ——In(s7¥")
ds Proof of Theorem 1.
_ i (67) Consider a random selection of a codebookldf = e"#
rs codewords, where the various codewords are drawn indepen-
Thus, dently, and each codeword” = (Yi,...,Y,), is drawn
mmse (A|X) = _4Ds _ i7 (68) according to the product measué¥y) = [];_, q(y:). Let
ds rs? x = (z1,...,2,) be a typical source vector, i.e., the number
which yields of times each symbok € X appears inx is (very close
dR, (D) to) np(x). We now ask what is the probability of the event

1
—q =S mmse(AlX) = — (69) {3 d(z;,Y;) < nD}? As this is a large deviations event
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wheneverD < 37 p(z)q(y)d(z,y), this probability must Conseguently, according to ef. [75), we have established th
decay exponentially with some rate functiéy(D) > 0, i.e., relatiov%

sD+ Z p(x)InZy(s)| . (76)

zeX

I,(D) = lim [—llnpr{id(@,m < nDH . (73) Rq(D) = —min

n—00 n —
=t As this minimization problem is a convex problein £, (s)
The functionl, (D) can be determined in two ways. The firsis convex ins), the minimizings for a given D is obtained

is by the method of types [3], which easily yields by taking the derivative of the r.h.s., which leads to
. dolnZ,
1,(D) = min[I(X;Y") + D(¢'[| )], (74) D= =Y pla) HTU
zeX 5
where theY’ is an auxiliary random variable governed d —sd(z,y)
by ¢(y) = Y ,cxp(@)w(ylz) and the minimum is over = > p) 2yey 1Y) (Lii(m ) (77)
all conditional pmf's {w(y|z)} that satisfy the inequality zeX 2yey aye Y

Y eex P(T) Xoyey wlylr)d(z,y) < D. The second method This equation yields the distortion levél for a given value
is based on large deviations theoty [4] (see also [8]), whi@f the minimizings in eq. [78). Let us then denote

yields —ed
d(zx,y)e 54 =v)
Dy =3 pl)- Zyg Q(y()](;)ey)sd@,y) - 9
I,(D) = —min [sD + Z p(z)In Z.(s)| . (75) TEX vey
520 cex This notation obviously means that
We first argue thaf, (D) = R, (D). The inequalityl,(D) < Ry(Dy) = —sDy = Y p(x)In Zy(s). (79)
R,(D) is obvious, asR,(D) is obtained by confining the z€X
minimization over the channels ii_(74) so as to comply withaking the derivative of (78), we readily obtain
the additional constraint th?zzexl?(x)w(mx) = q(y) for dD., 0 [2,ey q(y)d(z, y)e—s1@w)
all y € Y. The reversed inequalityl,(D) > Ry(D), is = - Z p(x)a— )
obtained by the following coding argument: On the one hand, “° zeX 5 2yey y)e ’
a trivial extension of the converse to the rate—distortiodicg Zyey q(y)d?(z,y)e @)
theorem [[2, p. 317], shows thak,(D) is a lower bound = = pl) S )
to the rate—distortion performance of any code that saisfie T€X 4
Lyt Py =y} = qly) fpr all y € YH on the other ey q(y)d(z, y)e— @) 2
hand, we next show thd}, (D) is an achievable rate for codes : —sd(e.g)
in this class. 2yey 1We '
_ Consider the the random coding mechanism de_scribed in the - _ Z p(z) - Var{d(z,Y)|X =z}
first paragraph of this proof, witlR = I,(D) + ¢, with e > 0 ceX
being arbitrarily small. Since the probability that for agle = —mmse(AlX), (80)

randomly drawn codeword, P¥_" | d(z;,Y;) < nD} is of . .
the exponential order of "+, then the random selectionWhere Vatr{d(z,Y)|.X = z} is the variance ofi(x,Y) w.rt.
of a codebook of sizee™ll«(P)+el constitutes enll«(P)+<]  the conditional pmf{ws(y[x)}. The last line follows from

independent trials of an experiment whose probability df€ fact the expectation of Vafd(X,Y)|X} w.rt. {p(z)}
success is of the exponential orderof*s(P). Using standard 1 €xactly the MMSE ofd(XY) based onX. The integral

random coding arguments, the probability that at least off§™s Of this equation are then precisely as in part (a) of the
codeword, in that codebook, would fall within distane® theorem with the corresponding integration constantsalfyin

from the given typicalz becomes overwhelmingly large asdifferentiating both sides of ed.(79), we get

n — oo. Since this randomly selected codebook satisfies also dR(Ds) = dDs 5 S i) - 9InZ,(s)
15" PHY; = y} — q(y) in probability (asn — oo) for ds ds " b ds
n 1=1 rzeEX
all y € Y (by the weak law of large numbers), thép(D) dD
is an achievable rate within the class of codes that satisfy = 5 > — D+ Dy
Ly, PHY: =y} — q(y) for all i .
Thus, I,(D) > R,(D), which together with the reversed = TS s
inequality proved above, yields the equality D) = R,(D). — s-mmse(A|X), (81)

4To see why this is true, consider the functiong(y), v, k € I (each of which when integrated back, yields part (b) of the theorem.

which is defined as equal one fgr= k and zero otherwise) 43| distortion ~ This completes the proof of Theordr 1.

measures, indexed by € ), and consider the rate—distortion function w.r.t.

the usual distortion constraint and th| additional “distortion constraints”  ° Eq. [78) appears also ifil[5, p. 90, Corollary 4.2.3], with anpietely
E{6,(Y)} < q(k) for all £ € Y, which, when satisfied, they all must bedifferent proof, for the special case whegeminimizes both sides of the
achieved with equality (since they must sum to unity). The—rdistortion equation (and hence it refers R(D)). However, the extension of that proof to
function w.r.t. thesd)| + 1 constraints, which is exactly?z4(D), is easily a generig is not apparent to be straightforward because here the rization
shown (using the standard method) to be jointly convexirand q. over the channels is limited by the reproduction distrifaitconstraint.



REFERENCES

[1] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data
CompressionPrentice—Hall, Englewood Cliffs, New Jersey, U.S.A.,197

[2] T. M. Cover and J. A. Thomaglements of Information Thegrysecond
edition), John Wiley & Sons, Inc., New York, 2005.

[3] I. Csiszar and J. Korner/nformation Theory: Coding Theorems for
Discrete Memoryless Systenisdew York: Academic, 1981.

[4] A. Dembo and O. ZeitouniLarge Deviations Techniques and Applica-
tions, John and Bartlett Publishers, 1993.

[5] R. M. Gray, Source Coding TheonKluwer Academic Publishers, 1990.

[6] D. Guo, S. Shamai (Shitz), and S. Verdd, “Mutual infotioa and
minimum mean-square error in Gaussian channi&E Trans. Inform.
Theory vol. 51, no. 4, pp. 1261-1282, April 2005.

[7] M. Fogiel, Handbook of Mathematical, Scientific, and Engineering For-
mulas, Tables, Functions, Graphs, TransforrResearch and Education
Association, Piscataway, New Jersey, U.S.A., 1997.

[8] N. Merhav, “An identity of Chernoff bounds with an integiation in
statistical physics and applications in information tlygofEEE Trans.
Inform. Theory vol. 54, no. 8, pp. 3710-3721, August 2008.

[9] N. Merhav, “Another look at the physics of large deviagowith appli-
cation to rate—distortion theory,”
http://arxiv.org/PScache/arxiv/pdf/0908/0908.3562v1.pdf.

[10] N. Merhav, “On the physics of rate—distortion theotg appear irProc.
ISIT 201Q Austin, Texas, U.S.A., June 2010.

[11] K. Rose, “A mapping approach to rate-distortion congtion and
analysis,”|[EEE Trans. Inform. Theoryvol. 40, no. 6, pp. 1939-1952,
November 1994.

[12] E. Weinstein and A. J. Weiss, “Lower bounds on the meanass
estimation error,”Proc. of the IEEE vol. 73, no. 9, pp. 1433-1434,
September 1985.

[13] A. J. Weiss, Fundamental Bounds in Parameter Estimatio®h.D.
dissertation, Tel Aviv University, Tel Aviv, Israel, Jun®85.

[14] A. D. Wyner and J. Ziv, “Bounds on the rate—distortiomdtion for
stationary sources with memonlEEE Trans. Inform. Theoryvol. 17,
no. 5, pp. 508-513, September 1971.

11


http://arxiv.org/PS_cache/arxiv/pdf/0908/0908.3562v1.pdf

	I Introduction
	II Notation Conventions
	III MMSE Relations: Basic Result and Discussion
	IV Examples
	IV-A Binary Symmetric Source and Hamming Distortion
	IV-B Quadratic distortion and Gaussian Reproduction
	IV-C Quadratic Distortion and Binary Reproduction
	IV-D High Resolution for a General Lr Distortion Measure

	V Conclusion
	References

