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Abstract

A new elementary expression of the construction first proposed by Gurevich, Hadani, and Sochen
is given, which avoids the explicit use of the Weil representation. The sequences in this signal
set are given by both multiplicative character and additive character of finite field Fp. Such a
signal set consists of p2(p− 2) time-shift distinct sequences, the magnitude of the two-dimensional
autocorrelation function (i.e., the ambiguity function) in both time and phase of each sequence is
upper bounded by 2

√
p at any shift not equal to (0, 0). Furthermore, the magnitude of their Fourier

transform spectrum is less than or equal to 2. For a subset consisting of p(p−2) phase-shift distinct
sequences in this signal set, the magnitude of the ambiguity function of any pair is upper bounded
by 4

√
p. A proof is given through finding a new expression of the sequences in the finite harmonic

oscillator system. An open problem for directly establishing these assertions without involving the
Weil representation is addressed.

Index Terms. Sequence, autocorrelation, cross correlation, ambiguity function, Fourier trans-
form, and Weil representation.

1 Introduction

Sequence design for good correlation finds many important applications in various transmission systems

in communication networks, and radar systems.

A. Low Correlation

In code division multiple access (CDMA) applications of spread spectral communication, multiple

users share a common channel. Each user is assigned a different spreading sequence (or spread code)

for transmission. At an intended receiver, despreading (recovering the original data) is accomplished by

0∗ The work was conducted when Zilong Wang was a visiting Ph.D student at the Department of ECE in University
of Waterloo from September 2008 to August 2009.
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the correlation of the received spread signal with a synchronized replica of the spreading sequence used

to spread the information where the spreading sequences used by other users are treated as interference,

which is referred to as multiple access interference. This type of interference, which is different from

interference that arises in radio-frequency (RF) communication channels, can be reduced by proper

design of a spreading signal set. The performance of a signal (or sequence) set used in a CDMA system

is measured by the parameters L, the length or period of a sequence in the set, r, the number of

time-shift distinct sequences, and ρ, the maximum magnitude of the out-of-phase autocorrelation of

any sequence and cross correlation of any pair of the sequences in the set. This is referred to as an

(L, r, ρ) signal set. The trade-off of these three parameters is bounded by the Welch bound, established

in 1974 by Welch [43]. The research for constructing good signal sets has flourished in the literature.

The reader is referred to [6, 1, 39, 32, 5, 9] for polyphase sequences with large alphabet sizes, [26, 20]

for Z4 sequences, [12, 30] for interleaved sequences, and [36, 24, 13] in general, for example.

B. Minimized Fourier Spectrum

The orthogonal frequency division multiplexing (OFDM) utilizes the concept of parsing the input

data into N symbol streams, and each of which in turn is used to modulate parallel, synchronous

subcarriers. With an OFDM system having N subchannels, the symbol rate on each subcarrier is

reduced by a factor of N relative to the symbol rate on a single carrier system that employs the entire

bandwidth and transmits data at the same rate as OFDM. An OFDM signal can be implemented by

computing an inverse Fourier transform and Fourier transform at the transmitter side and receiver

side, respectively. A major problem with the multicarrier modulation in general and OFDM system in

particular is the high peak-to-average power ratio (PAPR) that is inherent in the transmitted signal. A

bound on PAPR through the magnitude of the discrete Fourier transform (DFT) spectrum of employed

signals is shown in [28, 31]. (See [40] for details of Fourier transform.) One way to achieve low PAPR is

to employ Golay complementary sequences, as first shown by Davis and Jedwab in [8]. A tremendous

amount of work has been done along this line since then.

C. Low Valued Ambiguity Functions

In radar or sonar applications, a sequence should be designed in such a way that the ambiguity

function (the two-dimensional autocorrelation function in both time and frequency or equivalently

phase, will be formally defined later), having the value of the length of the sequence at (0, 0), and small

values at any shift not (0, 0). The ambiguity function is required for determining the range (proportional

to the time-shift) and Doppler (the velocity to or from the observer, proportional to the frequency shift)

of a target. Sequences with low ambiguity function can be achieved by Costas arrays, which yield the

so-called ideal or thumb-tack ambiguity function (which only takes the values 0 or 1 at any shift not (0,

0)) [7, 14].
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It is interesting to see whether there exists a signal set which simultaneously satisfies the requirements

that arise from the above three transmission scenarios, i.e., having low correlation, low PAPR, low

ambiguity function, but with large size and moderate implementation cost. It is anticipated that

employing those sequences will improve the performance of communication systems with multi-carrier

CDMA transmission [33], radar networks, and transmission systems in future cognitive radio networks

[34].

Gurevich, Hadani, and Sochen [16, 18] proposed a signal set called finite oscillator system S which

gives a positive answer to the above question except for the implementation cost. Their construction

makes use of the group-theoretic Weil representation and the sequences are described in algorithmic

terms by the end of [16, 17]. The main contribution of this paper is to propose a simple elementary

expression for those sequences, which avoids the need to explicitly employ relatively costly group-

theoretic computations.

It is interesting to observe that to date, almost all sequences with low correlation in the literature

are related to the use of additive or multiplicative characters of the finite field or Galois rings together

with functions. Recently, inspired by mutually unbiased bases discussed by Howe in [22], Howard,

Calderbank, and Moran [21] investigated sequences constructed from the Heisenberg representation in

2006, then Gurevich, Hadani, and Sochen [16, 18] introduced sequences from the Weil representation

in 2008, which are referred to as a finite oscillator system S.

In fact, sequences from the Heisenberg representation are related to extended a Frank-Zadoff-Chu

(FZC) sequence [10, 6, 11], being complex valued sequences with period p. After normalization by

the energy, the values of their ambiguity functions (precisely defined in the next section) is bounded

by 1√
p except for some special case. While the sequences from the Weil representation, which will be

introduced later, have the desired properties in the above mentioned three application scenarios, but

have a complicated form. Gurevich, Hadani, and Sochen investigated how to implement their sequences

in terms of an algorithm. The goal of this paper is to find a simple elementary expression for the finite

harmonic oscillator system. We show that there are two types of the sequences in the finite harmonic

oscillator system of the splitting case (we will formally define it later). Sequences of the first type

can be given as product sequences using both multiplicative characters and additive characters of the

finite field Fp, and sequences of the second type are involved the summations of sequences of the first

type. We construct a new signal set from the set consisting of the sequences of the first type with some

extension.

The rest of the paper is organized as follows. In Section 2, we introduce some basic concepts and

notations. In Section 3, we present our new constructions and the main results. In Section 4, we

introduce Weil representation and the finite oscillator system constructed by Gurevich, Hadani and

Sochen in [16, 18]. We show a simple elementary expression for this finite oscillator system, and present
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a proof for the new constructions in Section 5. Comparisons of the new constructions with some known

constructions are made in Section 6. Section 7 is for concluding remarks and addressing an open

problem.

2 Basic Concepts and Definitions

In this section, we introduce some basic concepts and notations which are frequently used in this paper.

For a given prime p, let θ and η denote the (p − 1)th and pth primitive roots of unity in the complex

field respectively, i.e.,

θ = exp

(
2πi

p− 1

)
and η = exp

(
2πi

p

)
.

We denote Fp as the finite field with p elements, and F∗
p as the multiplicative group of Fp with a

generator α. Then for every element β ∈ F∗
p, there exists i with 0 6 i 6 p − 2, such that β = αi. In

other words, i = logα β. We set θlogα 0 = 0 throughout this paper.

Every sequence with period p can be denoted by ϕ = (ϕ(0), ϕ(1), · · · , ϕ(p− 1)), and also considered

as a vector in the Hilbert space H = C(Fp) with the inner product given by the standard formula:

< ϕ,ψ >=
∑

i∈Fp
ϕ(i)ψ(i) where x is the complex conjugate of x. We denote U(H) (Appendix 7.3)

as the group of unitary operators on H. Let Lt,Mw and F be unitary operators of the time-shift,

phase-shift and DFT respectively, which are defined as follows,

Lt[ϕ](i) = ϕ(i + t) Mw[ϕ](i) = ηwiϕ(i) and F [ϕ](j) =
1√
p

∑

i∈Fp

ηjiϕ(i), ϕ ∈ H. (1)

We also use the notation ϕ̂ for F [ϕ] for simplicity. If ψ = Ltϕ or ψ =Mwϕ, then we say that ϕ and ψ

are time-shift equivalent or phase-shift equivalent. Otherwise, they are time-shift distinct or phase-shift

distinct.

We denote Cϕ(t) and Cϕ,ψ(t) their respective autocorrelation and cross correlation functions, which

are defined by

Cϕ(t) =
∑

i∈Fp

ϕ(i)ϕ(i + t) and Cϕ,ψ(t) =
∑

i∈Fp

ϕ(i)ψ(i + t). (2)

Definition 1 We say that S is a (p, r, σ, ρ) signal set if each sequence in S has period p, there are r

time-shift distinct sequences in S, and the maximum magnitude of out-of-phase autocorrelation values

and cross correlation values are upper bounded by σ and ρ respectively, i.e.,

|Cϕ(t)| 6 σ, t 6= 0, ϕ ∈ S,

|Cϕ,ψ(t)| 6 ρ, t ∈ Fp, ϕ 6= ψ ∈ S.
(3)
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In this paper, we also say that auto and cross correlation of S is upper bounded by σ and ρ respectively.

We say that a sequence ϕ is a perfect sequence if

Cϕ(t) =

{
p t ≡ 0 mod p,

0 t 6≡ 0 mod p.

The auto and cross ambiguity functions of sequences are defined as two-dimensional autocorrelation

and cross correlation functions in both time and phase, and are given by

Aϕ(t, w) =< ϕ,MwLtϕ > and Aϕ,ψ(t, w) =< ϕ,MwLtψ > . (4)

The definitions of the auto and cross correlation functions are equal to their respective auto and cross

ambiguity functions for the case w = 0.

Definition 2 We say that S is a (p, r, σ, ρ) ambiguity signal set if each sequence in S has period p,

there are r time-shift distinct sequences in S, and the maximum magnitude of ambiguity out-of-phase

autocorrelation values and cross correlation values are upper bounded by σ and ρ respectively, i.e.,

|Aϕ(t, w)| 6 σ, (t, w) 6= (0, 0),

|Aϕ,ψ(t, w)| 6 ρ, ϕ 6= ψ ∈ S.
(5)

Property 1 Let S1 be a (p, r, σ, ρ) ambiguity signal set, and S2 = {Mwϕ|w ∈ Fp, ϕ ∈ S1}. Then S2 is

a (p, pr, σ, ρ) signal set.

Remark 1 All the definitions and notations are stated for sequences with period p in this section.

However, they are also valid for sequences with period n when p and Fp are replaced by n and Zn

respectively.

3 Main Results

There are two types of sequences in the set of the finite oscillator system S [16]. One is from the split

case, denoted as Ss, and the other is from the non-split case, denoted as Sns. In other words,

S = S
s ∪S

ns.

Gurevich, Hadani, and Sochen investigated how to implement the sequences in S
s by an algorithm [16].

Here we found a simple elementary construction for the sequences in S
s, which is presented as follows.

Theorem 1 Let α be a generator of F∗
p.

S
s = {ϕx,y,z | 1 6 x 6 p− 2, 0 6 y 6 p− 1, 0 6 z 6 (p− 1)/2}
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where ϕx,y,z = {ϕx,y,z(i)} is a normalized sequence with period p whose elements are given by

ϕx,y,0(i) =
1√
p− 1

θx·logα iηyi
2

,

and

ϕx,y,z(i) =
ηyi

2

√
p(p− 1)

p−1∑

j=1

θx·logα jη−(2z)−1(j−i)2 for z 6= 0.

If z 6= 0, it is clearly every element in ϕx,y,z has complicated form and does not lie on the unit circle,

so we only consider the sequences where z = 0.

Construction of Ω0. Let α be a generator of F∗
p. For a given prime p (p > 5), n ∈ Z and 0 6 n <

p(p− 2), n has a p-adic decomposition given by: n = (x− 1)p+ y where 1 6 x 6 p− 2, 0 6 y 6 p− 1.

Let ϕn = {ϕn(i)} be a sequence whose elements are defined as

ϕn(i) = θx·logα i · ηyi2 , 0 6 i 6 p− 1,

and

Ω0 = {ϕn : 0 6 n < p(p− 2)}.

Then from the main results of [16] (also Theorem 3 in this paper), we have

Theorem 2 The Signal set Ω0 satisfies the following properties.

(a) Ω0 is a (p, p(p− 2), 2
√
p, 4

√
p) ambiguity signal set.

(b) DFT of ϕ is bounded by |ϕ̂(i)| < 2, for ϕ ∈ Ω0, i ∈ Fp.

(c) The elements of each sequence ϕ in Ω lie on the unit circle of the complex plane except ϕ(0) = 0.

We can extend Ω0 by the phase shift operator as follows.

Construction of Ω. Let α be a generator of F∗
p. For a given prime p (p > 5), n ∈ Z and 0 6 n < p2(p−

2), n has a p-adic decomposition given by: n = (x− 1)p2 + yp+ z where 1 6 x 6 p− 2, 0 6 y, z 6 p− 1.

Let ϕn = {ϕn(i)} be a sequence whose elements are defined as

ϕn(i) = θx·logα i · ηyi2+zi, 0 6 i 6 p− 1,

and

Ω = {ϕn : 0 6 n < p2(p− 2)}.

Then from Property 1, we have
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Corollary 1 The signal set Ω satisfies the following properties.

(a) Ω is a (p, p2(p− 2), 2
√
p, 4

√
p) signal set.

(b) DFT of ϕ is bounded by |ϕ̂(i)| < 2, for ϕ ∈ Ω, i ∈ Fp.

(c) The elements of each sequence ϕ in Ω lie on the unit circle of the complex plane except ϕ(0) = 0.

(d) The magnitude of auto ambiguity function of every sequence in Ω is upper bounded by 2
√
p at any

shift not equal to (0, 0).

Example 1 For p = 5, a = 2 is a generator of F5, the elements of the sequences ϕx, ϕy, and ϕz are

defined as ϕx(i) = θx·logα i, ϕy(i) = ηyi
2

, and ϕz(i) = ηzi respectively, which are given as follows.

x ϕx(i) = θx·logα i

1 {0, 1, θ, θ3, θ2}
2 {0, 1, θ2, θ2, 1}
3 {0, 1, θ3, θ, θ2}

y ϕy(i) = ηyi
2

0 {1, 1, 1, 1, 1 }
1 {1, η, η4, η4, η}
2 {1, η2, η3, η3, η2}
3 {1, η3, η2, η2, η3}
4 {1, η4, η, η, η4}

z ϕz(i) = ηzi

0 {1, 1, 1, 1, 1}
1 {1, η, η2, η3, η4}
2 {1, η2, η4, η, η3}
3 {1, η3, η, η4, η2}
4 {1, η4, η3, η2, η}

Then the elements of each sequence in the signal set Ω are constructed by term-by-term products of

the elements of ϕx, ϕy, and ϕz . The first three sequences and last two sequences are given as follows.

ϕ0 = ϕ1,0,0 = (0, 1, θ, θ3, θ2),

ϕ1 = ϕ1,0,1 = (0, η, θη2, θ3η3, θ2η4),

ϕ2 = ϕ1,0,2 = (0, η2, θη4, θ3η, θ2η3),

...
...

ϕ73 = ϕ3,4,3 = (0, η2, θ3η2, θ, θ2η),

ϕ74 = ϕ3,4,4 = (0, η3, θ3η4, θη3, θ2).

In the rest of the sections, we first prove that Theorem 1 is the split case of the finite oscillator

system, and then complete proofs for Theorem 2 and Corollary 1. In order to do so, in the next section,

we first introduce some basic concepts and definitions on Weil representations, and then present the

oscillator system signal set.
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4 The Weil Representation and Finite Oscillator System

For more details about the representation theory and the Weil representation, we refer the reader to

[16, 21, 22] as well as the appendix in this paper.

4.1 Weil Representation

The Weil representation is a unitary representation from SL2(Fp) to U(H) (see the details in Appendix).

SL2(Fp) can be generated by ga =

(
a 0

0 a−1

)
, gb =

(
1 0

b 1

)
, and Weyl element w =

(
0 1

−1 0

)

where a ∈ F
∗
p and b ∈ Fp. The Weil representations for ga, gb and w are given in [17] as follows

ρ(ga)[ϕ](i) = σ(a)ϕ(a−1i) (6)

ρ(gb)[ϕ](i) = η−2−1bi2ϕ(i) (7)

ρ(w)[ϕ](j) =
1√
p

∑

i∈Fp

ηjiϕ(i) (8)

where σ : F∗
p → {±1} is the Legendre character, i.e., σ(a) = a

p−1

2 in Fp.

Obviously, ρ(w) is equal to F defined in (1). Here we denote ρ(ga) = Sa, ρ(gb) = Nb, ρ(w) = F for

simplicity. For g =

(
a b

c d

)
∈ SL2(Fp), if b 6= 0, we have

g =

(
a b

c d

)
=

(
a b

(ad− 1)b−1 d

)
=

(
b 0

0 b−1

)(
1 0

bd 1

)(
0 1

−1 0

)(
1 0

ab−1 1

)
.

Thus the Weil representation of g is given by

ρ(g) = Sb ◦Nbd ◦ F ◦Nab−1 . (9)

If b = 0, then

g =

(
a b

c d

)
=

(
a 0

c a−1

)
=

(
a 0

0 a−1

)(
1 0

ac 1

)
.

Hence the Weil representation of g is as follows

ρ(g) = Sa ◦Nac. (10)
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4.2 The Finite Oscillator System

In this subsection, we introduce the main results of [16].

A. Maximal Algebraic Tori

A maximal algebraic torus [4] in SL2(Fp) is a maximal commutative subgroup which becomes diago-

nalizable over the original field or quadratic extension of the field. One example of a maximal algebraic

torus in SL2(Fp) is the standard diagonal torus

A =

{(
a 0

0 a−1

)
: a ∈ F

∗
p

}
.

Up to conjugation, there are two classes of the maximal algebraic tori in SL2(Fp). The first class,

called split tori, consists of those tori which are diagonalizable over Fp. Every split torus T is conjugated

to the standard diagonal torus A, i.e., there exists an element g ∈ SL2(Fp) such that g · T · g−1 = A.

The second class, called non-split tori, consists of those tori which are not diagonalizable over Fp, but

become diagonalizable over the quadratic extension Fp2 . In fact, a split torus is a cyclic subgroup of

SL2(Fp) with order p− 1, while a non-split torus is a cyclic subgroup of SL2(Fp) with order p+ 1.

All split (non-split) tori are conjugated to one another, so the number of split (non-split) tori is the

number of elements in the coset space SL2(Fp)/N (SL2(Fp)/M) (see [41] for basics of group theory),

where N (M) is the normalizer group of a non-split torus A. Thus

#(SL2(Fp)/N) =
1

2
p(p+ 1) and #(SL2(Fp)/M) =

1

2
p(p− 1). (11)

Remark 2 A direct calculation shows that the number of non-split tori is equal to 1
2p(p − 1) instead

of p(p− 1), which is a mistake made in [16].

B. Decomposition of Weil Representation Associated with Maximal Tori

Because every maximal torus T ∈ SL2(Fp) is a cyclic group, restricting the Weil representation to

T : ρ|T : T → U(H), we obtain a decomposition of ρ|T corresponding to an orthogonal decomposition

of H.

ρ|T =
⊕

χ∈ΛT

χ and H =
⊕

χ∈ΛT

Hχ (12)

where ΛT is a collection of all the one dimensional subrepresentations (characters) χ : T → C in the

decomposition of the Weil representation restricted on the torus T .

The decomposition (12) depends on the type of T . In the case where T is a split torus, χ is a

character given by χ : Zp−1 → C. We have dimHχ = 1 unless χ = σ where σ is the Legendre character

9



of T , and dimHσ = 2. In the case where T is a non-split torus, χ is the character given by χ : Zp+1 → C.

There is only one character σ with order 2 that does not appear in the decomposition. For the other

characters χ 6= σ, dimHχ = 1.

C. Sequences Associated with Finite Oscillator System

For a given torus T and each character χ ∈ ΛT , choosing a vector ϕχ ∈ Hχ of unit norm, we obtain

a collection of orthonormal vectors

BT = {ϕχ : χ ∈ ΛT , χ 6= σ}. (13)

Considering the union of these collections, then the finite oscillator system

S = {ϕ ∈ BT : T ⊂ SL2(Fp)}. (14)

S is naturally separated into two sub-systems Ss and S
ns which correspond to the split tori and the

non-split tori respectively. The sub-system S
s (Sns) consists of the union of BT , where T runs through

all the split tori (non-split tori) in SL2(Fp). Totally there are 1
2p(p+ 1) (12p(p− 1)) tori consisting of

p− 2 (p) orthonormal sequences. Hence

#S
s =

1

2
p(p+ 1)(p− 2) and #S

ns =
1

2
p2(p− 1). (15)

Theorem 3 Sequences in the set S satisfy the following properties. For ϕ, ψ ∈ S and (t, w) ∈ V =

Fp × Fp,

(a) S is a (p, p(p2 − p− 1),
2
√
p

p−1 ,
4
√
p

p−1 ) ambiguity signal set.

(b) Supremum of ϕ is given by max{|ϕ(i)| : i ∈ Fp} 6 2√
p .

(c) For every sequences ϕ ∈ S, its DFT ϕ̂ is (up to multiplication by a unitary scalar) also in S.

5 Proof of Main Results

An efficient method to specify the decomposition (12) is by choosing a generator t ∈ T , the character

which is generated by the eigenvalue of linear operator ρ(t), and the character space Hχ that naturally

corresponds to the eigenspace. Below are three steps to construct the sequences in the split case of

finite oscillator system S
s.

Step 1 Compute the generator gα for the standard torus A and BA. In other words, the collection of

the eigenvectors of ρ(ga) which do not correspond to eigenvalue −1.
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Step 2 Compute all representative elements g in the coset {gN(A) : g ∈ SL2(Fp)} where N(A) is the

normalizer group of A.

Step 3 Compute all sequences ρ(g)ϕ where g is the representative element presented in Step 2 and

ϕ ∈ BA is calculated in Step 1.

Considering {δi : i ∈ Fp} as the Kronecker delta function of Hilbert space H = C(Fp) (i.e., δi

is defined as δi(j) = δij for ∀j ∈ Fp), every sequence ϕ = {ϕ(i)} with period p can be written as

ϕ =
∑p−1
i=0 ϕ(i)δi. Recall that SL2(Fp) can be generated by ga =

(
a 0

0 a−1

)
, gb =

(
1 0

b 1

)
and

w =

(
0 1

−1 0

)
where a ∈ F∗

p and b ∈ Fp, then their respective Weil representations (6), (7), and (8)

of ga, gb, and w can be rewritten as follows

ρ(ga)δi = Saδi = σ(a)δai (16)

ρ(gb)δi = Nbδi = η−2−1bi2δi (17)

ρ(w)δj = Fδj =
1√
p

∑

i∈Fp

ηjiδi. (18)

Lemma 1 Let α be a generator of F∗
p, and A =

{(
a 0

0 a−1

)
: a ∈ F∗

p

}
be the standard diagonal

torus. Then

BA =

{
ϕx =

1√
p− 1

p−1∑

i=1

θx·logα iδi : 1 6 x 6 p− 2

}
.

Proof. The set BA is a collection of ϕχ with unit norm where ϕχ ∈ Hχ for every character χ 6= σ. In

other words, the set BA is a collection of unit eigenvectors (not belonging to eigenvalue −1) of ρ(gα)

where gα is a generator of Torus A.

Let α be a generator of F∗
p. Then gα =

(
α 0

0 α−1

)
is a generator of torus A. From (16), we have

ρ(gα)δi = σ(α)δαi = −δai.

The eigenfunction of ρ(gα) is (x+1)(xp−1 − 1), so the eigenvalues of ρ(gα) are −1, θ0, θ1, θ2 · · · · · · θp−2.

Obviously, −1 = θ
p−1

2 occurs twice in the eigenvalues set. We assert that
∑p−1

i=1 θ
( p−1

2
−j) logα iδi is an
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eigenvector associated to the eigenvalue θj(0 6 j 6 p− 2), and it can be verified as follows

ρ(gα)(

p−1∑

i=1

θ(
p−1

2
−j) logα iδi) = −

p−1∑

i=1

θ(
p−1

2
−j) logα iδai

= −
p−1∑

i=1

θ(
p−1

2
−j) logα(a−1i)δi

= θ
p−1

2

p−1∑

i=1

θ(
p−1

2
−j)(logα i−1)δi

= θ
p−1

2 θj−
p−1

2

p−1∑

i=1

θ(
p−1

2
−j) logα iδi

= θj
p−1∑

i=1

θ(
p−1

2
−j) logα iδi.

Let x = p−1
2 − j. Then {

∑p−1
i=1 θ

x·logα iδi (1 ≤ x ≤ q − 2)} is a set of the eigenvectors corresponding to

all the eigenvalues not equal to −1. By normalizing the eigenvectors, we complete the proof. �

Lemma 2 Let A =

{(
a 0

0 a−1

)
: a ∈ F∗

p

}
be the standard diagonal torus, and N(A) be the normal-

izer group of A. Then

R =

{(
1 b

c 1 + bc

)
: 0 6 b 6

p− 1

2
, c ∈ Fp

}

is a collection of coset representatives of {gN(A) : g ∈ SL2(Fp)}.

Proof. Denote B =

{(
0 −b
b−1 0

)
: b ∈ F∗

p

}
. Then it’s not hard to verify

N(A) = {g : gAg−1 = A, g ∈ SL2(Fp)} = AB.

Thus every representative element g can be written as the form

g =

(
1 b

c 1 + bc

)
b, c ∈ Fp.

12



Note that g =

(
1 b

c 1 + bc

)
and g′ =

(
1 b′

c′ 1 + b′c′

)
are in the same coset, i.e., g−1g′ ∈ N(A), if

and only if

(
1 b′

c′ 1 + b′c′

)
=

(
1 b

c 1 + bc

)(
0 −b
b−1 0

)

=

(
1 −b

b−1 + c −bc

)

=

(
1 −b

b−1 + c 1 + (−b)(b−1 + c)

)

if and only if b′ = −b and c′ = b−1 + c. Therefore R contains all representative elements in the coset

{gN(A) : g ∈ SL2(Fp)}.
�

By Lemmas 1 and 2, we can now prove Theorem 1, which is a direct consequence of the following

result.

Proposition 1 There are two types of vectors in S
s.

The first type is

ϕx,y,0 =
1√
p− 1

p−1∑

i=1

θx·logα iηyi
2

δi

where 1 6 x 6 p− 2, 0 6 y 6 p− 1.

The second type is

ϕx,y,z =
1√

p(p− 1)

p−1∑

i=0

p−1∑

j=1

θx·logα jηyi
2−(2z)−1(j−i)2δi

where 1 6 x 6 p− 2, 0 6 y 6 p− 1, 1 6 z 6 p−1
2 .

Proof. Every split torus T ⊂ SL2(Fp) can be written as the form gAg−1 where A is the diagonal

torus and g =

(
1 b

c 1 + bc

)
∈ R in Lemma 2. Then

BT = BgAg−1 = {ρ(g)ϕ : ϕ ∈ BA},

and

S
s =

⋃

g∈R
BgTg−1 = {ρ(g)ϕ : g ∈ R,ϕ ∈ BA}.

13



If b = 0, g =

(
1 b

c 1 + bc

)
has the form

(
1 0

c 1

)
(0 6 c 6 p− 1), then from (17), we have

ρ(g)ϕx = Nc(
1√
p− 1

p−1∑

i=1

θx·logα iδi)

=
1√
p− 1

p−1∑

i=1

θx·logα iNcδi

=
1√
p− 1

p−1∑

i=1

θx·logα iη−2−1ci2δi.

If b 6= 0, g has the following decomposition

g =

(
1 b

c 1 + bc

)
=

(
b 0

0 b−1

)(
1 0

b(1 + bc) 1

)(
0 1

−1 0

)(
1 0

b−1 1

)
.

Then applying (16),(17), and (18), for 1 6 x 6 p− 1, we have

ρ(g)ϕx = Sb ◦Nb(1+bc) ◦ F ◦Nb−1(
1√
p− 1

p−1∑

j=1

θx·logα jδj)

= Sb ◦Nb(1+bc) ◦ F (
1√
p− 1

p−1∑

j=1

θx·logα jη−2−1b−1j2δj)

= Sb ◦Nb(1+bc)(
1√

p(p− 1)

p−1∑

i=0

p−1∑

j=1

θx·logα jη−2−1b−1j2ηijδi)

= Sb(
1√

p(p− 1)

p−1∑

i=0

p−1∑

j=1

θx·logα jη−2−1b−1j2ηijη−2−1b(1+bc)i2δi)

= σ(b)(
1√

p(p− 1)

p−1∑

i=0

p−1∑

j=1

θx·logα jη−2−1b−1j2ηijη−2−1b(1+bc)i2δbi)

= σ(b)(
1√

p(p− 1)

p−1∑

i=0

p−1∑

j=1

θx·logα jη−2−1b−1j2ηb
−1ijη−2−1b−1(1+bc)i2δi)

=
σ(b)√
p(p− 1)

p−1∑

i=0

p−1∑

j=1

θx·logα jη−(2b)−1(j−i)2−2−1ci2δi.

Let y = −2−1c, z = b. Then y ranges over Fp as c ranges over Fp. Note that σ(z) = ±1 is a constant,

so 1√
p−1

∑p−1
i=1 θ

x·logα iηyi
2

δi and
1√

p(p−1)

∑p−1
i=0 η

yi2
∑p−1

j=1 θ
x·logα jη−(2z)−1(j−i)2δi with 1 6 x 6 p − 2,

14



0 6 y 6 p− 1, 1 6 z 6
p−1
2 are all the vectors in S

s, which completes the proof. �

Thus, we have found a simple elementary representation for the split case of the finite oscillator

system.

The following lemma gives the relationship of the correlation function, ambiguity function, and

unitary operator Lt,Mw, F defined in (1), which is easy to verify.

Lemma 3 ∀ϕ, ψ sequences with period p, ∀t, w, z ∈ Fp, and where Lt,Mw, F are defined in (1), we

have:

(a) Cϕ(t) =< ϕ,Ltϕ > and Cϕ,ψ(t) =< ϕ,Ltψ > .

(b) | < ϕ, π(t, w, z)ψ > | = | < ϕ,Mw · Ltψ > | = | < ϕ,Lt ·Mwψ > |.

(c) Lt · F = F ·Mt and FL−t =Mt · F.

(d) < ϕ̂, Ltψ̂ >=< ϕ,M−tψ > and < ϕ̂,Mwψ̂ >=< ϕ,Ltψ > (Parseval Formulae).

Now we extend signal set from S to S by the phase shift operator, i.e.,

S = {Mwϕ : ∀ϕ ∈ S, w ∈ Fp}.

Then S satisfy the following property.

Property 2 With the above notation,

(a) S is a (p, p2(p2 − p− 1),
2
√
p

p−1 ,
4
√
p

p−1 ) signal set.

(b) Supremum of ψ is given by max{|ψ(i)| : i ∈ Fp} 6 2√
p , ψ ∈ S.

(c) DFT of ψ is bounded by |ψ̂(i)| 6 2√
p , ∀i ∈ Fp, ψ ∈ S.

Proof.

(a) By Property 1, S is a (p, p(p2 − p − 1),
2
√
p

p−1 ,
4
√
p

p−1 ) ambiguity signal set, so S is a (p, p2(p2 − p−

1),
2
√
p

p−1 ,
4
√
p

p−1 ) signal set.

(b) ∀ Mwϕ ∈ S, it is clear that the magnitude of Mwϕ(i) is as same as that of ϕ(i).

(c) Applying Lemma 3-(c), the DFT of Mwϕ can be written as F · Mwϕ = Lw · Fϕ. We can

see that Fϕ is also in S from Lemma 3-(c), and |Fϕ(i)| 6 2√
p from Theorem 3-(b). Thus

|F ·Mwϕ(i)| = |Lw · Fϕ(i)| 6 2√
p , which completes the proof.
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Proof of Theorem 2. Considering Ω0 and S
s, it is obvious that Ω0 is a subset of Ss up to multiplication

by
√
p− 1. Thus Ω0 is a (p, p2(p − 2), 2

√
p, 4

√
p) ambiguity signal set, and the DFT of ϕ ∈ Ω0 is

bounded by |ϕ̂(i)| 6 2
√

p−1
p < 2 ∀ϕ ∈ Ω and ∀i ∈ Fp. �

From Theorem 2, Property 1 and Lemma 3, Corollary 1 holds.

6 Comparisons of the New Constructions with Some Known

Constructions

The split case of the finite oscillator system S
s and the extended construction S can be efficiently

implemented for moderate p. However, for large p, since one needs to compute the exponential sum of

p elements, they are not so efficient. Therefore, in this section, we only make some comparisons for the

set Ω or Ω0 with some known constructions.

A. Compared with Complex Valued Sequences with Good Ambiguity Function or DFT

Let n be a positive integer and ωn be an nth primitive root of unit in the complex field, i.e.,

ωn = e−
2πj

n where j =
√
−1. For fixed 0 < y < n, 0 6 z < n where y is relatively prime to n, a

Frank-Zadoff-Chu (FZC) sequence [10, 6, 11] {ϕy,z(i)} is given by

ϕy,z(i) =





ω
(1/2)yi2+zi
n n is even,

ω
(1/2)yi(i+1)+zi
n n is odd.

(19)

Any FZC sequence is a perfect sequence, i.e., its out-of-phase autocorrelation is zero. Note that ω
1/2
n is

a (2n)th primitive root of unit in the complex field. For n odd, ϕy,z(i) can be given by an equivalent

expression: ωy
′i2+z′i
n where 0 < y′ < n, 0 6 z′ < n. This form will be used below.

1. For a fixed z, a FZC signal set is a set consisting of the ϕ(n) sequences defined by (19) where

ϕ(n) is the Euler function. When n = p a prime, the FZC set is a (p, p− 1, 0,
√
p) signal set. The

magnitude of the DFT of these sequences is bounded by 1.

2. The elements in Alltop cubic sequences [1] with period p are given by ϕy(i) = ωi
3+yi
p where

0 6 y 6 p − 1. The auto and cross ambiguity function can reach p with 1
p probability, and the

magnitude of the DFT of these sequences is bounded by 2.

3. Sequences from Heisenberg representation: The elements in a sequence from the Heisenberg rep-

resentation [21] have the form ϕy,z(i) = ωyi
2+zi

p where 0 6 y, z 6 p− 1. (Note that the sequences
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from Heisenberg representation are the same as the FZC sequences with period n = p, a prime.)

Here the magnitude of the auto ambiguity function of such sequences can reach p with 1
p prob-

ability, while the upper bound of the cross ambiguity function between two phase-shift distinct

sequences is given by
√
p, and the magnitude of the DFT of these sequences is bounded by 1.

4. Modulatable orthogonal sequences [39]: An h × h discrete Fourier transform (DFT) matrix is

defined by the jth row and the kth column elements of

dz,j,k = ωzjkh (20)

where z is a fixed number with 0 < z < h and gcd(z, h) = 1, and 0 6 j, k < h. Let a sequence

{az(i)} be given by concatenation of the rows of DFT matrix starting from the first row, second

row, and so on, i.e., az(i = jh + k) = dz,j,k, 0 6 j, k < h. (Note that {az(i)} can be considered

as an interleaved sequence associated with the DFT matrix [13].) Let {b(i)}i≥0 be a complex

valued sequence with period h and |bi| = 1, i.e., the magnitude of bi is equal to 1. A modulatable

orthogonal (MO) sequence {cz(i)} of period n = h2 is given by

cz(i) = az(i)b(i), i = 0, 1, · · · .

For each h, an MO sequence is a perfect sequence. An MO signal set consists of the sequences for

all z. When h = p, a prime, this set is a signal set with parameters (p2, p− 1, 0, p).

5. Generalized chirp-like (GCL) sequences [32]: Popović, generalized the construction of the mod-

ulatable orthogonal sequences in 1992 as follows. Let {ϕy,z(i)} be a FZC sequence with period

n = th2 where both t and h are arbitrary positive integers, and {b(i)} be the same as defined for

MO sequences. A generalized chirp-like sequence {cy,z(i)} is given by

cy,z(i) = ϕy,z(i)b(i), i = 0, 1, · · ·

where the index i of ϕy,z(i) is reduced modular n and the index of b(i) is reduced modular h.

Each generalized chirp-like sequence sequence is a perfect sequence. For a fixed z, a GCL signal

set consists of all {cy,z(i)} for GCD(y, n) = 1. When n = p2 where p is a prime, a GCL signal set

is a (p2, p− 1, 0, p) signal set.

Note that their respective auto/cross ambiguity functions and the DFT of MO and GCL sequences

are not reported in the literature. A more recent work [5] using the Zak transform showed that

the above perfect sequences, i.e., FZC, MO and GCL sequences, can be considered as subsets of

the sequences constructed from the Zak transform for some special parameters.

17



6. Power residue sequences [38, 27, 35]: Let k be a proper factor of p− 1. A power residue sequence

{ϕx(i)} of period p is defined as

ϕx(i) = ω
x·loga i
k , i = 0, 1, · · · , (21)

where 0 < x < k. A power residue sequence is a polyphase sequence with period p and k different

phases, which is represented by multiplicative characters. A k-ary power residue sequence of

period p has the out-of-phase autocorrelation magnitude of at most 3, which is also studied in

[15]. Moreover, it is shown in [23] that the magnitude of the cross-correlation of distinct k-ary

power residue sequences of period p is bounded by
√
p + 2. Thus, the set consisting of the

power residue sequences defined by (21) for all x : 0 < x < k is a signal set with parameters

(p, k − 1, 3,
√
p + 2) where k can be up to k = p − 1. When k = p − 1, it can be seen that this

is a subset of Ω, the new expression of the sequences from the Weil representation. Thus the

ambiguity and the DFT are bounded with the same values as for Ω. Furthermore, this signal set

can be enlarged using the shift-and-add operators. For details, see a recent paper [45].

7. For the new construction Ω, there are p2(p − 2) time-shift distinct sequences, and the elements

in every sequence have the expression ϕx,y,z(i) = ω
x·loga i
p−1 · ωyi2+zip (note θ = ωp−1 and η = ωp

in the previous notation for the new construction. The magnitude of auto and cross correlaton

of sequences in the set are upper bounded by 2
√
p and 4

√
p, respectively, and the magnitude of

the DFT of these sequences is upper bounded by 2. The subset Ω0 where z = 0 is an ambiguity

signal set with parameters (p, p(p− 2), 2
√
p, 4

√
p). However, there is a possible drawback of those

sequences in practice. The alphabet for a sequence of length p grows roughly as O(p2).

We summarize the above discussions in Table 1. We use the notation η = ωp as we used in the

previous sections except for the case of GCL where we use ωp2 .

B. Signal Sets with Sizes in the Order of p3 and Low Correlation

Signal sets with family size in the order of p3, and with low correlation are known in the literature

and are shown in Table 2. The bounds of auto and cross correlation function for construction Ω are

better than or as good as the sequences in [3], Z4 sequences S(2) [25], and the sequences in [44], while

the maximum magnitudes of DFT are only known for Ω, and Z4 sequences S(2).

C. Implementation Cost

Note that the ith element of a sequence in Ω is a product of the ith element of a (p − 1)-ary

power residue sequence of period p and the ith element of an FZC sequence of period p. Thus, the

implementation cost of construction Ω is equal to the sum of the cost of those two types of sequences.

Since both power residue sequences and FZC sequences can be implemented efficiently at both hardware
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Table 1: The Comparison with Well-known Complex Valued Sequences

Family ith element Period L Size Ambiguity and DFT

FZC(1) ϕy(i) = ηyi
2 |AA| : p.

[10] [6] [11] (0 6 y 6 p− 1) p p |CA| 6 √
p.

|DFT | 6 1.

ϕy(i) = ηi
3+yi2 |AA| : p.

Alltop cubic [1] (0 6 y 6 p− 1) p p |CA| : p.
|DFT | 6 2.

Sequences from ϕy(i) = ηyi
2+zi |AA| : p.

Heisenberg (0 6 y 6 p− 1) p p |CA| 6 √
p.

representation [21] |DFT | 6 1.

MO(1) [39] cz(ip+ k) = ηzikb(k) p2 p− 1 AA, CA, DFT

(1 6 z 6 p− 1) are unknown.

GCL(1) [32] cy(i) = ωyi
2+zi

p2 b(i) p2 p− 1 AA, CA, DFT

(1 6 y 6 p− 1 ) are unknown.

Power residue sequences ϕx(i) = θx·loga i p p− 2 The same as Ω0.

[38][23] (1 6 x 6 p− 2)

Sequences from ϕx,y,z(i) = θx·loga iηyi
2 |AA| 6 2

√
p.

Weil representation (1 6 x 6 p− 2, p p(p− 2) |CA| 6 4
√
p.

Ω0 (this paper) 0 6 y 6 p− 1) |DFT | 6 2

- AA =Auto ambiguity, CA = Cross ambiguity.

- (1) Those are perfect sequences.

and software level, so do the sequences in Ω. Furthermore, the new expression of Weil representation

sequences provides a trade-off among the alphabet size and good ambiguity.

7 Concluding Remarks and An Open Problem

We have discovered a simple elementary representation of the sequences in the finite oscillator system

from the Weil representation, introduced by Gurevich, Hadani, and Sochen. From this, we have shown

a construction Ω of families of complex valued sequences of period p having low valued correlation

functions. This construction produces a signal set with p2(p−2) shift distinct sequences. The magnitude

of the auto and cross correlation functions are upper bounded by 2
√
p and 4

√
p, respectively. The DFT

of every sequence in the signal set is upper bounded by 2. The signal set Ω0, a subset of Ω, possesses all

the properties of Ω as well as the magnitude of their auto and cross ambiguity functions are bounded
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Table 2: The Comparison with Sequences with Low Correlation

Family Period L Size Correlation DFT Ambiguity

Blake and Mark [3](2) p− 1 (L+ 1)3 4
√
L+ 1 + 1 N N

Z4 sequences S(2) [25] 2k − 1 L3 + 4L2 + 5L+ 2 4
√
L+ 1 + 1 5 [31] N

Yu and Gong [44] 2k − 1 (L+ 1)3 22.5
√
L+ 1 N N

Ω p L2(L − 2) 2
√
L, 4

√
L 2 Not good

Ω0 p L(L− 2) 2
√
L, 4

√
L 2 |AA| 6 2

√
L, |CA| 6 4

√
L

- (2) This family can be easily extended to sequences over the finite field Fp with period p
n
− 1 and the same

correlation property from the work in [29].

- AA =Auto ambiguity, CA = Cross ambiguity.

- N: no reported results in the literature.

by 2
√
p and 4

√
p. However, there is a drawback of this construction in practice, since the alphabet for

a sequence of length p grows roughly as O(p2).

If we look at the construction Ω again, we find that each sequence ϕn = {ϕn(i)}i>0 is the term-by-

term product of sequences {θx logα i}i>0 and {ηyi2+zi}i>0 which are related to power residue sequences

and FZC sequences, respectively. Going back to the literature, all the known constructions only involve

one type of character from finite field Fp, While here we use both multiplicative and additive characters

of finite field Fp. The proof of those results requires very deep mathematics, i.e., the representation

theory and l-adic algebraic geometry. This suggests that it is worth looking for a direct proof for the

construction, which will have a two-fold effect. One is for better promotion of those sequences in practice

without introducing the Weil representation theory. The other is that it may lead to more discoveries

of new signal sets with good auto and cross ambiguity functions as well as with low magnitude of the

DFT spectrum.

Open Problem. For Ω = {ϕn | 0 6 n 6 p2(p− 2)}, directly show that Ω is a (p, p2(p − 2), 2
√
p, 4

√
p)

signal set and that the DFT of every sequence is upper bounded by 2 without introducing Weil repre-

sentation and finite oscillator system.
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Appendix

The Heisenberg Representation

Let V = F2
p be a two-dimensional vector space over the finite field Fp. Then (V, ω) is symplectic if the

symplectic form ω is given by

ω((t1, w1), (t2, w2)) = t1w2 − t2w1,

for (ti, wi) ∈ V , i = 1, 2.

Considering V as an Abelian group, it admits a non-trivial central extension called the Heisenberg

group H (p 6= 2). The group H can be presented as H = V × Fp with the multiplication given by

(t1, w1, z1) · (t2, w2, z2) = (t1 + t2, w1 + w2, z1 + z2 + 2−1ω((t1, w1), (t2, w2))).

It is easy to verify that the center of H is Z = Z(H) = {(0, 0, z) : z ∈ Fp}.

Theorem 4 (Stone-Von Neuman) Up to isomorphism, there exists a unique irreducible unitary repre-

sentation π : H → U(H) with central character φ, that is, π|Z = φ · IdH.

The representation π in the above theorem is called the Heisenberg representation. In this paper,

we take a character of Z as φ((0, 0, z)) = ηz. Then the unique irreducible unitary representation π

corresponding to φ has the following formula

π(t, w, z)[ϕ](i) = η2
−1tw+z+wiϕ(i + t) (22)

for ϕ ∈ C(Fp), (t, w, z) ∈ H . Consequently, we have

π(t, 0, 0)[ϕ](i) = ϕ(i+ t)

π(0, w, 0)[ϕ](i) = ηwiϕ(i)

π(0, 0, z)[ϕ](i) = ηzϕ(i).

Thus π(t, 0, 0), π(0, w, 0) are equal to the unitary operators time-shift Lt and phase-shift Mw, respec-

tively, defined in (1).

The Weil Representation

The symplectic group Sp = Sp(V, ω), which is isomorphic to SL2(Fp), acts by automorphism of H

through its action on the V -coordinate, i.e., ∀(t, w, z) ∈ H and a matrix g =

(
a b

c d

)
∈ SL2(Fp), the

action g on (t, w, z) as

g · (t, w, z) = (at+ bw, ct+ dw, z). (23)
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Due to Weil [42], a projective unitary representation ρ̃ : Sp → PGL(H) is constructed as follows.

Considering the Heisenberg representation π : H → U(H) and g ∈ Sp, a new representation is defined

as: πg : H → U(H) by πg(h) = π(g(h)). Because both π and πg have the same central character φ, they

are isomorphic by Theorem 4. By Schur’s Lemma [37], HomH(π,πg)∼= C∗, so there exist a projective

representation ρ̃ : Sp→ PGL(H). This projective representation ρ̃ is characterized by the formula:

ρ̃(g)π(h)ρ̃(g−1) = π(g(h)) (24)

for every g ∈ Sp and h ∈ H . Moreover, ρ̃(g) uniquely lifts to a unitary representation

ρ : Sp→ U(H)

that satisfies equation (24). The existence of ρ follows from the fact [2] that any projective representation

of SL2(Fp) can be lifted to an honest representation, while the uniqueness of ρ follows from the fact

[19] that the group SL2(Fp) has no non-trivial characters for p 6= 3.

Thus the Weil representation, specified in Section 4.1, follows.

Notion of an Unitary Representation

Let H be a Hilbert space. A unitary operator on H is an operator A : H → H which preserves the

inner product, that is, < Aϕ,Aψ >=< ϕ,ψ > for every ϕ, ψ ∈ H. The set of unitary operators forms

a group under composition of operators, which is denoted by U(H).

Definition 3 A unitary representation of a group G on the Hilbert space H is a homomorphism π :

G→ U(H), i.e., π is map which satisfies the condition

π(g · h) = π(g) · π(h), ∀g, h ∈ G.

Definition 4 A unitary representation π : G→ U(H) is called irreducible if there is no proper subspace

H′ ⊂ H invariant under G, i.e., such that

π(g)ϕ ∈ H′, ∀ϕ ∈ H′.

All unitary representations π : G → U(H) can be decomposed into a direct sum of irreducible

unitary representations. In other words, there exists is a decomposition of the Hilbert space H into a

direct sum

H =
⊕

i∈I
Hi,

such that each subspace Hi is closed under the action of G, that is π(g)ϕ ∈ Hi, ∀ϕ ∈ Hi, and such that

the restricted unitary representations πi : G→ U(Hi) are irreducible.
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A unitary operator A : H → H can be diagonalized, which means that there exists an orthogonal

decomposition of H into a direct sum of eigenspaces

H =
⊕

λi

Hλi
,

where dim(Hλi
)= 1, and ∀ϕ ∈ Hλi

, Aϕ = λiϕ.

Now we consider a unitary representation π : G → U(H) of a commutative group G, which yields

a commutative group {π(g) : g ∈ G} of unitary operators. Then the unitary operators {π(g) : g ∈ G}
can be diagonalized simultaneously, i.e., there exists an orthogonal decomposition of H into common

eigenspaces

H =

n⊕

i=1

Hχi
.

Here the eigenspaces are indexed by the characters χi : G → S1 where we have π(g)ϕ = χi(g)ϕ for

every g ∈ G, ϕ ∈ Hχi
.

Then we achieve the decomposition of the Weil representation associated with maximal tori in

Section 4.2.

PAPR and Discrete Fourier Transform

The following theorem gives a relationship among the continuous Fourier transform, discrete Fourier

transform and PAPR.

Theorem 5 ([28]) Let ϕ be a sequence with period n, and define continuous Fourier transform of ϕ as

Sϕ(z) =
∑n−1

i=0 ϕ(i)z
i, then

max
|z|=1

|Sϕ(z)| 6 (
2

π
lnN + 2) max

06i6n−1
|Fϕ(i)|.

Thus

PAPR(ϕ) 6 (
2

π
lnN + 2) max

06i6n−1
|Fϕ(i)|.
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